Khan, Ibrar; Ahmad, Haroon; Ali, Nasir; Ahmad, Bashir; Tanoli, Hamid
2013-07-01
The current study was aimed at screening the Bunium bulbocastanum for its antibacterial, antifungal, phytotoxic and haemagglutination activities.The crude methanolic extract and n-hexane fraction showed significant (89%) and good activity (61%) against Staphylococcus aureus while the CHCl3fraction was moderately active against S.aureus (53%). Moderate activitywas shown by the EtOAc fraction against B. subtilis (44%). This fraction was inactive against P.aerogenosa and S.aureus. The aqueous fraction showed significant activity against B. subtilis (85%), moderate against S.aureus(34 %) and E. coli (33%)and low activity against P.aerogenosa(29%). Our results for antifungal assay indicated that all the test samples were inactive against all the test fungi. The phytotoxic activity of the plant at 1000 and 100 μg/ml was: crude methanolic extract (53.33 and 46.66%), n-hexane (46.66 and 26.66%), CHCl3 (20 and 6.66%), EtOAc (46.66 and 26.66%) and aqueous (40 and 33.33%). All the test samples (crude methanolic extract and fractions) of B. bulbocastanum were unable to agglutinate RBCs of the human blood indicating that this species lack phytolectins.
[Biological activity of fungi from the phyllosphere of weeds and wild herbaceous plants].
Berestitskiĭ, A O; Gasich, E L; Poluéktova, E V; Nikolaeva, E V; Sokornova, S V; Khlopunova, L B
2014-01-01
Antimicrobial, phytotoxic, and insecticidal activity of 30 fungal isolates obtained from leaves of weeds and wild herbaceous plants was assessed. Antibacterial, antifungal, phytotoxic, and insecticidal activity was found in over 50, 40, 47, and 40% of the isolates, respectively. These findings may be important for toxicological assessment of potential mycoherbicides, as well as provide a basis for investigation of the patterns of development of phyllosphere communities affected by fungal metabolites.
Short Communication: Pharmacognostic and Pharmacological evaluation of Ruellia tuberosa L.
Rehman, Rehman; Ibrar, Muhammad; Hameed, Ishfaq; Hussain, Farrukh
2016-11-01
Ruellia tuberosa Linn. of family Acanthaceae was studied to investigate the microscopical, vein islet and vein termination numbers, palisade ratio, stomatal index and different chemical parameters. The antibacterial, antifungal and phytotoxic activities of the crude extract of the plant were also determined. Five bacterial species were used, of which, Salmonella typhi, Escherichia coli, and Pseudomonas aeruginosa were the most susceptible bacterial species to crude extract with MICs 10, 4.0 and 14mg/ml, respectively. Among the tested fungal species Fusarium solani and Aspergillus niger were more susceptible to crude extracts with MICs 1.34, 2.78 and 1.45μg/ml, respectively. At the concentration of 1000μg/ml the methnolic extract exhibited significant activity, at 100μg/ml the activity was good and at 10μg/ml the activity was moderate against Lemna minor. The above selected plants were shown by in vitro assays to be a potential source for natural antifungal, antibacterial and phytotoxic agents.
Antimicrobial activity of seed extracts and bondenolide from Caesalpinia bonduc (L.) Roxb.
Simin, K; Khaliq-Uz-Zaman, S M; Ahmad, V U
2001-08-01
The antibacterial and antifungal activities, along with a phytotoxicity test of the newly isolated diterpene bondenolide (1), of a methanol extract, ethylacetate fraction and water soluble part of the methanol extract of Caesalpinia bonduc (L.) Roxb. were assayed. Copyright 2001 John Wiley & Sons, Ltd.
Antimicrobial, Cytotoxic, Phytotoxic and Antioxidant Potential of Heliotropium strigosum Willd.
Khurm, Muhammad; Chaudhry, Bashir A; Uzair, Muhammad; Janbaz, Khalid H
2016-07-28
Background: Heliotropium strigosum Willd. (Chitiphal) is a medicinally important herb that belongs to the Boraginaceae family. Traditionally, this plant was used in the medication therapy of various ailments in different populations of the world. The aim of the study is to probe the therapeutic aspects of H. strigosum described in the traditional folklore history of medicines. Methods: In the present study, the dichloromethane crude extract of this plant was screened to explore the antimicrobial, cytotoxic, phytotoxic and antioxidant potential of H. strigosum . For antibacterial, antifungal and antioxidant activities, microplate alamar blue assay (MABA), agar tube dilution method and diphenyl picryl hydrazine (DPPH) radical-scavenging assay were used, respectively. The cytotoxic and phytotoxic potential were demonstrated by using brine shrimp lethality bioassay and Lemna minor assay. Results: The crude extract displayed positive cytotoxic activity in the brine shrimp lethality assay, with 23 of 30 shrimps dying at the concentration of 1000 µg/mL. It also showed moderate phytotoxic potential with percent inhibition of 50% at the concentration of 1000 µg/mL. The crude extract exhibited no significant antibacterial activity against Staphylococcus aureus , Shigella flexneri , Escherichia coli and Pseudomonas aeruginosa . Non-significant antifungal and radical scavenging activity was also shown by the dichloromethane crude extract. Conclusion: It is recommended that scientists focus on the identification and isolation of beneficial bioactive constituents with the help of advanced scientific methodologies that seems to be helpful in the synthesis of new therapeutic agents of desired interest.
Antimicrobial, Cytotoxic, Phytotoxic and Antioxidant Potential of Heliotropium strigosum Willd.
Khurm, Muhammad; Chaudhry, Bashir A.; Uzair, Muhammad; Janbaz, Khalid H.
2016-01-01
Background: Heliotropium strigosum Willd. (Chitiphal) is a medicinally important herb that belongs to the Boraginaceae family. Traditionally, this plant was used in the medication therapy of various ailments in different populations of the world. The aim of the study is to probe the therapeutic aspects of H. strigosum described in the traditional folklore history of medicines. Methods: In the present study, the dichloromethane crude extract of this plant was screened to explore the antimicrobial, cytotoxic, phytotoxic and antioxidant potential of H. strigosum. For antibacterial, antifungal and antioxidant activities, microplate alamar blue assay (MABA), agar tube dilution method and diphenyl picryl hydrazine (DPPH) radical-scavenging assay were used, respectively. The cytotoxic and phytotoxic potential were demonstrated by using brine shrimp lethality bioassay and Lemna minor assay. Results: The crude extract displayed positive cytotoxic activity in the brine shrimp lethality assay, with 23 of 30 shrimps dying at the concentration of 1000 µg/mL. It also showed moderate phytotoxic potential with percent inhibition of 50% at the concentration of 1000 µg/mL. The crude extract exhibited no significant antibacterial activity against Staphylococcus aureus, Shigella flexneri, Escherichia coli and Pseudomonas aeruginosa. Non-significant antifungal and radical scavenging activity was also shown by the dichloromethane crude extract. Conclusion: It is recommended that scientists focus on the identification and isolation of beneficial bioactive constituents with the help of advanced scientific methodologies that seems to be helpful in the synthesis of new therapeutic agents of desired interest. PMID:28930129
Structure and biological activity of a new rotenoid from Pongamia pinnata.
Simin, K; Ali, Zulfiqar; Khaliq-Uz-Zaman, Syed Muhammad; Ahmad, Viqar Uddin
2002-10-01
Pongarotene (1), a new rotenoid and karanjin (2), a known flavonol, were isolated from the seeds of Pongamia pinnata. The structure determination of these compounds were based on spectral analyses including 2D-NMR. The antifungal, antibacterial and phytotoxicity results of pure compounds 1 and 2 as well as of the methanol (M) and ethyl acetate (E) crude extracts are also being reported.
Evidente, Antonio; Andolfi, Anna; Vurro, Maurizio; Fracchiolla, Mariano; Zonno, Maria Chiara; Motta, Andrea
2005-03-01
When grown in a minimal-defined medium, a strain of Drechslera siccans, a pathogenic fungus isolated from seeds of Lolium perenne, produced phytotoxic metabolites. This strain is one of the best toxin producers among several grass pathogenic fungal strains collected and tested to find phytotoxins to be used as natural herbicides of monocot weeds. From the culture filtrates of D. siccans, we isolated a new phytotoxic trisubstituted naphthofuroazepinone, named drazepinone, and characterised it as a 3,5,12a-trimethyl-2,5,5a,12a-tetrahydro-1H-naphtho[2',3':4,5]furo[2,3-b]azepin-2-one. Assayed at 2 microg microl(-1) solution the novel metabolite proved to have broad-spectrum herbicidal properties, without antibacterial and antifungal activities, and low zootoxic activity. Its original chemical structure and the interesting biological properties make drazepinone a potential natural herbicide.
Kordali, Saban; Cakir, Ahmet; Ozer, Hakan; Cakmakci, Ramazan; Kesdek, Memis; Mete, Ebru
2008-12-01
The chemical composition of essential oil isolated by hydrodistillation from the aerial parts of Origanum acutidens was analyzed by GC-MS. Carvacrol (87.0%), p-cymene (2.0%), linalool acetate (1.7%), borneol (1.6%) and beta-caryophyllene (1.3%) were found to be as main constituents. Antifungal, phytotoxic and insecticidal activities of the oil and its aromatic monoterpene constituents, carvacrol, p-cymene and thymol were also determined. The antifungal assays showed that O. acutidens oil, carvacrol and thymol completely inhibited mycelial growth of 17 phytopathogenic fungi and their antifungal effects were higher than commercial fungicide, benomyl. However, p-cymene possessed lower antifungal activity. The oil, carvacrol and thymol completely inhibited the seed germination and seedling growth of Amaranthus retroflexus, Chenopodium album and Rumex crispus and also showed a potent phytotoxic effect against these plants. However, p-cymene did not show any phytotoxic effect. Furthermore, O. acutidens oil showed 68.3% and 36.7% mortality against Sitophilus granarius and Tribolium confusum adults, respectively. The findings of the present study suggest that antifungal and herbicidal properties of the oil can be attributed to its major component, carvacrol, and these agents have a potential to be used as fungicide, herbicide as well as insecticide.
Singh, Rajendra; Ahluwalia, Vivek; Singh, Pratap; Kumar, Naresh; Prakash Sati, Om; Sati, Nitin
2016-08-01
This work was aimed to evaluate the essential oil from root of medicinally important plant Senecio amplexicaulis for chemical composition, antifungal and phytotoxic activity. The chemical composition analysed by GC/GC-MS showed the presence of monoterpene hydrocarbons in high percentage with marker compounds as α-phellandrene (48.57%), o-cymene (16.80%) and β-ocimene (7.61%). The essential oil exhibited significant antifungal activity against five phytopathogenic fungi, Sclerotium rolfsii, Macrophomina phaseolina, Rhizoctonia solani, Pythium debaryanum and Fusarium oxysporum. The oil demonstrated remarkable phytotoxic activity in tested concentration and significant reduction in seed germination percentage of Phalaris minor and Triticum aestivum at higher concentrations. The roots essential oil showed high yield for one of its marker compound (α-phellandrene) which makes it important natural source of this compound.
Chemical composition, phytotoxic and antifungal properties of Ruta chalepensis L. essential oils.
Bouabidi, Wafa; Hanana, Mohsen; Gargouri, Samia; Amri, Ismail; Fezzani, Tarek; Ksontini, Mustapha; Jamoussi, Bassem; Hamrouni, Lamia
2015-01-01
The chemical composition, and phytotoxic and antifungal activities of the essential oils isolated by using hydrodistillation from the aerial parts of Tunisian rue were evaluated. Significant variations were observed among harvest periods. The analysis of the chemical composition by gas chromatography/mass spectrometry showed that 2-undecanone (33.4-49.8%), 2-heptanol acetate (13.5-15.4%) and α-pinene (9.8-11.9%) were the main components. The antifungal ability of rue essential oils was tested by using disc agar diffusion against ten plant pathogenic fungi. A high antifungal activity was observed for the essential oil isolated at flowering developmental phase. Furthermore, rue essential oils showed high level of herbicidal activity against several weeds.
Zhang, Ying-lao; Kong, Li-chun; Jiang, Dong-hua; Yin, Cai-ping; Cai, Qi-min; Chen, Qiong; Zheng, Jiang-yan
2011-02-01
Two main phytotoxic and antifungal phthalic acid butyl isobutyl ester (1) and radicinin (2) were isolated from the culture of Curvularia sp. FH01, a fungus residing in the Atractomorpha sinensis gut. The structures of isolated metabolites were established on the basis of spectral analysis. Metabolites 1 and 2 exhibited significant phytotoxic activity against the radical growth of Echinochloa crusgalli with their IC(50) values of 61.9 and 5.9 μg/mL, respectively, which were comparable to that 2,4-dichlorophenoxyacetic acid (2.0 μg/mL) used as a positive control. The antifungal test results showed that compound 2 possessed strong antifungal activity against Magnaporthe grisea (IC(50)=16.3 μg/mL) and Valsa mali (IC(50)=18.2 μg/mL). The findings of the present study suggest that bioactive properties of the fungus FH01 can be attributed to its major components, phthalic acid butyl isobutyl ester and radicinin, and both agents have a potential to be used as herbicide and fungicide. Copyright © 2010 Elsevier Ltd. All rights reserved.
Antibacterial and Antifungal Compounds from Marine Fungi
Xu, Lijian; Meng, Wei; Cao, Cong; Wang, Jian; Shan, Wenjun; Wang, Qinggui
2015-01-01
This paper reviews 116 new compounds with antifungal or antibacterial activities as well as 169 other known antimicrobial compounds, with a specific focus on January 2010 through March 2015. Furthermore, the phylogeny of the fungi producing these antibacterial or antifungal compounds was analyzed. The new methods used to isolate marine fungi that possess antibacterial or antifungal activities as well as the relationship between structure and activity are shown in this review. PMID:26042616
Chemical composition and biological activities of the essential oil of Skimmia laureola leaves.
Barkatullah; Ibrar, Muhammad; Muhammad, Naveed; De Feo, Vincenzo
2015-03-16
The composition of the essential oil from leaves of Skimmia laureola was determined by GC and GC-MS. Twenty-eight components were identified, accounting for 93.9% of the total oil. The oil is mainly composed of monoterpenes (93.5%), of which monoterpene hydrocarbons and oxygenated monoterpenes represent 11.0% and 82.5%, respectively. Sesquiterpenes constitute only 0.3% of the total oil. Linalyl acetate is the main component (50.5%), with linalool (13.1%), geranyl acetate (8.5%) and cis-p-menth-2-en-1-ol (6.2%) as other principal constituents. The essential oil showed a significant antispasmodic activity, in a dose range of 0.03-10 mg/mL. The essential oil also possesses antibacterial and antifungal activities against some pathogenic strains. The phytotoxic and cytotoxic activities were also assessed.
Antibacterial, antifungal, antispasmodic and Ca++ antagonist effects of Caesalpinia bonducella.
Khan, Hidayat-Ullah; Ali, Irshad; Khan, Arif-Ullah; Naz, Rubina; Gilani, Anwarul Hassan
2011-02-01
Caesalpinia bonducella F. (Leguminosae) has been used as a folk medicine for a variety of ailments. The crude extract of C. bonducella and its fractions were studied for antibacterial, antifungal, antispasmodic and Ca++ antagonistic properties. The strongest antibacterial effect was displayed by the n-butanol (72%) and ethyl acetate (80%) fractions, followed by the crude extract (46% and 42%), against Escherichia coli and Bacillus subtilis, respectively. The plant extract and its fractions showed mild to excellent activity in antifungal bioassays, with maximum antifungal activity against Candida glaberata (80%) and Aspergillus flavus (70%) by the n-butanol and chloroform fractions, followed by the crude extract (70% and 65%). Caesalpinia bonducella extract caused concentration-dependent inhibition of spontaneous and high K+ (80 mM)-induced contractions of isolated rabbit jejunum preparations, similar to that caused by Verapamil. These results indicate that C. bonducella exhibits antibacterial, antifungal, spasmolytic and Ca++ channel blocking actions.
Roig, M; Meca, G; Marín, R; Ferrer, E; Mañes, J
2014-07-01
Enniatins (ENs) are secondary metabolites produced by several Fusarium strains, chemically characterized as N-methylated cyclohexadepsipeptides. These compounds are known to act as antifungal and antibacterial agents, but they also possess anti-insect and phytotoxic properties. In this study, the antimicrobial effect of pure fractions of the bioactive compounds ENs A, A₁, A₂, B, B₁, and B₄ was tested towards nine probiotic microrganisms, twenty-two Saccharomyces cerevisiae strains and nine Bacillus subtilis strains. Antimicrobial analyses were carried out the disc-diffusion method using ENs concentrations ranging from 0.2 to 20,000 ng. Plates were incubated for 24 h at 37 °C before reading the diameter of the inhibition spots. ENs A, A₁, A₂, B, B₁ and B₄, were active against several microorganisms with inhibition halos ranging from 3 to 12 mm in diameter. The most active mycotoxin was the EN A₁, which reduced the microbial growth of 8 strains at the dose of 20,000 ng, with inhibition spots sized between 8 and 12 mm. ENs B and B₄ showed no antimicrobial activity towards the microorganisms tested at doses up to 20,000 ng per disc. Copyright © 2014 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-12
... antibacterial activity for infections with multiple-drug-resistant Enterobacteriaceae. This means that...). GAIN is intended to encourage development of new antibacterial and antifungal drugs for the treatment... encourage development of new antibacterial and antifungal drugs for the treatment of serious or life...
... prevent infections. You may also be prescribed antifungal, antibacterial or antiviral medications. Doctors continue to study and develop several new medications, including new antifungal medications, antibacterial medications, antiviral medications and immunosuppressive medications. Diet and ...
Antimicrobial and antifungal activities of Cordia dichotoma (Forster F.) bark extracts
Nariya, Pankaj B.; Bhalodia, Nayan R.; Shukla, V. J.; Acharya, R. N.
2011-01-01
Cordia dichotoma Forst.f. bark, identified as botanical source of Shlesmataka in Ayurvedic pharmacopoeias. Present study was carried out with an objective to investigate the antibacterial and antifungal potentials of Cordia dichotoma bark. Antibacterial activity of methanol and butanol extracts of the bark was carried out against two gram negative bacteria (Escherichia coli, and Pseudomonas aeruginosa) and two Gram positive bacteria (St. pyogenes and Staphylococcus aureus). The antifungal activity of the extracts was carried out against three common pathogenic fungi (Aspergillus niger, A.clavatus, and Candida albicans). Zone of inhibition of extracts was compared with that of different standards like Amplicilline, Ciprofloxacin, Norfloxacin and Chloramphenicol for antibacterial activity and Nystain and Greseofulvin for antifungal activity. The extracts showed remarkable inhibition of zone of bacterial growth and fungal growth and the results obtained were comparable with that of standards drugs against the organisms tested. The activity of extracts increased linearly with increase in concentration of extract (mg/ml). The results showed the antibacterial and antifungal activity against the organisms tested. PMID:22661859
Antimicrobial and antifungal activities of Cordia dichotoma (Forster F.) bark extracts.
Nariya, Pankaj B; Bhalodia, Nayan R; Shukla, V J; Acharya, R N
2011-10-01
Cordia dichotoma Forst.f. bark, identified as botanical source of Shlesmataka in Ayurvedic pharmacopoeias. Present study was carried out with an objective to investigate the antibacterial and antifungal potentials of Cordia dichotoma bark. Antibacterial activity of methanol and butanol extracts of the bark was carried out against two gram negative bacteria (Escherichia coli, and Pseudomonas aeruginosa) and two Gram positive bacteria (St. pyogenes and Staphylococcus aureus). The antifungal activity of the extracts was carried out against three common pathogenic fungi (Aspergillus niger, A.clavatus, and Candida albicans). Zone of inhibition of extracts was compared with that of different standards like Amplicilline, Ciprofloxacin, Norfloxacin and Chloramphenicol for antibacterial activity and Nystain and Greseofulvin for antifungal activity. The extracts showed remarkable inhibition of zone of bacterial growth and fungal growth and the results obtained were comparable with that of standards drugs against the organisms tested. The activity of extracts increased linearly with increase in concentration of extract (mg/ml). The results showed the antibacterial and antifungal activity against the organisms tested.
Elansary, Hosam O; Yessoufou, Kowiyou
2016-06-01
The total phenolic, flavonoid and tannin contents in leaf extracts of Calibrachoa x hybrida (C.h.) (Solanaceae) international cultivars, as well as their overall antioxidant activities using DPPH and linoleic acid assays, were investigated. Furthermore, the antifungal and the antibacterial activities were examined against a wide spectrum of micro-organisms. DPPH and linoleic acid assays ranged from 62.1 to 80.1% and of 74.1-93.4%, respectively. C.h. Superbells® Trailing Rose (CHST), C.h. Superbells® Frost Fire, C.h. Superbells® Strawberry Punch, C.h. Superbells® Dreamsicle and C.h. Superbells® Plum (CHSP) varied in their antifungal and the antibacterial activities against a wide spectrum of micro-organisms. CHSP exhibited the highest antioxidant, antifungal and antibacterial activities followed by CHST. These activities might be attributed to the presence of phenolic, flavonoid and tannin compounds, indicating that these cultivars might be potential sources of therapeutic substances.
Bouajaj, Sana; Romane, Abderrahmane; Benyamna, Abdennaji; Amri, Ismail; Hanana, Mohsen; Hamrouni, Lamia; Romdhane, Mehrez
2014-01-01
This study aimed at the determination of chemical composition of essential oil obtained by hydrodistillation, and to evaluate their phytotoxic and antifungal activities. Leaves of Ruta chalepensis L. were collected from the region of Tensift Al Haouz (High Atlas Mountains) Marrakech, Morocco. The essential oil (oil yield is 0.56%) was analysed by GC-FID and GC/MS. Twenty-two compounds were identified and accounted for 92.4% of the total oil composition. The major components were undecan-2-one (49.08%), nonan-2-one (33.15%), limonene (4.19%) and decanone (2.71%). Antifungal ability of essential oils was tested by disc agar diffusion against five plant pathogenic fungi: Fusarium proliferatum, Fusarium pseudograminearum, Fusarium culmorum, Fusarium graminearum and Fusarium polyphialidicum. The oils were also tested in vitro for herbicidal activity by determining their influence on the germination and the shoot and root growth of two weed species, Triticum durum and Phalaris canariensis L.
Tatsadjieu, L N; Essia Ngang, J J; Ngassoum, M B; Etoa, F-X
2003-07-01
The essential oils of Xylopia aethiopica, Monodora myristica, Zanthoxylum xanthoxyloïdes and Z. leprieurii, four Cameroonian plants used as spices in local food, showed antibacterial and antifungal activity.
Antibacterial and antifungal metal based triazole Schiff bases.
Chohan, Zahid H; Hanif, Muhammad
2013-10-01
A new series of four biologically active triazole derived Schiff base ligands (L(1)-L(4)) and their cobalt(II), nickel(II), copper(II) and zinc(II) complexes (1-16) have been synthesized and characterized. The ligands were prepared by the condensation reaction of 3-amino-5-methylthio-1H-1,2,4-triazole with chloro-, bromo- and nitro-substituted 2-hydroxybenzaldehyde in an equimolar ratio. The antibacterial and antifungal bioactivity data showed the metal(II) complexes to be more potent antibacterial and antifungal than the parent Schiff bases against one or more bacterial and fungal species.
Antibacterial and antifungal effects of essential oils from coniferous trees.
Hong, Eui-Ju; Na, Ki-Jeung; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae
2004-06-01
Essential oils have potential biological effects, i.e., antibiotic, anticarcinogenic, and sedative effects during stress. In the present study, we investigated the antibacterial and antifungal effects of essential oils extracted from the coniferous species Pinus densiflora, Pinus koraiensis, and Chamaecyparis obtusa, because their biological activities have not been yet elucidated. The essential oils were quantified using gas chromatography and identified in gas chromatography-mass spectrometric analysis. Simultaneously, antibacterial and antifungal assays were performed using the essential oils distilled from the needles of coniferous trees. The major components and the percentage of each essential oil were: 19.33% beta-thujene in P. densiflora; 10.49% alpha-pinene in P. koraiensis; 10.88% bornyl acetate in C. obtusa. The essential oils from P. densiflora and C. obtusa have antibacterial effects, whereas essential oils from P. koraiensis and C. obtusa have antifungal effects. These results indicate that the essential oils from the three coniferous trees, which have mild antimicrobial properties, can inhibit the growth of gram-positive and gram-negative bacteria and fungi.
Biological activity of cannabichromene, its homologs and isomers.
Turner, C E; Elsohly, M A
1981-01-01
Cannabichromene (CBC) is one of four major cannabinoids in Cannabis sativa L. and is the second most abundant cannabinoid in drug-type cannabis. Cannabichromene and some of its homologs, analogs, and isomers were evaluated for antiinflammatory, antibacterial, and antifungal activity. Antiinflammatory activity was evaluated by the carrageenan-induced rat paw edema and the erythrocyte membrane stabilization method. In both tests, CBC was superior to phenylbutazone. Antibacterial activity of CBC and its isomers and homologs was evaluated using gram-positive, gram-negative, and acid-fast bacteria. Antifungal activity was evaluated using yeast-like and filamentous fungi and a dermatophyte. Antibacterial activity was strong, and the antifungal activity was mild to moderate.
Cardoza, R E; McCormick, S P; Malmierca, M G; Olivera, E R; Alexander, N J; Monte, E; Gutiérrez, S
2015-09-01
Trichothecenes are fungal sesquiterpenoid compounds, the majority of which have phytotoxic activity. They contaminate food and feed stocks, resulting in potential harm to animals and human beings. Trichoderma brevicompactum and T. arundinaceum produce trichodermin and harzianum A (HA), respectively, two trichothecenes that show different bioactive properties. Both compounds have remarkable antibiotic and cytotoxic activities, but in addition, trichodermin is highly phytotoxic, while HA lacks this activity when analyzed in vivo. Analysis of Fusarium trichothecene intermediates led to the conclusion that most of them, with the exception of the hydrocarbon precursor trichodiene (TD), have a detectable phytotoxic activity which is not directly related to the structural complexity of the intermediate. In the present work, the HA intermediate 12,13-epoxytrichothec-9-ene (EPT) was produced by expression of the T. arundinaceum tri4 gene in a transgenic T. harzianum strain that already produces TD after transformation with the T. arundinaceum tri5 gene. Purified EPT did not show antifungal or phytotoxic activity, while purified HA showed both antifungal and phytotoxic activities. However, the use of the transgenic T. harzianum tri4 strain induced a downregulation of defense-related genes in tomato plants and also downregulated plant genes involved in fungal root colonization. The production of EPT by the transgenic tri4 strain raised levels of erg1 expression and reduced squalene accumulation while not affecting levels of ergosterol. Together, these results indicate the complex interactions among trichothecene intermediates, fungal antagonists, and host plants. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Cardoza, R. E.; McCormick, S. P.; Malmierca, M. G.; Olivera, E. R.; Alexander, N. J.; Monte, E.
2015-01-01
Trichothecenes are fungal sesquiterpenoid compounds, the majority of which have phytotoxic activity. They contaminate food and feed stocks, resulting in potential harm to animals and human beings. Trichoderma brevicompactum and T. arundinaceum produce trichodermin and harzianum A (HA), respectively, two trichothecenes that show different bioactive properties. Both compounds have remarkable antibiotic and cytotoxic activities, but in addition, trichodermin is highly phytotoxic, while HA lacks this activity when analyzed in vivo. Analysis of Fusarium trichothecene intermediates led to the conclusion that most of them, with the exception of the hydrocarbon precursor trichodiene (TD), have a detectable phytotoxic activity which is not directly related to the structural complexity of the intermediate. In the present work, the HA intermediate 12,13-epoxytrichothec-9-ene (EPT) was produced by expression of the T. arundinaceum tri4 gene in a transgenic T. harzianum strain that already produces TD after transformation with the T. arundinaceum tri5 gene. Purified EPT did not show antifungal or phytotoxic activity, while purified HA showed both antifungal and phytotoxic activities. However, the use of the transgenic T. harzianum tri4 strain induced a downregulation of defense-related genes in tomato plants and also downregulated plant genes involved in fungal root colonization. The production of EPT by the transgenic tri4 strain raised levels of erg1 expression and reduced squalene accumulation while not affecting levels of ergosterol. Together, these results indicate the complex interactions among trichothecene intermediates, fungal antagonists, and host plants. PMID:26150463
Defining Antimicrobial Textile Requirements for Military Applications - A Gap Analysis
2016-05-09
biocide that has broad spectrum antibacterial , antiviral, and antifungal activity . Copper behaves similarly to silver by binding and inactivating...urogenital health conditions in active duty Soldiers from 2002-2011...personnel in order to generate and update requirements and standards for incorporating anti-odor, antibacterial , and antifungal properties into CIE
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
.... Peptaibols are associated with a wide variety of biological activities and have antifungal, antibacterial... synthesize secondary metabolites with antifungal and antibacterial activities. The DSM 7\\T\\ type strain could... Microbial Commercial Activity Notice (MCAN) with EPA, unless the activity is eligible for one of the...
Macías, Francisco A; Simonet, Ana M; D'Abrosca, Brigida; Maya, Claudia C; Reina, Matías; González-Coloma, Azucena; Cabrera, Raimundo; Giménez, Cristina; Villarroel, Luis
2009-01-01
The new bioactive sesquiterpenoid (3R,6E)-2,6,10-trimethyl-3-(3-p-hydroxyphenylpropanoyloxy)-dodeca-6,11-diene-2,10-diol, named megalanthine, was isolated from the resinous exudates of Heliotropium megalanthum. The degradation products of this compound were identified. Several plant-defensive properties (insecticidal, antifungal, and phytotoxic) were evaluated after obtaining positive results in a preliminary etiolated wheat coleoptile bioassay. This bioassay showed the need to have both the phenolic and sesquiterpene moieties of the natural product present to achieve a biological effect. This result was confirmed in phytotoxicity bioassays. Megalanthine was ruled out as a significant plant-plant defense agent because of its lack of stability. The positive results recorded in the antifungal and antifeedant tests suggest, however, that this chemical is relevant in several ecological interactions involving H. megalanthum.
Guo, Jinshan; Wang, Wei; Hu, Jianqing; Xie, Denghui; Gerhard, Ethan; Nisic, Merisa; Shan, Dingying; Qian, Guoying; Zheng, Siyang; Yang, Jian
2016-01-01
Bacterial and fungal infections in the use of surgical devices and medical implants remain a major concern. Traditional bioadhesives fail to incorporate anti-microbial properties, necessitating additional anti-microbial drug injection. Herein, by the introduction of the clinically used and inexpensive anti-fungal agent, 10-undecylenic acid (UA), into our recently developed injectable citrate-based mussel-inspired bioadhesives (iCMBAs), a new family of anti-bacterial and anti-fungal iCMBAs (AbAf iCs) was developed. AbAf iCs not only showed strong wet tissue adhesion strength, but also exhibited excellent in vitro cyto-compatibility, fast degradation, and strong initial and considerable long-term anti-bacterial and anti-fungal ability. For the first time, the biocompatibility and anti-microbial ability of sodium metaperiodate (PI), an oxidant used as a cross-linking initiator in the AbAf iCs system, was also thoroughly investigated. Our results suggest that the PI-based bioadhesives showed better anti-microbial properties compared to the unstable silver-based bioadhesive materials. In conclusion, AbAf iCs family can serve as excellent anti-bacterial and anti-fungal bioadhesive candidates for tissue/wound closure, wound dressing, and bone regeneration, especially when bacterial or fungal infections are a major concern. PMID:26874283
Li, Dangdang; Zhang, Shasha; Song, Zehua; Li, Wei; Zhu, Feng; Zhang, Jiwen; Li, Shengkun
2018-01-01
The synthesis of antifungal natural product drimenal was accomplished. Bio-inspired optimization protruded chiral 8-(R)-drimane fused oxazinone D as a lead, considering favorable physicochemical profiles for novel pesticides. The improved scalable synthesis of scaffold D was implemented by Hofmann rearrangment under mild conditions. Detailed structural optimization was discussed for both antifungal and antibacterial exploration. Substituted groups (SGs) with C 3 ∼C 5 hydrocarbon chain are recommended for exploration of antifungal agents, while substituents with C 4 ∼C 6 carbon length are preferred for antibacterial ingredients. The chiral drimane fused oxazinone D8 was selected as a promising antifungal candidate against Botrytis cirerea, with an EC 50 value of 1.18 mg/L, with the enhancement of up to >25 folds and >80 folds than the mother compound D, and acyclic counterpart AB5, respectively. The in vivo bioassay confirmed much better preservative effect of D8 than that of Carbendazim. The chiral oxazinone variant D10 possessed prominent antibacterial activity, with MIC values of 8 mg/L against both Bacillus subtilis and Ralstonia solanacearum, showing advantages over the positive control streptomycin sulfate. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Guo, Jinshan; Wang, Wei; Hu, Jianqing; Xie, Denghui; Gerhard, Ethan; Nisic, Merisa; Shan, Dingying; Qian, Guoying; Zheng, Siyang; Yang, Jian
2016-04-01
Bacterial and fungal infections in the use of surgical devices and medical implants remain a major concern. Traditional bioadhesives fail to incorporate anti-microbial properties, necessitating additional anti-microbial drug injection. Herein, by the introduction of the clinically used and inexpensive anti-fungal agent, 10-undecylenic acid (UA), into our recently developed injectable citrate-based mussel-inspired bioadhesives (iCMBAs), a new family of anti-bacterial and anti-fungal iCMBAs (AbAf iCs) was developed. AbAf iCs not only showed strong wet tissue adhesion strength, but also exhibited excellent in vitro cyto-compatibility, fast degradation, and strong initial and considerable long-term anti-bacterial and anti-fungal ability. For the first time, the biocompatibility and anti-microbial ability of sodium metaperiodate (PI), an oxidant used as a cross-linking initiator in the AbAf iCs system, was also thoroughly investigated. Our results suggest that the PI-based bioadhesives showed better anti-microbial properties compared to the unstable silver-based bioadhesive materials. In conclusion, AbAf iCs family can serve as excellent anti-bacterial and anti-fungal bioadhesive candidates for tissue/wound closure, wound dressing, and bone regeneration, especially when bacterial or fungal infections are a major concern. Copyright © 2016 Elsevier Ltd. All rights reserved.
Antibacterial and antifungal activities of Dracontomelon dao.
Khan, M R; Omoloso, A D
2002-07-01
The crude methanolic extracts of the leaves, stem and root barks of Drancantomelon dao and their subsequent partitioning (petrol, dichloromethane, ethyl acetate, butanol) gave fractions which demonstrated a very good level of broad spectrum antibacterial activity. The dichloromethane and butanol fractions of the leaf were the most active. Only the leaf fractions had antifungal activity, particularly the dichloromethane and butanol.
Kekuda, T.R Prashith; Kavya, R; Shrungashree, R.M; Suchitra, S.V
2010-01-01
The present study deals with antimicrobial activity of ayurvedic drugs containing single herb (Amalaki Choorna and Yastimadhu Choorna) and combination of herbs (DN-90 and Asanadi Kwatha Choorna). Disc diffusion method was used to assess antibacterial activity and antifungal activity was tested using Poison food technique. Absence of bacterial growth around the discs impregnated with the aqueous extracts of drugs and reduction of fungal growth in poisoned plates indicated antimicrobial activity. Further, the results of antibacterial activity of Amalaki choorna were comparable with standard drug Streptomycin. Asanadi Kwatha Choorna inhibited bacteria to more extent than Yastimadhu choorna and DN-90. Among fungi tested, more antifungal activity was observed against Mucor sp. The antimicrobial activity of drugs tested could be due to active principles present in them. PMID:22557355
Antibacterial and antifungal activities of thymol: A brief review of the literature.
Marchese, Anna; Orhan, Ilkay Erdogan; Daglia, Maria; Barbieri, Ramona; Di Lorenzo, Arianna; Nabavi, Seyed Fazel; Gortzi, Olga; Izadi, Morteza; Nabavi, Seyed Mohammad
2016-11-01
Thymol (2-isopropyl-5-methylphenol) is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family (Thymus, Ocimum, Origanum, and Monarda genera), and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae, and Apiaceae families. These essential oils are used in the food industry for their flavouring and preservative properties, in commercial mosquito repellent formulations for their natural repellent effect, in aromatherapy, and in traditional medicine for the treatment of headaches, coughs, and diarrhea. Many different activities of thymol such as antioxidant, anti-inflammatory, local anaesthetic, antinociceptive, cicatrizing, antiseptic, and especially antibacterial and antifungal properties have been shown. This review aims to critically evaluate the available literature regarding the antibacterial and antifungal effects of thymol. Copyright © 2016 Elsevier Ltd. All rights reserved.
Khidre, Rizk E; Abu-Hashem, Ameen A; El-Shazly, Mohamed
2011-10-01
A new series of 1- substituted amino-4,6-dimethyl-2-oxo-pyridine-3-carbonitrile such as hydrazide hydrazones 3a-h; ethane-1,2-diaminopyridine 6; phthalimidopyridines 8a,b; hydrazides 10a,b; urea 11a and thiourea 11b were synthesized in a good to excellent yield in step efficient process, using 1-amino-4,6-dimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (1) as a key intermediate. The antibacterial and antifungal activities of the synthesized compounds were evaluated. The obtained data indicated that the majority of the tested compounds exhibited both antibacterial and antifungal activities, particularly compounds 8a and 8b showed a comparable effect to a well known antibacterial and antifungal agents. Published by Elsevier Masson SAS.
Antibacterial, antifungal, and antiviral activities of the lipophylic extracts of Pistacia vera.
Ozçelik, Berrin; Aslan, Mustafa; Orhan, Ilkay; Karaoglu, Taner
2005-01-01
In the present study, antibacterial, antifungal, and antiviral properties of 15 lipohylic extracts obtained from different parts (leaf, branch, stem, kernel, shell skins, seeds) of Pistacia vera were screened against both standard and the isolated strains of Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, Candida albicans and C. parapsilosis by microdilution method. Both Herpes simplex (DNA) and Parainfluenza viruses (RNA) were used for the determination of antiviral activity of the P. vera extracts by using Vero cell line. Ampicilline, ofloxocine, ketoconazole, fluconazole, acyclovir and oseltamivir were used as the control agents. The extracts showed little antibacterial activity between the range of 128-256 microg/ml concentrations whereas they had noticeable antifungal activity at the same concentrations. Kernel and seed extracts showed significant antiviral activity compared to the rest of the extracts as well as the controls.
Zha, Gao-Feng; Leng, Jing; Darshini, N; Shubhavathi, T; Vivek, H K; Asiri, Abdullah M; Marwani, Hadi M; Rakesh, K P; Mallesha, N; Qin, Hua-Li
2017-07-15
A series of new benzo[d]thiazole-hydrazones analogues were synthesized and screened for their in vitro antibacterial and antifungal activities. The results revealed that compounds 13, 14, 15, 19, 20, 28 and 30 exhibited superior antibacterial potency compared to the reference drug chloramphenicol and rifampicin. Compounds 5, 9, 10, 11, 12, 28 and 30 were found to be good antifungal activity compared to the standard drug ketoconazole. A preliminary study of the structure-activity relationship (SAR) revealed that the antimicrobial activity depended on the effect of different substituents on the phenyl ring. The electron donating (OH and OCH 3 ) groups presented in the analogues, increase the antibacterial activity (except compound 12), interestingly, while the electron withdrawing (Cl, NO 2 , F and Br) groups increase the antifungal activity (except compound 19 and 20). In addition, analogues containing thiophene (28) and indole (30) showed good antimicrobial activities. Whereas, aliphatic analogues (24-26) shown no activities in both bacterial and fungal stains even in high concentrations (100µg/mL). Molecular docking studies were performed for all the synthesized compounds of which compounds 11, 19 and 20 showed the highest glide G-score. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chandra, Sulekh; Vandana; Kumar, Suresh
2015-01-01
Schiff's base ligand(L) hydrazine carboxamide, 2-[3-methyl-2-thienyl methylene] and its metal complexes have been synthesized and characterized by elemental analysis, molar conductance, various spectroscopic techniques such as electronic, IR, 1H NMR, mass, EPR. Molar conductance of complexes in DMF solution corresponds to non-electrolyte. Complexes have general composition [M(L)2X2], where M = Ni(II) and Cu(II), X = Cl-, NO3-, CH3COO- and ½SO42-. On the basis of above spectral studies, an octahedral geometry has been assigned for Ni(II) complexes and tetragonal geometry for Cu(II) complexes except [Cu(L)2SO4] which possesses five coordinated trigonal bipyramidal geometry. These metal complexes were also tested for their anticancer, antibacterial and antifungal activities to assess their inhibition potential. Anticancer activity of ligand and its metal complexes were evaluated using SRB fluorometric assay and Adriamycin (ADR) was applied as positive control. Schiff's base ligand and its metal complexes were screened for their antibacterial and antifungal activity against Escherichia coli, Bacillus cereus and Aspergillus niger, Aspergillus flavus, respectively. Kirby-Bauer single disk susceptibility test was used for antibacterial activity and well diffusion method for antifungal activity of the compounds on the used fungi.
Duraipandiyan, V; Ignacimuthu, S
2009-06-25
The leaves and root of Toddalia asiatica (L.) Lam. (Rutaceae) are widely used as a folk medicine in India. Hexane, chloroform, ethyl acetate, methanol and water extracts of Toddalia asiatica leaves and isolated compound Flindersine were tested against bacteria and fungi. Antibacterial and antifungal activities were tested against bacteria and fungi using disc-diffusion method and minimum inhibitory concentrations (MICs). The compound was confirmed using X-ray crystallography technique. Antibacterial and antifungal activities were observed in ethyl acetate extract. One active principle Flindersine (2,6-dihydro-2,2-dimethyl-5H-pyrano [3,2-c] quinoline-5-one-9cl) was isolated from the ethyl acetate extract. The MIC values of the compound against bacteria Bacillus subtilis (31.25 microg/ml), Staphylococcus aureus (62.5 microg/ml), Staphylococcus epidermidis (62.5 microg/ml), Enterococcus faecalis (31.25 microg/ml), Pseudomonas aeruginosa (250 microg/ml), Acinetobacter baumannii (125 microg/ml) and fungi Trichophyton rubrum 57 (62.5 microg/ml), Trichophyton mentagrophytes (62.5 microg/ml), Trichophyton simii (62.5 microg/ml), Epidermophyton floccosum (62.5 microg/ml), Magnaporthe grisea (250 microg/ml) and Candida albicans (250 microg/ml) were determined. Ethyl acetate extract showed promising antibacterial and antifungal activity and isolated compound Flindersine showed moderate activity against bacteria and fungi.
Kumar, S.; Srivastava, D. P.
2010-01-01
An efficient electrochemical method for the preparation of 2-amino-5-substituted-1,3,4-oxadiazoles (4a-k) at platinum anode through the electrooxidation of semicarbazone (3a-k) at controlled potential electrolysis has been reported in the present study. The electrolysis was carried out in the acetic acid solvent and lithium perchlorate was used as supporting electrolyte. The products were characterized by IR,1H-NMR,13C-NMR, mass spectra and elemental analysis. The synthesized compounds were screened for their in vitro growth inhibiting activity against different strains of bacteria viz., Klebsilla penumoniae, Escherichia coli, Bassilus subtilis and Streptococcus aureus and antifungal activity against Aspergillus niger and Crysosporium pannical and results have been compared with the standard antibacterial streptomycin and antifungal griseofulvin. Compounds exhibits significant antibacterial activity and antifungal activity. Compounds 4a and g exhibited equal while 4c, d, i and j slightly less antibacterial activity than standard streptomycin. Compounds 4a and g exhibited equal while 4b, c, d, f and i displayed slightly less antifungal activity than standard griseofulvins. PMID:21218056
Antibacterial and Antifungal Activities of Spices
Liu, Qing; Meng, Xiao; Li, Ya; Zhao, Cai-Ning; Tang, Guo-Yi; Li, Hua-Bin
2017-01-01
Infectious diseases caused by pathogens and food poisoning caused by spoilage microorganisms are threatening human health all over the world. The efficacies of some antimicrobial agents, which are currently used to extend shelf-life and increase the safety of food products in food industry and to inhibit disease-causing microorganisms in medicine, have been weakened by microbial resistance. Therefore, new antimicrobial agents that could overcome this resistance need to be discovered. Many spices—such as clove, oregano, thyme, cinnamon, and cumin—possessed significant antibacterial and antifungal activities against food spoilage bacteria like Bacillus subtilis and Pseudomonas fluorescens, pathogens like Staphylococcus aureus and Vibrio parahaemolyticus, harmful fungi like Aspergillus flavus, even antibiotic resistant microorganisms such as methicillin resistant Staphylococcus aureus. Therefore, spices have a great potential to be developed as new and safe antimicrobial agents. This review summarizes scientific studies on the antibacterial and antifungal activities of several spices and their derivatives. PMID:28621716
Antibacterial and Antifungal Activities of Spices.
Liu, Qing; Meng, Xiao; Li, Ya; Zhao, Cai-Ning; Tang, Guo-Yi; Li, Hua-Bin
2017-06-16
Infectious diseases caused by pathogens and food poisoning caused by spoilage microorganisms are threatening human health all over the world. The efficacies of some antimicrobial agents, which are currently used to extend shelf-life and increase the safety of food products in food industry and to inhibit disease-causing microorganisms in medicine, have been weakened by microbial resistance. Therefore, new antimicrobial agents that could overcome this resistance need to be discovered. Many spices-such as clove, oregano, thyme, cinnamon, and cumin-possessed significant antibacterial and antifungal activities against food spoilage bacteria like Bacillus subtilis and Pseudomonas fluorescens , pathogens like Staphylococcus aureus and Vibrio parahaemolyticus, harmful fungi like Aspergillus flavus, even antibiotic resistant microorganisms such as methicillin resistant Staphylococcus aureus. Therefore, spices have a great potential to be developed as new and safe antimicrobial agents. This review summarizes scientific studies on the antibacterial and antifungal activities of several spices and their derivatives.
Distinct antimicrobial activities in aphid galls on Pistacia atlantica
Yoram, Gerchman; Inbar, Moseh
2011-01-01
Gall-formers are parasitic organisms that manipulate plant traits for their own benefit. Galls have been shown to protect their inhabitants from natural enemies such as predators and parasitoids by various chemical and mechanical means. Much less attention, however, has been given to the possibility of defense against microbial pathogens in the humid and nutrient-rich gall environment. We found that the large, cauliflower-shaped, galls induced by the aphid Slavum wertheimae on buds of Pistacia atlantica trees express antibacterial and antifungal activities distinct from those found in leaves. Antibacterial activity was especially profound against Bacillus spp (a genus of many known insect pathogen) and against Pseudomonas aeruginosa (a known plant pathogen). Antifungal activity was also demonstrated against multiple filamentous fungi. Our results provide evidence for the protective antimicrobial role of galls. This remarkable antibacterial and antifungal activity in the galls of S. wertheimae may be of agricultural and pharmaceutical value. PMID:22105034
Stergiopoulou, Theodouli; Meletiadis, Joseph; Sein, Tin; Papaioannidou, Paraskevi; Tsiouris, Ioannis; Roilides, Emmanuel; Walsh, Thomas J.
2008-01-01
Patients suffering from invasive mycoses often receive concomitant antifungal therapy and antibacterial agents. Assessment of pharmacodynamic interactions between antifungal and antibacterial agents is complicated by the absence of a common antifungal end point for both agents. Ciprofloxacin has no intrinsic antifungal activity but may interact with antifungal agents, since it inhibits DNA gyrase (topoisomerase II), which is abundant in fungi. We therefore employed isobolographic analysis adapted to incorporate a nonactive agent in order to analyze the potential in vitro interaction between the fluoroquinolone ciprofloxacin and several representative antifungal agents against Candida albicans and Aspergillus fumigatus strains by using a microdilution checkerboard technique. In agreement with earlier in vitro studies, conventional fractional inhibitory concentration index analysis was unable to detect interactions between ciprofloxacin and antifungal agents. However, isobolographic analysis revealed significant pharmacodynamic interactions between antifungal agents and ciprofloxacin against C. albicans and A. fumigatus strains. Amphotericin B demonstrated concentration-dependent interactions for both species, with synergy (interaction indices, 0.14 to 0.81) observed at ciprofloxacin concentrations of <10.64 μg/ml. Synergy (interaction indices, 0.10 to 0.86) was also found for voriconazole and caspofungin against A. fumigatus. Isobolographic analysis may help to elucidate the pharmacodynamic interactions between antifungal and non-antifungal agents and to develop better management strategies against invasive candidiasis and aspergillosis. PMID:18299413
Yadav, Devbrat; Kumar, Arvind; Kumar, Pramod; Mishra, Diwaker
2015-01-01
Black grape peel possesses a substantial amount of polyphenolic antimicrobial compounds that can be used for controlling the growth of pathogenic microorganisms. The purpose of this study was to assess antibacterial and antifungal activity of black grape peel extracts against antibiotic-resistant pathogenic bacteria and toxin producing molds, respectively. Peel of grape was subjected to polyphenolic extraction using different solvents viz., water, ethanol, acetone, and methanol. Antibiotic-resistant strains of Staphylococcus aureus, Enterococcus faecalis, Enterobacter aerogenes, Salmonella typhimurium, and Escherichia coli were screened for the antibacterial activity of different grape extracts. Antibacterial activity was analyzed using agar well diffusion method. Penicillium chrysogenum, Penicillium expansum, Aspergillus niger and Aspergillus versicolor were screened for the antifungal activity. Antifungal activity was determined by counting nongerminated spores in the presence of peel extracts. As compared to other solvent extracts, methanol extracts possessed high antibacterial and antifungal activity. S. typhimurium and E. coli showed complete resistance against antibacterial action at screened concentrations of grape peel extracts. Maximum zone of inhibition was found in case of S. aureus, i.e., 22 mm followed by E. faecalis and E. aerogenes, i.e., 18 and 21 mm, respectively, at 1080 mg tannic acid equivalent (TAE)/ml. The maximum and minimum percent of growth inhibition was shown by P. expansum and A. niger as 73% and 15% at 1080 TAE/ml concentration of grape peel extract, respectively. Except S. typhimurium and E. coli, growth of all bacterial and mold species were found to be significantly (P < 0.05) inhibited by all the solvent extracts.
2013-01-01
Background Athrixia phylicoides DC. (Asteraceae) is used medicinally in South Africa to treat a plethora of ailments, including heart problems, diabetes, diarrhoea, sores and infected wounds. It is also prepared in the form of a tea (hot decoction) taken as a refreshing, pleasant-tasting beverage with commercialization potential. Methods Extracts of the dried ground aerial parts were prepared using organic solvents (diethyl ether, dichloromethane/methanol, ethyl acetate and ethanol) and water. These extracts were subjected to HPLC, TLC and bioautography analysis with the aim of linking a range of peaks visualized in HPLC chromatography profiles to antibacterial and antifungal activity of the same extracts. Results HPLC revealed a group of compounds extracted by more than one solvent. Compounds identified include inositol, caffeic acid, quercetin, kaempferol, apigenin, hymenoxin and oleanolic acid. The organic extracts displayed similar TLC profiles, and bioautography indicated approximately five antibacterial compounds, but only two antifungal compounds in these extracts. Bioautography indicated that cold water extracted the least antimicrobial compounds. Conclusions Several previously unknown compounds were identified in Athrixia phylicoides extracts, and bioautography indicated a number of antibacterial and antifungal compounds. There were notable differences in chemical composition and bioactivity between the organic and aqueous extracts. Further research is necessary to fully characterize the active components of the extracts. PMID:24330447
Antimicrobial activity of fatty acid methyl esters of some members of Chenopodiaceae.
Chandrasekaran, Manivachagam; Kannathasan, Krishnan; Venkatesalu, Venugopalan
2008-01-01
Fatty acid methyl ester (FAME) extracts of four halophytic plants, viz. Arthrocnemum indicum, Salicornia brachiata, Suaeda maritima and Suaeda monoica belonging to the family Chenopodiaceae, were prepared and their composition was analyzed by GC-MS. The FAME extracts were also screened for antibacterial and antifungal activities. The GC-MS analysis revealed the presence of more saturated fatty acids than unsaturated fatty acids. Among the fatty acids analyzed, the relative percentage of lauric acid was high in S. brachiata (61.85%). The FAME extract of S. brachiata showed the highest antibacterial and antifungal activities among the extracts tested. The other three extracts showed potent antibacterial and moderate anticandidal activities.
Antibacterial and antimycotic activities of Slovenian honeys.
Kuncic, M Kralj; Jaklic, D; Lapanje, A; Gunde-Cimerman, N
2012-01-01
In the present study, Slovenian honey samples produced from different floral sources are evaluated for their antibacterial and antifungal properties. The peroxide contribution to antibacterial activity is also determined. Minimum inhibitory concentration (MIC) of the honeys was assessed against four bacterial species (Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa and Staphylococcus aureus) and against eight fungal species (Aspergillus niger, Aureobasidium pullulans, Candida albicans, Candida parapsilosis, Candida tropicalis, Cladosporium cladosporioides, Penicillium chrysogenum and Rhodotorula mucilaginosa). Honey at concentrations between 1% and 50% (v/v) were tested. Although all of the bacterial species were inhibited by the different honey samples, the chestnut and pasture honeys showed the highest antibacterial activities. The antifungal activities were concentration-dependent, with five (Aureobasidium pullulans, Candida parapsilosis, Candida tropicalis, Cladosporium cladosporioides, Rhodotorula mucilaginosa) inhibited only at honey concentrations greater than 50%. The fungi Aspergillus niger, Candida albicans and Penicillium chrysogenum were not inhibited by any of the tested honeys, even at the highest concentrations. The lowest MICs seen were 2.5% (v/v) for the chestnut, fir and forest honeys against Staphylococcus aureus, and 10.0% (v/v) for the chestnut and pasture honeys against Cladosporium cladosporioides. The non-peroxide action of chestnut honey was tested against Escherichia coli. The MIC of the catalase-treated chestnut honey was 50% (v/v). The antibacterial effect of Slovenian honeys is mostly due to peroxide action. These data support the concept that Slovenian honeys are effective antibacterials and antifungals, and can thus be applied for medicinal purposes.
NASA Astrophysics Data System (ADS)
Khaydarov, R. R.; Khaydarov, R. A.; Estrin, Y.; Evgrafova, S.; Scheper, T.; Endres, C.; Cho, S. Y.
The bactericidal effect of silver nanoparticles obtained by a novel electrochemical method on Escherichia coli, Staphylococcus aureus, Aspergillus niger and Penicillium phoeniceum cultures has been studied. The tests conducted have demonstrated that synthesized silver nanoparticles — when added to water paints or cotton fabrics — show a pronounced antibacterial/antifungal effect. It was shown that smaller silver nanoparticles have a greater antibacterial/antifungal efficacy. The paper also provides a review of scientific literature with regard to recent developments in the field of toxicity of silver nanoparticles and its effect on environment and human health.
Antibacterial and antifungal activities of Euroschinus papuanus.
Khan, M R; Omoloso, A D; Kihara, M
2004-06-01
The crude methanolic extracts of the leaves, stem bark, stem heart wood, root bark and root heart wood of Euroschinus papuanus and the fractions obtained on partitioning with petrol, dichloromethane (D), ethyl acetate (E) and butanol (B), exhibited a broad spectrum antibacterial activity. Fractionation drastically enhanced the activity. Excellent activity was demonstrated by the E fractions of stem heart wood, D of root bark, and E of root heart wood. Antifungal activity was exhibited by the B fractions of leaves, stem heartwood and root bark. Copyright 2004 Elsevier B.V.
Géczi, Zoltán; Kispélyi, Barbara; Pál, Károly; Hermann, Péter
2016-06-01
In the past years antibacterial and antifungal polymers had become the focus of medical research. Polyethylenimine (PEI) and poliamidoamin had been proven the most effective polymers. The data shown in this short review discuss the chemical structure, pharmacological effects and medical use of PEI. Report in the international literature only gives examples of experimental dental appliance of PEI in sealers and filling materials. Because of the growing interest in the subject of PEI we find it important to inform the domestic dental society of cationic polymers.
Indolo[3,2-c]cinnolines with antiproliferative, antifungal, and antibacterial activity.
Barraja, P; Diana, P; Lauria, A; Passannanti, A; Almerico, A M; Minnei, C; Longu, S; Congiu, D; Musiu, C; La Colla, P
1999-08-01
A series of indolo[3,2-c]cinnoline derivatives was prepared and tested to evaluate their biological activity. Most of them inhibited the proliferation of leukemia, lymphoma and solid tumor-derived cell lines at micromolar concentrations, whereas none of the compounds were active against HIV-1. With the exception of 7g, all title compounds showed antibacterial activity against gram-positive bacteria, being up to 200 times more potent than the reference drug streptomycin. Some of the indolo[3,2-c]cinnolines were also endowed with good antifungal activity, particularly against Criptococcus neoformans.
Ahmad, Bashir; Azam, Sadiq; Bashir, Shumaila; Khan, Ibrar; Adhikari, Achyut; Choudhary, Muhammad Iqbal
2010-11-01
A new compound, 6a,11a-dihydro-6H-[1] benzofuro [3,2-c][1,3]dioxolo[4,5-g]chromen-9-ol was isolated from the ethyl acetate fraction of Vitex agnus-castus. The structure of this compound was identified with the help of spectroscopic techniques ((13)C NMR, (1)H NMR, HMBC, HMQC, NOESY and COSY). The compound showed low urease- (32.0%) and chymotrypsin- (31.4%) inhibitory activity, and moderate (41.3%) anti-inflammatory activity. The crude extract and various fractions obtained from the aerial parts of the plant were also screened for possible in vitro hemagglutination, antibacterial and phytotoxic activities. No hemagglutination activity against human erythrocytes was observed in crude extracts and fractions of V. agnus-castus. The fractions and crude methanolic extract showed moderate and low antibacterial activity. Exceptions were the CHCl(3) fraction, which showed significant antibacterial activity against Klebsiella pneumonia (81% with MIC(50)=2.19 mg/mL), the n-hexane fraction, which exhibited no activity against Salmonella typhi, and the CHCl(3) and aqueous fractions, which showed no activity against Bacillus pumalis. Moderate phytotoxic activity (62.5%) was observed by n-hexane fraction of V. agnus-castus against Lemna minor L at 1000 μg/mL.
Yin, Caiping; Jin, Liping; Sun, Feifei; Xu, Xiao; Shao, Mingwei; Zhang, Yinglao
2018-04-19
Four metabolites ( 1 ⁻ 4 ), including a new macrolide, O -demethylated-zeaenol ( 2 ), and three known compounds, zeaenol ( 1 ), adenosine ( 3 ), and ergosta-5,7,22-trien-3b-ol ( 4 ) were isolated and purified from Curvularia crepinii QTYC-1, a fungus residing in the gut of Pantala flavescens . The structures of isolated compounds were identified on the basis of extensive spectroscopic analysis and by comparison of the corresponding data with those reported in the literature previously. The new compound 2 showed good phytotoxic activity against Echinochloa crusgalli with an IC 50 value of less than 5 µg/mL, which was comparable to that of positive 2,4-dichlorophenoxyacetic acid (2,4-D). Compound 1 exhibited moderate herbicidal activity against E. crusgalli with an IC 50 value of 28.8 μg/mL. Furthermore, the new metabolite 2 was found to possess moderate antifungal activity against Valsa mali at the concentration of 100 µg/mL, with the inhibition rate of 50%. These results suggest that the new macrolide 2 and the known compound 1 have potential to be used as biocontrol agents in agriculture.
Yue, Yang; Yu, Huahua; Li, Rongfeng; Xing, Ronge; Liu, Song; Li, Pengcheng
2015-01-01
Fungi isolated from marine invertebrates are of considerable importance as new promising sources of unique secondary metabolites with significant biomedical potential. However, the cultivable fungal community harbored in jellyfish was less investigated. In this work, we seek to recover symbiotic fungi from different tissues of jellyfish Nemopilema nomurai. A total of seven morphotypes were isolated, which were assigned into four genera (Aspergillus, Cladosporium, Purpureocillium, and Tilletiopsis) from two phyla (Ascomycota and Basidiomycota) by comparing the rDNA-ITS sequences with the reference sequences in GenBank. The most fungi were found in the inner tissues of subumbrella. Two of the cultivation-independent procedures, changing media type and co-cultivation, were employed to maximize the complexity of metabolites. Thus, thirteen EtOAc gum were obtained and fingerprinted by High Performance Liquid Chromatography (HPLC) equipped with a photodiode array (PDA) detector. Antibacterial and antifungal activities of these complex mixtures were tested against a panel of bacterial and fungal pathogens. The antimicrobial results showed that all of the 13 EtOAc extracts displayed different levels of antibacterial activity, three of which exhibited strong to significant antibacterial activity to the bacterial pathogens Staphylococcus aureus and Salmonella entrica. Antifungal activity indicated that the EtOAc extracts from pure culture of Aspergillus versicolor and co-culture of A. versicolor and Tilletiopsis sp. in rice media were promising for searching new compounds, with the maximal mycelial growth inhibition of 82.32% ± 0.61% for Rhizoctonia solani and 48.41% ± 11.02% for Botrytis cinerea at 200 μg/ml, respectively. This study is the first report on the antibacterial and antifungal activity of jellyfish-associated fungi and allows the first sight into cultivable fungal community residing in jellyfish. Induced metabolites by cultivation-dependent approaches provides a new reservoir for drug discovery from jellyfish-derived fungi.
Yue, Yang; Yu, Huahua; Li, Rongfeng; Xing, Ronge; Liu, Song; Li, Pengcheng
2015-01-01
Fungi isolated from marine invertebrates are of considerable importance as new promising sources of unique secondary metabolites with significant biomedical potential. However, the cultivable fungal community harbored in jellyfish was less investigated. In this work, we seek to recover symbiotic fungi from different tissues of jellyfish Nemopilema nomurai. A total of seven morphotypes were isolated, which were assigned into four genera (Aspergillus, Cladosporium, Purpureocillium, and Tilletiopsis) from two phyla (Ascomycota and Basidiomycota) by comparing the rDNA-ITS sequences with the reference sequences in GenBank. The most fungi were found in the inner tissues of subumbrella. Two of the cultivation-independent procedures, changing media type and co-cultivation, were employed to maximize the complexity of metabolites. Thus, thirteen EtOAc gum were obtained and fingerprinted by High Performance Liquid Chromatography (HPLC) equipped with a photodiode array (PDA) detector. Antibacterial and antifungal activities of these complex mixtures were tested against a panel of bacterial and fungal pathogens. The antimicrobial results showed that all of the 13 EtOAc extracts displayed different levels of antibacterial activity, three of which exhibited strong to significant antibacterial activity to the bacterial pathogens Staphylococcus aureus and Salmonella entrica. Antifungal activity indicated that the EtOAc extracts from pure culture of Aspergillus versicolor and co-culture of A. versicolor and Tilletiopsis sp. in rice media were promising for searching new compounds, with the maximal mycelial growth inhibition of 82.32% ± 0.61% for Rhizoctonia solani and 48.41% ± 11.02% for Botrytis cinerea at 200 μg/ml, respectively. This study is the first report on the antibacterial and antifungal activity of jellyfish-associated fungi and allows the first sight into cultivable fungal community residing in jellyfish. Induced metabolites by cultivation-dependent approaches provides a new reservoir for drug discovery from jellyfish-derived fungi. PMID:26637162
Antibacterial, Antifungal and Nematicidal Activities of Rare Earth Ions.
Wakabayashi, Tokumitsu; Ymamoto, Ayumi; Kazaana, Akira; Nakano, Yuta; Nojiri, Yui; Kashiwazaki, Moeko
2016-12-01
Despite the name, rare earth elements are relatively abundant in soil. Therefore, these elements might interact with biosphere during the history of life. In this study, we have examined the effect of rare earth ions on the growth of bacteria, fungi and soil nematode. All rare earth ions, except radioactive promethium that we have not tested, showed antibacterial and antifungal activities comparable to that of copper ions, which is widely used as antibacterial metals in our daily life. Rare earth ions also have nematicidal activities as they strongly perturb the embryonic development of the nematode, Caenorhabditis elegans. Interestingly, the nematicidal activity increased with increasing atomic number of lanthanide ions. Since the rare earth ions did not show high toxicity to the human lymphoblastoid cell line or even stimulate the growth of the cultured cells at 1 mM, it raised the possibility that we can substitute rare earth elements for the antibacterial metals usually used because of their safety.
NASA Astrophysics Data System (ADS)
Surendra, T. V.; Roopan, Selvaraj Mohana; Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan; Sarkar, Gargi; Suthindhiran, K.
2016-12-01
Zinc oxide (ZnO) nanoparticles (NPs) are important materials when making different products like sun screens, textiles, and paints. In the current study, the photocatalytic effect of prepared ZnO NPs from Moringa oleifera ( M. oleifera) was evaluated on degradation of crystal violet (CV) dye, which is largely released from textile industries and is harmful to the environment. Preliminarily, ZnO NP formation was confirmed using a double beam ultraviolet visible (UV-Vis) spectrophotometer; further, the NP size was estimated using XRD analysis and the functional group analysis was determined using Fourier transform infrared (FT-IR) spectroscopy. The morphology of the synthesized NPs was found to be a hexagonal shape using SEM and TEM analysis and elemental screening was analyzed using EDX. ZnO NPs were shown sized 40-45 nm and spherical in shape. The degradation percentage of ZnO NPs was calculated as 94% at 70 min and the rate of the reaction -k = 0.0282. The synthesized ZnO NPs were determined for effectiveness on biological activities such as antifungal, hemolytic, and antibacterial activity. ZnO NPs showed good antifungal activity against Alternaria saloni and Sclerrotium rolfii strains. Further, we have determined the hemolytic and antibacterial activity of ZnO NPs and we got successive results in antibacterial and hemolytic activities.
Kinsman, O S; Pitblado, K
1989-12-01
Infant mice infected with Candida albicans by the oral-intragastric route became colonized in the gut and were persistently colonized into adulthood. Faecal levels of Candida were correlated with total gastrointestinal Candida and provided a useful means of detecting yeast overgrowth or elimination. Antibacterial agents promoting Candida overgrowth when given by the oral or parenteral route included ceftriaxone, augmentin and cefoperazone. Ceftizoxime had less effect. Ceftazidime and latamoxef produced raised levels only by the oral route. Gentamicin, vancomycin and metronidazole did not affect the Candida levels. Dosing with some antibacterials promoted an increase in gastrointestinal Candida and invasion to a greater extent than immunosuppression. Antifungal therapy to reduce gastrointestinal colonization was investigated using amphotericin B, nystatin, ketoconazole, intraconazole and fluconazole. Fluconazole was most effective at reducing faecal Candida.
Tirali, Resmiye Ebru; Gulsahi, Kamran; Cehreli, Sevi Burcak; Karahan, Zeynep Ceren; Uzunoğlu, Emel; Elhan, Atilla
2013-05-01
The aim of this in vitro study was to investigate whether mixing with calcium hydroxide [Ca(OH)2] affects the antimicrobial action of Octenidine hydrochloride (Octenisept), MTAD and chlorhexidine against Enterococcus faecalis and Candida albicans. Freshly grown cultures of Enterococcus faecalis, Candida albicans and a mixture of both strains were incubated in agar plates containing brain-heart infusion broth (BHIB). Zones of inhibition were measured at 24 and 48 hours. Statistical analysis was performed using Mann-Whitney U test and Kruskal-Wallis one-way analysis of variance (ANOVA, both p=0.05). Mixing with Ca(OH)2 significantly increased the antibacterial effect of Octenisept (p<0.05), but did not alter its antifungal activity. Only chlorhexidine showed more antibacterial and antifungal efficiency compared to its Ca(OH)2-mixed version (both p<0.05). Mixing with Ca(OH)2 decreased the antibacterial efficacy of MTAD, but increased its antifungal effect (both p<0.05). These results demonstrate the differential effects of Ca(OH)2 addition on the antimicrobial action of the tested endodontic medicaments in vitro. Ca(OH)2 was as effective as its combination with all of the tested medicaments.
Metal based new triazoles: Their synthesis, characterization and antibacterial/antifungal activities
NASA Astrophysics Data System (ADS)
Sumrra, Sajjad H.; Chohan, Zahid H.
2012-12-01
A series of new triazoles and their oxovanadium(IV) complexes have been synthesized, characterized and evaluated for antibacterial/antifungal properties. The new Schiff bases ligands (L1)-(L5) were prepared by the condensation reaction of 3,5-diamino-1,2,4-triazole with 2-hydroxy-1-naphthaldehyde, pyrrole-2-carboxaldehyde, pyridine-2-carboxaldehyde, 2-acetyl pyridine and 2-methoxy benzaldehyde. The structures of the ligands have been established on the basis of their physical, spectral (IR, 1H and 13C NMR and mass spectrometry) and elemental analytical data. The prepared ligands were used to synthesize their oxovanadium(IV) complexes (1)-(5) which were also characterized by their physical, spectral and analytical data and proposed to have a square pyramidal geometry. The ligands and their complexes were screened for in vitro antibacterial activity against six bacterial species such as, Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella typhi, Staphylococcus aureus, and Bacillus subtilis and for in vitro antifungal activity against six fungal strains, Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, and Candida glabrata. Cytotoxic nature of the compounds was also reported using brine shrimp bioassay method against Artemia salina.
Scherr, Nicole; Röltgen, Katharina; Witschel, Matthias; Pluschke, Gerd
2012-12-01
An alamarBlue-based growth inhibition assay has been adapted for the thermosensitive and slow-growing pathogen Mycobacterium ulcerans. The standardized test procedure enables medium-throughput screening of preselected compound libraries. Testing of a set of 48 azoles with known antifungal activity led to the identification of an imidazole antifungal displaying an inhibitory dose (ID) of 9 μM for M. ulcerans.
Röltgen, Katharina; Witschel, Matthias; Pluschke, Gerd
2012-01-01
An alamarBlue-based growth inhibition assay has been adapted for the thermosensitive and slow-growing pathogen Mycobacterium ulcerans. The standardized test procedure enables medium-throughput screening of preselected compound libraries. Testing of a set of 48 azoles with known antifungal activity led to the identification of an imidazole antifungal displaying an inhibitory dose (ID) of 9 μM for M. ulcerans. PMID:23006761
Mobin, Lubna; Saeed, Syed Asad; Ali, Rashida; Saeed, Syed Ghufran; Ahmed, Rahil
2017-09-26
Crude seed coat extracts from Abrus precatorius and Caesalpinia crista were purified into four different fractions namely phenolic acids, flavonols, flavanols and anthocyanin which were then examined for their polyphenol contents and antimicrobial potentials. The fractions derived from seed coat of A. precatorius were found more potent with high phenolic and flavonoid contents as compared to C. crista fractions. The significant antibacterial activity was observed against all strain tested by the fractions of both samples apart from anthocyanin fraction. It was interesting to note that the phenolic acid fractions of both samples was found more active against gram-negative bacteria, while gram-positive bacteria were found to be more sensitive towards flavonol fractions. The phenolic acid and flavonol fractions being potent antibacterial were selected to demonstrate the antifungal capacity of two samples. Among them, phenolic acid fraction of both samples was found active towards all the fungal strain.
Lima, Luciana Alves Rodrigues dos Santos; Johann, Susana; Cisalpino, Patrícia Silva; Pimenta, Lúcia Pinheiro Santos; Boaventura, Maria Amélia Diamantino
2011-01-01
Fatty acids are abundant in vegetable oils. They are known to have antibacterial and antifungal properties. Antifungal susceptibility was evaluated by broth microdilution assay following CLSI (formerly the NCCLS) guidelines against 16 fungal strains of clinical interest. In this work, fatty acid methyl esters (FAME) was able to inhibit 12 clinical strains of the pathogenic fungus Paracoccidioides brasiliensis and were also active in the bioautographic assay against Cladosporium sphaerospermum. FAME was a more potent antifungal than trimethoprim-sulfamethoxazole against P. brasiliensis under the experimental conditions tested.
Regier, Dean A; Diorio, Caroline; Ethier, Marie-Chantal; Alli, Amanda; Alexander, Sarah; Boydell, Katherine M; Gassas, Adam; Taylor, Jonathan; Kellow, Charis; Mills, Denise; Sung, Lillian
2012-01-01
Bacterial and fungal infections in pediatric oncology patients cause morbidity and mortality. The clinical utility of antimicrobial prophylaxis in children is uncertain and the personal utility of these agents is disputed. Objectives were to use a discrete choice experiment to: (1) describe the importance of attributes to parents and healthcare providers when deciding between use and non-use of antibacterial and antifungal prophylaxis; and (2) estimate willingness-to-pay for prophylactic strategies. Attributes were chances of infection, death and side effects, route of administration and cost of pharmacotherapy. Respondents were randomized to a discrete choice experiment outlining hypothetical treatment options to prevent antibacterial or antifungal infections. Each respondent was presented 16 choice tasks and was asked to choose between two unlabeled treatment options and an opt-out alternative (no prophylaxis). 102 parents and 60 healthcare providers participated. For the antibacterial discrete choice experiment, frequency of administration was significantly associated with utility for parents but not for healthcare providers. Increasing chances of infection, death, side effects and cost were all significantly associated with decreased utility for parents and healthcare providers in both the antibacterial and antifungal discrete choice experiment. Parental willingness-to-pay was higher than healthcare providers for both strategies. Chances of infection, death, side effects and costs were all significantly associated with utility. Parents have higher willingness-to-pay for these strategies compared with healthcare providers. This knowledge can help to develop prophylaxis programs.
Leap forward in the treatment of Pythium insidiosum keratitis.
Bagga, Bhupesh; Sharma, Savitri; Madhuri Guda, Sai Jeevan; Nagpal, Ritu; Joseph, Joveeta; Manjulatha, Kodiganti; Mohamed, Ashik; Garg, Prashant
2018-03-15
Pythium insidiosum is a parafungus that causes keratitis resembling fungal keratitis. This study compares outcome in a large cohort of patients with P insidiosum keratitis treated with antifungal drugs, to a pilot group treated with antibacterial antibiotics. Between January 2014 and December 2016, 114 patients with culture positive P insidiosum keratitis were included in the study. A subset of culture isolates was tested in vitro for response to nine antibacterial antibiotics by disc diffusion and E test. Patients were treated with topical natamycin in 2014, 2015 and up until mid 2016. Thereafter, the patients received a combination of topical linezolid and topical and oral azithromycin. Therapeutic penetrating keratoplasty (TPK) was done for patients not responding to medical therapy. In vitro disc diffusion assay showed linezolid to be most effective. The rate of TPK was significantly higher in 2015 compared with 2016 (43/45, 95.6% vs 22/32, 68.8%; p=0.002). Eighteen patients were treated with antibacterial and 14 were treated with antifungal antibiotic in 2016. One patient was lost to follow-up in each group. The rate of TPK was higher and proportion of healed ulcers was lower (p=0.21, Fisher's exact test) in the group on antifungal therapy (TPK-11/13, 84.6%; Healed-2/13, 15.3%) compared with the group on antibacterial therapy (TPK-11/17, 64.7%; Healed-6/17, 35.2%). We report favourable but not statistically significant response of P insidiosum keratitis to antibacterial agents in a pilot series of patients. Further evaluation of this strategy in larger number of patients is recommended. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Efficient synthesis of new 2,3-dihydrooxazole-spirooxindoles hybrids as antimicrobial agents.
