Sample records for pi-junction interferometer circuits

  1. Underdamped long Josephson junction coupled to overdamped single-flux-quantum circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.M.; Borzenets, V.; Kaplunenko, V.K.

    1997-09-01

    We report a circuit that integrates an underdamped long Josephson junction with overdamped single-flux-quantum (SFQ) circuits. We confirm that the resonant soliton modes in the long junction are not affected by SFQ cells coupled to the junction, and demonstrate that the radiation frequency and linewidth of the soliton resonances can be measured with SFQ T-flip-flops. Our experimental results also show that a 4{pi} quantum mechanical phase leap at the end of the long junction, which is due to the reflection of a soliton, creates two single flux quanta propagating in the overdamped Josephson transmission line. {copyright} {ital 1997 American Institutemore » of Physics.}« less

  2. Frequency-tuned microwave photon counter based on a superconductive quantum interferometer

    NASA Astrophysics Data System (ADS)

    Shnyrkov, V. I.; Yangcao, Wu; Soroka, A. A.; Turutanov, O. G.; Lyakhno, V. Yu.

    2018-03-01

    Various types of single-photon counters operating in infrared, ultraviolet, and optical wavelength ranges are successfully used to study electromagnetic fields, analyze radiation sources, and solve problems in quantum informatics. However, their operating principles become ineffective at millimeter band, S-band, and ultra-high frequency bands of wavelengths due to the decrease in quantum energy by 4-5 orders of magnitude. Josephson circuits with discrete Hamiltonians and qubits are a good foundation for the construction of single-photon counters at these frequencies. This paper presents a frequency-tuned microwave photon counter based on a single-junction superconducting quantum interferometer and flux qutrit. The control pulse converts the interferometer into a two-level system for resonance absorption of photons. Decay of the photon-induced excited state changes the magnetic flux in the interferometer, which is measured by a SQUID magnetometer. Schemes for recording the magnetic flux using a DC SQUID or ideal parametric detector, based on a qutrit with high-frequency excitation, are discussed. It is shown that the counter consisting of an interferometer with a Josephson junction and a parametric detector demonstrates high performance and is capable of detecting single photons in a microwave band.

  3. n-B-pi-p Superlattice Infrared Detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Bandara, Sumith V.; Hill, Cory J.; Gunapala, Sarath D.

    2011-01-01

    A specially designed barrier (B) is inserted at the n-pi junction [where most GR (generation-recombination) processes take place] in the standard n-pi-p structure to substantially reduce generation-recombination dark currents. The resulting n-Bpi- p structure also has reduced tunneling dark currents, thereby solving some of the limitations to which current type II strained layer superlattice infrared detectors are prone. This innovation is compatible with common read-out integrated circuits (ROICs).

  4. Superconducting Memristors

    NASA Astrophysics Data System (ADS)

    di Ventra, Massimiliano; Peotta, Sebastiano

    2014-03-01

    In his original work Josephson [Phys. Lett. 1, 251 (1962)] predicted that a phase-dependent conductance should be present in superconductor tunnel junctions. This effect attracted considerable attention in the past but is difficult to detect, mainly because it is hard to single it out from the background pair current. Here, we propose to isolate it by using a two-junction interferometer where the junctions have the same critical currents but different conductances. The pair current is completely suppressed when the magnetic flux in the loop is half of a flux quantum and the device is characterized by a pure phase-dependent conductance. According to the theory of nonlinear circuit elements this is in fact an ideal voltage-controlled memristor. Possible applications of this memristive device are memories and neuromorphic computing within the framework of ultrafast and low-energy superconducting digital circuits. This work has been supported by DOE under Grant No. DE-FG02-05ER46204.

  5. Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: A route to integrate complex photonic circuits in crystals

    NASA Astrophysics Data System (ADS)

    Ajates, Javier G.; Romero, Carolina; Castillo, Gabriel R.; Chen, Feng; Vázquez de Aldana, Javier R.

    2017-10-01

    We have designed and fabricated photonic structures such as, Y-junctions (one of the basic building blocks for construction any integrated photonic devices) and Mach-Zehnder interferometers, based on circular depressed-cladding waveguides by direct femtosecond laser irradiation in Nd:YAG crystal. The waveguides were optically characterized at 633 nm, showing nearly mono-modal behaviour for the selected waveguide radius (9 μm). The effect of the splitting angle in the Y structures was investigated finding a good preservation of the modal profiles up to more than 2°, with 1 dB of additional losses in comparison with straight waveguides. The dependence with polarization of these splitters keeps in a reasonable low level. Our designs pave the way for the fabrication of arbitrarily complex 3D photonic circuits in crystals with cladding waveguides.

  6. Controllable 0–π Josephson junctions containing a ferromagnetic spin valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gingrich, E. C.; Niedzielski, Bethany M.; Glick, Joseph A.

    Superconductivity and ferromagnetism are antagonistic forms of order, and rarely coexist. Many interesting new phenomena occur, however, in hybrid superconducting/ferromagnetic systems. For example, a Josephson junction containing a ferromagnetic material can exhibit an intrinsic phase shift of π in its ground state for certain thicknesses of the material. Such ‘π-junctions’ were first realized experimentally in 2001, and have been proposed as circuit elements for both high-speed classical superconducting computing and for quantum computing. Here we demonstrate experimentally that the phase state of a Josephson junction containing two ferromagnetic layers can be toggled between 0 and pi by changing the relativemore » orientation of the two magnetizations. These controllable 0–π junctions have immediate applications in cryogenic memory, where they serve as a necessary component to an ultralow power superconducting computer. Such a fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. Here, phase-controllable junctions also open up new possibilities for superconducting circuit elements such as superconducting ‘programmable logic’, where they could function in superconducting analogues to field-programmable gate arrays.« less

  7. Controllable 0–π Josephson junctions containing a ferromagnetic spin valve

    DOE PAGES

    Gingrich, E. C.; Niedzielski, Bethany M.; Glick, Joseph A.; ...

    2016-03-14

    Superconductivity and ferromagnetism are antagonistic forms of order, and rarely coexist. Many interesting new phenomena occur, however, in hybrid superconducting/ferromagnetic systems. For example, a Josephson junction containing a ferromagnetic material can exhibit an intrinsic phase shift of π in its ground state for certain thicknesses of the material. Such ‘π-junctions’ were first realized experimentally in 2001, and have been proposed as circuit elements for both high-speed classical superconducting computing and for quantum computing. Here we demonstrate experimentally that the phase state of a Josephson junction containing two ferromagnetic layers can be toggled between 0 and pi by changing the relativemore » orientation of the two magnetizations. These controllable 0–π junctions have immediate applications in cryogenic memory, where they serve as a necessary component to an ultralow power superconducting computer. Such a fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. Here, phase-controllable junctions also open up new possibilities for superconducting circuit elements such as superconducting ‘programmable logic’, where they could function in superconducting analogues to field-programmable gate arrays.« less

  8. Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator.

    PubMed

    Ikeda, Taro; Takahashi, Kazunori; Kanamori, Yoshiaki; Hane, Kazuhiro

    2010-03-29

    Phase shifter is an important part of optical waveguide circuits as used in interferometer. However, it is not always easy to generate a large phase shift in a small region. Here, a variable phase-shifter operating as delay-line of silicon waveguide was designed and fabricated by silicon micromachining. The proposed phase-shifter consists of a freestanding submicron-wide silicon waveguide with two waveguide couplers and an ultrasmall silicon comb-drive actuator. The position of the freestanding waveguide is moved by the actuator to vary the total optical path. Phase-shift was measured in a Mach-Zehnder interferometer to be 3.0pi at the displacement of 1.0 mum at the voltage of 31 V. The dimension of the fabricated device is 50microm wide and 85microm long.

  9. Optical modular arithmetic

    NASA Astrophysics Data System (ADS)

    Pavlichin, Dmitri S.; Mabuchi, Hideo

    2014-06-01

    Nanoscale integrated photonic devices and circuits offer a path to ultra-low power computation at the few-photon level. Here we propose an optical circuit that performs a ubiquitous operation: the controlled, random-access readout of a collection of stored memory phases or, equivalently, the computation of the inner product of a vector of phases with a binary selector" vector, where the arithmetic is done modulo 2pi and the result is encoded in the phase of a coherent field. This circuit, a collection of cascaded interferometers driven by a coherent input field, demonstrates the use of coherence as a computational resource, and of the use of recently-developed mathematical tools for modeling optical circuits with many coupled parts. The construction extends in a straightforward way to the computation of matrix-vector and matrix-matrix products, and, with the inclusion of an optical feedback loop, to the computation of a weighted" readout of stored memory phases. We note some applications of these circuits for error correction and for computing tasks requiring fast vector inner products, e.g. statistical classification and some machine learning algorithms.

  10. Balanced double-loop mesoscopic interferometer based on Josephson proximity nanojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronzani, Alberto, E-mail: alberto.ronzani@nano.cnr.it; Altimiras, Carles; Giazotto, Francesco

    We report on the fabrication and characterization of a two-terminal mesoscopic interferometer based on three V/Cu/V Josephson junctions having nanoscale cross-section. The junctions have been arranged in a double-ring geometry realized by metallic thin film deposition through a suspended mask defined by electron beam lithography. Although a significant amount of asymmetry between the critical current of each junction is observed, we show that the interferometer is able to suppress the supercurrent to a level lower than 6 parts per thousand, being here limited by measurement resolution. The present nano-device is suitable for low-temperature magnetometric and gradiometric measurements over the micrometricmore » scale.« less

  11. Enhancing the Area of a Raman Atom Interferometer Using a Versatile Double-Diffraction Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leveque, T.; Gauguet, A.; Michaud, F.

    2009-08-21

    In this Letter, we demonstrate a new scheme for Raman transitions which realize a symmetric momentum-space splitting of 4(Planck constant/2pi)k, deflecting the atomic wave packets into the same internal state. Combining the advantages of Raman and Bragg diffraction, we achieve a three pulse state labeled an interferometer, intrinsically insensitive to the main systematics and applicable to all kinds of atomic sources. This splitting scheme can be extended to 4N(Planck constant/2pi)k momentum transfer by a multipulse sequence and is implemented on a 8(Planck constant/2pi)k interferometer. We demonstrate the area enhancement by measuring inertial forces.

  12. Four-junction superconducting circuit

    PubMed Central

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  13. InGaAsP Mach-Zehnder interferometer optical modulator monolithically integrated with InGaAs driver MOSFET on a III-V CMOS photonics platform.

    PubMed

    Park, Jin-Kown; Takagi, Shinichi; Takenaka, Mitsuru

    2018-02-19

    We demonstrated the monolithic integration of a carrier-injection InGaAsP Mach-Zehnder interferometer (MZI) optical modulator and InGaAs metal-oxide-semiconductor field-effect transistor (MOSFET) on a III-V-on-insulator (III-V-OI) wafer. A low-resistivity lateral PIN junction was formed along an InGaAsP rib waveguide by Zn diffusion and Ni-InGaAsP alloy, enabling direct driving of the InGaAsP optical modulator by the InGaAs MOSFET. A π phase shift of the InGaAsP optical modulator was obtained through the injection of a drain current from the InGaAs MOSFET with a gate voltage of approximately 1 V. This proof-of-concept demonstration of the monolithic integration of the InGaAsP optical modulator and InGaAs driver MOSFET will enable us to develop high-performance and low-power electronic-photonic integrated circuits on a III-V CMOS photonics platform.

  14. Phoenix Interferometer

    DTIC Science & Technology

    1975-06-01

    proportioning circuit , Triac , and heater blankets. The significant features of the temperature controllers are small size, less than one half per...interferometer. The only change to the Firebird system needed to ac- commodate the new sensor is the replacement of several circuit boards. No hard wiring or...temperature at altitude (220oK). In addition to the sensor head, the Phoe- nix system also includes a set of plug-in printed circuit cards which

  15. The persistent current and energy spectrum on a driven mesoscopic LC-circuit with Josephson junction

    NASA Astrophysics Data System (ADS)

    Pahlavanias, Hassan

    2018-03-01

    The quantum theory for a mesoscopic electric circuit including a Josephson junction with charge discreteness is studied. By considering coupling energy of the mesoscopic capacitor in Josephson junction device, a Hamiltonian describing the dynamics of a quantum mesoscopic electric LC-circuit with charge discreteness is introduced. We first calculate the persistent current on a quantum driven ring including Josephson junction. Then we obtain the persistent current and energy spectrum of a quantum mesoscopic electrical circuit which includes capacitor, inductor, time-dependent external source and Josephson junction.

  16. A thin polymer insulator for Josephson tunneling applications

    NASA Technical Reports Server (NTRS)

    Wilmsen, C. M.

    1973-01-01

    The use of an organic monolayer formed from a vapor as an insulating barrier for thin film Josephson junctions is considered, and the effect of an organic monolayer on the transition temperature of a thin film superconductor is investigated. Also analyzed are the geometric factors which influence Josephson junctions and Josephson junction interferometers.

  17. Development of measurement system for gauge block interferometer

    NASA Astrophysics Data System (ADS)

    Chomkokard, S.; Jinuntuya, N.; Wongkokua, W.

    2017-09-01

    We developed a measurement system for collecting and analyzing the fringe pattern images from a gauge block interferometer. The system was based on Raspberry Pi which is an open source system with python programming and opencv image manipulation library. The images were recorded by the Raspberry Pi camera with five-megapixel capacity. The noise of images was suppressed for the best result in analyses. The low noise images were processed to find the edge of fringe patterns using the contour technique for the phase shift analyses. We tested our system with the phase shift patterns between a gauge block and a reference plate. The phase shift patterns were measured by a Twyman-Green type of interferometer using the He-Ne laser with the temperature controlled at 20.0 °C. The results of the measurement will be presented and discussed.

  18. Design of thin InGaAsN(Sb) n-i-p junctions for use in four-junction concentrating photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Wilkins, Matthew M.; Gupta, James; Jaouad, Abdelatif; Bouzazi, Boussairi; Fafard, Simon; Boucherif, Abderraouf; Valdivia, Christopher E.; Arès, Richard; Aimez, Vincent; Schriemer, Henry P.; Hinzer, Karin

    2017-04-01

    Four-junction solar cells for space and terrestrial applications require a junction with a band gap of ˜1 eV for optimal performance. InGaAsN or InGaAsN(Sb) dilute nitride junctions have been demonstrated for this purpose, but in achieving the 14 mA/cm2 short-circuit current needed to match typical GaInP and GaAs junctions, the open-circuit voltage (VOC) and fill factor of these junctions are compromised. In multijunction devices incorporating materials with short diffusion lengths, we study the use of thin junctions to minimize sensitivity to varying material quality and ensure adequate transmission into lower junctions. An n-i-p device with 0.65-μm absorber thickness has sufficient short-circuit current, however, it relies less heavily on field-aided collection than a device with a 1-μm absorber. Our standard cell fabrication process, which includes a rapid thermal anneal of the contacts, yields a significant improvement in diffusion length and device performance. By optimizing a four-junction cell around a smaller 1-sun short-circuit current of 12.5 mA/cm2, we produced an InGaAsN(Sb) junction with open-circuit voltage of 0.44 V at 1000 suns (1 sun=100 mW/cm2), diode ideality factor of 1.4, and sufficient light transmission to allow >12.5 mA/cm2 in all four subcells.

  19. Josephson junction in the quantum mesoscopic electric circuits with charge discreteness

    NASA Astrophysics Data System (ADS)

    Pahlavani, H.

    2018-04-01

    A quantum mesoscopic electrical LC-circuit with charge discreteness including a Josephson junction is considered and a nonlinear Hamiltonian that describing the dynamic of such circuit is introduced. The quantum dynamical behavior (persistent current probability) is studied in the charge and phase regimes by numerical solution approaches. The time evolution of charge and current, number-difference and the bosonic phase and also the energy spectrum of a quantum mesoscopic electric LC-circuit with charge discreteness that coupled with a Josephson junction device are investigated. We show the role of the coupling energy and the electrostatic Coulomb energy of the Josephson junction in description of the quantum behavior and the spectral properties of a quantum mesoscopic electrical LC-circuits with charge discreteness.

  20. Homeostatic Regulation of the PI(4,5)P2-Ca2+ Signaling System at ER-PM Junctions

    PubMed Central

    Chang, Chi-Lun; Liou, Jen

    2016-01-01

    The phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-Ca2+ signaling system is important for cell activation in response to various extracellular stimuli. This signaling system is initiated by receptor-induced hydrolysis of PI(4,5)P2 in the plasma membrane (PM) to generate the soluble second messenger inositol 1,4,5-trisphosphate (IP3). IP3 subsequently triggers the release of Ca2+ from the endoplasmic reticulum (ER) store to the cytosol to activate Ca2+-mediated responses, such as secretion and proliferation. The consumed PM PI(4,5)P2 and ER Ca2+ must be quickly restored to sustain signaling responses, and to maintain the homeostasis of PI(4,5)P2 and Ca2+. Since phosphatidylinositol (PI), the precursor lipid for PM PI(4,5)P2, is synthesized in the ER membrane, and a Ca2+ influx across the PM is required to refill the ER Ca2+ store, efficient communications between the ER and the PM are critical for the homeostatic regulation of the PI(4,5)P2-Ca2+ signaling system. This review describes the major findings that established the framework of the PI(4,5)P2-Ca2+ signaling system, and recent discoveries on feedback control mechanisms at ER-PM junctions that sustain the PI(4,5)P2-Ca2+ signaling system. Particular emphasis is placed on the characterization of ER-PM junctions where efficient communications between the ER and the PM occurs, and the activation mechanisms of proteins that dynamically localize to ER-PM junctions to provide the feedback control during PI(4,5)P2-Ca2+ signaling, including the ER Ca2+ sensor STIM1, the extended synaptotagmin E-Syt1, and the PI transfer protein Nir2. This review is part of a Special Issue entitled The Cellular Lipid Landscape. PMID:26924250

  1. Simulation and measurement of a Ka-band HTS MMIC Josephson junction mixer

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Pegrum, Colin; Du, Jia; Guo, Yingjie Jay

    2017-01-01

    We report modeling and simulation results for a Ka band high-temperature superconducting (HTS) monolithic microwave integrated circuit (MMIC) Josephson junction mixer. A Verilog-A model of a Josephson junction is established and imported into the system simulator to realize a full HTS MMIC circuit simulation containing the HTS passive circuit models. Impedance matching optimization between the junction and passive devices is investigated. Junction DC I-V characteristics, current and local oscillator bias conditions and mixing performance are simulated and compared with the experimental results. Good agreement is obtained between the simulation and measurement results.

  2. Entropy Flow Through Near-Critical Quantum Junctions

    NASA Astrophysics Data System (ADS)

    Friedan, Daniel

    2017-05-01

    This is the continuation of Friedan (J Stat Phys, 2017. doi: 10.1007/s10955-017-1752-8). Elementary formulas are derived for the flow of entropy through a circuit junction in a near-critical quantum circuit close to equilibrium, based on the structure of the energy-momentum tensor at the junction. The entropic admittance of a near-critical junction in a bulk-critical circuit is expressed in terms of commutators of the chiral entropy currents. The entropic admittance at low frequency, divided by the frequency, gives the change of the junction entropy with temperature—the entropic "capacitance". As an example, and as a check on the formalism, the entropic admittance is calculated explicitly for junctions in bulk-critical quantum Ising circuits (free fermions, massless in the bulk), in terms of the reflection matrix of the junction. The half-bit of information capacity per end of critical Ising wire is re-derived by integrating the entropic "capacitance" with respect to temperature, from T=0 to T=∞.

  3. Lock-In Imaging System for Detecting Disturbances in Fluid

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Dimarcantonio, Albert L. (Inventor)

    2014-01-01

    A lock-in imaging system is configured for detecting a disturbance in air. The system includes an airplane, an interferometer, and a telescopic imaging camera. The airplane includes a fuselage and a pair of wings. The airplane is configured for flight in air. The interferometer is operatively disposed on the airplane and configured for producing an interference pattern by splitting a beam of light into two beams along two paths and recombining the two beams at a junction point in a front flight path of the airplane during flight. The telescopic imaging camera is configured for capturing an image of the beams at the junction point. The telescopic imaging camera is configured for detecting the disturbance in air in an optical path, based on an index of refraction of the image, as detected at the junction point.

  4. Design and optimization of ARC less InGaP/GaAs single-/multi-junction solar cells with tunnel junction and back surface field layers

    NASA Astrophysics Data System (ADS)

    Chee, Kuan W. A.; Hu, Yuning

    2018-07-01

    There has always been an inexorable interest in the solar industry in boosting the photovoltaic conversion efficiency. This paper presents a theoretical and numerical simulation study of the effects of key design parameters on the photoelectric performance of single junction (InGaP- or GaAs-based) and dual junction (InGaP/GaAs) inorganic solar cells. The influence of base layer thickness, base doping concentration, junction temperature, back surface field layer composition and thickness, and tunnel junction material, were correlated with open circuit voltage, short-circuit current, fill factor and power conversion efficiency performance. The InGaP/GaAs dual junction solar cell was optimized with the tunnel junction and back surface field designs, yielding a short-circuit current density of 20.71 mAcm-2 , open-circuit voltage of 2.44 V and fill factor of 88.6%, and guaranteeing an optimal power conversion efficiency of at least 32.4% under 1 sun AM0 illumination even without an anti-reflective coating.

  5. Simple Electronic Analog of a Josephson Junction.

    ERIC Educational Resources Information Center

    Henry, R. W.; And Others

    1981-01-01

    Demonstrates that an electronic Josephson junction analog constructed from three integrated circuits plus an external reference oscillator can exhibit many of the circuit phenomena of a real Josephson junction. Includes computer and other applications of the analog. (Author/SK)

  6. Phase Sensitive Measurements of Ferromagnetic Josephson Junctions for Cryogenic Memory Applications

    NASA Astrophysics Data System (ADS)

    Niedzielski, Bethany Maria

    A Josephson junction is made up of two superconducting layers separated by a barrier. The original Josephson junctions, studied in the early 1960's, contained an insulating barrier. Soon thereafter, junctions with normal-metal barriers were also studied. Ferromagnetic materials were not even theoretically considered as a barrier layer until around 1980, due to the competing order between ferromagnetic and superconducting systems. However, many exciting physical phenomena arise in hybrid superconductor/ferromagnetic devices, including devices where the ground state phase difference between the two superconductors is shifted by pi. Since their experimental debut in 2001, so-called pi junctions have been demonstrated by many groups, including my own, in systems with a single ferromagnetic layer. In this type of system, the phase of the junction can be set to either 0 or pi depending on the thickness of the ferromagnetic layer. Of interest, however, is the ability to control the phase of a single junction between the 0 and pi states. This was theoretically shown to be possible in a system containing two ferromagnetic layers (spin-valve junctions). If the materials and their thicknesses are properly chosen to manipulate the electron pair correlation function, then the phase state of a spin-valve Josephson junction should be capable of switching between the 0 and ? phase states when the magnetization directions of the two ferromagnetic layers are oriented in the antiparallel and parallel configurations, respectively. Such a phase-controllable junction would have immediate applications in cryogenic memory, which is a necessary component to an ultra-low power superconducting computer. A fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. The goal of this work was to experimentally verify this prediction for a phase-controllable ferromagnetic Josephson junction. To address this complicated system, first, studies of junctions with only a single ferromagnetic junction were required to determine the 0-pi transition thickness of that material, the decay of the critical current through the junction with thickness, and the switching field of the material. The materials studied included NiFeMo, NiFe, Ni, and NiFeCo. Additionally, roughness studies of several different superconducting base electrodes and normal metal buffer and spacer layers were performed to determine the optimum junction layers. The ferromagnetic layers used were on the order of 1-2 nm thick, so a smooth growth template is imperative to maintain continuous films with in-plane magnetizations. Lastly, single junction spin-valve samples were studied. We are not equipped to measure the phase of a single junction, but series of samples where one ferromagnetic layer is systematically varied in thickness can inform the proper thicknesses needed for 0-pi switching based on relative critical current values between the parallel and antiparallel magnetic configurations. Utilizing this background information, two spin-valve samples were incorporated in a superconducting loop so that the relative phase of the two junctions could be investigated. Through this process, the first phase-controllable ferromagnetic Josephson junctions were experimentally demonstrated using phase-sensitive measurement techniques. This provided the proof of concept for the Josephson Magnetic Random Access Memory (JMRAM), a superconducting memory system in development at Northrop Grumman, with whom we collaborate on this work. Phase-controllable systems were successfully demonstrated using two different magnetic material stacks and verified with several analysis techniques.

  7. Microwave integrated circuit for Josephson voltage standards

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.; Toots, J.; Chang, C. C. (Inventor)

    1980-01-01

    A microwave integrated circuit comprised of one or more Josephson junctions and short sections of microstrip or stripline transmission line is fabricated from thin layers of superconducting metal on a dielectric substrate. The short sections of transmission are combined to form the elements of the circuit and particularly, two microwave resonators. The Josephson junctions are located between the resonators and the impedance of the Josephson junctions forms part of the circuitry that couples the two resonators. The microwave integrated circuit has an application in Josephson voltage standards. In this application, the device is asymmetrically driven at a selected frequency (approximately equal to the resonance frequency of the resonators), and a d.c. bias is applied to the junction. By observing the current voltage characteristic of the junction, a precise voltage, proportional to the frequency of the microwave drive signal, is obtained.

  8. Solar cell circuit and method for manufacturing solar cells

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor)

    2010-01-01

    The invention is a novel manufacturing method for making multi-junction solar cell circuits that addresses current problems associated with such circuits by allowing the formation of integral diodes in the cells and allows for a large number of circuits to readily be placed on a single silicon wafer substrate. The standard Ge wafer used as the base for multi-junction solar cells is replaced with a thinner layer of Ge or a II-V semiconductor material on a silicon/silicon dioxide substrate. This allows high-voltage cells with multiple multi-junction circuits to be manufactured on a single wafer, resulting in less array assembly mass and simplified power management.

  9. Josephson junction Q-spoiler

    DOEpatents

    Clarke, J.; Hilbert, C.; Hahn, E.L.; Sleator, T.

    1986-03-25

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  10. Josephson junction Q-spoiler

    DOEpatents

    Clarke, John; Hilbert, Claude; Hahn, Erwin L.; Sleator, Tycho

    1988-01-01

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  11. Dynamic formation of ER–PM junctions presents a lipid phosphatase to regulate phosphoinositides

    PubMed Central

    Jensen, Jill B.; Vivas, Oscar; Kruse, Martin; Traynor-Kaplan, Alexis E.; Hille, Bertil

    2016-01-01

    Endoplasmic reticulum–plasma membrane (ER–PM) contact sites play an integral role in cellular processes such as excitation–contraction coupling and store-operated calcium entry (SOCE). Another ER–PM assembly is one tethered by the extended synaptotagmins (E-Syt). We have discovered that at steady state, E-Syt2 positions the ER and Sac1, an integral ER membrane lipid phosphatase, in discrete ER–PM junctions. Here, Sac1 participates in phosphoinositide homeostasis by limiting PM phosphatidylinositol 4-phosphate (PI(4)P), the precursor of PI(4,5)P2. Activation of G protein–coupled receptors that deplete PM PI(4,5)P2 disrupts E-Syt2–mediated ER–PM junctions, reducing Sac1’s access to the PM and permitting PM PI(4)P and PI(4,5)P2 to recover. Conversely, depletion of ER luminal calcium and subsequent activation of SOCE increases the amount of Sac1 in contact with the PM, depleting PM PI(4)P. Thus, the dynamic presence of Sac1 at ER–PM contact sites allows it to act as a cellular sensor and controller of PM phosphoinositides, thereby influencing many PM processes. PMID:27044890

  12. Reliability Prediction Models for Discrete Semiconductor Devices

    DTIC Science & Technology

    1988-07-01

    influence failure rate were device construction, semiconductor material, junction temperature, electrical stress, circuit application., a plication...found to influence failure rate were device construction, semiconductor material, junction temperature, electrical stress, circuit application...MFA Airbreathlng 14issile, Flight MFF Missile, Free Flight ML Missile, Launch MMIC Monolithic Microwave Integrated Circuits MOS Metal-Oxide

  13. Development of a Priest interferometer for measurement of the thermal expansion of a graphite epoxy in the temperature range 116-366 K

    NASA Technical Reports Server (NTRS)

    Short, J. S.; Hyer, M. W.; Bowles, D. E.; Tompkins, S. S.

    1982-01-01

    The thermal expansion behavior of graphite epoxy laminates between 116 and 366 degrees Kelvin was investigated using as implementation of the Priest interferometer concept. The design, construction and use of the interferometer along with the experimental results it was used to generate are described. The experimental program consisted of 25 tests on 25.4 mm and 6.35 mm wide, 8 ply pi/4 quasi-isotropic T300-5208 graphite/epoxy specimens and 3 tests on a 25.4 mm wide unidirectional specimen. Experimental results are presented for all tests along with a discussion of the interferometer's limitations and some possible improvements in its design.

  14. Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor

    PubMed Central

    Zhou, Ping; Ahmad, Bashir; Ren, Guodong; Wang, Chunni

    2018-01-01

    In this paper, a new four-variable dynamical system is proposed to set chaotic circuit composed of memristor and Josephson junction, and the dependence of chaotic behaviors on nonlinearity is investigated. A magnetic flux-controlled memristor is used to couple with the RCL-shunted junction circuit, and the dynamical behaviors can be modulated by changing the coupling intensity between the memristor and the RCL-shunted junction. Bifurcation diagram and Lyapunov exponent are calculated to confirm the emergence of chaos in the improved dynamical system. The outputs and dynamical behaviors can be controlled by the initial setting and external stimulus as well. As a result, chaos can be suppressed and spiking occurs in the sampled outputs under negative feedback, while applying positive feedback type via memristor can be effective to trigger chaos. Furthermore, it is found that the number of multi-attractors in the Jerk circuit can be modulated when memristor coupling is applied on the circuit. These results indicate that memristor coupling can be effective to control chaotic circuits and it is also useful to reproduce dynamical behaviors for neuronal activities. PMID:29342178

  15. Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor.

    PubMed

    Ma, Jun; Zhou, Ping; Ahmad, Bashir; Ren, Guodong; Wang, Chunni

    2018-01-01

    In this paper, a new four-variable dynamical system is proposed to set chaotic circuit composed of memristor and Josephson junction, and the dependence of chaotic behaviors on nonlinearity is investigated. A magnetic flux-controlled memristor is used to couple with the RCL-shunted junction circuit, and the dynamical behaviors can be modulated by changing the coupling intensity between the memristor and the RCL-shunted junction. Bifurcation diagram and Lyapunov exponent are calculated to confirm the emergence of chaos in the improved dynamical system. The outputs and dynamical behaviors can be controlled by the initial setting and external stimulus as well. As a result, chaos can be suppressed and spiking occurs in the sampled outputs under negative feedback, while applying positive feedback type via memristor can be effective to trigger chaos. Furthermore, it is found that the number of multi-attractors in the Jerk circuit can be modulated when memristor coupling is applied on the circuit. These results indicate that memristor coupling can be effective to control chaotic circuits and it is also useful to reproduce dynamical behaviors for neuronal activities.

  16. Relative lumbar lordosis and lordosis distribution index: individualized pelvic incidence-based proportional parameters that quantify lumbar lordosis more precisely than the concept of pelvic incidence minus lumbar lordosis.

    PubMed

    Yilgor, Caglar; Sogunmez, Nuray; Yavuz, Yasemin; Abul, Kadir; Boissiére, Louis; Haddad, Sleiman; Obeid, Ibrahim; Kleinstück, Frank; Sánchez Pérez-Grueso, Francisco Javier; Acaroğlu, Emre; Mannion, Anne F; Pellise, Ferran; Alanay, Ahmet

    2017-12-01

    OBJECTIVE The subtraction of lumbar lordosis (LL) from the pelvic incidence (PI) offers an estimate of the LL required for a given PI value. Relative LL (RLL) and the lordosis distribution index (LDI) are PI-based individualized measures. RLL quantifies the magnitude of lordosis relative to the ideal lordosis as defined by the magnitude of PI. LDI defines the magnitude of lower arc lordosis in proportion to total lordosis. The aim of this study was to compare RLL and PI - LL for their ability to predict postoperative complications and their correlations with health-related quality of life (HRQOL) scores. METHODS Inclusion criteria were ≥ 4 levels of fusion and ≥ 2 years of follow-up. Mechanical complications were proximal junctional kyphosis/proximal junctional failure, distal junctional kyphosis/distal junctional failure, rod breakage, and implant-related complications. Correlations between PI - LL, RLL, PI, and HRQOL were analyzed using the Pearson correlation coefficient. Mechanical complication rates in PI - LL, RLL, LDI, RLL, and LDI interpreted together, and RLL subgroups for each PI - LL category were compared using chi-square tests and the exact test. Predictive models for mechanical complications with RLL and PI - LL were analyzed using binomial logistic regressions. RESULTS Two hundred twenty-two patients (168 women, 54 men) were included. The mean age was 52.2 ± 19.3 years (range 18-84 years). The mean follow-up was 28.8 ± 8.2 months (range 24-62 months). There was a significant correlation between PI - LL and PI (r = 0.441, p < 0.001), threatening the use of PI - LL to quantify spinopelvic mismatch for different PI values. RLL was not correlated with PI (r = -0.093, p > 0.05); therefore, it was able to quantify divergence from ideal lordosis for all PI values. Compared with PI - LL, RLL had stronger correlations with HRQOL scores (p < 0.05). Discrimination performance was better for the model with RLL than for PI - LL. The agreement between RLL and PI - LL was high (κ = 0.943, p < 0.001), moderate (κ = 0.455, p < 0.001), and poor (κ = -0.154, p = 0.343), respectively, for large, average, and small PI sizes. When analyzed by RLL, each PI - LL category was further divided into distinct groups of patients who had different mechanical complication rates (p < 0.001). CONCLUSIONS Using the formula of PI - LL may be insufficient to quantify normolordosis for the whole spectrum of PI values when applied as an absolute numeric value in conjunction with previously reported population-based average thresholds of 10° and 20°. Schwab PI - LL groups were found to constitute an inhomogeneous group of patients. RLL offers an individualized quantification of LL for all PI sizes. Compared with PI - LL, RLL showed a greater association with both mechanical complications and HRQOL. The use of RLL and LDI together, instead of PI - LL, for surgical planning may result in lower mechanical complication rates and better long-term HRQOL.

  17. Dissection of neuronal gap junction circuits that regulate social behavior in Caenorhabditis elegans.

    PubMed

    Jang, Heeun; Levy, Sagi; Flavell, Steven W; Mende, Fanny; Latham, Richard; Zimmer, Manuel; Bargmann, Cornelia I

    2017-02-14

    A hub-and-spoke circuit of neurons connected by gap junctions controls aggregation behavior and related behavioral responses to oxygen, pheromones, and food in Caenorhabditis elegans The molecular composition of the gap junctions connecting RMG hub neurons with sensory spoke neurons is unknown. We show here that the innexin gene unc-9 is required in RMG hub neurons to drive aggregation and related behaviors, indicating that UNC-9-containing gap junctions mediate RMG signaling. To dissect the circuit in detail, we developed methods to inhibit unc-9 -based gap junctions with dominant-negative unc-1 transgenes. unc-1(dn) alters a stomatin-like protein that regulates unc-9 electrical signaling; its disruptive effects can be rescued by a constitutively active UNC-9::GFP protein, demonstrating specificity. Expression of unc-1(dn) in RMG hub neurons, ADL or ASK pheromone-sensing neurons, or URX oxygen-sensing neurons disrupts specific elements of aggregation-related behaviors. In ADL, unc-1(dn) has effects opposite to those of tetanus toxin light chain, separating the roles of ADL electrical and chemical synapses. These results reveal roles of gap junctions in a complex behavior at cellular resolution and provide a tool for similar exploration of other gap junction circuits.

  18. Dissection of neuronal gap junction circuits that regulate social behavior in Caenorhabditis elegans

    PubMed Central

    Jang, Heeun; Levy, Sagi; Flavell, Steven W.; Mende, Fanny; Latham, Richard; Zimmer, Manuel; Bargmann, Cornelia I.

    2017-01-01

    A hub-and-spoke circuit of neurons connected by gap junctions controls aggregation behavior and related behavioral responses to oxygen, pheromones, and food in Caenorhabditis elegans. The molecular composition of the gap junctions connecting RMG hub neurons with sensory spoke neurons is unknown. We show here that the innexin gene unc-9 is required in RMG hub neurons to drive aggregation and related behaviors, indicating that UNC-9–containing gap junctions mediate RMG signaling. To dissect the circuit in detail, we developed methods to inhibit unc-9–based gap junctions with dominant-negative unc-1 transgenes. unc-1(dn) alters a stomatin-like protein that regulates unc-9 electrical signaling; its disruptive effects can be rescued by a constitutively active UNC-9::GFP protein, demonstrating specificity. Expression of unc-1(dn) in RMG hub neurons, ADL or ASK pheromone-sensing neurons, or URX oxygen-sensing neurons disrupts specific elements of aggregation-related behaviors. In ADL, unc-1(dn) has effects opposite to those of tetanus toxin light chain, separating the roles of ADL electrical and chemical synapses. These results reveal roles of gap junctions in a complex behavior at cellular resolution and provide a tool for similar exploration of other gap junction circuits. PMID:28143932

  19. Studies of silicon p-n junction solar cells. [open circuit photovoltage

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1976-01-01

    Single crystal silicon p-n junction solar cells made with low resistivity substrates show poorer solar energy conversion efficiency than traditional theory predicts. The physical mechanisms responsible for this discrepancy are identified and characterized. The open circuit voltage in shallow junction cells of about 0.1 ohm/cm substrate resistivity is investigated under AMO (one sun) conditions.

  20. Low-Loss Materials for Josephson Qubits

    DTIC Science & Technology

    2014-10-09

    quantum circuit. It also intuitively explains how for a linear circuit the standard results for electrical circuits are obtained, justifying the use of... linear concepts for a weakly non- linear device such as the transmon. It has also become common to use a double sided noise spectrum to represent...loss tangent of large area pad junction. (c) Effective linearized circuit for the double junction, which makes up the admittance $Y$. $L_j$ is the

  1. Design optimization of GaAs betavoltaic batteries

    NASA Astrophysics Data System (ADS)

    Chen, Haiyanag; Jiang, Lan; Chen, Xuyuan

    2011-06-01

    GaAs junctions are designed and fabricated for betavoltaic batteries. The design is optimized according to the characteristics of GaAs interface states and the diffusion length in the depletion region of GaAs carriers. Under an illumination of 10 mCi cm-2 63Ni, the open circuit voltage of the optimized batteries is about ~0.3 V. It is found that the GaAs interface states induce depletion layers on P-type GaAs surfaces. The depletion layer along the P+PN+ junction edge isolates the perimeter surface from the bulk junction, which tends to significantly reduce the battery dark current and leads to a high open circuit voltage. The short circuit current density of the optimized junction is about 28 nA cm-2, which indicates a carrier diffusion length of less than 1 µm. The overall results show that multi-layer P+PN+ junctions are the preferred structures for GaAs betavoltaic battery design.

  2. Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses

    PubMed Central

    Liu, Ping; Chen, Bojun; Mailler, Roger; Wang, Zhao-Wen

    2017-01-01

    Neurons communicate through chemical synapses and electrical synapses (gap junctions). Although these two types of synapses often coexist between neurons, little is known about whether they interact, and whether any interactions between them are important to controlling synaptic strength and circuit functions. By studying chemical and electrical synapses between premotor interneurons (AVA) and downstream motor neurons (A-MNs) in the Caenorhabditis elegans escape circuit, we found that disrupting either the chemical or electrical synapses causes defective escape response. Gap junctions between AVA and A-MNs only allow antidromic current, but, curiously, disrupting them inhibits chemical transmission. In contrast, disrupting chemical synapses has no effect on the electrical coupling. These results demonstrate that gap junctions may serve as an amplifier of chemical transmission between neurons with both electrical and chemical synapses. The use of antidromic-rectifying gap junctions to amplify chemical transmission is potentially a conserved mechanism in circuit functions. PMID:28317880

  3. Characterization of NbN films and tunnel junctions

    NASA Technical Reports Server (NTRS)

    Stern, J. A.; Leduc, H. G.

    1991-01-01

    Properties of NbN films and NbN/MgO/NbN tunnel junctions are discussed. NbN junctions are being developed for use in high-frequency, SIS quasiparticle mixers. To properly design mixer circuits, junction and film properties need to be characterized. The specific capacitance of NbN/MgO/NbN junctions has been measured as a function of the product of the normal-state resistance and the junction area (RnA), and it is found to vary by more than a factor of two (35-85 fF/sq microns) over the range of RnA measured (1000-50 ohm sq microns). This variation is important because the specific capacitance determines the RC speed of the tunnel junction at a given RnA value. The magnetic penetration depth of NbN films deposited under different conditions is also measured. The magnetic penetration depth affects the design of microstrip line used in RF tuning circuits. Control of the magnetic penetration depth is necessary to fabricate reproducible tuning circuits. Additionally, the critical current uniformity for arrays of 100 junctions has been measured. Junction uniformity will affect the design of focal-plane arrays of SIS mixers. Finally, the relevance of these measurements to the design of Josephson electronics is discussed.

  4. Transmigration characteristics of breast cancer and melanoma cells through the brain endothelium: Role of Rac and PI3K.

    PubMed

    Molnár, Judit; Fazakas, Csilla; Haskó, János; Sipos, Orsolya; Nagy, Krisztina; Nyúl-Tóth, Ádám; Farkas, Attila E; Végh, Attila G; Váró, György; Galajda, Péter; Krizbai, István A; Wilhelm, Imola

    2016-05-03

    Brain metastases are common and devastating complications of both breast cancer and melanoma. Although mammary carcinoma brain metastases are more frequent than those originating from melanoma, this latter has the highest tropism to the brain. Using static and dynamic in vitro approaches, here we show that melanoma cells have increased adhesion to the brain endothelium in comparison to breast cancer cells. Moreover, melanoma cells can transmigrate more rapidly and in a higher number through brain endothelial monolayers than breast cancer cells. In addition, melanoma cells have increased ability to impair tight junctions of cerebral endothelial cells. We also show that inhibition of Rac or PI3K impedes adhesion of breast cancer cells and melanoma cells to the brain endothelium. In addition, inhibition of Rac or PI3K inhibits the late phase of transmigration of breast cancer cells and the early phase of transmigration of melanoma cells. On the other hand, the Rac inhibitor EHT1864 impairs the junctional integrity of the brain endothelium, while the PI3K inhibitor LY294002 has no damaging effect on interendothelial junctions. We suggest that targeting the PI3K/Akt pathway may represent a novel opportunity in preventing the formation of brain metastases of melanoma and breast cancer.

  5. Improved High/Low Junction Silicon Solar Cell

    NASA Technical Reports Server (NTRS)

    Neugroschel, A.; Pao, S. C.; Lindholm, F. A.; Fossum, J. G.

    1986-01-01

    Method developed to raise value of open-circuit voltage in silicon solar cells by incorporating high/low junction in cell emitter. Power-conversion efficiency of low-resistivity silicon solar cell considerably less than maximum theoretical value mainly because open-circuit voltage is smaller than simple p/n junction theory predicts. With this method, air-mass-zero opencircuit voltage increased from 600 mV level to approximately 650 mV.

  6. Integration of Si-CMOS embedded photo detector array and mixed signal processing system with embedded optical waveguide input

    NASA Astrophysics Data System (ADS)

    Kim, Daeik D.; Thomas, Mikkel A.; Brooke, Martin A.; Jokerst, Nan M.

    2004-06-01

    Arrays of embedded bipolar junction transistor (BJT) photo detectors (PD) and a parallel mixed-signal processing system were fabricated as a silicon complementary metal oxide semiconductor (Si-CMOS) circuit for the integration optical sensors on the surface of the chip. The circuit was fabricated with AMI 1.5um n-well CMOS process and the embedded PNP BJT PD has a pixel size of 8um by 8um. BJT PD was chosen to take advantage of its higher gain amplification of photo current than that of PiN type detectors since the target application is a low-speed and high-sensitivity sensor. The photo current generated by BJT PD is manipulated by mixed-signal processing system, which consists of parallel first order low-pass delta-sigma oversampling analog-to-digital converters (ADC). There are 8 parallel ADCs on the chip and a group of 8 BJT PDs are selected with CMOS switches. An array of PD is composed of three or six groups of PDs depending on the number of rows.

  7. Fabrication of superconductor-ferromagnet-insulator-superconductor Josephson junctions with critical current uniformity applicable to integrated circuits

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Taniguchi, Soya; Ishikawa, Kouta; Akaike, Hiroyuki; Fujimaki, Akira

    2017-03-01

    Nb Josephson junctions (JJs) were fabricated with a Pd89Ni11 ferromagnetic interlayer and an AlO x tunnel barrier layer for use in large-scale superconducting integrated circuits. The junctions had a small critical current (I c) spread, where the standard deviation 1σ was less than 2% at 4.2 K for junctions with the same designed size. It was observed that the electrical behavior of the junctions could be controlled by manipulating the film thickness of the PdNi interlayer. The junctions behaved as a π-JJ for thicknesses of 9 and 11 nm, showing 1σ in the I c spread of 1.2% for 9 nm.

  8. A simple theory of back surface field /BSF/ solar cells

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1978-01-01

    A theory of an n-p-p/+/ junction is developed, entirely based on Shockley's depletion layer approximation. Under the further assumption of uniform doping the electrical characteristics of solar cells as a function of all relevant parameters (cell thickness, diffusion lengths, etc.) can quickly be ascertained with a minimum of computer time. Two effects contribute to the superior performance of a BSF cell (n-p-p/+/ junction) as compared to an ordinary solar cell (n-p junction). The sharing of the applied voltage among the two junctions (the n-p and the p-p/+/ junction) decreases the dark current and the reflection of minority carriers by the builtin electron field of the p-p/+/ junction increases the short-circuit current. The theory predicts an increase in the open-circuit voltage (Voc) with a decrease in cell thickness. Although the short-circuit current decreases at the same time, the efficiency of the cell is virtually unaltered in going from a thickness of 200 microns to a thickness of 50 microns. The importance of this fact for space missions where large power-to-weight ratios are required is obvious.

  9. Floating-Gate Manipulated Graphene-Black Phosphorus Heterojunction for Nonvolatile Ambipolar Schottky Junction Memories, Memory Inverter Circuits, and Logic Rectifiers.

    PubMed

    Li, Dong; Chen, Mingyuan; Zong, Qijun; Zhang, Zengxing

    2017-10-11

    The Schottky junction is an important unit in electronics and optoelectronics. However, its properties greatly degrade with device miniaturization. The fast development of circuits has fueled a rapid growth in the study of two-dimensional (2D) crystals, which may lead to breakthroughs in the semiconductor industry. Here we report a floating-gate manipulated nonvolatile ambipolar Schottky junction memory from stacked all-2D layers of graphene-BP/h-BN/graphene (BP, black phosphorus; h-BN, hexagonal boron nitride) in a designed floating-gate field-effect Schottky barrier transistor configuration. By manipulating the voltage pulse applied to the control gate, the device exhibits ambipolar characteristics and can be tuned to act as graphene-p-BP or graphene-n-BP junctions with reverse rectification behavior. Moreover, the junction exhibits good storability properties of more than 10 years and is also programmable. On the basis of these characteristics, we further demonstrate the application of the device to dual-mode nonvolatile Schottky junction memories, memory inverter circuits, and logic rectifiers.

  10. A MoTe2 based light emitting diode and photodetector for silicon photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Bie, Ya-Qing; Heuck, M.; Grosso, G.; Furchi, M.; Cao, Y.; Zheng, J.; Navarro-Moratalla, E.; Zhou, L.; Taniguchi, T.; Watanabe, K.; Kong, J.; Englund, D.; Jarillo-Herrero, P.

    A key challenge in photonics today is to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, partly because many components such as waveguides, interferometers and modulators, could be integrated on silicon-based processors. However, light sources and photodetectors present continued challenges. Common approaches for light source include off-chip or wafer-bonded lasers based on III-V materials, but studies show advantages for directly modulated light sources. The most advanced photodetectors in silicon photonics are based on germanium growth which increases system cost. The emerging two dimensional transition metal dichalcogenides (TMDs) offer a path for optical interconnects components that can be integrated with the CMOS processing by back-end-of-the-line processing steps. Here we demonstrate a silicon waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe2, a TMD semiconductor with infrared band gap. The state-of-the-art fabrication technology provides new opportunities for integrated optoelectronic systems.

  11. SU(1,1)-type light-atom-correlated interferometer

    NASA Astrophysics Data System (ADS)

    Ma, Hongmei; Li, Dong; Yuan, Chun-Hua; Chen, L. Q.; Ou, Z. Y.; Zhang, Weiping

    2015-08-01

    The quantum correlation of light and atomic collective excitation can be used to compose an SU(1,1)-type hybrid light-atom interferometer, where one arm in the optical SU(1,1) interferometer is replaced by the atomic collective excitation. The phase-sensing probes include not only the photon field but also the atomic collective excitation inside the interferometer. For a coherent squeezed state as the phase-sensing field, the phase sensitivity can approach the Heisenberg limit under the optimal conditions. We also study the effects of the loss of light field and the dephasing of atomic excitation on the phase sensitivity. This kind of active SU(1,1) interferometer can also be realized in other systems, such as circuit quantum electrodynamics in microwave systems, which provides a different method for basic measurement using the hybrid interferometers.

  12. Dual-junction GaAs solar cells and their application to smart stacked III–V//Si multijunction solar cells

    NASA Astrophysics Data System (ADS)

    Sugaya, Takeyoshi; Tayagaki, Takeshi; Aihara, Taketo; Makita, Kikuo; Oshima, Ryuji; Mizuno, Hidenori; Nagato, Yuki; Nakamoto, Takashi; Okano, Yoshinobu

    2018-05-01

    We report high-quality dual-junction GaAs solar cells grown using solid-source molecular beam epitaxy and their application to smart stacked III–V//Si quadruple-junction solar cells with a two-terminal configuration for the first time. A high open-circuit voltage of 2.94 eV was obtained in an InGaP/GaAs/GaAs triple-junction top cell that was stacked to a Si bottom cell. The short-circuit current density of a smart stacked InGaP/GaAs/GaAs//Si solar cell was in good agreement with that estimated from external quantum efficiency measurements. An efficiency of 18.5% with a high open-circuit voltage of 3.3 V was obtained in InGaP/GaAs/GaAs//Si two-terminal solar cells.

  13. Manifestation of counteracting photovoltaic effect on IV characteristics in multi-junction solar cells

    NASA Astrophysics Data System (ADS)

    Mintairov, M. A.; Evstropov, V. V.; Mintairov, S. A.; Shvarts, M. Z.; Kozhukhovskaia, S. A.; Kalyuzhnyy, N. A.

    2017-11-01

    The existence within monolithic double- and triple-junction solar cells of a photoelectric source, which counteracts the basic photovoltaic p-n junctions, is proved. The paper presents a detailed analysis of the shape of the light IV-characteristics, as well as the dependence Voc-Jsc (open circuit voltage - short-circuit current). It is established that the counteracting source is tunnel p+-n+ junction. The photoelectric characteristics of samples with different tunnel diode peak current values were investigated, including the case of a zero value. When the tunnel p+-n+ junction is photoactive, the Voc-Jsc dependence has a dropping part, including a sharp jump. This undesirable effect decreases with increasing peak current.

  14. Superfluid-ferromagnet-superfluid junction and the {pi} phase in a superfluid Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashimura, Takashi; Tsuchiya, Shunji; CREST

    2010-09-15

    We investigate the possibility of a superfluid-ferromagnet-superfluid (SFS) junction in a superfluid Fermi gas. To examine this possibility in a simple manner, we consider an attractive Hubbard model at T=0 within the mean-field theory. When a potential barrier is embedded in a superfluid Fermi gas with population imbalance (N{sub {up_arrow}}>N{sub {down_arrow}}, where N{sub {sigma}} is the number of atoms with pseudospin {sigma}= {up_arrow}, {down_arrow}), this barrier is shown to be magnetized in the sense that excess {up_arrow}-spin atoms are localized around it. The resulting superfluid Fermi gas is spatially divided into two by this ferromagnet, so that one obtains amore » junction similar to the superconductor-ferromagnet-superconductor junction discussed in superconductivity. Indeed, we show that the so-called {pi} phase, which is a typical phenomenon in the SFS junction, is realized, where the superfluid order parameter changes its sign across the junction. Our results would be useful for the study of magnetic effects on fermion superfluidity using an ultracold Fermi gas.« less

  15. Effect of povidone-iodine addition on the corrosion behavior of cp-Ti in normal saline.

    PubMed

    Bhola, Rahul; Bhola, Shaily M; Mishra, Brajendra; Olson, David L

    2010-05-01

    The effect of various concentrations of povidone-iodine (PI) on the corrosion behavior of a commercially pure titanium alloy (Ti-1) has been investigated in normal saline solution to simulate the povidone-iodine addition in an oral environment. The open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization measurements have been used to characterize the electrochemical phenomena occurring on the alloy surface. The open circuit potential values for Ti-1 in various concentrations of PI shift considerably towards noble direction as compared to pure normal saline. In the potentiodynamic polarization curve for Ti-1 in various solutions, the cathodic current density has increased for all concentrations of PI and the anodic current density has decreased. Only the 0.1% PI concentration is able to inhibit corrosion of Ti-1 in normal saline and the other higher concentrations studied, accelerate corrosion. The EIS data for Ti-1 in normal saline and in various concentrations of PI follows a one time constant circuit, suggesting the formation of a single passive film on Ti-1 which is not altered by the addition of PI to normal saline.

  16. Design of parity generator and checker circuit using electro-optic effect of Mach-Zehnder interferometers

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Chanderkanta; Amphawan, Angela

    2016-04-01

    Parity is an extra bit which is used to add in digital information to detect error at the receiver end. It can be even and odd parity. In case of even parity, the number of one's will be even included the parity and reverse in the case of odd parity. The circuit which is used to generate the parity at the transmitter side, called the parity generator and the circuit which is used to detect the parity at receiver side is called as parity checker. In this paper, an even and odd parity generator and checker circuits are designed using electro-optic effect inside lithium niobate based Mach-Zehnder Interferometers (MZIs). The MZIs structures collectively show powerful capability in switching an input optical signal to a desired output port from a collection of output ports. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. The study is verified using beam propagation method (BPM).

  17. 1.00 MeV proton radiation resistance studies of single-junction and single gap dual-junction amorphous-silicon alloy solar cells

    NASA Technical Reports Server (NTRS)

    Abdulaziz, Salman; Payson, J. S.; Li, Yang; Woodyard, James R.

    1990-01-01

    A comparative study of the radiation resistance of a-Si:H and a-SiGe:H single-junction and a-Si:H dual-junction solar cells was conducted. The cells were irradiated with 1.00-MeV protons with fluences of 1.0 x 10 to the 14th, 5.0 x 10 to the 14th and 1.0 x 10 to the 15th/sq cm and characterized using I-V and quantum efficiency measurements. The radiation resistance of single-junction cells cannot be used to explain the behavior of dual-junction cells at a fluence of 1.0 x 10 to the 15th/sq cm. The a-Si H single-junction cells degraded the least of the three cells; a-SiGe:H single-junction cells showed the largest reduction in short-circuit current, while a-Si:H dual-junction cells exhibited the largest degradation in the open-circuit voltage. The quantum efficiency of the cells degraded more in the red part of the spectrum; the bottom junction degrades first in dual-junction cells.

  18. Investigation of Grating-Assisted Trimodal Interferometer Biosensors Based on a Polymer Platform.

    PubMed

    Liang, Yuxin; Zhao, Mingshan; Wu, Zhenlin; Morthier, Geert

    2018-05-10

    A grating-assisted trimodal interferometer biosensor is proposed and numerically analyzed. A long period grating coupler, for adjusting the power between the fundamental mode and the second higher order mode, is investigated, and is shown to act as a conventional directional coupler for adjusting the power between the two arms. The trimodal interferometer can achieve maximal fringe visibility when the powers of the two modes are adjusted to the same value by the grating coupler, which means that a better limit of detection can be expected. In addition, the second higher order mode typically has a larger evanescent tail than the first higher order mode in bimodal interferometers, resulting in a higher sensitivity of the trimodal interferometer. The influence of fabrication tolerances on the performance of the designed interferometer is also investigated. The power difference between the two modes shows inertia to the fill factor of the grating, but high sensitivity to the modulation depth. Finally, a 2050 2π/RIU (refractive index unit) sensitivity and 43 dB extinction ratio of the output power are achieved.

  19. Rear surface effects in high efficiency silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenham, S.R.; Robinson, S.J.; Dai, X.

    1994-12-31

    Rear surface effects in PERL solar cells can lead not only to degradation in the short circuit current and open circuit voltage, but also fill factor. Three mechanisms capable of changing the effective rear surface recombination velocity with injection level are identified, two associated with oxidized p-type surfaces, and the third with two dimensional effects associated with a rear floating junction. Each of these will degrade the fill factor if the range of junction biases corresponding to the rear surface transition, coincides with the maximum power point. Despite the identified non idealities, PERL cells with rear floating junctions (PERF cells)more » have achieved record open circuit voltages for silicon solar cells, while simultaneously achieving fill factor improvements relative to standard PERL solar cells. Without optimization, a record efficiency of 22% has been demonstrated for a cell with a rear floating junction. The results of both theoretical and experimental studies are provided.« less

  20. Dissipation in microwave quantum circuits with hybrid nanowire Josephson elements

    NASA Astrophysics Data System (ADS)

    Mugnai, D.; Ranfagni, A.; Agresti, A.

    2017-04-01

    Recent experiments on hybrid Josephson junctions have made the argument a topical subject. However, a quantity which remains still unknown is the tunneling (or response) time, which is strictly connected to the role that dissipation plays in the dynamics of the complete system. A simple way for evaluating dissipation in microwave circuits, previously developed for describing the dynamics of conventional Josephson junctions, is now presented as suitable for application even to non-conventional junctions. The method is based on a stochastic model, as derived from the telegrapher's equation, and is particularly devoted to the case of junctions loaded by real transmission lines. When the load is constituted by lumped-constant circuits, a connection with the stochastic model is also maintained. The theoretical model demonstrated its ability to analyze both classically-allowed and forbidden processes, and has found a wide field of applicability, namely in all cases in which dissipative effects cannot be ignored.

  1. Circuit Motifs for Contrast-Adaptive Differentiation in Early Sensory Systems: The Role of Presynaptic Inhibition and Short-Term Plasticity

    PubMed Central

    Zhang, Danke; Wu, Si; Rasch, Malte J.

    2015-01-01

    In natural signals, such as the luminance value across of a visual scene, abrupt changes in intensity value are often more relevant to an organism than intensity values at other positions and times. Thus to reduce redundancy, sensory systems are specialized to detect the times and amplitudes of informative abrupt changes in the input stream rather than coding the intensity values at all times. In theory, a system that responds transiently to fast changes is called a differentiator. In principle, several different neural circuit mechanisms exist that are capable of responding transiently to abrupt input changes. However, it is unclear which circuit would be best suited for early sensory systems, where the dynamic range of the natural input signals can be very wide. We here compare the properties of different simple neural circuit motifs for implementing signal differentiation. We found that a circuit motif based on presynaptic inhibition (PI) is unique in a sense that the vesicle resources in the presynaptic site can be stably maintained over a wide range of stimulus intensities, making PI a biophysically plausible mechanism to implement a differentiator with a very wide dynamical range. Moreover, by additionally considering short-term plasticity (STP), differentiation becomes contrast adaptive in the PI-circuit but not in other potential neural circuit motifs. Numerical simulations show that the behavior of the adaptive PI-circuit is consistent with experimental observations suggesting that adaptive presynaptic inhibition might be a good candidate neural mechanism to achieve differentiation in early sensory systems. PMID:25723493

  2. Circuit motifs for contrast-adaptive differentiation in early sensory systems: the role of presynaptic inhibition and short-term plasticity.

    PubMed

    Zhang, Danke; Wu, Si; Rasch, Malte J

    2015-01-01

    In natural signals, such as the luminance value across of a visual scene, abrupt changes in intensity value are often more relevant to an organism than intensity values at other positions and times. Thus to reduce redundancy, sensory systems are specialized to detect the times and amplitudes of informative abrupt changes in the input stream rather than coding the intensity values at all times. In theory, a system that responds transiently to fast changes is called a differentiator. In principle, several different neural circuit mechanisms exist that are capable of responding transiently to abrupt input changes. However, it is unclear which circuit would be best suited for early sensory systems, where the dynamic range of the natural input signals can be very wide. We here compare the properties of different simple neural circuit motifs for implementing signal differentiation. We found that a circuit motif based on presynaptic inhibition (PI) is unique in a sense that the vesicle resources in the presynaptic site can be stably maintained over a wide range of stimulus intensities, making PI a biophysically plausible mechanism to implement a differentiator with a very wide dynamical range. Moreover, by additionally considering short-term plasticity (STP), differentiation becomes contrast adaptive in the PI-circuit but not in other potential neural circuit motifs. Numerical simulations show that the behavior of the adaptive PI-circuit is consistent with experimental observations suggesting that adaptive presynaptic inhibition might be a good candidate neural mechanism to achieve differentiation in early sensory systems.

  3. High Performance Amplifier Element Realization via MoS2/GaTe Heterostructures.

    PubMed

    Yan, Xiao; Zhang, David Wei; Liu, Chunsen; Bao, Wenzhong; Wang, Shuiyuan; Ding, Shijin; Zheng, Gengfeng; Zhou, Peng

    2018-04-01

    2D layered materials (2DLMs), together with their heterostructures, have been attracting tremendous research interest in recent years because of their unique physical and electrical properties. A variety of circuit elements have been made using mechanically exfoliated 2DLMs recently, including hard drives, detectors, sensors, and complementary metal oxide semiconductor field-effect transistors. However, 2DLM-based amplifier circuit elements are rarely studied. Here, the integration of 2DLMs with 3D bulk materials to fabricate vertical junction transistors with current amplification based on a MoS 2 /GaTe heterostructure is reported. Vertical junction transistors exhibit the typical current amplification characteristics of conventional bulk bipolar junction transistors while having good current transmission coefficients (α ∼ 0.95) and current gain coefficient (β ∼ 7) at room temperature. The devices provide new attractive prospects in the investigation of 2DLM-based integrated circuits based on amplifier circuits.

  4. High Performance Amplifier Element Realization via MoS2/GaTe Heterostructures

    PubMed Central

    Yan, Xiao; Zhang, David Wei; Liu, Chunsen; Bao, Wenzhong; Wang, Shuiyuan; Ding, Shijin; Zheng, Gengfeng

    2018-01-01

    Abstract 2D layered materials (2DLMs), together with their heterostructures, have been attracting tremendous research interest in recent years because of their unique physical and electrical properties. A variety of circuit elements have been made using mechanically exfoliated 2DLMs recently, including hard drives, detectors, sensors, and complementary metal oxide semiconductor field‐effect transistors. However, 2DLM‐based amplifier circuit elements are rarely studied. Here, the integration of 2DLMs with 3D bulk materials to fabricate vertical junction transistors with current amplification based on a MoS2/GaTe heterostructure is reported. Vertical junction transistors exhibit the typical current amplification characteristics of conventional bulk bipolar junction transistors while having good current transmission coefficients (α ∼ 0.95) and current gain coefficient (β ∼ 7) at room temperature. The devices provide new attractive prospects in the investigation of 2DLM‐based integrated circuits based on amplifier circuits. PMID:29721428

  5. Superconducting analog-to-digital converter with a triple-junction reversible flip-flop bidirectional counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, G.S.

    1993-07-13

    A high-performance superconducting analog-to-digital converter is described, comprising: a bidirectional binary counter having n stages of triple-junction reversible flip-flops connected together in a cascade arrangement from the least significant bit (LSB) to the most significant bit (MSB) where n is the number of bits of the digital output, each triple-junction reversible flip-flop including first, second and third shunted Josephson tunnel junctions and a superconducting inductor connected in a bridge circuit, the Josephson junctions and the inductor forming upper and lower portions of the flip-flop, each reversible flip-flop being a bistable logic circuit in which the direction of the circulating currentmore » determines the state of the circuit; and means for applying an analog input current to the bidirectional counter; wherein the bidirectional counter algebraically counts incremental changes in the analog input current, increasing the binary count for positive incremental changes in the analog current and decreasing the binary count for negative incremental changes in the current, and wherein the counter does not require a gate bias, thus minimizing power dissipation.« less

  6. Gap junctional intercellular communication dysfunction mediates the cognitive impairment induced by cerebral ischemia-reperfusion injury: PI3K/Akt pathway involved.

    PubMed

    Zhou, Shujun; Fang, Zheng; Wang, Gui; Wu, Song

    2017-01-01

    Cerebral ischemia/reperfusion (I/R) injury causes hippocampal apoptosis and cognitive impairment, and the dysfunction of gap junction intercellular communication (GJIC) may contribute to the cognitive impairment. We aim to examine the impact of cerebral I/R injury on cognitive impairment, the role of GJIC dysfunction in the rat hippocampus and the involvement of the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway. Rats were subjected to a cerebral I/R procedure and underwent cognitive assessment with the novel object recognition and Morris Water Maze tasks. The distance of Lucifer Yellow dye transfer and the Cx43 protein were examined to measure GJIC. Neural apoptosis was assessed with the terminal deoxynucleotide-transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) method. After rats received inhibitors of the PI3K/Akt pathway, GJIC and cognitive ability were measured again. GJIC promotion by ZP123 significantly reversed cognitive impairment and hippocampal apoptosis induced by cerebral I/R, while the inhibition of GJIC by octanol significantly facilitated cognitive impairment and hippocampal apoptosis. The phosphorylation of Akt was enhanced by cerebral I/R and octanol but inhibited by ZP123. The inhibition of the PI3K/Akt pathway significantly suppressed GJIC and cognitive impairment. The PI3K/Akt pathway is involved in cognitive impairment caused by gap junctional communication dysfunction in the rat hippocampus after ischemia-reperfusion injury.

  7. bFGF Protects Against Blood-Brain Barrier Damage Through Junction Protein Regulation via PI3K-Akt-Rac1 Pathway Following Traumatic Brain Injury.

    PubMed

    Wang, Zhou-Guang; Cheng, Yi; Yu, Xi-Chong; Ye, Li-Bing; Xia, Qing-Hai; Johnson, Noah R; Wei, Xiaojie; Chen, Da-Qing; Cao, Guodong; Fu, Xiao-Bing; Li, Xiao-Kun; Zhang, Hong-Yu; Xiao, Jian

    2016-12-01

    Many traumatic brain injury (TBI) survivors sustain neurological disability and cognitive impairments due to the lack of defined therapies to reduce TBI-induced blood-brain barrier (BBB) breakdown. Exogenous basic fibroblast growth factor (bFGF) has been shown to have neuroprotective function in brain injury. The present study therefore investigates the beneficial effects of bFGF on the BBB after TBI and the underlying mechanisms. In this study, we demonstrate that bFGF reduces neurofunctional deficits and preserves BBB integrity in a mouse model of TBI. bFGF suppresses RhoA and upregulates tight junction proteins, thereby mitigating BBB breakdown. In vitro, bFGF exerts a protective effect on BBB by upregulating tight junction proteins claudin-5, occludin, zonula occludens-1, p120-catenin, and β-catenin under oxygen glucose deprivation/reoxygenation (OGD) in human brain microvascular endothelial cells (HBMECs). Both the in vivo and in vitro effects are related to the activation of the downstream signaling pathway, PI3K/Akt/Rac-1. Inhibition of the PI3K/Akt or Rac-1 by specific inhibitors LY294002 or si-Rac-1, respectively, partially reduces the protective effect of bFGF on BBB integrity. Overall, our results indicate that the protective role of bFGF on BBB involves the regulation of tight junction proteins and RhoA in the TBI model and OGD-induced HBMECs injury, and that activation of the PI3K/Akt /Rac-1 signaling pathway underlies these effects.

  8. Developments toward an 18% efficient silicon solar cell

    NASA Technical Reports Server (NTRS)

    Meulenberg, A., Jr.

    1983-01-01

    Limitations to increased open-circuit voltage were identified and experimentally verified for 0.1 ohm-cm solar cells with heavily doped emitters. After major reduction in the dark current contribution from the metal-silicon interface of the grid contacts, the surface recombination velocity of the oxide-silicon interface of shallow junction solar cells is the limiting factor. In deep junction solar cells, where the junction field does not aid surface collection, the emitter bulk is the limiting factor. Singly-diffused, shallow junction cells have been fabricated with open circuit voltages in excess of 645 mV. Double-diffusion shallow and deep junctions cells have displayed voltages above 650 mV. MIS solar cells formed on 0.1 ohm-cm substrates have exibited the lowest dark currents produced in the course of the contract work.

  9. Cascaded all-optical operations in a hybrid integrated 80-Gb/s logic circuit.

    PubMed

    LeGrange, J D; Dinu, M; Sochor, T; Bollond, P; Kasper, A; Cabot, S; Johnson, G S; Kang, I; Grant, A; Kay, J; Jaques, J

    2014-06-02

    We demonstrate logic functionalities in a high-speed all-optical logic circuit based on differential Mach-Zehnder interferometers with semiconductor optical amplifiers as the nonlinear optical elements. The circuit, implemented by hybrid integration of the semiconductor optical amplifiers on a planar lightwave circuit platform fabricated in silica glass, can be flexibly configured to realize a variety of Boolean logic gates. We present both simulations and experimental demonstrations of cascaded all-optical operations for 80-Gb/s on-off keyed data.

  10. Fabrication process of superconducting integrated circuits with submicron Nb/AlOx/Nb junctions using electron-beam direct writing technique

    NASA Astrophysics Data System (ADS)

    Aoyagi, Masahiro; Nakagawa, Hiroshi

    1997-07-01

    For enhancing operating speed of a superconducting integrated circuit (IC), the device size must be reduced into the submicron level. For this purpose, we have introduced electron beam (EB) direct writing technique into the fabrication process of a Nb/AlOx/Nb Josephson IC. A two-layer (PMMA/(alpha) M-CMS) resist method called the portable conformable mask (PCM) method was utilized for having a high aspect ratio. The electron cyclotron resonance (ECR) plasma etching technique was utilized. We have fabricated micron or submicron-size Nb/AlOx/Nb Josephson junctions, where the size of the junction was varied from 2 micrometer to 0.5 micrometer at 0.1 micrometer intervals. These junctions were designed for evaluating the spread of the junction critical current. We achieved minimum-to-maximum Ic spread of plus or minus 13% for 0.81-micrometer-square (plus or minus 16% for 0.67-micrometer-square) 100 junctions spreading in 130- micrometer-square area. The size deviation of 0.05 micrometer was estimated from the spread values. We have successfully demonstrated a small-scale logic IC with 0.9-micrometer-square junctions having a 50 4JL OR-gate chain, where 4JL means four junctions logic family. The circuit was designed for measuring the gate delay. We obtained a preliminary result of the OR- gate logic delay, where the minimum delay was 8.6 ps/gate.