Tiwari, Shailendra; Pathak, Poonam; Sagar, Ram
2016-05-15
Two series of new 2,3-dihydrooxazole-spirooxindole derivatives were efficiently synthesized starting from N'-(2-oxoindolin-3-ylidene) benzohydrazide/N'-(2-oxoindolin-3-ylidene)-2-phenoxyacetohydrazide using designed synthetic route. Newly synthesized 2,3-dihydrooxazole-spirooxindole derivatives were screened for their antibacterial and antifungal activity against different pathogenic strain of bacteria and fungi. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) were determined for the test compounds as well as for reference standards. Compounds 4e, 4g, 7g have shown good antibacterial activity whereas compounds 4f, 7b, 7d have displayed better antifungal activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
A new isoquinolone alkaloid from an endophytic fungus R22 of Nerium indicum.
Ma, Yang-Min; Qiao, Ke; Kong, Yang; Li, Meng-Yun; Guo, Lin-Xin; Miao, Zhi; Fan, Chao
2017-04-01
A new isoquinolone alkaloid named 5-hydroxy-8-methoxy-4-phenylisoquinolin-1(2H)-one (3), together with two known quinolinone alkaloids 3-O-methylviridicatin (1) and viridicatol (2) were isolated from the fermentation of an endophytic fungus Penicillium sp. R22 in Nerium indicum. Their structures were elucidated by NMR, IR and MS data, and were also confirmed by comparing with the reported data in the literature. Meanwhile, the antibacterial and antifungal activities of all compounds were tested, and the results showed that three compounds had strong antifungal activity. Among them, compound 2 revealed potent antibacterial activity against Staphylococcus aureus with MIC value of 15.6 μg/mL.
Sumrra, Sajjad H; Chohan, Zahid H
2013-12-01
The condensation reaction of 3,5-diamino-1,2,4-triazole with methoxy-, chloro-, bromo-, iodo- and nitro-substituted 2-hydroxybenzaldehydes formed triazole Schiff bases (L(1))-(L(6)). The synthesized ligands have been characterized through physical, spectral and analytical data. Furthermore, the reaction of synthesized Schiff bases with the oxovanadium(IV) sulphate in (1:2) (metal:ligand) molar ratio afforded the oxovanadium(IV) complexes (1)-(6). All the complexes were non-electrolytic and showed a square-pyramidal geometry. The synthesized compounds have been screened for in-vitro antibacterial, antifungal and brine shrimp bioassay. The bioactivity data showed the complexes to be more active than the original Schiff bases.
Exploring the biological activities of Echeveria leucotricha.
Martínez Ruiz, María G; Gómez-Velasco, Anaximandro; Juárez, Zaida N; Hernández, Luis R; Bach, Horacio
2013-01-01
Echeveria leucotricha J. A. Purpus (Crassulaceae) was evaluated for its potential antibacterial, antifungal, antiparasitic, cytotoxic and anti-inflammatory bioactivities. Aerial parts were extracted with hexane, methanol and chloroform, and fractionated accordingly. Biological activity was assessed in vitro against five Gram-positive and four Gram-negative bacteria, four human pathogenic fungi and the protozoan Leishmania donovani. Extracts and fractions showing bioactivities were further investigated for their cytotoxic activities on macrophages. Results show that several extracts and fractions exhibited significant antibacterial, antifungal, and antiparasitic activities, but no anti-inflammatory activity was recorded. Here, we report for the first time, and to the best of our knowledge, these bioactivities, which suggest that this plant can be used in the traditional Mexican medicine.
Shakhatreh, Muhamad Ali K; Al-Smadi, Mousa L; Khabour, Omar F; Shuaibu, Fatima A; Hussein, Emad I; Alzoubi, Karem H
2016-01-01
Several applications of chalcones and their derivatives encouraged researchers to increase their synthesis as an alternative for the treatment of pathogenic bacterial and fungal infections. In the present study, chalcone derivatives were synthesized through cross aldol condensation reaction between 4-( N , N -dimethylamino)benzaldehyde and multiarm aromatic ketones. The multiarm aromatic ketones were synthesized through nucleophilic substitution reaction between 4-hydroxy acetophenone and benzyl bromides. The benzyl bromides, multiarm aromatic ketones, and corresponding chalcone derivatives were evaluated for their activities against eleven clinical pathogenic Gram-positive, Gram-negative bacteria, and three pathogenic fungi by the disk diffusion method. The minimum inhibitory concentration was determined by the microbroth dilution technique. The results of the present study demonstrated that benzyl bromide derivatives have strong antibacterial and antifungal properties as compared to synthetic chalcone derivatives and ketones. Benzyl bromides (1a and 1c) showed high ester activity against Gram-positive bacteria and fungi but moderate activity against Gram-negative bacteria. Therefore, these compounds may be considered as good antibacterial and antifungal drug discovery. However, substituted ketones (2a-b) as well as chalcone derivatives (3a-c) showed no activity against all the tested strains except for ketone (2c), which showed moderate activity against Candida albicans .
Shakhatreh, Muhamad Ali K; Al-Smadi, Mousa L; Khabour, Omar F; Shuaibu, Fatima A; Hussein, Emad I; Alzoubi, Karem H
2016-01-01
Several applications of chalcones and their derivatives encouraged researchers to increase their synthesis as an alternative for the treatment of pathogenic bacterial and fungal infections. In the present study, chalcone derivatives were synthesized through cross aldol condensation reaction between 4-(N,N-dimethylamino)benzaldehyde and multiarm aromatic ketones. The multiarm aromatic ketones were synthesized through nucleophilic substitution reaction between 4-hydroxy acetophenone and benzyl bromides. The benzyl bromides, multiarm aromatic ketones, and corresponding chalcone derivatives were evaluated for their activities against eleven clinical pathogenic Gram-positive, Gram-negative bacteria, and three pathogenic fungi by the disk diffusion method. The minimum inhibitory concentration was determined by the microbroth dilution technique. The results of the present study demonstrated that benzyl bromide derivatives have strong antibacterial and antifungal properties as compared to synthetic chalcone derivatives and ketones. Benzyl bromides (1a and 1c) showed high ester activity against Gram-positive bacteria and fungi but moderate activity against Gram-negative bacteria. Therefore, these compounds may be considered as good antibacterial and antifungal drug discovery. However, substituted ketones (2a–b) as well as chalcone derivatives (3a–c) showed no activity against all the tested strains except for ketone (2c), which showed moderate activity against Candida albicans. PMID:27877017
Antibacterial and antifungal activity of endodontic intracanal medications
TONEA, ANDRADA; BADEA, MANDRA; OANA, LIVIU; SAVA, SORINA; VODNAR, DAN
2017-01-01
Background and aims The sterilization of the entire root canal system represents the main goal of every endodontist, given the fact that the control of the microbial flora is the key point of every root canal treatment. The diversity of microorganisms found inside the root canal and also the resistance of some bacterial species to intracanal medications led to a continuous development of new endodontic products. The present study focuses on the comparison of the antibacterial and antifungal properties of different endodontic products, two commercially available, one experimental plant based extract, and two control substances. Methods The disc diffusion assay was used to determine the antibacterial and antifungal properties of chlorhexidine, calcium hydroxide, a mix extract between Arctium lappa root powder and Aloe barbadensis Miller gel, Amoxicillin with clavulanic acid and Fluconazole (as control substances). Two of the most common microorganisms found in endodontic infections were chosen: Enterococcus faecalis (ATCC 29212) and Candida albicans ATCC(10231). Results All tested substances showed inhibition zones around the discs, for Enterococcus faecalis and Candida albicans, including the experimental mix extract of Arctium lappa root powder with Aloe vera gel. Conclusion The experimental mix extract of Arctium lappa root powder and Aloe vera gel is able to inhibit very resistant microorganisms, like Enterococcus faecalis and Candida albicans. PMID:28781531
Ulloa-Benítez, Á; Medina-Romero, Y M; Sánchez-Fernández, R E; Lappe-Oliveras, P; Roque-Flores, G; Duarte Lisci, G; Herrera Suárez, T; Macías-Rubalcava, M L
2016-08-01
To evaluate the phytotoxic, antifungal and antioomycete activity; and, determine the chemical composition of the volatile organic compounds (VOCs) and semi-volatile metabolites produced by the endophyte Hypoxylon anthochroum strain Blaci isolated from Bursera lancifolia. Based on its macro- and micro-morphological features, the strain Blaci was identified as Nodulisporium sp.; partial analysis of its ITS1-5.8-ITS2 ribosomal gene sequence revealed the identity of the teleomorphic stage of the fungus as H. anthochroum. Phytotoxic and antimicrobial activities of VOCs, and culture medium and mycelium organic extracts from H. anthochroum Blaci were determined by simple and multiple antagonism bioassays, and gas phase and agar dilution bioassays respectively. The volatile and semi-volatile metabolites were identified by gas chromatography-mass spectrometry. VOCs from a 5-day H. anthochroum strain Blaci culture caused the inhibition of seed germination, root elongation and seedling respiration on Amaranthus hypochondriacus, Panicum miliaceum, Trifolium pratense and Medicago sativa. In addition, extracts, phenylethyl alcohol and eucalyptol main compounds present in the VOCs and extract displayed a high phytotoxic activity, inhibiting the three physiological processes on the four test plants in a concentration-dependent manner. The results revealed that H. anthochroum strain Blaci produces a mixture of VOCs. These VOCs showed a strong phytotoxic activity on seed germination, root elongation, and seedling respiration of four plants and slightly affected the growth of phytopathogenic fungi and oomycetes. Also, the culture medium and mycelium extracts of H. anthochroum showed a high phytotoxic activity on the four test plants and, generally, the culture medium extract was more phytotoxic than the mycelium extracts. This work firstly reports the phytotoxic activity of volatile and semi-volatile compounds produced by the endophyte H. anthochroum strain Blaci on seed germination, root elongation, and seedling respiration of four different plants; consequently, these compounds could be useful in biocontrol of weeds and plant pathogens. Journal of Applied Microbiology © 2016 The Society for Applied Microbiology.
Adibpour, Neda; Nasr, Farhad; Nematpour, Fatemeh; Shakouri, Arash; Ameri, Abdolghani
2014-01-01
Background: Emergence of antimicrobial resistance toward a number of conventional antibiotics has triggered the search for antimicrobial agents from a variety of sources including the marine environment. Objectives: The aim of this study was to evaluate the antimicrobial potential of Holothuria leucospilota from Qeshm and Kharg Islands against some selected bacteria and fungi. Materials and Methods: In this investigation, sea cucumbers from two coastal cities of Persian Gulf were collected in March and May 2011 and identified by the scale method according to the food and agriculture organization of the United Nations. Antibacterial activity of hydroalcoholic extracts of the body wall, cuvierian organs and coelomic fluid, methanol, chloroform, and n-hexane extracts of the body wall were evaluated by the spot test. In addition, their antifungal activity was assessed by the broth dilution method. Results: The displayed effect was microbiostatic at concentrations of 1000 and 2000 µg/mL rather than microbicidal. The highest activity of hydroalcoholic extracts was exhibited by body wall, cuvierian organs and coelomic fluid against Escherichia coli, Salmonella typhi, Staphylococcus aureus and Pseudomonas aeruginosa; Aspergillus niger, A. fumigatus, A. flavus and A. brasilensis. However, none of the methanol, chloroform and n-haxane extracts showed appreciable effects against Shigella dysenteriae, Proteus vulgaris, Bacillus cereus, S. epidermidis and Candida albicans. Moreover, cuvierian organs did not possess any antifungal potential. Conclusions: Our data indicated that water-methanol extracts from the body wall of H. leucospilota possess antibacterial and antifungal activity. However, additional and in-depth studies are required to isolate and identify the active component(s). PMID:25147657
Lima, Sandrine M A; Melo, Janaína G S; Militão, Gardênia C G; Lima, Gláucia M S; do Carmo A Lima, Maria; Aguiar, Jaciana S; Araújo, Renata M; Braz-Filho, Raimundo; Marchand, Pascal; Araújo, Janete M; Silva, Teresinha G
2017-01-01
Actinomycetes are known to produce numerous secondary bioactive metabolites of pharmaceutical interest. The purpose of this study was to isolate, characterize, and investigate the antibacterial, antifungal, and anticancer activities of metabolites produced by Actinobacteria isolated from the rhizosphere of Paullinia cupana. The Actinobacteria was identified as Streptomyces hygroscopicus ACTMS-9H. Based on a bioguided study, the methanolic biomass extract obtained from submerged cultivation had the most potent antibacterial, antifungal, and cytotoxic activities. This extract was partitioned with n-hexane, ethyl acetate, and 2-butanol. Elaiophylin was isolated from the methanolic biomass extract, and its molecular formula was determined (C 54 H 88 O 18 ) based on 1 H and 13 C NMR, IR and MS analyses. The 2-butanol phase was fractionated into four fractions (EB1, EB2A, EB2B, and EB3M). Chemical prospecting indicated the presence of alkaloids, saponins, and reducing sugars in the methanolic extract and 2-butanol phase. The elaiophylin displayed anticancer activity in HEp-2 and HL-60 cells with an IC 50 of 1 μg/mL. The EB1 fraction was selectively toxic to HL-60 cells with IC 50 of 9 ng/mL. Bioautography showed that the EB1 fraction contained an alkaloid with antibacterial and antifungal activities (MIC values ≤1.9 and <3.9 μg/mL, respectively). In conclusion, the EB1 fraction and elaiophylin of S. hygroscopicus have potent antimicrobial, antifungal, and anticancer activities.
Lima, Valéria N; Oliveira-Tintino, Cícera D M; Santos, Enaide S; Morais, Luís P; Tintino, Saulo R; Freitas, Thiago S; Geraldo, Yuri S; Pereira, Raimundo L S; Cruz, Rafael P; Menezes, Irwin R A; Coutinho, Henrique D M
2016-10-01
The indiscriminate use of antimicrobial drugs has increased the spectrum of exposure of these organisms. In our studies, these phenolic compounds were evaluated: gallic acid, caffeic acid and pyrogallol. The antibacterial, antifungal and modulatory of antibiotic activities of these compounds were assayed using microdilution method of Minimum Inhibitory Concentration (MIC) to bacteria and Minimum Fungicide Concentration (MFC) to fungi. The modulation was made by comparisons of the MIC and MFC of the compounds alone and combined with drugs against bacteria and fungi respectively, using a sub-inhibitory concentration of 128 μg/mL of substances (MIC/8). All substances not demonstrated clinically relevant antibacterial activity with a MIC above ≥1024 μg/mL. As a result, we observed that the caffeic acid presented a potentiating antibacterial effect over the 3 groups of bacteria studied. Pyrogallol showed a synergistic effect with two of the antibiotics tested, but only against Staphylococcus aureus. In general, caffeic acid was the substance that presented with the greatest number of antibiotics and with the greatest number of bacteria. In relation to the antifungal activity of all the compounds, the verified results were ≥1024 μg/mL, not demonstrating significant activity. Regarding potentiation of the effect of fluconazole, was observed synergistic effect only when assayed against Candida tropicalis, with all substances. Therefore, as can be seen, the compounds presented as substances that can be promising potentiating agents of antimicrobial drugs, even though they do not have direct antibacterial and antifungal action. Copyright © 2016 Elsevier Ltd. All rights reserved.
Subban, Kamalraj; Subramani, Ramesh; Johnpaul, Muthumary
2013-01-01
A novel phenolic compound, 4-(2,4,7-trioxa-bicyclo[4.1.0]heptan-3-yl) phenol (1), was isolated from Pestalotiopsis mangiferae, an endophytic fungus associated with Mangifera indica Linn. The structure of the compound was elucidated on the basis of comprehensive spectral analysis (UV, IR, ¹H-, ¹³C- and 2D-NMR, as well as HRESI-MS). Compound (1) shows potent antibacterial and antifungal activity against Bacillus subtilis, Klebsiella pneumoniae, Escherichia coli, Micrococcus luteus, Pseudomonas aeruginosa and Candida albicans. The transmission electron microscope study for the mode of inhibition of compound (1) on bacterial pathogens revealed the destruction of bacterial cells by cytoplasm agglutination with the formation of pores in cell wall membranes.
Talwar, P; Kumar, B; Ayyagiri, A; Kaur, S
1985-08-01
Ninety-six patients with clinical evidence of interdigital lesions classified as mild, moderate and severe athlete's foot were investigated for bacterial and fungal populations in the interspaces. Gram-negative bacteria, which were not found in the toe spaces of 50 normal controls, were grown in increasing numbers and with increasing frequency as the symptoms progressed from mild to severe. Gram-positive bacteria were also isolated regularly and in increasing numbers commensurate with the severity of the disease. Similarly the isolation rates of dermatophytes and Candida species were higher in patients with moderate and severe disease compared to those with mild disease. Clinical and culture responses to topical applications with framycetin, tolnaftate, miconazole and clotrimazole were also studied. In some patients the prevalence of pathogenic fungi increased as bacterial numbers decreased. The pure antibacterial framycetin brought symptomatic relief, as did the purely anti-dermatophyte substance tolnaftate, but best results were seen with two azole compounds having mixed antibacterial and antifungal properties.
In vitro antibacterial and antifungal activities of Cassia fistula Linn. fruit pulp extracts
Bhalodia, N. R.; Nariya, P. B.; Acharya, R. N.; Shukla, V. J.
2012-01-01
Aim of the study is to assess the antimicrobial activity Cassia fistula fruit pulp extracts on some bacterial and fungal strains. Hydro alcohol and chloroform extracts of Cassia fistula fruit pulp were evaluated for the potential antimicrobial activity. The antimicrobial activity was determined in both the extracts using the agar disc diffusion method. Extracts were effective on tested microorganisms. The antibacterial and antifungal activities of solvent extracts (5, 25, 50, 100, 250 μg/mL) of C. fistula were tested against two gram positive, two gram negative human pathogenic bacteria and three fungi, respectively. Crude extracts of C. fistula exhibited moderate to strong activity against most of the bacteria tested. The tested bacterial strains were Staphylococcus aureus, Streptococcus pyogenes, Escherichia coil, Pseudomonas aeruginosa, and fungal strains were Aspergillus. niger, Aspergillus. clavatus, Candida albicans. The antibacterial potential of the extracts were found to be dose dependent. The antibacterial activities of the C. fistula were due to the presence of various secondary metabolites. Hence, these plants can be used to discover bioactive natural products that may serve as leads in the development of new pharmaceuticals research activities. PMID:23049197
Cano, Amalia; Cháfer, Maite; Chiralt, Amparo; González-Martínez, Chelo
2015-01-01
In this work, active films based on starch and PVA (S:PVA ratio of 2:1) were developed by incorporating neem (NO) and oregano essential oils (OEO). First, a screening of the antifungal effectiveness of different natural extracts (echinacea, horsetail extract, liquid smoke and neem seed oil) against two fungus (P. expansum and A. niger) was carried out. The effect of NO and OEO incorporation on the films’ physical and antimicrobial properties was analyzed. Only composite films containing OEO exhibited antibacterial and antifungal activity. Antibacterial activity occurred at low OEO concentration (6.7%), while antifungal effect required higher doses of OEO in the films. Incorporation of oils did not notably affect the water sorption capacity and water vapor barrier properties of S-PVA films, but reduced their transparency and gloss, especially at the highest concentrations. The mechanical response of the S-PVA films was also negatively affected by oil incorporation but this was only relevant at the highest oil ratio (22%). S-PVA films with 6.7% of OEO exhibited the best physical properties, without significant differences with respect to the S-PVA matrix, while exhibiting antibacterial activity. Thus, the use of OEO as a natural antimicrobial incorporated into starch-PVA films represents a good and novel alternative in food packaging applications. PMID:28231098
Antimicrobial and antiprotozoal activities of secondary metabolites from the fungus Eurotium repens
Gao, Jiangtao; Radwan, Mohamed M.; León, Francisco; Wang, Xiaoning; Jacob, Melissa R.; Tekwani, Babu L.; Khan, Shabana I.; Lupien, Shari; Hill, Robert A.; Dugan, Frank M.; Cutler, Horace G.
2011-01-01
In this study, we examined in vitro antibacterial, antifungal, antimalarial, and antileishmanial activities of secondary metabolites (1–8) isolated from the fungus Eurotium repens. All compounds showed mild to moderate antibacterial or antifungal or both activities except 7. The activity of compound 6 was the best of the group tested. The in vitro antimalarial evaluation of these compounds revealed that compounds 1–3, 5, and 6 showed antimalarial activities against both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum with IC50 values in the range of 1.1–3.0 μg/ml without showing any cytotoxicity to the mammalian cells. Compound 5 displayed the highest antimalarial activity. Antileishmanial activity against Leishmania donovani promastigotes was observed for compounds 1–6 with IC50 values ranging from 6.2 to 23 μg/ml. Antileishmanial activity of compounds 5 and 6 (IC50 values of 7.5 and 6.2 μg/ml, respectively) was more potent than 1–4 (IC50 values ranging from 19–23 μg/ml). Compounds 7 and 8 did not show any antiprotozoal effect. Preliminary structure and activity relationship studies indicated that antibacterial, antifungal, antimalarial, and antileishmanial activities associated with phenol derivates (1–6) seem to be dependent on the number of double bonds in the side chain, which would be important for lead optimization in the future. PMID:23024574
Zinc oxide nanoparticle-coated films: fabrication, characterization, and antibacterial properties
NASA Astrophysics Data System (ADS)
Jiang, Yunhong; O'Neill, Alex J.; Ding, Yulong
2015-04-01
In this article, novel antibacterial PVC-based films coated with ZnO nanoparticles (NPs) were fabricated, characterized, and studied for their antibacterial properties. It was shown that the ZnO NPs were coated on the surface of the PVC films uniformly and that the coating process did not affect the size and shape of the NPs on the surface of PVC films. Films coated with concentrations of either 0.2 or 0.075 g/L of ZnO NPs exhibited antibacterial activity against both Gram-positive ( Staphylococcus aureus) and Gram-negative ( Escherichia coli) bacteria, but exhibited no antifungal activity against Aspergillus flavus and Penicillium citrinum. Smaller particles (100 nm) exhibited more potent antibacterial activity than larger particles (1000 nm). All ZnO-coated films maintained antibacterial activity after 30 days in water.
... vulnerable to infection, your doctor may also prescribe antibacterial, antiviral and antifungal medications. After transplant, skin checkups ... other fluids each day Exercise Exercise and physical activity should be a regular part of your life ...
Ashok, Mithun; Holla, Bantwal Shivarama; Kumari, Nalilu Suchetha
2007-03-01
A series of new 2-(arylidene/5-arylfurfurylidene)-5-(4-methylthiophenyl)-6-carbethoxy-7-methyl-5H-thiazolo[2,3-b]pyrimidin-3(1H)-ones 2 and 3 have been synthesized by a three component (MCR) reaction involving 4-(4-methylthiophenyl)-5-carbethoxy-6-methyl-3,4-dihydropyrimidin-2(1H)-thione 1, monochloroacetic acid and arylaldehydes/arylfurfuraldehydes, respectively. The newly synthesized compounds were well characterized by elemental analysis, IR, (1)H NMR and mass spectral studies. The newly synthesized compounds were screened for their antibacterial and antifungal activities and have exhibited moderate to excellent growth inhibition of bacteria and fungi. The results of such studies have been discussed in this paper.
Narasimhan, Srinivasan; Maheshwaran, Shanmugam; Abu-Yousef, Imad A; Majdalawieh, Amin F; Rethavathi, Janarthanam; Das, Prince Edwin; Poltronieri, Palmiro
2017-02-12
The microbial contamination in food packaging has been a major concern that has paved the way to search for novel, natural anti-microbial agents, such as modified α-mangostin. In the present study, twelve synthetic analogs were obtained through semi-synthetic modification of α-mangostin by Ritter reaction, reduction by palladium-carbon (Pd-C), alkylation, and acetylation. The evaluation of the anti-microbial potential of the synthetic analogs showed higher bactericidal activity than the parent molecule. The anti-microbial studies proved that I E showed high anti-bacterial activity whereas I I showed the highest anti-fungal activity. Due to their microbicidal potential, modified α-mangostin derivatives could be utilized as active anti-microbial agents in materials for the biomedical and food industry.
El Shehry, Mohamed F; Ghorab, Mostafa M; Abbas, Samir Y; Fayed, Eman A; Shedid, Said A; Ammar, Yousry A
2018-01-01
In an attempt for development of new antimicrobial agents, three series of quinoline derivatives bearing pyrazole moiety have been synthesized. The first series was synthesized through the synthesis of 4-(quinolin-2-yloxy)benzaldehyde and 4-(quinolin-2-yloxy)acetophenone and then treatment with ketone or aldehyde derivatives to afford the corresponding chalcones. Cyclization of the latter chalcones with hydrazine derivatives led to the formation of new pyrazoline derivatives. The second series was synthesized via the synthesis of 2-hydrazinylquinoline and then treatment with formylpyrazoles to afford the corresponding hydrazonyl pyrazole derivatives. The third series was synthesized through the treatment of 2-hydrazinylquinoline with ethoxyethylidene, dithioacetal and arylidene derivatives to afford the corresponding pyrazole derivatives. The synthesized compounds were evaluated for their expected antibacterial and antifungal activities; where, the majority of these compounds showed potent antibacterial and antifungal activities against the tested strains of bacteria and fungi. Pyrazole derivative 13b showed better results when compared with the reference drugs as revealed from their MIC values (0.12-0.98 μg/mL). The pyrazole derivative 13b showed fourfold potency of gentamycin in inhibiting the growth of S. flexneri (MIC 0.12 μg/mL). Also, compound 13b showed fourfold potency of amphotericin B in inhibiting the growth of A. clavatus (MIC 0.49 μg/mL) and C. albicans (MIC 0.12 μg/mL), respectively. The same compound showed twofold potency of gentamycin in inhibiting the growth of P. vulgaris (MIC 0.98 μg/mL), equipotent to the ampicillin and amphotericin B in inhibiting the growth of S. epidermidis (MIC 0.49 μg/mL), A. fumigatus (MIC 0.98 μg/mL), respectively. Thus, these studies suggest that quinoline derivatives bearing pyrazole moiety are interesting scaffolds for the development of novel antibacterial and antifungal agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Zacchino, Susana A; Butassi, Estefanía; Cordisco, Estefanía; Svetaz, Laura A
2017-12-15
Biofilms contribute to the pathogenesis of many chronic and difficult-to eradicate infections whose treatment is complicated due to the intrinsic resistance to conventional antibiotics. As a consequence, there is an urgent need for strategies that can be used for the prevention and treatment of biofilm-associated infections. The combination therapy comprising an antimicrobial drug with a low molecular weight (MW) natural product and an antimicrobial drug (antifungal or antibacterial) appeared as a good alternative to eradicate biofilms. The aims of this review were to perform a literature search on the different natural products that have showed the ability of potentiating the antibiofilm capacity of antimicrobial drugs, to analyze which are the antimicrobial drugs most used in combination, and to have a look on the microbial species most used to prepare biofilms. Seventeen papers, nine on combinations against antifungal biofilms and eight against antibacterial biofilms were collected. Within the text, the following topics have been developed: breaf history of the discovery of biofilms; stages in the development of a biofilm; the most used methodologies to assess antibiofilm-activity; the natural products with capacity of eradicating biofilms when acting alone; the combinations of low MW natural products with antibiotics or antifungal drugs as a strategy for eradicating microbial biofilms and a list of the low MW natural products that potentiate the inhibition capacity of antifungal and antibacterial drugs against biofilms. Regarding combinations against antifungal biofilms, eight over the nine collected works were carried out with in vitro studies while only one was performed with in vivo assays by using Caenorhabditis elegans nematode. All studies use biofilms of the Candida genus. A 67% of the potentiators were monoterpenes and sesquiterpenes and six over the nine works used FCZ as the antifungal drug. The activity of AmpB and Caspo was enhanced in one and two works respectively. Regarding combinations against bacterial biofilms, in vitro studies were performed in all works by using several different methods of higher variety than the used against fungal biofilms. Biofilms of both the gram (+) and gram (-) bacteria were prepared, although biofilm of Staphylococcus spp. were the most used in the collected works. Among the discovered potentiators of antibacterial drugs, 75% were terpenes, including mono, di- and triterpenes, and, among the atibacterial drugs, several structurally diverse types were used in the combinations: aminoglycosides, β-lactams, glucopeptides and fluoroquinolones. The potentiating capacity of natural products, mainly terpenes, on the antibiofilm effect of antimicrobial drugs opens a wide range of possibilities for the combination antimicrobial therapy. More in vivo studies on combinations of natural products with antimicrobial drugs acting against biofilms are highly required to cope the difficult to treat biofilm-associated infections. Copyright © 2017 Elsevier GmbH. All rights reserved.
Sherif, Omaima E; Abdel-Kader, Nora S
2014-01-03
Many tools of analysis such as elemental analyses, infrared, ultraviolet-visible, electron spin resonance (ESR) and thermal analysis, as well as conductivity and magnetic susceptibility measurements were used to elucidate the structures of the newly prepared Co(II), Ni(II) and Cu(II) complexes with Schiff bases derived from the condensation of 1,4-phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzo-pyran-4-one (H2L) or 5,7-dihydroxy-6-formyl-2-methylbenzopyran-4-one (H4L). The data showed that all formed complexes are 1:1 or 2:2 (M:L) and non-electrolyte chelates. The Co(II) and Cu(II) complexes of the two Schiff bases were screened for antibacterial activities by the disk diffusion method. The antibacterial activity was screened using Escherichia coli and Staphylococcus capitis but the antifungal activity was examined by using Aspergillus flavus and Candida albicans. The Results showed that the tested complexes have antibacterial, except CuH4L, but not antifungal activities. Copyright © 2013 Elsevier B.V. All rights reserved.
Meepagala, Kumudini M; Schrader, Kevin K; Burandt, Charles L; Wedge, David E; Duke, Stephen O
2010-09-08
A chromene amide, N-[2-(2,2-dimethyl-2H-1-benzopyran-6-yl)ethyl]-N,3-dimethylbutanamide, was isolated from the EtOAc extract of the leaves of Amyris texana and found to have moderate antifungal activity against Colletotrichum spp. and selective algicidal activity against Planktothrix perornata, a cyanobacterium (blue-green alga) that causes musty off-flavor in farm-raised channel catfish (Ictalurus punctatus). To improve the selective algicidal activity and provide water solubility, a series of chromene analogues were synthesized and evaluated for algicidal activity using a 96-well microplate rapid bioassay. In addition, the chromene analogues were evaluated for antifungal and phytotoxic activities. Hydrochloride salts of a chromene amine analogue showed improved water solubility and selectivity toward P. perornata with activity comparable to that of the naturally occurring chromene amide.
Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles
NASA Astrophysics Data System (ADS)
Smitha, S. L.; Gopchandran, K. G.
2013-02-01
Shape controlled syntheses of gold nanoparticles have attracted a great deal of attention as their optical, electronic, magnetic and biological properties are strongly dependent on the size and shape of the particles. Here is a report on the surface enhanced Raman scattering (SERS) activity of Cinnamomum zeylanicum leaf broth reduced gold nanoparticles consisting of triangular and spherical like particles, using 2-aminothiophenol (2-ATP) and crystal violet (CV) as probe molecules. Nanoparticles prepared with a minimum leaf broth concentration, having a greater number of triangular like particles exhibit a SERS activity of the order of 107. The synthesized nanoparticles exhibit efficient antibacterial activity against the tested gram negative bacterium Escherichia coli and gram positive bacterium Staphylococcus aureus. Investigations on the antifungal activity of the synthesized nanoparticles against Aspergillus niger and Fusarium oxysporum positive is also discussed.
Antimicrobial activities of the rhizome extract of Zingiber zerumbet Linn.
Kader, Golam; Nikkon, Farjana; Rashid, Mohammad Abdur; Yeasmin, Tanzima
2011-10-01
To investigate antimicrobial effects of ethanolic extract of Zingiber zerumbet (Z. zerumbet) (L.) Smith and its chloroform and petroleum ether soluble fractions against pathogenic bacteria and fungi. The fresh rhizomes of Zingiber zerumbet were extracted in cold with ethanol (4.0 L) after concentration. The crude ethanol extract was fractionated by petroleum ether and chloroform to form a suspension of ethanol extract (15.0 g), petroleum ether fraction (6.6 g) and chloroform soluble fraction (5.0 g). The crude ethanol extract and its petroleum ether and chloroform fractions were evaluated for antibacterial and antifungal activity against thirteen pathogenic bacteria and three fungi by the disc diffusion method. Commercially available kanamycin (30 µg/disc) was used as standard disc and blank discs impregnated with the respective solvents were used as negative control. At a concentration of 400 µg/disc, all the samples showed mild to moderate antibacterial and antifungal activity and produced the zone of inhibition ranging from 6 mm to 10 mm. Among the tested samples, the crude ethanol extract showed the highest activity against Vibrio parahemolyticus (V. parahemolyticus). The minimum inhibitory concentration (MIC) of the crude ethanol extract and its fractions were within the value of 128-256 µg/mL against two Gram positive and four Gram negative bacteria and all the samples showed the lowest MIC value against V. parahemolyticus (128 µg/mL). It can be concluded that, potent antibacterial and antifungal phytochemicals are present in ethanol extract of Z. zerumbet (L).
Yadav, Prem P; Gupta, Prasoon; Chaturvedi, A K; Shukla, P K; Maurya, Rakesh
2005-03-01
Synthesis of nitrogen and sulfur heterocyclic mimics of furanoflavonoids have been achieved for the first time. Synthesized flavonoid alkaloids and thiophenyl flavonoids have been screened for antifungal and antibacterial activities. All the test compounds barring 25 exhibited antifungal activity. The compound 19 was the best and showed comparable MICs to the known compound karanjin. Compounds 5, 12, 14 and 22 also showed comparable MIC to karanjin.
Assessment of India’s Research Literature
2006-01-01
promastigotes. • (19) [inhibitor 16.0%, acid 6.4%, amino 3.5%, activ 3.5%, antibacteri 3.1%, trypsin 2.9%, amino.acid 2.0%, chymotrypsin...substitut 2.1%] – Antibacterial and antifungal activity in compounds, particularly screening for such activity • (46) [compound 44.0%, activ 2.9...studies, and its presence in the midst of the high tech top tier countries stands out. The presence of Philippines in this list has strong reasons
Mokhtari, Mona; Jackson, Michael D; Brown, Alistair S; Ackerley, David F; Ritson, Nigel J; Keyzers, Robert A; Munkacsi, Andrew B
2018-06-06
Pathogenic fungi continue to develop resistance against current antifungal drugs. To explore the potential of agricultural waste products as a source of novel antifungal compounds, we obtained an unbiased GC-MS profile of 151 compounds from 16 commercial and experimental cultivars of feijoa peels. Multivariate analysis correlated 93% of the compound profiles with antifungal bioactivities. Of the 18 compounds that significantly correlated with antifungal activity, 5 had not previously been described from feijoa. Two novel cultivars were the most bioactive, and the compound 4-cyclopentene-1,3-dione, detected in these cultivars, was potently antifungal (IC 50 = 1-2 μM) against human-pathogenic Candida species. Haploinsufficiency and fluorescence microscopy analyses determined that the synthesis of chitin, a fungal-cell-wall polysaccharide, was the target of 4-cyclopentene-1,3-dione. This fungal-specific mechanism was consistent with a 22-70-fold reduction in antibacterial activity. Overall, we identified the agricultural waste product of specific cultivars of feijoa peels as a source of potential high-value antifungal compounds.
Antibacterial and antifungal activities of some Mexican medicinal plants.
Ruiz-Bustos, E; Velazquez, C; Garibay-Escobar, A; García, Z; Plascencia-Jatomea, M; Cortez-Rocha, M O; Hernandez-Martínez, J; Robles-Zepeda, R E
2009-12-01
In Mexico about 4,000 plant species have some medicinal use. The aim of this work was to evaluate the antimicrobial activity of six Mexican medicinal plants against fungi and Gram-positive and Gram-negative bacteria. Methanolic extracts were prepared from the Mexican medicinal plants Amphypteringium adstrigens, Castella tortuosa, Coutarea latiflora, Ibervillea sonorae, Jatropha cuneata, and Selaginella lepidophylla. The antibacterial and antifungal activities of the plants were determined by the broth microdilution method and the radial growth inhibition assay, respectively. All Mexican plants tested showed antimicrobial activity. Among the six plant extracts analyzed, J. cuneata showed the highest growth-inhibitory activity against fungi, Gram-positive and Gram-negative bacteria (J. cuneata > A. adstrigens > C. latiflora > C. tortuosa > I. sonorae approximately S. lepidophylla). Shigella flexneri and Staphylococcus aureus were the most susceptible bacteria to plant extracts. Complete inhibition of S. flexneri growth was observed with J. cuneata methanolic extract at 90 microg/mL. This plant extract also showed the strongest antifungal activity against Fusarium verticillioides and Aspergillus niger. Our data suggest that the medicinal plants tested have important antimicrobial properties. This is the first report describing the antimicrobial activities of several of the Mexican medicinal plants used in this study.
Antifungal mechanism of antibacterial peptide, ABP-CM4, from Bombyx mori against Aspergillus niger.
Zhang, Jie; Wu, Xi; Zhang, Shuang-Quan
2008-12-01
Antibacterial peptide, CM4 (ABP-CM4), a 35 amino acid peptide from Chinese silkworm-Bombyx mori, displayed a strong antifungal activity against Aspergillus niger, Trichoderma viride and Gibberella saubinetii. Scanning electron microcopy showed that the morphology of conidia became more irregular and swelled when treated with ABP-CM4 at its minimal inhibitory concentration (MIC) of 8 muM. A cell wall regeneration assay indicated that the plasma membrane was the prime target of ABP-CM4 action. Confocal laser scanning microscopy showed that the cytoskeleton of A. niger was destroyed when treated with ABP-CM4 at 8 muM. Furthermore, transmission electron microscopy showed that the membrane and the cellular organelles of fungus were disrupted and there were many vacuoles in the fungal cellular space after the treatment with ABP-CM4. A gel-retardation assay showed that ABP-CM4 bound the DNA of A. niger. Our results suggest that ABP-CM4 exerts its antifungal activity by disrupting the structure of cell membranes and the cytoskeleton and interacts with the organelles, such as the mitochondrion and with the DNA in the fungal cell, subsequently resulting in cell death.
Potential ecological roles of artemisinin produced by Artemisia annua L.
Knudsmark Jessing, Karina; Duke, Stephen O; Cedergreeen, Nina
2014-02-01
Artemisia annua L. (annual wormwood, Asteraceae) and its secondary metabolite artemisinin, a unique sesquiterpene lactone with an endoperoxide bridge, has gained much attention due to its antimalarial properties. Artemisinin has a complex structure that requires a significant amount of energy for the plant to synthesize. So, what are the benefits to A. annua of producing this unique compound, and what is the ecological role of artemisinin? This review addresses these questions, discussing evidence of the potential utility of artemisinin in protecting the plant from insects and other herbivores, as well as pathogens and competing plant species. Abiotic factors affecting the artemisinin production, as well as mechanisms of artemisinin release to the surroundings also are discussed, and new data are provided on the toxicity of artemisinin towards soil and aquatic organisms. The antifungal and antibacterial effects reported are not very pronounced. Several studies have reported that extracts of A. annua have insecticidal effects, though few studies have proven that artemisinin could be the single compound responsible for the observed effects. However, the pathogen(s) or insect(s) that may have provided the selection pressure for the evolution of artemisinin synthesis may not have been represented in the research thus far conducted. The relatively high level of phytotoxicity of artemisinin in soil indicates that plant/plant allelopathy could be a beneficial function of artemisinin to the producing plant. The release routes of artemisinin (movement from roots and wash off from leaf surfaces) from A. annua to the soil support the rationale for allelopathy.
Bioactive Metabolites from Pathogenic and Endophytic Fungi of Forest Trees.
Masi, Marco; Maddau, Lucia; Linaldeddu, Benedetto Teodoro; Scanu, Bruno; Evidente, Antonio; Cimmino, Alessio
2018-01-01
Fungi play an important role in terrestrial ecosystems interacting positively or negatively with plants. These interactions are complex and the outcomes are different depending on the fungal lifestyles, saprotrophic, mutualistic or pathogenic. Furthermore, fungi are well known for producing secondary metabolites, originating from different biosynthetic pathways, which possess biological properties of considerable biotechnological interest. Among the terrestrial ecosystems, temperate forests represent an enormous reservoir of fungal diversity. This review will highlight the goldmine of secondary metabolites produced by pathogenic and endophytic fungi of forest trees with focus on their biological activities. A structured search of bibliographic databases for peer-reviewed research literature was undertaken using a research discovery application providing access to a large and authoritative source of references. The papers selected were examined and the main results were reported and discussed. Two hundred forthy-one papers were included in the review, outlined a large number of secondary metabolites produced by pathogenic and endophiltic fungi and their biological activities, including phytotoxic, antifungal, antioomycetes, antibacterial, brine shrimp lethality, mosquito biting deterrence and larvicidal, cytotoxic, antiproliferative and many other bioactivities. The findings of this review confirm the importance of secondary metabolites produced by pathogenic and endophytic fungi from forest plants growing in temperate regions as an excellent prospects to discover compounds with new bioactivities and mode of actions. In addition, the potential of some metabolites as a source of new drugs and biopesticides is underlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Antimicrobial activity of four species of Berberidaceae.
Li, Ai-Rong; Zhu, Yue; Li, Xiao-Na; Tian, Xing-Jun
2007-07-01
Ethanolic extracts of the stems and leaves of Nandina domestica, Mahonia fortunei, Mahonia bealei and Berberis thunbergii were tested for their antibacterial and antifungal activity. Most of the extracts have been proved to be active against Gram(+) bacteria.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., antipruritic, antifungal (Candida albicans), and antibacterial ointment for local therapy in keratitis and... administered as follows: (i) For conjunctivitis and keratitis: Apply one drop of ointment to the affected eye(s...
Code of Federal Regulations, 2011 CFR
2011-04-01
..., antipruritic, antifungal (Candida albicans), and antibacterial ointment for local therapy in keratitis and... administered as follows: (i) For conjunctivitis and keratitis: Apply one drop of ointment to the affected eye(s...
In Vitro Antimicrobial and Modulatory Activity of the Natural Products Silymarin and Silibinin
Rakelly de Oliveira, Dayanne; Relison Tintino, Saulo; Morais Braga, Maria Flaviana Bezerra; Boligon, Aline Augusti; Linde Athayde, Margareth; Douglas Melo Coutinho, Henrique; de Menezes, Irwin Rose Alencar; Fachinetto, Roselei
2015-01-01
Silymarin is a standardized extract from the dried seeds of the milk thistle (Silybum marianum L. Gaertn.) clinically used as an antihepatotoxic agent. The aim of this study was to investigate the antibacterial and antifungal activity of silymarin and its major constituent (silibinin) against different microbial strains and their modulatory effect on drugs utilized in clinical practice. Silymarin demonstrated antimicrobial activity of little significance against the bacterial strains tested, with MIC (minimum inhibitory concentration) values of 512 µg/mL. Meanwhile, silibinin showed significant activity against Escherichia coli with a MIC of 64 µg/mL. The results for the antifungal activity of silymarin and silibinin demonstrated a MIC of 1024 µg/mL for all strains. Silymarin and silibinin appear to have promising potential, showing synergistic properties when combined with antibacterial drugs, which should prompt further studies along this line. PMID:25866771
Tale, Rajesh H; Rodge, Atish H; Hatnapure, Girish D; Keche, Ashish P
2011-08-01
A series of novel 3,4-dihydropyrimidin-2(1H)-one urea derivatives of biological interest were prepared by sequential Bigineli's reaction, reduction followed by reaction of resulting amines with different arylisocynates. All the synthesized (1-23) compounds were screened against the pro-inflammatory cytokines (TNF-α and IL-6) and antimicrobial activity (antibacterial and antifungal). Biological activity evaluation study reveled that among all the compounds screened, compounds 12 and 17 found to have promising anti-inflammatory activity (68-62% TNF-α and 92-86% IL-6 inhibitory activity at 10 μM). Interestingly compounds 3, 4, 5, 6, 15, 22 and 23 revealed promising antimicrobial activity at MIC of 10-30 μg/mL against selected pathogenic bacteria and fungi. Copyright © 2011 Elsevier Ltd. All rights reserved.
Müller, Sebastian; Garcia-Gonzalez, Eva; Mainz, Andi; Hertlein, Gillian; Heid, Nina C; Mösker, Eva; van den Elst, Hans; Overkleeft, Herman S; Genersch, Elke; Süssmuth, Roderich D
2014-09-26
The spore-forming bacterium Paenibacillus larvae is the causative agent of American Foulbrood (AFB), a fatal disease of honey bees that occurs worldwide. Previously, we identified a complex hybrid nonribosomal peptide/polyketide synthesis (NRPS/PKS) gene cluster in the genome of P. larvae. Herein, we present the isolation and structure elucidation of the antibacterial and antifungal products of this gene cluster, termed paenilamicins. The unique structures of the paenilamicins give deep insight into the underlying complex hybrid NRPS/PKS biosynthetic machinery. Bee larval co-infection assays reveal that the paenilamicins are employed by P. larvae in fighting ecological niche competitors and are not directly involved in killing the bee larvae. Their antibacterial and antifungal activities qualify the paenilamicins as attractive candidates for drug development. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Abu-Melha, Sraa
2012-10-01
The reactions of 2-phenyl-4-arylmethylene-2-oxazolin-5-ones (1a, b) and 2-phenyl-4-arylazo-2-oxazolin-5-ones (8a, b) with p-aminoazobenzene derivatives (2a-c) gave the corresponding imidazolone derivatives (4a-f) and triazole derivatives (10a-f), respectively. Also, the reaction of 1a with o-aminophenol to give the imidazolone derivative 5 was studied. The reaction of 1a with 2,4-dinitrophenylhydrazine gave the corresponding 1,2,4-triazine derivatives 14a-c, respectively. The newly synthesized compounds were screened for their antibacterial activity against Gram-positive (Bacillus subtilis and Bacillus thuringiensis), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and in vitro antifungal potential against Fusarium oxysporum and Botrytis fabae fungal strains. The results revealed that the investigated compounds exhibited antibacterial and a significant antifungal activity.
Cos, P; Hermans, N; De Bruyne, T; Apers, S; Sindambiwe, J B; Vanden Berghe, D; Pieters, L; Vlietinck, A J
2002-02-01
A total of 45 Rwandan plant extracts, belonging to 37 different plant species out of 21 families, were investigated for their antibacterial, antifungal, and antiviral properties. The plants were selected on the base of their ethnomedicinal use against infections and autoimmune diseases. From all the plant extracts tested, only Clematis hirsuta (leaves) showed a pronounced antifungal activity against Candida albicans and the dermatophytes Trichophyton rubrum, Epidermophyton floccosum, and Microsporum canis. Seven plant extracts showed a high antiviral activity against the DNA-virus Herpes simplex type 1, while five and three plant extracts were highly active against the RNA-viruses Coxsackie and Polio, respectively. Only Macaranga kilimandscharica (leaves) showed an interesting anti-measles activity, whereas Eriosema montanum (leaves) and Entada abyssinica (leaves) were highly active against Semliki forest virus. Some plant extracts showed an antibacterial activity against Gram-positive bacteria and Mycobacterium fortuitum, but none of them were active against the Gram-negative bacteria tested.
Essien, Emmanuel E.; Newby, Jennifer Schmidt; Walker, Tameka M.; Setzer, William N.; Ekundayo, Olusegun
2015-01-01
Curcuma longa (turmeric) has been used in Chinese traditional medicine and Ayurvedic medicine for many years. Methods: The leaf essential oil of C. longa from southern Nigeria was obtained by hydrodistillation and analyzed by gas chromatography–mass spectrometry (GC-MS). The essential oil was screened for in vitro antibacterial, antifungal, and cytotoxic activities. The major components in C. longa leaf oil were ar-turmerone (63.4%), α-turmerone (13.7%), and β-turmerone (12.6%). A cluster analysis has revealed this to be a new essential oil chemotype of C. longa. The leaf oil showed notable antibacterial activity to Bacillus cereus and Staphylococcus aureus, antifungal activity to Aspergillus niger, and cytotoxic activity to Hs 578T (breast tumor) and PC-3 (prostate tumor) cells. The ar-turmerone-rich leaf essential oil of C. longa from Nigeria has shown potent biological activity and therapeutic promise. PMID:28930216
Lee, Yeji; Phat, Chanvorleak; Hong, Soon-Cheol
2017-09-01
Many cyclic peptides and analogues derived from marine sources are known to possess biological properties, including anticancer, antitumor, antibacterial, antifungal, antiparasitic, anti-inflammation, anti-proliferative, anti-hypertensive, cytotoxic, and antibiotic properties. These compounds demonstrate different activities and modes of action according to their structure such as cyclic oligopeptide, cyclic lipopeptide, cyclic glycopeptide and cyclic depsipeptide. The recent advances in application of the above-mentioned cyclic peptides were reported in dolastatins, soblidotin, didemnin B, aplidine, salinosporamide A, kahalalide F and bryostatin 1 and they are currently in clinical trials. These cyclic peptides are possible novel drugs discovered and developed from marine origin. Literature data concerning the potential properties of marine cyclic peptides were reviewed here, and the structural diversity and biological activities of marine cyclic peptides are discussed in relation to the molecular mechanisms of these marine cyclic peptides. Copyright © 2017 Elsevier Inc. All rights reserved.
de Souza Araújo, E; Pimenta, A S; Feijó, F M C; Castro, R V O; Fasciotti, M; Monteiro, T V C; de Lima, K M G
2018-01-01
This work aimed to evaluate the antibacterial and antifungal activities of two types of pyroligneous acid (PA) obtained from slow pyrolysis of wood of Mimosa tenuiflora and of a hybrid of Eucalyptus urophylla × Eucalyptus grandis. Wood wedges were carbonized on a heating rate of 1·25°C min -1 until 450°C. Pyrolysis smoke was trapped and condensed to yield liquid products. Crude pyrolysis liquids were bidistilled under 5 mmHg vacuum yielding purified PA. Multi-antibiotic-resistant strains of Escherichia coli, Pseudomonas aeruginosa (ATCC 27853) and Staphylococcus aureus (ATCC 25923) had their sensitivity to PA evaluated using agar diffusion test. Two yeasts were evaluated as well, Candida albicans (ATCC 10231) and Cryptococcus neoformans. GC-MS analysis of both PAs was carried out to obtain their chemical composition. Regression analysis was performed, and models were adjusted, with diameter of inhibition halos and PA concentration (100, 50 and 20%) as parameters. Identity of regression models and equality of parameters in polynomial orthogonal equations were verified. Inhibition halos were observed in the range 15-25 mm of diameter. All micro-organisms were inhibited by both types of PA even in the lowest concentration of 20%. The feasibility of the usage of PAs produced with wood species planted in large scale in Brazil was evident and the real potential as a basis to produce natural antibacterial and antifungal agents, with real possibility to be used in veterinary and zootechnical applications. © 2017 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Nenadić, Marija; Soković, Marina; Glamočlija, Jasmina; Ćirić, Ana; Perić-Mataruga, Vesna; Ilijin, Larisa; Tešević, Vele; Vujisić, Ljubodrag; Todosijević, Marina; Vesović, Nikola; Ćurčić, Srećko
2016-04-01
The antimicrobial properties of the pygidial gland secretions released by the adults of the three ground beetle species, Carabus ullrichii, C. coriaceus, and Abax parallelepipedus, have been tested. Microdilution method was applied for detection of minimal inhibitory concentrations (MICs), minimal bactericidal concentrations (MBCs), and minimal fungicidal concentrations (MFCs). Additionally, morpho-histology of the pygidial glands is investigated. We have tested 16 laboratory and clinical strains of human pathogens—eight bacterial both gram-positive and gram-negative species and eight fungal species. The pygidial secretion samples of C. ullrichii have showed the strongest antimicrobial effect against all strains of treated bacteria and fungi. Staphylococcus aureus, Lysteria monocytogenes, and Salmonella typhimurium proved to be the most sensitive bacterial strains. Penicillium funiculosum proved to be the most sensitive micromycete, while P. ochrochloron and P. verrucosum var . cyclopium the most resistant micromycetes. The pygidial secretion of C. coriaceus has showed antibacterial potential solely against Pseudomonas aeruginosa and antifungal activity against Aspergillus fumigatus, A. versicolor, A. ochraceus, and P. ochrochloron. Antibacterial properties of pygidial gland secretion of A. parallelepipedus were achieved against P. aeruginosa, while antifungal activity was detected against five of the eight tested micromycetes (A. fumigatus, A. versicolor, A. ochraceus, Trichoderma viride, and P. verrucosum var . cyclopium). Commercial antibiotics Streptomycin and Ampicillin and mycotics Ketoconazole and Bifonazole, applied as the positive controls, showed higher antibacterial/antifungal properties for all bacterial and fungal strains. The results of this observation might have a significant impact on the environmental aspects and possible medical purpose in the future.
Mishra, Biswajit; Leishangthem, Geeta Devi; Gill, Kamaldeep; Singh, Abhay K; Das, Swagata; Singh, Kusum; Xess, Immaculata; Dinda, Amit; Kapil, Arti; Patro, Ishan K; Dey, Sharmistha
2013-02-01
Lactoferrin (LF) is believed to contribute to the host's defense against microbial infections. This work focuses on the antibacterial and antifungal activities of a designed peptide, L10 (WFRKQLKW) by modifying the first eight N-terminal residues of bovine LF by selective homologous substitution of amino acids on the basis of hydrophobicity, L10 has shown potent antibacterial and antifungal properties against clinically isolated extended spectrum beta lactamases (ESBL), producing gram-negative bacteria as well as Candida strains with minimal inhibitory concentrations (MIC) ranging from 1 to 8 μg/mL and 6.5 μg/mL, respectively. The peptide was found to be least hemolytic at a concentration of 800 μg/mL. Interaction with lipopolysaccharide (LPS) and lipid A (LA) suggests that the peptide targets the membrane of gram-negative bacteria. The membrane interactive nature of the peptide, both antibacterial and antifungal, was further confirmed by visual observations employing electron microscopy. Further analyses, by means of propidium iodide based flow cytometry, also supported the membrane permeabilization of Candida cells. The peptide was also found to possess anti-inflammatory properties, by virtue of its ability to inhibit cyclooxygenase-2 (COX-2). L10 therefore emerges as a potential therapeutic remedial solution for infections caused by ESBL positive, gram-negative bacteria and multidrug-resistant (MDR) fungal strains, on account of its multifunctional activities. This study may open up new approach to develop and design novel antimicrobials. Copyright © 2012 Elsevier B.V. All rights reserved.
Mefteh, Fedia B.; Daoud, Amal; Chenari Bouket, Ali; Alenezi, Faizah N.; Luptakova, Lenka; Rateb, Mostafa E.; Kadri, Adel; Gharsallah, Neji; Belbahri, Lassaad
2017-01-01
In this study, we aimed to explore and compare the composition, metabolic diversity and antimicrobial potential of endophytic fungi colonizing internal tissues of healthy and brittle leaf diseased (BLD) date palm trees (Phoenix dactylifera L.) widely cultivated in arid zones of Tunisia. A total of 52 endophytic fungi were isolated from healthy and BLD roots of date palm trees, identified based on internal transcribed spacer-rDNA sequence analysis and shown to represent 13 species belonging to five genera. About 36.8% of isolates were shared between healthy and diseased root fungal microbiomes, whereas 18.4 and 44.7% of isolates were specific to healthy and BLD root fungal microbiomes, respectively. All isolates were able to produce at least two of the screened enzymes including amylase, cellulase, chitinase, pectinase, protease, laccase and lipase. A preliminary screening of the isolates using disk diffusion method for antibacterial activity against four Gram-positive and three Gram-negative bacteria and antifungal activities against three phytopathogenic fungi indicated that healthy and BLD root fungal microbiomes displayed interesting bioactivities against examined bacteria and broad spectrum bioactivity against fungal pathogens. Some of these endophytic fungi (17 isolates) were fermented and their extracts were evaluated for antimicrobial potential against bacterial and fungal isolates. Results revealed that fungal extracts exhibited antibacterial activities and were responsible for approximately half of antifungal activities against living fungi. These results suggest a strong link between fungal bioactivities and their secondary metabolite arsenal. EtOAc extracts of Geotrichum candidum and Thielaviopsis punctulata originating from BLD microbiome gave best results against Micrococcus luteus and Bacillus subtilis with minimum inhibitory concentration (MIC, 0.78 mg/mL) and minimum bactericidal concentration (6.25 mg/mL). G. candidum gave the best result against Rhizoctonia solani with MIC 0.78 mg/mL and minimum fungicidal concentration (MFC, 6.25 mg/mL). In conclusion, using plant microbiomes subjected to biotic stresses offers new endophytes with different bioactivities than those of healthy plants. Therefore, date palm endophytic fungi represent a hidden untapped arsenal of antibacterial and broad spectrum antifungal secondary metabolites and could be considered promising source of bioactive compounds with industrial and pharmaceutical applications. PMID:28293229
Mefteh, Fedia B; Daoud, Amal; Chenari Bouket, Ali; Alenezi, Faizah N; Luptakova, Lenka; Rateb, Mostafa E; Kadri, Adel; Gharsallah, Neji; Belbahri, Lassaad
2017-01-01
In this study, we aimed to explore and compare the composition, metabolic diversity and antimicrobial potential of endophytic fungi colonizing internal tissues of healthy and brittle leaf diseased (BLD) date palm trees ( Phoenix dactylifera L.) widely cultivated in arid zones of Tunisia. A total of 52 endophytic fungi were isolated from healthy and BLD roots of date palm trees, identified based on internal transcribed spacer-rDNA sequence analysis and shown to represent 13 species belonging to five genera. About 36.8% of isolates were shared between healthy and diseased root fungal microbiomes, whereas 18.4 and 44.7% of isolates were specific to healthy and BLD root fungal microbiomes, respectively. All isolates were able to produce at least two of the screened enzymes including amylase, cellulase, chitinase, pectinase, protease, laccase and lipase. A preliminary screening of the isolates using disk diffusion method for antibacterial activity against four Gram-positive and three Gram-negative bacteria and antifungal activities against three phytopathogenic fungi indicated that healthy and BLD root fungal microbiomes displayed interesting bioactivities against examined bacteria and broad spectrum bioactivity against fungal pathogens. Some of these endophytic fungi (17 isolates) were fermented and their extracts were evaluated for antimicrobial potential against bacterial and fungal isolates. Results revealed that fungal extracts exhibited antibacterial activities and were responsible for approximately half of antifungal activities against living fungi. These results suggest a strong link between fungal bioactivities and their secondary metabolite arsenal. EtOAc extracts of Geotrichum candidum and Thielaviopsis punctulata originating from BLD microbiome gave best results against Micrococcus luteus and Bacillus subtilis with minimum inhibitory concentration (MIC, 0.78 mg/mL) and minimum bactericidal concentration (6.25 mg/mL). G. candidum gave the best result against Rhizoctonia solani with MIC 0.78 mg/mL and minimum fungicidal concentration (MFC, 6.25 mg/mL). In conclusion, using plant microbiomes subjected to biotic stresses offers new endophytes with different bioactivities than those of healthy plants. Therefore, date palm endophytic fungi represent a hidden untapped arsenal of antibacterial and broad spectrum antifungal secondary metabolites and could be considered promising source of bioactive compounds with industrial and pharmaceutical applications.
Functional Iron Oxide-Silver Hetero-Nanocomposites: Controlled Synthesis and Antibacterial Activity
NASA Astrophysics Data System (ADS)
Trang, Vu Thi; Tam, Le Thi; Van Quy, Nguyen; Huy, Tran Quang; Thuy, Nguyen Thanh; Tri, Doan Quang; Cuong, Nguyen Duy; Tuan, Pham Anh; Van Tuan, Hoang; Le, Anh-Tuan; Phan, Vu Ngoc
2017-06-01
Iron oxide-silver nanocomposites are of great interest for their antibacterial and antifungal activities. We report a two-step synthesis of functional magnetic hetero-nanocomposites of iron oxide nanoparticles and silver nanoparticles (Fe3O4-Ag). Iron oxide nanoparticles were prepared first by a co-precipitation method followed by the deposition of silver nanoparticles via a hydrothermal route. The prepared Fe3O4-Ag hetero-nanocomposites were characterized by x-ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy and vibrating sample magnetometry. Their antibacterial activities were investigated by using paper-disc diffusion and direct-drop diffusion methods. The results indicate that the Fe3O4-Ag hetero-nanocomposites exhibit excellent antibacterial activities against two Gram-negative bacterial strains ( Salmonella enteritidis and Klebsiella pneumoniae).
Ocsoy, Ismail; Paret, Mathews L; Ocsoy, Muserref Arslan; Kunwar, Sanju; Chen, Tao; You, Mingxu; Tan, Weihong
2013-10-22
Bacterial spot caused by Xanthomonas perforans is a major disease of tomatoes, leading to reduction in production by 10-50%. While copper (Cu)-based bactericides have been used for disease management, most of the X. perforans strains isolated from tomatoes in Florida and other locations worldwide are Cu-resistant. We have developed DNA-directed silver (Ag) nanoparticles (NPs) grown on graphene oxide (GO). These Ag@dsDNA@GO composites effectively decrease X. perforans cell viability in culture and on plants. At the very low concentration of 16 ppm of Ag@dsDNA@GO, composites show excellent antibacterial capability in culture with significant advantages in improved stability, enhanced antibacterial activity, and stronger adsorption properties. Application of Ag@dsDNA@GO at 100 ppm on tomato transplants in a greenhouse experiment significantly reduced the severity of bacterial spot disease compared to untreated plants, giving results similar to those of the current grower standard treatment, with no phytotoxicity.
Antimicrobial and antifungal activities of the extracts and essential oils of Bidens tripartita.
Tomczykowa, Monika; Tomczyk, Michał; Jakoniuk, Piotr; Tryniszewska, Elzbieta
2008-01-01
The aim of this study was to determine the antibacterial and antifungal properties of the extracts, subextracts and essential oils of Bidens tripartita flowers and herbs. In the study, twelve extracts and two essential oils were investigated for activity against different Gram-positive Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Gram-negative bacteria Escherichia coli, E. coli (beta-laktamase+), Klebsiella pneumoniae (ESBL+), Pseudomonas aeruginosa and some fungal organisms Candida albicans, C. parapsilosis, Aspergillus fumigatus, A. terreus using a broth microdilution and disc diffusion methods. The results obtained indicate antimicrobial activity of the tested extracts (except butanolic extracts), which however did not inhibit the growth of fungi used in this study. Bacteriostatic effect of both essential oils is insignificant, but they have strong antifungal activity. These results support the use of B. tripartita to treat a microbial infections and it is indicated as an antimicrobial and antifungal agent, which may act as pharmaceuticals and preservatives.
Shilabin, Abbas Gholipour; Kasanah, Noer; Wedge, David E; Hamann, Mark T
2007-09-06
Kahalalide F (1) shows remarkable antitumor activity against different carcinomas and has recently completed phase I clinical trials and is being evaluated in phase II clinical studies. The antifungal activity of this molecule has not been thoroughly investigated. In this report, we focused on acetylation and oxidation of the secondary alcohol of threonine, as well as reductive alkylation of the primary amine of ornithine, and each product was evaluated for improvements in antifungal activity. 1 and analogues do not exhibit antimalarial, antileishmania, or antibacterial activity; however, the antifungal activity against different strains of fungi was particularly significant. This series of compounds was highly active against Fusarium spp., which represents an opportunistic infection in humans and plants. The in vitro cytotoxicity for the new analogues of 1 was evaluated in the NCI 60 cell panel. Analogue 5 exhibited enhanced potency in several human cancer cell lines relative to 1.
Antifungal Amide Alkaloids from the Aerial Parts of Piper flaviflorum and Piper sarmentosum.
Shi, Yan-Ni; Liu, Fang-Fang; Jacob, Melissa R; Li, Xing-Cong; Zhu, Hong-Tao; Wang, Dong; Cheng, Rong-Rong; Yang, Chong-Ren; Xu, Min; Zhang, Ying-Jun
2017-01-01
Sixty-three amide alkaloids, including three new, piperflaviflorine A ( 1 ), piperflaviflorine B ( 2 ), and sarmentamide D ( 4 ), and two previously synthesized ones, (1 E ,3 S )-1-cinnamoyl-3- hydroxypyrrolidine ( 3 ) and N -[7'-(4'-methoxyphenyl)ethyl]-2-methoxybenzamide ( 5 ), were isolated from the aerial parts of Piper flaviflorum and Piper sarmentosum. Their structures were elucidated by detailed spectroscopic analysis and, in case of 3 , by single-crystal X-ray diffraction. Most of the isolates were tested for their antifungal and antibacterial activities. Ten amides ( 6 - 15 ) showed antifungal activity against Cryptococcus neoformans ATCC 90 113 with IC 50 values in the range between 4.7 and 20.0 µg/mL. Georg Thieme Verlag KG Stuttgart · New York.
A new p-hydroxybenzoic acid derivative from an endophytic fungus Penicillium sp. of Nerium indicum.
Ma, Yang-Min; Qiao, Ke; Kong, Yang; Guo, Lin-Xin; Li, Meng-Yun; Fan, Chao
2017-12-01
A new p-hydroxybenzoic acid derivative named 4-(2'R, 4'-dihydroxybutoxy) benzoic acid (1) was isolated from the fermentation of Penicillium sp. R22 in Nerium indicum. The structure was elucidated by means of spectroscopic (HR-ESI-MS, NMR, IR, UV) and X-ray crystallographic methods. The antibacterial and antifungal activity of compound 1 was tested, and the results showed that compound 1 revealed potent antifungal activity against Colletotrichum gloeosporioides, Alternaria alternata, and Alteranria brassicae with MIC value of 31.2 μg/ml.
Biological Activity of Recently Discovered Halogenated Marine Natural Products
Gribble, Gordon W.
2015-01-01
This review presents the biological activity—antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity—of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included. PMID:26133553
Elgamily, Hanaa; Moussa, Amani; Elboraey, Asmaa; EL-Sayed, Hoda; Al-Moghazy, Marwa; Abdalla, Aboelfetoh
2016-01-01
AIM: To assess the antibacterial and antifungal potentials of different parts of Moringa oleifera plant using different extraction methods in attempts to formulate natural dental remedies from this plant. MATERIAL AND METHODS: Three solvents extracts (Ethanol, acetone, and ethyl acetate) of different parts of Egyptian Moringa tree were prepared and tested against oral pathogens: Staphylococcus aureus, Streptococcus mutans, and Candida albicans using disc diffusion method; As well as to incorporate the plant extract to formulate experimental toothpaste and mouthwash. The two dental remedies were assessed against the same microbial strains. Statistical analysis was performed using One-Way ANOVA test to compare the inhibition zone diameter and t-test. RESULTS: Ethanol extracts as well as leaves extracts demonstrated the highest significant mean inhibition zone values (P ≤ 0.05) against Staphylococcus aureus and Streptococcus mutans growth. However, all extracts revealed no inhibition zone against Candida albicans. For dental remedies, experimental toothpaste exhibited higher mean inhibition than the mouthwash against Staphylococcus aureus, Streptococcus mutans and only the toothpaste revealed antifungal effect against Candida albicans. CONCLUSION: The different extracts of different parts of Moringa showed an antibacterial effect against Staphylococcus aureus and Streptococcus mutans growth. The novel toothpaste of ethanolic leaves extract has antimicrobial and antifungal potential effects all selected strains. PMID:28028395
Duarte, Antonia Eliene; de Menezes, Irwin Rose Alencar; Bezerra Morais Braga, Maria Flaviana; Leite, Nadghia Figueiredo; Barros, Luiz Marivando; Waczuk, Emily Pansera; Pessoa da Silva, Maria Arlene; Boligon, Aline; Teixeira Rocha, João Batista; Souza, Diogo Onofre; Kamdem, Jean Paul; Melo Coutinho, Henrique Douglas; Escobar Burger, Marilise
2016-06-08
Rhaphiodon echinus is a weed plant used in the Brazilian folk medicinal for the treatment of infectious diseases. In this study, the essential oil of R. echinus leaf was investigated for its antimicrobial properties. The chemical constituents of the essential oil were characterized by GC-MS. The antimicrobial properties were determined by studying by the microdilution method the effect of the oil alone, and in combination with antifungal or antibiotic drugs against the fungi Candida albicans, Candida krusei and Candida tropicalis and the microbes Escherichia coli, Staphylococcus aureus and Pseudomonas. In addition, the iron (II) chelation potential of the oil was determined. The results showed the presence of β-caryophyllene and bicyclogermacrene in major compounds, and revealed a low antifungal and antibacterial activity of the essential oil, but a strong modulatory effect on antimicrobial drugs when associated with the oil. The essential oil showed iron (II) chelation activity. The GC-MS characterization revealed the presence of monoterpenes and sesquiterpenes in the essential oil and metal chelation potential, which may be responsible in part for the modulatory effect of the oil. These findings suggest that essential oil of R. echinus is a natural product capable of enhancing the antibacterial and antifungal activity of antimicrobial drugs.
Antimicrobial activity of natural products from the flora of Northern Ontario, Canada.
Vandal, Janique; Abou-Zaid, Mamdouh M; Ferroni, Garry; Leduc, Leo G
2015-06-01
The number of multidrug resistant (MDR) microorganisms is increasing and the antimicrobial resistance expressed by these pathogens is generating a rising global health crisis. In fact, there are only a few antimicrobial agents left that can be used against MDR bacteria and fungi. In this study, the antimicrobial activities of selected natural products from the flora of Northern Ontario against selected microorganisms are reported. Plants were collected from Sault Ste. Marie, Ontario, Canada, and ethanol extracts were prepared using EtOH:H2O (1:1, v/v). Fungal cultures used in this study were Candida albicans ATCC 10231 and Schizosaccharomyces octosporus. Bacterial cultures employed included Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Mycobacterium phlei ATCC 11758, and Streptococcus lactis ATCC 19435. The microplate resazurin assay was used to screen for antimicrobial activity. Extracts of four plant species Chimaphila umbellata L. (Pyrolaceae), Betula papyrifera Marshall (Betulaceae), Rhus typhina L. (Anacardiaceae), and Fraxinus pennsylvanica Marshall (Oleaceae), and six compounds (gallic acid, ethyl gallate, caffeic acid, sinapic acid, gentisic acid, and chlorogenic acid) demonstrated antibacterial or antifungal activities with MICs ranging from 62.5 to 1000 µg/mL, respectively, for a chemical fraction of an extract from Betula papyrifera against the bacterium S. aureus. The present study has shown that certain plant extracts and select fractions and standard chemical compounds exhibit antimicrobial effects. Prince's Pine, Chimaphila umbellate, White Birch, Betula papyrifera, Staghorn Sumac, Rhus typhina, and Green Ash, Fraxinus pennsylvanica were the principal extracts exhibiting notable antibacterial and/or antifungal activities; while gallic acid, ethyl gallate, and caffeic acid demonstrated antibacterial activities and sinapic acid, gentisic acid, and chlorogenic acid demonstrated antifungal activities.
Essien, Emmanuel E.; Newby, Jennifer Schmidt; Walker, Tameka M.; Setzer, William N.; Ekundayo, Olusegun
2015-01-01
Bacterial resistance has been increasingly reported worldwide and is one of the major causes of failure in the treatment of infectious diseases. Natural-based products, including plant secondary metabolites (phytochemicals), can be exploited to ameliorate the problem of microbial resistance. The fruit essential oils of Alchornea cordifolia and Canthium subcordatum were obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). The essential oils were subjected to in vitro antibacterial, antifungal and cytotoxic activity screening. Thirty-eight compounds comprising 97.7% of A. cordifolia oil and forty-six constituents representing 98.2% of C. subcordatum oil were identified. The major components in A. cordifolia oil were methyl salicylate (25.3%), citronellol (21.4%), α-phellandrene (7.4%), terpinolene (5.7%) and 1,8-cineole (5.5%). Benzaldehyde (28.0%), β-caryophyllene (15.5%), (E,E)-α-farnesene (5.3%) and methyl salicylate (4.5%) were the quantitatively significant constituents in C. subcordatum fruit essential oil. A. cordifolia essential oil demonstrated potent in vitro antibacterial activity against Staphylococcus aureus (MIC = 78 μg/mL) and marginal antifungal activity against Aspergillus niger (MIC = 156 μg/mL). C. subcordatum showed antibacterial activity against Bacillus cereus and S. aureus (MIC = 156 μg/mL) and notable antifungal activity against A. niger (MIC = 39 μg/mL). However, no appreciable cytotoxic effects on human breast carcinoma cells (Hs 578T) and human prostate carcinoma cells (PC-3) were observed for either essential oil. The antimicrobial activities of A. cordifolia and C. subcordatum fruit essential oils are a function of their distinct chemical profiles; their volatiles and biological activities are reported for the first time. PMID:28930111
Synthesis of Some New Tetrahydropyrimidine Derivatives as Possible Antibacterial Agents.
Foroughifar, Naser; Karimi Beromi, Somayeh; Pasdar, Hoda; Shahi, Masoumeh
2017-01-01
Heterocyclic compounds containing a pyrimidine nucleus are of special interests thanks to their applications in medicinal chemistry as they are the basic skeleton of several bioactive compounds such as antifungal, antibacterial, antitumor and antitubercular. As a part of our research in the synthesis of pyrimidine derivatives containing biological activities, some new tetrahydropyrimidine derivatives (1-10) were synthesized via Biginelli reaction using HCl or DABCO as a catalyst with good yields. All structures of products were confirmed by IR, 1 H NMR and 13 C NMR spectroscopy. The antibacterial activity of some synthesized compounds was investigated against Staphylococcus aureus (ATCC 6538), Staphylococcus epidermidis (ATCC 12228) , Bacillus cereus (ATCC14579) , Esherichia coli (ATCC 25922), Klebsiella pneumonia (ATCC 13883) and Pseudomonas aeruginosa (PAO1) bacteria. Some of these compounds such as 8 and 10 exhibited a good to significant antibacterial activity.