  11. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  12. Impact of hydrogen dilution on optical properties of intrinsic hydrogenated amorphous silicon films prepared by high density plasma chemical vapor deposition for solar cell applications

    NASA Astrophysics Data System (ADS)

    Chen, Huai-Yi; Lee, Yao-Jen; Chang, Chien-Pin; Koo, Horng-Show; Lai, Chiung-Hui

    2013-01-01

    P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg ) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg . The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.

  13. 30 CFR 18.51 - Electrical protection of circuits and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the junction with the main circuit when the branch-circuit conductor(s) has a current carrying... same duty. (1) If the overcurrent-protective device in a direct-current circuit does not open both... preventing the possibility of reversing connections which would result in changing the circuit interrupter to...

  14. 30 CFR 18.51 - Electrical protection of circuits and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the junction with the main circuit when the branch-circuit conductor(s) has a current carrying... same duty. (1) If the overcurrent-protective device in a direct-current circuit does not open both... preventing the possibility of reversing connections which would result in changing the circuit interrupter to...

  15. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  16. New high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1985-01-01

    A design for silicon solar cells was investigated as an approach to increasing the cell open-circuit voltage and efficiency for flat-plate terrestrial photovoltaic applications. This deviates from past designs, where either the entire front surface of the cell is covered by a planar junction or the surface is textured before junction formation, which results in an even greater (up to 70%) junction area. The heavily doped front region and the junction space charge region are potential areas of high recombination for generated and injected minority carriers. The design presented reduces junction area by spreading equidiameter dot junctions across the surface of the cell, spaced about a diffusion length or less from each other. Various dot diameters and spacings allowed variations in total junction area. A simplified analysis was done to obtain a first-order design optimization. Efficiencies of up to 19% can be obtained. Cell fabrication involved extra masking steps for selective junction diffusion, and made surface passivation a key element in obtaining good collection. It also involved photolithography, with line widths down to microns. A method is demonstrated for achieving potentially high open-circuit voltages and solar-cell efficiencies.

  17. Embedding impedance approximations in the analysis of SIS mixers

    NASA Technical Reports Server (NTRS)

    Kerr, A. R.; Pan, S.-K.; Withington, S.

    1992-01-01

    Future millimeter-wave radio astronomy instruments will use arrays of many SIS receivers, either as focal plane arrays on individual radio telescopes, or as individual receivers on the many antennas of radio interferometers. Such applications will require broadband integrated mixers without mechanical tuners. To produce such mixers, it will be necessary to improve present mixer design techniques, most of which use the three-frequency approximation to Tucker's quantum mixer theory. This paper examines the adequacy of three approximations to Tucker's theory: (1) the usual three-frequency approximation which assumes a sinusoidal LO voltage at the junction, and a short-circuit at all frequencies above the upper sideband; (2) a five-frequency approximation which allows two LO voltage harmonics and five small-signal sidebands; and (3) a quasi five-frequency approximation in which five small-signal sidebands are allowed, but the LO voltage is assumed sinusoidal. These are compared with a full harmonic-Newton solution of Tucker's equations, including eight LO harmonics and their corresponding sidebands, for realistic SIS mixer circuits. It is shown that the accuracy of the three approximations depends strongly on the value of omega R(sub N)C for the SIS junctions used. For large omega R(sub N)C, all three approximations approach the eight-harmonic solution. For omega R(sub N)C values in the range 0.5 to 10, the range of most practical interest, the quasi five-frequency approximation is a considerable improvement over the three-frequency approximation, and should be suitable for much design work. For the realistic SIS mixers considered here, the five-frequency approximation gives results very close to those of the eight-harmonic solution. Use of these approximations, where appropriate, considerably reduces the computational effort needed to analyze an SIS mixer, and allows the design and optimization of mixers using a personal computer.

  18. Passive demodulation of miniature fiber-optic-based interferometric sensors using a time-multiplexing technique.

    PubMed

    Santos, J L; Jackson, D A

    1991-08-01

    A passive demodulation technique suitable for interferometric interrogation of short optical cavities is described. It is based on time multiplexing of two low-finesse Fabry-Perot interferometers subject to the same measurand and with a differential optical phase of pi/2 (modulo 2pi). Independently of the cavity length, two optical outputs in quadrature are generated, which permits signal reading free of fading. The concept is demonstrated for the measurement of vibration using a simple processing scheme.

  19. New Logic Circuit with DC Parametric Excitation

    NASA Astrophysics Data System (ADS)

    Sugahara, Masanori; Kaneda, Hisayoshi

    1982-12-01

    It is shown that dc parametric excitation is possible in a circuit named JUDO, which is composed of two resistively-connected Josephson junctions. Simulation study proves that the circuit has large gain and properties suitable for the construction of small, high-speed logic circuits.

  20. Phase comparator apparatus and method

    DOEpatents

    Coffield, F.E.

    1985-02-01

    This invention finds especially useful application for interferometer measurements made in plasma fusion devices (e.g., for measuring the line integral of electron density in the plasma). Such interferometers typically use very high intermediate frequencies (e.g., on the order of 10 to 70 MHz) and therefore the phase comparison circuitry should be a high speed circuit with a linear transfer characteristic so as to accurately differentiate between small fractions of interference fringes.

  1. The role of Snell's law for a magnonic majority gate.

    PubMed

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B; Ross, Caroline A; Takagi, Hiroyuki; Nakamura, Yuichi; Uchida, Hironaga; Inoue, Mitsuteru

    2017-08-11

    In the fifty years since the postulation of Moore's Law, the increasing energy consumption in silicon electronics has motivated research into emerging devices. An attractive research direction is processing information via the phase of spin waves within magnonic-logic circuits, which function without charge transport and the accompanying heat generation. The functional completeness of magnonic logic circuits based on the majority function was recently proved. However, the performance of such logic circuits was rather poor due to the difficulty of controlling spin waves in the input junction of the waveguides. Here, we show how Snell's law describes the propagation of spin waves in the junction of a Ψ-shaped magnonic majority gate composed of yttrium iron garnet with a partially metallized surface. Based on the analysis, we propose a magnonic counterpart of a core-cladding waveguide to control the wave propagation in the junction. This study has therefore experimentally demonstrated a fundamental building block of a magnonic logic circuit.

  2. Electronic and mechanical characteristics of stacked dimer molecular junctions.

    PubMed

    Magyarkuti, András; Adak, Olgun; Halbritter, Andras; Venkataraman, Latha

    2018-02-15

    Break-junction measurements are typically aimed at characterizing electronic properties of single molecules bound between two metal electrodes. Although these measurements have provided structure-function relationships for such devices, there is little work that studies the impact of molecule-molecule interactions on junction characteristics. Here, we use a scanning tunneling microscope based break-junction technique to study pi-stacked dimer junctions formed with two amine-terminated conjugated molecules. We show that the conductance, force and flicker noise of such dimers differ dramatically when compared with the corresponding monomer junctions and discuss the implications of these results on intra- and inter-molecular charge transport.

  3. Low-noise submillimeter-wave NbTiN superconducting tunnel junction mixers

    NASA Astrophysics Data System (ADS)

    Kawamura, Jonathan; Chen, Jian; Miller, David; Kooi, Jacob; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.

    1999-12-01

    We have developed a low-noise 850 GHz superconductor-insulator-superconductor quasiparticle mixer with NbTiN thin-film microstrip tuning circuits and hybrid Nb/AlN/NbTiN tunnel junctions. The mixer uses a quasioptical configuration with a planar twin-slot antenna feeding a two-junction tuning circuit. At 798 GHz, we measured an uncorrected double-sideband receiver noise temperature of TRX=260 K at 4.2 K bath temperature. This mixer outperforms current Nb SIS mixers by a factor of nearly 2 near 800 GHz. The high-gap frequency and low loss at 800 GHz make NbTiN an attractive material with which to fabricate tuning circuits for SIS mixers. NbTiN mixers can potentially operate up to the gap frequency, 2Δ/h˜1.2 THz.

  4. Low-Noise Submillimeter-Wave NbTiN Superconducting Tunnel Junction Mixers

    NASA Technical Reports Server (NTRS)

    Kawamura, J.; Chen, J.; Miller, D.; Kooi, J.; Zmuidzinas, J.; Bumble, B.; LeDuc, H. G.; Stern, J. A.

    1999-01-01

    We have developed a low-noise 850 GHz superconductor-insulator-superconductor (SIS) quasi-particle mixer with NbTiN thin-film microstrip tuning circuits and hybrid Nb/AlN/NbTiN tunnel junctions. The mixer uses a quasioptical configuration with a planar twin-slot antenna feeding a two-junction tuning circuit. At 798 GHz, we measured an uncorrected double-sideband receiver noise temperature of T(sub RX) = 260 K at 4.2 K bath temperature. This mixer outperforms current Nb SIS mixers by a factor of nearly 2 near 800 GHz. The high gap frequency and low loss at 800 GHz make NbTiN an attractive material with which to fabricate tuning circuits for SIS mixers. NbTiN mixers can potentially operate up to the gap frequency, 2(delta)/h is approximately 1.2THz.

  5. Time-dependent wave packet simulations of transport through Aharanov-Bohm rings with an embedded quantum dot.

    PubMed

    Kreisbeck, C; Kramer, T; Molina, R A

    2017-04-20

    We have performed time-dependent wave packet simulations of realistic Aharonov-Bohm (AB) devices with a quantum dot embedded in one of the arms of the interferometer. The AB ring can function as a measurement device for the intrinsic transmission phase through the quantum dot, however, care has to be taken in analyzing the influence of scattering processes in the junctions of the interferometer arms. We consider a harmonic quantum dot and show how the Darwin-Fock spectrum emerges as a unique pattern in the interference fringes of the AB oscillations.

  6. Current-phase relation and flux-dependent thermoelectricity in Andreev interferometers

    NASA Astrophysics Data System (ADS)

    Dolgirev, Pavel E.; Kalenkov, Mikhail S.; Zaikin, Andrei D.

    2018-02-01

    We predict a novel current-phase relation in multiterminal Andreev interferometers that emerges from an interplay between long-range quantum coherence and nonequilibrium effects. Under nonzero bias V the current-phase relation IS(ϕ ) resembles that of a ϕ0 junction differing from the latter due to a nonzero average I0(V ) =<;IS(ϕ)>;ϕ . The flux-dependent thermopower S (Φ ) of the system has a similar form to that of the current-phase relation and in certain limits it can reduce to an either odd or even function of Φ in agreement with a number of experimental observations.

  7. {pi} junction and spontaneous current state in a superfluid Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashimura, Takashi; Tsuchiya, Shunji; CREST

    2011-07-15

    We discuss an idea to realize a spontaneous current in a superfluid Fermi gas. When a polarized Fermi superfluid (N{sub {up_arrow}}>N{sub {down_arrow}}, where N{sub {sigma}} is the number of atoms in the hyperfine state described by pseudospin {sigma}={up_arrow},{down_arrow}) is loaded onto a ring-shaped trap with a weak potential barrier, some excess atoms ({Delta}N=N{sub {up_arrow}}-N{sub {down_arrow}}) are localized around the barrier. As shown in our previous paper [T. Kashimura, S. Tsuchiya, and Y. Ohashi, Phys. Rev. A 82, 033617 (2010)], this polarized potential barrier works as a {pi} junction in the sense that the superfluid order parameter changes its sign acrossmore » the barrier. Because of this, the phase of the superfluid order parameter outside the junction is shown to be twisted by {pi} along the ring, which naturally leads to a circulating supercurrent. While the ordinary supercurrent state is obtained as a metastable state, this spontaneous current state is shown to be more stable than the case with no current. Our results indicate that localized excess atoms would be useful for the manipulation of the superfluid order parameter in cold Fermi gases.« less

  8. Reconfigurable electro-optical directed-logic circuit using carrier-depletion micro-ring resonators.

    PubMed

    Qiu, Ciyuan; Gao, Weilu; Soref, Richard; Robinson, Jacob T; Xu, Qianfan

    2014-12-15

    Here we demonstrate a reconfigurable electro-optical directed-logic circuit based on a regular array of integrated optical switches. Each 1×1 optical switch consists of a micro-ring resonator with an embedded lateral p-n junction and a micro-heater. We achieve high-speed on-off switching by applying electrical logic signals to the p-n junction. We can configure the operation mode of each switch by thermal tuning the resonance wavelength. The result is an integrated optical circuit that can be reconfigured to perform any combinational logic operation. As a proof-of-principle, we fabricated a multi-spectral directed-logic circuit based on a fourfold array of switches and showed that this circuit can be reconfigured to perform arbitrary two-input logic functions with speeds up to 3  GB/s.

  9. Electro-refractive photonic device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zortman, William A.; Watts, Michael R.

    2015-06-09

    The various technologies presented herein relate to phase shifting light to facilitate any of light switching, modulation, amplification, etc. Structures are presented where a second layer is juxtaposed between a first layer and a third layer with respective doping facilitating formation of p-n junctions at the interface between the first layer and the second layer, and between the second layer and the third layer. Application of a bias causes a carrier concentration change to occur at the p-n junctions which causes a shift in the effective refractive index per incremental change in an applied bias voltage. The effective refractive indexmore » enhancement can occur in both reverse bias and forward bias. The structure can be incorporated into a waveguide, an optical resonator, a vertical junction device, a horizontal junction device, a Mach-Zehnder interferometer, a tuneable optical filter, etc.« less

  10. Silicon nitride tri-layer vertical Y-junction and 3D couplers with arbitrary splitting ratio for photonic integrated circuits.

    PubMed

    Shang, Kuanping; Pathak, Shibnath; Liu, Guangyao; Feng, Shaoqi; Li, Siwei; Lai, Weicheng; Yoo, S J B

    2017-05-01

    We designed and demonstrated a tri-layer Si3N4/SiO2 photonic integrated circuit capable of vertical interlayer coupling with arbitrary splitting ratios. Based on this multilayer photonic integrated circuit platform with each layer thicknesses of 150 nm, 50 nm, and 150 nm, we designed and simulated the vertical Y-junctions and 3D couplers with arbitrary power splitting ratios between 1:10 and 10:1 and with negligible(< -50 dB) reflection. Based on the design, we fabricated and demonstrated tri-layer vertical Y-junctions with the splitting ratios of 1:1 and 3:2 with excess optical losses of 0.230 dB. Further, we fabricated and demonstrated the 1 × 3 3D couplers with the splitting ratio of 1:1:4 for symmetric structures and variable splitting ratio for asymmetric structures.

  11. Metal-Insulator-Semiconductor Nanowire Network Solar Cells.

    PubMed

    Oener, Sebastian Z; van de Groep, Jorik; Macco, Bart; Bronsveld, Paula C P; Kessels, W M M; Polman, Albert; Garnett, Erik C

    2016-06-08

    Metal-insulator-semiconductor (MIS) junctions provide the charge separating properties of Schottky junctions while circumventing the direct and detrimental contact of the metal with the semiconductor. A passivating and tunnel dielectric is used as a separation layer to reduce carrier recombination and remove Fermi level pinning. When applied to solar cells, these junctions result in two main advantages over traditional p-n-junction solar cells: a highly simplified fabrication process and excellent passivation properties and hence high open-circuit voltages. However, one major drawback of metal-insulator-semiconductor solar cells is that a continuous metal layer is needed to form a junction at the surface of the silicon, which decreases the optical transmittance and hence short-circuit current density. The decrease of transmittance with increasing metal coverage, however, can be overcome by nanoscale structures. Nanowire networks exhibit precisely the properties that are required for MIS solar cells: closely spaced and conductive metal wires to induce an inversion layer for homogeneous charge carrier extraction and simultaneously a high optical transparency. We experimentally demonstrate the nanowire MIS concept by using it to make silicon solar cells with a measured energy conversion efficiency of 7% (∼11% after correction), an effective open-circuit voltage (Voc) of 560 mV and estimated short-circuit current density (Jsc) of 33 mA/cm(2). Furthermore, we show that the metal nanowire network can serve additionally as an etch mask to pattern inverted nanopyramids, decreasing the reflectivity substantially from 36% to ∼4%. Our extensive analysis points out a path toward nanowire based MIS solar cells that exhibit both high Voc and Jsc values.

  12. Superconducting Quantum Interference Devices for the Detection of Magnetic Flux and Application to Airborne High Frequency Direction Finding

    DTIC Science & Technology

    2015-03-26

    junction [29]. • The Resistively-Shunted- Junction (RSJ) Model • The Tunnel - Junction -Microscopic (TJM) Model • The Nonlinear...Resistive (RSJN) Model These circuit representations describe the junction using a parallel configuration of a resistor, noise current source, and a...solution for the Josephson junction IVP model equation for the noise -free case, in = 0. The thermal noise current is set to zero to exclude noise

  13. Optical domain analog to digital conversion methods and apparatus

    DOEpatents

    Vawter, Gregory A

    2014-05-13

    Methods and apparatus for optical analog to digital conversion are disclosed. An optical signal is converted by mapping the optical analog signal onto a wavelength modulated optical beam, passing the mapped beam through interferometers to generate analog bit representation signals, and converting the analog bit representation signals into an optical digital signal. A photodiode receives an optical analog signal, a wavelength modulated laser coupled to the photodiode maps the optical analog signal to a wavelength modulated optical beam, interferometers produce an analog bit representation signal from the mapped wavelength modulated optical beam, and sample and threshold circuits corresponding to the interferometers produce a digital bit signal from the analog bit representation signal.

  14. 0-π phase-controllable thermal Josephson junction

    NASA Astrophysics Data System (ADS)

    Fornieri, Antonio; Timossi, Giuliano; Virtanen, Pauli; Solinas, Paolo; Giazotto, Francesco

    2017-05-01

    Two superconductors coupled by a weak link support an equilibrium Josephson electrical current that depends on the phase difference ϕ between the superconducting condensates. Yet, when a temperature gradient is imposed across the junction, the Josephson effect manifests itself through a coherent component of the heat current that flows opposite to the thermal gradient for |ϕ| < π/2 (refs 2-4). The direction of both the Josephson charge and heat currents can be inverted by adding a π shift to ϕ. In the static electrical case, this effect has been obtained in a few systems, for example via a ferromagnetic coupling or a non-equilibrium distribution in the weak link. These structures opened new possibilities for superconducting quantum logic and ultralow-power superconducting computers. Here, we report the first experimental realization of a thermal Josephson junction whose phase bias can be controlled from 0 to π. This is obtained thanks to a superconducting quantum interferometer that allows full control of the direction of the coherent energy transfer through the junction. This possibility, in conjunction with the completely superconducting nature of our system, provides temperature modulations with an unprecedented amplitude of ∼100 mK and transfer coefficients exceeding 1 K per flux quantum at 25 mK. Then, this quantum structure represents a fundamental step towards the realization of caloritronic logic components such as thermal transistors, switches and memory devices. These elements, combined with heat interferometers and diodes, would complete the thermal conversion of the most important phase-coherent electronic devices and benefit cryogenic microcircuits requiring energy management, such as quantum computing architectures and radiation sensors.

  15. A 547 GHz SIS Receiver Employing a Submicron Nb Junction with an Integrated Matching Circuit

    NASA Technical Reports Server (NTRS)

    Febvre, P.; McGrath, W.; Leduc, H.; Batelaan, P.; Frerking, M.; Hernichel, J.; Bumble, B.

    1993-01-01

    The most sensitive heterodyne receivers used for millimeter wave and submillimeter wave radioastronomy employ superconductor-insulator-superconductor (SIS) tunnel junctions as the nonlinear mixing element.

  16. Catalysts for Lightweight Solar Fuels Generation

    DTIC Science & Technology

    2017-03-10

    single bandgap solar cells to OER catalysts could lead to very high solar -to-fuel efficiencies. Figure 3 illustrates a PV -EC utilizing a PV , an...3- or 4 -single junction c-Si solar cells connected in series. Considering a PV -EC device based on commercially available single junction-Si solar ...30.8%) with open circuit voltage and short circuit current density ; total plot area is scaled to incident solar power (100 mW cm–2). The PV -EC

  17. Short circuit current changes in electron irradiated GaAlAs/GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Conway, E. J.

    1978-01-01

    Heteroface p-GaAlAs/p-GaAs/n-GaAs solar cells with junction depths of 0.8, 1.5, and 4 microns were irradiated with 1 MeV electrons. The short-circuit current for the 4 micron junction depth cells is significantly reduced by the electron irradiation. Reduction of the junction depth to 1.5 microns improves the electron radiation resistance of the cells while further reduction of the junction depth to 0.8 microns improves the stability of the cells even more. Primary degradation is in the blue region of the spectrum. Considerable recovery of lost response is obtained by annealing the cells at 200 C. Computer modeling shows that the degradation is caused primarily by a reduction in the minority carrier diffusion length in the p-GaAs.

  18. Studies of silicon PN junction solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1975-01-01

    Silicon pn junction solar cells made with low-resistivity substrates show poorer performance than traditional theory predicts. The purpose of this research was to identify and characterize the physical mechanisms responsible for the discrepancy. Attention was concentrated on the open circuit voltage in shallow junction cells of 0.1 ohm-cm substrate resistivity. A number of possible mechanisms that can occur in silicon devices were considered. Two mechanisms which are likely to be of main importance in explaining the observed low values of open-circuit voltage were found: (1) recombination losses associated with defects introduced during junction formation, and (2) inhomogeneity of defects and impurities across the area of the cell. To explore these theoretical anticipations, various diode test structures were designed and fabricated and measurement configurations for characterizing the defect properties and the areal inhomogeneity were constructed.

  19. Characterization of Lateral Structure of the p-i-n Diode for Thin-Film Silicon Solar Cell.

    PubMed

    Kiaee, Zohreh; Joo, Seung Ki

    2018-03-01

    The lateral structure of the p-i-n diode was characterized for thin-film silicon solar cell application. The structure can benefit from a wide intrinsic layer, which can improve efficiency without increasing cell thickness. Compared with conventional thin-film p-i-n cells, the p-i-n diode lateral structure exploited direct light irradiation on the absorber layer, one-side contact, and bifacial irradiation. Considering the effect of different carrier lifetimes and recombinations, we calculated efficiency parameters by using a commercially available simulation program as a function of intrinsic layer width, as well as the distance between p/i or n/i junctions to contacts. We then obtained excellent parameter values of 706.52 mV open-circuit voltage, 24.16 mA/Cm2 short-circuit current, 82.66% fill factor, and 14.11% efficiency from a lateral cell (thickness = 3 μm; intrinsic layer width = 53 μm) in monofacial irradiation mode (i.e., only sunlight from the front side was considered). Simulation results of the cell without using rear-side reflector in bifacial irradiation mode showed 11.26% front and 9.72% rear efficiencies. Our findings confirmed that the laterally structured p-i-n cell can be a potentially powerful means for producing highly efficient, thin-film silicon solar cells.

  20. Low-high junction theory applied to solar cells

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P.; Baraona, C. R.; Brandhorst, H. W., Jr.

    1974-01-01

    Recent use of alloying techniques for rear contact formation has yielded a new kind of silicon solar cell, the back surface field (BSF) cell, with abnormally high open-circuit voltage and improved radiation resistance. Several analytical models for open-circuit voltage based on the reverse saturation current are formulated to explain these observations. The zero surface recombination velocity (SRV) case of the conventional cell model, the drift field model, and the low-high junction (LHJ) model can predict the experimental trends. The LHJ model applies the theory of the low-high junction and is considered to reflect a more realistic view of cell fabrication. This model can predict the experimental trends observed for BSF cells.

  1. Synaptic plasticity and oscillation at zinc tin oxide/silver oxide interfaces

    NASA Astrophysics Data System (ADS)

    Murdoch, Billy J.; McCulloch, Dougal G.; Partridge, James G.

    2017-02-01

    Short-term plasticity, long-term potentiation, and pulse interval dependent plasticity learning/memory functions have been observed in junctions between amorphous zinc-tin-oxide and silver-oxide. The same junctions exhibited current-controlled negative differential resistance and when connected in an appropriate circuit, they behaved as relaxation oscillators. These oscillators produced voltage pulses suitable for device programming. Transmission electron microscopy, energy dispersive X-ray spectroscopy, and electrical measurements suggest that the characteristics of these junctions arise from Ag+/O- electromigration across a highly resistive interface layer. With memory/learning functions and programming spikes provided in a single device structure, arrays of similar devices could be used to form transistor-free neuromorphic circuits.

  2. A graphene/single GaAs nanowire Schottky junction photovoltaic device.

    PubMed

    Luo, Yanbin; Yan, Xin; Zhang, Jinnan; Li, Bang; Wu, Yao; Lu, Qichao; Jin, Chenxiaoshuai; Zhang, Xia; Ren, Xiaomin

    2018-05-17

    A graphene/nanowire Schottky junction is a promising structure for low-cost high-performance optoelectronic devices. Here we demonstrate a graphene/single GaAs nanowire Schottky junction photovoltaic device. The Schottky junction is fabricated by covering a single layer graphene onto an n-doped GaAs nanowire. Under 532 nm laser excitation, the device exhibits a high responsivity of 231 mA W-1 and a short response/recover time of 85/118 μs at zero bias. Under AM 1.5 G solar illumination, the device has an open-circuit voltage of 75.0 mV and a short-circuit current density of 425 mA cm-2, yielding a remarkable conversion efficiency of 8.8%. The excellent photovoltaic performance of the device is attributed to the strong built-in electric field in the Schottky junction as well as the transparent property of graphene. The device is promising for self-powered high-speed photodetectors and low-cost high-efficiency solar cells.

  3. Novel δ-doped partially insulated junctionless transistor for mixed signal integrated circuits

    NASA Astrophysics Data System (ADS)

    Patil, Ganesh C.; Bonge, Vijaysinh H.; Malode, Mayur M.; Jain, Rahul G.

    2016-02-01

    In this paper, δ-doped partially insulated junctionless transistor (δ-Pi-OXJLT) has been proposed which shows that, employing highly doped δ-region below the channel not only reduces the off-state leakage current (IOFF) and short channel effects (SCEs) but also reduce the requirements of scaling channel thickness of junctionless transistor (JLT). The comparative analysis of digital and analog circuit performance of proposed δ-Pi-OXJLT, bulk planar (BP) JLT and silicon-on-insulator (SOI) JLT has also been carried out. The digital parameters analyzed in this work are, on-state drive current (ION), IOFF, ION/IOFF ratio, static power dissipation (PSTAT) whereas the analog parameters analyzed includes, transconductance (GM), transconductance generation factor (GM/IDS), intrinsic gain (GMRO) and cut-off frequency (fT) of the devices. In addition, scaling behavior of the devices is studied for various channel lengths by using the parameters such as drain induced barrier lowering (DIBL) and sub-threshold swing (SS). It has been found that, the proposed δ-Pi-OXJLT shows significant reduction in IOFF, DIBL and SS over BPJLT and SOIJLT devices. Further, ION and ION/IOFF ratio in the case of proposed δ-Pi-OXJLT also improves over the BPJLT device. Furthermore, the improvement in analog figures of merit, GM, GM/IDS, GMRO and fT in the case of proposed δ-Pi-OXJLT clearly shows that the proposed δ-Pi-OXJLT is the promising device for mixed signal integrated circuits.

  4. Nondestructive determination of the depth of planar p-n junctions by scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Chi, J.-Y.; Gatos, H. C.

    1977-01-01

    A method was developed for measuring nondestructively the depth of planar p-n junctions in simple devices as well as in integrated-circuit structures with the electron-beam induced current (EBIC) by scanning parallel to the junction in a scanning electron microscope (SEM). The results were found to be in good agreement with those obtained by the commonly used destructive method of lapping at an angle to the junction and staining to reveal the junction.

  5. Experiments with BECs in a Painted Potential: Atom SQUID, Matter Wave Bessel Beams, and Matter Wave Circuits

    NASA Astrophysics Data System (ADS)

    Boshier, Malcolm; Ryu, Changhyun; Blackburn, Paul; Blinova, Alina; Henderson, Kevin

    2014-05-01

    The painted potential is a time-averaged optical dipole potential which is able to create arbitrary and dynamic two dimensional potentials for Bose Einstein condensates (BECs). This poster reports three recent experiments using this technique. First, we have realized the dc atom SQUID geometry of a BEC in a toroidal trap with two Josephson junctions. We observe Josephson effects, measure the critical current of the junctions, and find dynamic behavior that is in good agreement with the simple Josephson equations for a tunnel junction with the ideal sinusoidal current-phase relation expected for the parameters of the experiment. Second, we have used free expansion of a rotating toroidal BEC to create matter wave Bessel beams, which are of interest because perfect Bessel beams (plane waves with amplitude profiles described by Bessel functions) propagate without diffraction. Third, we have realized the basic circuit elements necessary to create complex matter wave circuits. We launch BECs at arbitrary velocity along straight waveguides, propagate them around curved waveguides and stadium-shaped waveguide traps, and split them coherently at y-junctions that can also act as switches. Supported by LANL/LDRD.

  6. Measurement of Quantum Interference in a Silicon Ring Resonator Photon Source.

    PubMed

    Steidle, Jeffrey A; Fanto, Michael L; Preble, Stefan F; Tison, Christopher C; Howland, Gregory A; Wang, Zihao; Alsing, Paul M

    2017-04-04

    Silicon photonic chips have the potential to realize complex integrated quantum information processing circuits, including photon sources, qubit manipulation, and integrated single-photon detectors. Here, we present the key aspects of preparing and testing a silicon photonic quantum chip with an integrated photon source and two-photon interferometer. The most important aspect of an integrated quantum circuit is minimizing loss so that all of the generated photons are detected with the highest possible fidelity. Here, we describe how to perform low-loss edge coupling by using an ultra-high numerical aperture fiber to closely match the mode of the silicon waveguides. By using an optimized fusion splicing recipe, the UHNA fiber is seamlessly interfaced with a standard single-mode fiber. This low-loss coupling allows the measurement of high-fidelity photon production in an integrated silicon ring resonator and the subsequent two-photon interference of the produced photons in a closely integrated Mach-Zehnder interferometer. This paper describes the essential procedures for the preparation and characterization of high-performance and scalable silicon quantum photonic circuits.

  7. Simulation and parametric analysis of graphene p-n junctions with two rectangular top gates and a single back gate

    NASA Astrophysics Data System (ADS)

    Nikiforidis, Ioannis; Karafyllidis, Ioannis G.; Dimitrakis, Panagiotis

    2018-02-01

    Graphene p-n junctions could be the building blocks of future nanoelectronic circuits. While the conductance modulation of graphene p-n junctions formed in devices with one bottom and one top gate have received much attention, there is comparatively little work done on devices with two top gates. Here, we employ tight-bind Hamiltonians and non-equilibrium Green function method to compute in a systematic way the dependence of the conductance of graphene p-n junctions, formed in a device with two top gates, on the device parameters. We present our results in a compact and systematic way, so that the effect of each parameter is clearly shown. Our results show that the device conductance can be effectively modulated, and that graphene devices with two top gates may be used as basic elements in future carbon-based nanoelectronic circuits.

  8. Laser induced non-monotonic degradation in short-circuit current of triple-junction solar cells

    NASA Astrophysics Data System (ADS)

    Dou, Peng-Cheng; Feng, Guo-Bin; Zhang, Jian-Min; Song, Ming-Ying; Zhang, Zhen; Li, Yun-Peng; Shi, Yu-Bin

    2018-06-01

    In order to study the continuous wave (CW) laser radiation effects and mechanism of GaInP/GaAs/Ge triple-junction solar cells (TJSCs), 1-on-1 mode irradiation experiments were carried out. It was found that the post-irradiation short circuit current (ISC) of the TJSCs initially decreased and then increased with increasing of irradiation laser power intensity. To explain this phenomenon, a theoretical model had been established and then verified by post-damage tests and equivalent circuit simulations. Conclusion was drawn that laser induced alterations in the surface reflection and shunt resistance were the main causes for the observed non-monotonic decrease in the ISC of the TJSCs.

  9. Electron transport through rectifying self-assembled monolayer diodes on silicon: Fermi-level pinning at the molecule-metal interface.

    PubMed

    Lenfant, S; Guerin, D; Tran Van, F; Chevrot, C; Palacin, S; Bourgoin, J P; Bouloussa, O; Rondelez, F; Vuillaume, D

    2006-07-20

    We report the synthesis and characterization of molecular rectifying diodes on silicon using sequential grafting of self-assembled monolayers of alkyl chains bearing a pi group at their outer end (Si/sigma-pi/metal junctions). We investigate the structure-performance relationships of these molecular devices, and we examine the extent to which the nature of the pi end group (change in the energy position of their molecular orbitals) drives the properties of these molecular diodes. Self-assembled monolayers of alkyl chains (different chain lengths from 6 to 15 methylene groups) functionalized by phenyl, anthracene, pyrene, ethylene dioxythiophene, ethylene dioxyphenyl, thiophene, terthiophene, and quaterthiophene were synthesized and characterized by contact angle measurements, ellipsometry, Fourier transform infrared spectroscopy, and atomic force microscopy. We demonstrate that reasonably well-packed monolayers are obtained in all cases. Their electrical properties were assessed by dc current-voltage characteristics and high-frequency (1-MHz) capacitance measurements. For all of the pi groups investigated here, we observed rectification behavior. These results extend our preliminary work using phenyl and thiophene groups (Lenfant et al., Nano Lett. 2003, 3, 741). The experimental current-voltage curves were analyzed with a simple analytical model, from which we extracted the energy position of the molecular orbital of the pi group in resonance with the Fermi energy of the electrodes. We report experimental studies of the band lineup in these silicon/alkyl pi-conjugated molecule/metal junctions. We conclude that Fermi-level pinning at the pi group/metal interface is mainly responsible for the observed absence of a dependence of the rectification effect on the nature of the pi groups, even though the groups examined were selected to have significant variations in their electronic molecular orbitals.

  10. Averaging of phase noise in PSK signals by an opto-electrical feed-forward circuit

    NASA Astrophysics Data System (ADS)

    Inoue, K.; Ohta, M.

    2013-10-01

    This paper proposes an opto-electrical feed-forward circuit that reduces phase noise in binary PSK signals by averaging the noise. Random and independent phase noise is averaged over several bit slots by externally modulating a phase-fluctuating PSK signal with feed-forward signal obtained from signal processing of the outputs of delay interferometers. The simulation results demonstrate a reduction in the phase noise.

  11. Pseudomonas aeruginosa elastase causes transient disruption of tight junctions and downregulation of PAR-2 in human nasal epithelial cells.

    PubMed

    Nomura, Kazuaki; Obata, Kazufumi; Keira, Takashi; Miyata, Ryo; Hirakawa, Satoshi; Takano, Ken-ichi; Kohno, Takayuki; Sawada, Norimasa; Himi, Tetsuo; Kojima, Takashi

    2014-02-18

    Pseudomonas aeruginosa causes chronic respiratory disease, and the elastase enzyme that it produces increases the permeability of airway epithelial cells owing to the disruption of tight junctions. P. aeruginosa is also implicated in prolonged chronic rhinosinusitis. However, the effects of P. aeruginosa elastase (PE) against the barrier formed by human nasal epithelial cells (HNECs) remain unknown. To investigate the mechanisms involved in the disruption of tight junctions by PE in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were used. The hTERT-HNECs were pretreated with inhibitors of various signal transduction pathways, PKC, MAPK, p38MAPK, PI3K, JNK, NF-κB, EGF receptor, proteasome, COX1 and COX2 before treatment with PE. Some cells were pretreated with siRNA and agonist of protease activated receptor-2 (PAR-2) before treatment with PE. Expression and structures of tight junctions were determined by Western blotting, real-time PCR, immunostaining and freeze-fracture. Transepithelial electrical resistance (TER) was examined as the epithelial barrier function. PE treatment transiently disrupted the epithelial barrier and downregulated the transmembrane proteins claudin-1 and -4, occludin, and tricellulin, but not the scaffold PDZ-expression proteins ZO-1 and -2 and adherens junction proteins E-cadherin and β-catenin. The transient downregulation of tight junction proteins was controlled via distinct signal transduction pathways such as the PKC, MAPK, PI3K, p38 MAPK, JNK, COX-1 and -2, and NF-κB pathways. Furthermore, treatment with PE transiently decreased PAR-2 expression, which also regulated the expression of the tight junction proteins. Treatment with a PAR-2 agonist prevented the downregulation of the tight junction proteins after PE treatment in HNECs. PE transiently disrupts tight junctions in HNECs and downregulates PAR-2. The transient disruption of tight junctions by PE might occur repeatedly during chronic rhinosinusitis.

  12. Pseudomonas aeruginosa elastase causes transient disruption of tight junctions and downregulation of PAR-2 in human nasal epithelial cells

    PubMed Central

    2014-01-01

    Background Pseudomonas aeruginosa causes chronic respiratory disease, and the elastase enzyme that it produces increases the permeability of airway epithelial cells owing to the disruption of tight junctions. P. aeruginosa is also implicated in prolonged chronic rhinosinusitis. However, the effects of P. aeruginosa elastase (PE) against the barrier formed by human nasal epithelial cells (HNECs) remain unknown. Methods To investigate the mechanisms involved in the disruption of tight junctions by PE in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were used. The hTERT-HNECs were pretreated with inhibitors of various signal transduction pathways, PKC, MAPK, p38MAPK, PI3K, JNK, NF-κB, EGF receptor, proteasome, COX1 and COX2 before treatment with PE. Some cells were pretreated with siRNA and agonist of protease activated receptor-2 (PAR-2) before treatment with PE. Expression and structures of tight junctions were determined by Western blotting, real-time PCR, immunostaining and freeze-fracture. Transepithelial electrical resistance (TER) was examined as the epithelial barrier function. Results PE treatment transiently disrupted the epithelial barrier and downregulated the transmembrane proteins claudin-1 and -4, occludin, and tricellulin, but not the scaffold PDZ-expression proteins ZO-1 and -2 and adherens junction proteins E-cadherin and β-catenin. The transient downregulation of tight junction proteins was controlled via distinct signal transduction pathways such as the PKC, MAPK, PI3K, p38 MAPK, JNK, COX-1 and -2, and NF-κB pathways. Furthermore, treatment with PE transiently decreased PAR-2 expression, which also regulated the expression of the tight junction proteins. Treatment with a PAR-2 agonist prevented the downregulation of the tight junction proteins after PE treatment in HNECs. Conclusions PE transiently disrupts tight junctions in HNECs and downregulates PAR-2. The transient disruption of tight junctions by PE might occur repeatedly during chronic rhinosinusitis. PMID:24548792

  13. A Dual Polarized Quasi-Optical SIS Mixer at 550-GHz

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Miller, David; LeDuc, Henry G.; Zmuidzinas, Jonas

    2000-01-01

    We describe the design, fabrication, and the performance of a low-noise dual-polarized quasi-optical superconductor insulator superconductor (SIS) mixer at 550 GHz. The mixer utilizes a novel cross-slot antenna on a hyperhemispherical substrate lens, two junction tuning circuits, niobium trilayer junctions, and an IF circuit containing a lumped element 180 deg hybrid. The antenna consists of an orthogonal pair of twin-slot antennas, and has four feed points, two for each polarization. Each feed point is coupled to a two-junction SIS mixer. The 180 deg IF hybrid is implemented using a lumped element/microstrip circuit located inside the mixer block. Fourier transform spectrometer (FTS) measurements of the mixer frequency response show good agreement with computer simulations. The measured co-polarized and cross-polarized patterns for both polarizations also agree with the theoretical predictions. The noise performance of the dual-polarized mixer is excellent, giving uncorrected receiver noise temperature of better than 115 K (DSB) at 528 GHz for both the polarizations.

  14. Frequency stabilization of an Er-doped fiber laser with a collinear 2f-to-3f self-referencing interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitachi, K., E-mail: hitachi.kenichi@lab.ntt.co.jp; Ishizawa, A.; Mashiko, H.

    2015-06-08

    We report the stabilization of the carrier-envelope offset (CEO) frequency of an Er-doped fiber laser with a collinear 2f-to-3f self-referencing interferometer. The interferometer is implemented by a dual-pitch periodically poled lithium niobate ridge waveguide with two different quasi-phase matching pitch sizes. We obtain a 52-dB signal-to-noise ratio in the 100-kHz resolution bandwidth of a heterodyne beat signal, which is sufficient for frequency stabilization. We also demonstrate that the collinear geometry is robust against environmental perturbation by comparing in-loop and out-of-loop Allan deviations when the in-loop CEO frequency is stabilized with a phase-locked loop circuit.

  15. Relative pelvic version: an individualized pelvic incidence-based proportional parameter that quantifies pelvic version more precisely than pelvic tilt.

    PubMed

    Yilgor, Caglar; Yavuz, Yasemin; Sogunmez, Nuray; Haddad, Sleiman; Mannion, Anne F; Abul, Kadir; Boissiere, Louis; Obeid, Ibrahim; Kleinstück, Frank; Pérez-Grueso, Francisco Javier Sánchez; Acaroglu, Emre; Pellise, Ferran; Alanay, Ahmet

    2018-03-08

    Pelvic tilt (PT) is used as an indicator of pelvic version with increased values indicating retroversion and disability. The concept of using PT solely as an absolute numerical value can be misleading, especially for the patients with pelvic incidence (PI) values near the upper and lower normal limits. Relative pelvic version (RPV) is a PI-based individualized measure of the pelvic version. Relative pelvic version indicates the individualized spatial orientation of the pelvis relative to the ideal sacral slope as defined by the magnitude of PI. The aim of this study was to compare RPV and PT for their ability to predict mechanical complications and their correlations with health-related quality of Life (HRQoL) scores. A retrospective analysis of a prospectively collected data of adult spinal deformity patients was carried out. Mechanical complications (proximal junctional kyphosis or proximal junctional failure, distal junctional kyphosis or distal junctional failure, rod breakage, and implant-related complications) and HRQoL scores (Oswestry Disability Index [ODI], Core Outcome Measures Index [COMI], Short Form-36 Physical Component Summary [SF-36 PCS], and Scoliosis Research Society 22 Spinal Deformity Questionnaire [SRS-22]) were used as outcome measures. Inclusion criteria were ≥4 levels fusion, and ≥2-year follow-up. Correlations between PT, RPV, PI, and HRQoL were analyzed using Pearson correlation coefficient. Pelvic incidence values and mechanical complication rates in RPV subgroups for each PT category were compared using one-way analysis of variance, Student t test, and chi-squared tests. Predictive models for mechanical complications with RPV and PT were analyzed using binomial logistic regressions. A total of 222 patients (168 women, 54 men) met the inclusion criteria. Mean age was 52.2±19.3 (18-84) years. Mean follow-up was 28.8±8.2 (24-62) months. There was a significant correlation between PT and PI (r=0.613, p<.001), threatening the use of PT to quantify pelvic version for different PI values. Relative pelvic version was not correlated with PI (r=-0.108, p>.05), being able to quantify pelvic version for all PI values. Compared with PT, RPV had stronger partial correlations with ODI, COMI, SF-36 PCS, and SRS-22 scores (p<.05). Discrimination performance assessed by area under the curve, percentage accuracy in classification, true positive rate, true negative rate, and positive and negative predictive values was better for the model with RPV than for PT. For average PI sizes, the agreement between RPV and PT were moderate (0.609, p<.001), whereas the agreement in small and large PI sizes were poor (0.189, p>.05; -0.098, p>.496, respectively). When analyzed by RPV, each PT "0," "+," and "++" category was further divided into two or three distinct subgroups of patients having different PI values (p=.000, p=.000, and p=.029, respectively). Relative pelvic version subgroups within the same PT category displayed different mechanical complication rates (p=.000, p=.020, and p=.019, respectively). Pelvic tilt may be insufficient or misleading in quantifying normoversion for the whole spectrum of PI values when used as an absolute numeric value in conjunction with previously reported population-based average thresholds of 20 and 30 degrees. Relative pelvic version offers an individualized quantification of ante-, normo-, and retroversion for all PI sizes. Schwab PT groups were found to constitute inhomogeneous subgroup of patients with different mean PI values and mechanical complication rates. Compared with PT, RPV showed a greater association with both mechanical complications and HRQoL. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Interferometric imaging using Si3N4 photonic integrated circuits for a SPIDER imager.

    PubMed

    Su, Tiehui; Liu, Guangyao; Badham, Katherine E; Thurman, Samuel T; Kendrick, Richard L; Duncan, Alan; Wuchenich, Danielle; Ogden, Chad; Chriqui, Guy; Feng, Shaoqi; Chun, Jaeyi; Lai, Weicheng; Yoo, S J B

    2018-05-14

    This paper reports design, fabrication, and experimental demonstration of a silicon nitride photonic integrated circuit (PIC). The PIC is capable of conducting one-dimensional interferometric imaging with twelve baselines near λ = 1100-1600 nm. The PIC consists of twelve waveguide pairs, each leading to a multi-mode interferometer (MMI) that forms broadband interference fringes or each corresponding pair of the waveguides. Then an 18 channel arrayed waveguide grating (AWG) separates the combined signal into 18 signals of different wavelengths. A total of 103 sets of fringes are collected by the detector array at the output of the PIC. We keep the optical path difference (OPD) of each interferometer baseline to within 1 µm to maximize the visibility of the interference measurement. We also constructed a testbed to utilize the PIC for two-dimension complex visibility measurement with various targets. The experiment shows reconstructed images in good agreement with theoretical predictions.

  17. Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer

    DOEpatents

    Carlson, David E.

    1980-01-01

    Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

  18. Series array of highly hysteretic Josephson junctions coupled to a microstrip resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costabile, G.; Andreone, D.; Lacquaniti, V.

    1985-07-15

    We have tested a new device based on a 12 junction array coupled to a resonator. We have explored the feasibility of the phase lock for all the junctions at the same biasing current, which yields voltage quantization across each junction, eliminating the need to individually bias the junctions. The whole rf structure has been realized by stripline technology. The resonator is fed by a 50-..cap omega.. line and is decoupled from the dc circuit by elliptical low-pass filters inserted in the bias leads.

  19. Integrated coherent matter wave circuits

    DOE PAGES

    Ryu, C.; Boshier, M. G.

    2015-09-21

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less

  20. Semiconductor cooling by thin-film thermocouples

    NASA Technical Reports Server (NTRS)

    Tick, P. A.; Vilcans, J.

    1970-01-01

    Thin-film, metal alloy thermocouple junctions do not rectify, change circuit impedance only slightly, and require very little increase in space. Although they are less efficient cooling devices than semiconductor junctions, they may be applied to assist conventional cooling techniques for electronic devices.

  1. Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics.

    PubMed

    Choi, Min Sup; Qu, Deshun; Lee, Daeyeong; Liu, Xiaochi; Watanabe, Kenji; Taniguchi, Takashi; Yoo, Won Jong

    2014-09-23

    This paper demonstrates a technique to form a lateral homogeneous 2D MoS2 p-n junction by partially stacking 2D h-BN as a mask to p-dope MoS2. The fabricated lateral MoS2 p-n junction with asymmetric electrodes of Pd and Cr/Au displayed a highly efficient photoresponse (maximum external quantum efficiency of ∼7000%, specific detectivity of ∼5 × 10(10) Jones, and light switching ratio of ∼10(3)) and ideal rectifying behavior. The enhanced photoresponse and generation of open-circuit voltage (VOC) and short-circuit current (ISC) were understood to originate from the formation of a p-n junction after chemical doping. Due to the high photoresponse at low VD and VG attributed to its built-in potential, our MoS2 p-n diode made progress toward the realization of low-power operating photodevices. Thus, this study suggests an effective way to form a lateral p-n junction by the h-BN hard masking technique and to improve the photoresponse of MoS2 by the chemical doping process.

  2. Recent advances in superconducting-mixer simulations

    NASA Technical Reports Server (NTRS)

    Withington, S.; Kennedy, P. R.

    1992-01-01

    Over the last few years, considerable progress have been made in the development of techniques for fabricating high-quality superconducting circuits, and this success, together with major advances in the theoretical understanding of quantum detection and mixing at millimeter and submillimeter wavelengths, has made the development of CAD techniques for superconducting nonlinear circuits an important new enterprise. For example, arrays of quasioptical mixers are now being manufactured, where the antennas, matching networks, filters and superconducting tunnel junctions are all fabricated by depositing niobium and a variety of oxides on a single quartz substrate. There are no adjustable tuning elements on these integrated circuits, and therefore, one must be able to predict their electrical behavior precisely. This requirement, together with a general interest in the generic behavior of devices such as direct detectors and harmonic mixers, has lead us to develop a range of CAD tools for simulating the large-signal, small-signal, and noise behavior of superconducting tunnel junction circuits.

  3. Surface characterization based on optical phase shifting interferometry

    DOEpatents

    Mello, Michael , Rosakis; Ares, J [Altadena, CA

    2011-08-02

    Apparatus, techniques and systems for implementing an optical interferometer to measure surfaces, including mapping of instantaneous curvature or in-plane and out-of-plane displacement field gradients of a sample surface based on obtaining and processing four optical interferograms from a common optical reflected beam from the sample surface that are relatively separated in phase by .pi./2.

  4. Modern Thermocouple Experiment.

    ERIC Educational Resources Information Center

    Chang, K. N.; And Others

    1978-01-01

    Describes a thermocouple circuit used to measure Joule heating as well as Peltier heating and cooling for a copper-Constantan metallic junction. Shows how the Seebeck effect from a thermocouple can monitor the temperature condition of a junction with regard to input power and Peltier effect. (Author/GA)

  5. High Fill Factors of Si Solar Cells Achieved by Using an Inverse Connection Between MOS and PN Junctions.

    PubMed

    Wang, Liang-Xing; Zhou, Zhi-Quan; Zhang, Tian-Ning; Chen, Xin; Lu, Ming

    2016-12-01

    Fill factors (FFs) of ~0.87 have been obtained for crystalline Si (c-Si) solar cells based on Ag front contacts after rapid thermal annealing. The usual single PN junction model fails to explain the high FF result. A metal/oxide/semiconductor (MOS) junction at the emitter is found to be inversely connected to the PN one, and when its barrier height/e is close to the open-circuit voltage of the solar cell, very high FF is obtainable. In this work, although the open-circuit voltage (<580 mV) is not high here, the efficiency of c-Si solar cell still reaches the state-of-the-art value (>20 %) due to the high FF achieved.

  6. Gap junctions in Malpighian tubules of Aedes aegypti.

    PubMed

    Weng, Xing-He; Piermarini, Peter M; Yamahiro, Atsuko; Yu, Ming-Jiun; Aneshansley, Daniel J; Beyenbach, Klaus W

    2008-02-01

    We present electrical, physiological and molecular evidence for substantial electrical coupling of epithelial cells in Malpighian tubules via gap junctions. Current was injected into one principal cell of the isolated Malpighian tubule and membrane voltage deflections were measured in that cell and in two neighboring principal cells. By short-circuiting the transepithelial voltage with the diuretic peptide leucokinin-VIII we largely eliminated electrical coupling of principal cells through the tubule lumen, thereby allowing coupling through gap junctions to be analyzed. The analysis of an equivalent electrical circuit of the tubule yielded an average gap-junction resistance (R(gj)) of 431 kOmega between two cells. This resistance would stem from 6190 open gap-junctional channels, assuming the high single gap-junction conductance of 375 pS found in vertebrate tissues. The addition of the calcium ionophore A23187 (2 micromol l(-1)) to the peritubular Ringer bath containing 1.7 mmol l(-1) Ca(2+) did not affect the gap-junction resistance, but metabolic inhibition of the tubule with dinitrophenol (0.5 mmol l(-1)) increased the gap-junction resistance 66-fold, suggesting the regulation of gap junctions by ATP. Lucifer Yellow injected into a principal cell did not appear in neighboring principal cells. Thus, gap junctions allow the passage of current but not Lucifer Yellow. Using RT-PCR we found evidence for the expression of innexins 1, 2, 3 and 7 (named after their homologues in Drosophila) in Malpighian tubules. The physiological demonstration of gap junctions and the molecular evidence for innexin in Malpighian tubules of Aedes aegypti call for the double cable model of the tubule, which will improve the measurement and the interpretation of electrophysiological data collected from Malpighian tubules.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, C.; Boshier, M. G.

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less

  8. A twofold quantum delayed-choice experiment in a superconducting circuit

    PubMed Central

    Liu, Ke; Xu, Yuan; Wang, Weiting; Zheng, Shi-Biao; Roy, Tanay; Kundu, Suman; Chand, Madhavi; Ranadive, Arpit; Vijay, Rajamani; Song, Yipu; Duan, Luming; Sun, Luyan

    2017-01-01

    Wave-particle complementarity lies at the heart of quantum mechanics. To illustrate this mysterious feature, Wheeler proposed the delayed-choice experiment, where a quantum system manifests the wave- or particle-like attribute, depending on the experimental arrangement, which is made after the system has entered the interferometer. In recent quantum delayed-choice experiments, these two complementary behaviors were simultaneously observed with a quantum interferometer in a superposition of being closed and open. We suggest and implement a conceptually different quantum delayed-choice experiment by introducing a which-path detector (WPD) that can simultaneously record and neglect the system’s path information, but where the interferometer itself is classical. Our experiment is realized with a superconducting circuit, where a cavity acts as the WPD for an interfering qubit. Using this setup, we implement the first twofold delayed-choice experiment, which demonstrates that the system’s behavior depends not only on the measuring device’s configuration that can be chosen even after the system has been detected but also on whether we a posteriori erase or mark the which-path information, the latter of which cannot be revealed by previous quantum delayed-choice experiments. Our results represent the first demonstration of both counterintuitive features with the same experimental setup, significantly extending the concept of quantum delayed-choice experiment. PMID:28508079

  9. A twofold quantum delayed-choice experiment in a superconducting circuit.

    PubMed

    Liu, Ke; Xu, Yuan; Wang, Weiting; Zheng, Shi-Biao; Roy, Tanay; Kundu, Suman; Chand, Madhavi; Ranadive, Arpit; Vijay, Rajamani; Song, Yipu; Duan, Luming; Sun, Luyan

    2017-05-01

    Wave-particle complementarity lies at the heart of quantum mechanics. To illustrate this mysterious feature, Wheeler proposed the delayed-choice experiment, where a quantum system manifests the wave- or particle-like attribute, depending on the experimental arrangement, which is made after the system has entered the interferometer. In recent quantum delayed-choice experiments, these two complementary behaviors were simultaneously observed with a quantum interferometer in a superposition of being closed and open. We suggest and implement a conceptually different quantum delayed-choice experiment by introducing a which-path detector (WPD) that can simultaneously record and neglect the system's path information, but where the interferometer itself is classical. Our experiment is realized with a superconducting circuit, where a cavity acts as the WPD for an interfering qubit. Using this setup, we implement the first twofold delayed-choice experiment, which demonstrates that the system's behavior depends not only on the measuring device's configuration that can be chosen even after the system has been detected but also on whether we a posteriori erase or mark the which-path information, the latter of which cannot be revealed by previous quantum delayed-choice experiments. Our results represent the first demonstration of both counterintuitive features with the same experimental setup, significantly extending the concept of quantum delayed-choice experiment.

  10. Measurement of Single Channel Currents from Cardiac Gap Junctions

    NASA Astrophysics Data System (ADS)

    Veenstra, Richard D.; Dehaan, Robert L.

    1986-08-01

    Cardiac gap junctions consist of arrays of integral membrane proteins joined across the intercellular cleft at points of cell-to-cell contact. These junctional proteins are thought to form pores through which ions can diffuse from cytosol to cytosol. By monitoring whole-cell currents in pairs of embryonic heart cells with two independent patch-clamp circuits, the properties of single gap junction channels have been investigated. These channels had a conductance of about 165 picosiemens and underwent spontaneous openings and closings that were independent of voltage. Channel activity and macroscopic junctional conductance were both decreased by the uncoupling agent 1-octanol.

  11. Basic Electronics II.

    ERIC Educational Resources Information Center

    Willison, Neal A.; Shelton, James K.

    Designed for use in basic electronics programs, this curriculum guide is comprised of 15 units of instruction. Unit titles are Review of the Nature of Matter and the P-N Junction, Rectifiers, Filters, Special Semiconductor Diodes, Bipolar-Junction Diodes, Bipolar Transistor Circuits, Transistor Amplifiers, Operational Amplifiers, Logic Devices,…

  12. Classical analogs for Rabi-oscillations, Ramsey-fringes, and spin-echo in Josephson junctions

    NASA Astrophysics Data System (ADS)

    Marchese, J. E.; Cirillo, M.; Grønbech-Jensen, N.

    2007-08-01

    We investigate the results of recently published experiments on the quantum behavior of Josephson circuits in terms of the classical modeling based on the resistively and capacitively-shunted (RCSJ) junction model. Our analysis shows evidence for a close analogy between the nonlinear behavior of a pulsed microwave-driven Josephson junction at low temperature and low dissipation and the experimental observations reported for the Josephson circuits. Specifically, we demonstrate that Rabi-oscillations, Ramsey-fringes, and spin-echo observations are not phenomena with a unique quantum interpretation. In fact, they are natural consequences of transients to phase-locking in classical nonlinear dynamics and can be observed in a purely classical model of a Josephson junction when the experimental recipe for the application of microwaves is followed and the experimental detection scheme followed. We therefore conclude that classical nonlinear dynamics can contribute to the understanding of relevant experimental observations of Josephson response to various microwave perturbations at very low temperature and low dissipation.

  13. Josephson Photodetectors via Temperature-to-Phase Conversion

    NASA Astrophysics Data System (ADS)

    Virtanen, P.; Ronzani, A.; Giazotto, F.

    2018-05-01

    We theoretically investigate the temperature-to-phase conversion (TPC) process occurring in dc superconducting quantum interferometers based on superconductor-normal-metal-superconductor (S -N -S ) mesoscopic Josephson junctions. In particular, we predict the temperature-driven rearrangement of the phase gradients in the interferometer under the fixed constraints of fluxoid quantization and supercurrent conservation. This mechanism allows sizeable phase variations across the junctions for suitable structure parameters and temperatures. We show that the TPC can be a basis for sensitive single-photon sensors or bolometers. We propose a radiation detector realizable with conventional materials and state-of-the-art nanofabrication techniques. Integrated with a superconducting quantum-interference proximity transistor as a readout setup, an aluminum-based TPC calorimeter can provide a large signal-to-noise ratio >100 in the 10-GHz-10-THz frequency range and a resolving power larger than 1 02 below 50 mK for terahertz photons. In the bolometric operation, electrical noise equivalent power of approximately 10-22 W /√{Hz } is predicted at 50 mK. This device can be attractive as a cryogenic single-photon sensor operating in the giga- and terahertz regime with applications in dark-matter searches.

  14. Electronic thermometry in tunable tunnel junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maksymovych, Petro

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may bemore » measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.« less

  15. Multijunction high voltage concentrator solar cells

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Kapoor, V. J.; Evans, J. C.; Chai, A.-T.

    1981-01-01

    The standard integrated circuit technology has been developed to design and fabricate new innovative planar multi-junction solar cell chips for concentrated sunlight applications. This 1 cm x 1 cm cell consisted of several voltage generating regions called unit cells which were internally connected in series within a single chip resulting in high open circuit voltages. Typical open-circuit voltages of 3.6 V and short-circuit currents of 90 ma were obtained at 80 AM1 suns. A dramatic increase in both short circuit current and open circuit voltage with increased light levels was observed.

  16. The importance of surface recombination and energy-bandgap narrowing in p-n-junction silicon solar cells

    NASA Technical Reports Server (NTRS)

    Fossum, J. G.; Lindholm, F. A.; Shibib, M. A.

    1979-01-01

    Experimental data demonstrating the sensitivity of open-circuit voltage to front-surface conditions are presented for a variety of p-n-junction silicon solar cells. Analytical models accounting for the data are defined and supported by additional experiments. The models and the data imply that a) surface recombination significantly limits the open-circuit voltage (and the short-circuit current) of typical silicon cells, and b) energy-bandgap narrowing is important in the manifestation of these limitations. The models suggest modifications in both the structural design and the fabrication processing of the cells that would result in substantial improvements in cell performance. The benefits of one such modification - the addition of a thin thermal silicon-dioxide layer on the front surface - are indicated experimentally.

  17. Many-junction photovoltaic device performance under non-uniform high-concentration illumination

    NASA Astrophysics Data System (ADS)

    Valdivia, Christopher E.; Wilkins, Matthew M.; Chahal, Sanmeet S.; Proulx, Francine; Provost, Philippe-Olivier; Masson, Denis P.; Fafard, Simon; Hinzer, Karin

    2017-09-01

    A parameterized 3D distributed circuit model was developed to calculate the performance of III-V solar cells and photonic power converters (PPC) with a variable number of epitaxial vertically-stacked pn junctions. PPC devices are designed with many pn junctions to realize higher voltages and to operate under non-uniform illumination profiles from a laser or LED. Performance impacts of non-uniform illumination were greatly reduced with increasing number of junctions, with simulations comparing PPC devices with 3 to 20 junctions. Experimental results using Azastra Opto's 12- and 20-junction PPC illuminated by an 845 nm diode laser show high performance even with a small gap between the PPC and optical fiber output, until the local tunnel junction limit is reached.

  18. Superstructures and multijunction cells for high efficiency energy conversion

    NASA Technical Reports Server (NTRS)

    Wagner, M.; Leburton, J. P.

    1985-01-01

    Potential applications of superlattices to photovoltaic structures are discussed. A single-bandgap, multijunction cell with selective electrodes for lateral transport of collected carriers is proposed. The concept is based on similar doping superlattice (NIPI) structures. Computer simulations show that by reducing bulk recombination losses, the spectral response of such cells is enhanced, particularly for poor quality materials with short diffusion lengths. Dark current contributions of additional junctions result in a trade-off between short-circuit current and open-circuit voltage as the number of layers is increased. One or two extra junctions appear to be optimal.

  19. Effect of solar-cell junction geometry on open-circuit voltage

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Godlewski, M. P.

    1985-01-01

    Simple analytical models have been found that adequately describe the voltage behavior of both the stripe junction and dot junction grating cells as a function of junction area. While the voltage in the former case is found to be insensitive to junction area reduction, significant voltage increases are shown to be possible for the dot junction cell. With regard to cells in which the junction area has been increased in a quest for better performance, it was found that (1) texturation does not affect the average saturation current density J0, indicating that the texturation process is equivalent to a simple extension of junction area by a factor of square root of 3 and (2) the vertical junction cell geometry produces a sizable decrease in J0 that, unfortunately, is more than offset by the effects of attendant areal increases.

  20. Low-frequency switching in a transistor amplifier.

    PubMed

    Carroll, T L

    2003-04-01

    It is known from extensive work with the diode resonator that the nonlinear properties of a P-N junction can lead to period doubling, chaos, and other complicated behaviors in a driven circuit. There has been very little work on what happens when more than one P-N junction is present. In this work, the first step towards multiple P-N junction circuits is taken by doing both experiments and simulations with a single-transistor amplifier using a bipolar transistor. Period doubling and chaos are seen when the amplifier is driven with signals between 100 kHz and 1 MHz, and they coincide with a very low frequency switching between different period doubled (or chaotic) wave forms. The switching frequencies are between 5 and 10 Hz. The switching behavior was confirmed in a simplified model of the transistor amplifier.

  1. Design of 4 to 2 line encoder using lithium niobate based Mach Zehnder Interferometers for high speed communication

    NASA Astrophysics Data System (ADS)

    Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep; Raghuwanshi, Sanjeev K.

    2016-04-01

    Encoder is a device that allows placing digital information from many inputs to many outputs. Any application of combinational logic circuit can be implemented by using encoder and external gates. In this paper, 4 to 2 line encoder is proposed using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers (MZIs). The MZI structures have powerful capability to switching an optical input signal to a desired output port. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. The study is verified using beam propagation method (BPM).

  2. Temperature insensitive and ultra wideband silica-based dual polarization optical hybrid for coherent receiver with highly symmetrical interferometer design.

    PubMed

    Nasu, Yusuke; Mizuno, Takayuki; Kasahara, Ryoichi; Saida, Takashi

    2011-12-12

    To extend the operation wavelength range of dual-polarization optical hybrids (DPOH), we propose a highly symmetrical interferometer design for a polarization beam splitter and an optical hybrid to reduce temperature and wavelength dependence. The design successfully decreases this dependence, and a fabricated DPOH with silica-based planar lightwave circuits provides temperature-insensitive performance with a polarization extinction ratio of over 25 dB and phase errors of less than 3 degrees over the entire C- and L-bands. © 2011 Optical Society of America

  3. All-optical negabinary adders using Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Cherri, A. K.

    2011-02-01

    In contrast to optoelectronics, all-optical adders are proposed where all-optical signals are used to represent the input numbers and the control signals. In addition, the all-optical adders use the negabinary modified signed-digit number representation (an extension of the negabinary number system) to represent the input digits. Further, the ultra-speed of the designed circuits is achieved due to the use of ultra-fast all-optical switching property of the semiconductor optical amplifier and Mach-Zehnder interferometer (SOA-MZI). Furthermore, two-bit per digit binary encoding scheme is employed to represent the trinary values of the negabinary modified signed-digits.

  4. Symmetrical Josephson vortex interferometer as an advanced ballistic single-shot detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soloviev, I. I., E-mail: isol@phys.msu.ru; Lukin Scientific Research Institute of Physical Problems, 124460 Zelenograd, Moscow; Laboratory of Cryogenic Nanoelectronics, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 603950 Nizhny Novgorod

    2014-11-17

    We consider a ballistic detector formed in an interferometer manner which operational principle relies on Josephson vortex scattering at a measurement potential. We propose an approach to symmetrize the detector scheme and explore arising advantages in the signal-to-noise ratio and in the back-action on a measured object by means of recently presented numerical and analytical methods for modeling of a soliton scattering dynamics in the presence of thermal fluctuations. The obtained characteristics for experimentally relevant parameters reveal practical applicability of the considered schemes including possibility of coupling with standard digital rapid single flux quantum circuits.

  5. Phase-stepping fiber-optic projected fringe system for surface topography measurements

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R. (Inventor); Beheim, Glenn (Inventor)

    1992-01-01

    A projected fringe interferometer for measuring the topography of an object is presented. The interferometer periodically steps the phase angle between a pair of light beams emanating from a common source. The steps are pi/2 radians (90 deg) apart, and at each step a video image of the fringes is recorded and stored. Photodetectors measure either the phase and theta of the beams or 2(theta). Either of the measures can be used to control one of the light beams so that the 90 deg theta is accurately maintained. A camera, a computer, a phase controller, and a phase modulator established closed-loop control of theta. Measuring the phase map of a flat surface establishes a calibration reference.

  6. The Role of the Rab Coupling Protein in ErbB2-Driven Mammary Tumorigenesis and Metastasis

    DTIC Science & Technology

    2015-10-01

    Epithelial Mesenchymal Transition , Cell junctions , Cell Proliferation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF...Epithelial Mesenchymal Transition , Cell junctions and Cell Proliferation. 6 ACCOMPLISHMENTS The PI is reminded that the recipient organization is...oncogene. The potent transforming potential of ErbB2 in the mammary epithelium is thought to be due to its capacity to couple with a number of Src

  7. A Novel Junctional Tether Weave Technique for Adult Spinal Deformity: 2-Dimensional Operative Video.

    PubMed

    Buell, Thomas J; Mullin, Jeffrey P; Nguyen, James H; Taylor, Davis G; Garces, Juanita; Mazur, Marcus D; Buchholz, Avery L; Shaffrey, Mark E; Yen, Chun-Po; Shaffrey, Christopher I; Smith, Justin S

    2018-06-05

    Proximal junctional kyphosis (PJK) is a common problem after multilevel spine instrumentation for adult spinal deformity. Various anti-PJK techniques such as junctional tethers for ligamentous augmentation have been proposed. We present an operative video demonstrating technical nuances of junctional tether "weave" application. A 70-yr-old male with prior L2-S1 instrumented fusion presented with worsening back pain and posture. Imaging demonstrated pathological loss of lumbar lordosis (flat back deformity), proximal junctional failure, and pseudarthrosis. The patient had severe global and segmental sagittal malalignment, with sagittal vertical axis (SVA, C7-plumbline) measuring 22.3 cm, pelvic incidence (PI) 55°, lumbar lordosis (LL) 8° in kyphosis, pelvic tilt (PT) 30°, and thoracic kyphosis (TK) 6°. The patient gave informed consent for surgery and use of imaging for medical publication. Briefly, surgery first involved re-instrumentation with bilateral pedicle screws from T10 to S1. After right-sided iliac screw fixation (left-sided iliac screw fixation was not performed due to extensive prior iliac crest bone graft harvesting), we then completed a L2-3 Smith-Petersen osteotomy, extended L4 pedicle subtraction osteotomy, and L3-4 interbody arthrodesis with a 12° lordotic cage (9 × 14 × 40 mm). Cobalt Chromium rods were placed spanning the instrumentation bilaterally, and accessory supplemental rods spanning the PSO were attached. An anti-PJK junctional tether "weave" was then implemented using 4.5 mm polyethylene tape (Mersilene tape [Ethicon, Somerville, New Jersey]). Postoperative imaging demonstrated improved alignment (SVA 2.8 cm, PI 55°, LL 53°, PT 25°, TK 45°) and no significant neurological complications occurred during convalescence or at 6 mo postop.

  8. dc properties of series-parallel arrays of Josephson junctions in an external magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewandowski, S.J.

    1991-04-01

    A detailed dc theory of superconducting multijunction interferometers has previously been developed by several authors for the case of parallel junction arrays. The theory is now extended to cover the case of a loop containing several junctions connected in series. The problem is closely associated with high-{ital T}{sub {ital c}} superconductors and their clusters of intrinsic Josephson junctions. These materials exhibit spontaneous interferometric effects, and there is no reason to assume that the intrinsic junctions form only parallel arrays. A simple formalism of phase states is developed in order to express the superconducting phase differences across the junctions forming amore » series array as functions of the phase difference across the weakest junction of the system, and to relate the differences in critical currents of the junctions to gaps in the allowed ranges of their phase functions. This formalism is used to investigate the energy states of the array, which in the case of different junctions are split and separated by energy barriers of height depending on the phase gaps. Modifications of the washboard model of a single junction are shown. Next a superconducting inductive loop containing a series array of two junctions is considered, and this model is used to demonstrate the transitions between phase states and the associated instabilities. Finally, the critical current of a parallel connection of two series arrays is analyzed and shown to be a multivalued function of the externally applied magnetic flux. The instabilities caused by the presence of intrinsic serial junctions in granular high-{ital T}{sub {ital c}} materials are pointed out as a potential source of additional noise.« less

  9. Establishment of a universal and rational gene detection strategy through three-way junction-based remote transduction.