Synthesis of Some New Tetrahydropyrimidine Derivatives as Possible Antibacterial Agents
Foroughifar, Naser; Karimi Beromi, Somayeh; Pasdar, Hoda; Shahi, Masoumeh
2017-01-01
Heterocyclic compounds containing a pyrimidine nucleus are of special interests thanks to their applications in medicinal chemistry as they are the basic skeleton of several bioactive compounds such as antifungal, antibacterial, antitumor and antitubercular. As a part of our research in the synthesis of pyrimidine derivatives containing biological activities, some new tetrahydropyrimidine derivatives (1-10) were synthesized via Biginelli reaction using HCl or DABCO as a catalyst with good yields. All structures of products were confirmed by IR, 1H NMR and 13C NMR spectroscopy. The antibacterial activity of some synthesized compounds was investigated against Staphylococcus aureus (ATCC 6538), Staphylococcus epidermidis (ATCC 12228), Bacillus cereus (ATCC14579), Esherichia coli (ATCC 25922), Klebsiella pneumonia (ATCC 13883) and Pseudomonas aeruginosa (PAO1) bacteria. Some of these compounds such as 8 and 10 exhibited a good to significant antibacterial activity. PMID:28979312
Secondary metabolites produced by Sardiniella urbana, a new emerging pathogen on European hackberry.
Cimmino, Alessio; Maddau, Lucia; Masi, Marco; Linaldeddu, Benedetto Teodoro; Evidente, Antonio
2018-05-30
In this study the production of secondary metabolites by a virulent strain of Sardiniella urbana, a recently described pathogen originally found on declining European hackberry trees in Italy, was investigated for the first time. Chemical analysis of the culture filtrate extracts led to the isolation of three well known compounds as R-(-)-mellein and (3R,4R)-and (3R,4S)-4-hydroxy melleins which were identified by spectroscopic methods (essentially NMR and ESIMS). The isolated compounds were tested for their phytotoxic, antifungal and zootoxic activities. Among them, only R-(-)-mellein was found to be active.
Chohan, Zahid H; Sumrra, Sajjad H
2010-10-01
A series of biologically active oxovanadium(IV) complexes of triazole derived Schiff bases L(1)-L(5) have been synthesized and characterized by their physical, analytical, and spectral data. The synthesized ligands potentially act as bidentate, in which the oxygen of furfural and nitrogen of azomethine coordinate with the oxovanadium atom to give a stoichiometry of vanadyl complexes 1:2 (M:L) in a square-pyramidal geometry. In vitro antibacterial and antifungal activities on different species of pathogenic bacteria (E. coli, S. flexneri, P. aeruginosa, S. typhi, S. aureus, and B. subtilis) and fungi (T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glabrata) have been studied. All compounds showed moderate to significant antibacterial activity against one or more bacterial strains and good antifungal activity against most of the fungal strains. The brine shrimp bioassay was also carried out to check the cytotoxicity of coordinated and uncoordinated synthesized compounds.
Mayer, Alejandro M S; Rodríguez, Abimael D; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro
2017-08-29
The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998-2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012-2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories.
Moghadam, Mahboube Eslami; Divsalar, Adeleh; Zare, Marziye Shahraki; Gholizadeh, Roghayeh; Mahalleh, Doran; Saghatforosh, Lotfali; Sanati, Soheila
2017-11-02
Two new nickel(II) and copper(II) complexes of 2-(Furan-2-yl)-1H-Imidazo[4,5-f][1,10]Phenanthroline (FIP) and 2-(thiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (TIP), imidazophen derivatives were synthesized. The structures of the compounds were determined by UV-visible and FT-IR spectroscopic methods and elemental analysis. The biological activities of Ni and Cu complexes, as anticancer agents, were tested against chronic myelogenous leukemia cell line, K562, at micromolar concentration. The MTT studies showed Cc 50 values are 21 and 160 µM for Cu and Ni(II) complexes, respectively; suggesting that Ni (II) complex has Cc 50 almost seven times of that obtained for cisplatin. Biological activity of the Ni(II) and Cu(II) complexes were also assayed against selective microorganisms by disc diffusion method. These results showed that the Cu(II) complex is antifungal agent but Ni(II) complex has antibacterial activity.
Kuzman, Tomislav; Kutija, Marija Barisić; Kordić, Rajko; Popović-Sui, Smiljka; Jandroković, Sonja; Skegro, Ivan; Pokupec, Rajko
2013-04-01
The aim of this study was to compare antimicrobial efficacy of rigid contact lens disinfecting solutions. We tested five commercially available solutions: Unique pH (Alcon Laboratories), Boston Advance (Polymer Technology Corp.), Nitilens Conditioner GP (Avizor), Total Care (AMO), Boston Simplus (Bausch&Lomb). Their efficacy to disinfect saline solution experimentally contaminated with American Type Culture Collection (ATCC): Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Candida albicans (ATCC 90028) and Staphylococcus epidermidis (isolated from our laboratory) was tested. All tested solutions reduced concentrations of bacteria and fungi below 1000 CFU/mL (Colony forming unit; reduction by 3 log and 1 log, respectively) after the 8 hours period. Overall, all contact lens care solutions showed good disinfecting activity against tested bacteria and fungi, with more variation in their antifungal than in antibacterial efficacy. Results of our study might be valuable when selecting appropriate solutions for non-compliant contact lens wearers.
Structural analysis and antimicrobial activity of 2[1H]-pyrimidinethione/selenone derivatives
NASA Astrophysics Data System (ADS)
Żesławska, Ewa; Korona-Głowniak, Izabela; Szczesio, Małgorzata; Olczak, Andrzej; Żylewska, Alicja; Tejchman, Waldemar; Malm, Anna
2017-08-01
Four new crystal structures of sulfur and selenium analogues of 2[1H]-pyrimidinone derivatives were determined with the use of X-ray diffraction method. The molecular geometry and intermolecular interactions of the investigated molecules were analyzed in order to find the structural features and geometrical parameters, which can be responsible for antimicrobial activities. The influence of chalcogen substituents (sulfur and selenium) on the crystal packing was also studied. The main differences in the molecular structures exist in mutual arrangement of two aromatic rings. The intermolecular interactions in all investigated compounds are similar. Furthermore, the in vitro antibacterial and antifungal activities for these compounds were evaluated. Preliminary investigations have identified two highly potent antibacterial compounds containing selenium atom, which display selectivity towards staphylococci and micrococci. This selectivity was not observed for a control compound used as a drug, namely vancomycin. These compounds possess also good antifungal activity. This is the first report of biological activities of 2[1H]-pyrimidineselenone derivatives.
Biological and Chemical Diversity of Bacteria Associated with a Marine Flatworm.
Lin, Hui-Na; Wang, Kai-Ling; Wu, Ze-Hong; Tian, Ren-Mao; Liu, Guo-Zhu; Xu, Ying
2017-09-01
The aim of this research is to explore the biological and chemical diversity of bacteria associated with a marine flatworm Paraplanocera sp., and to discover the bioactive metabolites from culturable strains. A total of 141 strains of bacteria including 45 strains of actinomycetes and 96 strains of other bacteria were isolated, identified and fermented on a small scale. Bioactive screening (antibacterial and cytotoxic activities) and chemical screening (ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)) yielded several target bacterial strains. Among these strains, the ethyl acetate (EA) crude extract of Streptomyces sp. XY-FW47 fermentation broth showed strong antibacterial activity against methicillin-resistant Staphylococcus aureus ATCC43300 (MRSA ATCC43300) and potent cytotoxic effects on HeLa cells. The UPLC-MS spectral analysis of the crude extract indicated that the strain XY-FW47 could produce a series of geldanamycins (GMs). One new geldanamycin (GM) analog, 4,5-dihydro-17-O-demethylgeldanamycin (1), and three known GMs (2-4) were obtained. All of these compounds were tested for antibacterial, cytotoxic, and antifungal activities, yet only GM (3) showed potent cytotoxic (HeLa cells, EC 50 = 1.12 μg/mL) and antifungal ( Setosphaeria turcica MIC = 2.40 μg/mL) activities. Their structure-activity relationship (SAR) was also preliminarily discussed in this study.
Kelkawi, Ali Hamad Abd; Abbasi Kajani, Abolghasem; Bordbar, Abdol-Khalegh
2017-06-01
A simple and eco-friendly method for efficient synthesis of stable colloidal silver nanoparticles (AgNPs) using Mentha pulegium extracts is described. A series of reactions was conducted using different types and concentrations of plant extract as well as metal ions to optimize the reaction conditions. AgNPs were characterized by using UV-vis spectroscopy, transmission electron microscopy, atomic force microscopy, dynamic light scattering, zetasizer, energy-dispersive X-ray spectroscopy (EDAX) and Fourier transform infrared spectroscopy (FTIR). At the optimized conditions, plate shaped AgNPs with zeta potential value of -15.7 and plasmon absorption maximum at 450 nm were obtained using high concentration of aqueous extract. Efficient adsorption of organic compounds on the nanoparticles was confirmed by FTIR and EDAX. The biogenic AgNPs displayed promising antibacterial activity on Escherichia coli , Staphylococcus aureus , and Streptococcus pyogenes . The highest antibacterial activity of 25 µg mL-1 was obtained for all the strains using aqueous extract synthesized AgNPs. The aqueous extract synthesised AgNPs also showed considerable antifungal activity against fluconazole resistant Candida albicans . The cytotoxicity assay revealed considerable anticancer activity of AgNPs on HeLa and MCF-7 cancer cells. Overall results indicated high potential of M. pulegium extract to synthesis high quality AgNPs for biomedical applications.
Putting copper into action: copper-impregnated products with potent biocidal activities.
Borkow, Gadi; Gabbay, Jeffrey
2004-11-01
Copper ions, either alone or in copper complexes, have been used for centuries to disinfect liquids, solids, and human tissue. Today copper is used as a water purifier, algaecide, fungicide, nematocide, molluscicide, and antibacterial and antifouling agent. Copper also displays potent antiviral activity. We hypothesized that introducing copper into clothing, bedding, and other articles would provide them with biocidal properties. A durable platform technology has been developed that introduces copper into cotton fibers, latex, and other polymeric materials. This study demonstrates the broad-spectrum antimicrobial (antibacterial, antiviral, antifungal) and antimite activities of copper-impregnated fibers and polyester products. This technology enabled the production of antiviral gloves and filters (which deactivate HIV-1 and other viruses), antibacterial self-sterilizing fabrics (which kill antibiotic-resistant bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci), antifungal socks (which alleviate symptoms of athlete's foot), and anti-dust mite mattress covers (which reduce mite-related allergies). These products did not have skin-sensitizing properties, as determined by guine pig maximization and rabbit skin irritation tests. Our study demonstrates the potential use of copper in new applications. These applications address medical issues of the greatest importance, such as viral transmissions; nosocomial, or healthcare-associated, infections; and the spread of antibiotic-resistant bacteria.
Nasab, Rezvan Rezaee; Mansourian, Mahboubeh; Hassanzadeh, Farshid
2018-01-01
The quinazolin-4(3H)-one structural motif possesses a wide spectrum of biological activities. DNA gyrase play an important role in induction of bacterial death. It has been shown that many quinazolin-4(3H)-one derivatives have antibacterial effects through inhibition of DNA gyrase. Based on this information we decided to synthesize novel quinazolinone Schiff base derivatives in order to evaluate their antibacterial effects. A series of novel quinazolinone Schiff base derivatives were designed and synthesized from benzoic acid. The potential DNA gyrase inhibitory activity of these compounds was investigated using in silico molecular docking simulation. All new synthesized derivatives were screened for their antimicrobial activities against three species of Gram-negative bacteria including Escherichia coli, Pseudomonas aeruginosa, Salmonella entritidis and three species of Gram-positive bacteria comprising of Staphylococcus aurous, Bacillus subtilis, Listeria monocitogenes as well as for antifungal activities against Candida albicans using the conventional micro dilution method. Most of the compounds have shown good antibacterial activities, especially against E. coli at 128 µg/mL concentration while no remarkable antifungal activities were observed for these compounds. All the synthesized compounds exhibit dock score values between -5.96 and -8.58 kcal/mol. The highest dock score among them was -8.58 kcal/mol for compound 4c. PMID:29853931
Basile, Adriana; Rigano, Daniela; Loppi, Stefano; Di Santi, Annalisa; Nebbioso, Angela; Sorbo, Sergio; Conte, Barbara; Paoli, Luca; De Ruberto, Francesca; Molinari, Anna Maria; Altucci, Lucia; Bontempo, Paola
2015-01-01
Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances. PMID:25860944
Synthesis and potent in vitro activity of novel 1H-benzimidazoles as anti-MRSA agents.
Karataş, Hacer; Alp, Mehmet; Yildiz, Sulhiye; Göker, Hakan
2012-08-01
A new class of 1H-benzimidazolecarboxamidines was synthesized and evaluated for in vitro antibacterial and antifungal activities, including drug-resistant bacterial strains. The most potent compound (32) has the same ratio of anti-MRSA activity as Vancomycin (minimal inhibitory concentrations value 0.78 μg/mL). The mechanism of action for 1H-benzimidazolecarboxamidine appears to be different from existing antibacterial agents. These compounds have potential for development as a new class of potent anti-MRSA agent. © 2012 John Wiley & Sons A/S.
77 FR 35331 - Trichoderma reesei; Proposed Significant New Use Rule
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-13
... biological activities and have antifungal, antibacterial, sometimes antiviral, antiparasitic, and neurotoxic... (T. reesei). This microorganism was the subject of a Microbial Commercial Activity Notice (MCAN). EPA... activity before it occurs, if EPA determines it may be hazardous. DATES: Comments must be received on or...
USDA-ARS?s Scientific Manuscript database
The essential oils of two representatives of the Lamiaceae-family, Dracocephalum heterophyllum Benth. and Hyssopus officinalis L., are described for their antifungal, antibacterial and larvicidal as well as biting deterrent activities. Additionally, the essential oils’ chemical compositions, analyze...
USDA-ARS?s Scientific Manuscript database
Antarctica is a pristine and extreme environment that represents a unique opportunity for taxonomic, ecological and biotechnological studies of the microorganisms. In the present work, the fungal communities of rhizosphere soil of Deschampsia antarctica, soil, ornithogenic soil, marine and lake sedi...
Isolation and Identification of Active Compounds from Papaya Plants and Activities as Antimicrobial
NASA Astrophysics Data System (ADS)
Prasetya, A. T.; Mursiti, S.; Maryan, S.; Jati, N. K.
2018-04-01
Extraction and isolation of papaya seeds and leaves (Carica papaya L) has been performed using n-hexane and ethanol solvents. Further isolation of the extract obtained using ethyl acetate and diethyl ether solvents. The result of the phytochemical test of papaya extract obtained by mixture of an active compound of flavonoids, alkaloids, tannins, steroids, and saponins. Ethyl acetate isolates containing only flavonoids and diethyl ether isolates contain only alkaloids. Extracts and isolates from papaya plants had gram-positive antibacterial activity greater than the gram-negative bacteria, but both did not have antifungal activity. Papaya extracts have greater antibacterial activity than flavonoid isolates and alkaloid isolates. Strong antibacterial inhibitory sequences are extracts of papaya plants, flavonoid isolates, and alkaloid isolates.
Synthesis and antimicrobial studies of some Mannich bases carrying imidazole moiety.
Frank, Priya V; Manjunatha Poojary, Mahesha; Damodara, Naral; Chikkanna, Chandrashekhar
2013-06-01
3 Starting from 2-methyl-4-nitro-imidazole, new 5-(2-methyl- 4-nitro-1-imidazomethyl)-1,3,4-oxadiazole-2-thione () was synthesized and was subjected to Mannich reaction with appropriate amines to yield a new series of 3-substituted aminomethyl-5-(2-methyl-4-nitro-1-imidazomethyl)- 1,3,4-oxadiazole-2-thiones (4a-j). The structure of the title compounds was elucidated by elemental analysis and spectral data. The newly synthesized Mannich bases were screened for their antibacterial and antifungal activity. Many of these compounds exhibited potent antifungal activity.
NASA Astrophysics Data System (ADS)
Abuo-Melha, Hanaa; Fadda, A. A.
2012-04-01
A series of arylpicolino and/or isonicotinohydrazonyl cyanide 2a-d and 4a-f were prepared by coupling the approprite aryl diazonium salt with 2-cyanomethyl and/or 4-cyanomethyl-pyridine, respectively. These compounds were characterized by analytical and spectral analyses and screened for their antibacterial activity against Gram-positive bacteria, Gram-negative bacteria and antifungal activity. Among the synthesized compounds, N'-(4-phenyldiazenyl)phenylisonicotinohydrazonyl cyanide 4f showed a significant activity toward both Gram-positive, Gram-negative bacteria and exhibit the most potent in vitro antifungal with MIC's (625 μg/mL) against Aspergillus nieger.
Kumar, Peeyush; Mishra, Sapna; Kumar, Atul; Kumar, Sanjeev; Prasad, Chandra Shekhar
2017-09-01
Contamination of environment and food from the prevalent spores and mycotoxins of Aspergillus niger has led to several diseases in humans and other animals. The present study investigated the control activity of plant essential oils against three strains of A. niger. In the elaborate assays done through microdilution plate assay and agar disk diffusion assay in the lab condition and in vivo assay on the stored wheat grains, the essential oil of Thymus vulgaris depicted overall superior efficacy. In microdilution plate assay, the oil of Anethum graveolens showed best fungistatic activity, while best fungicidal activity was depicted by Syzygium aromaticum oil. The oil of T. vulgaris showed moderate control efficacy against A. niger strains with its antifungal activity resulting mainly due to killing of microorganism rather than growth inhibition. In agar disk diffusion assay, T. vulgaris oil with a zone of inhibition (ZOI) of 23.3-61.1% was the most effective fungicide. The in vivo assay to evaluate the protection efficacy of oils for stored wheat grains against A. niger (AN1) revealed T. vulgaris (90.5-100%) to be the best control agent, followed by the oil of S. aromaticum (61.9-100%). The GC-MS analysis of T. vulgaris oil indicated the presence of thymol (39.11%), γ-terpinene (19.73%), o-cymene (17.21%), and β-pinene (5.38%) as major oil components. Phytotoxic effects of the oils on wheat seeds showed no significant phytotoxic effect of oils in terms of seed germination or seedling growth. The results of the study demonstrated control potentiality of essential oils for the protection of stored wheat against A. niger with prospect for development of eco-friendly antifungal products.
Synthesis of new 2-substituted pyrido[2,3-d]pyrimidin-4(1H)-ones and their antibacterial activity.
Lakshmi Narayana, B; Ram Rao, A Raghu; Shanthan Rao, P
2009-03-01
2-Substituted-5,7-dimethyl pyrido[2,3-d]pyrimidin-4(1H)-ones (8) were synthesized by oxidation of 2-substituted-5,7-dimethyl dihydropyrido[2,3-d]pyrimidin-4(1H)-ones (7) which were in turn prepared from 2-amino-4,6-dimethyl nicotinamide (5) and substituted aryl aldehydes (6). 2-Amino-4,6-dimethyl nicotinamide (5) was prepared from ethyl cyanoacetate (1) via malonamamidine hydrochloride (3). The compounds were characterized by IR, NMR, MS and elemental analyses. Compounds 7 and 8 were screened for antibacterial activity against gram positive and gram negative bacteria. Dehydrogenated compounds (8) showed less antibacterial activity than the compounds 7. Among all the test compounds screened for antibacterial activity 7c (1.25 microg/ml) showed greater activity. All the synthesized compounds were found inactive when screened for antifungal activity at the concentration of 200 microg/ml.
State-Of-The-Science Review: Everything NanoSilver and More
Silver has been known to be a potent antibacterial, antifungal and antiviral agent, but in recent years, the use of silver as a biocide in solution, suspension, and especially in nano-particulate form has experienced a dramatic revival. Due to the properties of silver at the nano...
Isolation, NMR studies, and biological activities of onopordopicrin from Centaurea sonchifolia.
Lonergan, G; Routsi, E; Georgiadis, T; Agelis, G; Hondrelis, J; Matsoukas, J; Larsen, L K; Caplan, F R
1992-02-01
A sesquiterpene lactone, onopordopicrin [1], has been isolated from Centaurea sonchifolia. Its structure was established by 2D nmr (1H-1H and 13C-1H correlations), and the conformation in CHCl3 was examined by nOe studies. Cytotoxic, antibacterial, and antifungal activities are reported.
The Effects of Triclosan on Puberty and Thyroid Hormones in Male Winstar Rats.
Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a potent antibacterial and antifungal compound that is widely used in personal care products, plastics and fabrics. Recently triclosan has been shown to alter endocrine function in a variety of species. The purpose of this s...
Due to their antifungal, antibacterial, antiviral, and antimicrobial properties, silver nanoparticles (AgNPs) are used in consumer products intended for use by children or in the home. Children may be especially affected by the normal use of consumer products because of their phy...
Altintas, Ayhan; Tabanca, Nurhayat; Tyihák, Erno; Ott, Peter G; Móricz, Agnes M; Mincsovics, Emil; Wedge, David E
2013-01-01
Essential oils obtained by hydrodistillation (HD) and microwave-assisted HD (MWHD) of Origanum onites aerial parts were analyzed by GC and GCIMS. Thirty-one constituents representing 98.6% of the water-distilled oil and 52 constituents representing 99.6% of the microwave-distilled oil were identified. Carvacrol (76.8% HD and 79.2% MWHD) and thymol (4.7% HD and 4.4% MWHD) were characterized as major constituents in both essential oils. Separation of carvacrol and thymol was achieved by overpressured layer chromatography. HPTLC and TLC separations were also compared. Essential oils were evaluated for antifungal activity against the strawberry anthracnose-causing fungal plant pathogens Colletotrichum acutatum, C. fragariae, and C. gloeosporioides using a direct overlay bioautography assay. Furthermore, main oil components carvacrol and thymol were then evaluated for antifungal activity; only carvacrol demonstrated nonselective antifungal activity against the three Colletotrichum species. Thymol and carvacrol were subsequently evaluated in a 96-well microdilution broth assay against Phomopsis obscurans, Fusarium oxysporum, three Colletotrichum species, and Botrytis cinerea. No activity was observed against any of the three Colletotrichum species at or below 30 pM. However, thymol demonstrated antifungal activity and produced 31.7% growth inhibition of P. obscurans at 120 h and 0.3 pM, whereas carvacrol appeared inactive. Thymol and carvacrol at 30 pM showed 51.5 and 36.9% growth inhibition of B. cinerea at 72 h. The mechanism of antibacterial activity was studied in a bioautography-based BioArena system. Thymol and carvacrol showed similar inhibition/killing effect against Bacillus subtilis soil bacteria; the action could be enhanced by the formaldehyde generator and transporter copper (II) ions and could be decreased in the presence of L-arginine, a formaldehyde capturer. Results indicated that Origanum essential oils and its major components thymol and carvacrol appear to generate antimicrobial activity through a mechanism of action where formaldehyde and its reaction products are produced.
SUSCEPTIBILITY TEST FOR FUNGI: CLINICAL AND LABORATORIAL CORRELATIONS IN MEDICAL MYCOLOGY.
Alastruey-Izquierdo, Ana; Melhem, Marcia S C; Bonfietti, Lucas X; Rodriguez-Tudela, Juan L
2015-09-01
During recent decades, antifungal susceptibility testing has become standardized and nowadays has the same role of the antibacterial susceptibility testing in microbiology laboratories. American and European standards have been developed, as well as equivalent commercial systems which are more appropriate for clinical laboratories. The detection of resistant strains by means of these systems has allowed the study and understanding of the molecular basis and the mechanisms of resistance of fungal species to antifungal agents. In addition, many studies on the correlation of in vitro results with the outcome of patients have been performed, reaching the conclusion that infections caused by resistant strains have worse outcome than those caused by susceptible fungal isolates. These studies have allowed the development of interpretative breakpoints for Candida spp. and Aspergillus spp., the most frequent agents of fungal infections in the world. In summary, antifungal susceptibility tests have become essential tools to guide the treatment of fungal diseases, to know the local and global disease epidemiology, and to identify resistance to antifungals.
Metabolomic Profiling and Genomic Study of a Marine Sponge-Associated Streptomyces sp
Viegelmann, Christina; Margassery, Lekha Menon; Kennedy, Jonathan; Zhang, Tong; O’Brien, Ciarán; O’Gara, Fergal; Morrissey, John P.; Dobson, Alan D. W.; Edrada-Ebel, RuAngelie
2014-01-01
Metabolomics and genomics are two complementary platforms for analyzing an organism as they provide information on the phenotype and genotype, respectively. These two techniques were applied in the dereplication and identification of bioactive compounds from a Streptomyces sp. (SM8) isolated from the sponge Haliclona simulans from Irish waters. Streptomyces strain SM8 extracts showed antibacterial and antifungal activity. NMR analysis of the active fractions proved that hydroxylated saturated fatty acids were the major components present in the antibacterial fractions. Antimycin compounds were initially putatively identified in the antifungal fractions using LC-Orbitrap. Their presence was later confirmed by comparison to a standard. Genomic analysis of Streptomyces sp. SM8 revealed the presence of multiple secondary metabolism gene clusters, including a gene cluster for the biosynthesis of the antifungal antimycin family of compounds. The antimycin gene cluster of Streptomyces sp. SM8 was inactivated by disruption of the antimycin biosynthesis gene antC. Extracts from this mutant strain showed loss of antimycin production and significantly less antifungal activity than the wild-type strain. Three butenolides, 4,10-dihydroxy-10-methyl-dodec-2-en-1,4-olide (1), 4,11-dihydroxy-10-methyl-dodec-2-en-1,4-olide (2), and 4-hydroxy-10-methyl-11-oxo-dodec-2-en-1,4-olide (3) that had previously been reported from marine Streptomyces species were also isolated from SM8. Comparison of the extracts of Streptomyces strain SM8 and its host sponge, H. simulans, using LC-Orbitrap revealed the presence of metabolites common to both extracts, providing direct evidence linking sponge metabolites to a specific microbial symbiont. PMID:24893324
Barhouchi, B; Aouadi, S; Abdi, A
2017-06-01
The use of preparations based on minerals extracts of Calicotome villosa and butter is born from the misuse of drugs without specific microbiological analyzes. Seventeen different preparations were performed. The antibacterial and antifungal activities were determined on five bacteria and two fungi strains respectively. C. villosa ashes are obtained by incineration of roots plant at 498°C for 4hours. They are analyzed to determine the shape of the particles and the mineral constituents by scanning electronic microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) techniques respectively. The effectiveness of preparations or tablets is measured in solid medium. It allows to measure the diameter of the inhibition zone for the antibacterial activity as well as the diameter of mycelia growth and the critical values (MIC, MFC, IC 50 and IC 90 ) for the antifungal activity. Finally, the results are compared to the activity of a commercial positive control aiming to give value of the observed activity. SEM observations reveal the presence of nanoparticles agglomerated with size of about 50nm. The EDX analyzes indicate the presence of Fe, Na, Al, Mg, Si, K, Ca, O 2 and C. Among all the results, the preparation (B s +A) or (B sd +A) can completely inhibit the growth of two fungal pathogens. The activity of the preparation is faced with the activity of the synthetic fungicide nystatin. The efficacy of the preparation (B s +A) or (B sd +A) is higher than that of nystatin against Aspergillus sp. and Fusarium sp. The preparation could serve as natural antifungal for the pharmaceutical industry. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Antimicrobial Activity of Terminalia catappa, Manilkara zapota and Piper betel Leaf Extract.
Nair, R; Chanda, Sumitra
2008-01-01
Aqueous and methanol extract of the leaves of Terminalia catappa L., Manilkara zapota L. and Piper betel L. were evaluated for antibacterial activity against 10 Gram positive, 12 Gram negative bacteria and one fungal strain, Candida tropicalis. Piperacillin and gentamicin were used as standards for antibacterial assay, while fluconazole was used as standard for antifungal assay. The three plants showed different degree of activity against the microorganisms investigated. The methanolic extract was considerably more effective than aqueous extract in inhibiting the investigated microbial strains. The most active antimicrobial plant was Piper betel.
Synthesis of novel ferrocenyl Mannich bases and their antibacterial activities
NASA Astrophysics Data System (ADS)
Liu, Yuting; Xin, Hong; Yin, Jingyi; Yin, Dawei; Yang, Zijiang; Li, Jie
2018-04-01
In this work, a series of Mannich bases bearing ferrocenyl groups were synthesized via Mannich reactions. The effects of different conditions on the reaction were explored, and the newly synthesized compounds were well characterized by NMR and FT-IR. All compounds have been screened for in vitro antibacterial and antifungal, and the compounds 1-ferrocenyl-3-phenyl-3-(m-nitrophenylamino)-1-acetone (2f) and 1-ferrocenyl-3-phenyl-3-(p-nitrophenylamino)-1-acetone (2g) were shown to be significant activity against all the tested bacterial strains, such as Staphylococcus aureus, Streptococcus, Actinomycete, Escherichia coli, Saccharomyces cerevisiae.
Oral Candida in Patients with Fixed Orthodontic Appliance: In Vitro Combination Therapy.
Alhamadi, Wisam; Al-Saigh, Rafal J; Al-Dabagh, Nebras N; Al-Humadi, Hussam W
2017-01-01
Fixed orthodontic appliance (FOA) increases the cariogenic microorganisms of mouth including candida. The aim was to evaluate the pharmacodynamic effects of some antibacterial drugs in combination with most applicable antifungal agents on candida isolated from patients with FOA. Three antifungal agents (amphotericin B (AMB), ketoconazole (KET), and itraconazole (ITZ)) and three antibacterial drugs (ciprofloxacin (CIP), doxycycline (DOX), and metronidazole (MET)) with serial concentrations have been used and microdilution broth method has been done for single and combination therapy, then fungal growth was assessed spectrophotometrically, and the combinations were evaluated by bliss independent analysis. According to bliss independent interaction, the synergistic interactions depended on Δ E values that showed the best for CIP was with AMB (Δ E = 55.14) followed with KET (Δ E = 41.23) and lastly ITR (Δ E = 39.67) at CIP = 150 mg/L. DOX was optimal with KET (Δ E = 42.11) followed with AMB (Δ E = 40.77) and the lowest with ITR (Δ E = 9.12) at DOX = 75 mg/L. MET is the best with AMB (Δ E = 40.95) and then with ITR (Δ E = 35.45) and finally KET (Δ E = 15.15) at MET 200 mg/L. Moreover, usage of higher concentrations of antibacterial agents revealed inhibitory effects. This study uncovers the optimum antibiotic combination therapy against cariogenic candida with FOA by usage of low therapeutic concentrations.
Gao, Bin; Zhu, Shunyi
2016-01-01
Drosomycin (DRS) is a strictly antifungal peptide in Drosophila melanogaster, which contains four disulfide bridges (DBs) with three buried in molecular interior and one exposed on molecular surface to tie the amino- and carboxyl-termini of the molecule together (called wrapper disulfide bridge, WDB). Based on computational analysis of genomes of Drosophila species belonging to the Oriental lineage, we identified a new multigene family of DRS in Drosphila takahashii that includes a total of 11 DRS-encoding genes (termed DtDRS-1 to DtDRS-11) and a pseudogene. Phylogenetic tree and synteny analyses reveal orthologous relationship between DtDRSs and DRSs, indicating that orthologous genes of DRS-1, DRS-2, DRS-3 and DRS-6 have undergone duplication in D. takahashii and three amplifications (DtDRS-9 to DtDRS-11) of DRS-3 have lost WDB. Among the 11 genes, five are transcriptionally active in adult fruitflies. The ortholog of DRS (DtDRS-1) shows high structural and functional similarity to DRS while two WDB-deficient members display antibacterial activity accompanying complete loss or remarkable reduction of antifungal activity. To the best of our knowledge, this is the first report on the presence of three-disulfide antibacterial DRSs in a specific Drosophila species, suggesting a potential role of DB loss in neofunctionalization of a protein via structural adjustment. PMID:27562645
Liu, Shuyuan; Hou, Yinglong; Chen, Xu; Gao, Yuan; Li, Hui; Sun, Shujuan
2014-05-01
The past decades have witnessed a dramatic increase in invasive fungal infections, especially candidiasis. Despite the development of more effective new antifungal agents, fluconazole (FLC) is still widely used in the clinic because of its efficacy and low toxicity. However, as the number of patients treated with FLC has increased, FLC-resistant Candida albicans isolates emerge more frequently. In addition, biofilm-associated infections are commonly encountered and their resistance poses a great challenge to antifungal treatment. Various approaches have been proposed to increase the susceptibility of C. albicans to FLC in order to cope with treatment failures, among which is the combination of FLC with different classes of non-antifungal agents such as antibacterials, calcineurin inhibitors, heat shock protein 90 inhibitors, calcium homeostasis regulators and traditional Chinese medicine drugs. Interestingly, many of these combinations showed synergistic effects against C. albicans, especially resistant strains. The main mechanisms of these synergistic effects appear to be increasing the permeability of the membrane, reducing the efflux of antifungal drugs, interfering with intracellular ion homeostasis, inhibiting the activity of proteins and enzymes required for fungal survival, and inhibiting biofilm formation. These modes of action and the antifungal mechanisms of various compounds referenced in this paper highlight the idea that the reversal of fungal resistance can be achieved through various mechanisms. Studies examining drug interactions will hopefully provide new approaches against antifungal drug resistance as well as insight into antifungal agent discovery. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a potent antibacterial and antifungal compound that is widely used in personal care products. Studies testing triclosan exposure in the bullfrog showed altered thyroid hormone homeostasis. More recently, triclosan has been s...
Evaluation of Nostoc Strain ATCC 53789 as a Potential Source of Natural Pesticides
Biondi, Natascia; Piccardi, Raffaella; Margheri, M. Cristina; Rodolfi, Liliana; Smith, Geoffrey D.; Tredici, Mario R.
2004-01-01
The cyanobacterium Nostoc strain ATCC 53789, a known cryptophycin producer, was tested for its potential as a source of natural pesticides. The antibacterial, antifungal, insecticidal, nematocidal, and cytotoxic activities of methanolic extracts of the cyanobacterium were evaluated. Among the target organisms, nine fungi (Armillaria sp., Fusarium oxysporum f. sp. melonis, Penicillium expansum, Phytophthora cambivora, P. cinnamomi, Rhizoctonia solani, Rosellinia, sp., Sclerotinia sclerotiorum, and Verticillium albo-atrum) were growth inhibited and one insect (Helicoverpa armigera) was killed by the extract, as well as the two model organisms for nematocidal (Caenorhabditis elegans) and cytotoxic (Artemia salina) activity. No antibacterial activity was detected. The antifungal activity against S. sclerotiorum was further studied with both extracts and biomass of the cyanobacterium in a system involving tomato as a host plant. Finally, the herbicidal activity of Nostoc strain ATCC 53789 was evaluated against a grass mixture. To fully exploit the potential of this cyanobacterium in agriculture as a source of pesticides, suitable application methods to overcome its toxicity toward plants and nontarget organisms must be developed. PMID:15184126
Bharate, Sandip B; Bhutani, Kamlesh K; Khan, Shabana I; Tekwani, Babu L; Jacob, Melissa R; Khan, Ikhlas A; Singh, Inder Pal
2006-03-15
In the present communication, naturally occurring phloroglucinol-monoterpene adducts, euglobals G1-G4 (3b/a and 4a/b) and 16 new analogues (13a/b-18a/b and 19-22) were synthesized by biomimetic approach. These synthetic compounds differ from natural euglobals in the nature of monoterpene and acyl functionality. All of these compounds were evaluated for their antibacterial, antifungal, antileishmanial and antimalarial activities. Analogue 17b possessed good antibacterial activity against methicillin-resistant Staphylococcus aureus, while analogues 19-22 possessed potent antifungal activity against Candida glabrata with IC50s ranging from 1.5 to 2.5 microg/mL. Euglobals along with all synthesized analogues exhibited antileishmanial activity. Amongst these, euglobal G2 (3a), G3 (4a) and analogues 13a and 14a showed potent antileishmanial activity with IC50s ranging from 2.8 to 3.9 microg/mL. Analogue 16a possessed antimalarial activity against chloroquine sensitive D6 clone of Plasmodium falciparum. None of the compounds showed toxicity against mammalian kidney fibroblasts (vero cells) upto the concentration of 4.76 microg/ml.
NASA Astrophysics Data System (ADS)
Patil, Sangamesh A.; Prabhakara, Chetan T.; Halasangi, Bhimashankar M.; Toragalmath, Shivakumar S.; Badami, Prema S.
2015-02-01
The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, 1H NMR, 13C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity.
NASA Astrophysics Data System (ADS)
Vanathi Vijayalakshmi, R.; Praveen Kumar, P.; Selvarani, S.; Rajakumar, P.; Ravichandran, K.
2017-10-01
A series of core@shell nanoparticles (Co@TiO2, Ag@TiO2 and Co@AgCl) stabilized with zeroth generation triazolylchalcone dendrimer was synthesized using reduction transmetalation method. The coordination of chalcone dendrimer with silver ions was confirmed by UV-vis spectroscopy. The NMR spectrum ensures the number of protons and carbon signals in the chalcone dendrimer. The prepared samples were structurally characterized by XRD, FESEM and HRTEM analysis. The SAED and XRD analyses exhibited the cubic structure with d hkl = 2.2 Å, 1.9 Å and 1.38 Å. The antibacterial and antifungal activities of the dendrimer stabilized core@shell nanoparticles (DSCSNPs) were tested against the pathogens Bacillus subtilis, Proteus mirabilis, Candida albicans and Aspergillus nigir from which it is identified that the dendrimer stabilized core shell nanoparticles with silver ions at the shell (Co@AgCl) shows effectively high activity against the tested pathogen following the other core@shell nanoparticles viz Ag@TiO2 and Co@TiO2.
Antibacterial and antifungal properties of human cerumen.
Lum, C L; Jeyanthi, S; Prepageran, N; Vadivelu, J; Raman, R
2009-04-01
To assess the antibacterial and antifungal properties of human cerumen by studying its effect on the growth of Staphylococcus aureus, Esherichia coli, Pseudomonas aeruginosa and Candida albicans. Cerumen samples were collected from 75 normal, healthy subjects aged from seven to 80 years, without ear pathology, who attended the ear, nose and throat out-patient clinic of the University Malaya Medical Center from May 2006 to October 2006. Of these 75 samples, 31 had no growth when cultured on nutrient agar. Inhibition studies on these 31 samples were performed for Staphylococcus aureus (American Type Culture Collection (ATCC) 25923), Esherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853) and Candida albicans. Nutrient agar was used to conserve all three bacterial strains and Sabouraud dextrose agar was used for Candida albicans. A decrease in Staphylococcus aureus growth was observed for 27 of the 31 samples. All 31 samples induced decreased growth of Pseudomonas aeruginosa, while 29 induced decreased growth of Candida albicans. However, only four samples induced decreased growth of Escherichia coli. Cerumen was demonstrated to have potential antimicrobial effects on strains of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans.
Behzadnia, Amir; Montazer, Majid; Rashidi, Abousaeid; Mahmoudi Rad, Mahnaz
2014-01-01
Nano nitrogen-doped titanium dioxide was rapidly prepared by hydrolysis of titanium isopropoxide at 75-80°C using in situ sonochemical synthesis by introducing ammonia. Various concentrations of titanium isopropoxide were examined to deposit nano nitrogen-doped titanium dioxide through impregnation of the wool fabric in ultrasound bath followed by curing. The antibacterial/antifungal activities of wool samples were assessed against two common pathogenic bacteria including Escherichia coli and Staphylococcus aureus and the diploid fungus Candida albicans. The sonotreated wool fabrics indicated no adverse effects on human dermal fibroblasts. The presence of nanoparticles on the sonotreated wool fabrics were confirmed by FE-SEM images and EDS patterns and X-ray mapping and the crystalline size of nanoparticles were estimated through XRD results. The role of both pH and precursor concentration on the various properties of the fabric was investigated and the optimized conditions introduced using response surface methodology. © 2014 The American Society of Photobiology.
Meena, Khem Raj; Kanwar, Shamsher S.
2015-01-01
A lot of crops are destroyed by the phytopathogens such as fungi, bacteria, and yeast leading to economic losses to the farmers. Members of the Bacillus genus are considered as the factories for the production of biologically active molecules that are potential inhibitors of growth of phytopathogens. Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and thus cause extended environmental pollution. Moreover, an increasing number of phytopathogens have developed resistance to antimicrobial agents. The lipopeptides have been tried as potent versatile weapons to deal with a variety of phytopathogens. All the three families of Bacillus lipopeptides, namely, Surfactins, Iturins and Fengycins, have been explored for their antagonistic activities towards a wide range of phytopathogens including bacteria, fungi, and oomycetes. Iturin and Fengycin have antifungal activities, while Surfactin has broad range of potent antibacterial activities and this has also been used as larvicidal agent. Interestingly, lipopeptides being the molecules of biological origin are environmentally acceptable. PMID:25632392
Patil, Sangamesh A; Prabhakara, Chetan T; Halasangi, Bhimashankar M; Toragalmath, Shivakumar S; Badami, Prema S
2015-02-25
The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, (1)H NMR, (13)C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Zomorodian, Kamiar; Moein, Mahmoodreza; Pakshir, Keyvan; Karami, Forough; Sabahi, Zahra
2017-10-01
Resistance of many pathogens to available drugs is a global challenge and is leading to growing interest in natural alternative products. In this study, chemical composition and in vitro antibacterial and antifungal activities of the essential oil from Salvia mirzayanii were investigated. The chemical constituents of essential oil from S mirzayanii were analyzed by gas chromatography-mass spectrometry. The antimicrobial activity was determined by broth microdilution. The main identified compounds were 1,8-cineole (41.2 ± 1.3%), linalool acetate (11.0 ± 0.5%), and α-terpinyl acetate (6.0 ± 0.4%) (mL of essential oil/g of plant material). The MIC 95 were 0.03 to 0.5 µL/mL and 16 to 128 µL/mL for gram-positive and gram-negative bacteria, respectively. These results indicated that Salvia mirzayanii essential oil significantly inhibited the growth of standard and clinically isolated tested yeasts by MIC 50 0.03 to 1 µL/mL. Potent antibacterial and antifungal activities of Salvia mirzayanii essential oil may be considered in future study, particularly against antibiotic-resistant cases.
Chemical Composition and Antimicrobial Activities of the Essential Oil From Salvia mirzayanii Leaves
Zomorodian, Kamiar; Moein, Mahmoodreza; Pakshir, Keyvan; Karami, Forough; Sabahi, Zahra
2017-01-01
Resistance of many pathogens to available drugs is a global challenge and is leading to growing interest in natural alternative products. In this study, chemical composition and in vitro antibacterial and antifungal activities of the essential oil from Salvia mirzayanii were investigated. The chemical constituents of essential oil from S mirzayanii were analyzed by gas chromatography–mass spectrometry. The antimicrobial activity was determined by broth microdilution. The main identified compounds were 1,8-cineole (41.2 ± 1.3%), linalool acetate (11.0 ± 0.5%), and α-terpinyl acetate (6.0 ± 0.4%) (mL of essential oil/g of plant material). The MIC95 were 0.03 to 0.5 µL/mL and 16 to 128 µL/mL for gram-positive and gram-negative bacteria, respectively. These results indicated that Salvia mirzayanii essential oil significantly inhibited the growth of standard and clinically isolated tested yeasts by MIC50 0.03 to 1 µL/mL. Potent antibacterial and antifungal activities of Salvia mirzayanii essential oil may be considered in future study, particularly against antibiotic-resistant cases. PMID:28689440
Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro
2017-01-01
The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998–2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012–2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories. PMID:28850074
Axenov-Gribanov, Denis V; Voytsekhovskaya, Irina V; Rebets, Yuriy V; Tokovenko, Bogdan T; Penzina, Tatyana A; Gornostay, Tatyana G; Adelshin, Renat V; Protasov, Eugenii S; Luzhetskyy, Andriy N; Timofeyev, Maxim A
2016-10-01
Isolated ecosystems existing under specific environmental conditions have been shown to be promising sources of new strains of actinobacteria. The taiga forest of Baikal Siberia has not been well studied, and its actinobacterial population remains uncharacterized. The proximity between the huge water mass of Lake Baikal and high mountain ranges influences the structure and diversity of the plant world in Siberia. Here, we report the isolation of eighteen actinobacterial strains from male cones of Scots pine trees (Pinus sylvestris) growing on the shore of the ancient Lake Baikal in Siberia. In addition to more common representative strains of Streptomyces, several species belonging to the genera Rhodococcus, Amycolatopsis, and Micromonospora were isolated. All isolated strains exhibited antibacterial and antifungal activities. We identified several strains that inhibited the growth of the pathogen Candida albicans but did not hinder the growth of Saccharomyces cerevisiae. Several isolates were active against Gram-positive and Gram-negative bacteria. The high proportion of biologically active strains producing antibacterial and specific antifungal compounds may reflect their role in protecting pollen against phytopathogens.
Verma, Ram S; Joshi, Neeta; Padalia, Rajendra C; Singh, Ved R; Goswami, Prakash; Verma, Sajendra K; Iqbal, Hina; Chanda, Debabrata; Verma, Rajesh K; Darokar, Mahendra P; Chauhan, Amit; Kandwal, Manish K
2018-01-01
Zingiber montanum (J.Koenig) Link ex A.Dietr. (Zingiberaceae), commonly known as cassumunar-ginger, is a folk remedy for the treatment of inflammations, sprains, rheumatism and asthma. The aim of the present study was to assess the chemical composition, and antibacterial, antifungal, allelopathic and acetylcholinesterase inhibitory activities of the essential oil of Z. montanum originating from India. The hydrodistilled essential oil of Z. montanum rhizome was analyzed using gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. A total of 49 constituents, forming 98.7-99.9% of the total oil compositions, was identified. The essential oil was characterized by higher amount of monoterpene hydrocarbons (32.6-43.5%), phenylbutanoids (27.5-41.2%) and oxygenated monoterpenes (11.4-34.1%). Major constituents of the oil were sabinene (13.5-38.0%), (E)-1-(3',4'-dimethoxyphenyl)buta-1,3-diene (DMPBD) (20.6-35.3%), terpinen-4-ol (9.0-31.3%), γ-terpinene (1.1-4.8%) and β-phellandrene (1.0-4.4%). The oil was evaluated against eight pathogenic bacteria and two fungal strains. It exhibited low to good antibacterial activity (minimum inhibitory concentration: 125-500 µg mL -1 ) and moderate antifungal activity (250 µg mL -1 ) against the tested strains. The oil reduced germination (69.8%) and inhibited the root and shoot growth of lettuce significantly (LD 50 : 3.58 µL plate -1 ). However, it did not demonstrate acetylcholinesterase inhibitory activity up to a concentration of 10 mg mL -1 . The essential oil of Z. montanum can be used as a potential source of DMPBD, terpinen-4-ol and sabinene for pharmaceutical products. The results of the present study add significant information to the pharmacological activity of Z. montanum native to India. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Golkhatmi, Faezeh Mahdinejad; Bahramian, Bahram; Mamarabadi, Mojtaba
2017-09-01
Newly, magnetic nanoparticles have extensively been used as alternative catalyst supports, in the view of their high surface area which results in high catalyst loading capacity, high dispersion, low toxicity, environmental preservation, distinguished stability, and suitable catalyst reusing. In the present study, the magnetite nanoparticles, NiFe 2 O 4 @Ag and NiFe 2 O 4 @Mo, were synthesized and characterized. The antimicrobial activities and catalytic properties of synthesized nanoparticles were tested afterwards. For synthetizing the nanoparticle NiFe 2 O 4 @Ag, silver ions were loaded onto the surface of the modified NiFe 2 O 4 and reduced to silver crystal by adding NaBH 4 . The antibacterial effects of NiFe 2 O 4 @Ag were examined against two species of soil and plant related bacteria named Bacillus subtilis (gram positive) and Pseudomonas syringae (gram negative), respectively. The antifungal activity of this nanoparticle was evaluated against two species of plant pathogenic fungi called Alternaria solani and Fusarium oxysporum. Biological results indicated that the synthesized material has shown an excellent antibacterial and antifungal activity against all examined bacteria and fungi so that, their growth were completely inhibited 24h after treatment with NiFe 2 O 4 @Ag. For the synthesis of a heterogeneous catalyst NiFe 2 O 4 @Mo, complex Mo(CO) 6 was loaded onto the surface of the modified NiFe 2 O 4 nanoparticle. This catalyst was found as an efficient catalyst for epoxidation of cis-cyclooctene and a wide variety of alkenes, including aromatic and aliphatic terminal ones using tert-butyl hydroperoxide as oxidant. This new heterogenized catalyst could easily be recovered by using a magnetic separator and reused four consecutive and loss only 13% of its catalytic activity. Copyright © 2017 Elsevier B.V. All rights reserved.
Verma, Ram S; Joshi, Neeta; Padalia, Rajendra C; Singh, Ved R; Goswami, Prakash; Kumar, Ajay; Iqbal, Hina; Verma, Rajesh K; Chanda, Debabrata; Chauhan, Amit; Saikia, Dharmendra
2017-10-01
Fish-mint (Houttuynia cordataThunb.), belonging to family Saururaceae, has long been used as food and traditional herbal medicine. The present study was framed to assess the changes occurring in the essential-oil composition of H. cordata during annual growth and to evaluate allelopathic, antibacterial, antifungal, and antiacetylcholinesterase activities. The essential-oil content ranged from 0.06 - 0.14% and 0.08 - 0.16% in aerial parts and underground stem, respectively. The essential oils were analysed by GC-FID, GC/MS, and NMR ( 1 H and 13 C). Major constituents of aerial-parts oil was 2-undecanone (19.4 - 56.3%), myrcene (2.6 - 44.3%), ethyl decanoate (0.0 - 10.6%), ethyl dodecanoate (1.1 - 8.6%), 2-tridecanone (0.5 - 8.3%), and decanal (1.1 - 6.9%). However, major constituents of underground-stem oil were 2-undecanone (29.5 - 42.3%), myrcene (14.4 - 20.8%), sabinene (6.0 - 11.1%), 2-tridecanone (1.8 - 10.5%), β-pinene (5.3 - 10.0%), and ethyl dodecanoate (0.8 - 7.3%). Cluster analysis revealed that essential-oil composition varied substantially due to the plant parts and season of collection. The oils exhibited significant allelopathic (inhibition: 77.8 - 88.8%; LD 50 : 2.45 - 3.05 μl/plate), antibacterial (MIC: 0.52 - 2.08 μl/ml; MBC: bacteriostatic) and antifungal (MIC: 2.08 - 33.33 μl/ml; MFC: 4.16 - 33.33 μl/ml) activities. The results indicate that the essential oil from H. cordata has a significant potential to allow future exploration and exploitation as a natural antimicrobial and allelopathic agent. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
2012-01-01
Background There is wide spread interest in drugs derived from plants as green medicine is believed to be safe and dependable, compared with costly synthetic drugs that have adverse effects. Methods We have attempted to evaluate the antioxidant, In vitro thrombolytic, antibacterial, antifungal and cytotoxic effects of Clausena heptaphylla (Rutaceae) stem bark extract ethanol extract. Results Ethanolic stem bark extract of Clausena heptaphylla (CHET) contains flavonoids, alkaloids, saponins and steroids but it lacks tannins, anthraquinones and resins. Phenol content of the extract was 13.42 mg/g and flavonoid content was 68.9 mg/g. CHET exhibited significant DPPH free radical scavenging activity with IC50 value of 3.11 μg/ml. Reducing power of CHET was also moderately stronger. In the cytotoxicity assay, LC50 and Chi-square value of the ethanolic extract against brine shrimp nauplii were 144.1461 μg/ml and 0.8533 demonstrating potent cytotoxic effect of the extract. In vitro thrombolytic activity of CHET is significant with 45.38% clot lysis capability compared to that of Streptokinase (65.78%). In antibacterial screening, moderate zone of inhibition (6.5-9.0 mm in diameter) was observed against gram-positive Bacillus subtilis ATCC 11774, Bacillus cereus ATCC 10876, Staphylococcus aureus ATCC 25923, Bacillus polymyxa ATCC 842 and Bacillus megaterium ATCC 13578 and less promising zone of inhibition (3.0-4.5 mm in diameter) against gram-negative Salmonella typhi ATCC 65154, Shigella flexneri ATCC 12022, Proteus vulgaris ATCC 13315 and Escherichia coli ATCC 25922. Shigella sonnei ATCC 8992 did not show any sensitivity. The MIC values against these bacteria were ranged from 2,000 to 3,500 μg/ml. The extract showed significant zone of inhibition against Rhizopus oryzae DSM 2200, Aspergillus niger DSM 737 and Aspergillus ochraceus DSM 824 in antifungal assay. Conclusions Further advanced research is necessary to isolate and characterize the chemical components responsible for the therapeutic properties of the plant. PMID:23181593
Masoko, Peter; Makgapeetja, David M
2015-11-17
Olea africana leaves are used by Bapedi people to treat different ailments. The use of these leaves is not validated, therefore the aim of this study is to validate antimicrobial properties of this plant. The ground leaves were extracted using solvents of varying polarity (hexane, chloroform, dichloromethane (DCM), ethyl acetate, acetone, ethanol, methanol, butanol and water). Thin layer chromatography (TLC) was used to analyse the chemical constituents of the extracts. The TLC plates were developed in three different solvent systems, namely, benzene/ethanol/ammonium solution (BEA), chloroform/ethyl acetate/formic acid (CEF) and ethyl acetate/methanol/water (EMW). The micro-dilution assay and bioautography method were used to evaluate the antibacterial activity of the extracts against Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis and Staphylococcus aureus and the antifungal activity against Candida albicans and Cryptococcus neoformans. Methanol was the best extractant, yielding a larger amount of plant material whereas hexane yielded the least amount. In phytochemical analyses, more compounds were observed in BEA, followed by EMW and CEF. Qualitative 2, 2- diphenylpacryl-1-hydrazyl (DPPH) assay displayed that all the extracts had antioxidant activity. Antioxidant compounds could not be separated using BEA solvent system while with CEF and EMW enabled antioxidant compounds separation. The minimum inhibitory concentrations (MIC) values against test bacteria ranged between 0.16 and 2.50 mg/mL whereas against fungi, MIC ranged from 0.16 to 0.63 mg/mL. Bioautography results demonstrated that more than one compound was responsible for antimicrobial activity in the microdilution assay as the compounds were located at different Rf values. The results indicate that leaf extracts of Olea africana contain compounds with antioxidant, antibacterial and antifungal activities. Therefore, further studies are required to isolate the active compounds and perform other tests such as cytotoxicity. Olea africana may be a potential source of antimicrobial compounds.
Liu, Wen-Shuai; Wang, Chun-Hua; Sun, Ju-Feng; Hou, Gui-Ge; Wang, Yu-Peng; Qu, Rong-Jun
2015-01-01
Five N-methyl-N-R-N,N-bis(2-hydroxyethyl) ammonium bromides (R = -benzyl (chloride, BNQAS), -dodecyl (C12QAS), -tetradecyl (C14QAS), -hexadecyl (C16QAS), -octadecyl (C18QAS)) were prepared based on N-methyldiethanolamine (MDEA) and halohydrocarbon. Five QAS were characterized by FTIR, NMR, and MS. BNQAS, C12QAS, C14QAS, and C16QAS were confirmed by X-ray single-crystal diffraction. Their antibacterial properties indicated good antibacterial abilities against E. coli, S. aureus, B. subtilis, especially C12QAS with the best antibacterial ability (100% to E. coli, 95.65% to S. aureus, and 91.41% to B. subtilis). In addition, C12QAS also displayed the best antifungal activities than BNQAS and C18QAS against Cytospora mandshurica, Botryosphaeria ribis, Physalospora piricola, and Glomerella cingulata with the ratio of full marks. The strategy provides a facile way to design and develop new types of antibacterial drugs for application in preventing the fruit rot, especially apple. © 2014 John Wiley & Sons A/S.
Synthesis and antifungal activities of 3-alkyl substituted thieno[2,3-d]pyrimidinones
NASA Astrophysics Data System (ADS)
Wang, H. M.; Deng, S. H.; Zheng, A. H.; Zhang, Q. Y.; Chen, X. B.; Zeng, X. H.; Hu, Y. G.
2016-08-01
The 3-aryl substituted thieno[2,3-d]pyrimidinones 3 by sequential reaction of iminophosphorane 1, aromatic isocyanates and various nucleophiles (HY), found some compounds showed good antitumor and antibacterial activities. Meanwhile, aliphatic isocyanates were applied in the reaction to prepare 3-alkyl substituted thieno[2,3- d]pyrimidinones, but there are no reports of their antifungal activities. As a continuation of our research for new biologically active heterocycles, we herein wish to report a facile synthesis and antifungal activities of 3-alkyl substituted thieno[2,3-d]pyrimidinones 6 via easily accessible iminophosphorane 1. The growth inhibitory effect of one concentration (50mg/L) of compounds 6 against five fungus(Fusarium oxysporium, Rhizoctonia solani, Colletotrichum gossypii, Gibberella zeae and Dothiorella gregaria) in vitro was tested by the method of toxic medium. Compound 6d showed the best inhibition rate against Gibberella zeae with 85.68%.
Veterinary drugs in the environment and their toxicity to plants.
Bártíková, Hana; Podlipná, Radka; Skálová, Lenka
2016-02-01
Veterinary drugs used for treatment and prevention of diseases in animals represent important source of environmental pollution due to intensive agri- and aquaculture production. The drugs can reach environment through the treatment processes, inappropriate disposal of used containers, unused medicine or livestock feed, and manufacturing processes. Wide scale of veterinary pharmaceuticals e.g. antibiotics, antiparasitic and antifungal drugs, hormones, anti-inflammatory drugs, anaesthetics, sedatives etc. enter the environment and may affect non-target organisms including plants. This review characterizes the commonly used drugs in veterinary practice, outlines their behaviour in the environment and summarizes available information about their toxic effect on plants. Significant influence of many antibiotics and hormones on plant developmental and physiological processes have been proved. However, potential phytotoxicity of other veterinary drugs has been studied rarely, although knowledge of phytotoxicity of veterinary drugs may help predict their influence on biodiversity and improve phytoremediation strategies. Moreover, additional topics such as long term effect of low doses of drugs and their metabolites, behaviour of mixture of veterinary drugs and other chemicals in ecosystems should be more thoroughly investigated to obtain complex information on the impact of veterinary drugs in the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gozubuyuk, G S; Aktas, E; Yigit, N
2014-12-01
World is endowed with a rich wealth of medicinal plants. There is a widespread belief that green medicines are healthier and more harmless or safer than synthetic ones. Medicinal plants have been used to cure a number of diseases. The ancient plant Lawsonia inermis or henna is used as medicinal plant because of its attributed strong fungicidal, anti-inflammatory, analgesic, antibacterial, virucidal, antiparasitic, antiamoebiasis, astringent, antihemorrhagic, hypotensive, sedative, anticancer effect and possible anti-sweating properties. In this study, we investigated antifungal activity of L. inermis against clinical dermatophytes species. This study was carried out using 70 clinical isolates of dermatophytes representing six different species; 44 Trichophyton rubrum, 8 Trichophyton mentagrophytes, 6 Microsporum canis, 6 Trichophyton tonsurans, 4 Epidermophyton floccosum, and 2 Trichophyton violaceum. The antifungal activity of L. inermis (henna) was determined by agar diffusion method and henna was used as paste form. Henna paste showed the high antifungal activity against all dermatophytes species (20 to 50mm inhibition zone). Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Graphene Oxide-Based Nanocomposites Decorated with Silver Nanoparticles as an Antibacterial Agent
NASA Astrophysics Data System (ADS)
Jaworski, Sławomir; Wierzbicki, Mateusz; Sawosz, Ewa; Jung, Anna; Gielerak, Grzegorz; Biernat, Joanna; Jaremek, Henryk; Łojkowski, Witold; Woźniak, Bartosz; Wojnarowicz, Jacek; Stobiński, Leszek; Małolepszy, Artur; Mazurkiewicz-Pawlicka, Marta; Łojkowski, Maciej; Kurantowicz, Natalia; Chwalibog, André
2018-04-01
One of the most promising methods against drug-resistant bacteria can be surface-modified materials with biocidal nanoparticles and nanocomposites. Herein, we present a nanocomposite with silver nanoparticles (Ag-NPs) on the surface of graphene oxide (GO) as a novel multifunctional antibacterial and antifungal material. Ultrasonic technologies have been used as an effective method of coating polyurethane foils. Toxicity on gram-negative bacteria ( Escherichia coli), gram-positive bacteria ( Staphylococcus aureus and Staphylococcus epidermidis), and pathogenic yeast ( Candida albicans) was evaluated by analysis of cell morphology, assessment of cell viability using the PrestoBlue assay, analysis of cell membrane integrity using the lactate dehydrogenase assay, and reactive oxygen species production. Compared to Ag-NPs and GO, which have been widely used as antibacterial agents, our nanocomposite shows much higher antimicrobial efficiency toward bacteria and yeast cells.
Graphene Oxide-Based Nanocomposites Decorated with Silver Nanoparticles as an Antibacterial Agent.
Jaworski, Sławomir; Wierzbicki, Mateusz; Sawosz, Ewa; Jung, Anna; Gielerak, Grzegorz; Biernat, Joanna; Jaremek, Henryk; Łojkowski, Witold; Woźniak, Bartosz; Wojnarowicz, Jacek; Stobiński, Leszek; Małolepszy, Artur; Mazurkiewicz-Pawlicka, Marta; Łojkowski, Maciej; Kurantowicz, Natalia; Chwalibog, André
2018-04-23
One of the most promising methods against drug-resistant bacteria can be surface-modified materials with biocidal nanoparticles and nanocomposites. Herein, we present a nanocomposite with silver nanoparticles (Ag-NPs) on the surface of graphene oxide (GO) as a novel multifunctional antibacterial and antifungal material. Ultrasonic technologies have been used as an effective method of coating polyurethane foils. Toxicity on gram-negative bacteria (Escherichia coli), gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis), and pathogenic yeast (Candida albicans) was evaluated by analysis of cell morphology, assessment of cell viability using the PrestoBlue assay, analysis of cell membrane integrity using the lactate dehydrogenase assay, and reactive oxygen species production. Compared to Ag-NPs and GO, which have been widely used as antibacterial agents, our nanocomposite shows much higher antimicrobial efficiency toward bacteria and yeast cells.
Quinones from Heliotropium ovalifolium.
Guntern, A; Ioset, J R; Queiroz, E F; Foggin, C M; Hostettmann, K
2001-10-01
Two new benzoquinones, heliotropinones A and B, have been isolated from the aerial parts of Heliotropium ovalifolium. Their structures were elucidated by spectrometric methods including high resolution electrospray ionization (ESI-HR), EI mass spectrometry, 1H, 13C and 2D NMR experiments. The two quinones demonstrated antifungal activities against Cladosporium cucumerinum and Candida albicans as well as antibacterial activity against Bacillus subtilis.
Gamarra, Soledad; Morano, Susana; Dudiuk, Catiana; Mancilla, Estefanía; Nardin, María Elena; de Los Angeles Méndez, Emilce; Garcia-Effron, Guillermo
2014-10-01
Vulvovaginal candidiasis is one of the most common mycosis. However, the information about antifungal susceptibilities of the yeasts causing this infection is scant. We studied 121 yeasts isolated from 118 patients with vulvovaginal candidiasis. The isolates were identified by phenotypic and molecular methods, including four phenotypic methods described to differentiate Candida albicans from C. dubliniensis. Antifungal susceptibility testing was performed according to CLSI documents M27A3 and M27S4 using the drugs available as treatment option in the hospital. Diabetes, any antibacterial and amoxicillin treatment were statistically linked with vulvovaginal candidiasis, while oral contraceptives were not considered a risk factor. Previous azole-based over-the-counter antifungal treatment was statistically associated with non-C.albicans yeasts infections. The most common isolated yeast species was C. albicans (85.2 %) followed by C. glabrata (5 %), Saccharomyces cerevisiae (3.3 %), and C. dubliniensis (2.5 %). Fluconazole- and itraconazole-reduced susceptibility was observed in ten and in only one C. albicans strains, respectively. All the C. glabrata isolates showed low fluconazole MICs. Clotrimazole showed excellent potency against all but seven isolates (three C. glabrata, two S. cerevisiae, one C. albicans and one Picchia anomala). Any of the strains showed nystatin reduced susceptibility. On the other hand, terbinafine was the less potent drug. Antifungal resistance is still a rare phenomenon supporting the use of azole antifungals as empirical treatment of vulvovaginal candidiasis.
Antimicrobial and cytotoxic activity of Marrubium alysson and Retama raetam grown in Tunisia.
Hayet, Edziri; Samia, Ammar; Patrick, Groh; Ali, Mahjoub Mohamed; Maha, Mastouri; Laurent, Gutmann; Mighri, Zine; Mahjoub, Laouni
2007-05-15
Antibacterial and antifungal activities of extracts obtained from M. alysson, R. raetam were tested using a solid medium technique. We showed that the petroleum ether extract of M. alysson had a Minimum Inhibitory Concentration (MIC) varied from 128 to 2000 microg mL(-1) against different Enterobacteriaceae and antifungal activity against Candida glabrata, Candida albicans, Candida parapsilosis and Candida kreusei with a MIC of 256 microg mL(-1). The ethyl acetate extract of R. raetam showed the best activity against Gram positive organisms with MICs of 128 to 256 microg mL(-1) against methicillin resistant Staphylococcus aureus but low activity against the different Candida species.
A Cationic Polymer That Shows High Antifungal Activity against Diverse Human Pathogens.
Rank, Leslie A; Walsh, Naomi M; Liu, Runhui; Lim, Fang Yun; Bok, Jin Woo; Huang, Mingwei; Keller, Nancy P; Gellman, Samuel H; Hull, Christina M
2017-10-01
Invasive fungal diseases are generally difficult to treat and often fatal. The therapeutic agents available to treat fungi are limited, and there is a critical need for new agents to combat these deadly infections. Antifungal compound development has been hindered by the challenge of creating agents that are highly active against fungal pathogens but not toxic to the host. Host defense peptides (HDPs) are produced by eukaryotes as a component of the innate immune response to pathogens and have served as inspiration for the development of many new antibacterial compounds. HDP mimics, however, have largely failed to exhibit potent and selective antifungal activity. Here, we present an HDP-like nylon-3 copolymer that is effective against diverse fungi while displaying only mild to moderate toxicity toward mammalian cells. This polymer is active on its own and in synergy with existing antifungal drugs against multiple species of Candida and Cryptococcus , reaching levels of efficacy comparable to those of the clinical agents amphotericin B and fluconazole in some cases. In addition, the polymer acts synergistically with azoles against different species of Aspergillus , including some azole-resistant strains. These findings indicate that nylon-3 polymers are a promising lead for development of new antifungal therapeutic strategies. Copyright © 2017 American Society for Microbiology.
Mayer, Alejandro M. S.; Hamann, Mark T.
2016-01-01
During 2000 research on the pharmacology of marine chemicals involved investigators from Australia, Brazil, Canada, Egypt, France, Germany, India, Indonesia, Israel, Italy, Japan, the Netherlands, New Zealand, Phillipines, Singapore, Slovenia, South Korea, Spain, Sweden, Switzerland, United Kingdom, and the United States. This current review, a sequel to the authors’ 1998 and 1999 reviews, classifies 68 peer-reviewed articles on the basis of the reported preclinical pharmacologic properties of marine chemicals derived from a diverse group of marine animals, algae, fungi, and bacteria. Antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antituberculosis, or antiviral activity was reported for 35 marine chemicals. An additional 20 marine compounds were shown to have significant effects on the cardiovascular and nervous system, and to possess anti-inflammatory or immunosuppressant properties. Finally, 23 marine compounds were reported to act on a variety of molecular targets and thus could potentially contribute to several pharmacologic classes. Thus, as in 1998 and 1999, during 2000 pharmacologic research with marine chemicals continued to contribute potentially novel chemical leads to the ongoing global search for therapeutic agents in the treatment of multiple disease categories. PMID:14583811
Mayer, Alejandro M S; Rodríguez, Abimael D; Berlinck, Roberto G S; Hamann, Mark T
2007-05-01
The current marine pharmacology review that covers the peer-reviewed literature during 2003 and 2004 is a sequel to the authors' 1998-2002 reviews, and highlights the preclinical pharmacology of 166 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 67 marine chemicals. Additionally 45 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as possessing anti-inflammatory effects. Finally, 54 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2003-2004, research on the pharmacology of marine natural products which involved investigators from Argentina, Australia, Brazil, Belgium, Canada, China, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Morocco, the Netherlands, New Zealand, Norway, Panama, the Philippines, Portugal, Russia, Slovenia, South Korea, Spain, Thailand, Turkey, United Kingdom, and the United States, contributed numerous chemical leads for the continued global search for novel therapeutic agents with broad spectrum activity.
Vital, Pierangeli G; Rivera, Windell L
2011-10-01
To determine the antibacterial, antifungal, antiprotozoal, cytotoxic, and phytochemical properties of ethanol extracts of leaves of Voacanga globosa (Blanco) Merr. (V. globosa). The extracts were tested against bacteria and fungus through disc diffusion assay; against protozoa through growth curve determination, antiprotozoal and cytotoxicity assays. The extract revealed antibacterial activities, inhibiting the growth of Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, Micrococcus luteus, and Salmonella typhimurium. Antifungal assay showed that it inhibited Candida albicans. The antiprotozoal assay against Trichomonas vaginalis and Entamoeba histolytica showed that V. globosa can inhibit the parasites, wherein the action can be comparable to metronidazole. With the in situ cell death detection kit, Trichomonas vaginalis and Entamoeba histolytica exposed to V. globosa leaf extract was observed to fluoresce simultaneously in red and yellow signals signifying apoptotic-like changes. Preliminary phytochemical screening revealed the chemical composition of plant extract containing alkaloids, saponins, 2-deoxysugars, and hydrolysable tannins. Thus, this study provides scientific evidence on the traditional use of V. globosa leaf extract in treating microbial diseases. Further, the leaf extract can possibly be used to produce alternative forms of antimicrobials. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Mayer, Alejandro M.S.; Rodriguez, Abimael D.; Berlinck, Roberto G.S.; Hamann, Mark T.
2007-01-01
The current marine pharmacology review that covers the peer-reviewed literature during 2003 and 2004 is a sequel to the authors' 1998-2002 reviews, and highlights the preclinical pharmacology of 166 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. Anthelminthic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 67 marine chemicals. Additionally 45 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as possessing anti-inflammatory effects. Finally, 54 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2003-2004, research on the pharmacology of marine natural products which involved investigators from Argentina, Australia, Brazil, Belgium, Canada, China, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Morocco, the Netherlands, New Zealand, Norway, Panama, the Philippines, Portugal, Russia, Slovenia, South Korea, Spain, Thailand, Turkey, United Kingdom, and the United States, contributed numerous chemical leads for the continued global search for novel therapeutic agents with broad spectrum activity. PMID:17392033
Mayer, Alejandro M. S.; Rodriguez, Abimael D.; Berlinck, Roberto G. S.; Hamann, Mark T.
2009-01-01
BACKGROUND The review presents the 2005–2006 peer-reviewed marine pharmacology literature, and follows a similar format to the authors’ 1998–2004 reviews. The preclinical pharmacology of chemically characterized marine compounds isolated from marine animals, algae, fungi and bacteria is systematically presented. RESULTS Anthelminthic, antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis and antiviral activities were reported for 78 marine chemicals. Additionally 47 marine compounds were reported to affect the cardiovascular, immune and nervous system as well as possess anti-inflammatory effects. Finally, 58 marine compounds were shown to bind to a variety of molecular targets, and thus could potentially contribute to several pharmacological classes. CONCLUSIONS Marine pharmacology research during 2005–2006 was truly global in nature, involving investigators from 32 countries, and the United States, and contributed 183 marine chemical leads to the research pipeline aimed at the discovery of novel therapeutic agents. SIGNIFICANCE Continued preclinical and clinical research with marine natural products demonstrating a broad spectrum of pharmacological activity and will probably result in novel therapeutic agents for the treatment of multiple disease categories. PMID:19303911
Chandrasekaran, M; Senthilkumar, A; Venkatesalu, V
2011-07-01
The fatty acid methyl esters (FAME extract) from Sesuvium (S.) portulacastrum was studied for its fatty acid composition and antimicrobial activity against human pathogenic microorganisms. The gas chromatographic analysis of FAME extract revealed the presence of palmitic acid with the highest relative percentage (31.18%), followed by oleic acid (21.15%), linolenic acid (14.18%) linoleic acid (10.63%), myristic acid (6.91%) and behenic acid (2.42%). The saturated fatty acids were higher than the unsaturated fatty acids. FAME extract showed the highest antibacterial and anticandidal activities and moderate antifungal activity against the tested microorganisms. The highest mean zone of inhibition (16.3 mm) and the lowest MIC (0.25 mg/ml) and MBC (0.5 mg/ml) values were recorded against Bacillus subtilis. The lowest mean zone of inhibition (8.8 mm) and the highest MIC (8 mg/ml) and MFC (16 mg/ml) values were recorded against Aspergillus fumigatus and Aspergillus niger. The results of the present study justify the use of S. portulacastrum in traditional medicine and the FAME extract can be used as a potential antimicrobial agent against the tested human pathogenic microorganisms.
Guerra-Boone, Laura; Alvarez-Román, Rocío; Alvarez-Román, Rocío; Salazar-Aranda, Ricardo; Torres-Cirio, Anabel; Rivas-Galindo, Verónica Mayela; de-Torres, Noemí Waksman; González, Gloria; Pérez-López, Luis Alejandro
2015-01-01
There have been no reports of antifungal activity and composition of extracts from Thymus vulgaris, Rosmarinus officinalis or Origanum majorana from northeastern México. Antifungal activity of these oils against Trichophyton rubrum, Trichophyton tonsurans, Trichophyton mentagrophytes, Microsporum gypseum, Microsporum canis and Epidermophyton floccosum was measured by diffusion assay. Additionally, antibacterial and antioxidant activities were evaluated. Antibacterial activity against Staphylococcus aureus and Streptococcus pyogenes was examined by microdilution. Antioxidant activity was assessed by 2,2-difenil-1-picrilhidracil reduction test. The plant oils were characterized by both GC/MS and GC/FID. Oils of T. vulgaris and O. majorana showed growth inhibition activity against dermatophytes, especially T. vulgaris oil, which completely inhibited growth of all tested dermatophytes. The oils also showed bioactivity against bacteria, with minimum inhibitory concentration (MIC) values between 62.5 and 500 μg/mL. The antioxidant activity of the oils was low, with effective concentration (EC50) values <250μg/mL. The major components in the oils were as follows: T. vulgaris, o-cymene, μ-terpinene, thymol and carvacrol; R. officinalis, terpinen-4-ol and 1,8-cineole; O. majorana, terpinen-4-ol and thymol.
Antimicrobial activity of pomegranate peel extracts as affected by cultivar.
Rosas-Burgos, Ema C; Burgos-Hernández, Armando; Noguera-Artiaga, Luis; Kačániová, Miroslava; Hernández-García, Francisca; Cárdenas-López, José L; Carbonell-Barrachina, Ángel A
2017-02-01
Some studies have reported that different parts of the pomegranate fruit, especially the peel, may act as potential antimicrobial agents and thus might be proposed as a safe natural alternative to synthetic antimicrobial agents. The high tannin content, especially punicalagin, found in pomegranate extracts, has been reported as the main compound responsible for such antimicrobial activity. Because the pomegranate peel chemical composition may vary with the type of cultivar (sweet, sour-sweet and sour), pomegranates may also differ with respect to their antimicrobial capacity. The extract from PTO8 pomegranate cultivar peel had the highest antimicrobial activity, as well as the highest punicalagins (α and β) and ellagic acid concentrations. In the results obtained from both antibacterial and antifungal activity studies, the sour-sweet pomegranate cultivar PTO8 showed the best antimicrobial activity, and the highest ellagic acid concentrations. The results of the present study suggest that ellagic acid content has a significant influence on the antimicrobial activity of the pomegranate extracts investigated. The pomegranate peel of the PTO8 cultivar is a good source of antifungal and antibacterial compounds, and may represent an alternative to antimicrobial agents of synthetic origin. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Baghbani, Fatemeh; Moztarzadeh, Fathollah; Mozafari, Masoud; Raz, Majid; Rezvani, Hamideh
2016-08-01
Bioactive glasses in the system SiO2-CaO-Na2O-P2O5-MgO with different amounts of zinc (Zn) and silver (Ag) were synthesized by the sol-gel technique and characterized. The bioactivity was studied during in vitro assays: the ability of hydroxycarbonate apatite (HCA) layer to form on the glass surface was examined after contact with simulated body fluid (SBF). The x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and inductively coupled plasma atomic emission spectrometry (ICP) studies were performed after immersion in vitro assays. Also, the antibacterial and antifungal activities of glass samples against Pseudomonas aeruginosa (ATCC 27853), E. coli (ATCC 25922), and Candida albicans were measured by the halo zone test. Introduction of zinc and silver as the trace elements induces several modifications on the observed phenomena at the glass surface and in SBF solution after immersion of the samples. The chemical durability of the glasses, the formation of the silica-rich layer, and the crystallization of the HCA layer were affected. Samples with the higher content of zinc and silver exhibited an excellent antibacterial/antifungal activity.
Saratale, Rijuta Ganesh; Ghodake, Gajanan S; Shinde, Surendra K; Cho, Si-Kyung; Saratale, Ganesh Dattatraya; Pugazhendhi, Arivalagan; Bharagava, Ram Naresh
2018-05-05
In this study, CuO/Cu(OH) 2 (denoted as CuONs) nanostructures were synthesized relying to a cheap and rapid chemical co-precipitation method using copper sulfate and liquid ammonia as precursors. Results obtained from X-ray diffraction, and field emission scanning electron microscopy analysis revealed the crystalline nature of synthesized CuONs. Fourier transform infrared spectroscopy and energy dispersive spectroscopy studies showed interactions between copper and oxygen atoms. Synthesized CuONs showed the size in the range of 20-30 nm using high resolution transmission electron microscopy analysis. The photocatalytic degradation performance of Reactive Green 19A (RG19A) dye using CuONs was evaluated. The results showed that CuONs exhibited 98% degradation efficiency after 12 h and also complete mineralization in form of reducing chemical oxygen demand (COD) (84%) and total organic carbon (TOC) (80%). The nanocatalyst was recovered from the dye containing solution and its catalytic activity can be reused up to four times efficiently. CuONs was also able to decolorize actual textile effluent (80% in terms of the American Dye Manufacturers' Institute (ADMI) value) with significant reductions in COD (72%) and TOC (69%). Phytotoxicity studies revealed that the degradation products of RG19A and textile effluent were scarcely toxic in nature, thereby increasing the applicability of CuONs for the treatment of textile wastewater. Additionally, the CuONs showed a maximum antibacterial effect against human pathogens which also displayed synergistic antibacterial potential related to commercial antibiotics. Moreover, CuONs displayed strong antioxidant activity in terms of ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (IC 50 : 51 μg/mL) and DPPH (1,1-diphenyl-2-picrylhydrazyl) (IC 50 : 60 μg/mL) radical scavenging. The CuONs exhibited dose dependent response against tumor rat C6 cell line (IC 50 : 60 μg/mL) and may serve as anticancer agents. Copyright © 2018 Elsevier Ltd. All rights reserved.
De Martino, Laura; De Feo, Vincenzo; Fratianni, Florinda; Nazzaro, Filomena
2009-12-01
The present paper reports the chemical composition, antioxidant and antibacterial activities of several essential oils and their components. Analysis showed that three oils (Carum carvi L., Verbena officinalis L. and Majorana hortensis L.) contained predominantly oxygenated monoterpenes, while others studied (Pimpinella anisum L., Foeniculum vulgare Mill.) mainly contained anethole. C. carvi, V. officinalis and M. hortensis oils exhibited the most potent antioxidant activity, due their contents of carvacrol, anethole and estragol. Antibacterial action was assessed against a range of pathogenic and useful bacteria and fungi of agro-food interest. V. officinalis and C. carvi oils proved the most effective, in particular against Bacillus cereus and Pseudomonas aeruginosa. Carvacrol proved most active against Escherichia coli, and completely inhibited the growth of Penicillium citrinum. The oils proved inactive towards some Lactobacilli strains, whereas single components showed an appreciable activity. These results may be important for use of the essential oils as natural preservatives for food products.
Ennouri, Monia; Ammar, Imene; Khemakhem, Bassem; Attia, Hamadi
2014-08-01
Opuntia ficus-indica f. inermis (cactus pear) flowers have wide application in folk medicine. However, there are few reports focusing on their biological activity and were no reports on their chemical composition. The nutrient composition and hexane extracts of Opuntia flowers at 4 flowering stages and their antibacterial and antifungal activities were investigated. The chemical composition showed considerable amounts of fiber, protein, and minerals. Potassium (K) was the predominant mineral followed by calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and zinc (Zn). The main compounds in the various hexane extracts were 9.12-octadecadienoic acid (29-44%) and hexadecanoic acid (8.6-32%). The antibacterial activity tests showed that O. inermis hexane extracts have high effectiveness against Escherichia coli and Staphylococcus aureus, making this botanical source a potential contender as a food preservative or food control additive.
Córdova-Guerrero, Iván; Aragon-Martinez, Othoniel H; Díaz-Rubio, Laura; Franco-Cabrera, Santiago; Serafín-Higuera, Nicolas A; Pozos-Guillén, Amaury; Soto-Castro, Tely A; Martinez-Morales, Flavio; Isiordia-Espinoza, Mario
Due to the great global concern regarding bacterial resistance to antibiotics, an ongoing search for new molecules having antibacterial activity is necessary. This study evaluated the antibacterial and anticandidal effects of a hexane extract from the root of Salvia apiana. Salvia extracts at concentrations of 27, 13.5, 6.8 and 3.4mg/ml caused growth inhibition of Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis and Candida albicans. However, no significant effect was observed on Escherichia coli and Candida tropicalis in comparison to vehicle. It was here demonstrated for the first time that Salvia apiana has an important antimicrobial effect on human pathogens of great clinical value, thus opening the field to continue the evaluation of this lamiaceous plant for its future use as a therapeutic agent. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Bioactivity of Malva Sylvestris L., a Medicinal Plant from Iran
Razavi, Seyed Mehdi; Zarrini, Gholamreza; Molavi, Ghader; Ghasemi, Ghader
2011-01-01
Objective(s) Malva sylvestris L. (Malvaceae), an annual plant, has been already commonly used as a medicinal plant in Iran. In the present work, we evaluate some bioactivities of the plant extracts. Materials and Methods The aired-dried plant flowers and leaves were extracted by soxhlet apparatus with n-hexane, dichloromethane and methanol. The antimicrobial, cytotoxic, and phytotoxic of the plant extracts were evaluated using disk diffusion method, MTT, and Lettuce assays, respectively. Results Both flowers and leaves of M. sylvestris methanol extracts exhibited strong antibacterial effects against Erwinia carotovora, a plant pathogen, with MIC value of 128 and 256 µg/ml, respectively. The flowers extract also showed high antibacterial effects against some human pathogen bacteria strains such as Staphylococcus aureus, Streptococcus agalactiae, Entrococcus faecalis, with MIC value of 192, 200 and 256 µg/ml, respectively. The plant methanol extracts had relatively high cytotoxic activity against MacCoy cell line. Conclusion We concluded that Malva sylvestris can be candidated as an antiseptic, a chemopreventive or a chemotherapeutic agent. PMID:23493458
Lopez-Reyes, Jorge Giovanny; Spadaro, Davide; Prelle, Ambra; Garibaldi, Angelo; Gullino, Maria Lodovica
2013-04-01
The antifungal activity of plant essential oils was evaluated as postharvest treatment on stone fruit against brown rot and grey mold rot of stone fruit caused by Monilinia laxa and Botrytis cinerea, respectively. The essential oils from basil (Ocimum basilicum), fennel (Foeniculum sativum), lavender (Lavandula officinalis), marjoram (Origanum majorana), oregano (Origanum vulgare), peppermint (Mentha piperita), rosemary (Rosmarinus officinalis), sage (Salvia officinalis), savory (Satureja montana), thyme (Thymus vulgaris), and wild mint (Mentha arvensis) were tested at two different concentrations on apricots (cv. Kyoto and cv. Tonda di Costigliole), nectarines (cv. Big Top and cv. Nectaross) and plums (cv. Italia and cv. TC Sun). The volatile composition of the essential oils tested was determined by gas chromatography-mass spectrometry analysis. The treatments containing essential oils from oregano, savory, and thyme at 1% (vol/vol) controlled both B. cinerea and M. laxa growing on apricots cv. Tonda di Costigliole and plums cv. Italia and cv. TC Sun; however, the same treatments were phytotoxic for the carposphere of nectarines cv. Big Top and cv. Nectaross. Treatments with 10% (vol/vol) essential oils were highly phytotoxic, notwithstanding their efficacy against the pathogens tested. The essential oils containing as major components α-pinene, p-cymene, carvacrol, and thymol showed similar results on stone fruit, so their antimicrobial activity and the phytotoxicity produced could be based on the concentration of their principal compounds and their synergistic activity. The efficacy of the essential oil treatments on control of fungal pathogens in postharvest depended on the fruit cultivar, the composition and concentration of the essential oil applied, and the length of storage.
Miyao, Kotaro; Sawa, Masashi; Kurata, Mio; Suzuki, Ritsuro; Sakemura, Reona; Sakai, Toshiyasu; Kato, Tomonori; Sahashi, Satomi; Tsushita, Natsuko; Ozawa, Yukiyasu; Tsuzuki, Motohiro; Kohno, Akio; Adachi, Tatsuya; Watanabe, Keisuke; Ohbayashi, Kaneyuki; Inagaki, Yuichiro; Atsuta, Yoshiko; Emi, Nobuhiko
2017-01-01
Invasive fungal infection (IFI) is a major life-threatening problem encountered by patients with hematological malignancies receiving intensive chemotherapy. Empirical antifungal agents are therefore important. Despite the availability of antifungal agents for such situations, the optimal agents and administration methods remain unclear. We conducted a prospective phase 2 study of empirical 1 mg/kg/day liposomal amphotericin B (L-AMB) in 80 patients receiving intensive chemotherapy for hematological malignancies. All enrolled patients were high-risk and had recurrent prolonged febrile neutropenia despite having received broad-spectrum antibacterial therapy for at least 72 hours. Fifty-three patients (66.3 %) achieved the primary endpoint of successful treatment, thus exceeding the predefined threshold success rate. No patients developed IFI. The treatment completion rate was 73.8 %, and only two cases ceased treatment because of adverse events. The most frequent events were reversible electrolyte abnormalities. We consider low-dose L-AMB to provide comparable efficacy and improved safety and cost-effectiveness when compared with other empirical antifungal therapies. Additional large-scale randomized studies are needed to determine the clinical usefulness of L-AMB relative to other empirical antifungal therapies.
Yoshitomi, Kayo; Taniguchi, Shiduku; Tanaka, Keiichiro; Uji, Yuya; Akimitsu, Kazuya; Gomi, Kenji
2016-02-01
Rice is one of the most important crops worldwide and is widely used as a model plant for molecular studies of monocotyledonous species. The plant hormone jasmonic acid (JA) is involved in rice-pathogen interactions. In addition, volatile compounds, including terpenes, whose production is induced by JA, are known to be involved in the rice defense system. In this study, we analyzed the JA-induced terpene synthase OsTPS24 in rice. We found that OsTPS24 was localized in chloroplasts and produced a monoterpene, γ-terpinene. The amount of γ-terpinene increased after JA treatment. γ-Terpinene had significant antibacterial activity against Xanthomonas oryzae pv. oryzae (Xoo); however, it did not show significant antifungal activity against Magnaporthe oryzae. The antibacterial activity of the γ-terpinene against Xoo was caused by damage to bacterial cell membranes. These results suggest that γ-terpinene plays an important role in JA-induced resistance against Xoo, and that it functions as an antibacterial compound in rice. Copyright © 2015 Elsevier GmbH. All rights reserved.
Activity of Aristolochia bracteolata against Moraxella catarrhalis
Khedr, Amgad I. M.; Abd AlGadir, Haidar; Takeshita, Satoshi; Shah, Mohammad Monir; Ichinose, Yoshio; Maki, Toshihide
2014-01-01
A bioassay-guided fractionation of methanol extract of Aristolochia bracteolata whole plant was carried out in order to evaluate its antimicrobial activity and to identify the active compounds in this extract. Antibacterial and antifungal activities of methanol extract against gram-positive, gram-negative, and fungal strains were investigated by the agar disk diffusion method. Among the strains tested, Moraxella catarrhalis and sea urchin-derived Bacillus sp. showed the highest sensitivity towards the methanol extract and hence they are used as test organisms for the bioassay-guided fractionation. From this extract, aristolochic acid 1 (AA-1) has been isolated and has showed the greatest antibacterial activity against both standard strain and clinical isolates of Moraxella catarrhalis with equal minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 25 and 50 μg/mL. Modification of the AA-1 to AA-1 methyl ester completely abolished the antibacterial activity of the compound and the piperonylic acid moiety of AA-1 which suggested that the coexistence of phenanthrene ring and free carboxylic acid is essential for AA-1 antibacterial activity. PMID:26904734
NASA Astrophysics Data System (ADS)
Wazalwar, Sachin S.; Banpurkar, Anita R.; Perdih, Franc
2017-12-01
A series of novel isoxazol derivatives was synthesized by green route in aqueous phase at room temperature by the reaction of 3-methyl-4H-isoxazol-5-one with 3-(substituted phenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde by one-pot Knoevenagel condensation method using sodium benzoate as a catalyst. Compounds were characterized on the basis of IR, 1H NMR, mass spectroscopy and melting point determination. Crystal structures of five compounds were determined by X-ray diffraction. The compounds formed were screened for antibacterial and antifungal activity. Some compounds showed activity close to ampicillin against E. coli, S. aureus, and S. pyogenus. Two compounds showed antifungal activity against C. albicans close to standard greseofulvin.
Laverdière, Michel; Bow, Eric J; Rotstein, Coleman; Ioannou, Stratis; Carr, Danielle; Moghaddam, Narguess
1999-01-01
OBJECTIVE: To study the antimicrobial management of cancer patients with chemotherapy-induced neutropenia by Canadian physicians. SETTING: A cohort of 274 cancer patients with severe neutropenia (ie, less than 0.5×109 neutrophils/L) who participated in a prospective double-blind, placebo controlled study on antifungal prophylaxis conducted in 14 Canadian university-affiliated centres. Antifungal prophylaxis (oral fluconazole 400 mg daily) was administered to 153 of 274 (56%) patients. RESULTS: Antibacterial prophylaxis with a quinolone was given to 87 patients (32%) at the onset of chemotherapy whereas trimethoprim/sulphamethoxazole was given to 56 (20%) patients. Fever (ie, 38°C or over) occurred in 216 (79%) patients after a median duration of neutropenia of four days (range one to 31 days). Empirical antibacterial antibiotics were administered in 214 febrile patients. In 164 (77%) patients antibiotics were started during the first 24 h of fever. Monotherapy with a third generation cephalosporin and duotherapy with a antipseudomonal beta-lactam and an aminoglycoside were prescribed in 69 (32%) and 61 (28%) of the febrile patients, respectively. Inclusion of vancomycin in the initial empirical regimen was noted in 32 (15%) patients. Modifications of the initial regimen occurred in 187 (87%) patients after a median of five days (range one to 28 days). Empirical systemic amphotericin B was added after a median duration of nine days (range one to 34 days) of the empirical antibacterial regimen. CONCLUSIONS: Overall, the antimicrobial management of cancer patients with chemotherapy-induced neutropenia by Canadian physicians follows the current guidelines promulgated by the Infectious Diseases Society of America. PMID:22346394
Khatami, Mehrdad; Pourseyedi, Shahram
2015-08-01
The biological synthesis of silver nanoparticles (AgNPs) was conducted using date palm pit aqueous extract. The first visible sign of the synthesis of AgNPs was the change in colour of reaction mixtures from yellowish to reddish brown. The resulting synthesised AgNPs were characterised using UV-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The UV-visible spectra gave surface plasmon resonance at 428 nm. XRD confirmed that the silver particles formed in our experiments were in the form of nanocrystals. TEM images revealed the formation of AgNPs with spherical shape and sizes in the range between 1-40 nm. DLS showed nanoparticles with an average size of 27 nm. Fourier transform infrared spectroscopy indicated the role of different possible functional groups (carboxyl, amine, aromatic and hydroxyl) in the formation of AgNPs. AgNPs were stable at 28°C in vitro for over a year without any precipitation or decreased production of antimicrobial effect. Then, the antifungal and antibacterial activities of synthesised AgNPs were investigated. The synthesised AgNPs showed significant inhibitory effects on Rhizoctonia solani (AG2_2) cultures, so that the concentration of 25 µg/ml prevented approximately 83% of the mycelium growth of the fungus. Then, the broth macro-dilution method was used for examining antibacterial effect of AgNPs. The minimum inhibitory concentration and minimum bactericide concentration against Klebsiella pneumonia (PCI 602) and Acinetobacter baumannii (ATCC 19606) were recorded as 1.56 and 3.12 µg/ml AgNPs, respectively.
Resin glycoside constituents of Ipomoea pes-caprae (beach morning glory).
Tao, Hongwen; Hao, Xiaojiang; Liu, Jinggen; Ding, Jian; Fang, Yuchun; Gu, Qianqun; Zhu, Weiming
2008-12-01
Eight new resin glycosides, pescapreins X-XVII (1-8), were isolated from a lipophilic fraction of an ethanol extract of the entire plant of beach morning glory, Ipomoea pes-caprae. Their structures were elucidated by spectroscopic data analysis and by chemical transformation. These compounds were evaluated biologically in terms of cancer cell line cytotoxicity, antibacterial and antifungal activity, and effects on the mu-opioid receptor.
Lagnika, Latifou; Amoussa, Abdou Madjid O; Adjileye, Rafatou A A; Laleye, Anatole; Sanni, Ambaliou
2016-01-27
Acmella uliginosa (Asteraceae) is a flowering plant whose leaves are consumed as a vegetable in Benin. They are also traditionally used as an antibiotic in the treatment of infectious diseases. To evaluate the therapeutic potential and toxicity effect of this leafy-vegetable, the antibacterial, antifungal, antioxidant activities and, toxicity and phytochemical constituents were investigated. Dichloromethane, methanol and aqueous extracts of Acmella uliginosa were evaluated for their antimicrobial activity against six bacterial and six fungi strains. Antibacterial and antifungal activities were investigated by microdilution method and agar diffusion method respectively. Antioxidant activity was assessed using the 2,2-diphenyl-1-picryl-hydrazyl assay and phytochemical screening was carried out using standard procedures. Finally, oral acute toxicity at a dose of 2000 mg/kg was done according to the Organization for Economic Co-operation and Development guideline n° 423. The antibacterial activity was broad spectrum, inhibiting both Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration ranged from 0.625 to 5 mg/ml. The antifungal evaluation show that all the extracts inhibited mycelial growth and sporulation of fungi with percentages of inhibition ranging from 9.39 to 75.67% and 22.04 to 99.77%, respectively. In DPPH radical scavenging assay, the effect on reducing free radicals increased in a dose dependent manner. The percentage of inhibition of DPPH ranged from 0.94 to 73.07%. Phytochemical screening revealed the presence of coumarin, flavonoid, naphtoquinone, anthracene derivative, saponin, lignan, triterpene and tannin. The dichloromethane and methanol extracts showed the best biological activities; they were also shown as the best extraction solvents of phytochemicals. In the acute toxicity evaluation, all animals were physically active and no deaths of rats were observed during the test. However, the aqueous extract promoted biochemical, hematological and histopathological alterations of treated rats at 2000 mg/kg body weight. A. uliginosa extracts contains antimicrobial, antioxidant agents and was not lethal for rats when ingested. However, according to the results obtained for biochemical, hematological, and histopathological analysis, caution is required regarding its consumption.
Sturchio, Elena; Boccia, Priscilla; Zanellato, Miriam; Meconi, Claudia; Donnarumma, Lucia; Mercurio, Giuseppe; Mecozzi, Mauro
2016-01-01
Over the last few years, there has been an increased interest in exploiting allelopathy in organic agriculture. The aim of this investigation was to examine the effects of essential oil mixtures in order to establish their allelopathic use in agriculture. Two mixtures of essential oils consisting respectively of tea tree oil (TTO) and clove plus rosemary (C + R) oils were tested. Phytotoxicity and genotoxicity tests on the root meristems of Vicia faba minor were performed. A phytotoxic influence was particularly relevant for C + R mixture, while genotoxicity tests revealed significant results with both C + R oil mixture and TTO. Phenotypic analysis on Vicia faba minor primary roots following C + R oil mixture treatment resulted in callose production, an early symptom attributed to lipid peroxidation. The approach described in this study, based on genotoxicity bioassays, might identify specific DNA damage induced by essential oil treatments. These tests may represent a powerful method to evaluate potential adverse effects of different mixtures of essential oils that might be useful in alternative agriculture. Future studies are focusing on the positive synergism of more complex mixtures of essential oils in order to reduce concentrations of potentially toxic components while at the same time maintaining efficacy in antimicrobial and antifungal management.
Chernin, V V; Chernivets, V M; Bondarenko, V M; Bazlov, S N
2011-01-01
To propose pharmacotherapy of disbacteriosis of gastroduodenal mucous microflora in gastroduodenal inflammation, erosion and ulcer. The study enrolled 30 healthy volunteers, 130 ulcer patients and 36 patients with chronic gastritis (27% of the latter had chronic duodenitis). In addition to general clinical examination, fibrogastroduodenoscopy, we made histological and microbiological examinations of biopsy specimens of the mucosa from different parts of the stomach and duodenum, determined sensitivity of the microflora to antibacterial drugs. We found that recurrent ulcer, chronic gastritis and duodenitis are accompanied with overgrowth of pathogenic microflora in gastric and duodenal mucosa. We developed an effective method of the treatment of gastroduodenal mucosa microflora disbacteriosis in gastroduodenal inflammation, erosion and ulcer including antibacterial, antifungal drugs and probiotics.
Labdane-type diterpenes active against acne from pine cones (Pinus densiflora).
Sultan, Md Zakir; Jeon, Young-Min; Moon, Surk-Sik
2008-03-01
Bioassay-guided extraction and fractionation of the aqueous methanolic extract of the cones of Pinus densiflora (Pinaceae) afforded one new labdane-type diterpene aldehyde, 15-nor-14-oxolabda-8(17),12 E-diene-18-oic acid, along with eight known diterpenes. Their structures were elucidated using spectroscopic methods as well as by comparison with previously reported data. The isolates showed antibacterial (Propionibacterium acnes) and antifungal activities.
Li, Xiao-Jun; Shi, Xin-Wei; Shuai, Qi; Gao, Jin-Ming; Zhang, An-Ling
2011-08-01
Biotransformation of paeonol (1) with the white-rot basidiomycete Coriolus versicolor afforded two metabolites, 2,4-dihydroxyacetophenone (2) and 2,5-dihydroxy-4-methoxyacetophenone (3), which were identified by spectroscopic methods. Compound 3 showed higher antioxidative, antibacterial, antifungal activities than 1 or 2. The results demonstrate for the first time that C. versicolor has the capacities to catalyze hydroxylation and demethylation reactions on the aromatic compound.
Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro
2013-01-01
The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories. PMID:23880931
Saikia, R; Gogoi, D K; Mazumder, S; Yadav, A; Sarma, R K; Bora, T C; Gogoi, B K
2011-03-20
A bacterial strain designated as BPM3 isolated from mud of a natural hot water spring of Nambar Wild Life Sanctuary, Assam, India, strongly inhibited growth of phytopathogenic fungi (Fusarium oxysporum f. sp. ciceri, F. semitectum, Magnaporthe grisea and Rhizoctonia oryzae) and gram-positive bacterium (Staphylococcus aureus). The maximum growth and antagonistic activity was recorded at 30°C, pH 8.5 when starch and peptone were amended as carbon and nitrogen sources, respectively. In greenhouse experiment, this bacterium (BPM3) suppressed blast disease of rice by 30-67% and protected the weight loss by 35-56.5%. The maximum disease protection (67%) and weight loss protection (56.5%) were recorded when the bacterium was applied before 2 days of the pathogen inoculation. Antifungal and antibacterial compounds were isolated from the bacterium which also inhibited the growth of these targeted pathogens. The compounds were purified and on spectroscopic analysis of a purified fraction having R(f) 0.22 which showed strong antifungal and antibacterial activity indicated the presence of C-H, carbonyl group, dimethyl group, -CH(2) and methyl group. The bacterium was characterized by morphological, biochemical and molecular approaches and confirmed that the strain BPM3 is Brevibacillus laterosporus. Copyright © 2010 Elsevier GmbH. All rights reserved.
Plastering mortar with antibacterial and antifungal properties studied by 1H NMR relaxometry
NASA Astrophysics Data System (ADS)
Jumate, E.; Aciu, C.; Manea, D. L.; Moldovan, D.; Chelcea, R.; Fechete, R.
2017-12-01
The Plastering mortars, with good antibacterial (in particular Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa) and antifungal (Aspergillus niger and Penicillium chrysogenum) properties, were studied by 1D NMR relaxometry and internal humidity measurements. Three recipes based on plastering mortar with variable content (0, 5 and 10 %) of Ag/ZnO nanopowders and with adequate physical characteristics regarding the mechanical strengths (CS IV), good adhesion to the substrate and low water absorption by capillarity (W2) were considered. The distributions of transverse relaxation times T2 were measured at 2 h after preparation (for mortar pasta) and then for the same samples at 2, 7, and 28 days during the hydration of mineralogical components. The T2 distributions are characterized by four components associated with hydration water and water in three types of pores of different dimension. The dimension of pores formed during hydration process are strongly dependent on the Ag/ZnO nanopowders content but finally at 28 days the pores distributions, as resulted from the T2 distributions, looks similar. Finally, the transverse relaxation ratio was linearly correlated to the compressive strength and the hydration behaviour during 132 days measured with a dedicated humidity sensor embedded inside sampled was discussed.
Ćilerdžić, Jasmina; Stajic, Mirjana; Vukojevic, Jelena
2016-01-01
The study aimed to evaluate the antiradical and antimicrobial (antibacterial and antifungal) potentials of ethanol mycelial extracts of selected Ganoderma species and strains and to define interand intraspecies diversity among Ganoderma species and strains. Ganoderma lucidum strains were good DPPH• scavengers (neutralizing up to 57.12% radicals), contrary to G. applanatum (20.35%) and G. carnosum (17.04%). High correlations between the activities and contents of total phenols in the extracts showed that these compounds were carriers of the activity. Results obtained by both discdiffusion and microdilution methods indicated that the extract of G. lucidum BEOFB 433 was the most potent antibacterial agent that inhibited growth of almost all bacterial species at a concentration of 1.0 mg/mL. Salmonella typhimurium was the most sensitive species to the mycelium extracts. Extracts of G. lucidum BEOFB 431 and BEOFB 434 showed the best antifungal activity since in concentration of 0.5 mg/mL inhibited the growth of Aspergillus glaucus (BEOFB 431) and the growth of A. glaucus and Trichoderma viride (BEOFB 434). Extracts of G. applanatum and G. lucidum BEOFB 431 had the strongest fungicidal effects, with lethal outcomes for A. glaucus and T. viride, respectively, being noted at a concentration of 1.17 mg/mL. Aspergillus niger was proved as the most resistant species.
Zhang, Jiaxin; Li, Jianfeng; Movahedi, Ali; Sang, Ming; Xu, Chen; Xu, Junjie; Wei, Zhiheng; Yin, Tongming; Zhuge, Qiang
2015-12-01
The increasing resistance of bacteria and fungi to currently available antibiotics is a major concern worldwide, leading to enormous effort to develop novel antibiotics with new modes of action.We recently reported that ABP-dHC-cecropin A exhibited strong antibacterial and antifungal activity, making it a candidate antibiotic substitute. In this study, β-cyclodextrin (β-CD) combined with ABP-dHC-cecropin A enhanced the physical and chemical properties of ABP-dHC-cecropin A but did not significantly decrease its antibacterial activity. Thus, β-CD/ABP-dHC-cecropin A should be considered a novel antibacterial drug. We used β-CD/ABP-dHC-cecropin A as an anti-Agrobacterium compound to supplementtransgenic poplar medium. Sideeffects of the inclusion complex had little impact on plantgrowth. Thus, β-CD/ABP-dHC-cecropin A may be used as traditional antibiotics forpoplar transplantation with greater antibbacterial effects. Copyright © 2015 Elsevier Inc. All rights reserved.
Naito, Akira; Matsumori, Nobuaki; Ramamoorthy, Ayyalusamy
2018-02-01
A variety of biomolecules acting on the cell membrane folds into a biologically active structure in the membrane environment. It is, therefore, important to determine the structures and dynamics of such biomolecules in a membrane environment. While several biophysical techniques are used to obtain low-resolution information, solid-state NMR spectroscopy is one of the most powerful means for determining the structure and dynamics of membrane bound biomolecules such as antibacterial biomolecules and amyloidogenic proteins; unlike X-ray crystallography and solution NMR spectroscopy, applications of solid-state NMR spectroscopy are not limited by non-crystalline, non-soluble nature or molecular size of membrane-associated biomolecules. This review article focuses on the applications of solid-state NMR techniques to study a few selected antibacterial and amyloid peptides. Solid-state NMR studies revealing the membrane inserted bent α-helical structure associated with the hemolytic activity of bee venom melittin and the chemical shift oscillation analysis used to determine the transmembrane structure (with α-helix and 3 10 -helix in the N- and C-termini, respectively) of antibiotic peptide alamethicin are discussed in detail. Oligomerization of an amyloidogenic islet amyloid polypeptide (IAPP, or also known as amylin) resulting from its aggregation in a membrane environment, molecular interactions of the antifungal natural product amphotericin B with ergosterol in lipid bilayers, and the mechanism of lipid raft formation by sphingomyelin studied using solid state NMR methods are also discussed in this review article. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.
Raevuori, Anu; Lukkariniemi, Laura; Suokas, Jaana T; Gissler, Mika; Suvisaari, Jaana M; Haukka, Jari
2016-06-01
We examined the use of antimicrobial medication as a proxy for infections in large patient cohort treated for binge-eating disorder (BED), bulimia nervosa (BN), and anorexia nervosa (AN) over the five-year period preceding eating disorder treatment. Patients (N = 1592) at the Eating Disorder Unit of Helsinki University Central Hospital between 2000 and 2010 were compared with matched general population controls (N = 6368). The study population was linked to the prescription data of antibacterial, antifungal and antiviral medication from the Register on Reimbursed Prescription Medicine. Data were analyzed using regression models. Individuals with BN and BED had received more often antimicrobial medication prescriptions compared to their controls (OR: 1.7, 95% CI: 1.3-2.1; OR: 2.6, 95% CI: 1.4-4.6, respectively), while no significant difference emerged in AN (OR: 0.9, 95% CI: 0.7-1.0, p = 0.10). Of the main drug categories, the respective pattern was seen in antibacterial and antifungal medication, while increased use for antivirals appeared only in BN (OR: 1.6, 95% CI: 1.1-2.3). Measured with the mean number of prescriptions or mean Defined Daily Doses per individual, patients with BN, BED and males with AN had also higher total antimicrobial medication use. Indicating increased infections, we found elevated use of antimicrobial medication in BN, BED and in males with AN. Infections may be consequence of hyperglycemia, weight gain, or dysregulation of intestinal microbiota associated with core eating disorder behaviors. Or the other way round; changes in intestinal microbiota due to infections, inflammation, or antibacterial medications might contribute to eating disorders in multiple ways. © 2016 Wiley Periodicals, Inc. (Int J Eat Disord 2016; 49:542-552). © 2016 Wiley Periodicals, Inc.
Noble metal-modified titania with visible-light activity for the decomposition of microorganisms
Endo, Maya; Wei, Zhishun; Wang, Kunlei; Karabiyik, Baris; Yoshiiri, Kenta; Rokicka, Paulina; Ohtani, Bunsho
2018-01-01
Commercial titania photocatalysts were modified with silver and gold by photodeposition, and characterized by diffuse reflectance spectroscopy (DRS), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM). It was found that silver co-existed in zero valent (core) and oxidized (shell) forms, whereas gold was mainly zero valent. The obtained noble metal-modified samples were examined with regard to antibacterial (Escherichia coli (E. coli)) and antifungal (Aspergillus niger (A. niger), Aspergillus melleus (A. melleus), Penicillium chrysogenum (P. chrysogenum), Candida albicans (C. albicans)) activity under visible-light irradiation and in the dark using disk diffusion, suspension, colony growth (“poisoned food”) and sporulation methods. It was found that silver-modified titania, besides remarkably high antibacterial activity (inhibition of bacterial proliferation), could also decompose bacterial cells under visible-light irradiation, possibly due to an enhanced generation of reactive oxygen species and the intrinsic properties of silver. Gold-modified samples were almost inactive against bacteria in the dark, whereas significant bactericidal effect under visible-light irradiation suggested that the mechanism of bacteria inactivation was initiated by plasmonic excitation of titania by localized surface plasmon resonance of gold. The antifungal activity tests showed efficient suppression of mycelium growth by bare titania, and suppression of mycotoxin generation and sporulation by gold-modified titania. Although, the growth of fungi was hardly inhibited through disc diffusion (inhibition zones around discs), it indicates that gold does not penetrate into the media, and thus, a good stability of plasmonic photocatalysts has been confirmed. In summary, it was found that silver-modified titania showed superior antibacterial activity, whereas gold-modified samples were very active against fungi, suggesting that bimetallic photocatalysts containing both gold and silver should exhibit excellent antimicrobial properties. PMID:29600144
Kuntzler, Suelen Goettems; Almeida, Ana Claudia Araujo de; Costa, Jorge Alberto Vieira; Morais, Michele Greque de
2018-07-01
Polymer nanofibers produced by electrospinning are promising for use in food packaging because of their nanometric diameter, which provides a barrier to external conditions above the possible incorporation of the active compounds. The microalga Spirulina sp. LEB 18 synthesizes bioproducts, such as polyhydroxybutyrate (PHB), which is biodegradable and has similar mechanical and thermal properties to polymers of petrochemical origin. Moreover, phenolic compounds of microalgae have antibacterial, antifungal, and antioxidant activities, which is a differential for the development of packaging. The objective of the study was to develop a nanomaterial with antibacterial action from bioproducts of microalgal origin. PHB nanofibers containing phenolic compounds presented average diameter of 810±85nm exhibited hydrophobicity, which gave protection to the food relative to the moisture outside the package. These nanofibers showed inhibition of the growth of Staphylococcus aureus ATCC 25923 with a zone of 7.5±0.4mm. Thermal and mechanical properties have confirmed the potential applicability of this material as food packaging. This new nanomaterial combines a packaging function to protect products and to be biodegradable with the antibacterial activity that prevents the proliferation of microorganisms and ensures the quality and preservation of food. Published by Elsevier B.V.
Jerobin, Jayakumar; Makwana, Pooja; Suresh Kumar, RS; Sundaramoorthy, Rajiv; Mukherjee, Amitava; Chandrasekaran, Natarajan
2015-01-01
Neem (Azadirachta indica) is recognized as a medicinal plant well known for its antibacterial, antimalarial, antiviral, and antifungal properties. Neem nanoemulsion (NE) (O/W) is formulated using neem oil, Tween 20, and water by high-energy ultrasonication. The formulated neem NE showed antibacterial activity against the bacterial pathogen Vibrio vulnificus by disrupting the integrity of the bacterial cell membrane. Despite the use of neem NE in various biomedical applications, the toxicity studies on human cells are still lacking. The neem NE showed a decrease in cellular viability in human lymphocytes after 24 hours of exposure. The neem NE at lower concentration (0.7–1 mg/mL) is found to be nontoxic while it is toxic at higher concentrations (1.2–2 mg/mL). The oxidative stress induced by the neem NE is evidenced by the depletion of catalase, SOD, and GSH levels in human lymphocytes. Neem NE showed a significant increase in DNA damage when compared to control in human lymphocytes (P<0.05). The NE is an effective antibacterial agent against the bacterial pathogen V. vulnificus, and it was found to be nontoxic at lower concentrations to human lymphocytes. PMID:26491309
Jerobin, Jayakumar; Makwana, Pooja; Suresh Kumar, R S; Sundaramoorthy, Rajiv; Mukherjee, Amitava; Chandrasekaran, Natarajan
2015-01-01
Neem (Azadirachta indica) is recognized as a medicinal plant well known for its antibacterial, antimalarial, antiviral, and antifungal properties. Neem nanoemulsion (NE) (O/W) is formulated using neem oil, Tween 20, and water by high-energy ultrasonication. The formulated neem NE showed antibacterial activity against the bacterial pathogen Vibrio vulnificus by disrupting the integrity of the bacterial cell membrane. Despite the use of neem NE in various biomedical applications, the toxicity studies on human cells are still lacking. The neem NE showed a decrease in cellular viability in human lymphocytes after 24 hours of exposure. The neem NE at lower concentration (0.7-1 mg/mL) is found to be nontoxic while it is toxic at higher concentrations (1.2-2 mg/mL). The oxidative stress induced by the neem NE is evidenced by the depletion of catalase, SOD, and GSH levels in human lymphocytes. Neem NE showed a significant increase in DNA damage when compared to control in human lymphocytes (P<0.05). The NE is an effective antibacterial agent against the bacterial pathogen V. vulnificus, and it was found to be nontoxic at lower concentrations to human lymphocytes.
Zakerzadeh, Elham; Salehi, Roya; Mahkam, Mehrdad
2017-12-01
Due to multidrug resistance of cancer tissues and immune-suppression of cancerous patients during chemotherapy in one hand and the use of tetrazole derivatives in medicine because of its anticancer, antifungal, and antiviral properties, on the other, we were encouraged to design novel smart antibacterial nanocomposites-based polymer of tetrazole as dual anticancer drug delivery systems. The structures of nanocomposites characterized by FTIR, 1 H NMR, FESEM-EDX, and TGA analyzes and antibacterial activity of smart carriers were evaluated by determination of minimum inhibitory concentration (MIC) values against some bacteria and fungi. Then, the pH-responsive manner of both nanocomposites was proved by checking their release profiles at pH of the physiological environment (pH 7.4) and pH of tumor tissues (mildly acidic). Finally, the potential antitumoral activity of these nanocomposite systems against MCF7 cell lines was evaluated by MTT assay and cell cycle studies. The results demonstrated that the novel developed nanocomposites not only meet our expectations about simultaneous release of two anticancer drugs according to the predicted profile but also showed antibacterial and anticancer properties in vitro experimental. Moreover, it was proved that these carriers have tremendous potential in multifunctional drug delivery in cancer therapy.
2014-01-01
anticancer, antifungal, antiviral, antitumoral, antibacterial and antimalarial activities [11-13]. Recently, our group has been investigating the...ABSTRACT A series of novel hydrazide-hydrazone derivatives were synthesized and evaluated for their larvicidal and adult topical activity against...4b) showed noteworthy larvacidal activity against Aedes aegypti. Dose-response data of compound 4b showed LC50 and LC90 values of 30.5 (15.4 – 22.7
Antimicrobial activity of N-alkoxycarbonylmethyl-N-alkyl-piperidinium chlorides.
Woźniak, Edyta; Mozrzymas, Anna; Czarny, Anna; Kocieba, Maja; Rózycka-Roszak, Bozenna; Dega-Szafran, Zofia; Dulewicz, Ewa; Petryna, Magdalena
2004-01-01
The aim of the study was to assay antibacterial and antifungal activity of newly synthesised N-alkoxycarbonylmethyl-N-alkyl-piperidinium chlorides. The compounds tested were found to inhibit the growth of some Gram-negative bacteria, Gram-positive strains and some representatives of yeast-type Candida. From microbiological experiments two of the compounds tested, N-dodecyloxycarbonylmethyl-N-methyl-piperidinium chloride (3) and N-dodecyl-N-ethoxycarbonylmethyl-piperidinium chloride (6), emerged as more active than the other compounds. Since the resistance of biofilms to biocides should be noted during the design and testing of new antimicrobial agents therefore, we have analysed antibacterial properties of the most active compounds towards biofilms. Our study focused on strains of Pseudomonas aeruginosa and Staphylococcus aureus that served as main model organisms for the biofilm studies.
Aguilar-Guisado, Manuela; Martín-Peña, Almudena; Espigado, Ildefonso; Ruiz Pérez de Pipaon, Maite; Falantes, José; de la Cruz, Fátima; Cisneros, José M.
2012-01-01
Background Giving antifungal therapy exclusively to selected patients with persistent febrile neutropenia may avoid over-treatment without increasing mortality. The aim of this study was to validate an innovative diagnostic and therapeutic approach based on assessing patients’ risk profile and clinical criteria in order to select those patients requiring antifungal therapy. The efficacy of this approach was compared to that of universal empirical antifungal therapy. Design and Methods This was a prospective study which included all consecutive adult hematology patients with neutropenia and fever refractory to 5 days of empirical antibacterial therapy admitted to a teaching hospital in Spain over a 2-year period. A diagnostic and therapeutic approach based on clinical criteria and risk profile was applied in order to select patients for antifungal therapy. The sensitivity, specificity and negative predictive value of this approach and also the overall success rate, according to the same criteria of efficacy described in classical clinical trials, were analyzed. Results Eighty-five episodes were included, 35 of them (41.2%) in patients at high risk of invasive fungal infections. Antifungal therapy was not indicated in 33 episodes (38.8%). The overall incidence of proven and probable invasive fungal infections was 14.1%, all of which occurred in patients who had received empirical antifungal therapy. The 30-day crude mortality rate was 15.3% and the invasive fungal infection-related mortality rate was 2.8% (2/72). The overall success rate following the diagnostic and therapeutic approach was 36.5% compared with 33.9% and 33.7% obtained in the trial by Walsh et al. The sensitivity, specificity and negative predictive value of the study approach were 100%, 52.4% and 100%, respectively. Conclusions Based on the high negative predictive value of this diagnostic and therapeutic approach in persistent febrile neutropenia patients with hematologic malignancies or patients who have received a hematopoietic stem cell transplant, the approach is useful for identifying patients who are not likely to develop invasive fungal infection and do not, therefore, require antifungal therapy. The effectiveness of the strategy is similar to that of universal empirical antifungal therapy reported in controlled trials. PMID:22058202
Elshafie, Hazem S; Mancini, Emilia; Sakr, Shimaa; De Martino, Laura; Mattia, Carlo Andrea; De Feo, Vincenzo; Camele, Ippolito
2015-08-01
Plant essential oils (EOs) can potentially replace synthetic fungicides in the management of postharvest fruit and vegetable diseases. The aim of this study was to evaluate in vitro and in vivo effectiveness of thymol, carvacrol, linalool, and trans-caryophyllene, single constituents of the EO of Origanum vulgare L. ssp. hirtum against Monilinia laxa, M. fructigena, and M. fructicola, which are important phytopathogens and causal agents of brown rot of pome and stone fruits in pre- and postharvest. Moreover, the possible phytotoxic activity of these constituents was assessed and their minimum inhibitory concentration (MIC) was determined. In vitro experiment indicated that thymol and carvacrol possess the highest antifungal activity. Results of in vivo trials confirmed the strong efficacy of thymol and carvacrol against brown rot of peach fruits. The thymol MIC resulted to be 0.16 μg/μL against M. laxa and M. fructigena and 0.12 μg/μL against M. fructicola, whereas for carvacrol they were 0.02 μg/μL against the first two Monilinia species and 0.03 μg/μL against the third. Results of this study indicated that thymol and carvacrol could be used after suitable formulation for controlling postharvest fruit diseases caused by the three studied Monilinia species.
Antimicrobial effect of Cu(II) complexes containing oxime ligands.
Donde, K J; Patil, V R; Malve, S P
2004-01-01
The antibacterial, antifungal and antitubercular activity of Cu(II) complexes was studied. All the complexes have been screened against Staphylococcus aureus, Salmonella typhi, Candida albican, Aspergillus niger, Saccharomyces cerevisiae and H37Rv and found to be more toxic than the parent ligand. The activity increased in the order Cu(5-methyl-2,3-hexanedione dioxime)2 < Cu(5-methyl-3-oximino-hexan-2-o-ne-hydrazone)2 < Cu(5-methyl-3-oximino-hexan-2-one-phenylhydrazone)2.
Phytochemical content of hot and cold water extracts of Orthosiphon stamineus leaves
NASA Astrophysics Data System (ADS)
Habboo, Maysam Dahham; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina
2018-04-01
Orthosiphon stamineus Benth (Lamiaceae) is a plant with ethnobotanical applications including antifungal and antibacterial properties. This study aimed to evaluate the phytochemical contents of Orthosiphon stamineus leaves water extract prepared in cold and hot distilled water. Phytochemical screening revealed the presence of phytochemicals components such as a flavonoid, terpenoid and steroid in both extracts. Cold water extract has two extra components: saponin and alkaloid that may be destroyed by the exposure to heat.
El-Tantawy, Mona E; Shams, Manal M; Afifi, Manal S
2016-01-01
The essential oil from the aerial parts of Nephrolepis exaltata and Nephrolepis cordifolia obtained by hydro-distillation were analyzed by gas chromatography/ mass spectrometry. The essential oils exhibited potential antibacterial and antifungal activities against a majority of the selected microorganisms. NEA oil showed promising cytotoxicity in breast, colon and lung carcinoma cells. The results presented indicate that NEA oil could be useful alternative for the treatment of dermatophytosis. Comparative investigation of hydro-distilled volatile constituents from aerial parts (A) of Nephrolepis exaltata (NE) and Nephrolepis cordifolia (NC) (Family Nephrolepidaceae) was carried out. Gas chromatography/mass spectrometry revealed that oils differ in composition and percentages of components. Oxygenated compounds were dominant in NEA and NCA. 2,4-Hexadien-1-ol (16.1%), nonanal (14.4%), β-Ionone (6.7%) and thymol (2.7%) were predominant in NEA. β-Ionone (8.0%), eugenol (7.2%) and anethol (4.6%) were the main constituents in NCA. Volatile samples were screened for their antibacterial and antifungal activities using agar diffusion method and minimum inhibitory concentrations. The cytotoxic activity was evaluated using viability assay in breast (MCF-7), colon (HCT-116) and lung carcinoma (A-549) cells by the MTT assay. The results revealed that NEA oil exhibited potential antimicrobial activity against most of the tested organisms and showed promising cytotoxicity.
Hajlaoui, Hafedh; Mighri, Hedi; Noumi, Emira; Snoussi, Mejdi; Trabelsi, Najla; Ksouri, Riadh; Bakhrouf, Amina
2010-01-01
Essential oil extracted by hydrodistillation from Tunisian variety of Cuminumcyminum was characterized by means of GC and GC-MS. Twenty-one components were identified and C. cyminum contained cuminlaldehyde (39.48%), gamma-terpinene (15.21%), O-cymene (11.82%), beta-pinene (11.13%), 2-caren-10-al (7.93%), trans-carveol (4.49%) and myrtenal (3.5%) as a major components. Moreover, C. cyminum oil exhibited higher antibacterial and antifungal activities with a high effectiveness against Vibrio spp. strains with a diameter of inhibition zones growth ranging from 11 to 23 mm and MIC and MBC values ranging from (0.078-0.31 mg/ml) to (0.31-1.25mg/ml), respectively. On the other hand, the cumin oil was investigated for its antioxidant activities using four different tests then compared with BHT. Results showed that cumin oil exhibit a higher activity in each antioxidant system with a special attention for beta-carotene bleaching test (IC(50): 20 microg/ml) and reducing power (EC(50): 11 microg/ml). In the light of these findings, we suggested that C. cyminum essential oil may be considered as an interesting source of antibacterial, antifungal and antioxidants components used as potent agents in food preservation and for therapeutic or nutraceutical industries. Copyright (c) 2010. Published by Elsevier Ltd.
Mayer, Alejandro M.S.; Hamann, Mark T.
2016-01-01
During 2001–2002, research on the pharmacology of marine chemicals continued to be global in nature involving investigators from Argentina, Australia, Brazil, Canada, China, Denmark, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Netherlands, New Zealand, Pakistan, the Philippines, Russia, Singapore, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, Thailand, United Kingdom, and the United States. This current article, a sequel to the authors’ 1998, 1999 and 2000 marine pharmacology reviews, classifies 106 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria, on the basis of peer-reviewed preclinical pharmacology. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 56 marine chemicals. An additional 19 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as to possess anti-inflammatory and antidiabetic effects. Finally, 31 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2001–2002 pharmacological research with marine chemicals continued to contribute potentially novel chemical leads for the ongoing global search for therapeutic agents for the treatment of multiple disease categories. PMID:15919242
Babotă, Mihai; Mocan, Andrei; Vlase, Laurian; Crișan, Ovidiu; Ielciu, Irina; Gheldiu, Ana-Maria; Vodnar, Dan Cristian; Crișan, Gianina; Păltinean, Ramona
2018-02-13
Antennaria dioica (L.) Gaertn. and Helichrysum arenarium (L.) Moench. are two species of the Asteraceae family, known in Romanian traditional medicine for their diuretic, choleretic, and anti-inflammatory properties. The aim of the present study was to evaluate the phenolic and sterolic composition of flowers from the two species and to assess their antioxidant, antibacterial and antifungal properties. LC-MS analyses were performed on methanolic, ethanolic and 70% v/v ethanolic extracts, before and after acid hydrolysis, and revealed high amounts of polyphenols. Chlorogenic acid was found as the main compound for the flowers of A. dioica (502.70 ± 25.11 mg/100 g d.w.), while quercitrin was dominant in H. arenarium (424.28 ± 21.21 mg/100 g d.w.) in 70% v / v ethanolic extracts before hydrolysis. Antioxidant capacity assays showed an important antioxidant potential, which can be correlated with the determined polyphenolic compounds, showing the 70% v / v ethanolic extracts of the two species as being the most effective antioxidant samples for the DPPH assay. Antibacterial and antifungal assays confirm a modest biological potential for the same extract of both species. Results obtained in the present study bring important data and offer scientific evidence on the chemical composition and on the biological activities of the flowers belonging to the two species.
Pacheco-Cano, R D; Salcedo-Hernández, R; López-Meza, J E; Bideshi, D K; Barboza-Corona, J E
2018-01-01
The objective of this study was to show whether the edible part of broccoli has antibacterial and antifungal activity against micro-organism of importance in human health and vegetable spoilage, and to test if this effect was partially due to antimicrobial peptides (AMPs). Crude extracts were obtained from florets and stems of broccoli cultivar Avenger and the inhibitory effect was demonstrated against pathogenic bacteria (Bacillus cereus, Staphylococcus xylosus, Staphylococcus aureus, Shigella flexneri, Shigella sonnei, Proteus vulgaris), phytopathogenic fungi (Colletotrichum gloeosporioides, Asperigillus niger) and yeasts (Candida albicans and Rhodotorula sp.). It was shown that samples treated with proteolytic enzymes had a reduction of approximately 60% in antibacterial activity against Staph. xylosus, suggesting that proteinaceous compounds might play a role in the inhibitory effect. Antimicrobial components in crude extracts were thermoresistant and the highest activity was observed under acidic conditions. It was shown that antifungal activity of broccoli's crude extracts might not be attributed to chitinases. Organic broccoli cultivar Avenger has antimicrobial activity against pathogenic bacteria, yeast and phytophatogenic fungi. Data suggest that this effect is partially due to AMPs. Broccoli's crude extracts have activity not only against pathogenic bacteria but also against phytophatogenic fungi of importance in agriculture. We suggest for first time that the inhibitory effect is probably due to AMPs. © 2017 The Society for Applied Microbiology.
Rai, Mahendra; Ingle, Avinash P; Gade, Aniket K; Duarte, Marta Cristina Teixeira; Duran, Nelson
2015-10-01
The authors report extracellular mycosynthesis of silver nanoparticles (AgNPs) by Phoma capsulatum, Phoma putaminum and Phoma citri. The AgNPs thus synthesised were characterised by UV-visible spectrophotometer, Fourier transform infrared spectroscopy, Nanosight LM20 and transmission electron microscopy, which confirmed the synthesis of mostly spherical and polydisperse nanoparticles capped with proteins. The size of AgNPs was found in the range of 10-80 , 5-80 and 5-90 nm with an average size of 31.85, 25.43 and 23.29 nm by P. capsulatum, P. putaminum and P. citri, respectively. Further, potential antimicrobial activity was reported against Aspergillus niger, Candida albicans, Salmonella choleraesuis, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. The lowest minimal inhibitory concentration (MIC) (0.85 µg/ml) was reported for AgNPs synthesised from P. citri against S. choleraesuis. However, AgNPs synthesised from P. capsulatum showed the highest MIC (10.62 µg/ml) against S. choleraesuis, P. aeruginosa and E. coli (clinical isolate). The same MIC values (10.62 µg/ml) were also reported against P. aeruginosa and both clinical and standard isolates of E. coli for AgNPs synthesised from P. citri. It was also observed that all the silver nanoparticles showed remarkable antifungal and antibacterial activity against these tested pathogens as compared with the commercially available antifungal and antibacterial agents.
Diverse deep-sea fungi from the South China Sea and their antimicrobial activity.
Zhang, Xiao-Yong; Zhang, Yun; Xu, Xin-Ya; Qi, Shu-Hua
2013-11-01
We investigated the diversity of fungal communities in nine different deep-sea sediment samples of the South China Sea by culture-dependent methods followed by analysis of fungal internal transcribed spacer (ITS) sequences. Although 14 out of 27 identified species were reported in a previous study, 13 species were isolated from sediments of deep-sea environments for the first report. Moreover, these ITS sequences of six isolates shared 84-92 % similarity with their closest matches in GenBank, which suggested that they might be novel phylotypes of genera Ajellomyces, Podosordaria, Torula, and Xylaria. The antimicrobial activities of these fungal isolates were explored using a double-layer technique. A relatively high proportion (56 %) of fungal isolates exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among four marine pathogenic microbes (Micrococcus luteus, Pseudoaltermonas piscida, Aspergerillus versicolor, and A. sydowii). Out of these antimicrobial fungi, the genera Arthrinium, Aspergillus, and Penicillium exhibited antibacterial and antifungal activities, while genus Aureobasidium displayed only antibacterial activity, and genera Acremonium, Cladosporium, Geomyces, and Phaeosphaeriopsis displayed only antifungal activity. To our knowledge, this is the first report to investigate the diversity and antimicrobial activity of culturable deep-sea-derived fungi in the South China Sea. These results suggest that diverse deep-sea fungi from the South China Sea are a potential source for antibiotics' discovery and further increase the pool of fungi available for natural bioactive product screening.
[Expression of N domain of chromogranin A in Bacillus subtilis and its antifungal activity].
Li, Rui-Fang; Lou, Jin-Xian; Zhang, Tian-Yuan
2004-03-01
Chromogranin A (CGA) is a soluble protein existed in most secreted cells and neurons. It was recently found that the bovine CGA N terminal region has vasoinhibitory, antibacterial and antifungal activities. Since the need for effective antifungal agents increases in parallel with the expanding number of immunocompromised patients at risk for fungal infections, it becomes imperative to find antifungal compounds with low toxicity toward mammalian cells. To study the antifungal activity of CGA N terminal region, the DNA fragment encoding for the N terminal 1-76 amino acid sequence (CGA1-76) of human CGA was amplified by PCR technique. After DNA sequence analysis, the amplified DNA fragment was cloned into the Bacillus subtilis inducible and expression vector pSBPTQ constructed in this study and the resultant plasmid pSVTQ was then transformed into triple-protease deficient Bacillus subtilis strain DB403 competent cells. The transformants was screened on LB plates containing 10 microg/mL kanamycin. The positive transformant DB403 (pSVTQ) was grown on kanmycin containing 2 x MSR medium and sucrose was added to 2% final concentration for induction after 2h cultivation. The culture supernatant was used to run SDS-PAGE. The result of SDS-PAGE showed that the CGA1-76 was expressed by sucrose induction and the expressed product secreted into the medium with a yield of 5 mg/L. The expressed product reacts specifically with mouse anti CGA47-68 monoclonal antibody. The antifungal activity of the expressed product was examined by adding the culture supernatant to the fungal spore or Candida albican suspensions at appropriate proportion and found that the recombinant human CGA1-76 produced in Bacillus subtilis inhibits the growth of Fusarium sp. Alternaria sp. and Candida albican at the concerntration of 4 micromol/L. These results demonstrate that human CGA1-76 has expressed in Bacillus subtilis and the expressed product is immunogenic and has the antifungal activity.
Belguesmia, Y; Choiset, Y; Rabesona, H; Baudy-Floc'h, M; Le Blay, G; Haertlé, T; Chobert, J-M
2013-04-01
The aim of this work was to study the antifungal properties of durancins isolated from Enterococcus durans A5-11 and of their chemically synthesized fragments. Enterococcus durans A5-11 is a lactic acid bacteria strain isolated from traditional Mongolian airag cheese. This strain inhibits the growth of several fungi including Fusarium culmorum, Penicillium roqueforti and Debaryomyces hansenii. It produces two bacteriocins: durancin A5-11a and durancin A5-11b, which have similar antimicrobial properties. The whole durancins A5-11a and A5-11b, as well as their N- and C-terminal fragments were synthesized, and their antifungal properties were studied. C-terminal fragments of both durancins showed stronger antifungal activities than other tested peptides. Treatment of D. hansenii LMSA2.11.003 strain with 2 mmol l(-1) of the synthetic peptides led to the loss of the membrane integrity and to several changes in the ultra-structure of the yeast cells. Chemically synthesized durancins and their synthetic fragments showed different antimicrobial properties from each other. N-terminal peptides show activities against both bacterial and fungal strains tested. C-terminal peptides have specific activities against tested fungal strain and do not show antibacterial activity. However, the C-terminal fragment enhances the activity of the N-terminal fragment in the whole bacteriocins against bacteria. © 2012 The Society for Applied Microbiology.
de Abreu, Letícia Coli Louvisse; Todaro, Valerio; Sathler, Plinio Cunha; da Silva, Luiz Cláudio Rodrigues Pereira; do Carmo, Flávia Almada; Costa, Cleonice Marques; Toma, Helena Keiko; Castro, Helena Carla; Rodrigues, Carlos Rangel; de Sousa, Valeria Pereira; Cabral, Lucio Mendes
2016-12-01
The aim of this work was the development and characterization of nisin-loaded nanoparticles and the evaluation of its potential antifungal activity. Candidiasis is a fungal infection caused by Candida sp. considered as one of the major public health problem currently. The discovery of antifungal agents that present a reduced or null resistance of Candida sp. and the development of more efficient drug release mechanisms are necessary for the improvement of candidiasis treatment. Nisin, a bacteriocin commercially available for more than 50 years, exhibits antibacterial action in food products with potential antifungal activity. Among several alternatives used to modulate antifungal activity of bacteriocins, polymeric nanoparticles have received great attention due to an effective drug release control and reduction of therapeutic dose, besides the minimization of adverse effects by the preferential accumulation in specific tissues. The nisin nanoparticles were prepared by double emulsification and solvent evaporation methods. Nanoparticles were characterized by dynamic light scattering, zeta potential, Fourier transform infrared, X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy. Antifungal activity was accessed by pour plate method and cell counting using Candida albicans strains. The in vitro release profile and in vitro permeation studies were performed using dialysis bag method and pig vaginal mucosa in Franz diffusion cell, respectively. The results revealed nisin nanoparticles (300 nm) with spherical shape and high loading efficiency (93.88 ± 3.26%). In vitro test results suggest a promising application of these nanosystems as a prophylactic agent in recurrent vulvovaginal candidiasis and other gynecological diseases.
Song, Young-Gyun; Lee, Sung-Hoon
2017-04-01
Candida albicans biofilm is associated with denture-related stomatitis and oral candidiasis of elderly. Probiotics are beneficial bacteria and have antibacterial activity against pathogenic bacteria. The purpose of this study was to investigate the antifungal activity of various probiotics against C. albicans and the inhibitory effects of probiotics on Candida biofilm on the denture surface. The spent culture media of various probiotics were investigated the antifungal efficacy against C. albicans. Candida biofilm was formed on a denture base resin and was then treated with Lactobacillus rhamnosus and Lactobacillus casei. Also, the biofilms of L. rhamnosus and L. casei were formed and were sequentially treated with C. albicans. Colony-forming units of C. albicans on the denture surface were counted after spreading on agar plate. The denture base resin was treated with the spent culture media for 30days, after which the denture surface roughness was analyzed with an atomic force microscope. L. rhamnosus and L. casei exhibited stronger antifungal activity than other probiotics. The spent culture medium of L. rhamnosus and L. casei exhibited the antifungal activity against blastoconidia and biofilm of C. albicans. L. rhamnosus and L. casei showed the antifungal activity against Candida biofilm, and the biofilm of L. rhamnosus and L. casei inhibited formation of Candida biofilm on denture surface. Neither of the probiotics affected the surface roughness of the denture base resin. L. rhamnosus and L. casei may be the ideal probiotics for the prevention and treatment of denture-related stomatitis. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shanker, Kanne; Rohini, Rondla; Ravinder, Vadde; Reddy, P. Muralidhar; Ho, Yen-Peng
2009-07-01
Reactions of [RuCl 2(DMSO) 4] with some of the biologically active macrocyclic Schiff base ligands containing N 4 and N 2O 2 donor group yielded a number of stable complexes, effecting complete displacement of DMSO groups from the complex. The interaction of tetradentate ligand with [RuCl 2(DMSO) 4] gave neutral complexes of the type [RuCl 2(L)] [where L = tetradentate macrocyclic ligand]. These complexes were characterized by elemental, IR, 1H, 13C NMR, mass, electronic, thermal, molar conductance and magnetic susceptibility measurements. An octahedral geometry has been proposed for all complexes. All the macrocycles and macrocyclic Ru(II) complexes along with existing antibacterial drugs were screened for antibacterial activity against Gram +ve ( Bacillus subtilis, Staphylococcus aureus) and Gram -ve ( Escherichia coli, Klebsiella pneumonia) bacteria. All these compounds were found to be more active when compared to streptomycin and ampicillin. The representative macrocyclic Schiff bases and their complexes were also tested in vitro to evaluate their activity against fungi, namely, Aspergillus flavus and Fusarium species.
Tofighi, Zahra; Molazem, Maryam; Doostdar, Behnaz; Taban, Parisa; Shahverdi, Ahmad Reza; Samadi, Nasrin; Yassa, Narguess
2015-01-01
Rosa damascena, Tripleurospermum disciforme and Securigera securidaca were used as disinfectant agents and for treatment of some disease in folk medicine of Iran. The antimicrobial effects of different fractions of seeds extract of S. securidaca, petals extract of R. damascena and aerial parts extract of T. disciforme were examined against some gram positive, gram negative and fungi by cup plate diffusion method. The petroleum ether and chloroform fractions of S. securidaca showed antibacterial activities against Staphylococcus aureus and Pseudomonas aeruginosa, while its methanol fraction had no antibacterial effects. R. damascena petals extract demonstrated antibacterial activities against Bacillus cereus, Staphylococcus epidermidis, S. aureus and Pseudomonas aeruginosa. T. disciforme aerial parts extract exhibited antimicrobial effects only against S. aureus and S. epidermidis. None of the fractions had any antifungal activities. Therefore, present study confirmed utility of these plants as disinfectant agents. Six flavonoids were isolated from T. disciforme: Luteolin, Quercetin-7-O-glucoside, Kaempferol, Kaempferol-7-O-glucoside, Apigenin and Apigenin-7-O-glucoside. The flavonoids and the antimicrobial activity of T. disciforme are reported for the first time.
Tofighi, Zahra; Molazem, Maryam; Doostdar, Behnaz; Taban, Parisa; Shahverdi, Ahmad Reza; Samadi, Nasrin; Yassa, Narguess
2015-01-01
Rosa damascena, Tripleurospermum disciforme and Securigera securidaca were used as disinfectant agents and for treatment of some disease in folk medicine of Iran. The antimicrobial effects of different fractions of seeds extract of S. securidaca, petals extract of R. damascena and aerial parts extract of T. disciforme were examined against some gram positive, gram negative and fungi by cup plate diffusion method. The petroleum ether and chloroform fractions of S. securidaca showed antibacterial activities against Staphylococcus aureus and Pseudomonas aeruginosa, while its methanol fraction had no antibacterial effects. R. damascena petals extract demonstrated antibacterial activities against Bacillus cereus, Staphylococcus epidermidis, S. aureus and Pseudomonas aeruginosa. T. disciforme aerial parts extract exhibited antimicrobial effects only against S. aureus and S. epidermidis. None of the fractions had any antifungal activities. Therefore, present study confirmed utility of these plants as disinfectant agents. Six flavonoids were isolated from T. disciforme: Luteolin, Quercetin-7-O-glucoside, Kaempferol, Kaempferol-7-O-glucoside, Apigenin and Apigenin-7-O-glucoside. The flavonoids and the antimicrobial activity of T. disciforme are reported for the first time. PMID:25561928
Struga, Marta; Kossakowski, Jerzy; Stefańska, Joanna; Zimniak, Andrzej; Koziol, Anna E
2008-06-01
A new quaternary ammonium compound, bis-[2-hydroxy-3-(1,7,8,9,10-pentamethyl-3,5-dioxo-4-aza-tricyclo[5.2.1.0(2,6)]dec-8-en-4-yloxy)-propyl]-dimethyl-ammonium chloride (4), was synthesized. The compound was investigated for antibacterial activity, including Gram-positive cocci and Gram-negative rods, and antifungal activity. Compound 4 showed significant inhibition against Staphylococcus aureus. Research was carried out over 4 standard strains and 40 hospital strains. Elementary analysis and/or MS, (1)H NMR and (13)C NMR spectra confirmed the identity of the products. The molecular structure of 3 was determined by an X-ray analysis.
Tundis, R; Statti, G A; Conforti, F; Bianchi, A; Agrimonti, C; Sacchetti, G; Muzzoli, M; Ballero, M; Menichini, F; Poli, F
2005-06-01
The biovariability of Helichrysum italicum (Roth) Don grown wild in Calabria and Sardinia (Italy) was reported. This species has been characterized through the detection, isolation and quantitative evaluation of chemical markers (alpha-terpinolene, trans-cariophyllene and neryl acetate) by GC and GC-MS. Antioxidant activity of the methanolic H. italicum extracts using DPPH and beta-carotene bleaching test showed that the Calabrian samples were more active than those from Sardinia. The antibacterial activity of all extracts evidenced the best performance on the Gram positive bacteria particularly on Micrococcus luteus. Moreover, antifungal activity of all extracts was also tested evidencing important results particularly on the phytopathogene fungus Pythium ultimum. In general, as regards the antifungal activity, the extracts from Sardinia were more active than those from Calabria. The phytochemical analysis and the biological activity data suggested a possible use of these plant matrices in alimentary, cosmetic and pharmaceutical fields.
Troskie, Anscha Mari; Rautenbach, Marina; Delattin, Nicolas; Vosloo, Johan Arnold; Dathe, Margitta; Thevissen, Karin
2014-01-01
Tyrocidines are cationic cyclodecapeptides from Bacillus aneurinolyticus that are characterized by potent antibacterial and antimalarial activities. In this study, we show that various tyrocidines have significant activity against planktonic Candida albicans in the low-micromolar range. These tyrocidines also prevented C. albicans biofilm formation in vitro. Studies with the membrane-impermeable dye propidium iodide showed that the tyrocidines disrupt the membrane integrity of mature C. albicans biofilm cells. This membrane activity correlated with the permeabilization and rapid lysis of model fungal membranes containing phosphatidylcholine and ergosterol (70:30 ratio) induced by the tyrocidines. The tyrocidines exhibited pronounced synergistic biofilm-eradicating activity in combination with two key antifungal drugs, amphotericin B and caspofungin. Using a Caenorhabditis elegans infection model, we found that tyrocidine A potentiated the activity of caspofungin. Therefore, tyrocidines are promising candidates for further research as antifungal drugs and as agents for combinatorial treatment. PMID:24752256
Contact killing and antimicrobial properties of copper.
Vincent, M; Duval, R E; Hartemann, P; Engels-Deutsch, M
2018-05-01
With the emergence of antibiotic resistance, the interest for antimicrobial agents has recently increased again in public health. Copper was recognized in 2008 by the United States Environmental Protection Agency (EPA) as the first metallic antimicrobial agent. This led to many investigations of the various properties of copper as an antibacterial, antifungal and antiviral agent. This review summarizes the latest findings about 'contact killing', the mechanism of action of copper nanoparticles and the different ways micro-organisms develop resistance to copper. © 2017 The Society for Applied Microbiology.
Portuguese Thymbra and Thymus species volatiles: chemical composition and biological activities.
Figueiredo, A C; Barroso, J G; Pedro, L G; Salgueiro, L; Miguel, M G; Faleiro, M L
2008-01-01
Thymbra capitata and Thymus species are commonly known in Portugal as thyme and they are currently used as culinary herbs, as well as for ornamental, aromatizing and traditional medicinal purposes. The present work reports on the state of the art on the information available on the taxonomy, ethnobotany, cell and molecular biology of the Portuguese representatives of these genera and on the chemotaxonomy and antibacterial, antifungal and antioxidant activities of their essential oils and other volatile-containing extracts.
Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi
Jin, Liming; Quan, Chunshan; Hou, Xiyan; Fan, Shengdi
2016-01-01
In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classification according to the sources of fungi and their biological activities. Those fungi found from 2014 to the present are discussed. PMID:27110799
Antimicrobial properties of the stem bark of Saraca indica (Caesalpiniaceae).
Sainath, R Shilpakala; Prathiba, J; Malathi, R
2009-01-01
Chloroform, methanol, aqueous and ethanolic extracts of the stem bark of Saraca indica were investigated for their antibacterial and antifungal activity against standard strains of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Klebsiella pneumoniae, Proteus mirabilis, Salmonella typhimurium and Streptococcus pneumoniae and the fungi: Candida albicans and Cryptococcus albidus. Methanolic and aqueous extract exhibited antimicrobial activity with MIC ranging from 0.5-2% and 1-3% respectively. Methanolic extract exhibited the strongest activity against both bacteria and fungi.
Eurotium (Aspergillus) repens metabolites and their biological activity.
Podojil, M; Sedmera, P; Vokoun, J; Betina, V; Baráthová, H; Duracková, Z; Horáková, K; Nemec, P
1978-01-01
Eurotium repens mycelium cultivated under static conditions was used to isolate and identify metabolities--echinulin, physcion, erythroglaucin, flavoglaucin and asperentin; the filtrate of the culture yielded asperentin 8-methylether. The broadest biological activity spectrum was displayed by asperentin which had antibacterial and antifungal effects and, at a concentration of 86 microgram/ml, caused 50% mor7 tality in Artemia saline larvae. The highest cytotoxicity towards HeLa cells was found in physcion which caused 50% growth inhibition at a concentration of 0.1 microgram/ml.
Kaur, Talwinder; Kaur, Amarjeet; Sharma, Vishal; Manhas, Rajesh K.
2016-01-01
In agriculture, biocontrol agents have been emerged as safe alternative to chemical pesticides where Streptomyces spp. and their metabolites constitute a great potential for their exploration as potent agents for controlling various fungal phytopathogens. The present study reports an antifungal compound purified from Streptomyces hydrogenans strain DH16, a soil isolate, using silica gel chromatography and semi preparative HPLC. The compound was characterized using various spectroscopic techniques (IR, 1H and 13C NMR) and named 10-(2,2-dimethyl-cyclohexyl)-6,9-dihydroxy-4,9-dimethyl-dec-2-enoic acid methyl ester (SH2). Compound (SH2) showed significant inhibitory activity against fungal phytopathogens and resulted in severe morphological aberrations in their structure. Minimal inhibitory and minimal fungicidal concentrations of the compound ranged from 6.25 to 25 μg/ml and 25 to 50 μg/ml, respectively. In vivo evaluation of the compound showed strong control efficacy against Alternaria brassicicola, a seed borne pathogen, on radish seeds. In comparison to mancozeb and carbendazim, the compound was more effective in controlling damping off disease. Additionally, it promoted plant growth with increased rate of seed germination, and displayed no phytotoxicity. The compound retained its antifungal activity after its exposure to temperature of 100°C and sunlight for 1 h. Furthermore, the compound (SH2) when tested for its biosafety was found to be non-cytotoxic, and non-mutagenic against Salmonella typhimurium TA98 and TA100 strains. This compound from S. hydrogenans strain DH16 has not been reported earlier, so this new compound can be developed as an ideal safe and superior biofungicide for the control of various fungal plant diseases. PMID:27446043
Effects of antibacterial agents, levofloxacin and clarithromycin, on aquatic organisms.