    PubMed

    Tang, Yidan; Lu, Baiyang; Zhu, Zhentong; Li, Bingling

    2018-01-21

    The polymerase chain reaction and many isothermal amplifications are able to achieve super gene amplification. Unfortunately, most commonly-used transduction methods, such as dye staining and Taqman-like probing, still suffer from shortcomings including false signals or difficult probe design, or are incompatible with multi-analysis. Here a universal and rational gene detection strategy has been established by translating isothermal amplicons to enzyme-free strand displacement circuits via three-way junction-based remote transduction. An assistant transduction probe was imported to form a partial hybrid with the target single-stranded nucleic acid. After systematic optimization the hybrid could serve as an associative trigger to activate a downstream circuit detector via a strand displacement reaction across the three-way junction. By doing so, the detection selectivity can be double-guaranteed through both amplicon-transducer recognition and the amplicon-circuit reaction. A well-optimized circuit can be immediately applied to a new target detection through simply displacing only 10-12 nt on only one component, according to the target. More importantly, this property for the first time enables multi-analysis and logic-analysis in a single reaction, sharing a single fluorescence reporter. In an applicable model, trace amounts of Cronobacter and Enterobacteria genes have been clearly distinguished from samples with no bacteria or one bacterium, with ultra-high sensitivity and selectivity.

  10. PRECISION TIME-DELAY CIRCUIT

    DOEpatents

    Creveling, R.

    1959-03-17

    A tine-delay circuit which produces a delay time in d. The circuit a capacitor, an te back resistance, connected serially with the anode of the diode going to ground. At the start of the time delay a negative stepfunction is applied to the series circuit and initiates a half-cycle transient oscillatory voltage terminated by a transient oscillatory voltage of substantially higher frequency. The output of the delay circuit is taken at the junction of the inductor and diode where a sudden voltage rise appears after the initiation of the higher frequency transient oscillations.

  11. Design of a magnetic-tunnel-junction-oriented nonvolatile lookup table circuit with write-operation-minimized data shifting

    NASA Astrophysics Data System (ADS)

    Suzuki, Daisuke; Hanyu, Takahiro

    2018-04-01

    A magnetic-tunnel-junction (MTJ)-oriented nonvolatile lookup table (LUT) circuit, in which a low-power data-shift function is performed by minimizing the number of write operations in MTJ devices is proposed. The permutation of the configuration memory cell for read/write access is performed as opposed to conventional direct data shifting to minimize the number of write operations, which results in significant write energy savings in the data-shift function. Moreover, the hardware cost of the proposed LUT circuit is small since the selector is shared between read access and write access. In fact, the power consumption in the data-shift function and the transistor count are reduced by 82 and 52%, respectively, compared with those in a conventional static random-access memory-based implementation using a 90 nm CMOS technology.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braiman, Yehuda; Neschke, Brendan; Nair, Niketh S.

    Here, we study memory states of a circuit consisting of a small inductively coupled Josephson junction array and introduce basic (write, read, and reset) memory operations logics of the circuit. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics. We calculate stability diagrams of the zero-voltage states and outline memory states of the circuit. We also calculate access times and access energies for basic memory operations.

  13. Benzothiadiazole-based polymer for single and double junction solar cells with high open circuit voltage.

    PubMed

    Venkatesan, Swaminathan; Ngo, Evan C; Chen, Qiliang; Dubey, Ashish; Mohammad, Lal; Adhikari, Nirmal; Mitul, Abu Farzan; Qiao, Qiquan

    2014-06-21

    Single and double junction solar cells with high open circuit voltage were fabricated using poly{thiophene-2,5-diyl-alt-[5,6-bis(dodecyloxy)benzo[c][1,2,5]thiadiazole]-4,7-diyl} (PBT-T1) blended with fullerene derivatives in different weight ratios. The role of fullerene loading on structural and morphological changes was investigated using atomic force microscopy (AFM) and X-ray diffraction (XRD). The XRD and AFM measurements showed that a higher fullerene mixing ratio led to breaking of inter-chain packing and hence resulted in smaller disordered polymer domains. When the PBT-T1:PC60BM weight ratio was 1 : 1, the polymer retained its structural order; however, large aggregated domains formed, leading to poor device performance due to low fill factor and short circuit current density. When the ratio was increased to 1 : 2 and then 1 : 3, smaller amorphous domains were observed, which improved photovoltaic performance. The 1 : 2 blending ratio was optimal due to adequate charge transport pathways giving rise to moderate short circuit current density and fill factor. Adding 1,8-diiodooctane (DIO) additive into the 1 : 2 blend films further improved both the short circuit current density and fill factor, leading to an increased efficiency to 4.5% with PC60BM and 5.65% with PC70BM. These single junction solar cells exhibited a high open circuit voltage at ∼ 0.9 V. Photo-charge extraction by linearly increasing voltage (Photo-CELIV) measurements showed the highest charge carrier mobility in the 1 : 2 film among the three ratios, which was further enhanced by introducing the DIO. The Photo-CELIV measurements with varying delay times showed significantly higher extracted charge carrier density for cells processed with DIO. Tandem devices using P3HT:IC60BA as bottom cell and PBT-T1:PC60BM as top cell exhibited a high open circuit voltage of 1.62 V with 5.2% power conversion efficiency.

  14. Gap Junction Modulation of Low-Frequency Oscillations in the Cerebellar Granule Cell Layer.

    PubMed

    Robinson, Jennifer Claire; Chapman, C Andrew; Courtemanche, Richard

    2017-08-01

    Local field potential (LFP) oscillations in the granule cell layer (GCL) of the cerebellar cortex have been identified previously in the awake rat and monkey during immobility. These low-frequency oscillations are thought to be generated through local circuit interactions between Golgi cells and granule cells within the GCL. Golgi cells display rhythmic firing and pacemaking properties, and also are electrically coupled through gap junctions within the GCL. Here, we tested if gap junctions in the rat cerebellar cortex contribute to the generation of LFP oscillations in the GCL. We recorded LFP oscillations under urethane anesthesia, and examined the effects of local infusion of gap junction blockers on 5-15 Hz oscillations. Local infusion of the gap junction blockers carbenoxolone and mefloquine resulted in significant decreases in the power of oscillations over a 30-min period, but the power of oscillations was unchanged in control experiments following vehicle injections. In addition, infusion of gap junction blockers had no significant effect on multi-unit activity, suggesting that the attenuation of low-frequency oscillations was likely due to reductions in electrical coupling rather than a decreased excitability within the granule cell layer. Our results indicate that electrical coupling among the Golgi cell networks in the cerebellar cortex contributes to the local circuit mechanisms that promote the occurrence of GCL LFP slow oscillations in the anesthetized rat.

  15. Low-high junction theory applied to solar cells

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P.; Baraona, C. R.; Brandhorst, H. W., Jr.

    1973-01-01

    Recent use of alloying techniques for rear contact formation has yielded a new kind of silicon solar cell, the back surface field (BSF) cell, with abnormally high open circuit voltage and improved radiation resistance. Several analytical models for open circuit voltage based on the reverse saturation current are formulated to explain these observations. The zero SRV case of the conventional cell model, the drift field model, and the low-high junction (LHJ) model can predict the experimental trends. The LHJ model applies the theory of the low-high junction and is considered to reflect a more realistic view of cell fabrication. This model can predict the experimental trends observed for BSF cells. Detailed descriptions and derivations for the models are included. The correspondences between them are discussed. This modeling suggests that the meaning of minority carrier diffusion length measured in BSF cells be reexamined.

  16. A Silicon Nanocrystal Schottky Junction Solar Cell produced from Colloidal Silicon Nanocrystals

    PubMed Central

    2010-01-01

    Solution-processed semiconductors are seen as a promising route to reducing the cost of the photovoltaic device manufacture. We are reporting a single-layer Schottky photovoltaic device that was fabricated by spin-coating intrinsic silicon nanocrystals (Si NCs) from colloidal suspension. The thin-film formation process was based on Si NCs without any ligand attachment, exchange, or removal reactions. The Schottky junction device showed a photovoltaic response with a power conversion efficiency of 0.02%, a fill factor of 0.26, short circuit-current density of 0.148 mA/cm2, and open-circuit voltage of 0.51 V. PMID:20676200

  17. The high accuracy data processing system of laser interferometry signals based on MSP430

    NASA Astrophysics Data System (ADS)

    Qi, Yong-yue; Lin, Yu-chi; Zhao, Mei-rong

    2009-07-01

    Generally speaking there are two orthogonal signals used in single-frequency laser interferometer for differentiating direction and electronic subdivision. However there usually exist three errors with the interferential signals: zero offsets error, unequal amplitude error and quadrature phase shift error. These three errors have a serious impact on subdivision precision. Based on Heydemann error compensation algorithm, it is proposed to achieve compensation of the three errors. Due to complicated operation of the Heydemann mode, a improved arithmetic is advanced to decrease the calculating time effectively in accordance with the special characteristic that only one item of data will be changed in each fitting algorithm operation. Then a real-time and dynamic compensatory circuit is designed. Taking microchip MSP430 as the core of hardware system, two input signals with the three errors are turned into digital quantity by the AD7862. After data processing in line with improved arithmetic, two ideal signals without errors are output by the AD7225. At the same time two original signals are turned into relevant square wave and imported to the differentiating direction circuit. The impulse exported from the distinguishing direction circuit is counted by the timer of the microchip. According to the number of the pulse and the soft subdivision the final result is showed by LED. The arithmetic and the circuit are adopted to test the capability of a laser interferometer with 8 times optical path difference and the measuring accuracy of 12-14nm is achieved.

  18. Characterization of near-terahertz complementary metal-oxide semiconductor circuits using a Fourier-transform interferometer

    DOE PAGES

    Arenas, D. J.; Shim, Dongha; Koukis, D. I.; ...

    2011-10-24

    Optical methods for measuring of the emission spectra of oscillator circuits operating in the 400-600 GHz range are described. The emitted power from patch antennas included in the circuits is measured by placing the circuit in the source chamber of a Fourier-transform interferometric spectrometer. The results show that this optical technique is useful for measuring circuits pushing the frontier in operating frequency. The technique also allows the characterization of the circuit by measuring the power radiated in the fundamental and in the harmonics. This capability is useful for oscillator architectures designed to cancel the fundamental and use higher harmonics. Themore » radiated power was measured using two techniques: direct measurement of the power by placing the device in front of a bolometer of known responsivity, and by comparison to the estimated power from blackbody sources. The latter technique showed that these circuits have higher emission than blackbody sources at the operating frequencies, and, therefore, offer potential spectroscopy applications.« less

  19. Carbon Nanotubes: Molecular Electronic Components

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1997-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.

  20. Realization of a Knill-Laflamme-Milburn controlled-NOT photonic quantum circuit combining effective optical nonlinearities

    PubMed Central

    Okamoto, Ryo; O’Brien, Jeremy L.; Hofmann, Holger F.; Takeuchi, Shigeki

    2011-01-01

    Quantum information science addresses how uniquely quantum mechanical phenomena such as superposition and entanglement can enhance communication, information processing, and precision measurement. Photons are appealing for their low-noise, light-speed transmission and ease of manipulation using conventional optical components. However, the lack of highly efficient optical Kerr nonlinearities at the single photon level was a major obstacle. In a breakthrough, Knill, Laflamme, and Milburn (KLM) showed that such an efficient nonlinearity can be achieved using only linear optical elements, auxiliary photons, and measurement [Knill E, Laflamme R, Milburn GJ (2001) Nature 409:46–52]. KLM proposed a heralded controlled-NOT (CNOT) gate for scalable quantum computation using a photonic quantum circuit to combine two such nonlinear elements. Here we experimentally demonstrate a KLM CNOT gate. We developed a stable architecture to realize the required four-photon network of nested multiple interferometers based on a displaced-Sagnac interferometer and several partially polarizing beamsplitters. This result confirms the first step in the original KLM “recipe” for all-optical quantum computation, and should be useful for on-demand entanglement generation and purification. Optical quantum circuits combining giant optical nonlinearities may find wide applications in quantum information processing, communication, and sensing. PMID:21646543

  1. An Ancient Transcription Factor Initiates the Burst of piRNA Production During Early Meiosis in Mouse Testes

    PubMed Central

    Li, Xin Zhiguo; Roy, Christian K.; Dong, Xianjun; Bolcun-Filas, Ewelina; Wang, Jie; Han, Bo W.; Xu, Jia; Moore, Melissa J.; Schimenti, John C.; Weng, Zhiping; Zamore, Phillip D.

    2013-01-01

    SUMMARY Animal germ cells produce PIWI-interacting RNAs (piRNAs), small silencing RNAs that suppress transposons and enable gamete maturation. Mammalian transposon-silencing piRNAs accumulate early in spermatogenesis, whereas pachytene piRNAs are produced later during post-natal spermatogenesis and account for >95% of all piRNAs in the adult mouse testis. Mutants defective for pachytene piRNA pathway proteins fail to produce mature sperm, but neither the piRNA precursor transcripts nor the trigger for pachytene piRNA production is known. Here, we show that the transcription factor A-MYB initiates pachytene piRNA production. A-MYB drives transcription of both pachytene piRNA precursor RNAs and the mRNAs for core piRNA biogenesis factors, including MIWI, the protein through which pachytene piRNAs function. A-MYB regulation of piRNA pathway proteins and piRNA genes creates a coherent feed-forward loop that ensures the robust accumulation of pachytene piRNAs. This regulatory circuit, which can be detected in rooster testes, likely predates the divergence of birds and mammals. PMID:23523368

  2. Investigation of SIS Up-Converters for Use in Multi-pixel Receivers

    NASA Astrophysics Data System (ADS)

    Uzawa, Yoshinori; Kojima, Takafumi; Shan, Wenlei; Gonzalez, Alvaro; Kroug, Matthias

    2018-02-01

    We propose the use of SIS junctions as a frequency up-converter based on quasiparticle mixing in frequency division multiplexing circuits for multi-pixel heterodyne receivers. Our theoretical calculation showed that SIS junctions have the potential to achieve positive gain and low-noise characteristics in the frequency up-conversion process at local oscillator (LO) frequencies larger than the voltage scale of the dc nonlinearity of the SIS junction. We experimentally observed up-conversion gain in a mixer with four-series Nb-based SIS junctions at the LO frequency of 105 GHz for the first time.

  3. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits.

    PubMed

    Bie, Ya-Qing; Grosso, Gabriele; Heuck, Mikkel; Furchi, Marco M; Cao, Yuan; Zheng, Jiabao; Bunandar, Darius; Navarro-Moratalla, Efren; Zhou, Lin; Efetov, Dmitri K; Taniguchi, Takashi; Watanabe, Kenji; Kong, Jing; Englund, Dirk; Jarillo-Herrero, Pablo

    2017-12-01

    One of the current challenges in photonics is developing high-speed, power-efficient, chip-integrated optical communications devices to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, in part because of the promise that many components, such as waveguides, couplers, interferometers and modulators, could be directly integrated on silicon-based processors. However, light sources and photodetectors present ongoing challenges. Common approaches for light sources include one or few off-chip or wafer-bonded lasers based on III-V materials, but recent system architecture studies show advantages for the use of many directly modulated light sources positioned at the transmitter location. The most advanced photodetectors in the silicon photonic process are based on germanium, but this requires additional germanium growth, which increases the system cost. The emerging two-dimensional transition-metal dichalcogenides (TMDs) offer a path for optical interconnect components that can be integrated with silicon photonics and complementary metal-oxide-semiconductors (CMOS) processing by back-end-of-the-line steps. Here, we demonstrate a silicon waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe 2 , a TMD semiconductor with an infrared bandgap. This state-of-the-art fabrication technology provides new opportunities for integrated optoelectronic systems.

  4. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Bie, Ya-Qing; Grosso, Gabriele; Heuck, Mikkel; Furchi, Marco M.; Cao, Yuan; Zheng, Jiabao; Bunandar, Darius; Navarro-Moratalla, Efren; Zhou, Lin; Efetov, Dmitri K.; Taniguchi, Takashi; Watanabe, Kenji; Kong, Jing; Englund, Dirk; Jarillo-Herrero, Pablo

    2017-12-01

    One of the current challenges in photonics is developing high-speed, power-efficient, chip-integrated optical communications devices to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, in part because of the promise that many components, such as waveguides, couplers, interferometers and modulators, could be directly integrated on silicon-based processors. However, light sources and photodetectors present ongoing challenges. Common approaches for light sources include one or few off-chip or wafer-bonded lasers based on III-V materials, but recent system architecture studies show advantages for the use of many directly modulated light sources positioned at the transmitter location. The most advanced photodetectors in the silicon photonic process are based on germanium, but this requires additional germanium growth, which increases the system cost. The emerging two-dimensional transition-metal dichalcogenides (TMDs) offer a path for optical interconnect components that can be integrated with silicon photonics and complementary metal-oxide-semiconductors (CMOS) processing by back-end-of-the-line steps. Here, we demonstrate a silicon waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe2, a TMD semiconductor with an infrared bandgap. This state-of-the-art fabrication technology provides new opportunities for integrated optoelectronic systems.

  5. A 60-GHz interferometer with a local oscillator integrated antenna array for divertor simulation experiments on GAMMA 10/PDX

    NASA Astrophysics Data System (ADS)

    Kohagura, J.; Yoshikawa, M.; Wang, X.; Kuwahara, D.; Ito, N.; Nagayama, Y.; Shima, Y.; Nojiri, K.; Sakamoto, M.; Nakashima, Y.; Mase, A.

    2016-11-01

    In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensive 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.

  6. A 60-GHz interferometer with a local oscillator integrated antenna array for divertor simulation experiments on GAMMA 10/PDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohagura, J., E-mail: kohagura@prc.tsukuba.ac.jp; Yoshikawa, M.; Shima, Y.

    In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensivemore » 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.« less

  7. A 60-GHz interferometer with a local oscillator integrated antenna array for divertor simulation experiments on GAMMA 10/PDX.

    PubMed

    Kohagura, J; Yoshikawa, M; Wang, X; Kuwahara, D; Ito, N; Nagayama, Y; Shima, Y; Nojiri, K; Sakamoto, M; Nakashima, Y; Mase, A

    2016-11-01

    In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensive 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.

  8. Zinc enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells.

    PubMed

    Shao, Yuxin; Wolf, Patricia G; Guo, Shuangshuang; Guo, Yuming; Gaskins, H Rex; Zhang, Bingkun

    2017-05-01

    Zinc plays an important role in maintaining intestinal barrier function as well as modulating cellular signaling recognition and protein kinase activities. The phosphatidylinositol 3-kinase (PI3K) cascade has been demonstrated to affect intercellular integrity and tight junction (TJ) proteins. The current study investigated the hypothesis that zinc regulates intestinal intercellular junction integrity through the PI3K/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. A transwell model of Caco-2 cell was incubated with 0, 50 and 100 μM of zinc at various time points. Transepithelial electrical resistance (TEER), paracellular permeability, TJ proteins, cell proliferation, differentiation and cell damage were measured. Compared with controls, 50 and 100 μM of zinc increased cell growth at 6, 12 and 24 h and the expression of proliferating cell nuclear antigen at 24 h. Zinc (100 μM) significantly elevated TEER at 6-24 h and reduced TJ permeability at 24 h, accompanied by the up-regulation of alkaline phosphatase (AP) activity and zonula occludens (ZO)-1 expression. In addition, zinc (100 μM) affected the PI3K/AKT/mTOR pathway by stimulating phosphorylation of AKT and the downstream target mTOR. Inhibition of PI3K signaling by LY294002 counteracted zinc promotion, as shown by a decrease in AP activity, TEER, the abundance of ZO-1 and phosphorylation of AKT and mTOR. Additionally, TJ permeability and the expression of caspase-3 and LC3II (markers of cell damage) were increased by addition of PI3K inhibitor. In conclusion, the activation of PI3K/AKT/mTOR signaling by zinc is involved in improving intestinal barrier function by enhancing cell differentiation and expression of TJ protein ZO-1. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Abnormal amygdala connectivity in patients with primary insomnia: evidence from resting state fMRI.

    PubMed

    Huang, Zhaoyang; Liang, Peipeng; Jia, Xiuqin; Zhan, Shuqin; Li, Ning; Ding, Yan; Lu, Jie; Wang, Yuping; Li, Kuncheng

    2012-06-01

    Neurobiological mechanisms underlying insomnia are poorly understood. Previous findings indicated that dysfunction of the emotional circuit might contribute to the neurobiological mechanisms underlying insomnia. The present study will test this hypothesis by examining alterations in functional connectivity of the amygdala in patients with primary insomnia (PI). Resting-state functional connectivity analysis was used to examine the temporal correlation between the amygdala and whole-brain regions in 10 medication-naive PI patients and 10 age- and sex-matched healthy controls. Additionally, the relationship between the abnormal functional connectivity and insomnia severity was investigated. We found decreased functional connectivity mainly between the amygdala and insula, striatum and thalamus, and increased functional connectivity mainly between the amygdala and premotor cortex, sensorimotor cortex in PI patients as compared to healthy controls. The connectivity of the amygdala with the premotor cortex in PI patients showed significant positive correlation with the total score of the Pittsburgh Sleep Quality Index (PSQI). The decreased functional connectivity between the amygdala and insula, striatum, and thalamus suggests that dysfunction in the emotional circuit might contribute to the neurobiological mechanisms underlying PI. The increased functional connectivity of the amygdala with the premotor and sensorimotor cortex demonstrates a compensatory mechanism to overcome the negative effects of sleep deficits and maintain the psychomotor performances in PI patients. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Varactor with integrated micro-discharge source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizondo-Decanini, Juan M.; Manginell, Ronald P.; Moorman, Matthew W.

    2016-10-18

    An apparatus that includes a varactor element and an integrated micro-discharge source is disclosed herein. In a general embodiment, the apparatus includes at least one np junction and at least one voltage source that is configured to apply voltage across the np junction. The apparatus further includes an aperture that extends through the np junction. When the voltage is applied across the np junction, gas in the aperture is ionized, forming a plasma, in turn causing a micro-discharge (of light, charge particles, and space charge) to occur. The light (charge particles, and space charge) impinges upon the surface of themore » np junction exposed in the aperture, thereby altering capacitance of the np junction. When used within an oscillator circuit, the effect of the plasma on the np-junction extends the capacitance changes of the np-junction and extends the oscillator frequency range in ways not possible by a conventional voltage controlled oscillator (VCO).« less

  11. High-efficiency solar cell and method for fabrication

    DOEpatents

    Hou, Hong Q.; Reinhardt, Kitt C.

    1999-01-01

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

  12. High-efficiency solar cell and method for fabrication

    DOEpatents

    Hou, H.Q.; Reinhardt, K.C.

    1999-08-31

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

  13. PI3K/Akt signaling is involved in the disruption of gap junctional communication caused by v-Src and TNF-α.

    PubMed

    Ito, Satoko; Hyodo, Toshinori; Hasegawa, Hitoki; Yuan, Hong; Hamaguchi, Michinari; Senga, Takeshi

    2010-09-17

    Gap junctional communication, which is mediated by the connexin protein family, is essential for the maintenance of normal tissue function and homeostasis. Loss of intercellular communication results in a failure to coordinately regulate cellular functions, and it can facilitate tumorigenesis. Expression of oncogenes and stimulation with cytokines has been shown to suppress intercellular communication; however, the exact mechanism by which intercellular communication is disrupted by these factors remains uncertain. In this report, we show that Akt is essential for the disruption of gap junctional communication in v-Src-transformed cells. In addition, inhibition of Akt restores gap junctional communication after it is suppressed by TNF-α signaling. Furthermore, we demonstrate that the expression of a constitutively active form of Akt1, but not of Akt2 or Akt3, is sufficient to suppress gap junctional communication. Our results clearly define Akt1 as one of the critical regulators of gap junctional communication. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Tunable ohmic environment using Josephson junction chains

    NASA Astrophysics Data System (ADS)

    Rastelli, Gianluca; Pop, Ioan M.

    2018-05-01

    We propose a scheme to implement a tunable, wide frequency-band dissipative environment using a double chain of Josephson junctions. The two parallel chains consist of identical superconducting quantum interference devices (SQUIDs), with magnetic-flux tunable inductance, coupled to each other at each node via a capacitance much larger than the junction capacitance. Thanks to this capacitive coupling, the system sustains electromagnetic modes with a wide frequency dispersion. The internal quality factor of the modes is maintained as high as possible, and the damping is introduced by a uniform coupling of the modes to a transmission line, itself connected to an amplification and readout circuit. For sufficiently long chains, containing several thousands of junctions, the resulting admittance is a smooth function versus frequency in the microwave domain, and its effective dissipation can be continuously monitored by recording the emitted radiation in the transmission line. We show that by varying in situ the SQUIDs' inductance, the double chain can operate as a tunable ohmic resistor in a frequency band spanning up to 1 GHz, with a resistance that can be swept through values comparable to the resistance quantum Rq=h /(4 e2) ≃6.5 kΩ . We argue that the circuit complexity is within reach using current Josephson junction technology.

  15. Application of drive circuit based on L298N in direct current motor speed control system

    NASA Astrophysics Data System (ADS)

    Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao

    2016-10-01

    In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.

  16. Structure of Yeast OSBP-Related Protein Osh1 Reveals Key Determinants for Lipid Transport and Protein Targeting at the Nucleus-Vacuole Junction.

    PubMed

    Manik, Mohammad Kawsar; Yang, Huiseon; Tong, Junsen; Im, Young Jun

    2017-04-04

    Yeast Osh1 belongs to the oxysterol-binding protein (OSBP) family of proteins and contains multiple targeting modules optimized for lipid transport at the nucleus-vacuole junction (NVJ). The key determinants for NVJ targeting and the role of Osh1 at NVJs have remained elusive because of unknown lipid specificities. In this study, we determined the structures of the ankyrin repeat domain (ANK), and OSBP-related domain (ORD) of Osh1, in complex with Nvj1 and ergosterol, respectively. The Osh1 ANK forms a unique bi-lobed structure that recognizes a cytosolic helical segment of Nvj1. We discovered that Osh1 ORD binds ergosterol and phosphatidylinositol 4-phosphate PI(4)P in a competitive manner, suggesting counter-transport function of the two lipids. Ergosterol is bound to the hydrophobic pocket in a head-down orientation, and the structure of the PI(4)P-binding site in Osh1 is well conserved. Our results suggest that Osh1 performs non-vesicular transport of ergosterol and PI(4)P at the NVJ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Multi-format all-optical processing based on a large-scale, hybridly integrated photonic circuit.

    PubMed

    Bougioukos, M; Kouloumentas, Ch; Spyropoulou, M; Giannoulis, G; Kalavrouziotis, D; Maziotis, A; Bakopoulos, P; Harmon, R; Rogers, D; Harrison, J; Poustie, A; Maxwell, G; Avramopoulos, H

    2011-06-06

    We investigate through numerical studies and experiments the performance of a large scale, silica-on-silicon photonic integrated circuit for multi-format regeneration and wavelength-conversion. The circuit encompasses a monolithically integrated array of four SOAs inside two parallel Mach-Zehnder structures, four delay interferometers and a large number of silica waveguides and couplers. Exploiting phase-incoherent techniques, the circuit is capable of processing OOK signals at variable bit rates, DPSK signals at 22 or 44 Gb/s and DQPSK signals at 44 Gbaud. Simulation studies reveal the wavelength-conversion potential of the circuit with enhanced regenerative capabilities for OOK and DPSK modulation formats and acceptable quality degradation for DQPSK format. Regeneration of 22 Gb/s OOK signals with amplified spontaneous emission (ASE) noise and DPSK data signals degraded with amplitude, phase and ASE noise is experimentally validated demonstrating a power penalty improvement up to 1.5 dB.

  18. Variability metrics in Josephson Junction fabrication for Quantum Computing circuits

    NASA Astrophysics Data System (ADS)

    Rosenblatt, Sami; Hertzberg, Jared; Brink, Markus; Chow, Jerry; Gambetta, Jay; Leng, Zhaoqi; Houck, Andrew; Nelson, J. J.; Plourde, Britton; Wu, Xian; Lake, Russell; Shainline, Jeff; Pappas, David; Patel, Umeshkumar; McDermott, Robert

    Multi-qubit gates depend on the relative frequencies of the qubits. To reliably build multi-qubit devices therefore requires careful fabrication of Josephson junctions in order to precisely set their critical currents. The Ambegaokar-Baratoff relation between tunnel conductance and critical current implies a correlation between qubit frequency spread and tunnel junction resistance spread. Here we discuss measurement of large numbers of tunnel junctions to assess these resistance spreads, which can exceed 5% of mean resistance. With the goal of minimizing these spreads, we investigate process parameters such as lithographic junction area, evaporation and masking scheme, oxidation conditions, and substrate choice, as well as test environment, design and setup. In addition, trends of junction resistance with temperature are compared with theoretical models for further insights into process and test variability.

  19. High-T(sub c) Superconductor-Normal-Superconductor Junctions with Polyimide-Passivated Ambient Temperature Edge Formation

    NASA Technical Reports Server (NTRS)

    Barner, J. B.; Kleinsasser, A. W.; Hunt, B. D.

    1996-01-01

    The ability to controllably fabricate High-Temperature Superconductor (HTS) S-Normal-S (SNS) Josephson Juntions (JJ's) enhances the possibilities fro many applications, including digital circuits, SQUID's, and mixers. A wide variety of approaches to fabricating SNS-like junctions has been tried and analyzed in terms of proximity effect behavior.

  20. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.

    PubMed

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin

    2013-07-01

    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  1. Imaging of cochlear tissue with a grating interferometer and hard X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Claus-Peter; Shintani-Smith, Stephanie; Fishman, Andrew

    This article addresses an important current development in medical and biological imaging: the possibility of imaging soft tissue at resolutions in the micron range using hard X-rays. Challenging environments, including the cochlea, require the imaging of soft tissue structure surrounded by bone. We demonstrate that cochlear soft tissue structures can be imaged with hard X-ray phase contrast. Furthermore, we show that only a thin slice of the tissue is required to introduce a large phase shift. It is likely that the phase contrast image of the soft tissue structures is sufficient to image the structures even if surrounded by bone.more » For the present set of experiments, structures with low-absorption contrast have been visualized using in-line phase contrast imaging and a grating interferometer. The experiments have been performed at the Advanced Photon Source at Argonne National Laboratories, a third generation source of synchrotron radiation. The source provides highly coherent X-ray radiation with high-photon flux (>10{sup 12} photons/s) at high-photon energies (5-70 keV). Radiographic and light microscopy images of the gerbil cochlear slice samples were compared. It has been determined that a 20-{micro}m thick tissue slice induces a phase shift between 1/3{pi} and 2/3{pi}.« less

  2. Gap Junction-Mediated Signaling from Motor Neurons Regulates Motor Generation in the Central Circuits of Larval Drosophila.

    PubMed

    Matsunaga, Teruyuki; Kohsaka, Hiroshi; Nose, Akinao

    2017-02-22

    In this study, we used the peristaltic crawling of Drosophila larvae as a model to study how motor patterns are regulated by central circuits. We built an experimental system that allows simultaneous application of optogenetics and calcium imaging to the isolated ventral nerve cord (VNC). We then investigated the effects of manipulating local activity of motor neurons (MNs) on fictive locomotion observed as waves of MN activity propagating along neuromeres. Optical inhibition of MNs with halorhodopsin3 in a middle segment (A4, A5, or A6), but not other segments, dramatically decreased the frequency of the motor waves. Conversely, local activation of MNs with channelrhodopsin2 in a posterior segment (A6 or A7) increased the frequency of the motor waves. Since peripheral nerves mediating sensory feedback were severed in the VNC preparation, these results indicate that MNs send signals to the central circuits to regulate motor pattern generation. Our results also indicate segmental specificity in the roles of MNs in motor control. The effects of the local MN activity manipulation were lost in shaking-B 2 ( shakB 2 ) or ogre 2 , gap-junction mutations in Drosophila , or upon acute application of the gap junction blocker carbenoxolone, implicating electrical synapses in the signaling from MNs. Cell-type-specific RNAi suggested shakB and ogre function in MNs and interneurons, respectively, during the signaling. Our results not only reveal an unexpected role for MNs in motor pattern regulation, but also introduce a powerful experimental system that enables examination of the input-output relationship among the component neurons in this system. SIGNIFICANCE STATEMENT Motor neurons are generally considered passive players in motor pattern generation, simply relaying information from upstream interneuronal circuits to the target muscles. This study shows instead that MNs play active roles in the control of motor generation by conveying information via gap junctions to the central pattern-generating circuits in larval Drosophila , providing novel insights into motor circuit control. The experimental system introduced in this study also presents a new approach for studying intersegmentally coordinated locomotion. Unlike traditional electrophysiology methods, this system enables the simultaneous recording and manipulation of populations of neurons that are genetically specified and span multiple segments. Copyright © 2017 the authors 0270-6474/17/372045-16$15.00/0.

  3. Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.

    PubMed

    Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J

    2015-06-01

    A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.

  4. Self-Validating Thermocouple

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Inventor); Mata, Carlos T. (Inventor); Santiago, Josephine B. (Inventor); Vokrot, Peter (Inventor); Zavala, Carlos E. (Inventor); Burns, Bradley M. (Inventor)

    2010-01-01

    Self-Validating Thermocouple (SVT) Systems capable of detecting sensor probe open circuits, short circuits, and unnoticeable faults such as a probe debonding and probe degradation are useful in the measurement of temperatures. SVT Systems provide such capabilities by incorporating a heating or excitation element into the measuring junction of the thermocouple. By heating the measuring junction and observing the decay time for the detected DC voltage signal, it is possible to indicate whether the thermocouple is bonded or debonded. A change in the thermal transfer function of the thermocouple system causes a change in the rise and decay times of the thermocouple output. Incorporation of the excitation element does not interfere with normal thermocouple operation, thus further allowing traditional validation procedures as well.

  5. Single-contact tunneling thermometry

    DOEpatents

    Maksymovych, Petro

    2016-02-23

    A single-contact tunneling thermometry circuit includes a tunnel junction formed between two objects. Junction temperature gradient information is determined based on a mathematical relationship between a target alternating voltage applied across the junction and the junction temperature gradient. Total voltage measured across the junction indicates the magnitude of the target alternating voltage. A thermal gradient is induced across the junction. A reference thermovoltage is measured when zero alternating voltage is applied across the junction. An increasing alternating voltage is applied while measuring a thermovoltage component and a DC rectification voltage component created by the applied alternating voltage. The target alternating voltage is reached when the thermovoltage is nullified or doubled by the DC rectification voltage depending on the sign of the reference thermovoltage. Thermoelectric current and current measurements may be utilized in place of the thermovoltage and voltage measurements. The system may be automated with a feedback loop.

  6. Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%

    NASA Astrophysics Data System (ADS)

    Sai, Hitoshi; Matsui, Takuya; Koida, Takashi; Matsubara, Koji; Kondo, Michio; Sugiyama, Shuichiro; Katayama, Hirotaka; Takeuchi, Yoshiaki; Yoshida, Isao

    2015-05-01

    We report a high-efficiency triple-junction thin-film silicon solar cell fabricated with the so-called substrate configuration. It was verified whether the design criteria for developing single-junction microcrystalline silicon (μc-Si:H) solar cells are applicable to multijunction solar cells. Furthermore, a notably high short-circuit current density of 32.9 mA/cm2 was achieved in a single-junction μc-Si:H cell fabricated on a periodically textured substrate with a high-mobility front transparent contacting layer. These technologies were also combined into a-Si:H/μc-Si:H/μc-Si:H triple-junction cells, and a world record stabilized efficiency of 13.6% was achieved.