Yamashita, N; Yasojima, M; Nakada, N; Miyajima, K; Komori, K; Suzuki, Y; Tanaka, H
2006-01-01
Contamination of surface waters by pharmaceutical chemicals is an emerging environmental problem. This study evaluated the toxic effects of the antibacterial agents levofloxacin (LVFX) and clarithromycin (CAM), which are widely used in Japan, on aquatic organisms. Ecotoxicity tests using a bacterium, alga and crustacean were conducted. Microtox test using a marine fluorescent bacterium showed that LVFX and CAM have no acute toxicity to the bacterium. From the results of the Daphnia immobilisation test, LVFX and CAM did not show acute toxicity to the crustacean. Meanwhile, an algal growth inhibition test revealed that LVFX and CAM have high toxicity to the microalga. The phytotoxicity of CAM was about 100-fold higher than that of LVFX from a comparison of EC50 (median effective concentration) value. From the Daphnia reproduction test, LVFX and CAM also showed chronic toxicity to the crustacean. Concentrations of LVFX and CAM in the aquatic environment were compared with PNEC (predicted no effect concentration) to evaluate the ecological risk. As a result, the ecological risk of LVFX is considered to be low, but that of CAM is higher, suggesting that CAM discharged into an aquatic environment after therapeutic use may affect organisms in the aquatic environment.
Potential application of Northern Argentine propolis to control some phytopathogenic bacteria.
Ordóñez, R M; Zampini, I C; Moreno, M I Nieva; Isla, M I
2011-10-20
The antimicrobial activity of samples of Northern Argentine propolis (Tucumán, Santiago del Estero and Chaco) against phytopathogenic bacteria was assessed and the most active samples were identified. Minimal inhibitory concentration (MIC) values were determined by agar macrodilution and broth microdilution assays. Strong antibacterial activity was detected against Erwinia carotovora spp carotovora CECT 225, Pseudomonas syringae pvar tomato CECT 126, Pseudomonas corrugata CECT 124 and Xanthomonas campestris pvar vesicatoria CECT 792. The most active propolis extract (Tucumán, T1) was selected to bioguide isolation and identified for antimicrobial compound (2',4'-dihydroxychalcone). The antibacterial chalcone was more active than the propolis ethanolic extract (MIC values of 0.5-1 μg ml(-1) and 9.5-15 μg ml(-1), respectively). Phytotoxicity assays were realized and the propolis extracts did not retard germination of lettuce seeds or the growth of onion roots. Propolis solutions applied as sprays on tomato fruits infected with P. syringae reduced the severity of disease. Application of the Argentine propolis extracts diluted with water may be promising for the management of post harvest diseases of fruits. Copyright © 2010 Elsevier GmbH. All rights reserved.
Zhang, Renwen; Han, Xiaoxue; Xia, Zhanfeng; Luo, Xiaoxia; Wan, Chuanxing; Zhang, Lili
2017-02-01
A novel actinomycete strain, designated TRM 49605 T , was isolated from a desert soil sample from Lop Nur, Xinjiang, north-west China, and characterised using a polyphasic taxonomic approach. The strain exhibited antifungal activity against the following strains: Saccharomyces cerevisiae, Curvularia lunata, Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, Penicillium citrinum, Candida albicans and Candida tropicalis; Antibacterial activity against Bacillus subtilis, Staphylococcus epidermidis and Micrococcus luteus; and no antibacterial activity against Escherichia coli. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain TRM 49605 T to the genus Streptomyces. Strain TRM 49605 T shows high sequence similarities to Streptomyces roseolilacinus NBRC 12815 T (98.62 %), Streptomyces flavovariabilis NRRL B-16367 T (98.45 %) and Streptomyces variegatus NRRL B-16380 T (98.45 %). Whole cell hydrolysates of strain TRM 49605 T were found to contain LL-diaminopimelic acid as the diagnostic diamino acid and galactose, glucose, xylose and mannose as the major whole cell sugars. The major fatty acids in strain TRM 49605 T were identified as iso C 16:0 , anteiso C 15:0 , C 16:0 and Summed Feature 5 as defined by MIDI. The main menaquinones were identified as MK-9(H 4 ), MK-9(H 6 ), MK-9(H 8 ) and MK-10(H 6 ). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and phosphatidylinositol mannoside. The G+C content of the genomic DNA was determined to be 71.2 %. The DNA-DNA relatedness between strain TRM 49605 T and the phylogenetically related strain S. roseolilacinus NBRC 12815 T was 60.12 ± 0.06 %, which is lower than the 70 % threshold value for delineation of genomic prokaryotic species. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain TRM 49605 T (=CCTCC AA2015026 T = KCTC 39666 T ) should be designated as the type strain of a novel species of the genus Streptomyces, for which the name Streptomyces luozhongensis sp. nov. is proposed.
Tøndervik, Anne; Sletta, Håvard; Klinkenberg, Geir; Emanuel, Charlotte; Powell, Lydia C.; Pritchard, Manon F.; Khan, Saira; Craine, Kieron M.; Onsøyen, Edvar; Rye, Phil D.; Wright, Chris; Thomas, David W.; Hill, Katja E.
2014-01-01
The oligosaccharide OligoG, an alginate derived from seaweed, has been shown to have anti-bacterial and anti-biofilm properties and potentiates the activity of selected antibiotics against multi-drug resistant bacteria. The ability of OligoG to perturb fungal growth and potentiate conventional antifungal agents was evaluated using a range of pathogenic fungal strains. Candida (n = 11) and Aspergillus (n = 3) spp. were tested using germ tube assays, LIVE/DEAD staining, scanning electron microscopy (SEM), atomic force microscopy (AFM) and high-throughput minimum inhibition concentration assays (MICs). In general, the strains tested showed a significant dose-dependent reduction in cell growth at ≥6% OligoG as measured by optical density (OD600; P<0.05). OligoG (>0.5%) also showed a significant inhibitory effect on hyphal growth in germ tube assays, although strain-dependent variations in efficacy were observed (P<0.05). SEM and AFM both showed that OligoG (≥2%) markedly disrupted fungal biofilm formation, both alone, and in combination with fluconazole. Cell surface roughness was also significantly increased by the combination treatment (P<0.001). High-throughput robotic MIC screening demonstrated the potentiating effects of OligoG (2, 6, 10%) with nystatin, amphotericin B, fluconazole, miconazole, voriconazole or terbinafine with the test strains. Potentiating effects were observed for the Aspergillus strains with all six antifungal agents, with an up to 16-fold (nystatin) reduction in MIC. Similarly, all the Candida spp. showed potentiation with nystatin (up to 16-fold) and fluconazole (up to 8-fold). These findings demonstrate the antifungal properties of OligoG and suggest a potential role in the management of fungal infections and possible reduction of antifungal toxicity. PMID:25409186
The Elusive Anti-Candida Vaccine: Lessons From the Past and Opportunities for the Future
Tso, Gloria Hoi Wan; Reales-Calderon, Jose Antonio; Pavelka, Norman
2018-01-01
Candidemia is a bloodstream fungal infection caused by Candida species and is most commonly observed in hospitalized patients. Even with proper antifungal drug treatment, mortality rates remain high at 40–50%. Therefore, prophylactic or preemptive antifungal medications are currently recommended in order to prevent infections in high-risk patients. Moreover, the majority of women experience at least one episode of vulvovaginal candidiasis (VVC) throughout their lifetime and many of them suffer from recurrent VVC (RVVC) with frequent relapses for the rest of their lives. While there currently exists no definitive cure, the only available treatment for RVVC is again represented by antifungal drug therapy. However, due to the limited number of existing antifungal drugs, their associated side effects and the increasing occurrence of drug resistance, other approaches are greatly needed. An obvious prevention measure for candidemia or RVVC relapse would be to immunize at-risk patients with a vaccine effective against Candida infections. In spite of the advanced and proven techniques successfully applied to the development of antibacterial or antiviral vaccines, however, no antifungal vaccine is still available on the market. In this review, we first summarize various efforts to date in the development of anti-Candida vaccines, highlighting advantages and disadvantages of each strategy. We next unfold and discuss general hurdles encountered along these efforts, such as the existence of large genomic variation and phenotypic plasticity across Candida strains and species, and the difficulty in mounting protective immune responses in immunocompromised or immunosuppressed patients. Lastly, we review the concept of “trained immunity” and discuss how induction of this rapid and nonspecific immune response may potentially open new and alternative preventive strategies against opportunistic infections by Candida species and potentially other pathogens. PMID:29755472
NASA Astrophysics Data System (ADS)
Lv, Haitao; Duan, Ke; Shan, Hu
2018-04-01
Polysaccharide extracted from Enteromorpha prolifera possessed excellent biological activities, but its molecular weight was greatly high which influenced the activity. Organic Se had higher biological activities and was safer than inorganic Se species. In the present study, Enteromorpha polysaccharide was degraded to low molecular weight by free-radical degradation method of H2O2 and ascorbic acid. By single factor and orthogonal experiments, the optimal degradation conditions were reaction time of 2 h, reaction temperature of 50°C, H2O2/ascorbic acid (n/n=1:1) concentration of 15 mmol L-1, and solid-liquid ratio of 1:50 (g mL-1). Then, the degraded polysaccharide was chemically modified to obtain its selenide derivatives by nitric acid-sodium selenite method. The selenium content was 1137.29 μg g-1, while the content of sulfate radical had no change. IR spectra indicated that the selenite ester group was formed. Degraded polysaccharide selenide was characterized and evaluated for antioxidant, antifungal and antibacterial activities. The results showed that degraded polysaccharide selenide had strong capacity of scavenging DPPH and ·OH free radical. It had significant antibacterial properties for Escherichia coli, Bacillus subtilis and Salmonella spp., and it also had significant antifungal properties for Apple anthrax. The result ascertained degradation and selenylation modification did not change the main structure of polysaccharides. It was possible that free-radical degradation was an effective way for enhancing antioxidant activity to decrease molecular weight of polysaccharides.
NASA Astrophysics Data System (ADS)
Rajalakshmi, M.; Uddandrao, V. V. Sathibabu; Saravanan, G.; Vadivukkarasi, S.; Koushik, C. V.
2018-06-01
The present study was aimed to develop a novel textile product through bio modification of cotton and micro-denier polyester with sericin (Sn) against bacterial and fungal growth. The authors extracted and purified Sn from silk yellow cocoons. Sn solution (10 g/L) was incorporated into the 100% cotton (C), 100% micro-denier polyester (MDP) and 65/35 micro-denier polyester/cotton (MDP/C) in a padding mangle by a 2-dip/2-nip process and fabrics were analysed by Field-Emission scanning electron microscope. Fabrics were divided into six groups such as untreated groups (C, MDP and MDP/C) and Sn-treated groups (Sn + C, Sn + MDP and Sn + MDP/C) and then underwent organoleptic evaluation and as well as anti-bacterial (Staphylococcus aureus and Escherichia coli) and anti-fungal (Aspergillus niger and Trichoderma harzianum) activities. Sn treated fabrics were found to show the presence of Sn by scanning electron micrographs and also attained high organoleptic score from the panel members. In addition, the Sn-treated fabrics displayed outstanding anti bacterial and anti fungal properties in terms of both qualitative and quantitative analysis. Sn + MDP/C fabrics have shown potential reduction in bacterial and fungal growth when compared with other treated and untreated fabrics. Hence, this study suggests that bio modification of C, MDP and MDP/C with Sn may make them ideal candidate for their application in medical textiles against pathogens.
Antifungal and antibacterial activities of Petroselinum crispum essential oil.
Linde, G A; Gazim, Z C; Cardoso, B K; Jorge, L F; Tešević, V; Glamoćlija, J; Soković, M; Colauto, N B
2016-07-29
Parsley [Petroselinum crispum (Mill.) Fuss] is regarded as an aromatic, culinary, and medicinal plant and is used in the cosmetic, food, and pharmaceutical industries. However, few studies with conflicting results have been conducted on the antimicrobial activity of parsley essential oil. In addition, there have been no reports of essential oil obtained from parsley aerial parts, except seeds, as an alternative natural antimicrobial agent. Also, microorganism resistance is still a challenge for health and food production. Based on the demand for natural products to control microorganisms, and the re-evaluation of potential medicinal plants for controlling diseases, the objective of this study was to determine the chemical composition and antibacterial and antifungal activities of parsley essential oil against foodborne diseases and opportunistic pathogens. Seven bacteria and eight fungi were tested. The essential oil major compounds were apiol, myristicin, and b-phellandrene. Parsley essential oil had bacteriostatic activity against all tested bacteria, mainly Staphylococcus aureus, Listeria monocytogenes, and Salmonella enterica, at similar or lower concentrations than at least one of the controls, and bactericidal activity against all tested bacteria, mainly S. aureus, at similar or lower concentrations than at least one of the controls. This essential oil also had fungistatic activity against all tested fungi, mainly, Penicillium ochrochloron and Trichoderma viride, at lower concentrations than the ketoconazole control and fungicidal activity against all tested fungi at higher concentrations than the controls. Parsley is used in cooking and medicine, and its essential oil is an effective antimicrobial agent.
In Vitro Antimicrobial Potential of the Lichen Parmotrema sp. Extracts against Various Pathogens.
Chauhan, Ritika; Abraham, Jayanthi
2013-07-01
The ongoing increasing antibiotic resistance is one of the biggest challenges faced by global public health. The perennial need for new antimicrobials against a background of increasing antibiotic resistance in pathogenic and opportunistic microorganisms obliges the scientific community to constantly develop new drugs and antimicrobial agents. Lichens are known prolific sources of natural antimicrobial drugs and biologically active natural products. This study was aimed to explore in vitro antimicrobial activity of lichen Parmotrema sp. The methanol and aqueous extracts of lichen Parmotrema sp. was extracted using Soxhlet extractor. Antibiotic assessment of methanol and aqueous extracts was done against eight bacterial (Escherichia coli, Staphylococcus aureus, Proteus mirabilis, Salmonella sp., Shigella sp., Enterococci faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae,) clinical pathogens and five plant pathogenic fungal strains (Aspergillus terreus strain JAS1, Scedosporium sp. JAS1, Ganoderma sp. JAS4, Candida tropicalis and Fusarium sp.) by Kirby-Bauer method. The methanol lichen Parmotrema sp. extract inhibited all the test organisms. The highest antibacterial activity was found against Pseudomonas aeruginosa and Staphylococcus aureus. The weakest activity was manifested in Salmonella sp. and Scedosporium sp. JAS1. Strong antifungal effect was found against Ganoderma sp. JAS4 and Fusarium sp. The aqueous lichen Parmotrema sp. extract revealed neither antibacterial nor antifungal activity. The present study shows that tested lichen Parmotrema sp. extracts demonstrated a strong antimicrobial effect. That suggests the active components from methanol extracts of the investigated lichen Parmotrema sp. can be used as natural antimicrobial agent against pathogens.
2017-01-01
The alarming increase in multidrug resistance of pathogenic microorganisms to conventional drugs in recent years has prompted the search for new leads in alternative remedies in natural products. Hence, this study was aimed at evaluating the antimicrobial properties of Phragmanthera capitata, a parasitic mistletoe growing on rubber trees. The in vitro antimicrobial activities of the acetone, methanol, ethanol, and aqueous extracts were investigated using five gram-negative and five gram-positive bacteria and four fungi. A 96-well resazurin broth and agar dilution techniques were used for the determination of the Minimum Inhibitory and Bactericidal Concentrations. The antibacterial activity of the organic extracts had comparative effects on all the bacteria with a MIC of 1.25 to 5 mg/mL and MBC of 2.5 to 10 mg/mL. However, the acetone extract showed higher bactericidal effect while the aqueous extract was not active. The organic solvent extracts also showed antifungal activities on two of the fungi with a MIC of 1.25 mg/mL to 10 mg/mL. However, the aqueous extract had the highest activity inhibiting all the fungi with a MIC of ≤0.3125 to 1.25 mg/mL. The study supports the ethnomedicinal claims of P. capitata as a remedy for the diseases/infections caused by these organisms. PMID:28642934
Antibacterial and Antifungal Activities of Stereum ostrea, an Inedible Wild Mushroom.
Imtiaj, Ahmed; Jayasinghe, Chandana; Lee, Geon Woo; Lee, Tae Soo
2007-12-01
Antibacterial and antifungal activities of liquid culture filtrate, water and ethanol extract (solid culture) of Stereum ostrea were evaluated against 5 bacteria and 3 plant pathogenic fungi. To determine the minimal inhibitory concentration (MIC), we studied 5~300 mg/ml concentrations against bacteria and fungi separately. The MIC was 10 mg/ml for Bacillus subtilis and 40 mg/ml for Colletotrichum gloeosporioides and Colletotrichum miyabeanus. Liquid culture filtrate was more effective against Gram positive than Gram negative bacteria, and Staphylococcus aureus was the most inhibited (20.3 mm) bacterium. Water and ethanol extracts were effective against both Gram positive and Gram negative bacteria, and water extract was better than ethanol extract. In water and ethanol extract, inhibition zones were 23.6 and 21.0 mm (S. aureus) and 26.3 and 22.3 mm (Pseudomonas aeruginosa), respectively. For plant pathogenic fungi, the highest and lowest percent inhibition of mycelial growth (PIMG) was found 82.8 and 14.4 against C. miyabeanus and Botrytis cinerea in liquid culture filtrate, respectively. In water extract, the PIMG was found to be the highest 85.2 and lowest 41.7 for C. miyabeanus and C. gloeosporioides, respectively. The inhibitory effect of ethanol extract was better against C. miyabeanus than C. gloeosporioides and B. cinerea. Among 3 samples, water extract was the best against tested pathogenic fungi. This study offers that the extracts isolated from S. ostrea contain potential compounds which inhibit the growth of both bacteria and fungi.
Antibacterial and Antifungal Activities of Stereum ostrea, an Inedible Wild Mushroom
Imtiaj, Ahmed; Jayasinghe, Chandana; Lee, Geon Woo
2007-01-01
Antibacterial and antifungal activities of liquid culture filtrate, water and ethanol extract (solid culture) of Stereum ostrea were evaluated against 5 bacteria and 3 plant pathogenic fungi. To determine the minimal inhibitory concentration (MIC), we studied 5~300 mg/ml concentrations against bacteria and fungi separately. The MIC was 10 mg/ml for Bacillus subtilis and 40 mg/ml for Colletotrichum gloeosporioides and Colletotrichum miyabeanus. Liquid culture filtrate was more effective against Gram positive than Gram negative bacteria, and Staphylococcus aureus was the most inhibited (20.3 mm) bacterium. Water and ethanol extracts were effective against both Gram positive and Gram negative bacteria, and water extract was better than ethanol extract. In water and ethanol extract, inhibition zones were 23.6 and 21.0 mm (S. aureus) and 26.3 and 22.3 mm (Pseudomonas aeruginosa), respectively. For plant pathogenic fungi, the highest and lowest percent inhibition of mycelial growth (PIMG) was found 82.8 and 14.4 against C. miyabeanus and Botrytis cinerea in liquid culture filtrate, respectively. In water extract, the PIMG was found to be the highest 85.2 and lowest 41.7 for C. miyabeanus and C. gloeosporioides, respectively. The inhibitory effect of ethanol extract was better against C. miyabeanus than C. gloeosporioides and B. cinerea. Among 3 samples, water extract was the best against tested pathogenic fungi. This study offers that the extracts isolated from S. ostrea contain potential compounds which inhibit the growth of both bacteria and fungi. PMID:24015099
Antimicrobial drugs encapsulated in fibrin nanoparticles for treating microbial infested wounds.
Alphonsa, B Maria; Sudheesh Kumar, P T; Praveen, G; Biswas, Raja; Chennazhi, K P; Jayakumar, R
2014-05-01
In vitro evaluation of antibacterial and antifungal drugs encapsulated fibrin nanoparticles to prove their potential prospect of using these nanocomponent for effective treatment of microbial infested wounds. Surfactant-free oil-in-water emulsification-diffusion method was adopted to encapsulate 1 mg/ml each of antimicrobial drugs (Ciprofloxacin and Fluconazole) in 4 ml of aqueous fibrinogen suspension and subsequent thrombin mediated cross linking to synthesize drug loaded fibrin nanoparticles. Ciprofloxacin loaded fibrin nanoparticles (CFNPs) showed size range of 253 ± 6 nm whereas that of Fluconazole loaded fibrin nanoparticles (FFNPs) was 260 ± 10 nm. Physico chemical characterizations revealed the firm integration of antimicrobial drugs within fibrin nanoparticles. Drug release studies performed at physiological pH 7.4 showed a release of 16% ciprofloxacin and 8% of fluconazole while as the release of ciprofloxacin at alkaline pH 8.5, was 48% and that of fluconazole was 37%. The antimicrobial activity evaluations of both drug loaded systems independently showed good antibacterial activity against Escherichia coli (E.coli), Staphylococcus aureus (S. aureus) and antifungal activity against Candida albicans (C. albicans). The in vitro toxicity of the prepared drug loaded nanoparticles were further analyzed using Human dermal fibroblast cells (HDF) and showed adequate cell viability. The efficacies of both CFNPs and FFNPs for sustained delivery of encapsulated anti microbial drugs were evaluated in vitro suggesting its potential use for treating microbial infested wounds (diabetic foot ulcer).
Sang, Ming; Wei, Hui; Zhang, Jiaxin; Wei, Zhiheng; Wu, Xiaolong; Chen, Yan; Zhuge, Qiang
2017-12-01
ABP-dHC-cecropin A is a linear cationic peptide that exhibits antimicrobial properties. To explore a new approach for expression of ABP-dHC-cecropin A using the methylotrophic yeast Pichia pastoris, we cloned the ABP-dHC-cecropin A gene into the vector pPICZαA. The SacI-linearized plasmid pPICZαA-ABP-dHC-cecropin A was then transformed into P. pastoris GS115 by electroporation. Expression was induced after a 96-h incubation with 0.5% methanol at 20 °C in a culture supplied with 2% casamino acids to avoid proteolysis. Under these conditions, approximately 48 mg of ABP-dHC-cecropin A was secreted into 1L (4 × 250-mL)of medium. Recombinant ABP-dHC-cecropin A was purified using size-exclusion chromatography, and 21 mg of pure active ABP-dHC-cecropin A was obtained from 1L (4 × 250-mL)of culture. Electrophoresis on 4-20% gradient gels indicated that recombinant ABP-dHC-cecropin A was secreted as a protein approximately 4 kDa in size. Recombinant ABP-dHC-cecropin A was successfully expressed, as the product displayed antibacterial and antifungal activities (based on an antibacterial assay, scanning electron microscopy, and antifungal assay) indistinguishable from those of the synthesized protein. Copyright © 2017 Elsevier Inc. All rights reserved.
Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea
Steinmann, J; Buer, J; Pietschmann, T; Steinmann, E
2013-01-01
The consumption of green tea (Camellia sinensis) has been shown to have many physiological and pharmacological health benefits. In the past two decades several studies have reported that epigallocatechin-3-gallate (EGCG), the main constituent of green tea, has anti-infective properties. Antiviral activities of EGCG with different modes of action have been demonstrated on diverse families of viruses, such as Retroviridae, Orthomyxoviridae and Flaviviridae and include important human pathogens like human immunodeficiency virus, influenza A virus and the hepatitis C virus. Furthermore, the molecule interferes with the replication cycle of DNA viruses like hepatitis B virus, herpes simplex virus and adenovirus. Most of these studies demonstrated antiviral properties within physiological concentrations of EGCG in vitro. In contrast, the minimum inhibitory concentrations against bacteria were 10–100-fold higher. Nevertheless, the antibacterial effects of EGCG alone and in combination with different antibiotics have been intensively analysed against a number of bacteria including multidrug-resistant strains such as methicillin-resistant Staphylococcus aureus or Stenotrophomonas maltophilia. Furthermore, the catechin EGCG has antifungal activity against human-pathogenic yeasts like Candida albicans. Although the mechanistic effects of EGCG are not fully understood, there are results indicating that EGCG binds to lipid membranes and affects the folic acid metabolism of bacteria and fungi by inhibiting the cytoplasmic enzyme dihydrofolate reductase. This review summarizes the current knowledge and future perspectives on the antibacterial, antifungal and antiviral effects of the green tea constituent EGCG. PMID:23072320
Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles
Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela
2013-01-01
The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures. PMID:23509801
Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles.
Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela
2013-01-01
The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca(10-x)Ag(x)(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against gram-positive and gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures.
Polyketide derivatives from a marine-sponge-associated fungus Pestalotiopsis heterocornis.
Lei, Hui; Lin, Xiuping; Han, Li; Ma, Jian; Dong, Kailin; Wang, Xingbo; Zhong, Jialiang; Mu, Yu; Liu, Yonghong; Huang, Xueshi
2017-10-01
Twelve previously undescribed polyketide derivatives, heterocornols A-L, and seven known analogues were isolated from a culture of the fungus Pestalotiopsis heterocornis associated with sponge. Their structures were elucidated by a comprehensive spectroscopic data analysis and CD Cotton effects. These compounds were evaluated for cytotoxic and antibacterial activities in vitro. Among them, heterocornols A-C, F-H, methyl-(2-formyl-3-hydroxyphenyl)propanoate, agropyrenol, and vaccinol G exhibited cytotoxicities against four human cancer cell lines with IC 50 values 15-100 μM, and they also showed antibacterial activities against Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with MIC values ranging from 25 to 100 μg/mL. Moreover, compounds heterocornol C, heterocornol G, agropyrenol, and vaccinol G showed weak antifungal activities against Candida parapsilosis and Cryptococcus neoformans with MIC values 100 μg/mL. Copyright © 2017 Elsevier Ltd. All rights reserved.
Antimicrobial azobenzene compounds and their potential use in biomaterials
NASA Astrophysics Data System (ADS)
Sessa, L.; Concilio, S.; Iannelli, P.; De Santis, F.; Porta, A.; Piotto, S.
2016-04-01
We recently synthesized a class of active compounds with azobenzene structure [1] and lowest in silico toxicity values. The antimicrobial activity of these molecules and their thermal stability are very promising and indicate that they may have interesting and therapeutically significant applications. This work aims to develop new materials with antibacterial and antifungal activity inserting different percentages of synthetic antimicrobial azo compounds in commercial polymer matrices. We realized thin films using solvent casting and melt compounding techniques. The obtained materials retained the proprieties of the pure matrices. This means that azo dye dissolved in the matrix does not influence the thermal behavior and the morphology of the material. Tested films exhibited the capability to inhibit biofilms formation of S. aureus and C. albicans. Spectrophotometric investigation of the azo compound released from the polymer matrices confirmed that the realized materials might be interesting for biomedical tools, antibacterial surfaces, and films for active packaging.
Sati, Ankita; Sati, Sushil Chandra; Sati, Nitin; Sati, O P
2017-03-01
Natural fats and dietary oils are chief source of fatty acids and are well known to have antimicrobial activities against various microbes. The chemical composition and antimicrobial activities of fatty acids from fruits of white Oak (Quercus leucotrichophora) are yet unexplored and therefore the present study for the first time determines the fatty acid composition, and the antibacterial and antifungal activities of fatty acid methyl esters (FAME) of the white Oak plant found along the Himalayan region of Uttarakhand, India. The GCMS analysis revealed the presence of higher amount of saturated fatty acids than unsaturated fatty acids. FAME extract of fruits of Q. leucotrichophora demonstrated better antibacterial activity against Gram-positive bacteria than the Gram-negative bacteria. The present studies clearly establish the potential of the fruits of Q. leucotrichophora for use in soap, cosmetics and pharmaceutical industries.
Ku, Tsun Sheng N; Palanisamy, Suresh K A; Lee, Samuel A
2010-11-01
Despite growing data on antimicrobial lock therapy (ALT) in treating bacterial catheter-related bloodstream infections (CR-BSIs), ALT has not been established as a treatment option for CR-BSI caused by Candida albicans. Based on our finding that high-dose doxycycline exhibited antifungal activity against mature C. albicans biofilms, we evaluated additional antibacterial agents with Gram-positive activity [azithromycin, tigecycline (TIG) and vancomycin]. After screening these antibiotics, it was found that TIG had substantial antifungal activity against mature C. albicans biofilms. Therefore, TIG was assayed alone and in combination with fluconazole (FLC), amphotericin B (AmB) or caspofungin (CAS). TIG at 2048 μg/mL resulted in a >50% reduction in the growth of planktonic C. albicans cells. TIG inhibited the formation of biofilms from 128 μg/mL. Against mature biofilms, 2048 μg/mL TIG reduced metabolic activity by 84.2%. Furthermore, addition of 512 μg/mL TIG to FLC at all concentrations tested provided additional reduction in the metabolic activity of mature biofilms. However, this was not superior to 512 μg/mL TIG alone. TIG at 512 μg/mL increased the antifungal effect of lower concentrations of AmB (0.03125-0.25 μg/mL), but at 0.03125 μg/mL and 0.0625 μg/mL this effect was not superior to 512 μg/mL TIG alone. TIG inhibited the antifungal effect of higher concentrations of AmB (≥ 2 μg/mL). TIG at 512 μg/mL inhibited the antifungal activity of CAS at lower concentrations (0.25-8 μg/mL). These data indicate that high-dose TIG is highly active in vitro against planktonic cells, forming biofilms and mature biofilms of C. albicans. Published by Elsevier B.V.
In vitro production and antifungal activity of peptide ABP-dHC-cecropin A.
Zhang, Jiaxin; Movahedi, Ali; Xu, Junjie; Wang, Mengyang; Wu, Xiaolong; Xu, Chen; Yin, Tongming; Zhuge, Qiang
2015-04-10
The antimicrobial peptide ABP-dHC-cecropin A is a small cationic peptide with potent activity against a wide range of bacterial species. Evidence of antifungal activity has also been suggested; however, testing of this peptide has been limited due to the low expression of cecropin proteins in Escherichia coli. To improve expression of this peptide in E. coli, ABP-dHC-cecropin A was cloned into a pSUMO vector and transformed into E. coli, resulting in the production of a pSUMO-ABP-dHC-cecropin A fusion protein. The soluble form of this protein was then purified by Ni-IDA chromatography, yielding a total of 496-mg protein per liter of fermentation culture. The SUMO-ABP-dHC-cecropin A fusion protein was then cleaved using a SUMO protease and re-purified by Ni-IDA chromatography, yielding a total of 158-mg recombinant ABP-dHC-cecropin A per liter of fermentation culture at a purity of ≥94%, the highest yield reported to date. Antifungal activity assays performed using this purified recombinant peptide revealed strong antifungal activity against both Candida albicans and Neurospora crassa, as well as Rhizopus, Fusarium, Alternaria, and Mucor species. Combined with previous analyses demonstrating strong antibacterial activity against a number of important bacterial pathogens, these results confirm the use of ABP-dHC-cecropin A as a broad-spectrum antimicrobial peptide, with significant therapeutic potential. Copyright © 2015 Elsevier B.V. All rights reserved.
Synthesis and biological evaluations of a series of thaxtomin analogues.
Zhang, Hongbo; Wang, Qingpeng; Ning, Xin; Hang, Hang; Ma, Jing; Yang, Xiande; Lu, Xiaolin; Zhang, Jiabao; Li, Yonghong; Niu, Congwei; Song, Haoran; Wang, Xin; Wang, Peng George
2015-04-15
Thaxtomins are a unique family of phytotoxins with unique 4-nitroindole and diketopiperazine fragments possessing potential herbicidal activities. This work presents the total synthesis of natural product thaxtomin C and its analogues. The extensive structure-activity relationship study screens four effective compounds, including thaxtomin A and thaxtomin C. It is indicated that 4-nitro indole fragment is essential for phytotoxicity, while benzyl and m-hydroxybenzyl substituents on the diketopiperazine ring are favorable for the efficacy. The N-methylations on indole and diketopiperazine show weak influence on the herbicidal activities. The four selected compounds show effective herbicidal activities against Brassica campestris, Amaranthus retroflexus, and Abutilon theophrasti, which are comparable or better than dichlobenil, even at a dosage of 187.5 g ha(-1). Moreover, these four compounds show good crop-selective properties to different crops and exhibit moderate protoporphyrinogen oxidase (PPO) enzyme inhibition. The antifungal results indicate that thaxtomin C displays inhibition to a wide range of fungi.
Lazar-Baker, E E; Hetherington, S D; Ku, V V; Newman, S M
2011-03-01
To assess the effect of several commercial essential oils samples Australian lemon myrtle (Backhousia citriodora), cinnamon bark (Cinnamomum zeylanicum), oregano (Origanum vulgare), thyme oil (Thymus vulgaris), clove bud (Eugenia caryophyllata), valerian (Valeriana officinalis) and Australian tea tree oil (Melaleuca alternifolia) on mycelium growth and spore germination of Monilinia fructicola. The effectiveness of lemon myrtle essential oil as a fumigant for the control of brown rot in nectarines was evaluated. Monilinia fructicola exhibited a different level of sensitivity to each tested essential oil with results suggesting that the essential oils provide excellent control of the pathogen with respect to mycelium growth and spore germination at very low concentrations, whereas for others higher concentrations are needed to reduce significant fungal growth. In vivo application of lemon myrtle essential oil effectively reduced the incidence of M. fructicola on noninoculated fruit. Fumigation of nectarines following inoculation did not reduce the incidence of brown rot in comparison with the inoculated control treatment. No evidence of phytotoxicity on the fruit was recorded. Lemon myrtle essential oil exhibited the strongest antifungal activity against M. fructicola, in vitro and to a lesser extent, under in vivo conditions. The results demonstrate that lemon myrtle essential oil, in particular, has potential as an antifungal agent to control M. fructicola. © 2011 NSW Industry & Investment, Australia. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.
Al-Shareef, Hossa F; Elhady, Heba A; Aboellil, Amany H; Hussein, Essam M
2016-01-01
Indolinone and spiro-indoline derivatives have been employed in the preparation of different important therapeutic compounds required for treatment of anticonvulsants, antibacterial, Antitubercular, and anticancer activities. Schiff bases have been found to possess various pharmacological activities such as antitubercular, plant growth inhibiting, insecticsidal, central nerve system depressant, antibacterial, anticancer, anti-inflammatory, and antimicrobial. Mannich bases have a variety of biological activities such as antibacterial and antifungal activities. In this study, a green, rapid and efficient protocol for the synthesis of a new series of Schiff bases from spiro[indoline-3,4'-pyran]-3'-carbonitrile derivatives using ammonium chloride as a very inexpensive and readily available reagent. The prepared compounds were assessed in vitro for their antimicrobial activity. Also, the cytotoxic activity of the prepared compounds was assessed in vitro against human cells line MCF7 breast cancer. Good activity was distinguished for Schiff bases from spiro[indoline-3,4'-pyran]-3'-carbonitriles, with some members recorded higher antimicrobial and anti-breast cancer activities.Graphical abstractNovel Schiff bases from spiro[indoline-3,4'-pyran]-3'-carbonitriles.
Heliotropamide, a novel oxopyrrolidine-3-carboxamide from Heliotropium ovalifolium.
Guntern, A; Ioset, J-R; Queiroz, E F; Sándor, P; Foggin, C M; Hostettmann, K
2003-12-01
Heliotropamide (1), a new alkaloid with a novel oxopyrrolidine-3-carboxamide central moiety, has been isolated as the major product of the dicholoromethane extract of Heliotropium ovalifolium aerial parts. Its structure was elucidated by spectrometric methods including ESI-HR, EI, D/CI mass spectrometry, (1)H, (13)C, and 2D NMR experiments, and chemical derivatization. Neither heliotropamide nor its acetylated derivative (1a) showed any antifungal activity against Cladosporium cucumerinum and Candida albicans, antibacterial activity against Bacillus subtilis, radical-scavenging properties in the DPPH test, or inhibitory potential toward acetylcholinesterase.
Biosynthesis of silver nanoparticles using fresh extracts of Tridax procumbens linn.
Bhati-Kushwaha, Himakshi
2014-04-01
A simple and eco-friendly method for the synthesis of biogenic nanoparticles (NP's) using an aqueous solution of T. procumbens fresh plant extract (leaf and stem) as a bioreductant is reported. The prepared biogenic nanoparticles were well characterized using U.V. visible spectroscopy, scanning electron microscopy, X-ray diffraction and Fourier-transform infrared spectroscopy. The particles were confirmed to be elemental crystal by X-ray diffraction. The potential applications of biosynthesized nanoparticles as antimicrobial (antibacterial and antifungal) against pathogens Escherichia coli, Vibrio cholerae, Aspergillus niger and Aspergillusflavus were demonstrated.
Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity
Venugopala, K. N.; Rashmi, V.; Odhav, B.
2013-01-01
Coumarin (2H-1-benzopyran-2-one) is a plant-derived natural product known for its pharmacological properties such as anti-inflammatory, anticoagulant, antibacterial, antifungal, antiviral, anticancer, antihypertensive, antitubercular, anticonvulsant, antiadipogenic, antihyperglycemic, antioxidant, and neuroprotective properties. Dietary exposure to benzopyrones is significant as these compounds are found in vegetables, fruits, seeds, nuts, coffee, tea, and wine. In view of the established low toxicity, relative cheapness, presence in the diet, and occurrence in various herbal remedies of coumarins, it appears prudent to evaluate their properties and applications further. PMID:23586066
Prasanna Kumar, Basavapatna N; Mohana, Kikkeri N; Mallesha, Lingappa; Harish, Kikkeri P
2013-01-01
A series of new 1,3,4-oxadiazole derivatives, 4(a-h), containing 5-chloro-2-methoxy benzohydrazide moiety were synthesized by the reaction of 5-chloro-2-methoxybenzoate with different aromatic carboxylic acids. These newly synthesized compounds were characterized by FT-IR, (1)H NMR, mass spectra, and also by elemental analysis. All the newly synthesized compounds were screened for their antibacterial and antifungal activities. Antimicrobial studies revealed that compounds 4c, 4f, and 4g showed significant activity against tested strains.
Antimicrobial Action of Compounds from Marine Seaweed
Pérez, María José; Falqué, Elena; Domínguez, Herminia
2016-01-01
Seaweed produces metabolites aiding in the protection against different environmental stresses. These compounds show antiviral, antiprotozoal, antifungal, and antibacterial properties. Macroalgae can be cultured in high volumes and would represent an attractive source of potential compounds useful for unconventional drugs able to control new diseases or multiresistant strains of pathogenic microorganisms. The substances isolated from green, brown and red algae showing potent antimicrobial activity belong to polysaccharides, fatty acids, phlorotannins, pigments, lectins, alkaloids, terpenoids and halogenated compounds. This review presents the major compounds found in macroalga showing antimicrobial activities and their most promising applications. PMID:27005637
Chemical constituents from Piper wallichii.
Shi, Yan-Ni; Yang, Lian; Zhao, Jin-Hua; Shi, Yi-Ming; Qu, Yan; Zhu, Hong-Tao; Wang, Dong; Yang, Chong-Ren; Li, Xing-Cong; Xu, Min; Zhang, Ying-Jun
2015-01-01
Fifteen known compounds including four triterpenoids (1-4), one sterol (5), one diketopiperazine alkaloid (6) and nine phenolics (7-15) were isolated from the stems of Piper wallichii. Their structures were elucidated by means of spectroscopic analysis, and acidic hydrolysis in case of the 2-oxo-3β,19α,23-trihydroxyurs-12-en-28-oic acid β-D-glucopyranosyl ester (1). The structure of compound 1 was fully assigned by 1D and 2D NMR experiments for the first time. All isolates were tested for their antibacterial, antifungal, anti-inflammatory and antiplatelet aggregation bioactivities.
Bioactivities from Marine Algae of the Genus Gracilaria
de Almeida, Cynthia Layse F.; Falcão, Heloina de S.; Lima, Gedson R. de M.; Montenegro, Camila de A.; Lira, Narlize S.; de Athayde-Filho, Petrônio F.; Rodrigues, Luis C.; de Souza, Maria de Fátima V.; Barbosa-Filho, José M.; Batista, Leônia M.
2011-01-01
Seaweeds are an important source of bioactive metabolites for the pharmaceutical industry in drug development. Many of these compounds are used to treat diseases like cancer, acquired immune-deficiency syndrome (AIDS), inflammation, pain, arthritis, as well as viral, bacterial, and fungal infections. This paper offers a survey of the literature for Gracilaria algae extracts with biological activity, and identifies avenues for future research. Nineteen species of this genus that were tested for antibacterial, antiviral, antifungal, antihypertensive, cytotoxic, spermicidal, embriotoxic, and anti-inflammatory activities are cited from the 121 references consulted. PMID:21845096
Reddy, Guda Mallikarjuna; Garcia, Jarem Raul; Reddy, Vemulapati Hanuman; de Andrade, Ageo Meier; Camilo, Alexandre; Pontes Ribeiro, Renan Augusto; de Lazaro, Sergio Ricardo
2016-11-10
Trisubstituted thiazoles were synthesized and studied for their antimicrobial activity and supported by theoretical calculations. In addition, MIC, MBC and MFC were also tested. Moreover, the present study was analyzed to scrutinize comprehensive structure-activity relationships. In fact, LUMO orbital energy and orbital orientation was reliable to explain their antibacterial and antifungal assay. Amongst the tested compounds, tri-methyl-substituted thiazole compound showed higher antimicrobial activity and low MIC value due to highest LUMO energy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Velayutham Pillai, M.; Rajeswari, K.; Vidhyasagar, T.
2014-11-01
A series of novel cyanoacetyl hydrazones of 3-alkyl-2,6-diarylpiperidin-4-ones were synthesized stereoselectively and characterized by IR, Mass, 1H NMR, 13C NMR, 1H-1H COSY and 1H-13C COSY spectra. The stereochemistry of the synthesized compounds was established using NMR spectra. Antimicrobial screening of the synthesized compounds revealed their antibacterial and antifungal potencies. Growth inhibition of Enterobacter Aerogenes by compound 15 was found to be superior to the standard drug.
Prevention of Infectious Complications in Patients With Chronic Granulomatous Disease.
Slack, Maria A; Thomsen, Isaac P
2018-05-09
Chronic granulomatous disease (CGD) is a primary immunodeficiency that confers a markedly increased risk of bacterial and fungal infections caused by certain opportunistic pathogens. Current evidence supports the use of prophylactic antibacterial, antifungal, and immunomodulatory therapies designed to prevent serious or life-threatening infections in patients with CGD. In this review, we discuss current strategies for the prevention of infections in children and adults with CGD and the evidence that supports those strategies. In addition, we address current challenges and opportunities for future research in this important area.
Djenane, Zahia; Nateche, Farida; Amziane, Meriam; Gomis-Cebolla, Joaquín; El-Aichar, Fairouz; Khorf, Hassiba; Ferré, Juan
2017-01-01
This work represents the first initiative to analyze the distribution of B. thuringiensis in Algeria and to evaluate the biological potential of the isolates. A total of 157 isolates were recovered, with at least one isolate in 94.4% of the samples. The highest Bt index was found in samples from rhizospheric soil (0.48) and from the Mediterranean area (0.44). Most isolates showed antifungal activity (98.5%), in contrast to the few that had antibacterial activity (29.9%). A high genetic diversity was made evident by the finding of many different crystal shapes and various combinations of shapes within a single isolate (in 58.4% of the isolates). Also, over 50% of the isolates harbored cry1, cry2, or cry9 genes, and 69.3% contained a vip3 gene. A good correlation between the presence of chitinase genes and antifungal activity was observed. More than half of the isolates with a broad spectrum of antifungal activity harbored both endochitinase and exochitinase genes. Interestingly, 15 isolates contained the two chitinase genes and all of the above cry family genes, with some of them harboring a vip3 gene as well. The combination of this large number of genes coding for entomopathogenic proteins suggests a putative wide range of entomotoxic activity. PMID:28406460
Novel Halogenated Pyrazine-Based Chalcones as Potential Antimicrobial Drugs.
Kucerova-Chlupacova, Marta; Vyskovska-Tyllova, Veronika; Richterova-Finkova, Lenka; Kunes, Jiri; Buchta, Vladimir; Vejsova, Marcela; Paterova, Pavla; Semelkova, Lucia; Jandourek, Ondrej; Opletalova, Veronika
2016-10-27
Chalcones, i.e., compounds with the chemical pattern of 1,3-diphenylprop-2-en-1-ones, exert a wide range of bio-activities, e.g., antioxidant, anti-inflammatory, anticancer, anti-infective etc. Our research group has been focused on pyrazine analogues of chalcones; several series have been synthesized and tested in vitro on antifungal and antimycobacterial activity. The highest potency was exhibited by derivatives with electron withdrawing groups (EWG) in positions 2 and 4 of the ring B. As halogens also have electron withdrawing properties, novel halogenated derivatives were prepared by Claisen-Schmidt condensation. All compounds were submitted for evaluation of their antifungal and antibacterial activity, including their antimycobacterial effect. In the antifungal assay against eight strains of selected fungi, growth inhibition of Candida glabrata and Trichophyton interdigitale (formerly T. mentagrophytes ) was shown by non-alkylated derivatives with 2-bromo or 2-chloro substitution. In the panel of selected bacteria, 2-chloro derivatives showed the highest inhibitory effect on Staphylococcus sp. In addition, all products were also screened for their antimycobacterial activity against Mycobacterium tuberculosis H37RV My 331/88, M. kansasii My 235/80, M. avium 152/80 and M. smegmatis CCM 4622. Some of the examined compounds, inhibited growth of M. kansasii and M. smegmatis with minimum inhibitory concentrations (MICs) comparable with those of isoniazid.
Troskie, Anscha Mari; Rautenbach, Marina; Delattin, Nicolas; Vosloo, Johan Arnold; Dathe, Margitta; Cammue, Bruno P A; Thevissen, Karin
2014-07-01
Tyrocidines are cationic cyclodecapeptides from Bacillus aneurinolyticus that are characterized by potent antibacterial and antimalarial activities. In this study, we show that various tyrocidines have significant activity against planktonic Candida albicans in the low-micromolar range. These tyrocidines also prevented C. albicans biofilm formation in vitro. Studies with the membrane-impermeable dye propidium iodide showed that the tyrocidines disrupt the membrane integrity of mature C. albicans biofilm cells. This membrane activity correlated with the permeabilization and rapid lysis of model fungal membranes containing phosphatidylcholine and ergosterol (70:30 ratio) induced by the tyrocidines. The tyrocidines exhibited pronounced synergistic biofilm-eradicating activity in combination with two key antifungal drugs, amphotericin B and caspofungin. Using a Caenorhabditis elegans infection model, we found that tyrocidine A potentiated the activity of caspofungin. Therefore, tyrocidines are promising candidates for further research as antifungal drugs and as agents for combinatorial treatment. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Antibacterial and antifungal activities of different parts of Tribulus terrestris L. growing in Iraq
Al-Bayati, Firas A.; Al-Mola, Hassan F.
2008-01-01
Antimicrobial activity of organic and aqueous extracts from fruits, leaves and roots of Tribulus terrestris L., an Iraqi medicinal plant used as urinary anti-infective in folk medicine, was examined against 11 species of pathogenic and non-pathogenic microorganisms: Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Corynebacterium diphtheriae, Escherichia coli, Proteus vulgaris, Serratia marcescens, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Candida albicans using microdilution method in 96 multiwell microtiter plates. All the extracts from the different parts of the plant showed antimicrobial activity against most tested microorganisms. The most active extract against both Gram-negative and Gram-positive bacteria was ethanol extract from the fruits with a minimal inhibitory concentration (MIC) value of 0.15 mg/ml against B. subtilis, B. cereus, P. vulgaris and C. diphtheriae. In addition, the same extract from the same plant part demonstrated the strongest antifungal activity against C. albicans with an MIC value of 0.15 mg/ml. PMID:18257138
NASA Astrophysics Data System (ADS)
Sharma, M. G.; Rajani, D. P.; Patel, H. M.
2017-06-01
A novel green and efficient one-pot multicomponent reaction of dihydropyridine derivatives was reported as having good to excellent yield. In the presence of the catalyst ceric ammonium nitrate (CAN), different 1,3-diones and same starting materials as 5-bromothiophene-2-carboxaldehyde and ammonium acetate were used at room temperature under solvent-free condition for the Hantzsch pyridine synthesis within a short period of time. All compounds were evaluated for their in vitro antibacterial and antifungal activity and, interestingly, we found that 5(b-f) show excellent activity compared with Ampicillin, whereas only the 5e compound shows excellent antifungal activity against Candida albicans compared with griseofulvin. The cytotoxicity of all compounds has been assessed against breast tumour cell lines (BT-549), but no activity was found. The X-ray structure of one such compound, 5a, viewed as a colourless block crystal, corresponded accurately to a primitive monoclinic cell.
Synthesis and Anti-microbial Activity of Novel Phosphatidylethanolamine-N-amino Acid Derivatives.
Vijeetha, Tadla; Balakrishna, Marrapu; Karuna, Mallampalli Sri Lakshmi; Surya Koppeswara Rao, Bhamidipati Venkata; Prasad, Rachapudi Badari Narayana; Kumar, Koochana Pranay; Surya Narayana Murthy, Upadyaula
2015-01-01
The study involved synthesis of five novel amino acid derivatives of phosphatidylethanolamine isolated from egg yolk lecithin employing a three step procedure i) N-protection of L-amino acids with BOC anhydride in alkaline medium ii) condensation of - CO2H group of N-protected amino acid with free -NH2 of PE by a peptide linkage and iii) deprotection of N-protected group of amino acids to obtain phosphatidylethanolamine-N-amino acid derivatives in 60-75% yield. The five L-amino acids used were L glycine, L-valine, L-leucine, L-isoleucine and L-phenylalanine. The amino acid derivatives were screened for anti-baterial activity against B. subtilis, S. aureus, P. aeroginosa and E. coli taking Streptomycin as reference compound and anti-fungal activity against C. albicans, S. cervisiae, A. niger taking AmphotericinB as reference compound. All the amino acid derivatives exhibited extraordinary anti-bacterial activities about 3 folds or comparable to Streptomycin and moderate or no anti-fungal activity against Amphotericin-B.
NASA Astrophysics Data System (ADS)
Barakat, Assem; Soliman, Saied M.; Al-Majid, Abdullah Mohammed; Ali, M.; Islam, Mohammad Shahidul; Elshaier, Yaseen A. M. M.; Ghabbour, Hazem A.
2018-01-01
In this work, polycyclic heterocycles containing spirooxindole, pyrrolidine, and thioxothiazolidin-4-one rings have been synthesized via the regioselective 1,3-dipolar cycloaddition of azomethine ylide, which is generated in situ by the condensation of the dicarbonyl compound isatin and the secondary amino acid (L-proline), with 5-arylidine-2-thioxothiazolidin-4-one as the dipolarophile. The structure of the synthesized compounds 4a and 4b were determined by using X-ray single crystal diffraction, and also, Hirshfeld surface analysis were reported. Their geometric parameters were calculated using density functional theory at the B3LYP/6-311G (d,p) level of theory. Both compounds showed antimicrobial and antifungal activity better than selected standards (ampicillin and gentamicin in case of antibacterial activity and Amphotericin A and fluconazole in case of antifungal activity). Molecular docking study of the synthesized compounds indicated that phenyl group plays an important role in determination of compound interaction inside the receptors.
Stappen, Iris; Tabanca, Nurhayat; Ali, Abbas; Wedge, David E; Wanner, Jürgen; Kaul, Vijay K; Lal, Brij; Jaitak, Vikas; Gochev, Velizar K; Schmidt, Erich; Jirovetz, Leopold
2015-06-01
The Himalayan region is very rich in a great variety of medicinal plants. In this investigation the essential oils of two selected species are described for their antimicrobial and larvicidal as well as biting deterrent activities. Additionally, the odors are characterized. Analyzed by simultaneous GC-MS and GC-FID, the essential oils' chemical compositions are given. The main components of Skimmia laureola oil were linalool and linalyl acetate whereas sabinene was found as the main compound for Juniperus macropoda essential oil. Antibacterial testing by agar dilution assay revealed highest activity of S. laureola oil against all tested bacteria, followed by J. macropoda oil. Antifungal activity was evaluated against the strawberry anthracnose causing plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. Juniperus macropoda essential oil indicated higher antifungal activity against all three pathogens than S. laureola oil. Both essential oils showed biting deterrent activity above solvent control but low larvicidal activity.
Gazoni, Vanessa Fátima; Balogun, Sikiru Olaitan; Arunachalam, Karuppusamy; Oliveira, Darley Maria; Filho, Valdir Cechinel; Lima, Samara Rosolem; Colodel, Edson Moleta; Soares, Ilsamar Mendes; Ascêncio, Sérgio Donizeti; Martins, Domingos Tabajara de Oliveira
2018-09-15
Simaba ferruginea A. St.-Hil., Simaroubaceae, popularly known as "calunga" is a typical subtropical shrub used in Central Brazil mainly for infection, anti-inflammatory, analgesic and gastric duodenal-ulcers. It presents in its composition the alkaloid canthin-6-one, an alkaloid indole β-carboxylic. This study aims to investigate the toxicity, antimicrobial activities of methanol extract of Simaba ferruginea (MESf) and canthin-6-one by using different experimental models. The present study evaluated the phytochemical analysis by high performance liquid chromatography (HPLC), toxicological potential of MESf and canthin-6-one, using the cytotoxicity, genotoxicity assays with CHO-K1 cells and in vivo acute test in mice. Antimicrobial activity was evaluated by the broth microdilution assays, while the antimicrobial mechanism of action was also assessed using different in vitro bacterial and fungal models. The HPLC analysis of MESf revealed the presence of canthin-6-one, kaempferol and morin. Differential in vitro toxicities were observed between MESf and canthin-6-one. In the cytotoxicity assay, MESf presented toxicity against CHO-K1, while canthin-6-one did not. In the case of in vitro genotoxicity, both showed to be potentially genotoxic. In the in vivo toxicity study, both MESf (up to 1000 mg/kg) and cantin-6-one (up to 100 mg/kg) caused no toxicologically relevant alterations and are thus considered not to be toxic. MESf was shown to be relatively safe with NOAEL (100 mg/kg) when administrate in mice. Both MESf and canthin-6-one also showed differential antimicrobial activities. On one hand, MESf demonstrated good spectrum of antibacterial action against Staphylococcus aureus (MIC 12.5 μg/mL) and Escherichia coli (MIC 25 μg/mL) and moderate activity against Enterococcus faecalis and Shigella flexneri (MIC 200 μg/mL) but no antifungal effect. On the hand, canthin-6-one showed no antibacterial activity, except against Staphylococcus aureus (100 μg/mL), but potent in vitro fungicidal activity against clinically important Aspergillus niger and Candida species at MFC intervals ranging from 3.12 to 25 μg/mL. Both MESf and canthin-6-one were bacteriostatic in action. MESf antimicrobial mechanism of actions are associated with changes in the permeability of bacterial membranes, evidenced by the increased entry of hydrophobic antibiotic in Shigella flexneri, intense K + efflux (Shigella flexneri, Staphylococcus aureus) and nucleotides leakage (Staphylococcus aureus). In the antifungal mode of action, canthin-6-one inhibited Saccharomyces cerevisiae growth and including alteration in the cell membrane of Neurospora crassa. The results of this work demonstrated the differential antimicrobial activities of MESf and its alkaloid isolate, canthin-6-one with antibacterial and antifungal activities, respectively. The present study support the popular use of Simaba ferruginea in combatting afflictions related to bacterial infections, and demonstrate that canthin-6-one as a promising antifungal agent. Both MESf and canthin-6-one are considered non-toxic based on the in vitro toxicological study. Copyright © 2018 Elsevier B.V. All rights reserved.
Isolation of a new broad spectrum antifungal polyene from Streptomyces sp. MTCC 5680.
Vartak, A; Mutalik, V; Parab, R R; Shanbhag, P; Bhave, S; Mishra, P D; Mahajan, G B
2014-06-01
A new polyene macrolide antibiotic PN00053 was isolated from the fermentation broth of Streptomyces sp. wild-type strain MTCC-5680. The producer strain was isolated from fertile mountain soil of Naldehra region, Himachal Pradesh, India. The compound PN00053 was purified through various steps of chromatographic techniques and bio-activity guided fractionation followed by its characterization using physiochemical properties, spectral data ((1) H-NMR, (13) C-NMR, HMBC, HSQC, and COSY) and MS analysis. PN00053 exhibited broad spectrum in vitro antifungal activity against strains of Aspergillus fumigatus (HMR), A. fumigatus ATCC 16424, Candida albicans (I.V.), C. albicans ATCC 14503, C. krusei GO6, C. glabrata HO4, Cryptococcus neoformans, Trichophyton sp. as well as fluconazole resistant strains C. krusei GO3 and C. glabrata HO5. It did not inhibit growth of gram positive and gram-negative bacteria, displaying its specificity against fungi. PN00053 is a novel polyene macrolide isolated from a wild strain of Streptomyces sp. PM0727240 (MTCC5680), an isolate from the mountainous rocky regions of Himachal Pradesh, India. The compound is a new derivative of the antibiotic Roflamycoin [32, 33-didehydroroflamycoin (DDHR)]. It displayed broad spectrum antifungal activity against yeast and filamentous fungi. However, it did not show any antibacterial activity. The in vitro study revealed that PN00053 has better potency as compared to clinical gold standard fluconazole. The development of pathogenic resistance against the polyenes has been seldom reported. Hence, we envisage PN00053 could be a potential antifungal lead. © 2014 The Society for Applied Microbiology.
Dos Santos Ramos, Matheus Aparecido; de Toledo, Luciani Gaspar; Calixto, Giovana Maria Fioramonti; Bonifácio, Bruna Vidal; de Freitas Araújo, Marcelo Gonzaga; Dos Santos, Lourdes Campaner; de Almeida, Margarete Teresa Gottardo; Chorilli, Marlus; Bauab, Taís Maria
2016-08-22
Herbal-loaded drug delivery nanotechnological systems have been extensively studied recently. The antimicrobial activity of medicinal plants has shown better pharmacological action when such plants are loaded into a drug delivery system than when they are not loaded. Syngonanthus nitens Bong. (Rhul.) belongs to the Eriocaulaceae family and presents antiulcerogenic, antioxidant, antibacterial, and antifungal activity. The aim of this study was to evaluate the antifungal activity of Syngonanthus nitens (S. nitens) extract that was not loaded (E) or loaded (SE) into a liquid crystal precursor system (S) for the treatment of vulvovaginal candidiasis (VVC) with Candida albicans. The minimal inhibitory concentration (MIC) was determined by the microdilution technique. Additionally, we performed hyphae inhibition and biofilm tests. Finally, experimental candidiasis was evaluated in in vivo models with Wistar female rats. The results showed effective antifungal activity after incorporation into S for all strains tested, with MICs ranging from 31.2 to 62.5 μg/mL. Microscopic observation of SE revealed an absence of filamentous cells 24 h of exposure to a concentration of 31.2 μg/mL. E demonstrated no effective action against biofilms, though SE showed inhibition against biofilms of all strains. In the in vivo experiment, SE was effective in the treatment of infection after only two days of treatment and was more effective than E and amphotericin B. The S. nitens is active against Candida albicans (C. albicans) and the antifungal potential is being enhanced after incorporation into liquid crystal precursor systems (LCPS). These findings represent a promising application of SE in the treatment of VVC.
dos Santos Ramos, Matheus Aparecido; de Toledo, Luciani Gaspar; Calixto, Giovana Maria Fioramonti; Bonifácio, Bruna Vidal; de Freitas Araújo, Marcelo Gonzaga; dos Santos, Lourdes Campaner; de Almeida, Margarete Teresa Gottardo; Chorilli, Marlus; Bauab, Taís Maria
2016-01-01
Herbal-loaded drug delivery nanotechnological systems have been extensively studied recently. The antimicrobial activity of medicinal plants has shown better pharmacological action when such plants are loaded into a drug delivery system than when they are not loaded. Syngonanthus nitens Bong. (Rhul.) belongs to the Eriocaulaceae family and presents antiulcerogenic, antioxidant, antibacterial, and antifungal activity. The aim of this study was to evaluate the antifungal activity of Syngonanthus nitens (S. nitens) extract that was not loaded (E) or loaded (SE) into a liquid crystal precursor system (S) for the treatment of vulvovaginal candidiasis (VVC) with Candida albicans. The minimal inhibitory concentration (MIC) was determined by the microdilution technique. Additionally, we performed hyphae inhibition and biofilm tests. Finally, experimental candidiasis was evaluated in in vivo models with Wistar female rats. The results showed effective antifungal activity after incorporation into S for all strains tested, with MICs ranging from 31.2 to 62.5 μg/mL. Microscopic observation of SE revealed an absence of filamentous cells 24 h of exposure to a concentration of 31.2 μg/mL. E demonstrated no effective action against biofilms, though SE showed inhibition against biofilms of all strains. In the in vivo experiment, SE was effective in the treatment of infection after only two days of treatment and was more effective than E and amphotericin B. The S. nitens is active against Candida albicans (C. albicans) and the antifungal potential is being enhanced after incorporation into liquid crystal precursor systems (LCPS). These findings represent a promising application of SE in the treatment of VVC. PMID:27556451
Antibacterial and antifungal activities from Siamese crocodile blood.
Leelawongtawon, Ratree; Siruntawineti, Jindawan; Chaeychomsri, Win; Sattaponpan, Chisanucha
2010-12-01
To evaluate the in vitro antimicrobial activity of the Siamese crocodile blood against bacteria and fungi. Thirty Siamese crocodile blood samples including freeze dried whole blood (FDWB), fresh serum (FS), and freeze dried serum (FDS) were evaluated for antimicrobial susceptibility and MIC values against ATCC-registered strains of nine bacterial species and two fungal species and one fungus isolated from a clinical specimen, by using the standard broth microdilution method and a modified resazurin microtiter plate assay. The result showed that FS (80 mg/ml) and FDS (100 mg/ml) inhibited Gram negative bacteria including Enterobacter aerogenes ATCC 13048, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 27736, Salmonella typhimurium ATCC 13311 and Pseudomonas aeruginosa ATCC 27853 with the susceptibility rate at 23.30%, 10.00%, 40.00%, 70.00%, and 86.67%, respectively for FS, and 30.00%, 10.00%, 43.33%, 76.67% and 90.00%, respectively for FDS. The MIC and MBC were in the range of 12.50-100.00 mg/ml and 25.00-100.00 mg/m1 respectively. FS and FDS also inhibited Cryptococcus neoformans 250309 and Aspergillus niger with the susceptibility rate at 90.00% and 80.00%, respectively for FS and 100.00% and 83.33%, respectively for FDS. The MIC was in the range of 25.00-100.00 mg/ml. However, FS and FDS did not inhibit Gram positive bacteria and did not kill fungi. FDWB (100 mg/ml) could neither inhibit bacteria nor fungi. FS and FDS from Siamese crocodile exhibited potential antibacterial and antifungal activities.
Spectroscopic, structure and antimicrobial activity of new Y(III) and Zr(IV) ciprofloxacin
NASA Astrophysics Data System (ADS)
Sadeek, Sadeek A.; El-Shwiniy, Walaa H.; Zordok, Wael A.; El-Didamony, Akram M.
2011-02-01
The preparation and characterization of the new solid complexes [Y(CIP) 2(H 2O) 2]Cl 3·10H 2O and [ZrO(CIP) 2Cl]Cl·15H 2O formed in the reaction of ciprofloxacin (CIP) with YCl 3 and ZrOCl 2·8H 2O in ethanol and methanol, respectively, at room temperature were reported. The isolated complexes have been characterized with elemental analysis, IR spectroscopy, conductance measurements, UV-vis and 1H NMR spectroscopic methods and thermal analyses. The results support the formation of the complexes and indicate that ciprofloxacin reacts as a bidentate ligand bound to the metal ion through the pyridone oxygen and one carboxylato oxygen. The activation energies, E*; entropies, Δ S*; enthalpies, Δ H*; Gibbs free energies, Δ G*, of the thermal decomposition reactions have been derived from thermogravimetric (TGA) and differential thermogravimetric (DTG) curves, using Coats-Redfern and Horowitz-Metzeger methods. The proposed structure of the two complexes was detected by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The ligand as well as their metal complexes was also evaluated for their antibacterial activity against several bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and antifungal screening was studied against two species ( Penicillium ( P. rotatum) and Trichoderma ( T. sp.)). This study showed that the metal complexes are more antibacterial as compared to free ligand and no antifungal activity observed for ligand and their complexes.
Lima, Beatriz; López, Sandra; Luna, Lorena; Agüero, María B; Aragón, Liliana; Tapia, Alejandro; Zacchino, Susana; López, María L; Zygadlo, Julio; Feresin, Gabriela E
2011-05-01
The antifungal, antibacterial, and insect-repellent activities of the essential oils (EOs) of Acantholippia seriphioides, Artemisia mendozana, Gymnophyton polycephalum, Satureja parvifolia, Tagetes mendocina, and Lippia integrifolia, collected in the Central Andes area, province of San Juan, Argentina, were investigated. The dermatophytes Microsporum gypseum, Trichophyton mentagrophytes, and T. rubrum were inhibited by the EOs of G. polycephalum, L. integrifolia, and S. parvifolia, with minimum inhibitory concentrations (MICs) between 31.2 and 1000 μg/ml. Moreover, all EOs presented moderate activity against the bacteria tested, and the L. integrifolia and G. polycephalum EOs showed excellent repellent properties against Triatoma infestans, the Chagas disease vector, with repellency values between 60 and 100%. The A. seriphioides, G. polycephalum, and L. integrifolia EOs, obtained by hydrodistillation, were characterized by GC-FID and GC/MS analyses. The highest number of components (40) was identified in L. integrifolia EO, which, along with that of A. seriphioides, contained important amounts of oxygenated monoterpenes (44.35 and 29.72%, resp.). Thymol (27.61%) and carvacrol (13.24%) were the main components of A. seriphioides EO, and borneol, lippifoli-1(6)-en-5-one, and terpinen-4-ol (>8.5%) were the principal compounds of L. integrifolia EO. These results support the idea that oxygenated monoterpenes are the bioactive fractions of the EOs. Finally, the study shows that these Andean species might be used to treat superficial fungal infections and to improve the local Chagas disease situation by vector-control. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.
Poluzzi, Elisabetta; Raschi, Emanuel; Motola, Domenico; Moretti, Ugo; De Ponti, Fabrizio
2010-04-01
Drug-induced torsades de pointes (TdP) is a complex regulatory and clinical problem due to the rarity of this sometimes fatal adverse event. In this context, the US FDA Adverse Event Reporting System (AERS) is an important source of information, which can be applied to the analysis of TdP liability of marketed drugs. To critically evaluate the risk of antimicrobial-induced TdP by detecting alert signals in the AERS, on the basis of both quantitative and qualitative analyses. Reports of TdP from January 2004 through December 2008 were retrieved from the public version of the AERS. The absolute number of cases and reporting odds ratio as a measure of disproportionality were evaluated for each antimicrobial drug (quantitative approach). A list of drugs with suspected TdP liability (provided by the Arizona Centre of Education and Research on Therapeutics [CERT]) was used as a reference to define signals. In a further analysis, to refine signal detection, we identified TdP cases without co-medications listed by Arizona CERT (qualitative approach). Over the 5-year period, 374 reports of TdP were retrieved: 28 antibacterials, 8 antifungals, 1 antileprosy and 26 antivirals were involved. Antimicrobials more frequently reported were levofloxacin (55) and moxifloxacin (37) among the antibacterials, fluconazole (47) and voriconazole (17) among the antifungals, and lamivudine (8) and nelfinavir (6) among the antivirals. A significant disproportionality was observed for 17 compounds, including several macrolides, fluoroquinolones, linezolid, triazole antifungals, caspofungin, indinavir and nelfinavir. With the qualitative approach, we identified the following additional drugs or fixed dose combinations, characterized by at least two TdP cases without co-medications listed by Arizona CERT: ceftriaxone, piperacillin/tazobactam, cotrimoxazole, metronidazole, ribavirin, lamivudine and lopinavir/ritonavir. Disproportionality for macrolides, fluoroquinolones and most of the azole antifungals should be viewed as 'expected' according to Arizona CERT list. By contrast, signals were generated by linezolid, caspofungin, posaconazole, indinavir and nelfinavir. Drugs detected only by the qualitative approach should be further investigated by increasing the sensitivity of the method, e.g. by searching also for the TdP surrogate marker, prolongation of the QT interval. The freely available version of the FDA AERS database represents an important source to detect signals of TdP. In particular, our analysis generated five signals among antimicrobials for which further investigations and active surveillance are warranted. These signals should be considered in evaluating the benefit-risk profile of these drugs.
Liu, Haitao; Wang, Quanzhen; Liu, Yuyan; Chen, Guo; Cui, Jian
2013-02-01
Solvent, impregnation time, sonication repetitions, and ultrasonic power were important factors in the process of ultrasound-assisted extraction from chicory (Cichorium intybus) root, while there were no studies about optimizing these 4 factors for extract yield, total phenolic content (TPC), antioxidant, antibacterial, and antifungal activity of the extracts using orthogonal matrix design. The present research demonstrated that the solvent composition played a significant role in the improving extract yield, TPC, antioxidant, and antibacterial activities. The other 3 factors had inequable effect on different purposes, ultrasonic power could improve TPC and antioxidant activity, but long time of extraction lowered antioxidant activity. The TPC increased from 22.34 to 27.87 mg GAE (gallic acid equivalents)/100 g (dry extracts) with increasing solvent polarity. The half inhibition concentration (IC(50,) μg/mL) of the radical scavenging activity of the chicory extracts ranged from 281.00 to 983.33 μg/mL. The content of caffeoylquinic acids of root extract, which was extracted by the optimal combination was 0.104%. Several extracts displayed antibacterial activities against Escherichia coli, Staphylococcus aureus, Bacillus thuringiensis, Bacillus subtilis, and Salmonella typhi, while Penicillium sp. and Aspergillus sp. resisted against all the extracts. Combination of 70% ethanol v/v, 24-h impregnation time, 3 sonication rounds, and 300-W ultrasonic input power was found to be the optimal combination for the chicory extract yield, TPC, antioxidant activity, and antibacterial activity. © 2012 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Fatima Khattak, Khanzadi; James Simpson, Thomas
2010-04-01
The efficacy of gamma irradiation as a method of decontamination for food and herbal materials is well established. In the present study, Glycyrrhiza glabra roots were irradiated at doses 5, 10, 15, 20 and 25 kGy in a cobalt-60 irradiator. The irradiated and un-irradiated control samples were evaluated for phenolic contents, antimicrobial activities and DPPH scavenging properties. The result of the present study showed that radiation treatment up to 20 kGy does not affect the antifungal and antibacterial activity of the plant. While sample irradiated at 25 kGy does showed changes in the antibacterial activity against some selected pathogens. No significant differences in the phenolic contents were observed for control and samples irradiated at 5, 10 and 15 kGy radiation doses. However, phenolic contents increased in samples treated with 20 and 25 kGy doses. The DPPH scavenging activity significantly ( p<0.05) increased in all irradiated samples of the plant.
Chan, Eric Wei Chiang; Wong, Siu Kuin
2015-11-01
In this review, the phytochemistry and pharmacology of two ornamental gingers, Hedychium coronarium (butterfly ginger) and Alpinia purpurata (red ginger), are updated, and their botany and uses are described. Flowers of H. coronarium are large, showy, white, yellow or white with a yellow centre and highly fragrant. Inflorescences of A. purpurata are erect spikes with attractive red or pink bracts. Phytochemical investigations on the rhizomes of H. coronarium generated research interest globally. This resulted in the isolation of 53 labdane-type diterpenes, with little work done on the leaves and flowers. Pharmacological properties of H. coronarium included antioxidant, antibacterial, antifungal, cytotoxic, chemopreventive, anti-allergic, larvicidal, anthelminthic, analgesic, anti-inflammatory, anti-urolithiatic, anti-angiogenic, neuro-pharmacological, fibrinogenolytic, coagulant and hepatoprotective activities. On the contrary, little is known on the phytochemistry of A. purpurata with pharmacological properties of antioxidant, antibacterial, larvicidal, cytotoxic and vasodilator activities reported in the leaves and rhizomes. There is much disparity in terms of research effort within and between these two ornamental gingers.
Moein, Mahmoodreza R; Zomorodian, Kamiar; Pakshir, Keyvan; Yavari, Farnoosh; Motamedi, Marjan; Zarshenas, Mohammad M
2015-01-01
Resistance to antibacterial agents has become a serious problem for global health. The current study evaluated the antimicrobial activities of essential oil and respective fractions of Trachyspermum ammi (L.) Sprague. Seeds of the essential oil were extracted and fractionated using column chromatography. All fractions were then analyzed by gas chromatography/mass spectrometry. Antifungal and antibacterial activities of the oil and its fractions were assessed using microdilution method. Compounds γ-terpinene (48.07%), ρ-cymene (33.73%), and thymol (17.41%) were determined as major constituents. The effect of fraction II was better than total essential oil, fraction I, and standard thymol. The greater effect of fraction II compared to standard thymol showed the synergistic effects of the ingredients in this fraction. As this fraction and also total oil were effective on the studied microorganism, the combination of these products with current antimicrobial agents could be considered as new antimicrobial compounds in further investigations. © The Author(s) 2014.
Four anti-protozoal and anti-bacterial compounds from Tapirira guianensis.
Roumy, Vincent; Fabre, Nicolas; Portet, Bénédicte; Bourdy, Geneviève; Acebey, Lucia; Vigor, Claire; Valentin, Alexis; Moulis, Claude
2009-01-01
Tapirira guianensis is a common tree used in traditional medicine in French Guiana against several infectious diseases (malaria, leishmaniasis, bacteria, etc.). The bioassay-guided purification of CH(2)Cl(2) bark extract led to the isolation of four cyclic alkyl polyol derivatives: 4,6,2'-trihydroxy-6-[10'(Z)-heptadecenyl]-1-cyclohexen-2-one (1a), 1,4,6-trihydroxy-1,2'-epoxy-6-[10'(Z)-heptadecenyl]-2-cyclohexene (1b), 1,4,5,2'-tetrahydroxy-1-[10'(Z)-heptadecenyl]-2-cyclohexene (2), and 1,3,4,6-tetrahydroxy-1,2'-epoxy-6-[10'(Z)-heptadecenyl]-cyclohexane (3). The structures were established on the basis of 1D and 2D NMR analyses. The anti-leishmanial, anti-plasmodial, anti-bacterial (on Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli), and anti-fungal (on Candida albicans) activities of the extracts and of these original compounds were evaluated. Two showed medicinal interest supporting the traditional uses of the plant. The structures were established through spectral analyses of the isolates and their derivatives.
Sharma, Nitin Kumar; Ameta, Rakesh Kumar; Singh, Man
2016-01-01
The Pd (II) complexes with a series of halosubstituted benzylamine ligands (BLs) have been synthesized and characterized with different spectroscopic technique such as FTIR, UV/Vis, LCMS, 1H, and 13C NMR. Their molecular sustainability in different solvents such as DMSO, DMSO : H2O, and DMSO : PBS at physiological condition (pH 7.2) was determined by UV/Vis spectrophotometer. The in vitro antibacterial and antifungal activities of the complexes were investigated against Gram-positive and Gram-negative microbes and two different fungi indicated their significant biological potential. Additionally, their antioxidant activity has been analyzed with DPPH• free radical through spectrophotometric method and the result inferred them as an antioxidant. The stronger antibacterial and antioxidant activities of the synthesized complexes suggested them as a stronger antimicrobial agent. Our study advances the biological importance of palladium (II) amine complexes in the field of antimicrobial and antioxidant activities. PMID:27119023
Nishanbaev, Sabir; Bobakulov, Khayrulla; Okhundedaev, Bakhodir; Sasmakov, Sobirdjan; Yusupova, Elvira; Azimova, Shakhnoz; Abdullaev, Nasrulla
2018-05-17
The volatile compounds of hexane, benzene extracts and essential oils (EOs) isolated by steam- and hydrodistillation methods from aerial part of Alhagi canescens were studied by GC-MS analysis. Seventeen components were found in the hexane and benzene extracts, among them palmitic acid (25.2 and 22.1%), neophytadiene (7.3 and 22.3%), cis-chrysanthenyl acetate (11.0% in benzene), cis-geranyl acetate (7.8% in benzene) were major components. The first time fifty-six volatile compounds were identified in the EOs and camphor (5.9 and 27.8%), bicyclogermacrene (13.4 and 4.0%), α-copaene (6.1 and 2.6%), (-)-germacrene D (10.8 and 3.6%) and eucalyptol (3.7 and 8.1%) were the main components. The benzene, hexane extracts and EOs were screened for their antibacterial and antifungal activity. The benzene extract possess the highest antibacterial activity against Bacillus subtilis (12.12 ± 0.20) and Staphylococcus aureus (10.04 ± 0.10).
Ünver, Yasemin; Deniz, Sadik; Çelik, Fatih; Akar, Zeynep; Küçük, Murat; Sancak, Kemal
2016-01-01
Compound 2 was synthesized by reacting CS 2 /KOH with compound 1. The treatment of compound 2 with hydrazine hydrate produced compound 3. Then, compound 3 was converted to Schiff bases (4a-d) by the handling with several aromatic aldehydes. The treatment of triazole compounds 4a-d containing Schiff base with morpholine gave compounds 5a-d. All compounds were tested for their antioxidant and antimicrobial activities. The antioxidant test results of DPPH• radical scavenging and ferric reducing/antioxidant power methods showed good antioxidant activity. The triazole-thiol (3) was the most active, and the effect of the substituent type of the thiophene ring on the activity was same for both Schiff bases (4a-d) and Mannich bases (5a-d). Among the newly synthesized triazole derivatives, the Schiff base 4d and the Mannich base 5d carrying nitro substituent on the thiophene ring showed promising antibacterial and antifungal activity, with lower MIC values than the standard antibacterial ampicillin.
One-step synthesis of carbohydrate esters as antibacterial and antifungal agents.
AlFindee, Madher N; Zhang, Qian; Subedi, Yagya Prasad; Shrestha, Jaya P; Kawasaki, Yukie; Grilley, Michelle; Takemoto, Jon Y; Chang, Cheng-Wei Tom
2018-02-01
Carbohydrate esters are biodegradable, and the degraded adducts are naturally occurring carbohydrates and fatty acids which are environmentally friendly and non-toxic to human. A simple one-step regioselective acylation of mono-carbohydrates has been developed that leads to the synthesis of a wide range of carbohydrate esters. Screening of these acylated carbohydrates revealed that several compounds were active against a panel of bacteria and fungi, including Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Candida albicans, Cryptococcus neoformans, Aspergillus flavus and Fusarium graminearum. Unlike prior studies on carbohydrate esters that focus only on antibacterial applications, our compounds are found to be active against both bacteria and fungi. Furthermore, the synthetic methodology is suitable to scale-up production for a variety of acylated carbohydrates. The identified lead compound, MAN014, can be used as an antimicrobial in applications such as food processing and preservation and for treatment of bacterial and fungal diseases in animals and plants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Abbassi, Feten; Hani, Khaled
2012-01-01
Rhus tripartitum (African sumac) is a plant commonly used in Tunisian traditional medicine to treat diarrhoea and dysentery. In this study, we have demonstrated that R. tripartitum extracts exhibited a significant broad spectrum activity against one or more of the test microorganisms with a zone size ranging from 8 to 28 mm in diameter. These diameters are much higher than those obtained with standard antibiotics. The chloroformic extracts were found to be effective against bacterial and fungal strains tested, with MIC values ranging between 0.07 and 0.62 mg mL(-1) against Staphylococcus aureus and Candida albicans. However, ethyl-acetate/methanol fractions showed a selective activity only against bacterial microorganisms with low MIC values between 0.07 and 0.15 mg mL(-1). The overall results suggested that the traditional use of R. tripartitum for the treatment of diarrhoea tract infections was attributed to the presence of antibacterial agents.
Muangham, Supattra; Pathom-Aree, Wasu; Duangmal, Kannika
2015-02-01
A total of 210 melanogenic actinomycetes were isolated from 75 rhizospheric soils using ISP6 and ISP7 agar supplemented with antifungal and antibacterial agents. Their morphological characteristics and the presence of ll-diaminopimelic acid in whole-cell hydrolyzates revealed that all isolates belonged to the genus Streptomyces. Their ability to inhibit the growth of 2 pathogenic rice bacteria, Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola, was observed using the agar overlay method. The results indicated that 61.9% of the isolates could inhibit at least one of the tested rice pathogens. Among these, isolate TY68-3 showed the highest antibacterial activity and siderophore production. The 16S rRNA gene sequence analysis of 46 representative isolates revealed that isolates with high similarity to Streptomyces bungoensis were frequently found. The present study indicated the potential of melanogenic actinomycetes for use as biocontrol agents against X. oryzae as well as their diversity in rhizospheric soils.
Ahmad, Naveed; Zia-ur-Rehman, Muhammad; Siddiqui, Hamid Latif; Ullah, Muhammad Fasih; Parvez, Masood
2011-06-01
A series of 4-hydroxy-N'-[1-phenylethylidene]-2H/2-methyl, 1,2-benzothiazine-3-carbohydrazide 1,1-dioxides was synthesized from commercially available sodium saccharin. Base catalyzed ring expansion of methyl (1,1-dioxido-3-oxo-1,2-benzisothiazol-2(3H)-yl)acetate followed by ultrasound mediated hydrazinolysis and subsequent reaction with 1-phenylethanones under the influence of microwaves yielded the title compounds. Besides, microwave assisted synthesis of 1,4-dihydropyrazolo[4,3-c][1,2]benzothiazin-3-ol 5,5-dioxide and 4-methyl-1,4-dihydropyrazolo[4,3-c][1,2]benzothiazin-3-ol 5,5-dioxide is also discussed. Most of the synthesized compounds were found to possess moderate to significant anti-microbial (anti-bacterial and anti-fungal) activities. It is found that compounds with greater lipophilicity (N-methyl analogues) possessed higher anti-bacterial activities. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
New triterpenes from Barringtonia asiatica.
Ragasa, Consolacion Yasaña; Espineli, Dinah Lorenzana; Shen, Chien-Chang
2011-01-01
The leaves of Barringtonia asiatica afforded two new triterpenes, germanicol caffeoyl ester (1) and camelliagenone (2). Their structures were elucidated by extensive 1D- and 2D-NMR spectroscopy. It also afforded germanicol trans-coumaroyl ester (3), germanicol cis-coumaroyl ester (4), germanicol (5), camelliagenin A (6), spinasterol, sitosterol, squalene, lutein and trilinolein. Compounds 3, spinasterol and trilinolein were isolated from the fruits, while the seeds yielded spinasterol, squalene, linoleic acid and trilinolein. Compounds 1-5 exhibited antifungal activity against Candida albicans, 1-3 and 5 showed antibacterial activity against Staphylococcus aureus, while 5 is active against Pseudomonas aeruginosa.
Unguisin F, a new cyclic peptide from the endophytic fungus Mucor irregularis.
Akone, Sergi H; Daletos, Georgios; Lin, Wenhan; Proksch, Peter
2016-01-01
The new cyclic heptapeptide unguisin F (1) and the known congener unguisin E (2), were obtained from the endophytic fungus Mucor irregularis, isolated from the medicinal plant Moringa stenopetala, collected in Cameroon. The structure of the new compound was unambiguously determined on the basis of one- and two-dimensional NMR spectroscopy as well as by high-resolution mass spectrometry. The absolute configuration of the amino acid residues of 1 and 2 was determined using Marfey's analysis. Compounds 1 and 2 were evaluated for their antibacterial and antifungal potential, but failed to display significant activities.
Cytotoxicity and phytochemical analyses of Orthosiphon stamineus leaves and flower extracts
NASA Astrophysics Data System (ADS)
Alwahid, Alaa Abd; Yusoff, Wan Mohtar Wan; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina
2015-09-01
Orthosiphon stamineus Benth (Lamiaceae) is a plant with many ethnobotanical uses including antifungal and antibacterial activities. This study is aimed to determine the cytotoxicity and phytochemical content of O. stamineus leaves and flower using ethanol and water as solvents. The cytotoxicity of the extracts towards Vero cell was determined by MTT assay. The CC50 values were between 3.4-7.4 mg/ml and can be considered as nontoxic. Phytochemical screening revealed terpenes, alkaloid and phenolic were present in the leaves and flower of O. stamineus that might pose as the bioactive compound.
Bina, Fatemeh; Rahimi, Roja
2016-01-01
Origanum majorana L. commonly known as sweet marjoram has been used for variety of diseases in traditional and folklore medicines, including gastrointestinal, ocular, nasopharyngeal, respiratory, cardiac, rheumatologic, and neurological disorders. Essential oil containing monoterpene hydrocarbons and oxygenated monoterpenes as well as phenolic compounds are chemical constituents isolated and detected in O majorana. Wide range of pharmacological activities including antioxidant, hepatoprotective, cardioprotective, anti-platelet, gastroprotective, antibacterial and antifungal, antiprotozoal, antiatherosclerosis, anti-inflammatory, antimetastatic, antitumor, antiulcer, and anticholinesterase inhibitory activities have been reported from this plant in modern medicine. This article summarizes comprehensive information concerning traditional uses, phytochemistry, and pharmacological activities of sweet marjoram. PMID:27231340
Wang, Xin; Mao, Zhi-Gang; Song, Bing-Bing; Chen, Chun-Hua; Xiao, Wei-Wei; Hu, Bin; Wang, Ji-Wen; Jiang, Xiao-Bing; Zhu, Yong-Hong; Wang, Hai-Jun
2013-01-01
Many metabolites with novel structures and biological activities have been isolated from the mangrove fungi in the South China Sea, such as anthracenediones, xyloketals, sesquiterpenoids, chromones, lactones, coumarins and isocoumarin derivatives, xanthones, and peroxides. Some compounds have anticancer, antibacterial, antifungal and antiviral properties, but the biosynthesis of these compounds is still limited. This review summarizes the advances in the study of secondary metabolites from the mangrove-derived fungi in the South China Sea, and their biological activities reported between 2008 and mid-2013. PMID:24084782
Antimicrobial Activity of Basil, Oregano, and Thyme Essential Oils.
Sakkas, Hercules; Papadopoulou, Chrissanthy
2017-03-28
For centuries, plants have been used for a wide variety of purposes, from treating infectious diseases to food preservation and perfume production. Presently, the increasing resistance of microorganisms to currently used antimicrobials in combination with the appearance of emerging diseases requires the urgent development of new, more effective drugs. Plants, due to the large biological and structural diversity of their components, constitute a unique and renewable source for the discovery of new antibacterial, antifungal, and antiparasitic compounds. In the present paper, the history, composition, and antimicrobial activities of the basil, oregano, and thyme essential oils are reviewed.
Prasanna Kumar, Basavapatna N.; Mohana, Kikkeri N.; Mallesha, Lingappa; Harish, Kikkeri P.
2013-01-01
A series of new 1,3,4-oxadiazole derivatives, 4(a–h), containing 5-chloro-2-methoxy benzohydrazide moiety were synthesized by the reaction of 5-chloro-2-methoxybenzoate with different aromatic carboxylic acids. These newly synthesized compounds were characterized by FT-IR, 1H NMR, mass spectra, and also by elemental analysis. All the newly synthesized compounds were screened for their antibacterial and antifungal activities. Antimicrobial studies revealed that compounds 4c, 4f, and 4g showed significant activity against tested strains. PMID:25374693
Antimicrobial activity of essential oil from Schinus molle Linn.
Gundidza, M
1993-11-01
The essential oil from the fresh leaves of Schinus molle isolated by hydrodistillation was tested for antibacterial activity using the hole plate diffusion method and for antifungal activity using the mycelium or single cell growth inhibition method. Results obtained showed that the volatile oil exhibited significant activity against the following bacterial species: Klebsiella pneumoniae, Alcaligenes faecalis, Pseudomonas aeruginosa, Leuconostoc cremoris, Enterobacter aerogenes, Proteus vulgaris, Clostridium sporogenes, Acinetobacter calcoacetica, Escherichia coli, Beneckea natriegens, Citrobacter freundii, Serratia marcescens, Bacillus subtilis and Brochothrix thermosphacata. The fungal species Aspergillus ochraceus, Aspergillus parasiticus, Fusarium culmorum and Alternaria alternata exhibited significant sensitivity to the volatile oil.
Hassanzadeh, Sara L.; Tuten, Jessika A.; Vogler, Bernhard; Setzer, William N.
2010-01-01
The essential oils from the leaves of three different individuals of Cupressus lusitanica were obtained by hydrodistillation and analyzed by gas chromatography - mass spectrometry. A total of 49 compounds were identified in the leaf oils. The major components of C. lusitanica leaf oil were α-pinene (40%-82%), limonene (4%-18%), isobornyl acetate (up to 10%) and cis-muurola-4(14),5-diene (up to 7%). The essential oil was screened for antimicrobial activity, and it showed antibacterial activity against Bacillus cereus and antifungal activity against Aspergillus niger. PMID:21808533
The anti-catabolic role of bovine lactoferricin in cartilage.
Ahmadinia, Kasra; Yan, Dongyao; Ellman, Michael; Im, Hee-Jeong
2013-10-01
Bovine lactoferricin (LfcinB) is a multifunctional peptide derived from bovine lactoferrin that demonstrates antibacterial, antifungal, antiviral, antitumor, and immunomodulatory activities. Recently, studies have focused on the anti-catabolic and anti-inflammatory potential of LfcinB. LfcinB is able to modulate the effects cytokines such as IL-1 and fibroblast growth factor 2 as well as promote specific cartilage anabolic factors. These properties are particularly important in maintaining cartilage homeostasis and preventing a catabolic state, which leads to clinical pathology. This review focuses on the recent literature elucidating the role of LfcinB in preventing cartilage degradation.
Trivedi, Rajiv; Rami Reddy, E; Kiran Kumar, Ch; Sridhar, B; Pranay Kumar, K; Srinivasa Rao, M
2011-07-01
A simple and efficient synthetic approach toward a series of chiral aryl boronate esters, starting from D-xylose, as anti-microbial agents, is described herein. Minimum inhibitory concentration and zone of inhibition revealed that these derivatives exhibit potent anti-bacterial and anti-fungal properties. Herein, we report the first anti-microbial activity of this class of compounds. All products have been characterized by NMR ((1)H, (13)C and (11)B), IR, elemental and mass spectral study. Copyright © 2011 Elsevier Ltd. All rights reserved.
Streptothricin derivatives from Streptomyces sp. I08A 1776.
Gan, Maoluo; Zheng, Xudong; Gan, Lishe; Guan, Yan; Hao, Xueqin; Liu, Yishuang; Si, Shuyi; Zhang, Yuqin; Yu, Liyan; Xiao, Chunling
2011-05-27
Five new streptothricin derivatives with a carbamoyl group substituted at C-12 (1-5) and three known analogues have been isolated from the culture broth of Streptomyces sp. I08A 1776 by ion exchange and hydrophilic interaction chromatographic techniques. Their structures were determined by spectroscopic and chemical methods. Compound 3 was a streptothricin derivative possessing a cis-streptolidine moiety. Its absolute configuration was defined by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. Compound 5 and streptothricin E (6) displayed antibacterial and antifungal activity with MIC values in the range 1-64 μg/mL.
Messali, Mouslim
2015-08-14
The present study reports a green synthesis of a new family of ionic liquids (ILs) based on functionalized 4-dimethylaminopyridinium derivatives. The structures of 23 newly synthesized ILs (2-24) were confirmed by FT-IR, (1)H-, (13)C-, (11)B-, (19)F-, and (31)P-NMR spectroscopy and mass spectrometry. The antimicrobial activity of all novel ILs was tested against a panel of bacteria and fungi. The results prove that all tested ILs are effective antibacterial and antifungal agents, especially 4-(dimethylamino)-1-(4-phenoxybutyl) pyridinium derivatives 5 and 19.
NASA Astrophysics Data System (ADS)
Chu, Eun-Hee; Shin, Eun-Jung; Park, Hae-Jun; Jeong, Rae-Dong
2015-10-01
Postharvest diseases cause considerable losses to harvested crops. Among them, gray mold (Botrytis cinerea) is a major problem of exporting to cut rose flowers into Korea. Irradiation treatment is an alternative to phytosanitary purposes and a useful nonchemical approach to the control of postharvest diseases. Gamma irradiation was evaluated for its in vitro and in vivo antifungal activity against B. cinerea on cut rose varieties, 'Shooting Star' and 'Babe'. The irradiating dose required to reduce the population by 90%, D10, was 0.99 kGy. Gamma irradiation showed complete inhibition of spore germination and mycelial growth of B. cinerea, especially 4.0 kGy in vitro. Antifungal activity of gamma irradiation on rose B. cinerea is a dose-dependent manner. A significant phytotoxicity such as bent neck in cut rose quality was shown from gamma irradiation at over 0.4 kGy (p<0.05) in both varieties. Although there is no significant difference in both varieties for fresh weight, in the case of flower rate, 'Babe' shows more sensitivity than 'Shooting Star'. In vivo assays demonstrated that established doses in in vitro, over 4 kGy, could completely inactive fungal pathogens, but such high doses can cause severe flowers damage. Thus, to eliminate negative impact on their quality, gamma irradiation was evaluated at lower doses in combination with an eco-friendly chemical, sodium dichloroisocyanurate (NaDCC) to examine the inhibition of B. cinerea. Intriguingly, only the combined treatment with 0.2 kGy of gamma irradiation and 70 ppm of NaDCC exhibited significant synergistic antifungal activity against blue mold decay in both varieties. Together, these results suggest that a synergistic effect of the combined treatment with gamma irradiation and NaDCC can be efficiently used to control the postharvest diseases in cut rose flowers, and will provide a promising technology for horticulture products for exportation.
Antifungal Activity of Gallic Acid In Vitro and In Vivo.
Li, Zhi-Jian; Liu, Meng; Dawuti, Gulina; Dou, Qin; Ma, Yu; Liu, Heng-Ge; Aibai, Silafu
2017-07-01
Gallic acid (GA) is a polyphenol natural compound found in many medicinal plant species, including pomegranate rind (Punica granatum L.), and has been shown to have antiinflammatory and antibacterial properties. Pomegranate rind is used to treat bacterial and fungal pathogens in Uyghur and other systems of traditional medicine, but, surprisingly, the effects of GA on antifungal activity have not yet been reported. In this study, we aimed to investigate the inhibitory effects of GA on fungal strains both in vitro and in vivo. The minimal inhibitory concentration (MIC) was determined by the NCCLS (M38-A and M27-A2) standard method in vitro, and GA was found to have a broad spectrum of antifungal activity, with MICs for all the tested dermatophyte strains between 43.75 and 83.33 μg/mL. Gallic acid was also active against three Candida strains, with MICs between 12.5 and 100.0 μg/mL. The most sensitive Candida species was Candida albicans (MIC = 12.5 μg/mL), and the most sensitive filamentous species was Trichophyton rubrum (MIC = 43.75 μg/mL), which was comparable in potency to the control, fluconazole. The mechanism of action was investigated for inhibition of ergosterol biosynthesis using an HPLC-based assay and an enzyme linked immunosorbent assay. Gallic acid reduced the activity of sterol 14α-demethylase P450 (CYP51) and squalene epoxidase in the T. rubrum membrane, respectively. In vivo model demonstrated that intraperitoneal injection administration of GA (80 mg/kg d) significantly enhanced the cure rate in a mice infection model of systemic fungal infection. Overall, our results confirm the antifungal effects of GA and suggest a mechanism of action, suggesting that GA has the potential to be developed further as a natural antifungal agent for clinical use. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Motealleh, Behrooz; Zahedi, Payam; Rezaeian, Iraj; Moghimi, Morvarid; Abdolghaffari, Amir Hossein; Zarandi, Mohammad Amin
2014-07-01
For the first time, it has been tried to achieve optimum conditions for electrospun poly(ε-caprolactone)/polystyrene (PCL/PS) nanofibrous samples as active wound dressings containing chamomile via D-optimal design approach. In this work, systematic in vitro and in vivo studies were carried out by drug release rate, antibacterial and antifungal evaluations, cell culture, and rat wound model along with histology observation. The optimized samples were prepared under the following electrospinning conditions: PCL/PS ratio (65/35), PCL concentration 9%(w/v), PS concentration 14%(w/v), distance between the syringe needle tip and the collector 15.5 cm, applied voltage 18 kV, and solution flow rate 0.46 mL h(-1) . The FE-SEM micrographs showed electrospun PCL/PS (65/35) nanofibrous sample containing 15% chamomile had a minimum average diameter (∼175 nm) compared to the neat samples (∼268 nm). The drug released resulted in a gradual and high amount of chamomile from the optimized PCL/PS nanofibrous sample (∼70%) in respect to PCL and PS nanofibers after 48 h. This claim was also confirmed by antibacterial and antifungal evaluations in which an inhibitory zone with a diameter of about 7.6 mm was formed. The rat wound model results also indicated that the samples loaded with 15% chamomile extract were remarkably capable to heal the wounds up to 99 ± 0.5% after 14 days post-treatment periods. The adhesion of mesenchymal stem cells and their viability on the optimized samples were confirmed by MTT analysis. Also, the electrospun nanofibrous mats based on PCL/PS (65/35) showed a high efficiency in the wound closure and healing process compared to the reference sample, PCL/PS nanofibers without chamomile. Finally, the histology analysis revealed that the formation of epithelial tissues, the lack of necrosis and collagen fibers accumulation in the dermis tissues for the above optimized samples. © 2013 Wiley Periodicals, Inc.
Mitrovic, Tatjana; Stamenkovic, Slaviša; Cvetkovic, Vladimir; Radulovic, Niko; Mladenovic, Marko; Stankovic, Milan; Topuzovic, Marina; Radojevic, Ivana; Stefanovic, Olgica; Vasic, Sava; Comic, Ljiljana
2014-01-01
The antioxidative, antimicrobial and antibiofilm potentials of acetone, ethyl acetate and methanol extracts of lichen species Platismatia glauca and Pseudevernia furfuracea were evaluated. The phytochemical analysis by GC, GC/MS and NMR revealed caperatic acid, atraric acid, atranorin and chloroatranorin as the predominant compounds in Platismatia glauca. Atraric acid, olivetoric acid, atranorin and chloroatranorin were the major constituents in Pseudevernia furfuracea. The strong antioxidant capacities of the Platismatia glauca and Pseudevernia furfuracea extracts were assessed by their total phenolic and flavonoid contents and DPPH scavenging activities. The methanol extracts of both species exhibited the strongest antioxidant activities with the highest IC50 value for Pseudevernia furfuracea (95.33 µg/mL). The lichen extracts demonstrated important antibacterial activities against 11 bacterial strains with detectable MIC values from 0.08 mg/mL to 2.5 mg/mL for Platismatia glauca and from 0.005 mg/mL to 2.5 mg/mL for Pseudevernia furfuracea. While the antibacterial activities of Pseudevernia furfuracea were solvent-independent, the acetone and ethyl acetate extracts of Platismatia glauca showed higher antibacterial activities compared to its methanol extract. The methanol extracts of both species demonstrated significant antifungal activities against 9 fungal strains with detectable MIC values from 0.04 mg/mL to 2.5 mg/mL. The best antifungal activities were determined against Candida species in Pseudevernia furfuracea extracts with remarkable MIC values which were lower than the MIC values of the positive contol fluconazole. The acetone and ethyl acetate extracts of Platismatia glauca showed better antibiofilm activities on Staphylococcus aureus and Proteus mirabilis with BIC value at 0.63 mg/mL then its methanol extract. On the other hand, the methanol extract of Pseudevernia furfuracea was more potent with BIC value at 1.25 mg/mL on Staphylococcus aureus and 0.63 mg/mL on Proteus mirabilis compared to other types of extracts. Our study indicates a possible use of lichens Platismatia glauca and Pseudevernia furfuracea as natural antioxidants and preservatives in food, pharmaceutical and cosmetic industry.
Mitrovic, Tatjana; Stamenkovic, Slaviša; Cvetkovic, Vladimir; Radulovic, Niko; Mladenovic, Marko; Stankovic, Milan; Topuzovic, Marina; Radojevic, Ivana; Stefanovic, Olgica; Vasic, Sava; Comic, Ljiljana
2014-01-01
The antioxidative, antimicrobial and antibiofilm potentials of acetone, ethyl acetate and methanol extracts of lichen species Platismatia glauca and Pseudevernia furfuracea were evaluated. The phytochemical analysis by GC, GC/MS and NMR revealed caperatic acid, atraric acid, atranorin and chloroatranorin as the predominant compounds in Platismatia glauca. Atraric acid, olivetoric acid, atranorin and chloroatranorin were the major constituents in Pseudevernia furfuracea. The strong antioxidant capacities of the Platismatia glauca and Pseudevernia furfuracea extracts were assessed by their total phenolic and flavonoid contents and DPPH scavenging activities. The methanol extracts of both species exhibited the strongest antioxidant activities with the highest IC50 value for Pseudevernia furfuracea (95.33 µg/mL). The lichen extracts demonstrated important antibacterial activities against 11 bacterial strains with detectable MIC values from 0.08 mg/mL to 2.5 mg/mL for Platismatia glauca and from 0.005 mg/mL to 2.5 mg/mL for Pseudevernia furfuracea. While the antibacterial activities of Pseudevernia furfuracea were solvent–independent, the acetone and ethyl acetate extracts of Platismatia glauca showed higher antibacterial activities compared to its methanol extract. The methanol extracts of both species demonstrated significant antifungal activities against 9 fungal strains with detectable MIC values from 0.04 mg/mL to 2.5 mg/mL. The best antifungal activities were determined against Candida species in Pseudevernia furfuracea extracts with remarkable MIC values which were lower than the MIC values of the positive contol fluconazole. The acetone and ethyl acetate extracts of Platismatia glauca showed better antibiofilm activities on Staphylococcus aureus and Proteus mirabilis with BIC value at 0.63 mg/mL then its methanol extract. On the other hand, the methanol extract of Pseudevernia furfuracea was more potent with BIC value at 1.25 mg/mL on Staphylococcus aureus and 0.63 mg/mL on Proteus mirabilis compared to other types of extracts. Our study indicates a possible use of lichens Platismatia glauca and Pseudevernia furfuracea as natural antioxidants and preservatives in food, pharmaceutical and cosmetic industry. PMID:26417313
Park, Miri; Bae, Jungdon; Lee, Dae-Sil
2008-11-01
Ginger (Zingiber officinale Roscoe) has been used widely as a food spice and an herbal medicine. In particular, its gingerol-related components have been reported to possess antimicrobial and antifungal properties, as well as several pharmaceutical properties. However, the effective ginger constituents that inhibit the growth of oral bacteria associated with periodontitis in the human oral cavity have not been elucidated. This study revealed that the ethanol and n-hexane extracts of ginger exhibited antibacterial activities against three anaerobic Gram-negative bacteria, Porphyromonas gingivalis ATCC 53978, Porphyromonas endodontalis ATCC 35406 and Prevotella intermedia ATCC 25611, causing periodontal diseases. Thereafter, five ginger constituents were isolated by a preparative high-performance liquid chromatographic method from the active silica-gel column chromatography fractions, elucidated their structures by nuclear magnetic resonance spectroscopy and electrospray ionization mass spectrometry and their antibacterial activity evaluated. In conclusion, two highly alkylated gingerols, [10]-gingerol and [12]-gingerol effectively inhibited the growth of these oral pathogens at a minimum inhibitory concentration (MIC) range of 6-30 microg/mL. These ginger compounds also killed the oral pathogens at a minimum bactericidal concentration (MBC) range of 4-20 microg/mL, but not the other ginger compounds 5-acetoxy-[6]-gingerol, 3,5-diacetoxy-[6]-gingerdiol and galanolactone.
Chen, Xiao-Hua; Koumoutsi, Alexandra; Scholz, Romy; Borriss, Rainer
2009-01-01
The genome of environmental Bacillus amyloliquefaciens FZB42 harbors numerous gene clusters involved in synthesis of antifungal and antibacterial acting secondary metabolites. Five gene clusters, srf, bmy, fen, nrs, dhb, covering altogether 137 kb, direct non-ribosomal synthesis of the cyclic lipopeptides surfactin, bacillomycin, fengycin, an unknown peptide, and the iron siderophore bacillibactin. Bacillomycin and fengycin were shown to act against phytopathogenic fungi in a synergistic manner. Three gene clusters, mln, bae, and dif, with a total length of 199 kb were shown to direct synthesis of the antibacterial acting polyketides macrolactin, bacillaene, and difficidin. Both, non-ribosomal synthesis of cyclic lipopeptides and synthesis of polyketides are dependent on the presence of a functional sfp gene product, 4'-phosphopantetheinyl transferase, as evidenced by knockout mutation of the sfp gene resulting in complete absence of all those eight compounds. In addition, here we present evidence that a gene cluster encoding enzymes involved in synthesis and export of the antibacterial acting dipeptide bacilysin is also functional in FZB42. In summary, environmental FZB42 devoted about 340 kb, corresponding to 8.5% of its total genetic capacity, to synthesis of secondary metabolites useful to cope with other competing microorganisms present in the plant rhizosphere. Copyright (c) 2008 S. Karger AG, Basel.
Antimicrobial and cytotoxic activities of 1,2,3-triazole-sucrose derivatives.
Petrova, Krasimira T; Potewar, Taterao M; Correia-da-Silva, Paula; Barros, M Teresa; Calhelha, Ricardo C; Ćiric, Ana; Soković, Marina; Ferreira, Isabel C F R
2015-11-19
A library of 1-(1',2,3,3',4,4',6-hepta-O-acetyl-6'-deoxy-sucros-6'-yl)-1,2,3-triazoles have been investigated for their antibacterial, antifungal and cytotoxic activities. Most of the target compounds showed good inhibitory activity against a variety of clinically and food contaminant important microbial pathogens. In particular, 1-(1',2,3,3',4,4',6-hepta-O-acetyl-6'-deoxy-sucros-6'-yl)-4-(4-pentylphenyl)-1,2,3-triazole (5) was highly active against all the tested bacteria with minimal inhibitory concentrations (MICs) ranging between 1.1 and 4.4 µM and bactericidal concentrations (MBCs) from 2.2 and 8.4 µM. The compound 1-(1',2,3,3',4,4',6-hepta-O-acetyl-6'-deoxy-sucros-6'-yl)-4-(4-bromophenyl)-1,2,3-triazole (3) showed antifungal activity with MICs from 0.6 to 4.8 µM and minimal fungicidal concentrations (MFCs) ranging between 1.2 and 8.9 µM. Furthermore, some of the compounds possessed moderate cytotoxicity against human breast, lung, cervical and hepatocellular carcinoma cell lines, without showing toxicity for non-tumor liver cells. The above mentioned derivatives represent promising leads for the development of new generation of sugar-triazole antifungal agents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Iyer, Meenakshi; Gujjari, Anil Kumar; Gowda, Vishakante; Angadi, Shridhar
2017-01-01
Since time immemorial, plants have continued to play a predominant role in the maintenance of human health as sources of medicinal compounds. Several effective antifungal agents are available for oral Candida infections; the failure is not uncommon because isolates of Candida albicans may exhibit resistance to the drug during therapy. The present study aimed to identify an alternative, inexpensive, simple, and effective method of preventing and controlling the candidal infection. All the procured and authenticated nutmeg seeds were dried in shade and cleaned by hand sorting. The crushed seeds were passed through mesh no. 40 individually. About 50 g of powdered nutmeg seeds was loaded in the supercritical fluid extractor unit using supercritical CO 2 as extracting solvent in accordance with the methods of Nguyen et al . Supercritical fluid (SFE) extraction was done using CO 2 gas without any cosolvents. The nutmeg extract displayed antifungal activity with the effective zone of inhibition ranging from 18.0 to 12.0 mm when compared with nystatin as positive control. This paper described the in vitro antibacterial activity, and phytochemical analysis of SFE extract of nutmeg ( Myristica fragrans ) evaluated against C. albicans (American Type Culture Collection 10231) through agar well diffusion method. SFE of nutmeg seeds can be used as an adjunct to conventional therapy for oral candidiasis.
Rivera-Yañez, C Rebeca; Terrazas, L Ignacio; Jimenez-Estrada, Manuel; Campos, Jorge E; Flores-Ortiz, Cesar M; Hernandez, Luis B; Cruz-Sanchez, Tonatiuh; Garrido-Fariña, German I; Rodriguez-Monroy, Marco A; Canales-Martinez, M Margarita
2017-12-05
The candidiasis caused by C. albicans is a public health problem. The abuse of antifungals has contributed to the development of resistance. B. morelensis has demonstrated antibacterial and antifungal activities. In this work the activity of the essential oil of B. morelensis was evaluated and for its two pure compounds with analysis of the different mechanisms of pathogenesis important for C. albicans . The essential oil was obtained by the hydro-distillation method and analyzed using GC-MS. The anti- Candida activity was compared between to essential oil, α-Pinene and γ-Terpinene. GC-MS of the essential oil demonstrated the presence of 13 compounds. The essential oil showed antifungal activity against four C. albicans strains. The most sensitive strain was C. albicans 14065 (MFC 2.0 mg/mL and MIC 50 0.125 mg/mL) with α-Pinene and γ-Terpinene having MFCs of 4.0 and 16.0 mg/mL respectively. The essential oil inhibited the growth of the germ tube in 87.94% (8.0 mg/mL). Furthermore, it was observed that the essential oil diminishes the transcription of the gene INT1. This work provides evidence that confirms the anti- Candida activity of the B. morelensis essential oil and its effect on the growth of the germ tube and transcription of the gene INT1.
Current Antimicrobial Usage for the Management of Neutropenic Fever in Korea: A Nationwide Survey
Choi, Su-Mi; Park, Sun Hee; Lee, Dong-Gun; Choi, Jung-Hyun; Yoo, Jin-Hong
2008-01-01
A nationwide questionnaire-based survey was performed to evaluate the current clinical practices for the management of neutropenic fever in hematology units and hematopoietic stem cell transplantation (HSCT) centers throughout Korea. A 86.9% response rate was obtained from a total of 46 doctors and practical policies of the 33 sites were analysed. Approximately 42.4% and 84.8% of the sites responded that they used oral fluoroquinolone as prophylaxis for neutropenic patients receiving chemotherapy and HSCT, respectively. Additionally, 42.4% of the sites responded that they used antifungal prophylaxis in the chemotherapy groups whereas 90.9% of the sites responded that they used antifungal prophylaxis in HSCT recipients. Approximately half of the responding sites prescribed combination regimen with 3rd or 4th cephalosporin plus aminoglycoside as a first-line therapy. Most of the sites considered persistent fever for 2-4 days or aggravated clinical symptoms for 1-2 days as failure of the first-line regimen, and they changed antibiotics to second-line regimens that varied widely among the sites. Twenty-seven sites (84.4%) responded that they considered adding an antifungal agent when fever persisted for 5-7 days despite antibacterial therapy. Amphotericin B deoxycholate was preferred as a first-line antifungal, which was probably due to the limitations of the national health insurance system. The role of oral antibiotics in the management of neutropenic fever still accounted for a small portion. To the best of our knowledge, this survey is the first report to examine the practical policies currently in place for the management of neutropenic fever in Korea and the results of this survey may help to establish a Korean guideline in the future. PMID:19119433
BIOLOGICAL PROPERTIES AND CHEMICAL COMPOSITION OF JATROPHA NEOPAUCIFLORA PAX
Hernández-Hernández, A. B.; Alarcón-Aguilar, F. J.; Jiménez-Estrada, M.; Hernández-Portilla, L.B.; Flores-Ortiz, C.M.; Rodríguez-Monroy, M.A.; Canales-Martínez, M
2017-01-01
Background: Ethnopharmacological relevance. Jatropha neopauciflora (Pax) is an endemic species of the Tehuacan- Cuicatlan Valley, Mexico. This species has long been used as a remedy to alleviate illnesses of bacterial, fungal and viral origin. Aim of the study. Experimentally test the traditional use of Jatropha neopauciflora in Mexican traditional medicine. Materials and methods.: The methanol extract (MeOH1), of Jatropha neopauciflora (Euphorbiaceae) was obtained by maceration. Next, the methanol (MeOH2) and hexane (H) fractions were obtained. The essential oil was obtained by hydro- distillation. The extract, fractions and essential oil were analyzed by GC-MS. The antimicrobial activity was measured by the disc diffusion agar and radial inhibition growth methods. Results: The extract and fractions showed antibacterial activity against eleven strains (five Gram-positive and six Gram- negative) and a bacteriostatic effect in the survival curves for Staphylococcus aureus and Vibrio cholerae. The extract and fractions were also shown to have antifungal activity, particularly against Trichophyton mentagrophytes (CF50 = MeOH1: 1.07 mg/mL, MeOH2: 1.32 mg/mL and H: 1.08 mg/mL). The antioxidant activity of MeOH1 (68.6 μg/mL) was higher than for MeOH2 (108.1 μg/mL). The main compounds of the essential oil were β-pinene, 1,3,8-p-menthatriene, ledene, m- menthane, linalyl acetate and 3-carene. The main compounds of MeOH1 were β-sitosterol, lupeol and pyrogallol; the main compounds of MeOH2 were β-sitosterol, spathulenol, coniferyl alcohol and lupeol; and the main compounds of H were β-sitostenone, γ-sitosterol and stigmasterol. Conclusions: This study indicates that Jatropha neopauciflora is a potential antibacterial and antifungal agent. PMID:28331913
Selestino Neta, Maria Cipriano; Vittorazzi, Catia; Guimarães, Aline Cristina; Martins, João Damasceno Lopes; Fronza, Marcio; Endringer, Denise Coutinho; Scherer, Rodrigo
2017-12-01
Orange Jessamine [Murraya paniculata L. (Rutaceae)] has been used worldwide in folk medicine as an anti-inflammatory, antibiotic and analgesic. The objective of this study is to investigate the in vitro antioxidant, cytotoxic, antibacterial and antifungal activity and the time-kill curve studies of orange jessamine essential oil and β-caryophyllene, as well as the chemical composition of the essential oil. The cytotoxic activity of M. paniculata and β-caryophyllene (7.8-500 μg/mL) was evaluated using the MTT assay on normal fibroblasts and hepatoma cells. The minimal inhibitory concentration and time-kill curves (24 h) were evaluated against those of Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Enterococcus faecallis, Aspergillus (niger, fumigates and parasiticum) and F. solani by the broth microdilution method. The antioxidant activity was measured by the DPPH and ABTS assays. Chemical composition was evaluated by GC/MS analyses. GC/MS analyses identified 13 compounds, with β-caryophyllene as the major compound. The oil exhibited moderate antibacterial activity (MIC <1.0 mg/mL) and strong antifungal activity. Time-kill curve studies showed that either the essential oil or β-caryophyllene presented rapid bacterial killing (4 h for S. aureus) and fungicidal effect (2-4 h for F. solani); however, both displayed weak free radical scavenger capacity. The cytotoxic activity exhibited a prominent selective effect against hepatoma cancer cells (IC 50 value =63.7 μg/mL) compared with normal fibroblasts (IC 50 value =195.0 μg/mL), whereas the β-caryophyllene showed low cytotoxicity. The experimental data suggest that the activities of M. paniculata essential oil are due to the synergistic action among its components.
Mahmoud, W H; Mahmoud, N F; Mohamed, G G; El-Sonbati, A Z; El-Bindary, A A
2015-01-01
The coordination behavior of a series of transition metal ions named Cr(III), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a mono negative tridentate guaifenesin ligand (GFS) (OOO donation sites) and 1,10-phenanthroline (Phen) is reported. The metal complexes are characterized based on elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, UV-vis spectral studies, mass spectroscopy, ESR, XRD and thermal analysis (TG and DTG). The ternary metal complexes were found to have the formulae of [M(GFS)(Phen)Cl]Cl·nH2O (M=Cr(III) (n=1) and Fe(III) (n=0)), [M(GFS)(Phen)Cl]·nH2O (M=Mn(II) (n=0), Zn(II) (n=0) and Cu(II) (n=3)) and [M(GFS)(Phen)(H2O)]Cl·nH2O (M=Co(II) (n=0), Ni(II) (n=0) and Cd(II) (n=4)). All the chelates are found to have octahedral geometrical structures. The ligand and its ternary chelates are subjected to thermal analyses (TG and DTG). The GFS ligand, in comparison to its ternary metal complexes also was screened for their antibacterial activity on gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and for in vitro antifungal activity against (Candida albicans). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent GFS ligand. The complexes were also screened for its in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity. Copyright © 2015 Elsevier B.V. All rights reserved.
Jameel, Mohammad; Islamuddin, Mohammad; Ali, Abuzer; Afrin, Farhat; Ali, Mohammed
2014-03-12
Fumaria parviflora Lam. (Fumaraceae) is widely used in traditional as well as folkloric system of medicine from ancient. It is commonly known as 'Pitpapra' or 'Shahtrah' in Indian traditional system of medicine and used for treating numerous ailments like diarrhea, fever, influenza, blood purifier and other complications. The object of the present study was to evaluate the Antileishmanial, antibacterial, antifungal and cytotoxic potential of isolated compound. Methanolic extract of whole plant of Fumaria parviflora was dried under reduced pressure to obtain a dark brown residue which was adsorbed on silica gel column grade (60-120 mesh) to obtain a slurry and chromatographed over silica gel loaded column in petroleum ether-chloroform (3:1, 1:1 and 1:3 v/v). The in vitro antileishmanial evaluation of isolated compound against Leishmania donovani promastigotes was investigated by growth kinetics assay, reversibility assay, analysis of cellular morphology, adverse toxicity and determination of 50% growth inhibitory concentration (GI50). Disc diffusion and broth micro dilution methods were used to study the antibacterial (Gram + Staphylococcus epidermidis and Bacillus subtilis; Gram - Escherichia coli and Salmonella typhimurium) and antifungal (Candida albicans and Aspergillus niger) potential in vitro. Structure elucidation by spectral data analysis revealed a novel compound, n-octacosan-7β-ol (OC), yield (0.471%), having significant antimicrobial activity against Leishmania donovani promastigotes, Staphylococcus epidermidis, Escherichia coli, Candida albicans and Aspergillus niger in vitro with GI50 = 5.35, MIC 250, MIC 250 and MFC 500 and MIC 250 μg ml(-1) respectively. The isolated compound did not show adverse effect against mammalian macrophages. The available evidence of compound suggested that it may be used as antimicrobial agent in future and may provide new platform for drug discovery programmes for leishmaniasis.
Chohan, Zahid H; Sumrra, Sajjad H; Youssoufi, Moulay H; Hadda, Taibi B
2010-07-01
A new series of oxovanadium(IV) complexes have been designed and synthesized with a new class of triazole Schiff bases derived from the reaction of 3,5-diamino-1,2,4-triazole with 2-hydroxy-1-naphthaldehyde, pyrrole-2-carboxaldehyde, pyridine-2-carboxaldehyde and acetyl pyridine-2-carboxaldehyde, respectively. Physical (magnetic susceptibility, molar conductance), spectral (IR, (1)H NMR, (13)C NMR, mass and electronic) and analytical data have established the structures of these synthesized Schiff bases and their oxovanadium(IV) complexes. The Schiff bases, predominantly act as bidentate and coordinate with the vanadium(IV) metal to give a stoichiometric ratio of 1:2 [M:L], forming a general formulae, [M(L-H)(2)] and [M(L)(2)]SO(4) where L = (L(1))-(L(4)) and M = VO(IV) of these complexes in a square-pyramidal geometry. In order to evaluate the biological activity of Schiff bases and to assess the role of vanadium(IV) metal on biological activity, the triazole Schiff bases and their oxovanadium(IV) complexes have been studied for in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexenari, Pseudomonas aeruginosa, Salmonella typhi) and two Gram-positive (Staphylococcus aureus, Bacillus subtilis) bacterial strains, in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glaberata. The simple Schiff bases showed weaker to significant activity against one or more bacterial and fungal strains. In most of the cases higher activity was exhibited upon coordination with vanadium(IV) metal. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
Cytotoxic and antimicrobial activity of selected Cameroonian edible plants
2013-01-01
Background In Cameroon, the use of edible plants is an integral part of dietary behavior. However, evidence of the antimicrobial as well as the cytotoxic effects of many of them has not been investigated. In the present study, aqueous and methanol extracts from barks, seeds, leaves and roots of three Cameroonian edible plants namely Garcina lucida, Fagara heitzii and Hymenocardia lyrata were evaluated for their cytotoxic and antimicrobial activities. Methods Antibacterial and antifungal activities were assessed by the broth micro-dilution method meanwhile the cytotoxicity was performed using sulphorhodamine B assay (SRB) against the human leukemia THP-1, the alveolar epithelial A549, prostate cancer PC-3, breast adenocarcinoma MCF-7 and cervical cancer HeLa cell lines. Results The minimum inhibitory concentration (MIC) values of the seven tested extracts ranged from 62.5 μg/ml to 1000 μg/ml. The methanol (MeOH) extract from the roots of H. lyrata showed the highest antibacterial activity against Gram-positive bacteria S. aureus and S. epidermitis. The best antifungal activity was obtained with the MeOH extract from the leaves of G. lucida against C. tropicalis (MIC value of 62.5 μg/ml). The in vitro antiproliferative activity revealed that, extract from the bark of F. heitzii and extract from H. lyrata roots had significant cytotoxic activity on THP-1 (IC50 8.4 μg/ml) and PC-3 (IC50 9.5 μg/ml) respectively. Conclusion Our findings suggest that Cameroonian spices herein studied could be potentially useful for the development of therapeutic agents against bacterial infections as well as for prostate and leukemia cancer. PMID:23565827
Garcia-Gonzalez, Eva; Müller, Sebastian; Hertlein, Gillian; Heid, Nina; Süssmuth, Roderich D; Genersch, Elke
2014-10-01
Paenibacillus larvae is the etiological agent of American Foulbrood (AFB) a world-wide distributed devastating disease of the honey bee brood. Previous comparative genome analysis and more recently, the elucidation of the bacterial genome, provided evidence that this bacterium harbors putative functional nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) and therefore, might produce nonribosomal peptides (NRPs) and polyketides (PKs). Such biosynthesis products have been shown to display a wide-range of biological activities such as antibacterial, antifungal or cytotoxic activity. Herein we present an in silico analysis of the first NRPS/PKS hybrid of P. larvae and we show the involvement of this cluster in the production of a compound named paenilamicin (Pam). For the characterization of its in vitro and in vivo bioactivity, a knock-out mutant strain lacking the production of Pam was constructed and subsequently compared to wild-type species. This led to the identification of Pam by mass spectrometry. Purified Pam-fractions showed not only antibacterial but also antifungal and cytotoxic activities. The latter suggested a direct effect of Pam on honey bee larval death which could, however, not be corroborated in laboratory infection assays. Bee larvae infected with the non-producing Pam strain showed no decrease in larval mortality, but a delay in the onset of larval death. We propose that Pam, although not essential for larval mortality, is a virulence factor of P. larvae influencing the time course of disease. These findings are not only of significance in elucidating and understanding host-pathogen interactions but also within the context of the quest for new compounds with antibiotic activity for drug development. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; El-Hawary, W. F.; Mohamed, Mahmoud A.
2012-04-01
This paper has reviewed the chemical and biological impact resulting from the interaction between norfloxacin (norH) antibiotic drug and two lanthanide (lanthanum(III) and cerium(III)) metal ions, which prepared in normal and nano-features. La(III) and Ce(III) complexes were synthesized with chemical formulas [La(nor)3]·3H2O and [Ce(nor)3]·2H2O. Lanthanum and cerium(III) ions coordinated toward norH with a hexadentate geometry. The norH acts as deprotonated bidentate ligand through the oxygen atom of carbonyl group and the oxygen atom of carboxylic group. Elemental analysis, FT-IR spectral, electrical conductivity, thermal analysis (TG/DTA), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) measurements have been used to characterize the mentioned isolated complexes. The Coats-Redfern and Horowitz-Metzger integral methods are used to estimate the kinetic parameters for the major successive steps detectable in the TG curve. The brightness side in this study is to take advantage for the preparation and characterization of single phases of La2O3 and CeO2 nanoparticles using urea as precursors via a solid-state decomposition procedure. The norH ligand in comparison with both cases (normal and nano-particles) of lanthanide complexes were screened against for antibacterial (Escherichia Coli, Staphylococcus Aureus, Bacillus subtilis and Pseudomonas aeruginosa) and antifungal (Aspergillus Flavus and Candida Albicans) activities. The highest antibacterial and antifungal activities data of the nano-particles complexes were observed with more potent than the free norH and normal lanthanide complexes.
Artemisia spp. essential oils against the disease-carrying blowfly Calliphora vomitoria.
Bedini, Stefano; Flamini, Guido; Cosci, Francesca; Ascrizzi, Roberta; Echeverria, Maria Cristina; Guidi, Lucia; Landi, Marco; Lucchi, Andrea; Conti, Barbara
2017-02-13
Synanthropic flies play a considerable role in the transmission of pathogenic and non-pathogenic microorganisms. In this work, the essential oil (EO) of two aromatic plants, Artemisia annua and Artemisia dracunculus, were evaluated for their abilities to control the blowfly Calliphora vomitoria. Artemisia annua and A. dracunculus EOs were extracted, analysed and tested in laboratory bioassays. Besides, the physiology of EOs toxicity and the EOs antibacterial and antifungal properties were evaluated. Both Artemisia EOs deterred C. vomitoria oviposition on fresh beef meat. At 0.05 μl cm -2 A. dracunculus EO completely inhibited C. vomitoria oviposition. Toxicity tests, by contact, showed LD 50 of 0.49 and 0.79 μl EO per fly for A. dracunculus and A. annua, respectively. By fumigation, LC 50 values were 49.55 and 88.09 μl l -1 air for A. dracunculus and A. annua, respectively. EOs AChE inhibition in C. vomitoria (IC 50 = 202.6 and 472.4 mg l -1 , respectively, for A. dracunculus and A. annua) indicated that insect neural sites are targeted by the EOs toxicity. Finally, the antibacterial and antifungal activities of the two Artemisia EOs may assist in the reduction of transmission of microbial infections/contaminations. Results suggest that Artemisia EOs could be of use in the control of C. vomitoria, a common vector of pathogenic microorganisms and agent of human and animal cutaneous myiasis. The prevention of pathogenic and parasitic infections is a priority for human and animal health. The Artemisia EOs could represent an eco-friendly, low-cost alternative to synthetic repellents and insecticides to fight synanthropic disease-carrying blowflies.
Enhancement of Calibrachoa growth, secondary metabolites and bioactivity using seaweed extracts.
Elansary, Hosam O; Norrie, Jeff; Ali, Hayssam M; Salem, Mohamed Z M; Mahmoud, Eman A; Yessoufou, Kowiyou
2016-09-02
Calibrachoa x hybrida (Solanaceae) cultivars are widely used in North and South America as ornamental plants. Their potential as a source of antimicrobial compounds might be enhanced by seaweed extract (SWE) applications. SWE of Ascophyllum nodosum were applied at 5 and 7 ml/L as a soil drench or foliar spray on Calibrachoa cultivars of Superbells® 'Dreamsicle' (CHSD) and Superbells® 'Frost Fire' (CHSF). The total phenolics, tannins and antioxidants composition as well as specific flavonols in leaf extracts were determined. Further, the chemical composition of SWE was assessed. The drench and foliar SWE treatments significantly enhanced Calibrachoa cultivars leaf number and area, dry weight, plant height, antioxidant capacity as well as phenolic, flavonols and tannin content. The increased growth and composition of phenols, flavonols and tannins was attributed to the stimulatory effects of SWE mineral composition. The antifungal activity of Calibrachoa cultivars was significantly enhanced following SWE treatments and the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) were in the range of 0.07-0.31 mg/ml and from 0.16 to 0.56 mg/ml, respectively. Moreover, antibacterial activity was significantly increased and the MIC and minimum bactericidal concentration (MBC) measurements were in the range of 0.06-0.23 mg/ml and from 0.10 to 0.44 mg/ml, respectively. The most sensitive fungus to SWE treatments was C. albicans and the most sensitive bacterium was E. cloacae. The results suggest that enhanced antifungal and antibacterial activities might be attributed to significant increases of phenolic, flavonols and tannin contents, which ultimately enhance the potential of Calibrachoa as a natural source of alternative antibiotics.
NASA Astrophysics Data System (ADS)
Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Shah, Naseer Ali
2017-09-01
This paper reports the synthesis, X-ray crystal structure, DNA-binding, antibacterial and antifungal studies of a rare dihydroxo-bridged dinuclear copper(II) complex including 1,10-phenanthroline (Phen) ligands and phenylacetate (L) anions, [Cu2(Phen)2(OH)2(H2O)2].2L.6H2O. Structural data revealed distorted square-pyramidal geometry for each copper(II) atom with the basal plane formed by the two nitrogen atoms of the phenantroline ligand and the oxygen atoms of two bridging hydroxyl groups. The apical positions are filled by the oxygen atom from a water molecule. This forms a centrosymmetric cationic dimer where the uncoordinated phenylacetate ligands serve to balance the electrical charge. The dimers interact by means of hydrogen bonds aided by the coordinated as well as uncoordinated water molecules and phenyl-acetate moieties in the crystal lattice. The binding ability of the complex with salmon sperm DNA was determined using cyclic voltammetry and absorption spectroscopy yielding binding constants 2.426 × 104 M-1 and 1.399 × 104 M-1, respectively. The complex was screened against two Gram-positive (Micrococcus luteus and Bacillus subtilis) and one Gram-negative (Escherichia coli) bacterial strains exhibiting significant activity against all the three strains. The complex exhibited significant, moderate and no activity against fungal strains Mucor piriformis, Helminthosporium solani and Aspergillus Niger, respectively. These preliminary tests indicate the competence of the complex towards the development of a potent biological drug.
Tyczkowska-Sieron, E; Markiewicz, J; Grzesiak, B; Krukowski, H; Glowacka, A; Tyczkowski, J
2018-01-01
Mastitis is a serious bovine diseases that can be caused by Prototheca zopfii, yeast-like algae belonging to the family Chlorellaceae. The substantial economic losses and health damage associated with bovine mastitis emphasize the need to develop effective strategies aimed at control of the infection. Unfortunately, P. zopfii is highly resistant to most common antibacterial and antifungal agents, as well as to heat treatment. We report here the first attempt to use cold atmospheric plasma to inactivate this pathogen. We studied 20 strains of P. zopfii isolated from milk samples taken from cows with clinical or subclinical mastitis. The studies confirmed the high level of resistance of P. zopfii to typical antifungal agents, such as voriconazole, fluconazole, amphotericin B, caspofungin, anidulafungin, and micafungin. In contrast, each of the strains revealed high susceptibility to cold atmospheric plasma, >2-fold higher compared with a reference strain of Candida albicans. The obtained results are promising and open up a new approach in the fight against P. zopfii. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Verma, Shyam B; Vasani, Resham
2016-10-01
Genital dermatophytosis has been considered rare by most Western authorities. However, to the contrary, Indian reports have shown a higher prevalence of genital dermatophytosis due to warm and humid climate, overcrowding and lack of hygiene. A review is presented for 24 cases of male genital dermatophytosis occurring in patients suffering from tinea cruris in India who have been randomly applying various broad-spectrum steroid antifungal and antibacterial creams containing one or more antifungal and antibiotic in addition to potent corticosteroids, mainly clobetasol propionate. This is such a common phenomenon that Indian dermatologists are witnessing an epidemic of sorts of steroid-modified dermatophytosis and we hereby share various clinical presentations of dermatophytosis of penis and/or scrotum in patients with tinea cruris who have been applying the above-mentioned creams. The review also discusses the bleak scenario that prevails in India regarding the drug regulatory affairs that allow such dangerous and irrational combinations that are sold over the counter because of misinterpretation of the law and lax implementation of existing laws. © 2016 Blackwell Verlag GmbH.
Antifungal and antibacterial activity of marine microorganisms.
El Amraoui, B; El Amraoui, M; Cohen, N; Fassouane, A
2014-03-01
In order to explore marine microorganisms with pharmaceutical potential, marine bacteria, collected from different coastal areas of the Moroccan Atlantic Ocean, were previously isolated from seawater, sediment, marine invertebrates and seaweeds. The antimicrobial activities of these microorganisms were investigated against the pathogens involved in human pathologies. Whole cultures of 34 marine microorganisms were screened for antimicrobial activities using the method of agar diffusion against three Gram-positive bacteria, two Gram-negative bacteria, and against yeast. The results showed that among the 34 isolates studied, 28 (82%) strains have antimicrobial activity against at least one pathogen studied, 11 (32%) strains have antifungal activity and 24 (76%) strains are active against Gram-positive bacteria, while 21 (62%) strains are active against Gram-negative bacteria. Among isolates having antimicrobial activity, 14 were identified and were assigned to the genera Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Enterococcus, Pantoea and Pseudomonas. Due to a competitive role for space and nutrient, the marine microorganisms can produce antibiotic substance; therefore, these marine microorganisms were expected to be potential resources of natural antibiotic products. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Kayalvizhi, R.; Ponnuswamy, S.; Gomathi, K.; Ezhilarasi, K. S.; Usha, G.
2018-02-01
A new series of N-dichloroacetyl-bis(2-chlorophenyl)piperidin-4-ones 4-6 has been synthesized and characterized using IR, 1H, 13C, DEPT and 2D (COSY and HSQC) NMR spectral techniques. The NMR spectral data indicate that the N-acylpiperidin-4-ones 4-6 prefer to exist in an equilibrium between the twist boat conformations with coplanar orientation of Nsbnd Cdbnd O moiety. Furthermore, the antibacterial and antifungal studies have been carried out for compounds 1-6 and the results show that they possess significant activity towards the bacterial organisms Staphylococcus aureus and Salmoneela paratyphi and better activity against the remaining bacterial organisms. All the compounds 1-6 possess moderate antifungal activity. The compounds 4-6 have been docked with the structure of MRSA and the results demonstrate that the compounds 4-6 have similar docking score and glide energy when compared to each other and thus having equal binding affinity. The antioxidant studies show greater activity for compound 4 and poor activity for compounds 5 &6 when compared to the standard drug.
Characteristics and antimicrobial activity of copper-based materials
NASA Astrophysics Data System (ADS)
Li, Bowen
In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger antibacterial activity than copper vermiculite against E. coli. With 200 ppm exfoliated copper vermiculite in bacteria suspension (4.68 ppm of metal copper), the reduction of viable bacteria are 99.8% at 1 hour, and >99.9% at 2 hours. With 10 ppm exfoliated copper vermiculite in bacteria dilution (0.234 ppm of copper atoms), the reduction of viable E. coli reached 98.7% at 1 hour, and >95.6% at 2 hours. Molds have the potential to cause health problems, such as allergic reactions, irritations, and mycotoxins, and damage to buildings, historic relics, properties, etc. Since copper has better antifungal property, an initial antifungal activity of copper vermiculite was evaluated in this study. Fat-free milk was used to develop molds in the test samples by saturated samples. Incubated at 36°C for 48 hours, all of the surfaces of untreated control samples, including micron-sized vermiculite, exfoliated vermiculite, bentonite, and kaolin, have been covered by thick mold layers. However, there were no mold showed on copper vermiculite and exfoliated copper vermiculite. Even after the incubation was lasted for 10 days, copper vermiculite and exfoliated copper vermiculite did not show any mold on the surface. These results exhibited copper vermiculite has excellent antifungal activities against mold. Stability of copper ions in copper vermiculite was measured by aqueous leaching process. Copper vermiculite and exfoliated copper vermiculite were put into distilled water in a ratio of 2.0g/100ml, and then implemented leaching processes by continuously shaking (leaching) and statically storing (soaking) for desired periods of time, respectively. According to the analytic result by inductively coupled plasma spectroscopy (ICP), the major metals released were copper, magnesium, iron, silicon, and aluminum. The release rate of copper depends on the environmental conditions. Under the dynamic leaching condition, all the major elements had shown linear leaching rates, and slowly increases along with the leaching time. Copper concentration in 1 hour leached solutions had sufficient concentration to inhibit E. coli in aqueous solution. Lasting for 1 month, 1 gram of copper vermiculite only released 185mug of copper. At this velocity, 11.5 years are required to completely exhaust the copper atoms from copper vermiculite. A soaking process provided a lower release rate than leaching process. Comparably, exfoliated copper vermiculite had lower copper concentration, stronger antimicrobial effect, but faster release rate than copper vermiculite, due to their different structure characteristics. (Abstract shortened by UMI.)
Prophylactic Measures During Induction for Acute Myeloid Leukemia.
McCarthy, Matthew W; Walsh, Thomas J
2017-03-01
Improved management of infectious complications of acute myeloid leukemia (AML) has contributed substantially to the success of care over the past half century. An important approach to reducing infectious complications during the induction period of chemotherapy involves the use of prophylactic antibacterial, antiviral, and antifungal agents targeting likely pathogens. There is not a one-size-fits-all approach to prophylaxis; every patient undergoing induction therapy should be evaluated individually and within the context of local microbiologic epidemiology and host risk factors. Pharmacologic and non-pharmacologic interventions as well as novel diagnostic platforms can help mitigate the risk of life-threatening infection in patients with AML who undergo induction chemotherapy.
Gao, Su-Hua; Zhao, Guo-Xiang; Yang, Xiao-Dong; Xu, Ling-Ling
2013-06-01
To prepare the aromatic, natural and bacteriostatic foot wash with skin care and research the inhibition effect on the different bacteria and pathogenic fungus which cause dermatophytosis. It was prepared by using Sophoraflavescens and Dictamnus dasycarpus as materials with the addition of Aloe extract, essential oil, surfactant, etc. The antifungal and antibacterial activity was researched by the levitation liquid quantitative method. The foot wash smelled faintly scent. The use of this product can produce a rich foam. The inhibitory rate were all more than 90%. The preparation process of the foot wash was simple. It has obviously bacteriostatic and fungistatic effect.
Synthetic Aziridines in Medicinal Chemistry: A Mini-Review.
Singh, Girija S
2016-01-01
Azaheterocyclic compounds are well-known to have diverse types of biological activity. Among them, azacyclopropanes, commonly referred as aziridines, occupy a prominent place in synthetic organic and medicinal chemistry due to its occurrence in natural resources, complexity involved in synthesis due to ring-strain, building blocks in organic synthesis, and its biological properties. Several novel compounds containing aziridine ring have been designed and synthesized recently by medicinal chemists for evaluating their biological profile. A number of compounds are reported as cysteine protease inhibitors, antibacterial, antifungal, anticancer, antileishmanial, and antimalarial agents. This review article summarizes the biological activity of such compounds. The preparation of such compounds is also described.
Comparison of Antimicrobial Properties of Nano Quinolone with its Microscale Effects
NASA Astrophysics Data System (ADS)
Behbahani, G. Rezaie; Sadr, M. Hossaini; Nabipour, H.; Behbahani, H. Rezaei; Vahedpour, M.; Barzegar, L.
2013-06-01
Nano nalidixic acid was prepared by ultrasonic method in carbon tetrachloride. Nano nalidixic acid (quinolone antibiotic) was characterized by X-ray diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscope (SEM). The antibacterial activities of nano nalidixic acid were tested against microorganisms and compared with the microscale drug. The results show that nano nalidixic acid has good inhibitory properties against two Gram-positive species, Staphylococcus aureus and Bacillus subtilis. Nano nalidixic acid also showed good antifungal activity against Candida albicans. Nano nalidixic acid can be injected into the human body as a decontaminating agent to prevent the growth of harmful microorganisms more effectively than the micro-sized drug.
Application of Various Types of Liposomes in Drug Delivery Systems
Alavi, Mehran; Karimi, Naser; Safaei, Mohsen
2017-01-01
Liposomes, due to their various forms, require further exploration. These structures can deliver both hydrophilic and hydrophobic drugs for cancer, antibacterial, antifungal, immunomodulation, diagnostics, ophtalmica, vaccines, enzymes and genetic elements. Preparation of liposomes results in different properties for these systems. In addition, based on preparation methods, liposomes types can be unilamellar, multilamellar and giant unilamellar; however, there are many factors and difficulties that affect the development of liposome drug delivery structure. In the present review, we discuss some problems that impact drug delivery by liposomes. In addition, we discuss a new generation of liposomes, which is utilized for decreasing the limitation of the conventional liposomes. PMID:28507932
Basavaraju, B; Naik, Halehatty S Bhojya; Prabhakara, Mustur C
2007-01-01
The synthesis and characterization of title complexes of the ligand Quinolino[3,2-b]benzodiazepine (QBD) and Quinolino[3,2-b]benzoxazepine (QBO) are reported. The complexes have been characterized by elemental analysis, molar conductance, magnetic studies, IR, H1 NMR, and UV-visible studies. They have the stoichiometry [ML2C12], where M=Co(II)/Ni(II), L=QBD/QBO, and [MLC12], where M=Zn(II)/Cd(II), L=QBD/QBO. The antibacterial and antifungal activity of the metal complexes has been investigated. The complexes were found to have higher antimicrobial activity than the parent ligand.
The medicinal and pharmaceutical importance of Dendrobium species.
Teixeira da Silva, Jaime A; Ng, Tzi Bun
2017-03-01
Plants of the Dendrobium genus, one of the largest in the Orchidaceae, manifest a diversity of medicinal effects encompassing antiangiogenic, immunomodulating, antidiabetic, cataractogenesis-inhibiting, neuroprotective, hepatoprotective, anti-inflammatory, antiplatelet aggregation, antifungal, antibacterial, antiherpetic, antimalarial, aquaporin-5 stimulating, and hemagglutininating activities and also exert beneficial actions on colonic health and alleviate symptoms of hyperthyroidism. The active principles include a wide range of proteinaceous and non-proteinaceous molecules. This mini-review discusses the latest advances in what is known about the medicinal and pharmaceutical properties of members of the Dendrobium genus and explores how biotechnology can serve as a conduit to mass propagate valuable germplasm for sustainable exploration for the pharmaceutical industry.
Sakiyan, Iffet; Anar, Mustafa; Oğütcü, Hatice; Agar, Guleray; Sarı, Nurşen
2014-06-01
This study was conducted to evaluate the antimutagenic and antimicrobial activities of Schiff bases attached L-glutamine and L-asparagine. Antibacterial activities of the compounds against S. aureus, Sh. dys. typ 7, L. monocytogenes 4b, E. coli, S. typhi H, S. epidermis, Br. abortus, M. luteus, B. cereus, P. putida, and antifungal activity against Candida albicans were studied. These compounds were investigated for antimutagenic properties against Aflatoxin Bı (AFBı) using micronuclei (MN) assay in human lymphocyte cell culture in vitro. The protective role of these compounds against AFBı-induced MN is probably related to its doses.
Ghafoor, Bakhtawar; Ansari, Umar; Bhatti, Muhammad Faraz; Akhtar, Hafsah; Darakhshan, Fatima
2016-01-01
The study focuses on the development of novel Aloe vera based polymeric composite films and antimicrobial suture coatings. Polyvinyl alcohol (PVA), a synthetic biocompatible and biodegradable polymer, was combined with Aloe vera, a natural herb used for soothing burning effects and cosmetic purposes. The properties of these two materials were combined together to get additional benefits such as wound healing and prevention of surgical site infections. PVA and Aloe vera were mixed in a fixed quantity to produce polymer based films. The films were screened for antibacterial and antifungal activity against bacterial (E. coli, P. aeruginosa) and fungal strains (Aspergillus flavus and Aspergillus tubingensis) screened. Aloe vera based PVA films showed antimicrobial activity against all the strains; the lowest Aloe vera concentration (5%) showed the highest activity against all the strains. In vitro degradation and release profile of these films was also evaluated. The coating for sutures was prepared, in vitro antibacterial tests of these coated sutures were carried out, and later on in vivo studies of these coated sutures were also performed. The results showed that sutures coated with Aloe vera/PVA coating solution have antibacterial effects and thus have the potential to be used in the prevention of surgical site infections and Aloe vera/PVA based films have the potential to be used for wound healing purposes. PMID:27965710
Božić, Dragana D.; Milenković, Marina; Ivković, Branka; Cirković, Ivana
2014-01-01
Background & objectives: Multidrug-resistance of methicillin-resistant Staphylococcus aureus (MRSA) is a serious therapeutical problem. Chalcones belong to a group of naturally occurring flavonoids, usually found in various plant species, and have potent antibacterial, antiviral and antifungal activities. The goal of this study was to evaluate the antibacterial effect of three newly-synthesized chalcones against clinical isolates of MRSA, and their synergism with β-lactam and non- β-lactam antibiotics. Methods: Antimicrobial activity of the three newly-synthesized chalcones was tested against 19 clinical isolates of MRSA and a laboratory control strain of MRSA (ATCC 43300). The synergism with β-lactams: cefotaxime (CFX), ceftriaxone (CTX), and non-β-lactam antibiotics: ciprofloxacin (CIP), gentamicin (GEN) and trimethoprim/sulphamethoxazole (TMP-SMX) was investigated by checkerboard method. Results: All evaluated compounds showed significant anti-MRSA activity with MIC values from 25-200 μg/ml. Observed synergism with antibiotics demonstrated that chalcones significantly enhanced the efficacy of CIP, GEN and TMP-SMX. Interpretation & conclusions: Our study demonstrated that three newly-synthesized chalcones exhibited significant anti-MRSA effect and synergism with non-β-lactam antibiotics. The most effective compound was 1,3-Bis-(2-hydroxy-phenyl)-propenone. Our results provide useful information for future research of possible application of chalcones in combination with conventional anti-MRSA therapy as promising new antimicrobial agents. PMID:25222788
The use of plants for environmental monitoring and assessment.
Wang, W; Freemark, K
1995-04-01
This paper presents a critical review on phytotoxicity tests for environmental monitoring and assessment. Vascular macrophytes used in the laboratory testing are emphasized; algae are mentioned only for comparison. Several issues are discussed, including the rationale for and misconceptions about phytotoxicity tests, relation to regulation, status of phytotoxicity test protocols, advantages and disadvantages of phytotoxicity tests, and possible research directions. Aquatic and terrestrial macrophytes, along with algae, are essential components of ecosystems. Macrophytes are becoming more important for the monitoring and assessment of herbicides, effluents, and industrial chemicals. In the United States, Canada, and international organizations, phytotoxicity tests can be required for environmental monitoring and assessment in statutes such as Federal Insecticide, Fungicide, and Rodenticide Act; Toxic Substances Control Act; Water Quality Act; Canadian Pest Control Products Act; and Canadian Environmental Protection Act. Possible research directions for phytotoxicity tests are discussed relative to the role in regulations of industrial chemicals, effluents, hazardous waste sites, and pesticides.
Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting
Beyer, W.N.; Green, C.E.; Beyer, M.; Chaney, R.L.
2013-01-01
Historic emissions from two zinc smelters have injured the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils and then phytotoxic thresholds were calculated. As little as 10% Palmerton soil mixed with reference soil killed or greatly stunted seedlings of most species. Zinc was the principal cause of the phytotoxicity to the tree seedlings, although Mn and Cd may also have been phytotoxic in the most contaminated soil mixtures. Calcium deficiency seemed to play a role in the observed phytotoxicity. Exposed soybeans showed symptoms of Mn toxicity. A test of the effect of liming on remediation of the Zn and Mn phytotoxicity caused a striking decrease in Sr-nitrate extractable metals in soils and demonstrated that liming was critical to remediation and restoration.
Clotrimazole and econazole inhibit Streptococcus mutans biofilm and virulence in vitro.