  7. Studies of silicon p-n junction solar cells

    NASA Technical Reports Server (NTRS)

    Neugroschel, A.; Lindholm, F. A.

    1979-01-01

    To provide theoretical support for investigating different ways to obtain high open-circuit voltages in p-n junction silicon solar cells, an analytical treatment of heavily doped transparent-emitter devices is presented that includes the effects of bandgap narrowing, Fermi-Dirac statistics, a doping concentration gradient, and a finite surface recombination velocity at the emitter surface. Topics covered include: (1) experimental determination of bandgap narrowing in the emitter of silicon p-n junction devices; (2) heavily doped transparent regions in junction solar cells, diodes, and transistors; (3) high-low-emitter solar cell; (4) determination of lifetimes and recombination currents in p-n junction solar cells; (5) MOS and oxide-charged-induced BSF solar cells; and (6) design of high efficiency solar cells for space and terrestrial applications.

  8. Experimental investigation of a four-qubit linear-optical quantum logic circuit

    NASA Astrophysics Data System (ADS)

    Stárek, R.; Mičuda, M.; Miková, M.; Straka, I.; Dušek, M.; Ježek, M.; Fiurášek, J.

    2016-09-01

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C3Z gate and several two-qubit and single-qubit gates. The C3Z gate introduces a sign flip if and only if all four qubits are in the computational state |1>. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.

  9. Experimental investigation of a four-qubit linear-optical quantum logic circuit.

    PubMed

    Stárek, R; Mičuda, M; Miková, M; Straka, I; Dušek, M; Ježek, M; Fiurášek, J

    2016-09-20

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C(3)Z gate and several two-qubit and single-qubit gates. The C(3)Z gate introduces a sign flip if and only if all four qubits are in the computational state |1〉. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.

  10. Characterization of a piezo bendable X-ray mirror.

    PubMed

    Vannoni, Maurizio; Freijo Martín, Idoia; Siewert, Frank; Signorato, Riccardo; Yang, Fan; Sinn, Harald

    2016-01-01

    A full-scale piezo bendable mirror built as a prototype for an offset mirror at the European XFEL is characterized. The piezo ceramic elements are glued onto the mirror substrate, side-face on with respect to the reflecting surface. Using a nanometre optical component measuring machine and a large-aperture Fizeau interferometer, the mirror profile and influence functions were characterized, and further analysis was made to investigate the junction effect, hysteresis, twisting and reproducibility.

  11. THE "MUD VOLCANO," A STINKY THERMAL FEATURE ON THE GRAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    THE "MUD VOLCANO," A STINKY THERMAL FEATURE ON THE GRAND LOOP ROAD. ACIDIC HOT SPRINGS HAVE REDUCED THE UNDERLYING LAVA TO A FINE CLAY, PRODUCING AN AREA OF BOILING MUD. THE ODOR OF ROTTEN EGGS IS FROM HYDROGEN SULFIDE GAS. - Grand Loop Road, Forming circuit between Mammoth Hot Springs, Norris Junction, Madison Junction, Old Faithful, Mammoth, Park County, WY

  12. Low-noise SIS mixer for far-infrared radio astronomy

    NASA Astrophysics Data System (ADS)

    Karpov, Alexandre; Miller, David; Rice, Frank R.; Stern, Jeffrey A.; Bumble, Bruce; LeDuc, Henry G.; Zmuidzinas, Jonas

    2004-10-01

    We present a low noise SIS mixer developed for the 1.2 THz band of the heterodyne spectrometer of the Herschel Space Observatory. With the launch of the Herschel SO in 2007, this device will be among the first SIS mixers flown in space. This SIS mixer has a quasi-optical design, with a double slot planar antenna and an extended spherical lens made of pure Si. The SIS junctions are Nb/AlN/NbTiN with a critical current density of about 30 KA/cm2 and with the junction area of a quarter of a micron square. Our mixer circuit uses two SIS junctions biased in parallel. To improve the simultaneous suppression of the Josephson current in each of them, we use diamond-shaped junctions. A low loss Nb/Au micro-strip transmission line is used for the first time in the mixer circuit well above the gap frequency of Nb. The minimum uncorrected Double Sideband receiver noise is 550 K (Y=1.34). The minimum receiver noise corrected for the local oscillator beam splitter and for the cryostat window is 340 K, about 6 hv/k, the lowest value achieved thus far in the THz frequencies range.

  13. p-i-n heterojunctions with BiFeO3 perovskite nanoparticles and p- and n-type oxides: photovoltaic properties.

    PubMed

    Chatterjee, Soumyo; Bera, Abhijit; Pal, Amlan J

    2014-11-26

    We formed p-i-n heterojunctions based on a thin film of BiFeO3 nanoparticles. The perovskite acting as an intrinsic semiconductor was sandwiched between a p-type and an n-type oxide semiconductor as hole- and electron-collecting layer, respectively, making the heterojunction act as an all-inorganic oxide p-i-n device. We have characterized the perovskite and carrier collecting materials, such as NiO and MoO3 nanoparticles as p-type materials and ZnO nanoparticles as the n-type material, with scanning tunneling spectroscopy; from the spectrum of the density of states, we could locate the band edges to infer the nature of the active semiconductor materials. The energy level diagram of p-i-n heterojunctions showed that type-II band alignment formed at the p-i and i-n interfaces, favoring carrier separation at both of them. We have compared the photovoltaic properties of the perovskite in p-i-n heterojunctions and also in p-i and i-n junctions. From current-voltage characteristics and impedance spectroscopy, we have observed that two depletion regions were formed at the p-i and i-n interfaces of a p-i-n heterojunction. The two depletion regions operative at p-i-n heterojunctions have yielded better photovoltaic properties as compared to devices having one depletion region in the p-i or the i-n junction. The results evidenced photovoltaic devices based on all-inorganic oxide, nontoxic, and perovskite materials.

  14. TGF-beta induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways.

    PubMed

    Tacheau, Charlotte; Fontaine, Juliette; Loy, Jennifer; Mauviel, Alain; Verrecchia, Franck

    2008-12-01

    One of the shared physiological roles between TGF-beta and connexin family members is to inhibit epithelial cell cycle progression and consequently, to provide protection against malignant transformation. Herein, we demonstrated that TGF-beta1 induces the expression of connexin43 (Cx43) in normal murine mammary gland (NMuMG) cell lines at the protein and mRNA levels, and transcriptionally. Using overexpression of a truncated dominant-negative form of Cx43, we determined that the modulation of gap junctional communication by TGF-beta1 plays a key role in the control of NMuMG cells proliferation by TGF-beta1. In addition, using overexpression of truncated dominant-negative forms of either Smad2 or Smad3, and MDA-MB-468 human breast carcinoma cells deficient for Smad4, we determined that the Smad cascade is not implicated in TGF-beta1 effect on Cx43 expression. Using specific pharmacologic inhibitors for JNK, ERK, p38, and PI3K/AKT signaling pathways, we demonstrated the cooperative role of p38 and PI3K/AKT signaling in TGF-beta1-induced Cx43 expression and gap junctional communication. Furthermore, transfection of a c-jun antisense expression vector significantly prevented TGF-beta1-induced Cx43 gene expression demonstrating the involvement of c-Jun/AP-1 pathway together with p38 and PI3K/AKT pathways in mediating TGF-beta1-induced Cx43 gene expression.

  15. A circuit for saccadic suppression in the primate brain

    PubMed Central

    Cavanaugh, James; McAlonan, Kerry; Wurtz, Robert H.

    2017-01-01

    Saccades should cause us to see a blur as the eyes sweep across a visual scene. Specific brain mechanisms prevent this by producing suppression during saccades. Neuronal correlates of such suppression were first established in the visual superficial layers of the superior colliculus (SC) and subsequently have been observed in cortical visual areas, including the middle temporal visual area (MT). In this study, we investigated suppression in a recently identified circuit linking visual SC (SCs) to MT through the inferior pulvinar (PI). We examined responses to visual stimuli presented just before saccades to reveal a neuronal correlate of suppression driven by a copy of the saccade command, referred to as a corollary discharge. We found that visual responses were similarly suppressed in SCs, PI, and MT. Within each region, suppression of visual responses occurred with saccades into both visual hemifields, but only in the contralateral hemifield did this suppression consistently begin before the saccade (~100 ms). The consistency of the signal along the circuit led us to hypothesize that the suppression in MT was influenced by input from the SC. We tested this hypothesis in one monkey by inactivating neurons within the SC and found evidence that suppression in MT depends on corollary discharge signals from motor SC (SCi). Combining these results with recent findings in rodents, we propose a complete circuit originating with corollary discharge signals in SCi that produces suppression in visual SCs, PI, and ultimately, MT cortex. NEW & NOTEWORTHY A fundamental puzzle in visual neuroscience is that we frequently make rapid eye movements (saccades) but seldom perceive the visual blur accompanying each movement. We investigated neuronal correlates of this saccadic suppression by recording from and perturbing a recently identified circuit from brainstem to cortex. We found suppression at each stage, with evidence that it was driven by an internally generated signal. We conclude that this circuit contributes to neuronal suppression of visual signals during eye movements. PMID:28003409

  16. Molecular-Beam-Epitaxy Program

    NASA Technical Reports Server (NTRS)

    Sparks, Patricia D.

    1988-01-01

    Molecular Beam Epitaxy (MBE) computer program developed to aid in design of single- and double-junction cascade cells made of silicon. Cascade cell has efficiency 1 or 2 percent higher than single cell, with twice the open-circuit voltage. Input parameters include doping density, diffusion lengths, thicknesses of regions, solar spectrum, absorption coefficients of silicon (data included for 101 wavelengths), and surface recombination velocities. Results include maximum power, short-circuit current, and open-circuit voltage. Program written in FORTRAN IV.

  17. Single Junction InGaP/GaAs Solar Cells Grown on Si Substrates using SiGe Buffer Layers

    NASA Technical Reports Server (NTRS)

    Ringel, S. A.; Carlin, J. A.; Andre, C. L.; Hudait, M. K.; Gonzalez, M.; Wilt, D. M.; Clark, E. B.; Jenkins, P.; Scheiman, D.; Allerman, A.

    2002-01-01

    Single junction InGaP/GaAs solar cells displaying high efficiency and record high open circuit voltage values have been grown by metalorganic chemical vapor deposition on Ge/graded SiGe/Si substrates. Open circuit voltages as high as 980 mV under AM0 conditions have been verified to result from a single GaAs junction, with no evidence of Ge-related sub-cell photoresponse. Current AM0 efficiencies of close to 16% have been measured for a large number of small area cells, whose performance is limited by non-fundamental current losses due to significant surface reflection resulting from greater than 10% front surface metal coverage and wafer handling during the growth sequence for these prototype cells. It is shown that at the material quality currently achieved for GaAs grown on Ge/SiGe/Si substrates, namely a 10 nanosecond minority carrier lifetime that results from complete elimination of anti-phase domains and maintaining a threading dislocation density of approximately 8 x 10(exp 5) per square centimeter, 19-20% AM0 single junction GaAs cells are imminent. Experiments show that the high performance is not degraded for larger area cells, with identical open circuit voltages and higher short circuit current (due to reduced front metal coverage) values being demonstrated, indicating that large area scaling is possible in the near term. Comparison to a simple model indicates that the voltage output of these GaAs on Si cells follows ideal behavior expected for lattice mismatched devices, demonstrating that unaccounted for defects and issues that have plagued other methods to epitaxially integrate III-V cells with Si are resolved using SiGe buffers and proper GaAs nucleation methods. These early results already show the enormous and realistic potential of the virtual SiGe substrate approach for generating high efficiency, lightweight and strong III-V solar cells.

  18. Binary to Octal and Octal to Binary Code Converter Using Mach-Zehnder Interferometer for High Speed Communication

    NASA Astrophysics Data System (ADS)

    Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep

    2017-05-01

    Binary to octal and octal to binary code converter is a device that allows placing digital information from many inputs to many outputs. Any application of combinational logic circuit can be implemented by using external gates. In this paper, binary to octal and octal to binary code converter is proposed using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers (MZIs). The MZI structures have powerful capability to switching an optical input signal to a desired output port. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. The study is verified using beam propagation method (BPM).

  19. High-contrast germanium-doped silica-on-silicon waveguides

    NASA Astrophysics Data System (ADS)

    Dumais, Patrick; Callender, Claire; Blanchetière, Chantal; Ledderhof, Chris

    2012-10-01

    Silica-on-silicon planar lightwave circuits have a number of advantages including stability and low insertion loss to optical fiber networks. Standard GeO2 doping levels in the waveguide cores lead to a refractive index contrast, n/n, of 0.75%-2%. This range of index contrast requires relatively large bend radii in order to minimize bend losses. This limits the density scaling of these circuits. By using high dopant levels for a Δn/n of 4%, the bend radius can be decreased to less than 1 mm, from which significant gains in optical circuit density can be obtained. In addition, low-loss ring resonators with free spectral ranges of a few tens of gigahertz can be realized, enabling some additional optical signal processing and filtering on that scale. Optical devices with such high dopant levels have been reported by Bellman et al. in 2004 [1] but to the authors' knowledge, no other experimental work on high-delta GeO2-doped waveguides has been reported since. In this paper, we present experimental measurements on high-delta devices including directional couplers, MMI couplers, Mach-Zehnder interferometers, and ring resonators. Device performance, including propagation loss, bend loss, interferometer contrast ratio and birefringence will be presented. We demonstrate that ring resonators with 40 GHz free spectral range can be fabricated for optical signal processing.

  20. Mach-Zehnder interferometry using spin- and valley-polarized quantum Hall edge states in graphene.

    PubMed

    Wei, Di S; van der Sar, Toeno; Sanchez-Yamagishi, Javier D; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo; Halperin, Bertrand I; Yacoby, Amir

    2017-08-01

    Confined to a two-dimensional plane, electrons in a strong magnetic field travel along the edge in one-dimensional quantum Hall channels that are protected against backscattering. These channels can be used as solid-state analogs of monochromatic beams of light, providing a unique platform for studying electron interference. Electron interferometry is regarded as one of the most promising routes for studying fractional and non-Abelian statistics and quantum entanglement via two-particle interference. However, creating an edge-channel interferometer in which electron-electron interactions play an important role requires a clean system and long phase coherence lengths. We realize electronic Mach-Zehnder interferometers with record visibilities of up to 98% using spin- and valley-polarized edge channels that copropagate along a pn junction in graphene. We find that interchannel scattering between same-spin edge channels along the physical graphene edge can be used to form beamsplitters, whereas the absence of interchannel scattering along gate-defined interfaces can be used to form isolated interferometer arms. Surprisingly, our interferometer is robust to dephasing effects at energies an order of magnitude larger than those observed in pioneering experiments on GaAs/AlGaAs quantum wells. Our results shed light on the nature of edge-channel equilibration and open up new possibilities for studying exotic electron statistics and quantum phenomena.

  1. Computer modeling of batteries from nonlinear circuit elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waaben, S.; Dyer, C.K.; Federico, J.

    1985-06-01

    Circuit analogs for a single battery cell have previously been composed of resistors, capacitors, and inductors. This work introduces a nonlinear circuit model for cell behavior. The circuit is configured around the PIN junction diode, whose charge-storage behavior has features similar to those of electrochemical cells. A user-friendly integrated circuit simulation computer program has reproduced a variety of complex cell responses including electrica isolation effects causing capacity loss, as well as potentiodynamic peaks and discharge phenomena hitherto thought to be thermodynamic in origin. However, in this work, they are shown to be simply due to spatial distribution of stored chargemore » within a practical electrode.« less

  2. GaAs nanowire array solar cells with axial p-i-n junctions.

    PubMed

    Yao, Maoqing; Huang, Ningfeng; Cong, Sen; Chi, Chun-Yung; Seyedi, M Ashkan; Lin, Yen-Ting; Cao, Yu; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2014-06-11

    Because of unique structural, optical, and electrical properties, solar cells based on semiconductor nanowires are a rapidly evolving scientific enterprise. Various approaches employing III-V nanowires have emerged, among which GaAs, especially, is under intense research and development. Most reported GaAs nanowire solar cells form p-n junctions in the radial direction; however, nanowires using axial junction may enable the attainment of high open circuit voltage (Voc) and integration into multijunction solar cells. Here, we report GaAs nanowire solar cells with axial p-i-n junctions that achieve 7.58% efficiency. Simulations show that axial junctions are more tolerant to doping variation than radial junctions and lead to higher Voc under certain conditions. We further study the effect of wire diameter and junction depth using electrical characterization and cathodoluminescence. The results show that large diameter and shallow junctions are essential for a high extraction efficiency. Our approach opens up great opportunity for future low-cost, high-efficiency photovoltaics.

  3. Optical-Interferometry-Based CMOS-MEMS Sensor Transduced by Stress-Induced Nanomechanical Deflection

    PubMed Central

    Maruyama, Satoshi; Hizawa, Takeshi; Takahashi, Kazuhiro; Sawada, Kazuaki

    2018-01-01

    We developed a Fabry–Perot interferometer sensor with a metal-oxide-semiconductor field-effect transistor (MOSFET) circuit for chemical sensing. The novel signal transducing technique was performed in three steps: mechanical deflection, transmittance change, and photocurrent change. A small readout photocurrent was processed by an integrated source follower circuit. The movable film of the sensor was a 350-nm-thick polychloro-para-xylylene membrane with a diameter of 100 µm and an air gap of 300 nm. The linearity of the integrated source follower circuit was obtained. We demonstrated a gas response using 80-ppm ethanol detected by small membrane deformation of 50 nm, which resulted in an output-voltage change with the proposed high-efficiency transduction. PMID:29304011

  4. Optical-Interferometry-Based CMOS-MEMS Sensor Transduced by Stress-Induced Nanomechanical Deflection.

    PubMed

    Maruyama, Satoshi; Hizawa, Takeshi; Takahashi, Kazuhiro; Sawada, Kazuaki

    2018-01-05

    We developed a Fabry-Perot interferometer sensor with a metal-oxide-semiconductor field-effect transistor (MOSFET) circuit for chemical sensing. The novel signal transducing technique was performed in three steps: mechanical deflection, transmittance change, and photocurrent change. A small readout photocurrent was processed by an integrated source follower circuit. The movable film of the sensor was a 350-nm-thick polychloro-para-xylylene membrane with a diameter of 100 µm and an air gap of 300 nm. The linearity of the integrated source follower circuit was obtained. We demonstrated a gas response using 80-ppm ethanol detected by small membrane deformation of 50 nm, which resulted in an output-voltage change with the proposed high-efficiency transduction.

  5. The Development of a High Speed Exponential Function Generator for Linearization of Microwave Voltage Controlled Oscillators.

    DTIC Science & Technology

    1985-10-01

    characteristic of a p-n junction to provide exponential linearization in a simple, thermally-stable, wide band circuit. RESME Les oscillateurs A...exponentielle (fr6quence/tension) que V’on 1 retrouve chez plusieurs oscillateurs . Ce circuit, d’une grande largeur de bande, utilise la caractfiristique

  6. Effect of Npt2b deletion on intestinal and renal inorganic phosphate (Pi) handling.

    PubMed

    Ikuta, Kayo; Segawa, Hiroko; Sasaki, Shohei; Hanazaki, Ai; Fujii, Toru; Kushi, Aoi; Kawabata, Yuka; Kirino, Ruri; Sasaki, Sumire; Noguchi, Miwa; Kaneko, Ichiro; Tatsumi, Sawako; Ueda, Otoya; Wada, Naoko A; Tateishi, Hiromi; Kakefuda, Mami; Kawase, Yosuke; Ohtomo, Shuichi; Ichida, Yasuhiro; Maeda, Akira; Jishage, Kou-Ichi; Horiba, Naoshi; Miyamoto, Ken-Ichi

    2018-06-01

    Hyperphosphatemia is common in chronic kidney disease and is associated with morbidity and mortality. The intestinal Na + -dependent phosphate transporter Npt2b is thought to be an important molecular target for the prevention of hyperphosphatemia. The role of Npt2b in the net absorption of inorganic phosphate (Pi), however, is controversial. In the present study, we made tamoxifen-inducible Npt2b conditional knockout (CKO) mice to analyze systemic Pi metabolism, including intestinal Pi absorption. Although the Na + -dependent Pi transport in brush-border membrane vesicle uptake levels was significantly decreased in the distal intestine of Npt2b CKO mice compared with control mice, plasma Pi and fecal Pi excretion levels were not significantly different. Data obtained using the intestinal loop technique showed that Pi uptake in Npt2b CKO mice was not affected at a Pi concentration of 4 mM, which is considered the typical luminal Pi concentration after meals in mice. Claudin, which may be involved in paracellular pathways, as well as claudin-2, 12, and 15 protein levels were significantly decreased in the Npt2b CKO mice. Thus, Npt2b deficiency did not affect Pi absorption within the range of Pi concentrations that normally occurs after meals. These findings indicate that abnormal Pi metabolism may also be involved in tight junction molecules such as Cldns that are affected by Npt2b deficiency.

  7. Dietary choline deficiency and excess induced intestinal inflammation and alteration of intestinal tight junction protein transcription potentially by modulating NF-κB, STAT and p38 MAPK signaling molecules in juvenile Jian carp.

    PubMed

    Wu, Pei; Jiang, Wei-Dan; Jiang, Jun; Zhao, Juan; Liu, Yang; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2016-11-01

    This study investigated the effects of choline on intestinal mucosal immune and the possible mechanisms in fish by feeding juvenile Jian carp (Cyprinus carpio var. Jian) with graded levels of dietary choline (165-1820 mg/kg diet) for 65 days. The results firstly showed that choline deficiency induced inflammatory infiltration in the proximal intestine (PI), mid intestine (MI) and distal intestine (DI) of fish. Meanwhile, compared with the optimal choline group, choline deficiency decreased the activities of lysozyme and acid phosphatase, contents of complement 3 and IgM in the intestine, downregulated the mRNA levels of antimicrobial peptides (liver-expressed antimicrobial peptide (LEAP) 2A and defensin-3 in the PI and MI, LEAP-2B and hepcidin in the PI, MI and DI), anti-inflammatory cytokines (interleukin (IL) 10 and transforming growth factor β2 in the PI, MI and DI), and signaling molecule IκB in the PI, MI and DI; while upregulated the mRNA levels of pro-inflammatory cytokines (IL-6a and tumor necrosis factor α in the MI and DI, interferon γ2b in the PI and MI, IL-1β and IL-6b in the PI, MI and DI), and signaling molecules (Toll-like receptor 4 in the MI, myeloid differentiation primary response 88 in the PI and MI, Janus kinase 3 and tyrosine kinase 2 in the MI and DI, nuclear factor kappa B (NF-κB), signal transducers and activators of transcription (STAT) 4 and STAT5 in the PI, MI and DI) of juvenile Jian carp, further indicating that choline deficiency caused inflammation and immunity depression in the intestine of fish. But choline deficiency decreased the PI IL-6a mRNA level, and increased the DI LEAP-2A and defensin-3 mRNA levels with unknown reasons. Furthermore, dietary choline deficiency downregulated mRNA levels of tight junction (TJ) proteins (claudin 3c in the PI and MI, claudin 7, claudin 11 and occludin in the PI, MI and DI) and signaling molecule mitogen-activated protein kinases p38 in the PI, MI and DI of juvenile Jian carp, whereas upregulated the mRNA levels of claudin 3b in the MI and DI, and claudin 3c in the DI. Moreover, the excessive choline exhibited negative effects on intestinal immunity and TJ proteins that were similar to the choline deficiency. In summary, dietary choline deficiency or excess caused the depression of intestinal mucosal immune by inducing inflammation and dysfunction of the intestinal physical barrier, and regulating related signaling molecules of fish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Origin of 1/f PM and AM noise in bipolar junction transistor amplifiers.

    PubMed

    Walls, F L; Ferre-Pikal, E S; Jefferts, S R

    1997-01-01

    In this paper we report the results of extensive research on phase modulation (PM) and amplitude modulation (AM) noise in linear bipolar junction transistor (BJT) amplifiers. BJT amplifiers exhibit 1/f PM and AM noise about a carrier signal that is much larger than the amplifiers thermal noise at those frequencies in the absence of the carrier signal. Our work shows that the 1/f PM noise of a BJT based amplifier is accompanied by 1/f AM noise which can be higher, lower, or nearly equal, depending on the circuit implementation. The 1/f AM and PM noise in BJTs is primarily the result of 1/f fluctuations in transistor current, transistor capacitance, circuit supply voltages, circuit impedances, and circuit configuration. We discuss the theory and present experimental data in reference to common emitter amplifiers, but the analysis can be applied to other configurations as well. This study provides the functional dependence of 1/f AM and PM noise on transistor parameters, circuit parameters, and signal frequency, thereby laying the groundwork for a comprehensive theory of 1/f AM and PM noise in BJT amplifiers. We show that in many cases the 1/f PM and AM noise can be reduced below the thermal noise of the amplifier.

  9. Fabrication of Optimized Superconducting Phase Inverters Based on Superconductor-Ferromagnet-Superconductor pi π -Junctions

    NASA Astrophysics Data System (ADS)

    Bolginov, V. V.; Rossolenko, A. N.; Shkarin, A. B.; Oboznov, V. A.; Ryazanov, V. V.

    2018-03-01

    We have implemented a trilayer technological approach to fabricate Nb-Cu_{0.47} Ni_{0.53}-Nb superconducting phase inverters (π -junctions) with enhanced critical current. Within this technique, all three layers of the superconductor-ferromagnet-superconductor junction deposited in a single vacuum cycle that have allowed us to obtain π -junctions with critical current density up to 20 kA/cm^2. The value achieved is a factor of 10 higher than for the step-by-step method used in earlier works. Our additional experiments have shown that this difference is related to a bilayered CuNi/Cu barrier used in the case of the step-by-step technique and interlayer diffusion at the CuNi/Cu interface. We show that the interlayer diffusion can be utilized for fine tuning of the 0{-}π transition temperature of already fabricated junctions. The results obtained open new opportunities for the CuNi-based phase inverters in digital and quantum Josephson electronics.

  10. Biologically inspired design of feedback control systems implemented using DNA strand displacement reactions.

    PubMed

    Foo, Mathias; Sawlekar, Rucha; Kulkarni, Vishwesh V; Bates, Declan G

    2016-08-01

    The use of abstract chemical reaction networks (CRNs) as a modelling and design framework for the implementation of computing and control circuits using enzyme-free, entropy driven DNA strand displacement (DSD) reactions is starting to garner widespread attention in the area of synthetic biology. Previous work in this area has demonstrated the theoretical plausibility of using this approach to design biomolecular feedback control systems based on classical proportional-integral (PI) controllers, which may be constructed from CRNs implementing gain, summation and integrator operators. Here, we propose an alternative design approach that utilises the abstract chemical reactions involved in cellular signalling cycles to implement a biomolecular controller - termed a signalling-cycle (SC) controller. We compare the performance of the PI and SC controllers in closed-loop with a nonlinear second-order chemical process. Our results show that the SC controller outperforms the PI controller in terms of both performance and robustness, and also requires fewer abstract chemical reactions to implement, highlighting its potential usefulness in the construction of biomolecular control circuits.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakhidov, A.A.; Yoshino, K.

    Composites of fullerene C{sub 60} with conjugated polymers (CP) like polyalkylthiophene (PAT) and polyphenylene vinylene derivative (OO-PPV) have earlier demonstrated intensive charge transfer upon photoexcitation. Doping of CP/C{sub 60} composites by A metal vapors (A=K,Rb) is aimed at C{sub 60} induced SC, in which electrons of CP chains may participate in SC pairing, induced via hybridization with C{sub 60} molecules. We have found an SC phase experimentally both in PAT. (C{sub 60}) {sub y}K{sub x} and OO.PPV (C{sub 60}){sub y}K{sub x} by a sensitive method of low field microwave absorption (LFMA), and proved by SQUID. The SCT{sub c} ranges frommore » 12 to 17 K, depending on y and x. This SC phase shows a granular behavior in LFMA, and thus originates from SC A{sub 3}C{sub 60} clusters weakly linked by Josephson junctions. True C{sub 60} induced SC might be masked by granular A{sub 3}C{sub 60}. Anomalous LFMA and paramagnetic Meissner effects observed in SQUID, indicate the existence of Josephson {pi}-junctions. CP is apparently involved in SC via spin carrying polarons P in CP chains, which play a role of {pi}-junctions. Strategies for further search of C{sub 60} induced SC are discussed.« less

  12. Photovoltaic and thermophotovoltaic devices with quantum barriers

    DOEpatents

    Wernsman, Bernard R [Jefferson Hills, PA

    2007-04-10

    A photovoltaic or thermophotovoltaic device includes a diode formed by p-type material and n-type material joined at a p-n junction and including a depletion region adjacent to said p-n junction, and a quantum barrier disposed near or in the depletion region of the p-n junction so as to decrease device reverse saturation current density while maintaining device short circuit current density. In one embodiment, the quantum barrier is disposed on the n-type material side of the p-n junction and decreases the reverse saturation current density due to electrons while in another, the barrier is disposed on the p-type material side of the p-n junction and decreases the reverse saturation current density due to holes. In another embodiment, both types of quantum barriers are used.

  13. Studies of silicon pn junction solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.

    1977-01-01

    Modifications of the basic Shockley equations that result from the random and nonrandom spatial variations of the chemical composition of a semiconductor were developed. These modifications underlie the existence of the extensive emitter recombination current that limits the voltage over the open circuit of solar cells. The measurement of parameters, series resistance and the base diffusion length is discussed. Two methods are presented for establishing the energy bandgap narrowing in the heavily-doped emitter region. Corrections that can be important in the application of one of these methods to small test cells are examined. Oxide-charge-induced high-low-junction emitter (OCI-HLE) test cells which exhibit considerably higher voltage over the open circuit than was previously seen in n-on-p solar cells are described.

  14. Four-gate transistor analog multiplier circuit

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad M. (Inventor); Blalock, Benjamin (Inventor); Cristoloveanu, Sorin (Inventor); Chen, Suheng (Inventor); Akarvardar, Kerem (Inventor)

    2011-01-01

    A differential output analog multiplier circuit utilizing four G.sup.4-FETs, each source connected to a current source. The four G.sup.4-FETs may be grouped into two pairs of two G.sup.4-FETs each, where one pair has its drains connected to a load, and the other par has its drains connected to another load. The differential output voltage is taken at the two loads. In one embodiment, for each G.sup.4-FET, the first and second junction gates are each connected together, where a first input voltage is applied to the front gates of each pair, and a second input voltage is applied to the first junction gates of each pair. Other embodiments are described and claimed.

  15. Ion bipolar junction transistors

    PubMed Central

    Tybrandt, Klas; Larsson, Karin C.; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-01-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated. PMID:20479274

  16. Recovery of shallow junction GaAs solar cells damaged by electron irradiation

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Conway, E. J.

    1978-01-01

    Solar cells operated in space are subject to degradation from electron and proton radiation damage. It has been found that for deep junction p-GaAlAs/p-GaAs solar cells some of the electron radiation damage is removed by annealing the cells at 200 C. The reported investigation shows that shallow junction p-GaAlAs/p-GaAs/n-GaAs heteroface solar cells irradiated with 1 MeV electrons show a more complete recovery of short-circuit current than do the deep junction cells. The heteroface p-GaAlAs/p-GaAs/n-GaAs solar cells studied were fabricated using the etch-back epitaxy process.

  17. A theory of the n-i-p silicon solar cell

    NASA Technical Reports Server (NTRS)

    Goradia, C.; Weinberg, I.; Baraona, C.

    1981-01-01

    A computer model has been developed, based on an analytical theory of the high base resistivity BSF n(+)(pi)p(+) or p(+)(nu)n(+) silicon solar cell. The model makes very few assumptions and accounts for nonuniform optical generation, generation and recombination in the junction space charge region, and bandgap narrowing in the heavily doped regions. The paper presents calculated results based on this model and compares them to available experimental data. Also discussed is radiation damage in high base resistivity n(+)(pi)p(+) space solar cells.

  18. A tunable, double-wavelength heterodyne detection interferometer with frequency-locked diode-pumped Nd:YAG sources for absolute measurements

    NASA Astrophysics Data System (ADS)

    Gelmini, E.; Minoni, U.; Docchio, F.

    1995-08-01

    A double heterodyne interferometric instrument using a tunable synthetic wavelength for the absolute measurements of distance and position is presented. The optical synthetic wavelength is generated by a pair of PZT-tunable diode-pumped Nd:YAG lasers operating at 1.064 μm. Based on a closed-loop scheme, a suitable electronic circuit has been developed to implement the frequency locking of the two lasers. A digital frequency comparator provides an error signal, used to control the slave laser, by comparing the laser beat frequency to a reference oscillator. Demodulation of the superheterodyne signals is obtained by a rf detector followed by low-pass filtering. Distance measurements are obtained by a digital phase meter gauging the phase difference between the demodulated signals from a measuring interferometer and from a reference interferometer. The paper presents the optical and the electronic layouts of the instrument as well as experimental results from a laboratory prototype.

  19. Demonstration of a robust magnonic spin wave interferometer.

    PubMed

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B; Ross, Caroline A; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-07-22

    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe.

  20. Demonstration of a robust magnonic spin wave interferometer

    PubMed Central

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B.; Ross, Caroline A.; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-01-01

    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe. PMID:27443989

  1. Dilute group III-V nitride intermediate band solar cells with contact blocking layers

    DOEpatents

    Walukiewicz, Wladyslaw; Yu, Kin Man

    2015-02-24

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  2. Dilute Group III-V nitride intermediate band solar cells with contact blocking layers

    DOEpatents

    Walukiewicz, Wladyslaw [Kensington, CA; Yu, Kin Man [Lafayette, CA

    2012-07-31

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  3. High efficiency silicon solar cell based on asymmetric nanowire.

    PubMed

    Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M; Baek, Chang-Ki

    2015-07-08

    Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm(2) and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells.

  4. Microwave Photon Detector in Circuit QED

    NASA Astrophysics Data System (ADS)

    Garcia-Ripoll, Juan Jose; Romero, Guillermo; Solano, Enrique

    2009-03-01

    In this work we propose a design for a microwave photodetector based on elements from circuit QED such as the ones used in qubit designs. Our proposal consists on a microwave guide in which we embed circuital elements that can absorb photons and irreversibly change state. These incoherent absorption processes constitute the measurement itself. We first model this design using a general master equation for the propagating photons and the absorbing elements. We find that the detection efficiency for a single absorber is limited to 50%, and that this efficiency can be quickly increased by adding more elements with a moderate separation, obtaining 80% and 90% for two and three absorbers. Our abstract design has at least one possible implementation in which the absorbers are current biased Josephson junction. We demonstrate that the coupling between the guide and the junctions is strong enough, irrespectively of the microwave guide size, and derivate realistic parameters for high fidelity operation with current experiments. Patent pending No. 200802933, Oficina Espanola de Patentes y Marcas, 17/10/2008.

  5. Experimental investigation of a four-qubit linear-optical quantum logic circuit

    PubMed Central

    Stárek, R.; Mičuda, M.; Miková, M.; Straka, I.; Dušek, M.; Ježek, M.; Fiurášek, J.