Qiu, Wei; Ren, Biao; Dai, Huanqin; Zhang, Lixin; Zhang, Qiong; Zhou, Xuedong; Li, Yuqing
2017-01-01
The aim of this study was to determine the inhibitory effect of eight antifungal drugs on S. mutans growth, biofilm formation and virulence factors. The actions of antifungal drugs on S. mutans were determined by recovery plates and survival kinetic curves. Biofilms were observed by scanning electron microscopy and the viable cells were recovered on BHI plates, meanwhile biofilms were stained by BacLight live/dead kit to investigate the biofilm viability. Bacteria/extracellular polysaccharides staining assays were performed to determine the EPS production of S. mutans biofilms. Acidogenicity and acidurity of S. mutans were determined using pH drop and acid tolerance assays, and the expression of ldh gene was evaluated using qPCR. We found that clotrimazole (CTR) and econazole (ECO) showed antibacterial activities on S. mutans UA159 and S. mutans clinical isolates at 12.5 and 25mg/L, respectively. CTR and ECO could also inhibit S. mutans biofilm formation and reduce the viability of preformed biofilm. CTR and ECO affected the live/dead ratio and the EPS/bacteria ratio of S. mutans biofilms. CTR and ECO also inhibited the pH drop, lactate acid production, and acid tolerance. The abilities of CTR and ECO to inhibit S. mutans ldh expression were also confirmed. We found that two antifungal azoles, CTR and ECO, had the abilities to inhibit the growth and biofilm formation of S. mutans and more importantly, they could also inhibit the virulence factors of S. mutans. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mandras, Narcisa; Nostro, Antonia; Roana, Janira; Scalas, Daniela; Banche, Giuliana; Ghisetti, Valeria; Del Re, Simonetta; Fucale, Giacomo; Cuffini, Anna Maria; Tullio, Vivian
2016-08-30
The management of Candida infections faces many problems, such as a limited number of antifungal drugs, toxicity, resistance of Candida to commonly antifungal drugs, relapse of Candida infections, and the high cost of antifungal drugs. Though azole antifungal agents and derivatives continue to dominate as drugs of choice against Candida infections, there are many available data referring to the anticandidal activity of essential oils. Since we have previous observed a good antimicrobial activity of some essential oils against filamentous fungi, the aim of this study was to extend the research to evaluate the activity of the same oils on Candida albicans, C.glabrata and C.tropicalis clinical strains, as well as the effects of related components. Essential oils selection was based both on ethnomedicinal use and on proved antibacterial and/or antifungal activity of some of these oils. Fluconazole and voriconazole were used as reference drugs. The minimum inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) of essential oils (thyme red, fennel, clove, pine, sage, lemon balm, and lavender) and their major components were investigated by the broth microdilution method (BM) and the vapour contact assay (VC). Using BM, pine oil showed the best activity against all strains tested, though C.albicans was more susceptible than C.glabrata and C.tropicalis (MIC50-MIC90 = 0.06 %, v/v). On the contrary, sage oil displayed a weak activity (MIC50-MIC90 = 1 %, v/v). Thyme red oil (MIC50-MIC90 ≤ 0.0038 %, v/v for C.albicans and C.tropicalis, and 0.0078- < 0.015 %, v/v for C.glabrata), followed by lemon balm, lavender and sage were the most effective by VC. Carvacrol and thymol showed the highest activity, whereas linalyl acetate showed the lowest activity both by two methods. α-pinene displayed a better activity by BM than VC. Results show a good activity of essential oils, mainly thymus red and pine oils, and their components carvacrol, thymol and α-pinene against Candida spp., including fluconazole/voriconazole resistant strains. These data encourage adequately controlled and randomized clinical investigations. The use in vapour phase could have additional advantages without requiring direct contact, resulting in easy of environmental application such as in hospital, and/or in school.
Lei, Hui; Lin, Xiuping; Han, Li; Ma, Jian; Ma, Qingjuan; Zhong, Jialiang; Liu, Yonghong; Sun, Tiemin; Wang, Jinhui; Huang, Xueshi
2017-03-13
Four new compounds, including two isocoumarins, pestaloisocoumarins A and B ( 1 , 2 ), one sesquiterpenoid degradation, isopolisin B ( 4 ), and one furan derivative, pestalotiol A ( 5 ), together with one known isocoumarin, gamahorin ( 3 ), and three chlorinated benzophenone derivatives, pestalachloride B ( 6 ), pestalachloride E ( 7 ) and a mixture of pestalalactone atropisomers ( 8a/8b ), were isolated from a culture of the fungus Pestalotiopsis heterocornis associated with sponge Phakellia fusca . These new chemical structures were established using NMR and MS spectroscopic data, as well as single-crystal X-ray crystallographic analysis and CD Cotton effects. All of the isolated compounds were evaluated for their antimicrobial and cytotoxic activities. Isocoumarins 1 - 3 , showed antibacterial activities against Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with MIC values ranging from 25 to 100 μg/mL and weak antifungal activities. Chlorinated benzophenone derivatives 6 - 8 exhibited antibacterial activities against S. aureus and B. subtilis with MIC values ranging from 3.0 to 50 μg/mL and cytotoxicities against four human cancer cell lines with IC 50 values of 6.8-87.8 μM.
NASA Astrophysics Data System (ADS)
Ghiuță, I.; Cristea, D.; Croitoru, C.; Kost, J.; Wenkert, R.; Vyrides, I.; Anayiotos, A.; Munteanu, D.
2018-04-01
In this work, the biosynthesis of silver nanoparticles, using AgNO3 as a precursor, by two Bacillus species, namely Bacillus amyloliquefaciens and Bacillus subtillis, is reported. After the synthesis stages, the absorbance of the brown nanoparticle colloidal solutions was assessed by UV-vis spectrophotometry, which showed the peak absorbance values at 418 nm and 414 nm, corresponding to surface plasmon resonance of silver nanoparticles. The EDX, SEM and DLS analyses confirmed the formation of spherical silver nanoparticles with an average diameter smaller than 140 nm. XRD confirmed the presence of face-centered cubic silver crystals, with the highest intensity peak at 2θ = 38.12°, which corresponds to the (111) diffraction planes. The antibacterial activity after 24 h of incubation was observed against gram negative bacteria: Escherichia coli, Pseudomonas aeruginosa, Salmonella, as well as gram positive: Staphylococcus aureus, Streptococcus pyogenes. Furthermore, the antifungal activity was assessed against Candida albicans. The inhibition zone was clearly observed on the plates containing silver nanoparticles, either standalone or in combination with antibiotics, thus showing their potentiating antibacterial effect.
Antimicrobial properties of honey.
Israili, Zafar H
2014-01-01
Honey has been widely accepted as food and medicine by all generations, traditions, and civilizations, both ancient and modern. For at least 2700 years, honey has been used by humans to treat a variety of ailments through topical application, but only recently have the antiseptic and antimicrobial properties of honey been discovered. Honey has been reported to be effective in a number of human pathologies. Clinical studies have demonstrated that application of honey to severely infected cutaneous wounds rapidly clears infection from the wound and improves tissue healing. A large number of in vitro and limited clinical studies have confirmed the broad-spectrum antimicrobial (antibacterial, antifungal, antiviral, and antimycobacterial) properties of honey, which may be attributed to the acidity (low pH), osmotic effect, high sugar concentration, presence of bacteriostatic and bactericidal factors (hydrogen peroxide, antioxidants, lysozyme, polyphenols, phenolic acids, flavonoids, methylglyoxal, and bee peptides), and increase in cytokine release, and to immune modulating and anti-inflammatory properties of honey; the antimicrobial action involves several mechanisms. Despite a large amount of data confirming the antimicrobial activity of honey, there are no studies that support the systemic use of honey as an antibacterial agent.
NASA Astrophysics Data System (ADS)
Pawde, S. M.; Parab, Sanmesh S.
2008-05-01
Polystyrene (PS) films are used in packaging and biomedical applications because of their transparency and good environmental properties. The present investigation is centered on the antifungal and antibacterial activities involved in the film surface. Subsequently, microbial formations were immobilized on the modified PS films. Living microorganisms such as bacteria and yeast were used. Untreated PS films show very fast rate of growth of bacteria within few hours. The study involves developments of polymer surfaces with bacterial growth and further studies after giving antibacterial treatment such as plasma treatment. Major emphasis has been given to study the effect of various parameters which can affect the performance of the improved material. Films were prepared by two methods: plasma treatment under vacuum and under ongoing He-Ne laser source. The parameters such as (1) surface area by contact angle measurements, (2) quality of material before and after treatment by SEM and FTIR spectra and (3) material characterization by UV-vis spectra were studied. It was observed that plasma treatment of the PS material for different processing time improved the surface properties of PS films.
Draelos, Zoe Diana
2010-03-01
Prior to 1962, some of the most versatile drugs in dermatology were approved by the U.S. Food and Drug Administration (FDA) solely on the basis of safety. One of these is the combination 10% sodium sulfacetamide and 5% sulfur. Sodium sulfacetamide possesses anti-inflammatory and antibacterial properties while sulfur is a nonspecific antibacterial and antifungal. A new emollient foam formulation of 10% sodium sulfacetamide and 5% sulfur allows a thinner application film and leaves behind no residue on hair bearing or non-hair bearing skin. The sulfur smell is also more quickly dissipated with reduced irritation. This uncontrolled, observational, prospective, open-label, single site, eight-week study enrolled 24 subjects (eight with rosacea, eight with seborrheic dermatitis, eight with acne vulgaris) to evaluate the safety and efficacy of this novel foam formulation. At eight weeks, statistically significant improvement was seen in inflammatory rosacea lesion counts and the signs of seborrheic dermatitis. A 50% reduction was noted in the total acne lesion counts. These findings confirm the versatility of an emollient 10% sodium sulfacetamide and 5% sulfur foam.
NASA Astrophysics Data System (ADS)
Gurunathan, Sangiliyandi; Han, Jae Woong; Kwon, Deug-Nam; Kim, Jin-Hoi
2014-07-01
Silver nanoparticles (AgNPs) have been used as antibacterial, antifungal, antiviral, anti-inflammtory, and antiangiogenic due to its unique properties such as physical, chemical, and biological properties. The present study was aimed to investigate antibacterial and anti-biofilm activities of silver nanoparticles alone and in combination with conventional antibiotics against various human pathogenic bacteria. Here, we show that a simple, reliable, cost effective and green method for the synthesis of AgNPs by treating silver ions with leaf extract of Allophylus cobbe. The A. cobbe-mediated synthesis of AgNPs (AgNPs) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the antibacterial and anti-biofilm activity of antibiotics or AgNPs, or combinations of AgNPs with an antibiotic was evaluated using a series of assays: such as in vitro killing assay, disc diffusion assay, biofilm inhibition, and reactive oxygen species generation in Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, and Streptococcus pneumonia. The results suggest that, in combination with antibiotics, there were significant antimicrobial and anti-biofilm effects at lowest concentration of AgNPs using a novel plant extract of A. cobbe, otherwise sublethal concentrations of the antibiotics. The significant enhancing effects were observed for ampicillin and vancomycin against Gram-negative and Gram-positive bacteria, respectively. These data suggest that combining antibiotics and biogenic AgNPs can be used therapeutically for the treatment of infectious diseases caused by bacteria. This study presented evidence of antibacterial and anti-biofilm effects of A. cobbe-mediated synthesis of AgNPs and their enhanced capacity against various human pathogenic bacteria. These results suggest that AgNPs could be used as an adjuvant for the treatment of infectious diseases.
Yadav, Pankaj; Chaudhary, Sarika; Saxena, Rajendra K; Talwar, Sangeeta; Yadav, Sudha
2017-03-01
Bacterial biofilms formed on the root canal wall are often difficult to remove. This study aimed to evaluate the cytotoxic effect and antibacterial efficacy of chitosan when used as root canal irrigant against E. Faecalis and Candida albicans biofilm formed on tooth substrate. The present study evaluated antibacterial effect of 0.25% Chitosan, 0.5% Chitosan, 2% chlorhexidine and 3% sodium hypochlorite against Enterococcus faecalis and Candida Albicans . Agar-well diffusion methods, minimal inhibitory concentration tests and biofilm susceptibility assays were used to determine antibacterial activity. Teeth specimens were sectioned to obtain a standardized tooth length of 12mm. Specimens were inoculated with 10 mL of the freshly prepared E. Faecalis suspension and Candida albicans for 4 weeks. The specimens were then instrumented with ProTaper rotary files F3 size. After irrigation with test solution, three sterile paper points were placed into one canal, left for 60 s and transferred to a test tube containing 1 mL of reduced transport fluid. The number of CFU in 1 mL was determined. 3-week biofilm qualitative assay showed complete inhibition of bacterial growth with 3% Sodium hypochlorite, 2% Chlorhexidine and Chitosan except saline, which showed presence of bacterial growth. Significant reduction of colony forming units (CFU)/mL was observed for the chitosan groups and the antibacterial activity of the chitosan groups was at par with 3% NaOCl and 2% Chlorhexidine. It was observed that the chitosan showed no cytotoxicity at 3mg/ml and 10% cytotoxicity at 6mg/ml. The use of chitosan as a root canal irrigant might be an alternative considering the various undesirable properties of NaOCl and chlorhexidine. Key words: Biofilm, Candida albicans, Chitosan, Cytotoxicity, Enterococcus faecalis.
3-Nitroasterric Acid Derivatives from an Antarctic Sponge-Derived Pseudogymnoascus sp. Fungus.
Figueroa, Luis; Jiménez, Carlos; Rodríguez, Jaime; Areche, Carlos; Chávez, Renato; Henríquez, Marlene; de la Cruz, Mercedes; Díaz, Caridad; Segade, Yuri; Vaca, Inmaculada
2015-04-24
Four new nitroasterric acid derivatives, pseudogymnoascins A-C (1-3) and 3-nitroasterric acid (4), along with the two known compounds questin and pyriculamide, were obtained from the cultures of a Pseudogymnoascus sp. fungus isolated from an Antarctic marine sponge belonging to the genus Hymeniacidon. The structures of the new compounds were determined by extensive NMR and MS analyses. These compounds are the first nitro derivatives of the known fungal metabolite asterric acid. Several asterric acid derivatives isolated from other fungal strains have shown antibacterial and antifungal activities. However, the new compounds described in this work were inactive against a panel of bacteria and fungi (MIC > 64 μg/mL).
[Synthetic biology toward microbial secondary metabolites and pharmaceuticals].
Wu, Lin-Zhuan; Hong, Bin
2013-02-01
Microbial secondary metabolites are one of the major sources of anti-bacterial, anti-fungal, antitumor, anti-virus and immunosuppressive agents for clinical use. Present challenges in microbial pharmaceutical development are the discovery of novel secondary metabolites with significant biological activities, improving the fermentation titers of industrial microbial strains, and production of natural product drugs by re-establishing their biosynthetic pathways in suitable microbial hosts. Synthetic biology, which is developed from systematic biology and metabolic engineering, provides a significant driving force for microbial pharmaceutical development. The review describes the major applications of synthetic biology in novel microbial secondary metabolite discovery, improved production of known secondary metabolites and the production of some natural drugs in genetically modified or reconstructed model microorganisms.
Efstratiou, Efstratios; Hussain, Abdullah I; Nigam, Poonam S; Moore, John E; Ayub, Muhammad A; Rao, Juluri R
2012-08-01
The aim of the present study was to assess the antimicrobial activity of methanol and ethanol extracts of pot marigold (Calendula officinalis) petals against clinical pathogens. The antimicrobial potential of C. officinalis extracts was evaluated against a panel of microorganisms isolated from patients at the Belfast City Hospital (BCH), including bacteria and fungi, using disc diffusion assay. Methanol extract of C. officinalis exhibited better antibacterial activity against most of the bacteria tested, than ethanol extract. Both methanol and ethanol extracts showed excellent antifungal activity against tested strains of fungi, while comparing with Fluconazole. Copyright © 2012 Elsevier Ltd. All rights reserved.
Posttransplant lymphoproliferative disorder in an 11-year-old immunosuppressed boy.
Nelson, Alex; Dhamija, Radhika; Nickels, Katherine
2013-05-01
We present an 11-year-old boy who presented with symptoms of subacute facial nerve palsy after cardiac transplant. Neuroimaging revealed multiple ring-enhancing lesions that were most concerning for opportunistic organism abscesses and he was treated with broad-spectrum antifungal and antibacterial therapy. After noninvasive testing failed to identify a causative organism, he underwent brain biopsy. Pathology revealed posttransplant lymphoproliferative disease that was later determined to be isolated to the central nervous system. The patient was treated with reduction in his immunotherapy and chemotherapy including rituximab and methotrexate. This case exemplifies the importance of having a low threshold to consider posttransplant lymphoproliferative disease in posttransplant patients. Copyright © 2013 Elsevier Inc. All rights reserved.
Ghahari, Somayeh; Alinezhad, Heshmatollah; Nematzadeh, Ghorban Ali; Ghahari, Sajjad
2015-01-01
Methanolic extract of Golden rain leaves was fractionated by column chromatography on silica gel and 18 fractions were obtained. Antimicrobial activities of fractions were investigated against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa as quality control bacteria and fungus Pyricularia grisea which causes Blast disease in rice. Fractions showed more antibacterial activity at 0.04 g/mL concentration only on B. subtilis and S. aureus as gram positive bacteria. Also, three fractions indicated excellent antifungal effect on fungus P. grisea. Moreover, in the present study, fractions that showed very good effect on microorganisms were used for gas chromatography-mass spectrometry analysis to identify different phytochemicals.
Bruno, Maurizio; Modica, Aurora; Catinella, Giorgia; Canlı, Cem; Arasoglu, Tülin; Çelik, Sezgin
2018-04-18
In the present study the chemical composition of the essential oils from aerial parts of Centaurea tomentella Hand.-Mazz. and C. haussknechtii Boiss. collected in Turkey was evaluated by GC and GC-MS. The main components of C. tomentella L. were hexadecanoic acid (19.7%), caryophyllene oxide (6.6%) and spathulenol (4.8%) whereas C. haussknechtii was rich in hexadecanoic acid (26.2%), (Z,Z)-9,12-octadecadienoic acid (19.3%), heptacosane (5.3%) and nonacosane (5.1%). Antibacterial and antifungal activities against some microorganisms infesting historical art craft, were also determined.
Antimicrobial activity of grapefruit seed and pulp ethanolic extract.
Cvetnić, Zdenka; Vladimir-Knezević, Sanda
2004-09-01
Antibacterial and antifungal activity of ethanolic extract of grapefruit (Citrus paradisi Macf., Rutaceae) seed and pulp was examined against 20 bacterial and 10 yeast strains. The level of antimicrobial effects was established using an in vitro agar assay and standard broth dilution susceptibility test. The contents of 3.92% of total polyphenols and 0.11% of flavonoids were determined spectrometrically in crude ethanolic extract. The presence of flavanones naringin and hesperidin in the extract was confirmed by TLC analysis. Ethanolic extract exibited the strongest antimicrobial effect against Salmonella enteritidis (MIC 2.06%, m/V). Other tested bacteria and yeasts were sensitive to extract concentrations ranging from 4.13% to 16.50% (m/V).
Structural investigation of a new antimicrobial thiazolidine compound
NASA Astrophysics Data System (ADS)
Cozar, I. B.; Pırnǎu, A.; Vedeanu, N.; Nastasǎ, C.
2013-11-01
Thiazoles and their derivatives have attracted the interest over the last decades because of their varied biological activities: antibacterial, antiviral, antifungal, inflammation or in the treatment of allergies. A new synthesized compound 3-[2-(4-Methyl-2-phenyl-thiazol-5-yl)-2-oxo-ethyl]-thazolidine-2,4-dione was investigated by FT-IR, FT-Raman, 1H, 13C NMR spectroscopies and also by DFT calculations at B3LYP/6-31G(d) level of theory. The very good correlation found between the experimental and theoretical data shows that the optimized molecular structure is very close to reality. Also the NMR spectra show a monomeric behaviour of this compound in solutions.
Antimicrobial activities of three species of family mimosaceae.
Mahmood, Adeel; Mahmood, Aqeel; Qureshi, Rizwana Aleem
2012-01-01
The antimicrobial activities of crude methanolic extract of leaves of Acacia nilotica L., Albizia lebbeck L. and Mimosa himalayana Gamble belonging to family mimosaceae were investigated in this research work. Antibacterial activity was studied by agar well diffusion method against one gram-positive Bacillus subtilis and three gram-negative Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumonia. Crude extract of all plants showed best activity against gram-negative bacterial strains while minor inhibition zones were found against gram positive bacterial strains. Antifungal activity of crude plant extract was screened by agar tube dilution method against Aspergillus nigar and Aspergillus flavus. These results showed that these plants extracts have potential against bacterias, while against fungi their activity is not much effective.
Lectins: production and practical applications
2010-01-01
Lectins are proteins found in a diversity of organisms. They possess the ability to agglutinate erythrocytes with known carbohydrate specificity since they have at least one non-catalytic domain that binds reversibly to specific monosaccharides or oligosaccharides. This articles aims to review the production and practical applications of lectins. Lectins are isolated from their natural sources by chromatographic procedures or produced by recombinant DNA technology. The yields of animal lectins are usually low compared with the yields of plant lectins such as legume lectins. Lectins manifest a diversity of activities including antitumor, immunomodulatory, antifungal, HIV-1 reverse transcriptase inhibitory, and anti-insect activities, which may find practical applications. A small number of lectins demonstrate antibacterial and anti-nematode activities. PMID:20890754
Antimicrobial Dendrimeric Peptides: Structure, Activity and New Therapeutic Applications
Scorciapino, Mariano A.; Serra, Ilaria; Manzo, Giorgia; Rinaldi, Andrea C.
2017-01-01
Microbial resistance to conventional antibiotics is one of the most outstanding medical and scientific challenges of our times. Despite the recognised need for new anti-infective agents, however, very few new drugs have been brought to the market and to the clinic in the last three decades. This review highlights the properties of a new class of antibiotics, namely dendrimeric peptides. These intriguing novel compounds, generally made of multiple peptidic sequences linked to an inner branched core, display an array of antibacterial, antiviral and antifungal activities, usually coupled to low haemolytic activity. In addition, several peptides synthesized in oligobranched form proved to be promising tools for the selective treatment of cancer cells. PMID:28273806
Antimicrobial Dendrimeric Peptides: Structure, Activity and New Therapeutic Applications.
Scorciapino, Mariano A; Serra, Ilaria; Manzo, Giorgia; Rinaldi, Andrea C
2017-03-03
Microbial resistance to conventional antibiotics is one of the most outstanding medical and scientific challenges of our times. Despite the recognised need for new anti-infective agents, however, very few new drugs have been brought to the market and to the clinic in the last three decades. This review highlights the properties of a new class of antibiotics, namely dendrimeric peptides. These intriguing novel compounds, generally made of multiple peptidic sequences linked to an inner branched core, display an array of antibacterial, antiviral and antifungal activities, usually coupled to low haemolytic activity. In addition, several peptides synthesized in oligobranched form proved to be promising tools for the selective treatment of cancer cells.
Gonçalves, Giovana M; Brianezi, Gabrielli; Miot, Hélio Amante
2017-01-01
The pH of the skin is slightly acidic (4.6 to 5.8) which is important for appropriate antibacterial, antifungal, constitution of barrier function, as well as structuring and maturation of the stratum corneum. This study aimed to evaluate the pH of the main commercial moisturizers and liquid soaps in Brazil. Thus, pH of the products was quantified by pH meter in three measurements. A total of 38 moisturizers and six commercial liquid soaps were evaluated. Mean pH of 63% and 50% of the moisturizing and liquid soaps presented results above 5.5, disfavoring repair, function, and synthesis of dermal barrier.
Basavaraju, B.; Bhojya Naik, Halehatty S.; Prabhakara, Mustur C.
2007-01-01
The synthesis and characterization of title complexes of the ligand Quinolino[3,2-b]benzodiazepine (QBD) and Quinolino[3,2-b]benzoxazepine (QBO) are reported. The complexes have been characterized by elemental analysis, molar conductance, magnetic studies, IR, H1 NMR, and UV-visible studies. They have the stoichiometry [ML2C12], where M=Co(II)/Ni(II), L=QBD/QBO, and [MLC12], where M=Zn(II)/Cd(II), L=QBD/QBO. The antibacterial and antifungal activity of the metal complexes has been investigated. The complexes were found to have higher antimicrobial activity than the parent ligand. PMID:18273383
Tokovenko, Bogdan T.; Protasov, Eugeniy S.; Gamaiunov, Stanislav V.; Rebets, Yuriy V.; Luzhetskyy, Andriy N.; Timofeyev, Maxim A.
2016-01-01
Actinobacteria isolated from unstudied ecosystems are one of the most interesting and promising sources of novel biologically active compounds. Cave ecosystems are unusual and rarely studied. Here, we report the isolation and characterization of ten new actinobacteria strains isolated from an ancient underground lake and moonmilk speleothem from the biggest conglomeratic karstic cave in Siberia with a focus on the biological activity of the obtained strains and the metabolite dereplication of one active strain. Streptomyces genera isolates from moonmilk speleothem demonstrated antibacterial and antifungal activities. Some of the strains were able to inhibit the growth of pathogenic Candida albicans. PMID:26901168
An overview of the pharmacological properties and potential applications of natural monoterpenes.
Kozioł, Agata; Stryjewska, Agnieszka; Librowski, Tadeusz; Sałat, Kinga; Gaweł, Magdalena; Moniczewski, Andrzej; Lochyński, Stanisław
2014-01-01
Monoterpenes, the major components of essential oils, belong to the group of isoprenoids containing ten carbon atoms. Being widely distributed in the plant kingdom they are extensively used in cuisine and human health care products. Studies have shown that both natural monoterpenes and their synthetic derivatives are endowed with various pharmacological properties including antifungal, antibacterial, antioxidant, anticancer, antiarrhythmic, anti-aggregating, local anesthetic, antinociceptive, anti-inflammatory, antihistaminic and anti-spasmodic activities. Monoterpenes act also as regulators of growth, heat, transpiration, tumor inhibitors, inhibitors of oxidative phosphorylation, insect repellants, feline and canine attractants and antidiabetics. These interesting activities which might be potentially used not only in pharmaceutical, but also food and cosmetic industries are discussed below.
Structural investigation of a new antimicrobial thiazolidine compound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozar, I. B.; Pîrnău, A.; Vedeanu, N.
2013-11-13
Thiazoles and their derivatives have attracted the interest over the last decades because of their varied biological activities: antibacterial, antiviral, antifungal, inflammation or in the treatment of allergies. A new synthesized compound 3-[2-(4-Methyl-2-phenyl-thiazol-5-yl)-2-oxo-ethyl]-thazolidine-2,4-dione was investigated by FT-IR, FT-Raman, {sup 1}H, {sup 13}C NMR spectroscopies and also by DFT calculations at B3LYP/6-31G(d) level of theory. The very good correlation found between the experimental and theoretical data shows that the optimized molecular structure is very close to reality. Also the NMR spectra show a monomeric behaviour of this compound in solutions.
NASA Astrophysics Data System (ADS)
Mesbah, Mounira; Douadi, Tahar; Sahli, Farida; Issaadi, Saifi; Boukazoula, Soraya; Chafaa, Salah
2018-01-01
Three new Schiff-bases compounds (I-III) were synthesized by a condensation reaction in 1:2 M ratios of 4,4‧-diaminodiphenyl sulfide and pyrrol/thiophene/furan-2-carboxaldehyde in ethanol. The structural determinations of the Schiff-bases were identified with the help of elemental analysis then confirmed by UV-Vis, FT-IR and 1H NMR. The products were obtained in excellent yields. On the other hand, the in vitro antibacterial and antifungal activities of the synthesized compounds were investigated using disc diffusion method. Schiff bases synthesized individually exhibited varying degrees of inhibitory effects on the growth of the tested microbial species.
Electrospinning and stabilization of chitosan nanofiber mats
NASA Astrophysics Data System (ADS)
Grimmelsmann, N.; Grothe, T.; Homburg, S. V.; Ehrmann, A.
2017-10-01
Chitosan is of special interest for biotechnological and medical applications due to its antibacterial, antifungal and other intrinsic physical and chemical properties. The biopolymer can, e.g., be used for biotechnological purposes, as a filter medium, in medical products, etc. In all these applications, the inner surface should be maximized to increase the contact area with the filtered medium etc. and thus the chitosan’s efficacy. Chitosan dissolves in acidic solutions, opposite to neutral water. Electrospinning is possible, e.g., by co-spinning with PEO (poly(ethylene oxide)). Tests with different chitosan:PEO ratios revealed that higher PEO fractions resulted in better spinnability and more regular fibre mats, but make stabilization of the fibre structure more challenging.
Co-evaluation of plant extracts as petrochemical substitutes and for biologically active compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
McChesney, J.D.; Adams, R.P.
Recent efforts to discover phytochemicals that could substitute for petroleum-derived fuels and industrial feedstocks have not given much attention to the potential of these same phytochemicals to provide sources of biologically active compounds. The suitability of extraction products made to assess specific plants as potential botanochemical sources has been evaluated for use in screening procedures for evidence of biologically active compounds. Screening procedures for antibacterial, antifungal and toxic properties are discussed. Screening results are presented for extracts of nearly 80 species of plants from the southeastern United States and southern Great Plains that had previously been evaluated as sources ofmore » botanochemicals.« less
Samson, G; Popovic, R
1988-12-01
The phytotoxicity of heavy metals and pesticides was studied by using the fluorescence induction from the alga Dunaliella tertiolecta. The complementary area calculated from the variable fluorescence induction was used as a direct parameter to estimate phytotoxicity. The value of this parameter was affected when algae were treated with different concentrations of mercury, copper, atrazine, DCMU, Dutox, and Soilgard. The toxic effect of these pollutants was estimated by monitoring the decrease in the complementary area, which reflects photosystem II photochemistry. Further, the authors have demonstrated the advantage of using the complementary area as a parameter of phytotoxicity over using variable fluorescence yield. The complementary area of algal fluorescence can be used as a simple and sensitive parameter in the estimation of the phytotoxicity of polluted water.
Suaveolic Acid: A Potent Phytotoxic Substance of Hyptis suaveolens
Islam, A. K. M. Mominul; Ohno, Osamu; Suenaga, Kiyotake; Kato-Noguchi, Hisashi
2014-01-01
Hyptis suaveolens (Lamiaceae) is an exotic invasive plant in many countries. Earlier studies reported that the aqueous, methanol, and aqueous methanol extract of H. suaveolens and its residues have phytotoxic properties. However, to date, the phytotoxic substances of this plant have not been reported. Therefore, the objectives of this study were isolation and identification of phytotoxic substances of H. suaveolens. Aqueous methanol extract of this plant was purified by several chromatographic runs through bioassay guided fractionation using garden cress (Lepidium sativum) as a test plant. Final purification of a phytotoxic substance was achieved by reverse phase HPLC and characterized as 14α-hydroxy-13β-abiet-8-en-18-oic acid (suaveolic acid) by high-resolution ESI-MS, 1H-,13C-NMR, CD, and specific rotation. Suaveolic acid inhibited the shoot growth of garden cress, lettuce (Lactuca sativa), Italian ryegrass (Lolium multiflorum), and barnyard grass (Echinochloa crus-galli) at concentrations greater than 30 µM. Root growth of all but lettuce was also inhibited at concentrations greater than 30 µM. The inhibitory activities were concentration dependent. Concentrations required for 50% growth inhibition of suaveolic acid for those test plant species were ranged from 76 to 1155 µM. Therefore, suaveolic acid is phytotoxic and may be responsible for the phytotoxicity of H. suaveolens plant extracts. PMID:25405221
Liu, Ming; Wang, Genzhu; Xiao, Lin; Xu, Xuanli; Liu, Xiaohui; Xu, Pingxiang; Lin, Xiukun
2014-01-01
Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (BDDE) is a bromophenol isolated from marine algae. Previous reports have shown that BDDE possesses cytotoxic and antibacterial activity. In the present study, we demonstrate that BDDE displays broad-spectrum antifungal activities, especially on Botrytis cinerea. BDDE inhibits the growth of B. cinerea cultured on a solid medium of potato dextrose agar (PDA) as well as on the potato dextrose broth (PDB) medium. Moreover, BDDE decreases the incidence of fruit decay and severity of strawberries infected with B. cinerea. Further studies have revealed that BDDE decreases the germination rate and inhibits the mycelial growth of B. cinerea. The inhibition mechanisms are related to the disruption of the cell membrane integrity in B. cinerea spores and newly formed germ tubes. This study also suggests that BDDE possibly interacts with DNA via intercalation and minor groove binding. The studies provide evidence that BDDE has potential application in the control of gray mold after fruit harvest and the compound could serve as a candidate or lead template for rational drug design and for the development of antifungal agents. PMID:24979270
Dhayalan, Arunachalam; Gracilla, Daniel E; Dela Peña, Renato A; Malison, Marilyn T; Pangilinan, Christian R
2018-01-01
The study investigated the medicinal properties of Spathiphyllum cannifolium (Dryand. ex Sims) Schott as a possible source of antimicrobial compounds. The phytochemical constituents were screened using qualitative methods and the antibacterial and antifungal activities were determined using agar well diffusion method. One-way analysis of variance and Fisher's least significant difference test were used. The phytochemical screening showed the presence of sterols, flavonoids, alkaloids, saponins, glycosides, and tannins in both ethanol and chloroform leaf extracts, but triterpenes were detected only in the ethanol leaf extract. The antimicrobial assay revealed that the chloroform leaf extract inhibited Candida albicans, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa , whereas the ethanol leaf extract inhibited E. coli , S. aureus , and B. subtilis only. The ethanol and chloroform leaf extracts exhibited the highest zone of inhibition against B. subtilis . The antifungal assay showed that both the leaf extracts have no bioactivity against Aspergillus niger and C. albicans . Results suggest that chloroform is the better solvent for the extraction of antimicrobial compounds against the test organisms used in this study. Findings of this research will add new knowledge in advancing drug discovery and development in the Philippines.
Evaluation of antimicrobial activity and bronchodialator effect of a polyherbal drug-Shrishadi.
Kajaria, Divya Kumari; Gangwar, Mayank; Kumar, Dharmendra; Kumar Sharma, Amit; Tilak, Ragini; Nath, Gopal; Tripathi, Yamini Bhusan; Tripathi, J S; Tiwari, S K
2012-11-01
To investigate antimicrobial and bronchodialator effect of hydroalcholic extract of polyherbal drug Shirishadi containing Shirisha (Albezzia lebbeck), Nagarmotha (Cyprus rotandus) & Kantakari (Solanum xanthocarpum). Antimicrobial activity was evaluated by disc diffusion method and MIC, MBC, MFC were calculated by micro dilution method. Hydroalcholic extract of this preparation was investigated for its phytochemical analysis, phenol and flavonoid were determined by spectrophotometric method and in vivo bronchodilator effect was analysed by convulsion time. The phytochemical tests revealed presence of alkaloids, anthraquinones, carbohydrates, flavonoids, saponins and tannins. The antimicrobial result showed the MIC of 6.25 mg/mL against Staphylococcus aureus and 12.5 mg/mL for Escherichia coli and 12.5 mg/mL against remaining bacteria tested, with strong antifungal activity. The maximum inhibition zone is found against Pseudomonas aeruginosa with MIC 16 mg/mL. Drug showed significant bronchodilator effect with 27.86% & 36.13% increase in preconvulsion time of guinea pigs pretreated with 100 & 200 mg/kg body weight of extract. The study reveals that the extracts possess antibacterial activity and antifungal activity in a dose dependent manner. This antimicrobial property may be due to presence of several saponins, further studies are highly needed for the drug development.
Roberts, Jason A; De Waele, Jan J; Dimopoulos, George; Koulenti, Despoina; Martin, Claude; Montravers, Philippe; Rello, Jordi; Rhodes, Andrew; Starr, Therese; Wallis, Steven C; Lipman, Jeffrey
2012-07-06
The clinical effects of varying pharmacokinetic exposures of antibiotics (antibacterials and antifungals) on outcome in infected critically ill patients are poorly described. A large-scale multi-centre study (DALI Study) is currently underway describing the clinical outcomes of patients achieving pre-defined antibiotic exposures. This report describes the protocol. DALI will recruit over 500 patients administered a wide range of either beta-lactam or glycopeptide antibiotics or triazole or echinocandin antifungals in a pharmacokinetic point-prevalence study. It is anticipated that over 60 European intensive care units (ICUs) will participate. The primary aim will be to determine whether contemporary antibiotic dosing for critically ill patients achieves plasma concentrations associated with maximal activity. Secondary aims will compare antibiotic pharmacokinetic exposures with patient outcome and will describe the population pharmacokinetics of the antibiotics included. Various subgroup analyses will be conducted to determine patient groups that may be at risk of very low or very high concentrations of antibiotics. The DALI study should inform clinicians of the potential clinical advantages of achieving certain antibiotic pharmacokinetic exposures in infected critically ill patients.
A novel antifungal peptide from leaves of the weed Stellaria media L.
Rogozhin, Eugene A; Slezina, Marina P; Slavokhotova, Anna A; Istomina, Ekaterina A; Korostyleva, Tatyana V; Smirnov, Alexey N; Grishin, Eugene V; Egorov, Tsezi A; Odintsova, Tatyana I
2015-09-01
A novel peptide named SmAMP3 was isolated from leaves of common chickweed (Stellaria media L.) by a combination of acidic extraction and a single-step reversed-phase HPLC and sequenced. The peptide is basic and cysteine-rich, consists of 35 amino acids, and contains three disulphide bridges. Homology search revealed that SmAMP3 belongs to the family of hevein-like antimicrobial peptides carrying a conserved chitin-binding site. Efficient binding of chitin by SmAMP3 was proved by in vitro assays. Molecular modeling confirmed conservation of the chitin-binding module in SmAMP3 locating the variable amino acid residues to the solvent-exposed loops of the molecule. The peptide exhibits potent antifungal activity against important plant pathogens in the micromolar range, although it is devoid of antibacterial activity at concentrations below 10 μM. As judged by chromatographic behavior and mass spectrometric data, the peptide is constitutively expressed in above-ground organs and seeds of S. media plants, thus representing an important player in the preformed branch of the plant immune system. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman
2015-04-05
This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman
2015-04-01
This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.
Mancini, Emilia; Camele, Ippolito; Elshafie, Hazem S; De Martino, Laura; Pellegrino, Carlo; Grulova, Daniela; De Feo, Vincenzo
2014-04-01
The chemical composition of the essential oils of Origanum vulgare ssp. hirtum, growing wild in three different localities in the Southern Apennines, was studied by GC-FID and GC/MS analyses. In total, 103 compounds were identified. The oils were mainly composed of phenolic compounds and all oils belonged to the chemotype carvacrol/thymol. The three essential oils were evaluated for their in vitro phytotoxic activity by determining their influence on the germination and initial radicle elongation of Sinapis arvensis L., Phalaris canariensis L., Lepidium sativum L., and Raphanus sativus L. The seed germination and radicle growth were affected in various degrees. Moreover, the antifungal activity of the three essential oils was assayed against three species causing pre- and postharvest fruit decay (Monilinia laxa, M. fructigena, and M. fructicola). At 1000 ppm, the three oils completely inhibited fungal growth. The hemolytic activity of the oils was assayed and showed no effect on the cell membranes of bovine erythrocytes. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.
Prakash, Bhanu; Singh, Priyanka; Yadav, Shilpee; Singh, S C; Dubey, N K
2013-03-01
The study explores the efficacy of Cinnamomum glaucescens essential oil (EO) as insecticidal, antifungal, antiaflatoxin and antioxidant agent so as to recommend its application as plant based preservatives for food commodities. The study reports the chemical characterization of C. glaucescens oil and its 100% insecticidal activity against insect pest Callosobruchus chinensis on 12 h exposure and 98.74% oviposition deterrency at 0.15 μl/ml. The EO significantly inhibited growth and aflatoxin production by toxigenic strain of Aspergillus flavus LHP-10 at 4.5 and 3.5 μl/ml respectively. EO also showed appreciable antioxidant activity (IC(50) value=15.1 μl/ml), non phytotoxic nature on chickpea seed germination and in vivo potential as fumigant in food system providing 71.07% protection of chickpea samples from fungal contamination and 100% antifeedant activity against the insect invasion. The EO exhibited non-mammalian toxicity showing high LD(50) (3971.34 μl/kg) during oral toxicity on mice. Copyright © 2012 Elsevier Ltd. All rights reserved.
Xu, Chunling; Wang, Jiafeng; Gao, Ye; Lin, Huangyu; Du, Lin; Yang, Shanshan; Long, Simei; She, Zhigang; Cai, Xiaoling; Zhou, Shining; Lu, Yongjun
2010-05-01
Bostrycin is an anthracenedione with phytotoxic and antibacterial activity that belongs to the large family of quinones. We have isolated bostrycin from the secondary metabolites of a mangrove endophytic fungus, no. 1403, collected from the South China Sea. Using the yeast Saccharomyces cerevisiae as a model, we show that bostrycin inhibits cell proliferation by blocking the cell cycle at G1 phase and ultimately leads to cell death in a time- and dose-dependent manner. Bostrycin-induced lethal cytotoxicity is accompanied with increased levels of intracellular reactive oxygen species and hallmarks of apoptosis such as chromatin condensation, DNA fragmentation and externalization of phosphatidylserine. We further show that bostrycin decreases mitochondrial membrane electric potential and causes mitochondrial destruction during the progression of cell death. Bostrycin-induced cell death was promoted in YCA1 null yeast strain but was partially rescued in AIF1 null mutant both in fermentative and respiratory media, strongly indicating that bostrycin induces apoptosis in yeast cells through a mitochondria-mediated but caspase-independent pathway.
Phytotoxic triterpene saponis from Bellis longifolia, an endemic plant of Crete
USDA-ARS?s Scientific Manuscript database
In continuation of our research on discovery of bioactive compounds from plants we have screened extracts of 65 plant species of the Cretan flora for their phytotoxic activity. All plants were extracted successively with CH2Cl2, MeOH and H2O. Phytotoxicity evaluation of the 249 generated extracts wa...
Bich, Tran Thi Ngoc; Kato-Noguchi, Hisashi
2014-12-01
Centrostachys aquatica is a perennial emergent macrophyte in marshy places and in rivers. The species was recorded in Senegal and Nigeria, but widespread in tropical Africa, and South and East Asia. Aqueous methanol extracts C. aquatica was found to be toxic to several plant species. However, no phytotoxic substance has been reported in this species. Therefore, we investigated phytotoxic activity and searched for phytotoxic substances with allelopathic activity in C. aquatica. An aqueous methanol extract of C. aquatica inhibited the growth of roots and hypocotyls of cress (Lepidium sativum). The extract was then purified by several chromatographic runs and a phytotoxic substance with allelopathic activity was isolated and identified by spectral analysis as loliolide. Loliolide inhibited cress root and hypocotyl growth at concentrations greater than 0.03 μM. The concentrations required for 50% growth inhibition of cress roots and hypocotyls was 0.18 and 0.15 μM, respectively. These results suggest that loliolide is a phytotoxic substance and may contribute to the allelopathic effect caused by C. aquatica.
Phytotoxic substance with allelopathic activity in Brachiaria decumbens.
Kobayashi, Ai; Kato-Noguchi, Hisashi
2015-05-01
The grass Brachiaria decumbens becomes naturalized and quickly dominant in non-native areas. It was hypothesized that phytotoxic substances of plants may contribute to the domination and invasion of the plants. However, no potent phytotoxic substance has been reported in B. decumbens. Therefore, we searched for phytotoxic substances with allelopathic activity in this species. An aqueous methanol extract of B. decumbens inhibited the growth of roots and shoots of cress (Lepidium sativum), lettuce (Lactuca sativa), timothy (Phleum pratense) and ryegrass (Lolium multiflorum) seedlings. The extract was then purified using chromatographic methods and a phytotoxic substance with allelopathic activity was isolated and identified by spectral analysis as (6R,9S)-3-oxo-α-ionol. These results suggest that this compound may contribute to the allelopathic effect caused by the B. decumbens extract and may be in part responsible for the invasion and domination of B. decumbens. Two other Brachiaria species, B. brizantha and a Brachiaria hybrid were also confirmed to contain (6R,9S)-3-oxo-α-ionol. Therefore, this compound may play an important role in the phytotoxicity of the Brachiaria species.
Opelt, Katja; Chobot, Vladimir; Hadacek, Franz; Schönmann, Susan; Eberl, Leo; Berg, Gabriele
2007-11-01
High acidity, low temperature and extremely low concentration of nutrients form Sphagnum bogs into extreme habitats for organisms. Little is known about the bacteria associated with living Sphagnum plantlets, especially about their function for the host. Therefore, we analysed the endo- and ectophytic bacterial populations associated with two widely distributed Sphagnum species, Sphagnum magellanicum and Sphagnum fallax, by a multiphasic approach. The screening of 1222 isolates for antagonistic activity resulted in 326 active isolates. The bacterial communities harboured a high proportion of antifungal (26%) but a low proportion of antibacterial isolates (0.4%). Members of the genus Burkholderia (38%) were found to be the most dominant group of antagonistic bacteria. The finding that a large proportion (89%) of the antagonistic bacteria produced antifungal compounds may provide an explanation for the well-known antimicrobial activity of certain Sphagnum species. The secondary metabolites of the Sphagnum species themselves were analysed by HPLC-PDA. The different spectra of detected compounds may not only explain the antifungal activity but also the species specificity of the microbial communities. The latter was analysed using cultivation-independent single-stranded conformation polymorphism (SSCP) analysis. Using Burkholderia-specific primers we found a high diversity of Burkholderia isolates in the endophytic and ectophytic habitats of Sphagnum. Furthermore, a high diversity of nitrogen-fixing bacteria was detected by using nifH-specific primers, especially inside Sphagnum mosses. In conclusion, this study provides evidence that both Sphagnum species were colonized by characteristic bacterial populations, which appear to be important for pathogen defence and nitrogen fixation.
da Silva, Pollyanna Michelle; de Moura, Maiara Celine; Gomes, Francis Soares; da Silva Trentin, Danielle; Silva de Oliveira, Ana Patrícia; de Mello, Gabriela Souto Vieira; da Rocha Pitta, Maira Galdino; de Melo Rego, Moacyr Jesus Barreto; Coelho, Luana Cassandra Breitenbach Barroso; Macedo, Alexandre José; de Figueiredo, Regina Celia Bressan Queiroz; Paiva, Patrícia Maria Guedes; Napoleão, Thiago Henrique
2018-03-01
The pomegranate (Punica granatum) sarcotesta contains a chitin-binding lectin (PgTeL) with antibacterial activity against human pathogenic species. In this work, the structural stability of PgTeL was evaluated by fluorimetric analysis and the lectin was evaluated for cytotoxicity to human peripheral blood mononuclear cells (PBMCs) and antifungal activity against Candida albicans and Candida krusei. PgTeL folding was impaired when lectin was incubated at pH≥6.0. On the other hand, the lectin did not undergo unfolding even when heated at 100°C. PgTeL (1, 10, and 100μg/mL) was not cytotoxic to PBMCs. Antifungal activity was detected for C. albicans (MIC: 25μg/mL; MFC: 50μg/mL) and C. krusei (MIC and MFC of 12.5μg/mL). Treatment of yeast cells with PgTeL resulted in decrease of intracellular ATP content even at sub-inhibitory concentrations (½MIC and ¼MIC) and induced lipid peroxidation. In addition, PgTeL damaged the integrity of fungal cell wall of both species, with more pronounced effects in C. krusei. The lectin showed significant antibiofilm activity on C. albicans at sub-inhibitory concentrations (0.195 and 0.39μg/mL). In conclusion, PgTeL is an anti-Candida agent whose action mechanism involves oxidative stress, energetic collapse, damage to the cell wall and rupture of yeast cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Antifungal properties of silver nanoparticles against indoor mould growth.
Ogar, Anna; Tylko, Grzegorz; Turnau, Katarzyna
2015-07-15
The presence of moulds in indoor environments causes serious diseases and acute or chronic toxicological syndromes. In order to inhibit or prevent the growth of microorganisms on building materials, the disruption of their vital processes or the reduction of reproduction is required. The development of novel techniques that impair the growth of microorganisms on building materials is usually based on silver nanoparticles (AgNPs). It makes them an alternative to other biocides. AgNPs have proven antibacterial activity and became promising in relation to fungi. The aim of the study was to assess growth and morphology of mycelia of typical indoor fungal species: Penicillium brevicompactum, Aspergillus fumigatus, Cladosporium cladosporoides, Chaetomium globosum and Stachybotrys chartarum as well as Mortierella alpina, cultured on agar media. The antifungal activity of AgNPs was also tested in relation to C. globosum and S. chartarum grown on the surface of gypsum drywall. It was found that the presence of AgNPs in concentrations of 30-200mg/l significantly decreased the growth of fungi. However, in the case of M. alpina, AgNPs stimulated its growth. Moreover, strong changes in moulds morphology and colour were observed after administration of AgNPs. Parameters of conidiophores/sporangiophores varied depending on mould region and changed significantly after treatment with AgNPs. The experiments have shown antifungal properties of AgNPs against common indoor mould species. Their application to building materials could effectively protect indoor environments from mould development. However, consideration must be given to the fact that the growth of some fungal strains might be stimulated by AgNPs. Copyright © 2015 Elsevier B.V. All rights reserved.
Sharma, Amit Kumar; Gangwar, Mayank; Kumar, Dharmendra; Nath, Gopal; Kumar Sinha, Akhoury Sudhir; Tripathi, Yamini Bhushan
2016-01-01
Objective: This study aims to evaluate the antimicrobial activity, phytochemical studies and thin layer chromatography analysis of machine oil, hexane extract of seed oil and methanol extract of presscake & latex of Jatropha curcas Linn (family Euphorbiaceae). Materials and Methods: J. curcas extracts were subjected to preliminary qualitative phytochemical screening to detect the major phytochemicals followed by its reducing power and content of phenol and flavonoids in different fractions. Thin layer chromatography was also performed using different solvent systems for the analysis of a number of constituents in the plant extracts. Antimicrobial activity was evaluated by the disc diffusion method, while the minimum inhibitory concentration, minimum bactericidal concentration and minimum fungicidal concentration were calculated by micro dilution method. Results: The methanolic fraction of latex and cake exhibited marked antifungal and antibacterial activities against Gram-positive and Gram-negative bacteria. Phytochemical analysis revealed the presence of alkaloids, saponins, tannins, terpenoids, steroids, glycosides, phenols and flavonoids. Reducing power showed dose dependent increase in concentration compared to standard Quercetin. Furthermore, this study recommended the isolation and separation of bioactive compounds responsible for the antibacterial activity which would be done by using different chromatographic methods such as high-performance liquid chromatography (HPLC), GC-MS etc. Conclusion: The results of the above study suggest that all parts of the plants possess potent antibacterial activity. Hence, it is important to isolate the active principles for further testing of antimicrobial and other biological efficacy. PMID:27516977
Sharma, Amit Kumar; Gangwar, Mayank; Kumar, Dharmendra; Nath, Gopal; Kumar Sinha, Akhoury Sudhir; Tripathi, Yamini Bhushan
2016-01-01
This study aims to evaluate the antimicrobial activity, phytochemical studies and thin layer chromatography analysis of machine oil, hexane extract of seed oil and methanol extract of presscake & latex of Jatropha curcas Linn (family Euphorbiaceae). J. curcas extracts were subjected to preliminary qualitative phytochemical screening to detect the major phytochemicals followed by its reducing power and content of phenol and flavonoids in different fractions. Thin layer chromatography was also performed using different solvent systems for the analysis of a number of constituents in the plant extracts. Antimicrobial activity was evaluated by the disc diffusion method, while the minimum inhibitory concentration, minimum bactericidal concentration and minimum fungicidal concentration were calculated by micro dilution method. The methanolic fraction of latex and cake exhibited marked antifungal and antibacterial activities against Gram-positive and Gram-negative bacteria. Phytochemical analysis revealed the presence of alkaloids, saponins, tannins, terpenoids, steroids, glycosides, phenols and flavonoids. Reducing power showed dose dependent increase in concentration compared to standard Quercetin. Furthermore, this study recommended the isolation and separation of bioactive compounds responsible for the antibacterial activity which would be done by using different chromatographic methods such as high-performance liquid chromatography (HPLC), GC-MS etc. The results of the above study suggest that all parts of the plants possess potent antibacterial activity. Hence, it is important to isolate the active principles for further testing of antimicrobial and other biological efficacy.
Verma, Vivek; Balasubramanian, K
2014-08-01
Porous composite membrane of polyacrylonitrile (PAN) and Lantana camara essential oil was synthesized by solvent casting method. Stability of oil in PAN solution was measured by XiGo nano tool indicating constant relaxation time of 1487 time/s. Pore size of few microns confirmed by electron microscopy was supported by atomic force microscopy indicating roughness factor of 0.9 nm. Contact angle of 2° inveterates superhydrophilicity of the composite membrane. Membrane showed excellent antibacterial activity against both Gram-positive Bacillus subtilis and Gram-negative Escherichia coli with a 7-10mm zone of inhibition. In vitro release of Lantana oil from the composite membrane was carried out in isotonic phosphate buffer solution (pH=7.4). Lantana oil was released for 9h, lag time of 3h with constant 33% release confirmed PAN membranes as potential system for pulsatile drug delivery applications. Diffusion of E-caryophyllene (antibacterial component of oil) which was studied through molecular simulation using Material Studio software ensued diffusion coefficient value of 1.11∗10(-9) m(2)/s. Biocompatibility of the composite membrane was assessed by mouse embryonic fibroblast cell line (NIH 3T3) through MTT assay indicating more than 91% viable cell even at 200 μg/mL concentration. Such membranes can be efficiently used in biomedical applications as antibacterial and antifungal agent. Copyright © 2014 Elsevier B.V. All rights reserved.
Ramírez-Prada, Jonathan; Robledo, Sara M; Vélez, Iván D; Crespo, María Del Pilar; Quiroga, Jairo; Abonia, Rodrigo; Montoya, Alba; Svetaz, Laura; Zacchino, Susana; Insuasty, Braulio
2017-05-05
A new series of N-substituted 2-pyrazolines 9a-f, 10a-f, 11a-f, 12a-f and 13a-f were obtained from the cyclocondensation reaction of [(7-chloroquinolin-4-yl)amino]chalcones 8a-f with hydrazine hydrate and its derivatives. Fourteen of the synthesized compounds including the starting chalcones were selected by US National Cancer Institute (NCI) for testing their anticancer activity against 60 different human cancer cell lines, with the most important GI 50 values ranging from 0.28 to 11.7 μM (0.13-6.05 μg/mL) and LC 50 values ranging from 2.6 to > 100 μM (1.2 to > 51.7 μg/mL), for chalcones 8a,d and pyrazolines 10c,d. All compounds were assessed for antibacterial activity against wild type and multidrug resistant gram negative and gram positive bacteria, with MIC values ranging from 31.25 to 500 μg/mL. Additionally, the novel compounds were tested for antifungal and antiparasitic properties. Although these compounds showed mild activity against Candida albicans, chalcones 8a and 8e showed high activity against Cryptococcus neoformans with MIC 50 = 7.8 μg/mL. For anti-Plasmodium falciparum activity the 2-pyrazoline 11b was the most active with EC 50 = 5.54 μg/mL. Regarding the activity against Trypanosoma cruzi, compound 10a was highly active with EC 50 = 0.70 μg/mL. Chalcone 8a had good activity against Leishmania panamensis amastigotes with EC 50 = 0.79 μg/mL. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
2011-01-01
Background In order to validate its antiseptic and anticancer properties with respect to traditional uses, we have screened for the first time the antimicrobial activity of aerial parts of M. vulgare L. essential oil against different pathogenic microorganisms and the cytotoxic activity against HeLa cell lines. Methods The agar disk diffusion method was used to study the antibacterial activity of M. vulgare essential oil against 12 bacterial and 4 fungi strains. The disc diameters of zone of inhibition (DD), the minimum inhibitory concentrations (MIC) and the concentration inhibiting 50% (IC50) were investigated to characterize the antimicrobial activities of this essential oil. The in vitro cytotoxicity of M. vulgare essential oil was examined using a modified MTT assay; the viability and the IC50 were used to evaluate this test. Results The antimicrobial activity of the essential oil was investigated in order to evaluate its efficacy against the different tested microorganisms. The present results results showed a significant activity against microorganisms especially Gram (+) bacteria with inhibition zones and minimal inhibitory concentration values in the range of 6.6-25.2 mm and 1120-2600 μg/ml, respectively, whereas Gram (-) bacteria exhibited a higher resistance. As far as the antifungal activity, among four strains tested, Botrytis cinerea exhibited the strongest activity with inhibition zones of 12.6 mm. However, Fusarium solani, Penicillium digitatum and Aspergillus niger were less sensitive to M. vulgare essential oil. About the citotoxicity assay, this finding indicate the capability of this essential oil to inhibited the proliferation of HeLa cell lines under some conditions with IC50 value of 0.258 μg/ml. Conclusion This investigation showed that the M. vulgare essential oil has a potent antimicrobial activity against some Gram (+) pathogenic bacteria and Botrytis cinerea fungi. The present studies confirm the use of this essential oil as anticancer agent. Further research is required to evaluate the practical values of therapeutic applications. PMID:21936887
[Statement of the Polish Gynecological Society Expert Group on the use of Macmiror Complex 500].
2012-12-01
The group of experts representing the Polish Gynecologic Society has issued this statement based on the review of available literature on the potential benefits of the use of Macmiror Complex 500 in obstetrical and gynecologic practice. Mixed Vaginitis (MV) eg. the vaginal infection caused by at least two out of the triad of pathogens (fungi, bacteria and Trichomonas Vaginalis [TV]), constitutes the type of vaginitis which is underestimated as for its prevalence. Mixed pathogens are responsible for as much as one third of all vaginal infections. Macmiror Complex 500 contains two active ingredients: nifuratel and nystatin. Macmiror Complex 500 affects all common causes of vulvovaginitis, i.e. bacteria, yeasts and TV. At the same time, it is not effective against Lactobacillus spp., which is a clear advantage in the treatment of vaginal infections. The antibacterial spectrum of nifuratel includes aerobic and anaerobic bacteria. Moreover nifuratel is effective against Chlamydia trachomatis and Mycoplasma spp., it has an anti-trichomonal effect comparable to metranidazole and shows certain activity against Candida spp. Nystatin is effective against Candida albicans and is even very effective against Candida glabrata which is usually more resistant to imidazole antifungal agents. Nystatin's importance is rising due to the current increase of candidoses caused by non-albicans types. This increase is especially perceptible in recurring candidoses. The review of the available literature on the effectiveness of Macmiror Complex 500 in the OB/GYN practice leads to the following conclusions: the exeptionally broad antibacterial and antifungal and trichomonicidal activity of this formulation makes it a drug of choice in cases where MV is suspected. The possibility to treat both partners, favorable safety profile in pregnant patients and the availability of both vaginal ovules and the cream with applicator makes this drug an effective and suitable treatment option in obstetrical and gynecologic practice.
Malolo, Fanny-Aimée Essombe; Bissoue Nouga, Achille; Kakam, Antoine; Franke, Katrin; Ngah, Lidwine; Flausino, Otavio; Mpondo Mpondo, Emmanuel; Ntie-Kang, Fidele; Ndom, Jean Claude; Bolzani, Vanderlan da Silva; Wessjohann, Ludger
2015-01-01
Helichrysum species are used extensively for stress-related ailments and as dressings for wounds normally encountered in circumcision rites, bruises, cuts and sores. It has been reported that Helichysum species are used to relief abdominal pain, heart burn, cough, cold, wounds, female sterility, menstrual pain. From the extracts of Helichrysum foetidum (L.) Moench, six known compounds were isolated and identified. They were 7, 4'-dihydroxy-5-methoxy-flavanone (1), 6'-methoxy-2',4, 4'-trihydroxychalcone (2), 6'-methoxy-2',4-dihydroxychalcone -4'-O-β-D-glucoside (3), apigenin (4), apigenin-7-O-β-D-glucoside (5), kaur-16-en-18-oic acid (6) while two known compounds 3,5,7-trihydroxy-8-methoxyflavone (12), 4,5-dicaffeoyl quinic acid (13) together with a mixture of phytosterol were isolated from the methanol extract of Helichrysum mechowianum Klatt. All the compounds were characterized by spectroscopic and mass spectrometric methods, and by comparison with literature data. Both extracts and all the isolates were screened for the protease inhibition, antibacterial and antifungal activities. In addition, the phytochemical profiles of both species were investigated by ESI-MS experiments. These results showed that the protease inhibition assay of H. foetidum could be mainly attributed to the constituents of flavonoids glycosides (3, 5) while the compound (13) from H. mechowianum contributes to the stomach protecting effects. In addition, among the antibacterial and antifungal activities of all the isolates, compound (6) was found to possess a potent inhibitor effect against the tested microorganisms. The heterogeneity of the genus is also reflected in its phytochemical diversity. The differential bioactivities and determined constituents support the traditional use of the species. Molecular modelling was carried out by computing selected descriptors related to drug absorption, distribution, metabolism, excretion and toxicity (ADMET). Graphical abstractCompounds isolated from Helichrysum species (Compositae).
NASA Astrophysics Data System (ADS)
Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.; Lashin, Fakhr El-Din
2013-07-01
In this study, new Fe(II) Schiff base amino acid chelates derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized via elemental, thermogravimetric analysis, molar conductance, IR, electronic, mass spectra and magnetic moment measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. Correlation of all spectroscopic data suggested that Schiff bases ligands exhibited tridentate with ONO sites coordinating to the metal ions via protonated phenolic-OH, azomethine-N and carboxylate-O with the general formulae [Fe(HL)2]·nH2O. But in case of L-histidine, the ligand acts as tetradentate via deprotonated phenolic-OH, azomethine-N, carboxylate-O and N-imidazole ring ([FeL(H2O)2]·2H2O), where HL = mono anion and L = dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their teratogenicity on chick embryos and found to be safe until a concentration of 100 μg/egg with full embryos formation. Moreover, the interaction between CT-DNA and the investigated complexes were followed by spectrophotometric and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA activity with the sequence: nhi > nari > nali > nasi > nphali. Furthermore, the free ligands and their complexes are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus and Trichotheium rosium in order to assess their antimicrobial potential. The results show that the metal complexes are more reactive with respect to their corresponding Schiff base amino acid ligands.
Kavoosi, Gholamreza; Tafsiry, Asad; Ebdam, Ali Asghar; Rowshan, Vahid
2013-02-01
Carum copticum and Ferula assafoetida have several medicinal properties including antispasmodic, carminative, sedative, analgesic, and antiseptic. Reactive oxygen species (ROS), reactive nitrogen species (RNS), hydrogen peroxide (H(2) O(2) ), and thiobarbituric acid reactive substances (TBARS) scavenging activities of Carum and Ferula oils along with their antibacterial and antifungal activities were examined. Thymol (40.25%), γ-terpinene (38.7%) and p-cymene (15.8%) were detected as the main components of Carum oil while, β-pinene (47.1%), α-pinene (21.36%), and 1, 2-dithiolane (18.6%) were the main components of Ferula oil. Inhibitory concentrations (IC50) for total radical scavenging were between 40 and 60 and 130 and 160 μg/mL of Carum and Ferula oil, respectively. Minimal inhibitory concentration (MIC) for Salmonella typhi, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Aspergillus niger, and Candida albicans were 78 ± 8, 65 ± 7, 14 ± 3, 5 ± 2, 5.6 ± 1.3, and 8.8 ± 2.2 μg/mL of Carum oil, respectively. MIC for S. typhi, E. coli, S. aureus, B. subtilis, A. niger, and C. albicans were >200, >200, 125 ± 17, 80 ± 12, 85 ± 5, and 90 ± 11 μg/mL of Ferula oil, respectively. Accordingly, Carum and Ferula oils could be used as safe and effective natural antioxidants to improve the oxidative stability of fatty foods during storage and to preserve foods against food burn pathogens. This study clearly demonstrates the potential of Carum and Ferula oil especially Carum oil as natural antioxidant and antimicrobial agent. The chemical composition of essential oils was identified. Thus, identification of such compounds also helps to discover of new antioxidant, antibacterial and antifungal agents for potential applications in food safety and food preservation. © 2013 Institute of Food Technologists®
Zarai, Zied; Kadri, Adel; Ben Chobba, Ines; Ben Mansour, Riadh; Bekir, Ahmed; Mejdoub, Hafedh; Gharsallah, Néji
2011-09-21
In order to validate its antiseptic and anticancer properties with respect to traditional uses, we have screened for the first time the antimicrobial activity of aerial parts of M. vulgare L. essential oil against different pathogenic microorganisms and the cytotoxic activity against HeLa cell lines. The agar disk diffusion method was used to study the antibacterial activity of M. vulgare essential oil against 12 bacterial and 4 fungi strains. The disc diameters of zone of inhibition (DD), the minimum inhibitory concentrations (MIC) and the concentration inhibiting 50% (IC50) were investigated to characterize the antimicrobial activities of this essential oil. The in vitro cytotoxicity of M. vulgare essential oil was examined using a modified MTT assay; the viability and the IC50 were used to evaluate this test. The antimicrobial activity of the essential oil was investigated in order to evaluate its efficacy against the different tested microorganisms. The present results results showed a significant activity against microorganisms especially Gram (+) bacteria with inhibition zones and minimal inhibitory concentration values in the range of 6.6-25.2 mm and 1120-2600 μg/ml, respectively, whereas Gram (-) bacteria exhibited a higher resistance. As far as the antifungal activity, among four strains tested, Botrytis cinerea exhibited the strongest activity with inhibition zones of 12.6 mm. However, Fusarium solani, Penicillium digitatum and Aspergillus niger were less sensitive to M. vulgare essential oil. About the citotoxicity assay, this finding indicate the capability of this essential oil to inhibited the proliferation of HeLa cell lines under some conditions with IC50 value of 0.258 μg/ml. This investigation showed that the M. vulgare essential oil has a potent antimicrobial activity against some Gram (+) pathogenic bacteria and Botrytis cinerea fungi. The present studies confirm the use of this essential oil as anticancer agent. Further research is required to evaluate the practical values of therapeutic applications.
Zhu, Feng; Zhou, Yang-Kai; Ji, Zhao-Lin; Chen, Xiao-Ren
2018-01-01
Ribosome-inactivating proteins (RIPs) are toxic N-glycosidases that depurinate eukaryotic and prokaryotic rRNAs, thereby arresting protein synthesis during translation. RIPs are widely found in various plant species and within different tissues. It is demonstrated in vitro and in transgenic plants that RIPs have been connected to defense by antifungal, antibacterial, antiviral, and insecticidal activities. However, the mechanism of these effects is still not completely clear. There are a number of reviews of RIPs. However, there are no reviews on the biological functions of RIPs in defense against pathogens and insect pests. Therefore, in this report, we focused on the effect of RIPs from plants in defense against pathogens and insect pest attacks. First, we summarize the three different types of RIPs based on their physical properties. RIPs are generally distributed in plants. Then, we discuss the distribution of RIPs that are found in various plant species and in fungi, bacteria, algae, and animals. Various RIPs have shown unique bioactive properties including antibacterial, antifungal, antiviral, and insecticidal activity. Finally, we divided the discussion into the biological roles of RIPs in defense against bacteria, fungi, viruses, and insects. This review is focused on the role of plant RIPs in defense against bacteria, fungi, viruses, and insect attacks. The role of plant RIPs in defense against pathogens and insects is being comprehended currently. Future study utilizing transgenic technology approaches to study the mechanisms of RIPs will undoubtedly generate a better comprehending of the role of plant RIPs in defense against pathogens and insects. Discovering additional crosstalk mechanisms between RIPs and phytohormones or reactive oxygen species (ROS) against pathogen and insect infections will be a significant subject in the field of biotic stress study. These studies are helpful in revealing significance of genetic control that can be beneficial to engineer crops tolerance to biotic stress. PMID:29479367
Fatima, Faria; Bajpai, Preeti; Pathak, Neelam; Singh, Sarika; Priya, Shivam; Verma, Smita Rastogi
2015-02-27
Particulates of nanometers size have occupied a significant area in the field of medicinal and agricultural purposes due to their large surface-to-volume ratio and exceptional physicochemical, electronic and mechanical properties. Myconanotechnology, an interface between mycology and nanotechnology is budding nowadays for nanoparticle-fabrication using fungus or its metabolites. In the present study, we have isolated and characterized a novel phosphate solubilizing fungus B. tetramera KF934408 from rhizospheric soil. This phosphatase releasing fungus was subjected to extracellular synthesis of metal nanoparticles by redox reaction. Silver (AgNPs) and gold nanoparticles (AuNPs) were characterized by dynamic light scattering and transmission electron microscopic analysis. The formulated AgNPs were irregular shaped with a size ranging between 54.78 nm to 73.49 nm whereas AuNPs were spherical or hexagonal, with a size of 58.4 and 261.73 nm, respectively. The nanoparticles were assessed for their antibacterial and antifungal efficacy. The results showed effective antimicrobial activity of AgNPs against Bacillus cereus, Staphylococcus aureus, Enterobacter aeroginosa and Trichoderma sp. at higher concentrations, however, AuNPs possessed only moderate antibacterial efficacy while they found no antifungal activity. Cytotoxicity analysis of nanoparticles on J774 and THP1 α cell lines revealed the dose dependence in case of AgNPs, while AuNPs were non-toxic at both low and high doses. Furthermore, significant elevation of intracellular ROS was observed after 4 h of incubation with both the nanoparticles. The capping of fungal proteins on the particulates might be involved in the activities demonstrated by these inert metal nanoparticles. In conclusion, the findings showed that the metal nanoparticles synthesized by fungus B. tetramera could be used as an antimicrobial agents as well as cost effective and nontoxic immunomodulatory delivery vehicle.
Nishanth Kumar, S; Nath, Vishnu Sukumari; Pratap Chandran, R; Nambisan, Bala
2014-02-01
The cell free culture filtrate of Bacillus cereus associated with an entomopathogenic nematode, Rhabditis (Oscheius) sp. exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography to obtain four bioactive compounds. The structure and absolute stereochemistry of these compounds were determined based on extensive spectroscopic analyses (FABMS, (1)H NMR, (13)C NMR, (1)H-(1)H COSY, (1)H-(13)C HMBC) and Marfey's method. The compounds were identified as cyclic dipeptides (CDPs): cyclo(L-Pro-L-Trp), cyclo(L-Leu-L-Val), cyclo(D-Pro-D-Met), and cyclo(D-Pro-D-Phe), respectively. Compounds recorded significant antibacterial activity against all the test bacteria (Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa and methicillin-resistant S. aureus) except cyclo(L-Leu-L-Val). Cyclo(L-Leu-L-Val) recorded activity only against Gram positive bacteria. Best antibacterial activity was recorded by cyclo(L-Pro-L-Trp) against S. aureus (4 μg/ml). The four compounds were active against all the five fungi tested (Trichophyton rubrum, Aspergillus flavus, Candida albicans, Candida tropicalis and Cryptococcus neoformans) and the activity was compared with amphotericin B, the standard fungicide. The highest activity of 1 μg/ml by cyclo(L-Pro-L-Trp) was recorded against T. rubrum, a human pathogen responsible for causing athlete's foot, jock itch, and ringworm. The activity of cyclo(L-Pro-L-Trp) against T. rubrum, C. neoformans and C. albicans were better than amphotericin B, the standard antifungal agent. To our knowledge, this is the first report of antifungal activity of CDPs against the human pathogenic fungi T. rubrum and C. neoformans. The four CDPs are nontoxic to healthy human cell line up to 200 μg/ml. We conclude that the bacterium associated with entomopathogenic nematode is promising sources of natural antimicrobial secondary metabolites, which may receive greater benefit as potential sources of new drugs in the pharmaceutical industry.
Antifungal effect of kefir fermented milk and shelf life improvement of corn arepas.
Gamba, Raúl Ricardo; Caro, Carlos Andrés; Martínez, Olga Lucía; Moretti, Ana Florencia; Giannuzzi, Leda; De Antoni, Graciela Liliana; León Peláez, Angela
2016-10-17
Fungal contamination negatively affects the production of cereal foods such as arepa loaf, an ancient corn bread consumed daily in several countries of Latin-America. Chemical preservatives such as potassium sorbate are applied in order to improve the arepa's shelf life and to reduce the health risks. The use of natural preservatives such as natural fermented products in food commodities is a common demand among the consumers. Kefir is a milk fermented beverage obtained by fermentation of kefir grains. Its antibacterial and probiotic activity has been exhaustively demonstrated. Our objectives were to determine the antifungal effect of kefir fermented milk on Aspergillus flavus AFUNL5 in vitro and to study if the addition of kefir fermented milk to arepas could produce shelf life improvement. We determined the antifungal effect on solid medium of kefir cell-free supernatants (CFS) obtained under different fermentation conditions. Additionally, we compared the antifungal effect of kefir CFS with that obtained with unfermented milk artificially acidified with lactic plus acetic acids (lactic and acetic acids at the same concentration determined in kefir CFS) or with hydrochloric acid. Finally, kefir was added to the corn products either in the loaf recipe (kefir-baked arepas) or sprayed onto the baked-loaf surface (kefir-sprayed arepas). The loaves' resistance to natural and artificial fungal contamination and their organoleptic profiles were studied. The highest fungal inhibition on solid medium was achieved with kefir CFS produced by kefir grains CIDCA AGK1 at 100 g/L, incubated at 30 °C and fermented until pH 3.3. Other CFS obtained from different fermentation conditions achieved less antifungal activity than that mentioned above. However, CFS of milk fermented with kefir grains, until pH 4.5 caused an increase of growth rates. Additionally, CFS produced by kefir grains CIDCA AGK1 at 100 g/L, incubated at 30 °C and fermented until pH 3.3 achieved higher antifungal activity than CFS from artificially acidified milk with organic acids (CFS L + A) at the same concentration of kefir CFS. Besides, CFS from milk acidified with hydrochloric acid (CFS HCl) showed no fungal inhibition. On the other hand, kefir-baked arepas exhibited significant resistance to natural and artificial fungal contamination. Finally, both kefir-baked and kefir-sprayed arepas retained the organoleptic characteristics of the traditional corn product, but with certain tastes imparted by the kefir fermentation. This work constitutes the first study on fungal inhibition by kefir-fermented milk extending to the protection of corn products of mass-consumption and the possible application as a food preservative.
Lei, Hui; Lin, Xiuping; Han, Li; Ma, Jian; Ma, Qingjuan; Zhong, Jialiang; Liu, Yonghong; Sun, Tiemin; Wang, Jinhui; Huang, Xueshi
2017-01-01
Four new compounds, including two isocoumarins, pestaloisocoumarins A and B (1, 2), one sesquiterpenoid degradation, isopolisin B (4), and one furan derivative, pestalotiol A (5), together with one known isocoumarin, gamahorin (3), and three chlorinated benzophenone derivatives, pestalachloride B (6), pestalachloride E (7) and a mixture of pestalalactone atropisomers (8a/8b), were isolated from a culture of the fungus Pestalotiopsis heterocornis associated with sponge Phakellia fusca. These new chemical structures were established using NMR and MS spectroscopic data, as well as single-crystal X-ray crystallographic analysis and CD Cotton effects. All of the isolated compounds were evaluated for their antimicrobial and cytotoxic activities. Isocoumarins 1–3, showed antibacterial activities against Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with MIC values ranging from 25 to 100 μg/mL and weak antifungal activities. Chlorinated benzophenone derivatives 6–8 exhibited antibacterial activities against S. aureus and B. subtilis with MIC values ranging from 3.0 to 50 μg/mL and cytotoxicities against four human cancer cell lines with IC50 values of 6.8–87.8 μM. PMID:28335391
Toxicity tests, antioxidant activity, and antimicrobial activity of chitosan
NASA Astrophysics Data System (ADS)
Kurniasih, M.; Purwati; Dewi, R. S.
2018-04-01
Chitosan is a naturally occurring cationic biopolymer, obtained by alkaline deacetylation of chitin. This research aims to investigate the toxicity, antioxidant activity and antibacterial activity of chitosan from shrimp chitin. In this study, chitin extracted from shrimp waste material. Chitin is then deacetylation with 60% NaOH so that chitosan produced. Degrees of deacetylation, molecular weight, toxicity test, antioxidant activity and antimicrobial activity of chitosan then evaluated. Toxicity test using Brine Shrimp Lethality Test. The antioxidant analysis was performed using DPPH method (2, 2-diphenyl-1-picrylhydrazyl) and FTC method (ferric thiocyanate) in which the radical formed will reduce Ferro to Ferri resulting in a complex with thiocyanate. To determine the antibacterial activity of Staphylococcus aureus, antifungal in Candida albicans and Aspergillus niger by measuring antimicrobial effects and minimum inhibitory concentrations (MIC). Based on the result of research, the value of degrees of deacetylation, molecular weight, and LC50 values of chitosan synthesis was 94,32, 1052.93 g/mol and 1364.41 ppm, respectively. In general, the antioxidative activities increased as the concentration of chitosan increased. MIC value of chitosan against S. aureus, C. albicans, and A. niger was 10 ppm, 15.6 ppm, and 5 ppm, respectively.
ANTIMICROBIAL ACTIVITY OF BURSERA MORELENSIS RAMÍREZ ESSENTIAL OIL.
M, Canales-Martinez; C R, Rivera-Yañez; J, Salas-Oropeza; H R, Lopez; M, Jimenez-Estrada; R, Rosas-Lopez; D A, Duran; C, Flores; L B, Hernandez; M A, Rodriguez-Monroy
2017-01-01
Bursera morelensis , known as "Aceitillo", is an endemic tree of Mexico. Infusions made from the bark of this species have been used for the treatment of skin infections and for their wound healing properties. In this work, we present the results of a phytochemical and antimicrobial investigation of the essential oil of B. morelensis . The essential oil was obtained by a steam distillation method and analyzed using GC-MS. The antibacterial and antifungal activities were evaluated. GC-MS of the essential oil demonstrated the presence of 28 compounds. The principal compound of the essential oil was a-Phellandrene (32.69%). The essential oil had antibacterial activity against Gram positive and negative strains. The most sensitive strains were S. pneumoniae , V. cholerae (cc) and E. coli (MIC 0.125 mg/mL, MBC 0.25 mg/mL). The essential oil was bactericidal for V. cholera (cc). The essential oil inhibited all the filamentous fungi. F. monilifome (IC 50 = 2.27 mg/mL) was the most sensitive fungal strain. This work provides evidence that confirms the antimicrobial activity of the B. morelensis essential oil and this is a scientific support about of traditional uses of this species.
NASA Astrophysics Data System (ADS)
Baraliya, Jagdish D.; Rakhashiya, Purvi M.; Patel, Pooja P.; Thaker, Vrinda S.; Joshi, Hiren H.
2017-05-01
In this study, novel multifunctional magnetic iron-based nanoparticles (CoFe2O4) coated with silica, silica-DEG (diethylene glycol), PEG (polyethylene glycol) were synthesized using Auto Combustion Method (ACM), Co-precipitation Method (COPM), Citrate Precursor Method (CPM), Flash Combustion Method (FCM). These spinel ferrite nanoparticles also contain very high antibacterial properties to fulfill the requirements of a drug delivery system so that the antibiotic concentration could be minimized. A potential delivery system could be based on a ferromagnetic fluid. The effects of various preparation methods on the physical properties of the nanoparticles were examined. The nanoparticles were also tested against four human pathogenic bacteria (Gram negative E.coli, P. aeruginosa, Gram positive S. aureus, S. pyogenus) and two fungi (C. albicans, A.niger). It was revealed that a nanoparticle has strong antibacterial activity as compared to antifungal. Further, Gram positive bacteria are more affected than Gram negative bacteria. It was also clear that different methods of coating have great influence on the antimicrobial properties. It was observed that these nanoparticles have significantly different but potentially very high antimicrobial activities against the tested organisms than found elsewhere by other nanoparticles on the same organisms.
Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization
NASA Astrophysics Data System (ADS)
Stoleru, Elena; Dumitriu, Raluca Petronela; Munteanu, Bogdanel Silvestru; Zaharescu, Traian; Tănase, Elisabeta Elena; Mitelut, Amalia; Ailiesei, Gabriela-Liliana; Vasile, Cornelia
2016-03-01
A novel two step procedure was applied for poly(lactic acid) (PLA) functionalization consisting in the exposure to cold radiofrequency plasma in nitrogen atmosphere or to gamma irradiation followed by ;grafting to; of a chitosan layer using carbodiimide chemistry. The adhesion and stability of the deposited surface layer was assured by plasma/gamma irradiation treatment while the chitosan layer offers antifungal/antibacterial/antioxidant activities. Chitosan with different viscosities/deacetylation degree was deposited by electrospinning or immersion methods. Correlations between rheological behavior of chitosan solutions and chitosan layer deposition conditions are made. The PLA surface properties were investigated by water contact angle measurements, ATR-FTIR spectroscopy, AFM, chemiluminiscence, etc. It has been established that the surface roughness increases direct proportional with cold plasma duration and gamma irradiation dose and further increases by chitosan coating which at its turn depends on chitosan characteristics (viscosity and deacetylation degree) and method of deposition. Nano-fibers with relatively homogeneous and reproducible features are obtained by electrospinning of highly viscous chitosan while with the other two types of chitosan both microparticles and nano-fibers are formed. The chitosan coating obtained by immersion is more homogenous and compact and has a better antibacterial activity than the electrospun layer as fiber meshes.
Semi-synthesis and NMR spectral assignments of flavonoid and chalcone derivatives.
Kumar, Rohitesh; Lu, Yuting; Elliott, Alysha G; Kavanagh, Angela M; Cooper, Matthew A; Davis, Rohan A
2016-11-01
Previous investigations of the aerial parts of the Australian plant Eremophila microtheca and Syzygium tierneyanum resulted in the isolation of the antimicrobial flavonoid jaceosidin (4) and 2',6'-dihydroxy-4'-methoxy-3',5'-dimethyl chalcone (7), respectively. In this current study, compounds 4 and 7 were derivatized by acetylation, pivaloylation, and methylation reactions. The final products, 5,7,4'-triacetoxy jaceosidin (10), 5,7,4'-tripivaloyloxy jaceosidin (11), 5,7,4'-trimethoxy jaceosidin (12), 2',6'-diacetoxy-4'-methoxy-3',5'-dimethyl chalcone (13), 2'-hydroxy-4'-methoxy-6'-pivaloyloxy-3',5'-dimethyl chalcone (14), and 2'-hydroxy-4',6'-dimethoxy-3',5'-dimethyl chalcone (15) were all fully characterized by NMR and MS. Derivatives 10 and 13 have been previously reported but were only partially characterized. This is the first reported synthesis of 11 and 14. The natural products and their derivatives were evaluated for their antibacterial and antifungal properties, and the natural product, jaceosidin (4) and the acetylated derivative, 5,7,4'-triacetoxy jaceosidin (10), showed modest antibacterial activity (32-128 µg/ml) against Staphylococcus aureus strains. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Rodrigues, Fabiola F G; Oliveira, Liana G S; Rodrigues, Fábio F G; Saraiva, Manuele E; Almeida, Sheyla C X; Cabral, Mario E S; Campos, Adriana R; Costa, Jose Galberto M
2012-07-01
Cordia verbenacea is a Brazilian coastal shrub popularly known as "erva baleeira". The essential oil from fresh leaves was obtained by hydrodistillation and analyzed by CG/MS. The main components were identified as β-caryophyllene (25.4%), bicyclogermacrene (11.3%), δ-cadinene (9.%) and α-pinene (9.5%). In this study, the antimicrobial activity of Cordia verbenacea was evaluated. The minimal inhibitory concentration (MIC) of the essential oil was obtained using the broth microdilution assay (from 512 to 8 μg/ml). The results showed that the essential oil presented fungistatic activity against Candida albicans and Candida krusei and antibacterial activity against Gram-positive strains (Staphylococcus aureus and Bacillus cereus) and against multiresistant Gram-negative (Escherichia coli 27), in all tests the MIC was 64 μg/ml. When the essential oil was associated to aminoglycosides (subinhibitory concentrations, MIC/8), a synergic and antagonic activity was verified. The synergic effect was observed to the amikacin association (MIC reduction from 256 mlto 64 μg/ml) in all strains tested. The essential oil of Cordia verbenacea influences the activity of antibiotics and may be used as an adjuvant in antibiotic therapy against respiratory tract bacterial pathogens.
Figueroa, Mario; Raja, Huzefa; Falkinham, Joseph O; Adcock, Audrey F; Kroll, David J; Wani, Mansukh C; Pearce, Cedric J; Oberlies, Nicholas H
2013-06-28
An extract of the filamentous fungus Bionectria sp. (MSX 47401) showed both promising cytotoxic activity (>90% inhibition of H460 cell growth at 20 μg/mL) and antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). A bioactivity-directed fractionation study yielded one new peptaibol (1) and one new tetramic acid derivative (2), and the fungus biosynthesized diverse secondary metabolites with mannose-derived units. Five known compounds were also isolated: clonostachin (3), virgineone (4), virgineone aglycone (5), AGI-7 (6), and 5,6-dihydroxybisabolol (7). Compounds 5 and 7 have not been described previously from natural sources. Compound 1 represents the second member of the peptaibol structural class that contains an ester-linked sugar alcohol (mannitol) instead of an amide-linked amino alcohol, and peptaibols and tetramic acid derivatives have not been isolated previously from the same fungus. The structures of the new compounds were elucidated primarily by high-field NMR (950 and 700 MHz), HRESIMS/MS, and chemical degradations (Marfey's analysis). All compounds (except 6) were examined for antibacterial and antifungal activities. Compounds 2, 4, and 5 showed antimicrobial activity against S. aureus and several MRSA isolates.
NASA Astrophysics Data System (ADS)
Eremenko, A. M.; Petrik, I. S.; Smirnova, N. P.; Rudenko, A. V.; Marikvas, Y. S.
2016-01-01
Effective method of obtaining of the bactericidal bandage materials by impregnation of cotton fabric by aqueous solutions of silver and copper salts followed by a certain regime of heat treatment is developed. The study of obtained materials by methods of optical spectroscopy, electron microscopy, and X-ray phase analysis showed the formation of crystalline silver nanoparticles (NPs) and bimetallic Ag/Cu composites with the corresponding surface plasmon resonance (SPR) bands in the absorption spectra. High antimicrobial and antimycotic properties of tissues with low concentrations of Ag and Ag/Cu nanoparticles (Ag/Cu NPs) (in the range 0.06-0.25 weight percent (wt%) for Ag and 0.015-0.13 wt% for Ag/Cu) is confirmed in experiments with a wide range of multidrug-resistant bacteria and fungi: Escherichia coli, Enterobacter aerogenes, Proteus mirabilis, Klebsiella pneumoniae, Candida albicans yeasts, and micromycetes . Textile materials with Ag NPs demonstrate high antibacterial activity, while fabrics doped with bimetallic composite Ag/Cu have pronounced antimycotic properties. Bactericidal and antifungal properties of the obtained materials do not change after a washing. Production of such materials is extremely fast, convenient, and cost-effective.
Ebani, Valentina V; Nardoni, Simona; Bertelloni, Fabrizio; Najar, Basma; Pistelli, Luisa; Mancianti, Francesca
2017-04-21
Background: Essential oils (EOs) are recommended by some veterinarians to treat otitis externa in pets, but data about their efficacy in scientific literature are very scant. Methods: Nine commercial EOs, from roman chamomile ( Anthemis nobilis L.), star anise ( Illicium verum ), lavender ( Lavandula hybrida ), litsea ( Litsea cubeba (Lour.) Pers.), basil ( Ocimum basilicum L.), oregano ( Origanum vulgare L. subsp. hirticum ), rosemary ( Rosmarinus officinalis L.), clary sage ( Salvia sclarea L.), and thyme ( Thymus vulgaris L.) were tested against bacterial and fungal pathogens previously isolated from dogs and cats with otitis externa. In particular, the analyses were carried out against Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus pseudointermedius , Aspergillus niger, Aspergillus fumigatus, Aspergillus terreus, Candida albicans, Candida tropicalis, Trichosporon sp., and Rhodotorula sp. Results: O. vulgare and S. sclarea showed superior antibacterial activity, even if not against all the strains. Trichosporon sp., C. albicans , and A. terreus were insensitive to most Eos, while other yeasts and molds showed different degrees of sensitivity. In particular, most fungi were inhibited by O. vulgare and R. officinalis . Conclusions: The obtained results suggest that some EOs could be included in treatment as an alternative therapeutic option in bacterial otitis complicated by fungi, in association with conventional drugs.
Lee, Jongsung; Nho, Youn Hwa; Yun, Seok Kyun; Hwang, Young Sun
2017-02-16
The fruit of the Terminalia chebula tree has been widely used for the treatment of various disorders. Its anti-diabetic, anti-mutagenic, anti-oxidant, anti-bacterial, anti-fungal, and anti-viral effects have been studied. Dental plaque bacteria (DPB) are intimately associated with gingivitis and periodontitis. In the quest for materials that will prove useful in the treatment and prevention of periodontal disease, we investigated the preventive effects of an ethanol extract of Terminalia chebula (EETC) on DPB-induced inflammation and bone resorption. The anti-bacterial effect of EETC was analyzed using the disc diffusion method. The anti-inflammatory effect of EETC was determined by molecular biological analysis of the DPB-mediated culture cells. Prevention of osteoclastic bone resorption by EETC was explored using osteoclast formation and pit formation assays. EETC suppressed the growth of oral bacteria and reduced the induction of inflammatory cytokines and proteases, abolishing the expression of PGE2 and COX-2 and inhibiting matrix damage. By stimulating the DPB-derived lipopolysaccharides, EETC inhibited both osteoclast formation in osteoclast precursors and RANKL expression in osteoblasts, thereby contributing to the prevention of bone resorption. EETC may be a beneficial supplement to help prevent DPB-mediated periodontal disease.
ANTIMICROBIAL ACTIVITY OF BURSERA MORELENSIS RAMÍREZ ESSENTIAL OIL
M., Canales-Martinez; C.R., Rivera-Yañez; J., Salas-Oropeza; H.R., Lopez; M., Jimenez-Estrada; R., Rosas-Lopez; D.A., Duran; C., Flores; L.B., Hernandez; M.A., Rodriguez-Monroy
2017-01-01
Background: Bursera morelensis, known as “Aceitillo”, is an endemic tree of Mexico. Infusions made from the bark of this species have been used for the treatment of skin infections and for their wound healing properties. In this work, we present the results of a phytochemical and antimicrobial investigation of the essential oil of B. morelensis. Materials and Methods: The essential oil was obtained by a steam distillation method and analyzed using GC-MS. The antibacterial and antifungal activities were evaluated. Results: GC-MS of the essential oil demonstrated the presence of 28 compounds. The principal compound of the essential oil was a-Phellandrene (32.69%). The essential oil had antibacterial activity against Gram positive and negative strains. The most sensitive strains were S. pneumoniae, V. cholerae (cc) and E. coli (MIC 0.125 mg/mL, MBC 0.25 mg/mL). The essential oil was bactericidal for V. cholera (cc). The essential oil inhibited all the filamentous fungi. F. monilifome (IC50 = 2.27 mg/mL) was the most sensitive fungal strain. Conclusions: This work provides evidence that confirms the antimicrobial activity of the B. morelensis essential oil and this is a scientific support about of traditional uses of this species. PMID:28480418
Catechin secretion and phytotoxicity: Fact not fiction.
Bais, Harsh P; Kaushik, Shail
2010-09-01
Research indicates that the invasiveness of Centaurea stoebe is attributed to the stronger allelopathic effects on the native North American species than on the related European species, which is one of the unquestionable aspects of the "novel weapons hypothesis (NWH)." Studies originating from controlled to field conditions have shown that C. stoebe utilizes its biochemical potential to exert its invasiveness. The roots of C. stoebe secrete a potent phytotoxin, catechin, which has a detrimental effect on the surrounding plant species. Although, studies on catechin secretion and phytotoxicity represent one of the most well studied systems describing negative plant-plant interactions, it has also sparked controversies lately due to its phytotoxicity dosages and secretion effluxes. Previous reports negate the phytotoxic and pro-oxidant nature of catechin.1-3 In our recent study we have shown that catechin is highly phytotoxic against Arabidopsis thaliana and Festuca idahoensis. We also show that (±) catechin applied to roots of A. thaliana induces reactive oxygen species (ROS) confirming the pro-oxidant nature of catechin. In addition, activation of signature cell death genes such as acd2 and cad1 post catechin treatment in A. thaliana ascertains the phytotoxic nature of catechin.
Ullah, Nazif; Haq, Ihsan-Ul; Mirza, Bushra
2015-05-01
This work examines the crude methanolic extracts of three medicinally important plants native to Pakistan for potent phytotoxic activities and important phytochemicals. These plants include Euphorbia wallichii, Bergenia ciliata and Phytolacca latbenia. The phytotoxic effects were checked at 10,000, 1000, and 100 µg/ml against two economically important standard target species, Triticum aestivum (monocot representative) and Brassica napus (dicot representative). The phytotoxicity effects on seed germination, seedling growth and seedling weight were checked. A simple, cost-effective in vitro phytotoxicity assay (that uses petri plates) was used to evaluate the allelopathic properties of crude extracts. At highest concentration, extracts from all the three plants showed phytotoxic activities such that P. latbenia > E. wallichii > B. ciliata. In seedling growth, root length was affected more than shoot length, whereas among the target species B. napus was found to be more sensitive towards extracts when compared with T. aestivum. Phytochemical analysis showed that P. latbenia is rich in saponins and terpenoids, while E. wallichii and B. ciliata are rich in tannins, terpenoids and cardiac glycoside. P. latbenia also carries a moderate amount of cardiac glycosides. © The Author(s) 2012.
Catechin secretion and phytotoxicity
Kaushik, Shail
2010-01-01
Research indicates that the invasiveness of Centaurea stoebe is attributed to the stronger allelopathic effects on the native North American species than on the related European species, which is one of the unquestionable aspects of the “novel weapons hypothesis (NWH).” Studies originating from controlled to field conditions have shown that C. stoebe utilizes its biochemical potential to exert its invasiveness. The roots of C. stoebe secrete a potent phytotoxin, catechin, which has a detrimental effect on the surrounding plant species. Although, studies on catechin secretion and phytotoxicity represent one of the most well studied systems describing negative plant-plant interactions, it has also sparked controversies lately due to its phytotoxicity dosages and secretion effluxes. Previous reports negate the phytotoxic and pro-oxidant nature of catechin.1–3 In our recent study we have shown that catechin is highly phytotoxic against Arabidopsis thaliana and Festuca idahoensis. We also show that (±) catechin applied to roots of A. thaliana induces reactive oxygen species (ROS) confirming the pro-oxidant nature of catechin. In addition, activation of signature cell death genes such as acd2 and cad1 post catechin treatment in A. thaliana ascertains the phytotoxic nature of catechin. PMID:21057643
Meepagala, Kumudini M; Briscoe, William E; Techen, Natascha; Johnson, Robert D; Clausen, Brandon M; Duke, Stephen O
2018-01-01
The fungus Diaporthe eres was isolated from a fungal pathogen-infected leaf of Hedera helix (English ivy) exhibiting necrosis. It is hypothesized that the causative fungus produces phytotoxins as evidenced by necrotic lesions on the leaves. The fungus was isolated and grown in Czapek Dox broth culture medium and potato dextrose broth culture medium and identified as Diaporthe eres. The ethyl acetate extracts of the culture broths were phytotoxic to lettuce (Lactuca sativa) and bentgrass (Agrostis stolonifera). 3,4-Dihydro-8-hydroxy-3,5-dimethylisocoumarin (1) and tyrosol (2) were isolated and identified as the phytotoxic constituents. Six analogs of 3,4-dihydro-isocoumarin were synthesized and shown to be phytotoxic. The synthesized 3,4-dihydro-8-hydroxy-3,7-dimethylisocoumarin and 3,4-dihydro-8-hydroxy-3,3,7-trimethylisocoumarin were two- to three-fold more phytotoxic than the naturally occurring 1 in a Lemna paucicostata growth bioassay. Synthesis and herbicidal activities of the several new analogs of 1 are reported for the first time. These promising molecules should be used as templates for synthesis and testing of more analogs. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Phan, Minh Giang; Phan, Tong Son; Matsunami, Katsuyoshi; Otsuka, Hideaki
2006-04-01
From the aerial parts of Scoparia dulcis L. (Scrophulariaceae) grown in Vietnam, four scopadulane-type diterpenoids (4-7), of which 7 is new and was given the trivial name scopadulcic acid C, together with nine known compounds were isolated. Their structures were elucidated by spectroscopic analyses. The absolute configurations of 4-7 were ascertained by applying the modified Mosher's method to iso-dulcinol (6). The isolation of the lignans nirtetralin and niranthin for the first time from S. dulcis is also of chemotaxonomic interest. The cytotoxic activity in KB cells, inhibitory effect on LPS/IFNgamma-induced NO production, inhibition of multidrug resistance (MDR), and antibacterial and antifungal activities of the scopadulane-type diterpenoids 4-7 were examined in this study.
Patel, Navin B; Patel, Jignesh N; Purohit, Amit C; Patel, Vatsal M; Rajani, Dhanji P; Moo-Puc, Rosa; Lopez-Cedillo, Julio Cesar; Nogueda-Torres, Benjamin; Rivera, Gildardo
2017-09-01
A new series of N-(substituted-phenyl)-2-[5-(quinoxalin-2-yloxymethyl)-[1,3,4] oxadiazol-2-ylsulfanyl]-acetamides (5a-o) was designed and synthesised from the parent compound 2-hydroxy quinoxaline (1) through a multistep reaction sequence and was characterised by spectral and elemental analyses. All of the compounds synthesised were evaluated for their antimicrobial and antiprotozoal activities. The results revealed that quinoxaline-based 1,3,4-oxadiazoles displayed promising antibacterial, antifungal and anti-Trypanosoma cruzi activities compared with reference drugs, particularly the lead compound 5l in a short-term in vivo model in T. cruzi. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Biologically active cannabinoids from high-potency Cannabis sativa.
Radwan, Mohamed M; Elsohly, Mahmoud A; Slade, Desmond; Ahmed, Safwat A; Khan, Ikhlas A; Ross, Samir A
2009-05-22
Nine new cannabinoids (1-9) were isolated from a high-potency variety of Cannabis sativa. Their structures were identified as (+/-)-4-acetoxycannabichromene (1), (+/-)-3''-hydroxy-Delta((4'',5''))-cannabichromene (2), (-)-7-hydroxycannabichromane (3), (-)-7R-cannabicoumarononic acid A (4), 5-acetyl-4-hydroxycannabigerol (5), 4-acetoxy-2-geranyl-5-hydroxy-3-n-pentylphenol (6), 8-hydroxycannabinol (7), 8-hydroxycannabinolic acid A (8), and 2-geranyl-5-hydroxy-3-n-pentyl-1,4-benzoquinone (9) through 1D and 2D NMR spectroscopy, GC-MS, and HRESIMS. The known sterol beta-sitosterol-3-O-beta-d-glucopyranosyl-6'-acetate was isolated for the first time from cannabis. Compounds 6 and 7 displayed significant antibacterial and antifungal activities, respectively, while 5 displayed strong antileishmanial activity.
NASA Astrophysics Data System (ADS)
Manjunath, M.; Kulkarni, Ajaykumar D.; Bagihalli, Gangadhar B.; Malladi, Shridhar; Patil, Sangamesh A.
2017-01-01
Spectroscopic (IR, NMR, UV-vis, ESR, ESI-mass), magnetic and TGA studies suggests octahedral geometry for all the CoII, NiII and CuII complexes of the Schiff bases, derived from 4-aminoantipyrine and 8-formyl-7-Hydroxy-4-methylcoumarin/5-formyl-6-hydroxycoumarin, coordinated through ONO donor sites. Antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi), antifungal (Aspergillus niger, Aspergillus flavus and Cladosporium) and DNA cleavage properties of the metal complexes are investigated. The results suggested that some of the synthesized compounds are potential antimicrobials. The synthesized compounds tested for their anthelmintic activities and it was found that CoII and NiII complexes exhibited good anthelmintic properties.
Cydonia oblonga M., A Medicinal Plant Rich in Phytonutrients for Pharmaceuticals
Ashraf, Muhammad U.; Muhammad, Gulzar; Hussain, Muhammad A.; Bukhari, Syed N. A.
2016-01-01
Cydonia oblonga M. is a medicinal plant of family Rosaceae which is used to prevent or treat several ailments such as cancer, diabetes, hepatitis, ulcer, respiratory, and urinary infections, etc. Cydonia oblonga commonly known as Quince is rich in useful secondary metabolites such as phenolics, steroids, flavonoids, terpenoids, tannins, sugars, organic acids, and glycosides. A wide range of pharmacological activities like antioxidant, antibacterial, antifungal, anti-inflammatory, hepatoprotective, cardiovascular, antidepressant, antidiarrheal, hypolipidemic, diuretic, and hypoglycemic have been ascribed to various parts of C. oblonga. The polysaccharide mucilage, glucuronoxylan extruded from seeds of C. oblonga is used in dermal patches to heal wounds. This review focuses on detailed investigations of high-valued phytochemicals as well as pharmacological and phytomedicinal attributes of the plant. PMID:27445806
Curcumin, a component of golden spice: from bedside to bench and back.
Prasad, Sahdeo; Gupta, Subash C; Tyagi, Amit K; Aggarwal, Bharat B
2014-11-01
Although the history of the golden spice turmeric (Curcuma longa) goes back thousands of years, it is only within the past century that we learned about the chemistry of its active component, curcumin. More than 6000 articles published within the past two decades have discussed the molecular basis for the antioxidant, anti-inflammatory, antibacterial, antiviral, antifungal, and anticancer activities assigned to this nutraceutical. Over sixty five clinical trials conducted on this molecules, have shed light on the role of curcumin in various chronic conditions, including autoimmune, cardiovascular, neurological, and psychological diseases, as well as diabetes and cancer. The current review provides an overview of the history, chemistry, analogs, and mechanism of action of curcumin. Published by Elsevier Inc.
Antioxidant and antimicrobial activities of cinnamic acid derivatives.
Sova, M
2012-07-01
Cinnamic acid is an organic acid occurring naturally in plants that has low toxicity and a broad spectrum of biological activities. In the search for novel pharmacologically active compounds, cinnamic acid derivatives are important and promising compounds with high potential for development into drugs. Many cinnamic acid derivatives, especially those with the phenolic hydroxyl group, are well-known antioxidants and are supposed to have several health benefits due to their strong free radical scavenging properties. It is also well known that cinnamic acid has antimicrobial activity. Cinnamic acid derivatives, both isolated from plant material and synthesized, have been reported to have antibacterial, antiviral and antifungal properties. Acids, esters, amides, hydrazides and related derivatives of cinnamic acid with such activities are here reviewed.
Yadav, Neerja; Gupta, Munishwar Nath; Khare, Sunil K
2017-10-01
In the present study, a halophilic Bacillus subtilis subsp. spizizenii (NCBI GenBank accession number KX109607) was isolated from the Sambhar Salt Lake, Rajasthan India. This organism exhibited significance antibacterial and antifungal activity against Proteus vulgaris, Bacillus subtilis, Aspergillus niger, Rhizopus oligosporus and Penicillium chrysogenum respectively. The bioactive constituent responsible for it was extracted by three phase partitioning and purified by column chromatography. The purified compound was further characterized by FTIR-ATR, NMR and Mass spectrometry. The mass spectra show a molecular ion of m/z 301.14. The compound has very high antimicrobial activity showing 35mm zone of inhibition against Bacillus subtilis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structures and properties of naturally occurring polyether antibiotics.
Rutkowski, Jacek; Brzezinski, Bogumil
2013-01-01
Polyether ionophores represent a large group of natural, biologically active substances produced by Streptomyces spp. They are lipid soluble and able to transport metal cations across cell membranes. Several of polyether ionophores are widely used as growth promoters in veterinary. Polyether antibiotics show a broad spectrum of bioactivity ranging from antibacterial, antifungal, antiparasitic, antiviral, and tumour cell cytotoxicity. Recently, it has been shown that some of these compounds are able to selectively kill cancer stem cells and multidrug-resistant cancer cells. Thus, they are recognized as new potential anticancer drugs. The biological activity of polyether ionophores is strictly connected with their molecular structure; therefore, the purpose of this paper is to present an overview of their formula, molecular structure, and properties.
Structures and Properties of Naturally Occurring Polyether Antibiotics
Rutkowski, Jacek; Brzezinski, Bogumil
2013-01-01
Polyether ionophores represent a large group of natural, biologically active substances produced by Streptomyces spp. They are lipid soluble and able to transport metal cations across cell membranes. Several of polyether ionophores are widely used as growth promoters in veterinary. Polyether antibiotics show a broad spectrum of bioactivity ranging from antibacterial, antifungal, antiparasitic, antiviral, and tumour cell cytotoxicity. Recently, it has been shown that some of these compounds are able to selectively kill cancer stem cells and multidrug-resistant cancer cells. Thus, they are recognized as new potential anticancer drugs. The biological activity of polyether ionophores is strictly connected with their molecular structure; therefore, the purpose of this paper is to present an overview of their formula, molecular structure, and properties. PMID:23586016
Gonçalves, Giovana M; Brianezi, Gabrielli; Miot, Hélio Amante
2017-01-01
The pH of the skin is slightly acidic (4.6 to 5.8) which is important for appropriate antibacterial, antifungal, constitution of barrier function, as well as structuring and maturation of the stratum corneum. This study aimed to evaluate the pH of the main commercial moisturizers and liquid soaps in Brazil. Thus, pH of the products was quantified by pH meter in three measurements. A total of 38 moisturizers and six commercial liquid soaps were evaluated. Mean pH of 63% and 50% of the moisturizing and liquid soaps presented results above 5.5, disfavoring repair, function, and synthesis of dermal barrier. PMID:29166523
In vitro microbiological evaluation of novel bis pyrazolones.
Narayana Rao, D V; Raghavendra Guru Prasad, A; Spoorthy, Y N; Raghunatha Rao, D; Ravindranath, L K
2014-03-01
Two series of bis pyrazolones (one with 3-methyl substituent and the other one with 3-amino substituent on the pyrazolone ring) were synthesized by the cyclization reaction between various hydrazides with esters/cyano esters in ethanolic medium. Structures of newly synthesized compounds were confirmed by elemental analysis, IR, (1)H NMR and mass spectral data. These compounds were screened for antibacterial and antifungal activities. The compounds of series 3 with amino substituent demonstrated better activity than the compounds of series 2 with methyl substituent on the pyrazolone ring. Compounds "e, f, c and d" showed higher antimicrobial activity than the compounds "b and a". The antimicrobial potentials of the synthesized compounds were compared with that of standards. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
2017-01-01
Mangifera indica (family Anacardiaceae), commonly known as mango, is a pharmacologically, ethnomedically, and phytochemically diverse plant. Various parts of M. indica tree have been used in traditional medicine for the treatment of different ailments, and a number of bioactive phytochemical constituents of M. indica have been reported, namely, polyphenols, terpenes, sterols, carotenoids, vitamins, and amino acids, and so forth. Several studies have proven the pharmacological potential of different parts of mango trees such as leaves, bark, fruit peel and flesh, roots, and flowers as anticancer, anti-inflammatory, antidiabetic, antioxidant, antibacterial, antifungal, anthelmintic, gastroprotective, hepatoprotective, immunomodulatory, antiplasmodial, and antihyperlipemic. In the present review, a comprehensive study on ethnopharmacological applications, pharmacological activities, and bioactive compounds of M. indica has been described. PMID:29456572
Rai, Mahendra K; Gaikwad, Swapnil; Nagaonkar, Dipali; dos Santos, Carolina Alves
2015-01-01
Ganoderma spp. are very important therapeutic mushrooms and have been used traditionally for 4000 years in the treatment of various human disorders. Different species of Ganoderma possess bioactive compounds, which have already demonstrated antiviral, antibacterial, and antifungal activities. Various bioactive compounds such as triterpenoids, colossolactones, and polysaccharides, which are responsible for the antimicrobial potential of the genus, are discussed here in detail. Some Ganoderma spp. have been reported to be potential agents for the synthesis of metal nanoparticles. These nanoparticles have demonstrated antimicrobial activity and also are reviewed herein. The main aim of this review is to discuss the possible use of Ganoderma extracts and their active principles in antimicrobial therapy.
Recent studies on the antimicrobial peptides lactoferricin and lactoferrampin.
Yin, C; Wong, J H; Ng, T B
2014-01-01
Lactoferricin and lactoferrampin, peptides derived from the whey protein lactoferrin, are antimicrobial agents with a promising prospect and are currently one of the research focuses. In this review, a basic introduction including location and solution structures of these two peptides is given. Their biological activities encompassing antiviral, antibacterial, antifungal and anti-inflammatory activities with possible mechanisms are mentioned. In terms of modification studies, research about identification of their active derivatives and crucial amino acid residues is also discussed. Various attempts at modification of lactoferricin and lactoferrampin such as introducing big hydrophobic side-chains; employing special amino acids for synthesis; N-acetylization, amidation, cyclization and peptide chimera are summarized. The studies on lactoferricin-lactoferrampin chimera are discussed in detail. Future prospects of lactoferricin and lactoferrampin are covered.
Three new 12-carbamoylated streptothricins from Streptomyces sp. I08A 1776.
Gan, Maoluo; Zheng, Xudong; Liu, Yufeng; Guan, Yan; Xiao, Chunling
2012-10-01
Two new streptothricins (1 and 2) and a new streptothricin acid derivative (3), all with the carbamoyl group substituted at C-12 of the gulosamine moiety, together with the known N(β)-acetylstreptothricin D acid (4), have been isolated from the culture broth of Streptomyces sp. I08A 1776. The structures of the new compounds were determined by MS, CD, and 1D and 2D NMR spectroscopic data analysis. The isolated compounds were evaluated for antibacterial and antifungal activities. Streptothricin E (6) showed potent activity against the clinically isolated extensively drug-resistant Mycobacterium tuberculosis with MIC values of 0.25-0.5μg/mL. Copyright © 2012 Elsevier Ltd. All rights reserved.
Selvaraj, Vaithilingam; Alagar, Muthukaruppan
2007-06-07
Gold nanoparticles are reported and evaluated as probes for the detection of anticancer drug 5-fluorouracil (5FU). The nature of binding between 5FU and gold nanoparticles via complexation is investigated using ultraviolet visible spectrophotometry, cyclic voltammetry, transmission electron microscopy, fluorescence and Fourier transform infrared (FTIR) spectroscopy. The bound antileukemic drug is fluorescent and the quenching property of gold nanoparticles could be exploited for biological investigations. The 5FU-colloidal gold complex (Au@5FU) is observed to have appreciable antibacterial and antifungal activity against Micrococcus luteus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Aspergillus fumigatus, and Aspergillus niger. The experimental studies suggest that gold nanoparticles have the potential to be used as effective carriers for anticancer drugs.
Cytotoxicity and phytotoxicity of trichothecene mycotoxins produced by Fusarium spp.
Abbas, Hamed K; Yoshizawa, Takumi; Shier, W Thomas
2013-11-01
Trichothecenes, a major class of mycotoxins produced by Fusarium, Myrothecium, and Stachybotrys species, are toxic to both plants and mammals. Simple trichothecenes, including type A (e.g., T-2 toxin) and type B (e.g., deoxynivalenol), are generally less toxic than macrocyclic trichothecenes. We sought to determine if simple trichothecenes are a potential source of candidates for development as bioherbicides, which require high phytotoxicity and low mammalian toxicity. We examined 28 simple trichothecenes in vitro for phytotoxicity using a small aquatic plant, Lemna pausicostata, and for mammalian toxicity using four cultured mammalian cell lines. Several structure-activity relationships were identified, including the following two, which may be relevant to bioherbicide development: peracetylation of type B trichothecenes and de-epoxidation of type A trichothecenes both substantially reduced mammalian toxicity with little effect on phytotoxicity. It was concluded that simple trichothecenes possessing strong phytotoxicity and minimal mammalian toxicity in vitro can be identified. Copyright © 2013 Elsevier Ltd. All rights reserved.
Freitas, Mirlaine R; Matias, Stella V B G; Macedo, Renato L G; Freitas, Matheus P; Venturin, Nelson
2013-09-11
Two of major weeds affecting cereal crops worldwide are Avena fatua L. (wild oat) and Lolium rigidum Gaud. (rigid ryegrass). Thus, development of new herbicides against these weeds is required; in line with this, benzoxazinones, their degradation products, and analogues have been shown to be important allelochemicals and natural herbicides. Despite earlier structure-activity studies demonstrating that hydrophobicity (log P) of aminophenoxazines correlates to phytotoxicity, our findings for a series of benzoxazinone derivatives do not show any relationship between phytotoxicity and log P nor with other two usual molecular descriptors. On the other hand, a quantitative structure-activity relationship (QSAR) analysis based on molecular graphs representing structural shape, atomic sizes, and colors to encode other atomic properties performed very accurately for the prediction of phytotoxicities of these compounds against wild oat and rigid ryegrass. Therefore, these QSAR models can be used to estimate the phytotoxicity of new congeners of benzoxazinone herbicides toward A. fatua L. and L. rigidum Gaud.
Amelioration of nickel phytotoxicity in muck and mineral soils.
Kukier, U; Chaney, R L
2001-01-01
In situ remediation (phytostabilization) is a cost-effective solution for restoring the productivity of metal-contaminated soils and protection of food chains. A pot experiment with wheat (Triticum aestivum L.), oat (Avena sativa L.), and redbeet (Beta vulgaris L.) was conducted to test the ability of limestone and hydrous ferric oxide (HFO) to ameliorate Ni phytotoxicity in two soils contaminated by particulate emissions from a nickel refinery. Quarry muck (Terric Haplohemist; 72% organic matter) contained 2210 mg kg(-1) of total Ni. The mineral soil, Welland silt loam (Typic Epiaquoll), was more contaminated (2930 mg Ni kg(-1)). Both soils were very strongly acidic, allowing the soil Ni to be soluble and phytotoxic. Nickel phytotoxicity of the untreated muck soil was not very pronounced and could be easily confused with symptoms of Mn deficiency that occurred in this soil even with Mn fertilization. Severe nickel phytotoxicity of the untreated mineral soil prevented any growth of redbeet, the most sensitive crop; even wheat, a relatively Ni-resistant species, was severely damaged. White banding indicative of Ni phytotoxicity was present on oat and wheat leaves grown on the acidic mineral soil. Soil Ni extracted with diethylenetriaminepentaacetic acid (DTPA) and 0.01 M Sr(NO3)2 was indicative of the ameliorative effect of amendments and correlated well with Ni concentrations in plant shoots. Making soils calcareous was an effective treatment to reduce plant-available Ni and remediate Ni phytotoxicity of these soils to all crops tested. The ameliorative effect of HFO was crop-specific and much less pronounced.
Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops.
Pan, Min; Chu, L M
2016-04-01
Large quantities of veterinary antibiotics (VAs) are being used worldwide in agricultural fields through wastewater irrigation and manure application. They cause damages to the ecosystem when discharged into the environment, but there is a lack of information on their toxicity to plants and animals. This study evaluated the phytotoxic effects of five major VAs, namely tetracycline (TC), sulfamethazine (SMZ), norfloxacin (NOR), erythromycin (ERY) and chloramphenicol (CAP), on seed germination and root elongation in lettuce, tomato, carrot and cucumber, and investigated the relationship between their physicochemical properties and phytotoxicities. Results show that these compounds significantly inhibited root elongation (p<0.05), the most sensitive endpoint for the phytotoxicity test. TC was associated with the highest level of toxicity, followed by NOR, ERY, SMZ and CAP. Regarding crop species, lettuce was found to be sensitive to most of the VAs. The median effect concentration (EC50) of TC, SMZ, NOR, ERY and CAP to lettuce was 14.4, 157, 49.4, 68.8 and 204 mg/L, respectively. A quantitative structure-activity relationship (QSAR) model has been established based on the measured data. It is evident that hydrophobicity was the most important factor governing the phytotoxicity of these compounds to seeds, which could be explained by the polar narcosis mechanism. Lettuce is considered a good biomarker for VAs in the environment. According to the derived equation, phytotoxicities of selected VA compounds on different crops can be calculated, which could be applicable to other VAs. Environmental risks of VAs were summarized based on the phytotoxicity results and other persistent factors. Copyright © 2015 Elsevier Inc. All rights reserved.
Khattab, Rafat Afifi; Elbandy, Mohamed; Lawrence, Andrew; Paget, Tim; Rae-Rho, Jung; Binnaser, Yaser S; Ali, Imran
2018-01-01
Secondary metabolism in marine organisms produces a diversity of biologically important natural compounds that are not present in terrestrial species. Sea cucumbers belong to the invertebrate Echinodermata and are famous for their nutraceutical, medical and food values. They are known for possession triterpenoid glycosides (saponins) with various ecological roles. The current work aimed to separate, identify and test various biological activities (antibacterial, antifungal, antileishmanial and anticancer properties) of saponins produced by the holothurian Pearsonothuria graeffei from the Red Sea, Egypt. The structures were identified by 1D and 2D NMR (1H, 13C, TOCSY, COSY, HSQC, HMBC, and ROESY) experiments and acid hydrolysis. The crude and purified fractions was analyzed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)/MS to identify saponins and characterize their molecular structures. Partially purified fraction, mainly containing compounds 1 and 2, was screened for its antifungal activity against three clinical isolates of Candida albicans (Candida 580 (1), Candida 581(2) and Candida MEO47228. Antileishmanial activity against Leishmania major and toxicity on colon cell-line were also evaluated. Two lanostane type sulfated triterpene monoglycosides were isolated from the Holothurian Pearsonothuria graeffei from the Red Sea, Egypt. Holothurin A (1) and echinoside A (2) triterpene saponins were separated by reversed phase semi-preparative HPLC. LC50 values (µg/mL); calculated for the fraction containing saponins 1 and 2 as major constituents; against Candida albicans, Leishmania major and colon cell-line were 10, 20 and 0.50, respectively. Consequently, this study demonstrated the potential use of sea cucumber Pearsonothuria graeffei not only as appreciated functional food or nutraceuticals but also as the source of functional ingredients for pharmaceutical products with antifungal, antileishmanial and anticancer properties. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Dave, Vivek; Sharma, Swati; Yadav, Renu Bala; Agarwal, Udita
2017-11-01
The aim of the present study was to develop liposomal gel containing ketoconazole and neem extract for the treatment of seborrheic dermatitis in an effectual means. Azoles derivatives that are commonly used to prevent superficial fungal infections include triazole category like itraconazole. These drugs are available in the form of oral dosage that required a long period of time for treatment. Ketoconazole is available in the form of gel but is not used with any herbal extract. Neem ( Azadirachta indica) leaves show a good anti-bacterial and anti-fungal activity and have great potential as a bioactive compound. The thin film hydration method was used to design an herbal liposomal preparation. The formulation was further subjected to their characterization as particle size, zeta potential, entrapment efficiency, % cumulative drug release, and anti-fungal activity and it was also characterized by the mean of their physicochemical properties such as FTIR, SEM, DSC, TGA, and AFM. The results show that the formulation of liposomes with neem extract F12 were found to be optimum on the basis of entrapment efficiency in the range 88.9 ± 0.7%, with a desired mean particle size distribution of 141.6 nm and zeta potential - 45 mV. The anti-fungal activity of liposomal formulation F12 was carried out against Aspergillus niger and Candida tropicalis by measuring the inhibition zone 8.9 and 10.2 mm, respectively. Stability of optimized formulation was best seen at refrigerated condition. Overall, these results indicated that developed liposomal gel of ketoconazole with neem extract could have great potential for seborrheic dermatitis and showed synergetic effect for the treatment.
Dhamgaye, Sanjiveeni; Devaux, Frederic; Manoharlal, Raman; Vandeputte, Patrick; Shah, Abdul Haseeb; Singh, Ashutosh; Blugeon, Corinne; Sanglard, Dominique
2012-01-01
In this study, we show that a chemical dye, malachite green (MG), which is commonly used in the fish industry as an antifungal, antiparasitic, and antibacterial agent, could effectively kill Candida albicans and non-C. albicans species. We have demonstrated that Candida cells are susceptible to MG at a very low concentration (MIC that reduces growth by 50% [MIC50], 100 ng ml−1) and that the effect of MG is independent of known antifungal targets, such as ergosterol metabolism and major drug efflux pump proteins. Transcriptional profiling in response to MG treatment of C. albicans cells revealed that of a total of 207 responsive genes, 167 genes involved in oxidative stress, virulence, carbohydrate metabolism, heat shock, amino acid metabolism, etc., were upregulated, while 37 genes involved in iron acquisition, filamentous growth, mitochondrial respiration, etc., were downregulated. We confirmed experimentally that Candida cells exposed to MG resort to a fermentative mode of metabolism, perhaps due to defective respiration. In addition, we showed that MG triggers depletion of intracellular iron pools and enhances reactive oxygen species (ROS) levels. These effects could be reversed by the addition of iron or antioxidants, respectively. We provided evidence that the antifungal effect of MG is exerted through the transcription regulators UPC2 (regulating ergosterol biosynthesis and azole resistance) and STP2 (regulating amino acid permease genes). Taken together, our transcriptome, genetic, and biochemical results allowed us to decipher the multiple mechanisms by which MG exerts its anti-Candida effects, leading to a metabolic shift toward fermentation, increased generation of ROS, labile iron deprivation, and cell necrosis. PMID:22006003
Identification of an antifungal metabolite produced by a potential biocontrol Actinomyces strain A01
Lu, Cai Ge; Liu, Wei Cheng; Qiu, Ji Yan; Wang, Hui Min; Liu, Ting; De Liu, Wen
2008-01-01
Actinomyces strain A01 was isolated from soil of a vegetable field in the suburb of Beijing, China. According to the morphological, cultural, physiological and biochemical characteristics, and 16S rDNA sequence analysis, strain A01 was identified as Streptomyces lydicus. In the antimicrobial spectrum test strain A01 presented a stable and strong inhibitory activity against several plant pathogenic fungi such as Fusarium oxysporum, Botrytis cinerea, Monilinia laxa, etc. However, no antibacterial activity was found. In pot experiments in greenhouse, the development of tomato gray mold was markedly suppressed by treatment with the fermentation broth of the strain A01, and the control efficacy was higher than those of Pyrimethanil and Polyoxin. A main antifungal compound (purity 99.503%) was obtained from the fermentation broth of strain A01 using column chromatography and HPLC. The chemical structural analysis with U V, IR, MS, and NMR confirmed that the compound produced by the strain A01 is natamycin, a polyene antibiotic produced by S. chattanovgensis, S. natalensis, and S. gilvosporeus, widely used as a natural biological preservative for food according to previous reports. The present study revealed a new producing strain of natamycin and its potential application as a biological control agent for fungal plant diseases. PMID:24031293
Synergistic Effect of Fluconazole and Calcium Channel Blockers against Resistant Candida albicans
Liu, Shuyuan; Yue, Longtao; Gu, Wenrui; Li, Xiuyun; Zhang, Liuping; Sun, Shujuan
2016-01-01
Candidiasis has increased significantly recently that threatens patients with low immunity. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of fungal resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapy is one of the most widely used and effective strategy to alleviate this problem. In this paper, we were aimed to evaluate the combined antifungal effects of four CCBs (calcium channel blockers), amlodipine (AML), nifedipine (NIF), benidipine (BEN) and flunarizine (FNZ) with fluconazole against C. albicans by checkerboard and time-killing method. In addition, we determined gene (CCH1, MID1, CNA1, CNB1, YVC1, CDR1, CDR2 and MDR1) expression by quantitative PCR and investigated the efflux pump activity of resistant candida albicans by rhodamine 6G assay to reveal the potential mechanisms. Finally, we concluded that there was a synergy when fluconazole combined with the four tested CCBs against resistant strains, with fractional inhibitory concentration index (FICI) <0.5, but no interaction against sensitive strains (FICI = 0.56 ~ 2). The mechanism studies revealed that fluconazole plus amlodipine caused down-regulating of CNA1, CNB1 (encoding calcineurin) and YVC1 (encoding calcium channel protein in vacuole membrane). PMID:26986478
Synergistic Effects of Amiodarone and Fluconazole on Candida tropicalis Resistant to Fluconazole
da Silva, Cecília Rocha; de Andrade Neto, João Batista; Sidrim, José Júlio Costa; Ângelo, Maria Rozzelê Ferreira; Magalhães, Hemerson Iury Ferreira; Cavalcanti, Bruno Coêlho; Brilhante, Raimunda Sâmia Nogueira; Macedo, Danielle Silveira; de Moraes, Manoel Odorico; Lobo, Marina Duarte Pinto; Grangeiro, Thalles Barbosa
2013-01-01
There have recently been significant increases in the prevalence of systemic invasive fungal infections. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of cross-resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapies have become one of the most widely used and effective strategies to alleviate this problem. Amiodarone (AMD) is classically used for the treatment of atrial fibrillation and is the drug of choice for patients with arrhythmia. Recent studies have shown broad antifungal activity of the drug when administered in combination with fluconazole (FLC). In the present study, we induced resistance to fluconazole in six strains of Candida tropicalis and evaluated potential synergism between fluconazole and amiodarone. The evaluation of drug interaction was determined by calculating the fractional inhibitory concentration and by performing flow cytometry. We conclude that amiodarone, when administered in combination with fluconazole, exhibits activity against strains of C. tropicalis that are resistant to fluconazole, which most likely occurs via changes in the integrity of the yeast cell membrane and the generation of oxidative stress, mitochondrial dysfunction, and DNA damage that could lead to cell death by apoptosis. PMID:23357774
Evaluation of antimicrobial activity and bronchodialator effect of a polyherbal drug-Shrishadi
Kajaria, Divya Kumari; Gangwar, Mayank; Kumar, Dharmendra; Kumar Sharma, Amit; Tilak, Ragini; Nath, Gopal; Tripathi, Yamini Bhusan; Tripathi, JS; Tiwari, SK
2012-01-01
Objective To investigate antimicrobial and bronchodialator effect of hydroalcholic extract of polyherbal drug Shirishadi containing Shirisha (Albezzia lebbeck), Nagarmotha (Cyprus rotandus) & Kantakari (Solanum xanthocarpum). Methods Antimicrobial activity was evaluated by disc diffusion method and MIC, MBC, MFC were calculated by micro dilution method. Hydroalcholic extract of this preparation was investigated for its phytochemical analysis, phenol and flavonoid were determined by spectrophotometric method and in vivo bronchodilator effect was analysed by convulsion time. Results The phytochemical tests revealed presence of alkaloids, anthraquinones, carbohydrates, flavonoids, saponins and tannins. The antimicrobial result showed the MIC of 6.25 mg/mL against Staphylococcus aureus and 12.5 mg/mL for Escherichia coli and 12.5 mg/mL against remaining bacteria tested, with strong antifungal activity. The maximum inhibition zone is found against Pseudomonas aeruginosa with MIC 16 mg/mL. Drug showed significant bronchodilator effect with 27.86% & 36.13% increase in preconvulsion time of guinea pigs pretreated with 100 & 200 mg/kg body weight of extract. Conclusions The study reveals that the extracts possess antibacterial activity and antifungal activity in a dose dependent manner. This antimicrobial property may be due to presence of several saponins, further studies are highly needed for the drug development. PMID:23569869
Swaminathan, Sivakumar; Morrone, Dana; Wang, Qiang; Fulton, D. Bruce; Peters, Reuben J.
2009-01-01
Biosynthetic gene clusters are common in microbial organisms, but rare in plants, raising questions regarding the evolutionary forces that drive their assembly in multicellular eukaryotes. Here, we characterize the biochemical function of a rice (Oryza sativa) cytochrome P450 monooxygenase, CYP76M7, which seems to act in the production of antifungal phytocassanes and defines a second diterpenoid biosynthetic gene cluster in rice. This cluster is uniquely multifunctional, containing enzymatic genes involved in the production of two distinct sets of phytoalexins, the antifungal phytocassanes and antibacterial oryzalides/oryzadiones, with the corresponding genes being subject to distinct transcriptional regulation. The lack of uniform coregulation of the genes within this multifunctional cluster suggests that this was not a primary driving force in its assembly. However, the cluster is dedicated to specialized metabolism, as all genes in the cluster are involved in phytoalexin metabolism. We hypothesize that this dedication to specialized metabolism led to the assembly of the corresponding biosynthetic gene cluster. Consistent with this hypothesis, molecular phylogenetic comparison demonstrates that the two rice diterpenoid biosynthetic gene clusters have undergone independent elaboration to their present-day forms, indicating continued evolutionary pressure for coclustering of enzymatic genes encoding components of related biosynthetic pathways. PMID:19825834
Scedosporium apiospermum complex in cystic fibrosis; should we treat?
Noni, Maria; Katelari, Anna; Kapi, Aikaterini; Stathi, Angeliki; Dimopoulos, George; Doudounakis, Stavros-Eleftherios
2017-09-01
Species of the Scedosporium apiospermum complex are the second most frequent filamentous fungi after Aspergillus fumigatus that can be found in cystic fibrosis (CF). Mixed colonisation by S. apiospermum complex and A. fumigatus is also quite common. In this study we summarise all CF patients who were colonised by S. apiospermum complex during their childhood and we present two CF patients who were treated as fungal bronchitis due to S. apiospermum complex. The medical records of 400 CF patients were reviewed in order to identify those with positive respiratory cultures for S. apiospermum complex. Scedosporium apiospermum complex was isolated in 10 CF patients and six of them had more than two positive sputum cultures during the study period. By the time of first isolation, the median age was 14.5 years, the median BMI was 19.41 kg/m 2 , the median predicted FEV 1 % was 78.65% and six patients had a history of A. fumigatus isolation. Two patients presented symptoms of infection while they were colonised by S. apiospermum complex. A rapid remission of their symptoms was observed only when antifungal therapy was administered. Antifungal treatment should be considered in CF patients who present symptoms of infection not responding to antibacterial therapy and S. apiospermum complex is persistently growing in sputum cultures. © 2017 Blackwell Verlag GmbH.
Screening of microbial contamination and antimicrobial activity of sea cucumber Holothuria polii.
Omran, Nahla E E; Allam, Nanis G
2013-11-01
Microbiological studies were carried out on microbial contamination and antimicrobial activity of sea cucumber Holothuria polii collected from Mediterranean Sea at Abu-kir shore of Alexandria, Egypt. The obtained results revealed the presence of isolates of five human Gram-negative pathogenic bacteria, representing five genera were identified to species level, including, Esherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella sp. and Shigella sp. In addition, an yeast Candida albicans was isolated. The pathogenic bacteria were identified using API 20E strip system (BioMereux). All collected H. polii specimens were healthy with no external signs of infection. Histopathological study of the tegument, intestine and gonads showed no abnormal changes. The antimicrobial activity of two tegumental ethanol extracts (A and B, differ in the method of dehydration) were tested against wide range of pathogenic bacteria and fungi, including intestinal, skin and nosocomial pathogens and one plant fungal pathogen. The results revealed a remarkable antifungal activity of the extract B at 2.5 mg/ml MIC90, especially on Aspergillus niger, Scloretium sp, C. albicans, Aspergillus flavus and Malassezia furfur, and limited antibacterial activity against Gram-negative bacteria (Salmonella choleraesuis ATCC 14028 and Aeromonas hydrophila). The domain of bacterial and limited fungal contamination confirms the results that showed strong antifungal activity of investigated extract.
Khoury, Madona; Eparvier, Véronique; Ouaini, Naïm
2016-01-01
Many Lamiaceae species are consumed in the Lebanese cuisine as food or condiment and are largely used in the traditional medicine of Lebanon to treat various diseases, including microbial infections. In this article we report the traditional medicinal uses of eleven Lamiaceae species: Coridothymus capitatus L., Lavandula stoechas L., Lavandula angustifolia Mill., Mentha spicata L. subsp. condensata, Origanum syriacum L., Rosmarinus officinalis, Salvia fruticosa Miller., Satureja cuneifolia Ten., Satureja thymbra L., Thymbra spicata L., and Vitex agnus-castus L. and study the chemical composition and antimicrobial activity of their essential oils (EOs). Our survey showed that Lamiaceae species are mainly used against gastrointestinal disorders and microbial infections. Chemical analysis of the EOs obtained from these plants allowed us to identify seventy-five compounds describing more than 90% of the relative composition of each EO. Essential oils with high amounts of thymol and carvacrol possessed the strongest antimicrobial activity. As expected, these two compounds demonstrated an interesting antifungal efficacy against the filamentous fungus T. rubrum. Our results confirmed that some of the Lamiaceae species used in Lebanon ethnopharmacological practices as antimicrobial agents do possess antibacterial and antifungal potential consistent with their use in alternative or complementary medicine. PMID:28053641
Synergistic Effect of Fluconazole and Calcium Channel Blockers against Resistant Candida albicans.
Liu, Shuyuan; Yue, Longtao; Gu, Wenrui; Li, Xiuyun; Zhang, Liuping; Sun, Shujuan
2016-01-01
Candidiasis has increased significantly recently that threatens patients with low immunity. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of fungal resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapy is one of the most widely used and effective strategy to alleviate this problem. In this paper, we were aimed to evaluate the combined antifungal effects of four CCBs (calcium channel blockers), amlodipine (AML), nifedipine (NIF), benidipine (BEN) and flunarizine (FNZ) with fluconazole against C. albicans by checkerboard and time-killing method. In addition, we determined gene (CCH1, MID1, CNA1, CNB1, YVC1, CDR1, CDR2 and MDR1) expression by quantitative PCR and investigated the efflux pump activity of resistant candida albicans by rhodamine 6G assay to reveal the potential mechanisms. Finally, we concluded that there was a synergy when fluconazole combined with the four tested CCBs against resistant strains, with fractional inhibitory concentration index (FICI) <0.5, but no interaction against sensitive strains (FICI = 0.56 ~ 2). The mechanism studies revealed that fluconazole plus amlodipine caused down-regulating of CNA1, CNB1 (encoding calcineurin) and YVC1 (encoding calcium channel protein in vacuole membrane).
Ferreira, Mariana C; Cantrell, Charles L; Wedge, David E; Gonçalves, Vívian N; Jacob, Melissa R; Khan, Shabana; Rosa, Carlos A; Rosa, Luiz H
2017-10-01
Endophytic fungi, present mainly in the Ascomycota and Basidiomycota phyla, are associated with different plants and represent important producers of bioactive natural products. Brazil has a rich biodiversity of plant species, including those reported as being endemic. Among the endemic Brazilian plant species, Vellozia gigantea (Velloziaceae) is threatened by extinction and is a promising target to recover endophytic fungi. The present study focused on bioprospecting of bioactive compounds of the endophytic fungi associated with V. gigantea, an endemic, ancient, and endangered plant species that occurs only in the rupestrian grasslands of Brazil. The capability of 285 fungal isolates to produce antimicrobial and antimalarial activities was examined. Fungi were grown at solid-state fermentation to recover their crude extracts in dichloromethane. Bioactive extracts were analysed by chromatographic fractionation and NMR and displayed compounds with antimicrobial, antimycobacterial, and antimalarial activities. Five fungi produced antimicrobial and antimalarial compounds. Extracts of Diaporthe miriciae showed antifungal, antibacterial, and antimalarial activities; Trichoderma effusum displayed selective antibacterial activity against methicillin-resistant Staphylococcus aureus and Mycobacterium intracellulare; and three Penicillium species showed antibacterial activity. D. miriciae extract contained highly functionalised secondary metabolites, yielding the compound epoxycytochalasin H with high antimalarial activity against the chloroquine-resistant strain of Plasmodium falciparum, with an IC50 approximately 3.5-fold lower than that with chloroquine. Our results indicate that V. gigantea may represent a microhabitat repository hotspot of potential fungi producers of bioactive compounds and suggest that endophytic fungal communities might be an important biological component contributing to the fitness of the plants living in the rupestrian grassland.
Phytotoxicity Study on Bidens sulphurea Sch. Bip. as a Preliminary Approach for Weed Control.
da Silva, Bruna P; Nepomuceno, Mariluce P; Varela, Rosa M; Torres, Ascensión; Molinillo, José M G; Alves, Pedro L C A; Macías, Francisco A
2017-06-28
Farmers of the Franca region in Brazil observed that Bidens sulphurea was able to eliminate the Panicum maximum weed, which infected coffee plantations, without affecting the crop. In an effort to determine if the inhibitory effects observed were due to the presence of phytotoxic compounds from leaves and roots, a biodirected isolation and spectroscopic characterization has been carried out. The leaf dichloromethane and root acetone extracts were the most active, and the former appeared to be more phytotoxic to the target species, including four weeds. A total of 26 compounds were isolated from leaves and roots, and four of them are described here for the first time. The major compounds in the leaf extract are the sesquiterpene lactones costunolide, reynosin, and santamarine, and these showed marked inhibition. Amaranthus viridis and Panicum maximum were the most sensitive species of the weeds tested. These three phytotoxic lactones were also evaluated on A. viridis and P. maximum under hydroponic conditions. A. viridis was the most affected species with the three lactones, and santamarine was the most phytotoxic compound on both. This is the first time that the phytotoxicity of sesquiterpene lactones has been evaluated on hydroponic culture. The work described here is a preliminary approach for the use of B. sulphurea for weed control in agriculture, both as a cover crop and by use of its components as natural herbicide leads.
Cytotoxic and phytotoxic actions of Heliotropium strigosum.
Shah, Syed Majid; Hussain, Sajid; Khan, Arif-Ullah; Shah, Azhar-Ul-Haq Ali; Khan, Haroon; Ullah, Farhat; Barkatullah
2015-05-01
This study describes the cytotoxic and phytotoxic activities of the crude extract of Heliotropium strigosum and its resultant fractions. In brine shrimp toxicology assays, profound cytotoxicity was displayed by ethyl acetate (LD50 8.3 μg/ml) and chloroform (LD50 8.8 μg/ml) fractions, followed by relatively weak crude methanolic extract of H. strigosum (LD50 909 μg/ml) and n-hexane fraction (LD50 1000 μg/ml). In case of phytotoxicity activity against Lemna acquinoctialis, highest phytotoxic effect was showed by ethyl acetate fraction (LD50 91.0 μg/ml), while chloroform fraction, plant crude extract and n-hexane, respectively, caused 50%, 30.76 ± 1.1% and 30.7 ± 1.1% inhibitory action at maximum concentration used, that is, 1000 μg/ml. These data indicates that H. strigosum exhibits cytotoxic and phytotoxic potential, which explore its use as anticancer and herbicidal medicine. The ethyl acetate and chloroform fractions were more potent for the evaluated toxicity effects, thus recommended for isolation and identification of the active compounds. © The Author(s) 2012.
Phytotoxic substances in runoff from forested catchment areas
NASA Astrophysics Data System (ADS)
Grimvall, Anders; Bengtsson, Maj-Britt; Borén, Hans; Wahlström, Dan
Runoff from different catchment areas in southern Sweden was tested in a root bioassay based on solution cultures of cucumber seedlings. Water samples from agricultural catchment areas produced no signs at all or only weak signs of inhibited root growth, whereas several water samples from catchment areas dominated by mires or coniferous forests produced visible root injuries. The most severe root injuries (very short roots, discolouration, swelling of root tips and lack of root hairs) were caused by samples from a catchment area without local emissions and dominated by old stands of spruce. Fractionation by ultrafiltration showed that the phytotoxic effect of these samples could be attributed to organic matter with a nominal molecular-weight exceeding 1000 or to substances associated with organic macromolecules. Experiments aimed at concentrating phytotoxic compounds from surface water indicated that the observed growth inhibition was caused by strongly hydrophilic substances. Previous reports on phytotoxic, organic substances of natural origin have emphasized interaction between plants growing close together. The presence of phytotoxic substances in runoff indicates that there is also a large-scale dispersion of such compounds.
Phytotoxicity of citrus and subtropical fruits to acetaldehyde vapor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, K.
1975-01-01
Several citrus and subtropical fruits (oranges, limes, lemons, mangos and papayas) were evaluated for phytotoxicity to acetaldehyde vapor. Exposure of fruits to 0.5 or 1% acetaldehyde vapor for 24 hr (low concentration-long exposure) did not produce skin injury or off-flavor in comparison with non-exposed fruits. This non-phytotoxic effect was also obtained at 5 to 20% acetaldehyde vapor for 10 to 15 min (high concentration-short exposure). However, acetaldehyde vapor concentration of 4% for 1 hr or 5% for 30 min (high concentration-long exposure) produced severe lenticel and skin injuries to the fruits. Exposure of fruits at these concentration also produced lackmore » of or off-flavor. Phytotoxicity of fruits to acetaldhyde vapor was a function of concentration and exposure.« less
Phytotoxic components produced by pathogenic Fusarium against morning glory.
Shimizu, Bun-ichi; Saito, Fukuko; Miyagawa, Hisahi; Watanabe, Ken; Ueno, Tamio; Sakata, Kanzo; Ogawa, Kei
2005-01-01
A pathogenic isolate of Fusarium, F. oxysporum f. sp. batatas O-17 (PF), causes wilt disease in leaf etiolation in sweet potato (Ipomoea batatas) and morning glory (Ipomoea tricolor). Extracts from PF cultures were screened for phytotoxic components using a growth inhibition assay with morning glory seedlings. The extracts were fractionated using differential solvent extraction and two active compounds, ergosterol and fusalanipyrone, were isolated from the less-polar fraction. Growth inhibition of morning glory seedlings showed a sigmoidal dose-response relationship, with fusalanipyrone exhibiting a two order of magnitude higher EC50 value than ergosterol (18 nM and 1.6 microM, respectively). Both compounds showed lower growth inhibition activity towards lettuce seedlings (Lactuca sativa). This study provides information on the phytotoxic components of PF and discusses the mechanism behind PFf-induced phytotoxicity.
Abid, Mohd; Hrishikeshavan, H J; Asad, Mohammed
2006-01-01
The research work deals with the screening of ethanol and chloroform extracts of Pachyrrhizus erosus seeds for central nervous system (CNS) depressant activity. The Pachyrrhizus erosus seed is known to contain rotinoids, flavonoids and phenylfuranocoumarin derivatives as chemical components and is reported to have antifungal, antisecretory, insecticides, antibacterial and spasmolytic activity. Since seeds of Pachyrrhizus erosus is used as folk medicine in treatment of insomnia, we made an attempt to study its CNS depressant effect. The different activities studied were potentiation of pentobarbitone-induced sleep, test for locomotor activity, effect on muscle co-ordination, antiaggressive and antianxiety activities. The result of the study reflected that ethanol extract of the seeds (150 mg/kg, p.o) decreased locomotor activity, produced muscle relaxation and showed antianxiety and antiaggressive activity.
Sivaraj, Rajeshwari; Rahman, Pattanathu K S M; Rajiv, P; Narendhran, S; Venckatesh, R
2014-08-14
Copper oxide nanoparticles were synthesized by biological method using aqueous extract of Acalypha indica leaf and characterized by UV-visible spectroscopy, XRD, FT-IR, SEM TEM and EDX analysis. The synthesised particles were highly stable, spherical and particle size was in the range of 26-30 nm. The antimicrobial activity of A.indica mediated copper oxide nanoparticles was tested against selected pathogens. Copper oxide nanoparticles showed efficient antibacterial and antifungal effect against Escherichia coli, Pseudomonas fluorescens and Candida albicans. The cytotoxicity activity of A.indica mediated copper nanoparticles was evaluated by MTT assay against MCF-7 breast cancer cell lines and confirmed that copper oxide nanoparticles have cytotoxicity activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Bruni, Natascia; Capucchio, Maria Teresa; Biasibetti, Elena; Pessione, Enrica; Cirrincione, Simona; Giraudo, Leonardo; Corona, Antonio; Dosio, Franco
2016-06-11
Antimicrobial peptides (AMPs) represent a vast array of molecules produced by virtually all living organisms as natural barriers against infection. Among AMP sources, an interesting class regards the food-derived bioactive agents. The whey protein lactoferrin (Lf) is an iron-binding glycoprotein that plays a significant role in the innate immune system, and is considered as an important host defense molecule. In search for novel antimicrobial agents, Lf offers a new source with potential pharmaceutical applications. The Lf-derived peptides Lf(1-11), lactoferricin (Lfcin) and lactoferrampin exhibit interesting and more potent antimicrobial actions than intact protein. Particularly, Lfcin has demonstrated strong antibacterial, anti-fungal and antiparasitic activity with promising applications both in human and veterinary diseases (from ocular infections to osteo-articular, gastrointestinal and dermatological diseases).
Green tea extract for periodontal health
Venkateswara, Babu; Sirisha, K.; Chava, Vijay K.
2011-01-01
Tea, the commonly consumed beverage, is gaining increased attention in promoting overall health. In specific, green tea is considered a healthful beverage due to the biological activity of its polyphenols namely catechins. Among the polyphenols Epigallo catechin 3 gallate and Epicatechin 3 Gallate are the most predominant catechins. The antioxidant, antimicrobial, anticollagenase, antimutagenic, and c hemopreventive properties of these catechins proved to be helpful in the treatment of chronic diseases like periodontal disease. Studies have demonstrated that the type of processing mainly effects the concentration of catechins. Several epidemiological studies have proved that green tea also has some general health benefitting properties like antihypertensive, reduction of cardiovascular risk, antibacterial, antiviral, and antifungal activity. The present review concentrates on the effects of green tea in periodontal and general health. PMID:21772716
Antimicrobial metabolites from the plant endophytic fungus Penicillium sp.
Yang, Ming-Hua; Li, Tian-Xiao; Wang, Ying; Liu, Rui-Huan; Luo, Jun; Kong, Ling-Yi
2017-01-01
Five rare dichloro aromatic polyketides (1-5) were obtained from an endophytic fungus Penicillium sp., along with five known metabolites (6-10). Their structures were elucidated by extensive spectroscopic analysis, Mosher methods, as well as [Rh 2 (OCOCF 3 ) 4 ]-induced electronic circular dichroism (ECD) experiments. Compounds 2-4 and 6 structurally involved acyclic 1.3-diols, the uneasy configuration determinations of which were well carried out by double-derivation NMR methods. Compounds 1-10 were evaluated for their antibacterial and antifungal activities against five strains of human pathogenic microorganisms. Helvolic acid (7) showed potent inhibitory effects against Staphylococcus aureus and Pseudomonas aeruginosa with MIC (minimum inhibitory concentration) values of 5.8 and 4.6μg/mL, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
An Update Review on the Anthelmintic Activity of Bitter Gourd, Momordica charantia
Poolperm, Sutthaya; Jiraungkoorskul, Wannee
2017-01-01
Momordica charantia (Family: Cucurbitales), as known as bitter melon or gourd, is a daily consumption as food and traditional medicinal plant in Southeast Asia and Indo-China. It has been shown to possess anticancer, antidepressant, antidiabetic, anti-inflammatory, antimicrobial, antiobesity, antioxidant, and antiulcer properties. Its common phytochemical components include alkaloids, charantin, flavonoids, glycosides, phenolics, tannins, and terpenoids. This plant is rich in various saponins including momordicin, momordin, momordicoside, karavilagenin, karaviloside, and kuguacin, all of which have been reported to contribute to its remedial properties including antibacterial, antifungal, antiviral, and antiparasitic infections. Based on established literature on the anthelmintic activity of M. charantia and possible mode of action, this review article has attempted to compile M. charantia could be further explored for the development of potential anthelmintic drug. PMID:28503051
An Update Review on the Anthelmintic Activity of Bitter Gourd, Momordica charantia.
Poolperm, Sutthaya; Jiraungkoorskul, Wannee
2017-01-01
Momordica charantia (Family: Cucurbitales ), as known as bitter melon or gourd, is a daily consumption as food and traditional medicinal plant in Southeast Asia and Indo-China. It has been shown to possess anticancer, antidepressant, antidiabetic, anti-inflammatory, antimicrobial, antiobesity, antioxidant, and antiulcer properties. Its common phytochemical components include alkaloids, charantin, flavonoids, glycosides, phenolics, tannins, and terpenoids. This plant is rich in various saponins including momordicin, momordin, momordicoside, karavilagenin, karaviloside, and kuguacin, all of which have been reported to contribute to its remedial properties including antibacterial, antifungal, antiviral, and antiparasitic infections. Based on established literature on the anthelmintic activity of M. charantia and possible mode of action, this review article has attempted to compile M. charantia could be further explored for the development of potential anthelmintic drug.
Chitosan based edible films and coatings: a review.
Elsabee, Maher Z; Abdou, Entsar S
2013-05-01
Chitosan is a biodegradable biocompatible polymer derived from natural renewable resources with numerous applications in various fields, and one of which is the area of edible films and coatings. Chitosan has antibacterial and antifungal properties which qualify it for food protection, however, its weak mechanical properties, gas and water vapor permeability limit its uses. This review discusses the application of chitosan and its blends with other natural polymers such as starch and other ingredients for example essential oils, and clay in the field of edible films for food protection. The mechanical behavior and the gas and water vapor permeability of the films are also discussed. References dealing with the antimicrobial behavior of these films and their impact on food protection are explored. Copyright © 2013 Elsevier B.V. All rights reserved.
Corti, Giampaolo; Mondanelli, Nicola; Losco, Michele; Bartolini, Laura; Fontanelli, Alessandra; Paradisi, Franco
2009-03-01
Enterobacter amnigenus and Leclercia adecarboxylata are gram-negative aerobic bacilli of the family Enterobacteriaceae that have been isolated from water and, rarely, from various clinical specimens. Absidia is a filamentous fungus of the class Zygomycetes that is ubiquitous in nature and can cause infection, primarily in immunocompromised hosts. Here, we describe an infection of the left lower limb caused by E. amnigenus and L. adecarboxylata with subsequent isolation of Absidia spp. in a patient with multiple traumatic injuries after a major motor vehicle accident. The severity of the clinical picture made amputation necessary, despite aggressive anti-infective therapy with both antibacterial and antifungal agents. Prompt diagnosis and management are mandatory in order to minimize morbidity and even mortality, and reduce the social and economic cost.