    2016-01-01

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C3Z gate and several two-qubit and single-qubit gates. The C3Z gate introduces a sign flip if and only if all four qubits are in the computational state |1〉. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses. PMID:27647176

  6. Universal discrete Fourier optics RF photonic integrated circuit architecture.

    PubMed

    Hall, Trevor J; Hasan, Mehedi

    2016-04-04

    This paper describes a coherent electro-optic circuit architecture that generates a frequency comb consisting of N spatially separated orders using a generalised Mach-Zenhder interferometer (MZI) with its N × 1 combiner replaced by an optical N × N Discrete Fourier Transform (DFT). Advantage may be taken of the tight optical path-length control, component and circuit symmetries and emerging trimming algorithms offered by photonic integration in any platform that offers linear electro-optic phase modulation such as LiNbO3, silicon, III-V or hybrid technology. The circuit architecture subsumes all MZI-based RF photonic circuit architectures in the prior art given an appropriate choice of output port(s) and dimension N although the principal application envisaged is phase correlated subcarrier generation for all optical orthogonal frequency division multiplexing. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. Implementation is found to be practical.

  7. Design of a high-speed optical dark-soliton detector using a phase-shifted waveguide Bragg grating in reflection.

    PubMed

    Ngo, Nam Quoc

    2007-12-01

    A theoretical study of a new application of a simple pi-phase-shifted waveguide Bragg grating (PSWBG) in reflection mode as a high-speed optical dark-soliton detector is presented. The PSWBG consists of two concatenated identical uniform waveguide Bragg gratings with a pi phase shift between them. The reflective PSWBG, with grating reflectivities equal to 0.9, a free spectral range of 1.91 THz, and a nonlinear phase response, can convert a 40 Gbit/s noisy dark-soliton signal into a high-quality 40 Gbit/s return-to-zero signal with a peak power level of approximately 17.5 dB greater than that by the existing Mach-Zehnder interferometer with free spectral range of 1.91 THz and a linear phase response.

  8. Fabrication of multijunction high voltage concentrator solar cells by integrated circuit technology

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Kapoor, V. J.; Evans, J. C., Jr.; Chai, A.-T.

    1981-01-01

    Standard integrated circuit technology has been developed for the design and fabrication of planar multijunction (PMJ) solar cell chips. Each 1 cm x 1 cm solar chip consisted of six n(+)/p, back contacted, internally series interconnected unit cells. These high open circuit voltage solar cells were fabricated on 2 ohm-cm, p-type 75 microns thick, silicon substrates. A five photomask level process employing contact photolithography was used to pattern for boron diffusions, phorphorus diffusions, and contact metallization. Fabricated devices demonstrated an open circuit voltage of 3.6 volts and a short circuit current of 90 mA at 80 AMl suns. An equivalent circuit model of the planar multi-junction solar cell was developed.

  9. THz-circuits driven by photo-thermoelectric, gate-tunable graphene-junctions

    NASA Astrophysics Data System (ADS)

    Brenneis, Andreas; Schade, Felix; Drieschner, Simon; Heimbach, Florian; Karl, Helmut; Garrido, Jose A.; Holleitner, Alexander W.

    2016-10-01

    For future on-chip communication schemes, it is essential to integrate nanoscale materials with an ultrafast optoelectronic functionality into high-frequency circuits. The atomically thin graphene has been widely demonstrated to be suitable for photovoltaic and optoelectronic devices because of its broadband optical absorption and its high electron mobility. Moreover, the ultrafast relaxation of photogenerated charge carriers has been verified in graphene. Here, we show that dual-gated graphene junctions can be functional parts of THz-circuits. As the underlying optoelectronic process, we exploit ultrafast photo-thermoelectric currents. We describe an immediate photo-thermoelectric current of the unbiased device following a femtosecond laser excitation. For a picosecond time-scale after the optical excitation, an additional photo-thermoelectric contribution shows up, which exhibits the fingerprint of a spatially inverted temperature profile. The latter can be understood by the different time-constants and thermal coupling mechanisms of the electron and phonon baths within graphene to the substrate and the metal contacts. The interplay of the processes gives rise to ultrafast electromagnetic transients in high-frequency circuits, and it is equally important for a fundamental understanding of graphene-based ultrafast photodetectors and switches.

  10. THz-circuits driven by photo-thermoelectric, gate-tunable graphene-junctions

    PubMed Central

    Brenneis, Andreas; Schade, Felix; Drieschner, Simon; Heimbach, Florian; Karl, Helmut; Garrido, Jose A.; Holleitner, Alexander W.

    2016-01-01

    For future on-chip communication schemes, it is essential to integrate nanoscale materials with an ultrafast optoelectronic functionality into high-frequency circuits. The atomically thin graphene has been widely demonstrated to be suitable for photovoltaic and optoelectronic devices because of its broadband optical absorption and its high electron mobility. Moreover, the ultrafast relaxation of photogenerated charge carriers has been verified in graphene. Here, we show that dual-gated graphene junctions can be functional parts of THz-circuits. As the underlying optoelectronic process, we exploit ultrafast photo-thermoelectric currents. We describe an immediate photo-thermoelectric current of the unbiased device following a femtosecond laser excitation. For a picosecond time-scale after the optical excitation, an additional photo-thermoelectric contribution shows up, which exhibits the fingerprint of a spatially inverted temperature profile. The latter can be understood by the different time-constants and thermal coupling mechanisms of the electron and phonon baths within graphene to the substrate and the metal contacts. The interplay of the processes gives rise to ultrafast electromagnetic transients in high-frequency circuits, and it is equally important for a fundamental understanding of graphene-based ultrafast photodetectors and switches. PMID:27762291

  11. THz-circuits driven by photo-thermoelectric, gate-tunable graphene-junctions.

    PubMed

    Brenneis, Andreas; Schade, Felix; Drieschner, Simon; Heimbach, Florian; Karl, Helmut; Garrido, Jose A; Holleitner, Alexander W

    2016-10-20

    For future on-chip communication schemes, it is essential to integrate nanoscale materials with an ultrafast optoelectronic functionality into high-frequency circuits. The atomically thin graphene has been widely demonstrated to be suitable for photovoltaic and optoelectronic devices because of its broadband optical absorption and its high electron mobility. Moreover, the ultrafast relaxation of photogenerated charge carriers has been verified in graphene. Here, we show that dual-gated graphene junctions can be functional parts of THz-circuits. As the underlying optoelectronic process, we exploit ultrafast photo-thermoelectric currents. We describe an immediate photo-thermoelectric current of the unbiased device following a femtosecond laser excitation. For a picosecond time-scale after the optical excitation, an additional photo-thermoelectric contribution shows up, which exhibits the fingerprint of a spatially inverted temperature profile. The latter can be understood by the different time-constants and thermal coupling mechanisms of the electron and phonon baths within graphene to the substrate and the metal contacts. The interplay of the processes gives rise to ultrafast electromagnetic transients in high-frequency circuits, and it is equally important for a fundamental understanding of graphene-based ultrafast photodetectors and switches.

  12. Optical waveguide device with an adiabatically-varying width

    DOEpatents

    Watts,; Michael R. , Nielson; Gregory, N [Albuquerque, NM

    2011-05-10

    Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.

  13. Quantum interferometer based on GaAs/InAs core/shell nanowires connected to superconducting contacts

    NASA Astrophysics Data System (ADS)

    Haas, F.; Dickheuer, S.; Zellekens, P.; Rieger, T.; Lepsa, M. I.; Lüth, H.; Grützmacher, D.; Schäpers, Th

    2018-06-01

    An interferometer structure was realized based on a GaAs/InAs core/shell nanowire and Nb superconducting electrodes. Two pairs of Nb contacts are attached to the side facets of the nanowire allowing for carrier transport in three different orientations. Owing to the core/shell geometry, the current flows in the tubular conductive InAs shell. In transport measurements with superconducting electrodes directly facing each other, indications of a Josephson supercurrent are found. In contrast for junctions in diagonal and longitudinal configuration a deficiency current is observed, owing to the weaker coupling on longer distances. By applying a magnetic field along the nanowires axis pronounced h/2e flux-periodic oscillations are measured in all three contact configurations. The appearance of these oscillations is explained in terms of interference effects in the Josephson supercurrent and long-range phase-coherent Andreev reflection.

  14. On-chip quasi-digital optical switch using silicon microring resonator-coupled Mach-Zehnder interferometer.

    PubMed

    Song, Junfeng; Luo, Xianshu; Tu, Xiaoguang; Jia, Lianxi; Fang, Qing; Liow, Tsung-Yang; Yu, Mingbin; Lo, Guo-Qiang

    2013-05-20

    In this work, we demonstrate thermo-optical quasi-digital optical switch (q-DOS) using silicon microring resonator-coupled Mach-Zehnder interferometer. The optical transmission spectra show box-like response with 1-dB and 3-dB bandwidths of ~1.3 nm and ~1.6 nm, respectively. Such broadband flat-top optical response improves the tolerance to the light source wavelength fluctuation of ± 6 Å and temperature variation of ± 6 °C. Dynamic characterizations show the device with switching power of ~37 mW, switching time of ~7 μs, and on/off ratio of > 30 dB. For performance comparison, we also demonstrate a carrier injection-based electro-optical q-DOS by integrating lateral P-i-N junction with the microring resonator, which significantly reduces power consumption to ~12 mW and switching time to ~0.7 ns only.

  15. A behavioral-level HDL description of SFQ logic circuits for quantitative performance analysis of large-scale SFQ digital systems

    NASA Astrophysics Data System (ADS)

    Matsuzaki, F.; Yoshikawa, N.; Tanaka, M.; Fujimaki, A.; Takai, Y.

    2003-10-01

    Recently many single flux quantum (SFQ) logic circuits containing several thousands of Josephson junctions have been designed successfully by using digital domain simulation based on the hard ware description language (HDL). In the present HDL-based design of SFQ circuits, a structure-level HDL description has been used, where circuits are made up of basic gate cells. However, in order to analyze large-scale SFQ digital systems, such as a microprocessor, more higher-level circuit abstraction is necessary to reduce the circuit simulation time. In this paper we have investigated the way to describe functionality of the large-scale SFQ digital circuits by a behavior-level HDL description. In this method, the functionality and the timing of the circuit block is defined directly by describing their behavior by the HDL. Using this method, we can dramatically reduce the simulation time of large-scale SFQ digital circuits.

  16. Superconductivity-induced macroscopic resonant tunneling.

    PubMed

    Goorden, M C; Jacquod, Ph; Weiss, J

    2008-02-15

    We show analytically and by numerical simulations that the conductance through pi-biased chaotic Josephson junctions is enhanced by several orders of magnitude in the short-wavelength regime. We identify the mechanism behind this effect as macroscopic resonant tunneling through a macroscopic number of low-energy quasidegenerate Andreev levels.

  17. AITRAC: Augmented Interactive Transient Radiation Analysis by Computer. User's information manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-10-01

    AITRAC is a program designed for on-line, interactive, DC, and transient analysis of electronic circuits. The program solves linear and nonlinear simultaneous equations which characterize the mathematical models used to predict circuit response. The program features 100 external node--200 branch capability; conversional, free-format input language; built-in junction, FET, MOS, and switch models; sparse matrix algorithm with extended-precision H matrix and T vector calculations, for fast and accurate execution; linear transconductances: beta, GM, MU, ZM; accurate and fast radiation effects analysis; special interface for user-defined equations; selective control of multiple outputs; graphical outputs in wide and narrow formats; and on-line parametermore » modification capability. The user describes the problem by entering the circuit topology and part parameters. The program then automatically generates and solves the circuit equations, providing the user with printed or plotted output. The circuit topology and/or part values may then be changed by the user, and a new analysis, requested. Circuit descriptions may be saved on disk files for storage and later use. The program contains built-in standard models for resistors, voltage and current sources, capacitors, inductors including mutual couplings, switches, junction diodes and transistors, FETS, and MOS devices. Nonstandard models may be constructed from standard models or by using the special equations interface. Time functions may be described by straight-line segments or by sine, damped sine, and exponential functions. 42 figures, 1 table. (RWR)« less

  18. Josephson junction microwave modulators for qubit control

    NASA Astrophysics Data System (ADS)

    Naaman, O.; Strong, J. A.; Ferguson, D. G.; Egan, J.; Bailey, N.; Hinkey, R. T.

    2017-02-01

    We demonstrate Josephson junction based double-balanced mixer and phase shifter circuits operating at 6-10 GHz and integrate these components to implement both a monolithic amplitude/phase vector modulator and an I/Q quadrature mixer. The devices are actuated by flux signals, dissipate no power on chip, exhibit input saturation powers in excess of 1 nW, and provide cryogenic microwave modulation solutions for integrated control of superconducting qubits.

  19. University of Wisconsin-Madison Participation in the International Water-Vapor Project (IHOP)

    NASA Technical Reports Server (NTRS)

    Knuteson, Robert; Antonelli, Paolo; Best, Fred; Dutcher, Steve; Feltz, Wayne; Revercomb, Henry

    2003-01-01

    This is the final report for NASA grant NAG-1-02057/University of Wisconsin-Madison/Dr. Henry E Revercomb, PI. This grant supported the University of Wisconsin-Madison participation in the International Water-Vapor Project (IHOP) experiment in May-June 2002. The upwelling thermal infrared emission from the surface and atmosphere over the U. S. Southern Great Plains was obtained from the NASA DC-8 with the Scanning High-resolution Interferometer Sounder (S-HIS) instrument, Analysis of the S-HIS radiances were used to obtain atmospheric temperature profiles below the aircraft. In a complementary manner, the downwelling thermal infrared emission at the surface was obtained by the University of Wisconsin Atmospheric Emitted Radiance Interferometer (AERI) instrument from a mobile research vehicle and used to profile the atmospheric boundary layer at the Homestead site. This report summarizes the observations of the S-HIS and AERI instruments during IHOP including validation against in situ observations.

  20. Wide-band operation of quasi-optical distributed superconductor/insulator/superconductor mixers with epitaxial NbN/AlN/NbN junctions

    NASA Astrophysics Data System (ADS)

    Kohjiro, S.; Shitov, S. V.; Wang, Z.; Uzawa, Y.; Miki, S.; Kawakami, A.; Shoji, A.

    2004-05-01

    For the optimum design of integrated receivers operating above the gap frequency of Nb, we have designed, fabricated and tested NbN-based quasi-optical superconductor/insulator/superconductor (SIS) mixers. The mixer chip incorporates a resonant half-wavelength epitaxial NbN/AlN/NbN junction, a twin-slot antenna and their coupling circuits. We adopted two kinds of coupling circuit between the antenna and the SIS junction: one is an in-phase feed with a length of 95 µm and the other is an anti-phase feed of 30 µm length. It was found that the anti-phase mixer reveals a 3 dB bandwidth of 43% of the centre frequency; the uncorrected double-sideband receiver noise temperature TRX = 691 K at 0.91 THz and TRX = 844 K at 0.80 THz, while 17% and TRX = 1250 K at 0.79 THz for the in-phase version. Possible reasons for this difference are discussed, which could be transmission loss and its robustness with respect to the variation of junction parameters. These experimental results suggest the NbN-based distributed mixer with the anti-phase feed is a better candidate for wide-band integrated receivers operating above 0.7 THz.

  1. Chemical synaptic and gap junctional interactions between principal neurons: partners in epileptogenesis.

    PubMed

    Traub, Roger D; Cunningham, Mark O; Whittington, Miles A

    2011-08-01

    Field potential signals, corresponding to electrographic seizures in cortical structures, often contain two components, which sometimes appear to be separable and other times to be superimposed. The first component consists of low-amplitude very fast oscillations (VFO, >70-80 Hz); the second component consists of larger amplitude transients, lasting tens to hundreds of ms, and variously called population spikes, EEG spikes, or bursts--terms chosen in part because of the cellular correlates of the field events. To first approximation, the two components arise because of distinctive types of cellular interactions: gap junctions for VFO (a model of which is reviewed in the following), and recurrent synaptic excitation and/or inhibition for the transients. With in vitro studies of epileptic human neocortical tissue, it is possible to elicit VFO alone, or VFO superimposed on a large transient, but not a large transient without the VFO. If such observations prove to be general, they would imply that gap junction-mediated interactions are the primary factor in epileptogenesis. It appears to be the case then, that in the setting of seizure initiation (but not necessarily under physiological conditions), the gain of gap junction-mediated circuits can actually be larger than the gain in excitatory synaptic circuits. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Chemical Synaptic and Gap Junctional Interactions Between Principal Neurons: Partners in Epileptogenesis

    PubMed Central

    Traub, Roger D.; Cunningham, Mark O.; Whittington, Miles A.

    2010-01-01

    Field potential signals, corresponding to electrographic seizures in cortical structures, often contain two components, which sometimes appear to be separable and other times to be superimposed. The first component consists of low-amplitude very fast oscillations (VFO, > 70–80 Hz); the second component consists of larger amplitude transients, lasting tens to hundreds of ms, and variously called population spikes, EEG spikes, or bursts – terms chosen in part because of the cellular correlates of the field events. To first approximation, the two components arise because of distinctive types of cellular interactions: gap junctions for VFO (a model of which is reviewed in the following), and recurrent synaptic excitation and/or inhibition for the transients. With in vitro studies of epileptic human neocortical tissue, it is possible to elicit VFO alone, or VFO superimposed on a large transient, but not a large transient without the VFO. If such observations prove to be general, they would imply that gap junction-mediated interactions are the primary factor in epileptogenesis. It appears to be the case then, that in the setting of seizure initiation (but not necessarily under physiological conditions), the gain of gap junction-mediated circuits can actually be larger than the gain in excitatory synaptic circuits. PMID:21168305

  3. On-chip optical transduction scheme for graphene nano-electro-mechanical systems in silicon-photonic platform

    NASA Astrophysics Data System (ADS)

    Dash, Aneesh; Selvaraja, S. K.; Naik, A. K.

    2018-02-01

    We present a scheme for on-chip optical transduction of strain and displacement of Graphene-based Nano-Electro-Mechanical Systems (NEMS). A detailed numerical study on the feasibility of three silicon-photonic integrated circuit configurations is presented: Mach-Zehnder Interferometer(MZI), micro-ring resonator and ring-loaded MZI. An index-sensing based technique using a Mach-Zehnder Interferometer loaded with a ring resonator with a moderate Q-factor of 2400 can yield a sensitivity of 28 fm/sqrt(Hz), and 6.5E-6 %/sqrt(Hz) for displacement and strain respectively. Though any phase sensitive integrated photonic device could be used for optical transduction, here we show that optimal sensitivity is achievable by combining resonance with phase sensitivity.

  4. Valley dependent transport in graphene L junction

    NASA Astrophysics Data System (ADS)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  5. Innovative architecture design for high performance organic and hybrid multi-junction solar cells

    NASA Astrophysics Data System (ADS)

    Li, Ning; Spyropoulos, George D.; Brabec, Christoph J.

    2017-08-01

    The multi-junction concept is especially attractive for the photovoltaic (PV) research community owing to its potential to overcome the Schockley-Queisser limit of single-junction solar cells. Tremendous research interests are now focused on the development of high-performance absorbers and novel device architectures for emerging PV technologies, such as organic and perovskite PVs. It has been predicted that the multi-junction concept is able to boost the organic and perovskite PV technologies approaching the 20% and 30% benchmarks, respectively, showing a bright future of commercialization of the emerging PV technologies. In this contribution, we will demonstrate innovative architecture design for solution-processed, highly functional organic and hybrid multi-junction solar cells. A simple but elegant approach to fabricating organic and hybrid multi-junction solar cells will be introduced. By laminating single organic/hybrid solar cells together through an intermediate layer, the manufacturing cost and complexity of large-scale multi-junction solar cells can be significantly reduced. This smart approach to balancing the photocurrents as well as open circuit voltages in multi-junction solar cells will be demonstrated and discussed in detail.

  6. Development of SIS Mixers for 1 THz

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.; Kooi, J.; Chattopadhyay, G.; Bumble, B.; LeDuc, H. G.; Stern, J. A.

    1998-01-01

    SIS heterodyne mixer technology based on niobium tunnel junctions has now been pushed to frequencies over 1 THz, clearly demonstrating that the SIS junctions are capable of mixing at frequencies up to twice the energy gap frequency (4 Delta/h). However, the performance degrades rapidly above the gap frequency of niobium (2 Delta/h approx. 700 GHz) due to substantial ohmic losses in the on-chip tuning circuit. To solve this problem, the tuning circuit should be fabricated using a superconducting film with a larger energy gap, such as NbN; unfortunately, NbN films often have a substantial excess surface resistance in the submillimeter band. In contrast, the SIS mixer measurements we present in this paper indicate that the losses for NbTiN thin films can be quite low.

  7. Design and Photovoltaic Properties of Graphene/Silicon Solar Cell

    NASA Astrophysics Data System (ADS)

    Xu, Dikai; Yu, Xuegong; Yang, Lifei; Yang, Deren

    2018-04-01

    Graphene/silicon (Gr/Si) Schottky junction solar cells have attracted widespread attention for the fabrication of high-efficiency and low-cost solar cells. However, their performance is still limited by the working principles of Schottky junctions. Modulating the working mechanism of the solar cells into a quasi p-n junction has advantages, including higher open-circuit voltage (V OC) and less carrier recombination. In this study, Gr/Si quasi p-n junction solar cells were formed by inserting a tunneling Al2O3 interlayer in-between graphene and silicon, which led to obtain the PCE up to 8.48% without antireflection or chemical doping techniques. Our findings could pave a new way for the development of Gr/Si solar cells.

  8. n-Type silicon photoelectrochemistry in methanol: Design of a 10.1% efficient semiconductor/liquid junction solar cell

    PubMed Central

    Gronet, Chris M.; Lewis, Nathan S.; Cogan, George; Gibbons, James

    1983-01-01

    n-Type Si electrodes in MeOH solvent with 0.2 M (1-hydroxyethyl)ferrocene, 0.5 mM (1-hydroxyethyl)ferricenium, and 1.0 M LiClO4 exhibit air mass 2 conversion efficiencies of 10.1% for optical energy into electricity. We observe open-circuit voltages of 0.53 V and short-circuit quantum efficiencies for electron flow of nearly unity. The fill factor of the cell does not decline significantly with increases in light intensity, indicating substantial reduction in efficiency losses in MeOH solvent compared to previous nonaqueous n-Si systems. Matte etch texturing of the Si surface decreases surface reflectivity and increases photocurrent by 50% compared to shiny, polished Si samples. The high values of the open-circuit voltage observed are consistent with the presence of a thin oxide layer, as in a Schottky metal-insulator-semiconductor device, which yields decreased surface recombination and increased values of open-circuit voltage and short-circuit current. The n-Si system was shown to provide sustained photocurrent at air mass 2 levels (20 mA/cm2) for charge through the interface of >2,000 C/cm2. The n-Si/MeOH system represents a liquid junction cell that has exceeded the 10% barrier for conversion of optical energy into electricity. PMID:16593280

  9. Experimental demonstration of interferometric imaging using photonic integrated circuits.

    PubMed

    Su, Tiehui; Scott, Ryan P; Ogden, Chad; Thurman, Samuel T; Kendrick, Richard L; Duncan, Alan; Yu, Runxiang; Yoo, S J B

    2017-05-29

    This paper reports design, fabrication, and demonstration of a silica photonic integrated circuit (PIC) capable of conducting interferometric imaging with multiple baselines around λ = 1550 nm. The PIC consists of four sets of five waveguides (total of twenty waveguides), each leading to a three-band spectrometer (total of sixty waveguides), after which a tunable Mach-Zehnder interferometer (MZI) constructs interferograms from each pair of the waveguides. A total of thirty sets of interferograms (ten pairs of three spectral bands) is collected by the detector array at the output of the PIC. The optical path difference (OPD) of each interferometer baseline is kept to within 1 µm to maximize the visibility of the interference measurement. We constructed an experiment to utilize the two baselines for complex visibility measurement on a point source and a variable width slit. We used the point source to demonstrate near unity value of the PIC instrumental visibility, and used the variable slit to demonstrate visibility measurement for a simple extended object. The experimental result demonstrates the visibility of baseline 5 and 20 mm for a slit width of 0 to 500 µm in good agreement with theoretical predictions.

  10. Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography

    PubMed Central

    Yurtsever, Günay; Považay, Boris; Alex, Aneesh; Zabihian, Behrooz; Drexler, Wolfgang; Baets, Roel

    2014-01-01

    Optical coherence tomography (OCT) is a noninvasive, three-dimensional imaging modality with several medical and industrial applications. Integrated photonics has the potential to enable mass production of OCT devices to significantly reduce size and cost, which can increase its use in established fields as well as enable new applications. Using silicon nitride (Si3N4) and silicon dioxide (SiO2) waveguides, we fabricated an integrated interferometer for spectrometer-based OCT. The integrated photonic circuit consists of four splitters and a 190 mm long reference arm with a foot-print of only 10 × 33 mm2. It is used as the core of a spectral domain OCT system consisting of a superluminescent diode centered at 1320 nm with 100 nm bandwidth, a spectrometer with 1024 channels, and an x-y scanner. The sensitivity of the system was measured at 0.25 mm depth to be 65 dB with 0.1 mW on the sample. Using the system, we imaged human skin in vivo. With further optimization in design and fabrication technology, Si3N4/SiO2 waveguides have a potential to serve as a platform for passive photonic integrated circuits for OCT. PMID:24761288

  11. A dc model for power switching transistors suitable for computer-aided design and analysis

    NASA Technical Reports Server (NTRS)

    Wilson, P. M.; George, R. T., Jr.; Owen, H. A.; Wilson, T. G.

    1979-01-01

    A model for bipolar junction power switching transistors whose parameters can be readily obtained by the circuit design engineer, and which can be conveniently incorporated into standard computer-based circuit analysis programs is presented. This formulation results from measurements which may be made with standard laboratory equipment. Measurement procedures, as well as a comparison between actual and computed results, are presented.

  12. Development of High Level Electrical Stress Failure Threshold and Prediction Model for Small Scale Junction Integrated Circuits

    DTIC Science & Technology

    1978-09-01

    AWACS EMP Guidelines presents two different models to predict the damage pcwer of the dev-ce and the circuit damage EMP voltage ( VEMP ). Neither of...calculated as K P~ I V BD 6. The damage EMP voltage ( VEMP ) is calculated KZ EMP +IZ =D +BD VBD1F 7. The damage EMP voltage is calculated for collector

  13. A differential spectral responsivity measurement system constructed for determining of the spectral responsivity of a single- and triple-junction photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Sametoglu, Ferhat; Celikel, Oguz; Witt, Florian

    2017-10-01

    A differential spectral responsivity (DSR) measurement system has been designed and constructed at National Metrology Institute of Turkey (TUBITAK UME) to determine the spectral responsivity (SR) of a single- or a multi-junction photovoltaic device (solar cell). The DSR setup contains a broad band light bias source composed of a constructed Solar Simulator based on a 1000 W Xe-arc lamp owning a AM-1.5 filter and 250 W quartz-tungsten-halogen lamp, a designed and constructed LED-based Bias Light Sources, a DC voltage bias circuit, and a probe beam optical power tracking and correction circuit controlled with an ADuC847 microcontroller card together with an embedded C based software, designed and constructed in TUBITAK UME under this project. By using the constructed DSR measurement system, the SR calibration of solar cells, the monolitic triple-junction solar cell GaInP/GaInAs/Ge and its corresponding component cells have been performed within the EURAMET Joint Research Project SolCell.

  14. Bright Electroluminescence from Single Graphene Nanoribbon Junctions

    NASA Astrophysics Data System (ADS)

    Chong, Michael C.; Afshar-Imani, Nasima; Scheurer, Fabrice; Cardoso, Claudia; Ferretti, Andrea; Prezzi, Deborah; Schull, Guillaume

    2018-01-01

    Thanks to their highly tunable band gaps, graphene nanoribbons (GNRs) with atomically precise edges are emerging as mechanically and chemically robust candidates for nanoscale light emitting devices of modulable emission color. While their optical properties have been addressed theoretically in depth, only few experimental studies exist, limited to ensemble measurements and without any attempt to integrate them in an electronic-like circuit. Here we report on the electroluminescence of individual GNRs suspended between the tip of a scanning tunneling microscope (STM) and a Au(111) substrate, constituting thus a realistic opto-electronic circuit. Emission spectra of such GNR junctions reveal a bright and narrow band emission of red light, whose energy can be tuned with the bias voltage applied to the junction, but always lying below the gap of infinite GNRs. Comparison with {\\it ab initio} calculations indicate that the emission involves electronic states localized at the GNR termini. Our results shed light on unpredicted optical transitions in GNRs and provide a promising route for the realization of bright, robust and controllable graphene-based light emitting devices.

  15. Two-dimensional thermal modeling of power monolithic microwave integrated circuits (MMIC's)

    NASA Technical Reports Server (NTRS)

    Fan, Mark S.; Christou, Aris; Pecht, Michael G.

    1992-01-01

    Numerical simulations of the two-dimensional temperature distributions for a typical GaAs MMIC circuit are conducted, aiming at understanding the heat conduction process of the circuit chip and providing temperature information for device reliability analysis. The method used is to solve the two-dimensional heat conduction equation with a control-volume-based finite difference scheme. In particular, the effects of the power dissipation and the ambient temperature are examined, and the criterion for the worst operating environment is discussed in terms of the allowed highest device junction temperature.

  16. Long-Term Characterization of 6H-SiC Transistor Integrated Circuit Technology Operating at 500 C

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Spry, David J.; Chen, Liang-Yu; Chang, Carl W.; Beheim, Glenn M.; Okojie, Robert S.; Evans, Laura J.; Meredith Roger D.; Ferrier, Terry L.; Krasowski, Michael J.; hide

    2008-01-01

    NASA has been developing very high temperature semiconductor integrated circuits for use in the hot sections of aircraft engines and for Venus exploration. This paper reports on long-term 500 C electrical operation of prototype 6H-SiC integrated circuits based on epitaxial 6H-SiC junction field effect transistors (JFETs). As of this writing, some devices have surpassed 4000 hours of continuous 500 C electrical operation in oxidizing air atmosphere with minimal change in relevant electrical parameters.

  17. Design of optical seven-segment decoder using Pockel's effect inside lithium niobate-based waveguide

    NASA Astrophysics Data System (ADS)

    Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep

    2017-01-01

    Seven-segment decoder is a device that allows placing digital information from many inputs to many outputs optically, having 11 Mach-Zehnder interferometers (MZIs) for their implementation. The layout of the circuit is implemented to fit the electrical method on an optical logic circuit based on the beam propagation method (BPM). Seven-segment decoder is proposed using electro-optic effect inside lithium niobate-based MZIs. MZI structures are able to switch an optical signal to a desired output port. It consists of a mathematical explanation about the proposed device. The BPM is also used to analyze the study.

  18. Plant-derived triterpene celastrol ameliorates oxygen glucose deprivation-induced disruption of endothelial barrier assembly via inducing tight junction proteins.

    PubMed

    Luo, Dan; Zhao, Jia; Rong, Jianhui

    2016-12-01

    The integrity and functions of blood-brain barrier (BBB) are regulated by the expression and organization of tight junction proteins. The present study was designed to explore whether plant-derived triterpenoid celastrol could regulate tight junction integrity in murine brain endothelial bEnd3 cells. We disrupted the tight junctions between endothelial bEnd3 cells by oxygen glucose deprivation (OGD). We investigated the effects of celastrol on the permeability of endothelial monolayers by measuring transepithelial electrical resistance (TEER). To clarify the tight junction composition, we analyzed the expression of tight junction proteins by RT-PCR and Western blotting techniques. We found that celastrol recovered OGD-induced TEER loss in a concentration-dependent manner. Celastrol induced occludin, claudin-5 and zonula occludens-1 (ZO-1) in endothelial cells. As a result, celastrol effectively maintained tight junction integrity and inhibited macrophage migration through endothelial monolayers against OGD challenge. Further mechanistic studies revealed that celastrol induced the expression of occludin and ZO-1) via activating MAPKs and PI3K/Akt/mTOR pathway. We also observed that celastrol regulated claudin-5 expression through different mechanisms. The present study demonstrated that celastrol effectively protected tight junction integrity against OGD-induced damage. Thus, celastrol could be a drug candidate for the treatment of BBB dysfunction in various diseases. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Two-dimensional non-volatile programmable p-n junctions

    NASA Astrophysics Data System (ADS)

    Li, Dong; Chen, Mingyuan; Sun, Zhengzong; Yu, Peng; Liu, Zheng; Ajayan, Pulickel M.; Zhang, Zengxing

    2017-09-01

    Semiconductor p-n junctions are the elementary building blocks of most electronic and optoelectronic devices. The need for their miniaturization has fuelled the rapid growth of interest in two-dimensional (2D) materials. However, the performance of a p-n junction considerably degrades as its thickness approaches a few nanometres and traditional technologies, such as doping and implantation, become invalid at the nanoscale. Here we report stable non-volatile programmable p-n junctions fabricated from the vertically stacked all-2D semiconductor/insulator/metal layers (WSe2/hexagonal boron nitride/graphene) in a semifloating gate field-effect transistor configuration. The junction exhibits a good rectifying behaviour with a rectification ratio of 104 and photovoltaic properties with a power conversion efficiency up to 4.1% under a 6.8 nW light. Based on the non-volatile programmable properties controlled by gate voltages, the 2D p-n junctions have been exploited for various electronic and optoelectronic applications, such as memories, photovoltaics, logic rectifiers and logic optoelectronic circuits.

  20. Very high-current-density Nb/AlN/Nb tunnel junctions for low-noise submillimeter mixers

    NASA Astrophysics Data System (ADS)

    Kawamura, Jonathan; Miller, David; Chen, Jian; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.

    2000-04-01

    We have fabricated and tested submillimeter-wave superconductor-insulator-superconductor (SIS) mixers using very high-current-density Nb/AlN/Nb tunnel junctions (Jc≈30 kA cm-2). The junctions have low-resistance-area products (RNA≈5.6 Ω μm2), good subgap-to-normal resistance ratios Rsg/RN≈10, and good run-to-run reproducibility. From Fourier transform spectrometer measurements, we infer that ωRNC=1 at 270 GHz. This is a factor of 2.5 improvement over what is generally available with Nb/AlOx/Nb junctions suitable for low-noise mixers. The AlN-barrier junctions are indeed capable of low-noise operation: we measure an uncorrected double-sideband receiver noise temperature of TRX=110 K at 533 GHz for an unoptimized device. In addition to providing wider bandwidth operation at lower frequencies, the AlN-barrier junctions will considerably improve the performance of THz SIS mixers by reducing rf loss in the tuning circuits.

  1. Charge splitters and charge transport junctions based on guanine quadruplexes

    NASA Astrophysics Data System (ADS)

    Sha, Ruojie; Xiang, Limin; Liu, Chaoren; Balaeff, Alexander; Zhang, Yuqi; Zhang, Peng; Li, Yueqi; Beratan, David N.; Tao, Nongjian; Seeman, Nadrian C.

    2018-04-01

    Self-assembling circuit elements, such as current splitters or combiners at the molecular scale, require the design of building blocks with three or more terminals. A promising material for such building blocks is DNA, wherein multiple strands can self-assemble into multi-ended junctions, and nucleobase stacks can transport charge over long distances. However, nucleobase stacking is often disrupted at junction points, hindering electric charge transport between the two terminals of the junction. Here, we show that a guanine-quadruplex (G4) motif can be used as a connector element for a multi-ended DNA junction. By attaching specific terminal groups to the motif, we demonstrate that charges can enter the structure from one terminal at one end of a three-way G4 motif, and can exit from one of two terminals at the other end with minimal carrier transport attenuation. Moreover, we study four-way G4 junction structures by performing theoretical calculations to assist in the design and optimization of these connectors.

  2. Two-dimensional non-volatile programmable p-n junctions.

    PubMed

    Li, Dong; Chen, Mingyuan; Sun, Zhengzong; Yu, Peng; Liu, Zheng; Ajayan, Pulickel M; Zhang, Zengxing

    2017-09-01

    Semiconductor p-n junctions are the elementary building blocks of most electronic and optoelectronic devices. The need for their miniaturization has fuelled the rapid growth of interest in two-dimensional (2D) materials. However, the performance of a p-n junction considerably degrades as its thickness approaches a few nanometres and traditional technologies, such as doping and implantation, become invalid at the nanoscale. Here we report stable non-volatile programmable p-n junctions fabricated from the vertically stacked all-2D semiconductor/insulator/metal layers (WSe 2 /hexagonal boron nitride/graphene) in a semifloating gate field-effect transistor configuration. The junction exhibits a good rectifying behaviour with a rectification ratio of 10 4 and photovoltaic properties with a power conversion efficiency up to 4.1% under a 6.8 nW light. Based on the non-volatile programmable properties controlled by gate voltages, the 2D p-n junctions have been exploited for various electronic and optoelectronic applications, such as memories, photovoltaics, logic rectifiers and logic optoelectronic circuits.

  3. Optimization of the short-circuit current in an InP nanowire array solar cell through opto-electronic modeling.

    PubMed

    Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas

    2016-09-23

    InP nanowire arrays with axial p-i-n junctions are promising devices for next-generation photovoltaics, with a demonstrated efficiency of 13.8%. However, the short-circuit current in such arrays does not match their absorption performance. Here, through combined optical and electrical modeling, we study how the absorption of photons and separation of the resulting photogenerated electron-hole pairs define and limit the short-circuit current in the nanowires. We identify how photogenerated minority carriers in the top n segment (i.e. holes) diffuse to the ohmic top contact where they recombine without contributing to the short-circuit current. In our modeling, such contact recombination can lead to a 60% drop in the short-circuit current. To hinder such hole diffusion, we include a gradient doping profile in the n segment to create a front surface barrier. This approach leads to a modest 5% increase in the short-circuit current, limited by Auger recombination with increased doping. A more efficient approach is to switch the n segment to a material with a higher band gap, like GaP. Then, a much smaller number of holes is photogenerated in the n segment, strongly limiting the amount that can diffuse and disappear into the top contact. For a 500 nm long top segment, the GaP approach leads to a 50% higher short-circuit current than with an InP top segment. Such a long top segment could facilitate the fabrication and contacting of nanowire array solar cells. Such design schemes for managing minority carriers could open the door to higher performance in single- and multi-junction nanowire-based solar cells.

  4. Effects of Methylenedianiline on Tight Junction Permeability of Biliary Epithelial Cells in vivo and in vitro

    PubMed Central

    Santa Cruz, Vicente; Liu, Hanlin; Kaphalia, Lata; Kanz, Mary F.

    2007-01-01

    Methylenedianiline (DAPM) is considered a cholangiodestructive toxicant in vivo. Increases in biliary inorganic phosphate (Pi) and glucose occur prior to biliary epithelial cell (BEC) injury, which could be due to increased paracellular permeability and/or impairment of Pi and glucose uptake by BEC. To evaluate these possibilities, we induced mild injury [loss of BEC from major bile ducts (6 h), ultrastructural alterations in BEC mitochondria and Golgi cisternae (3 h), and striking increases in biliary Pi and glucose (3–6 h)] with 25 mg DAPM/kg and then assessed temporal alterations in tight junction (TJ) permeability by measuring bile to plasma (B:P) ratios of [3H]-inulin. Parameters maintained by hepatocytes in bile were unchanged (bile flow, bile acids, bilirubin) or only transiently perturbed (protein, glutathione). Minimal elevations in B:P ratios of inulin occurred temporally later (4 h) in DAPM-treated rats than increases in biliary Pi and glucose. To confirm a direct effect of DAPM on BEC TJs, we measured transepithelial resistance (TER) and bi-ionic potentials of BEC monolayers prior to and after exposure to pooled (4 to 6) bile samples collected from untreated rats (Basal Bile) or rats treated with 50 mg DAPM/ kg (DAPM-Bile). BEC TJs were found to be cation selective. Exposure to DAPM-Bile for 1 h decreased TERs by ~35% and decreased charge selectivity of BEC TJs while exposure to Basal Bile had no effects. These observations indicate that DAPM-Bile impairs paracellular permeability of BEC in vitro. Further, our in vivo model suggests that increases in paracellular permeability induced by DAPM are localized to BEC because bile flow and constituents excreted by hepatocytes were unchanged; BEC damage was temporally correlated with increases in biliary Pi and glucose; and elevations in B:P ratios of inulin were delayed and minimal. PMID:17178199

  5. A scanning tunneling microscope break junction method with continuous bias modulation.

    PubMed

    Beall, Edward; Yin, Xing; Waldeck, David H; Wierzbinski, Emil

    2015-09-28

    Single molecule conductance measurements on 1,8-octanedithiol were performed using the scanning tunneling microscope break junction method with an externally controlled modulation of the bias voltage. Application of an AC voltage is shown to improve the signal to noise ratio of low current (low conductance) measurements as compared to the DC bias method. The experimental results show that the current response of the molecule(s) trapped in the junction and the solvent media to the bias modulation can be qualitatively different. A model RC circuit which accommodates both the molecule and the solvent is proposed to analyze the data and extract a conductance for the molecule.

  6. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, Albert G.; Drummond, Timothy J.; Robertson, Perry J.; Zipperian, Thomas E.

    1995-01-01

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits.

  7. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.

    1995-12-26

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.

  8. Wideband Isolation by Frequency Conversion in a Josephson-Junction Transmission Line

    NASA Astrophysics Data System (ADS)

    Ranzani, Leonardo; Kotler, Shlomi; Sirois, Adam J.; DeFeo, Michael P.; Castellanos-Beltran, Manuel; Cicak, Katarina; Vale, Leila R.; Aumentado, José

    2017-11-01

    Nonreciprocal transmission and isolation at microwave frequencies are important in many practical applications. In particular, compact isolators are useful in protecting sensitive quantum circuits operating at cryogenic temperatures from amplifier backaction and other environmental noise such as black-body radiation from higher temperature stages. However, the size of commercial cryogenic isolators limits the ability to measure multiple quantum circuits because of space constraints in typical dilution refrigerator systems. Furthermore, isolators usually require the use of ferrite components that cannot be integrated at the chip level and, since they also need large biasing magnetic fields, are incompatible with superconducting quantum circuits. In this work we show one way to accomplish isolation in a superconducting chip-scale device, a traveling-wave unidirectional frequency converter based on a parametrically pumped superconducting Josephson-junction transmission line, demonstrating better than 4.8 dB of inferred signal isolation from 6.6 to 11.4 GHz, with a maximum of 12 dB at 9.5 GHz. By using frequency diplexing techniques a conventional isolator could be implemented over this bandwidth.

  9. The J3 SCR model applied to resonant converter simulation

    NASA Technical Reports Server (NTRS)

    Avant, R. L.; Lee, F. C. Y.

    1985-01-01

    The J3 SCR model is a continuous topology computer model for the SCR. Its circuit analog and parameter estimation procedure are uniformly applicable to popular computer-aided design and analysis programs such as SPICE2 and SCEPTRE. The circuit analog is based on the intrinsic three pn junction structure of the SCR. The parameter estimation procedure requires only manufacturer's specification sheet quantities as a data base.

  10. Modeling and experimental characterization of electromigration in interconnect trees

    NASA Astrophysics Data System (ADS)

    Thompson, C. V.; Hau-Riege, S. P.; Andleigh, V. K.

    1999-11-01

    Most modeling and experimental characterization of interconnect reliability is focussed on simple straight lines terminating at pads or vias. However, laid-out integrated circuits often have interconnects with junctions and wide-to-narrow transitions. In carrying out circuit-level reliability assessments it is important to be able to assess the reliability of these more complex shapes, generally referred to as `trees.' An interconnect tree consists of continuously connected high-conductivity metal within one layer of metallization. Trees terminate at diffusion barriers at vias and contacts, and, in the general case, can have more than one terminating branch when they include junctions. We have extended the understanding of `immortality' demonstrated and analyzed for straight stud-to-stud lines, to trees of arbitrary complexity. This leads to a hierarchical approach for identifying immortal trees for specific circuit layouts and models for operation. To complete a circuit-level-reliability analysis, it is also necessary to estimate the lifetimes of the mortal trees. We have developed simulation tools that allow modeling of stress evolution and failure in arbitrarily complex trees. We are testing our models and simulations through comparisons with experiments on simple trees, such as lines broken into two segments with different currents in each segment. Models, simulations and early experimental results on the reliability of interconnect trees are shown to be consistent.

  11. Role of gap junction intercellular communication in testicular leydig cell apoptosis induced by oxaliplatin via the mitochondrial pathway.

    PubMed

    Tong, Xuhui; Han, Xi; Yu, Binbin; Yu, Meiling; Jiang, Guojun; Ji, Jie; Dong, Shuying

    2015-01-01

    Platinum agents are widely used in the chemotherapy of testicular cancer. However, adverse reactions and resistance to such agents have limited their application in antineoplastic treatment. The aim of the present study was to determine the role of gap junction intercellular communication (GJIC) composed of Cx43 on oxaliplatin‑induced survival/apoptosis in mouse leydig normal and cancer cells using MTT, Annexin V/PI double staining assays and western blot analysis. The results showed that GJIC exerted opposite effects on the mouse leydig cancer (I-10) and normal (TM3) cell apoptosis induced by oxaliplatin. In leydig cancer cells, survival of cells exposed to oxaliplatin was substantially reduced when gap junctions formed as compared to no gap junctions. Pharmacological inhibition of gap junctions by oleamide and 18-α-glycyrrhetinic acid resulted in enhanced survival/decreased apoptosis while enhancement of gap junctions by retinoic acid led to decreased survival/increased apoptosis. These effects occurred only in high‑density cultures (gap junction formed), while the pharmacological modulations had no effects when there was no opportunity for gap junction formation. Notably, GJIC played an opposite (protective) role in normal leydig cells survival/apoptosis following exposure to oxaliplatin. Furthermore, this converse oxaliplatin‑inducing apoptosis exerted through the functional gap junction was correlated with the mitochondrial pathway‑related protein Bcl-2/Bax and caspase‑3/9. These results suggested that in testicular leydig normal/cancer cells, GJIC plays an opposite role in oxaliplatin‑induced apoptosis via the mitochondrial pathway.

  12. Fixed Junction Light Emitting Electrochemical Cells based on Polymerizable Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Brown, Erin; Limanek, Austin; Bauman, James; Leger, Janelle

    Organic photovoltaic (OPV) devices are of interest due to ease of fabrication, which increases their cost-effectiveness. OPV devices based on fixed-junction light emitting electrochemical cells (LECs) in particular have shown promising results. LECs are composed of a layer of polymer semiconductor blended with a salt sandwiched between two electrodes. As a forward bias is applied, the ions within the polymer separate, migrate to the electrodes, and enable electrochemical doping, thereby creating a p-n junction analog. In a fixed junction device, the ions are immobilized after the desired distribution has been established, allowing for operation under reverse bias conditions. Fixed junctions can be established using various techniques, including chemically by mixing polymerizable salts that will bond to the polymer under a forward bias. Previously we have demonstrated the use of the polymerizable ionic liquid allyltrioctylammonium allysulfonate (ATOAAS) as an effective means of creating a chemically fixed junction in an LEC. Here we present the application of this approach to the creation of photovoltaic devices. Devices demonstrate higher open circuit voltages, faster charging, and an overall improved device performance over previous chemically-fixed junction PV devices.

  13. Optical fiber extrinsic Fabry-Perot interferometer sensors for ultrasound detection

    NASA Astrophysics Data System (ADS)

    Sun, Qingguo; Chen, Na; Ding, Yuetong; Chen, Zhenyi; Wang, Tingyun

    2009-11-01

    In this paper, a new method is proposed to fabricate an optical fiber extrinsic Fabry-Perot interferometer (EFPI) as an ultrasonic sensor. An acoustic emission detecting system is constructed based on multiple EFPI sensors and demodulation circuit. Ultrasound detection experiments were done from both traditional piezoelectric transducer (PZT) and high voltage discharge. In the experiments, strong ultrasound signals were detected in both cases. The signal attenuation related to the distance and the angle between the acoustic emission source and the FP sensor are obtained. The results indicate that the receiving angle of the FP sensor is nearly 90° and the maximum detection distance in the air is more than 200cm. Furthermore, four sensors are used to locate the position of the ultrasound source produced by high voltage discharge.

  14. Applying the Network Simulation Method for testing chaos in a resistively and capacitively shunted Josephson junction model

    NASA Astrophysics Data System (ADS)

    Bellver, Fernando Gimeno; Garratón, Manuel Caravaca; Soto Meca, Antonio; López, Juan Antonio Vera; Guirao, Juan L. G.; Fernández-Martínez, Manuel

    In this paper, we explore the chaotic behavior of resistively and capacitively shunted Josephson junctions via the so-called Network Simulation Method. Such a numerical approach establishes a formal equivalence among physical transport processes and electrical networks, and hence, it can be applied to efficiently deal with a wide range of differential systems. The generality underlying that electrical equivalence allows to apply the circuit theory to several scientific and technological problems. In this work, the Fast Fourier Transform has been applied for chaos detection purposes and the calculations have been carried out in PSpice, an electrical circuit software. Overall, it holds that such a numerical approach leads to quickly computationally solve Josephson differential models. An empirical application regarding the study of the Josephson model completes the paper.

  15. Beneficial effects of Rifaximin in post-infectious irritable bowel syndrome mouse model beyond gut microbiota.

    PubMed

    Jin, Yu; Ren, Xiaoyang; Li, Gangping; Li, Ying; Zhang, Lei; Wang, Huan; Qian, Wei; Hou, Xiaohua

    2018-02-01

    Rifaximin is a minimally absorbed antibiotic, which has shown efficacy in irritable bowel syndrome (IBS) patients. However, the mechanism on how it effects in IBS is still incompletely defined. In this study, Trichinella spiralis-infected post-infectious (PI) IBS mouse model was used, to assess the action of rifaximin on visceral hypersensitivity, barrier function, gut inflammation, and microbiota. Post-infectious IBS model was established by T. spiralis infection in mice. Rifaximin were administered to PI-IBS mice for seven consecutive days. The abdominal withdrawal reflex and threshold of colorectal distention were employed to evaluate visceral sensitivity. Smooth muscle contractile response was recorded in the organ bath. Intestinal permeability was measured by Ussing chamber. Expression of tight junction protein and cytokines were measured by Western blotting. Ilumina miseq platform was used to analyze bacterial 16S ribosomal RNA. Post-infectious IBS mice treated with rifaximin exhibited decreased abdominal withdrawal reflex score, increased threshold, reduced contractile response, and intestinal permeability. Rifaximin also suppressed the expression of interleukin-12 and interleukin-17 and promoted the expression of the major tight junction protein occludin. Furthermore, rifaximin did not change the composition and diversity, and the study reavealed that rifaximin had a tiny effect on the relative abundance of Lactobacillus and Bifidobacterium in this PI-IBS model. Rifaximin alleviated visceral hypersensitivity, recovered intestinal barrier function, and inhibited low-grade inflammation in colon and ileum of PI-IBS mouse model. Moreover, rifaximin exerts anti-inflammatory effects with only a minimal effect on the overall composition and diversity of the gut microbiota in this model. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  16. The role of hydrogenated amorphous silicon oxide buffer layer on improving the performance of hydrogenated amorphous silicon germanium single-junction solar cells

    NASA Astrophysics Data System (ADS)

    Sritharathikhun, Jaran; Inthisang, Sorapong; Krajangsang, Taweewat; Krudtad, Patipan; Jaroensathainchok, Suttinan; Hongsingtong, Aswin; Limmanee, Amornrat; Sriprapha, Kobsak

    2016-12-01

    Hydrogenated amorphous silicon oxide (a-Si1-xOx:H) film was used as a buffer layer at the p-layer (μc-Si1-xOx:H)/i-layer (a-Si1-xGex:H) interface for a narrow band gap hydrogenated amorphous silicon germanium (a-Si1-xGex:H) single-junction solar cell. The a-Si1-xOx:H film was deposited by plasma enhanced chemical vapor deposition (PECVD) at 40 MHz in a same processing chamber as depositing the p-type layer. An optimization of the thickness of the a-Si1-xOx:H buffer layer and the CO2/SiH4 ratio was performed in the fabrication of the a-Si1-xGex:H single junction solar cells. By using the wide band gap a-Si1-xOx:H buffer layer with optimum thickness and CO2/SiH4 ratio, the solar cells showed an improvement in the open-circuit voltage (Voc), fill factor (FF), and short circuit current density (Jsc), compared with the solar cells fabricated using the conventional a-Si:H buffer layer. The experimental results indicated the excellent potential of the wide-gap a-Si1-xOx:H buffer layers for narrow band gap a-Si1-xGex:H single junction solar cells.

  17. 432- μm laser's beam-waist measurement for the polarimeter/interferometer on the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Wang, Z. X.; Liu, H. Q.; Jie, Y. X.; Wu, M. Q.; Lan, T.; Zhu, X.; Zou, Z. Y.; Yang, Y.; Wei, X. C.; Zeng, L.; Li, G. S.; Gao, X.

    2014-10-01

    A far-infrared (FIR) polarimeter/interferometer (PI) system is under development for measurements of the current-density and the electron-density profiles in the EAST tokamak. The system will utilize three identical 432- μm CHCOOH lasers pumped by a CO2 laser. Measurements of the laser beam's waist size and position are basic works. This paper will introduce three methods with a beam profiler and several focusing optical elements. The beam profiler can be used to show the spatial energy distribution of the laser beam. The active area of the profiler is 12.4 × 12.4 mm2. Some focusing optical elements are needed to focus the beam in order for the beam profiler to receive the entire laser beam. Two principles and three methods are used in the measurement. The first and the third methods are based on the same principle, and the second method adopts an other principle. Due to the fast and convenient measurement, although the first method is a special form of the third and it can only give the size of beam waist, it is essential to the development of the experiment and it can provide guidance for the choices of the sizes of the optical elements in the next step. A concave mirror, a high-density polyethylene (HDPE) lens and a polymethylpentene (TPX) lens are each used in the measurement process. The results of these methods are close enough for the design of PI system's optical path.

  18. 3D Printed Fluidic Hardware for DNA Assembly

    DTIC Science & Technology

    2015-04-10

    A3909 stepper motor driver, were soldered onto the milled circuit board (Supplementary Figure 8). Custom Arduino - based firmware was written to take...initiatives such as the FabLab Foundation10. Access to digital fabrication tools and open electronics, such as Arduino and Raspberry Pi, enables access to...hardware for assembly of DNA- based genetic circuits. Solid-phase DNA synthesis has declined in price, enabling researchers to routinely design and

  19. Modeling and Simulation of a 5.8kV SiC PiN Diode for Inductive Pulsed Plasma Thruster Applications

    NASA Technical Reports Server (NTRS)

    Toftul, Alexandra; Hudgins, Jerry L.; Polzin, Kurt A.; Martin, Adam K.

    2014-01-01

    Current ringing in an Inductive Pulsed Plasma Thruster (IPPT) can lead to reduced energy efficiency, excess heating, and wear on circuit components such as capacitors and solid state devices. Clamping off the current using a fast turn-off power diode is an effective way to reduce current ringing and increase energy efficiency. A diode with a shorter reverse recovery time will allow the least amount of current to ring back through the circuit, as well as minimize switching losses. The reverse recovery response of a new 5.8 kilovolt SiC PiN diode from Cree, Inc. in the IPPT plasma drive circuit is investigated using a physicsbased Simulink model, and compared with that of a 5SDF 02D6004 5.5 kilovolt fast-switching Si diode from ABB. Parameter extraction was carried out for each diode using both datasheet specifications and experimental waveforms, in order to most accurately adapt the model to the specific device. Further experimental data will be discussed using a flat-plate IPPT developed at NASA Marshall Space Flight Center and used to verify the simulation results. A final quantitative measure of circuit efficiency will be described for both the Si and SiC diode configuration.

  20. Par3 integrates Tiam1 and phosphatidylinositol 3-kinase signaling to change apical membrane identity

    PubMed Central

    Ruch, Travis R.; Bryant, David M.; Mostov, Keith E.; Engel, Joanne N.

    2017-01-01

    Pathogens can alter epithelial polarity by recruiting polarity proteins to the apical membrane, but how a change in protein localization is linked to polarity disruption is not clear. In this study, we used chemically induced dimerization to rapidly relocalize proteins from the cytosol to the apical surface. We demonstrate that forced apical localization of Par3, which is normally restricted to tight junctions, is sufficient to alter apical membrane identity through its interactions with phosphatidylinositol 3-kinase (PI3K) and the Rac1 guanine nucleotide exchange factor Tiam1. We further show that PI3K activity is required upstream of Rac1, and that simultaneously targeting PI3K and Tiam1 to the apical membrane has a synergistic effect on membrane remodeling. Thus, Par3 coordinates the action of PI3K and Tiam1 to define membrane identity, revealing a signaling mechanism that can be exploited by human mucosal pathogens. PMID:27881661

  1. A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila.

    PubMed

    Saito, Kuniaki; Inagaki, Sachi; Mituyama, Toutai; Kawamura, Yoshinori; Ono, Yukiteru; Sakota, Eri; Kotani, Hazuki; Asai, Kiyoshi; Siomi, Haruhiko; Siomi, Mikiko C

    2009-10-29

    PIWI-interacting RNAs (piRNAs) silence retrotransposons in Drosophila germ lines by associating with the PIWI proteins Argonaute 3 (AGO3), Aubergine (Aub) and Piwi. piRNAs in Drosophila are produced from intergenic repetitive genes and piRNA clusters by two systems: the primary processing pathway and the amplification loop. The amplification loop occurs in a Dicer-independent, PIWI-Slicer-dependent manner. However, primary piRNA processing remains elusive. Here we analysed piRNA processing in a Drosophila ovarian somatic cell line where Piwi, but not Aub or AGO3, is expressed; thus, only the primary piRNAs exist. In addition to flamenco, a Piwi-specific piRNA cluster, traffic jam (tj), a large Maf gene, was determined as a new piRNA cluster. piRNAs arising from tj correspond to the untranslated regions of tj messenger RNA and are sense-oriented. piRNA loading on to Piwi may occur in the cytoplasm. zucchini, a gene encoding a putative cytoplasmic nuclease, is required for tj-derived piRNA production. In tj and piwi mutant ovaries, somatic cells fail to intermingle with germ cells and Fasciclin III is overexpressed. Loss of tj abolishes Piwi expression in gonadal somatic cells. Thus, in gonadal somatic cells, tj gives rise simultaneously to two different molecules: the TJ protein, which activates Piwi expression, and piRNAs, which define the Piwi targets for silencing.

  2. Robust transport signatures of topological superconductivity in topological insulator nanowires.

    PubMed

    de Juan, Fernando; Ilan, Roni; Bardarson, Jens H

    2014-09-05

    Finding a clear signature of topological superconductivity in transport experiments remains an outstanding challenge. In this work, we propose exploiting the unique properties of three-dimensional topological insulator nanowires to generate a normal-superconductor junction in the single-mode regime where an exactly quantized 2e2/h zero-bias conductance can be observed over a wide range of realistic system parameters. This is achieved by inducing superconductivity in half of the wire, which can be tuned at will from trivial to topological with a parallel magnetic field, while a perpendicular field is used to gap out the normal part, except for two spatially separated chiral channels. The combination of chiral mode transport and perfect Andreev reflection makes the measurement robust to moderate disorder, and the quantization of conductance survives to much higher temperatures than in tunnel junction experiments. Our proposal may be understood as a variant of a Majorana interferometer which is easily realizable in experiments.

  3. Electrical circuit model of ITO/AZO/Ge photodetector.

    PubMed

    Patel, Malkeshkumar; Kim, Joondong

    2017-10-01

    In this data article, ITO/AZO/Ge photodetector was investigated for electrical circuit model. Due to the double (ITO and AZO) transparent metal-oxide films (DOI:10.1016/j.mssp.2016.03.007) (Yun et al., 2016) [1], the Ge heterojunction device has a better interface quality due to the AZO layer with a low electrical resistance due to the ITO layer (Yun et al., 2015) [2]. The electrical and interfacial benefitted ITO/AZO/Ge heterojunction shows the quality Schottky junction. In order to investigate the device, the ITO/AZO/Ge heterojunction was analyzed by R-C circuit model using the impedance spectroscopy.

  4. Design and Testing of a Small Inductive Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Martin, Adam K.; Eskridge, Richard H.; Dominguez, Alexandra; Polzin, Kurt A.; Riley, Daniel P.; Kimberlin, Adam C.

    2015-01-01

    The design and testing of a small inductive pulsed plasma thruster (IPPT), shown in Fig. 1 with all the major subsystems required for a thruster of this kind are described. Thrust measurements and imaging of the device operated in rep-rated mode are presented to quantify the performance envelope of the device. The small IPPT described in this paper was designed to serve as a test-bed for the pulsed gas-valves and solid-state switches required for a IPPTs. A modular design approach was used to permit future modifications and upgrades. The thruster consists of the following sub-systems: a) a multi-turn, spiral-wound acceleration coil (27 cm o.d., 10 cm i.d.) driven by a 10 microFarad capacitor and switched with a high-voltage thyristor, b) a fast pulsed gas-valve, and c.) a glow-discharge pre-ionizer (PI) circuit. The acceleration-coil circuit may be operated at voltages up to 4 kV (the thyristor limit is 4.5 kV). The device may be operated at rep-rates up to 30 Hz with the present gas-valve. Thrust measurements and imaging of the device operated in rep-rated mode will be presented. The pre-ionizer consists of a 0.3 microFarad capacitor charged to 4 kV and connected to two annular stainless-steel electrodes bounding the area of the coil-face. The 4 kV potential is held across them and when the gas is puffed in over the coil, the PI circuit is completed, and a plasma is formed. Even at the less than optimal base-pressure in the chamber (approximately 5 × 10(exp -4) torr), the PI held-off the applied voltage, and only discharged upon command. For a capacitor charge of 2 kV the peak coil current is 4.1 kA, and during this pulse a very bright discharge (much brighter than from the PI alone) was observed (see Fig. 2). Interestingly, for discharges at this charge voltage the PI was not required as the current rise rate, dI/dt, of the coil itself was sufficient to ionize the gas.

  5. Semiconductor/High-Tc-Superconductor Hybrid ICs

    NASA Technical Reports Server (NTRS)

    Burns, Michael J.

    1995-01-01

    Hybrid integrated circuits (ICs) containing both Si-based semiconducting and YBa(2)Cu(3)O(7-x) superconducting circuit elements on sapphire substrates developed. Help to prevent diffusion of Cu from superconductors into semiconductors. These hybrid ICs combine superconducting and semiconducting features unavailable in superconducting or semiconducting circuitry alone. For example, complementary metal oxide/semiconductor (CMOS) readout and memory devices integrated with fast-switching Josephson-junction super-conducting logic devices and zero-resistance interconnections.

  6. Biosensing using long-range surface plasmon waveguides

    NASA Astrophysics Data System (ADS)

    Krupin, Oleksiy; Khodami, Maryam; Fan, Hui; Wong, Wei Ru; Mahamd Adikan, Faisal Rafiq; Berini, Pierre

    2017-05-01

    Long-range surface plasmon waveguides, and their application to various transducer architectures for amplitude- or phase-sensitive biosensing, are discussed. Straight and Y-junction waveguides are used for direct intensity-based detection, whereas Bragg gratings and single-, dual- and triple-output Mach Zehnder interferometers are used for phasebased detection. In either case, multiple-output biosensors which provide means for referencing are very useful to eliminate common perturbations and drift. Application of the biosensors to disease detection in complex fluids is discussed. Application to biomolecular interaction analysis and kinetics extraction is also discussed.

  7. Observations of OH and CO in the Orion Molecular Cloud

    NASA Technical Reports Server (NTRS)

    Viscuso, P. J.

    1985-01-01

    The results of millimeter and submillimeter observations of the BN-KL region of the Orion molecular cloud are reported. Observations were made with a 91 cm bent Cassegrain telescope fitted with an interferometer/grating spectrometer during flights at 13-14 km altitude in the NASA Kuiper Observatory. The data collected covered the 2Pi(1/2)J = 3/2 yields 1/2 and 2Pi(3/2)J = 7/2 yields 5/2 rotational transitions of OH. The measurements were made at 163 and 84 micron wavelengths, respectively. The OH emitting regions was estimated to have a temperature of 1000 K and a molecular hydrogen density of about 6 million/cu cm. Depopulation of the excited states of OH was caused primarily by collisional excitation. The OH fill factor for the region survey was about 10 percent, in line with predictions for a post-shocked region.

  8. Interferometric apparatus for ultra-high precision displacement measurement

    NASA Technical Reports Server (NTRS)

    Zhao, Feng (Inventor)

    2004-01-01

    A high-precision heterodyne interferometer measures relative displacement by creating a thermally-insensitive system generally not subject to polarization leakage. By using first and second light beams separated by a small frequency difference (.DELTA.f), beams of light at the first frequency (f.sub.0) are reflected by co-axial mirrors, the first mirror of which has a central aperture through which the light is transmitted to and reflected by the second mirror. Prior to detection, the light beams from the two mirrors are combined with light of the second and slightly different frequency. The combined light beams are separated according to the light from the mirrors. The change in phase (.DELTA..phi.) with respect to the two signals is proportional to the change in distance of Fiducial B by a factor of wavelength (.lambda.) divided by 4.pi. (.DELTA.L=.lambda..DELTA..phi.1/(4.pi.)). In a second embodiment, a polarizing beam splitting system can be used.

  9. Observations of OH and CO in the Orion Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Viscuso, P. J.

    The results of millimeter and submillimeter observations of the BN-KL region of the Orion molecular cloud are reported. Observations were made with a 91 cm bent Cassegrain telescope fitted with an interferometer/grating spectrometer during flights at 13-14 km altitude in the NASA Kuiper Observatory. The data collected covered the 2Pi(1/2)J = 3/2 yields 1/2 and 2Pi(3/2)J = 7/2 yields 5/2 rotational transitions of OH. The measurements were made at 163 and 84 micron wavelengths, respectively. The OH emitting regions was estimated to have a temperature of 1000 K and a molecular hydrogen density of about 6 million/cu cm. Depopulation of the excited states of OH was caused primarily by collisional excitation. The OH fill factor for the region survey was about 10 percent, in line with predictions for a post-shocked region.

  10. Fredkin and Toffoli Gates Implemented in Oregonator Model of Belousov-Zhabotinsky Medium

    NASA Astrophysics Data System (ADS)

    Adamatzky, Andrew

    A thin-layer Belousov-Zhabotinsky (BZ) medium is a powerful computing device capable for implementing logical circuits, memory, image processors, robot controllers, and neuromorphic architectures. We design the reversible logical gates — Fredkin gate and Toffoli gate — in a BZ medium network of excitable channels with subexcitable junctions. Local control of the BZ medium excitability is an important feature of the gates’ design. An excitable thin-layer BZ medium responds to a localized perturbation with omnidirectional target or spiral excitation waves. A subexcitable BZ medium responds to an asymmetric perturbation by producing traveling localized excitation wave-fragments similar to dissipative solitons. We employ interactions between excitation wave-fragments to perform the computation. We interpret the wave-fragments as values of Boolean variables. The presence of a wave-fragment at a given site of a circuit represents the logical truth, absence of the wave-fragment — logically false. Fredkin gate consists of ten excitable channels intersecting at 11 junctions, eight of which are subexcitable. Toffoli gate consists of six excitable channels intersecting at six junctions, four of which are subexcitable. The designs of the gates are verified using numerical integration of two-variable Oregonator equations.

  11. Method of obtaining graphene and graphene-based electronic components and circuits with pencil directly on paper

    NASA Astrophysics Data System (ADS)

    Mailian, Aram; Mailian, Manvel; Shmavonyan, Gagik

    2014-03-01

    An easy method of obtaining graphene and graphene-based electronic components and circuits by drawing lines or repeatedly rubbing any type of graphite rod along the same path directly on paper and other insulating substrates is suggested. The structure containing rubbed-off layers behaves like a semiconducting material. The surface of the structure demonstrates ordered and oriented character containing few layer graphene. The carrier mobility is anisotropic through the thickness of the structure with the highest value of ~ 104 cm2/V .sec at the surface. Raman spectra of the structures in the near IR at excitation wavelength of 976 nm (1.27 eV) are registered. The observed phenomenon is universal, does not depend on the material of the substrate and could find a widespread application. For example, the junction between two rubbed off layers with different mobilities exhibits a non-Ohmic behavior. I-V characteristic of the junction is symmetrically curved with respect to 0 V. The greater is the difference between the carrier mobility, the higher is the curvature. The dynamic accumulation of the carriers in both sides of the junction creates a barrier responsible for non-Ohmic behavior.

  12. Using granular film to suppress charge leakage in a single-electron latch.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlov, A. O.; Luo, X.; Yadavalli, K. K.

    2008-01-01

    A single-electron latch is a device that can be used as a building block for quantum-dot cellular automata circuits. It consists of three nanoscale metal 'dots' connected in series by tunnel junctions; charging of the dots is controlled by three electrostatic gates. One very important feature of a single-electron latch is its ability to store ('latch') information represented by the location of a single electron within the three dots. To obtain latching, the undesirable leakage of charge during the retention time must be suppressed. Previously, to achieve this goal, multiple tunnel junctions were used to connect the three dots. However,more » this method of charge leakage suppression requires an additional compensation of the background charges affecting each parasitic dot in the array of junctions. We report a single-electron latch where a granular metal film is used to fabricate the middle dot in the latch which concurrently acts as a charge leakage suppressor. This latch has no parasitic dots, therefore the background charge compensation procedure is greatly simplified. We discuss the origins of charge leakage suppression and possible applications of granular metal dots for various single-electron circuits.« less

  13. The metabotropic glutamate receptor activates the lipid kinase PI3K in Drosophila motor neurons through the calcium/calmodulin-dependent protein kinase II and the nonreceptor tyrosine protein kinase DFak.

    PubMed

    Chun-Jen Lin, Curtis; Summerville, James B; Howlett, Eric; Stern, Michael

    2011-07-01

    Ligand activation of the metabotropic glutamate receptor (mGluR) activates the lipid kinase PI3K in both the mammalian central nervous system and Drosophila motor nerve terminal. In several subregions of the mammalian brain, mGluR-mediated PI3K activation is essential for a form of synaptic plasticity termed long-term depression (LTD), which is implicated in neurological diseases such as fragile X and autism. In Drosophila larval motor neurons, ligand activation of DmGluRA, the sole Drosophila mGluR, similarly mediates a PI3K-dependent downregulation of neuronal activity. The mechanism by which mGluR activates PI3K remains incompletely understood in either mammals or Drosophila. Here we identify CaMKII and the nonreceptor tyrosine kinase DFak as critical intermediates in the DmGluRA-dependent activation of PI3K at Drosophila motor nerve terminals. We find that transgene-induced CaMKII inhibition or the DFak(CG1) null mutation each block the ability of glutamate application to activate PI3K in larval motor nerve terminals, whereas transgene-induced CaMKII activation increases PI3K activity in motor nerve terminals in a DFak-dependent manner, even in the absence of glutamate application. We also find that CaMKII activation induces other PI3K-dependent effects, such as increased motor axon diameter and increased synapse number at the larval neuromuscular junction. CaMKII, but not PI3K, requires DFak activity for these increases. We conclude that the activation of PI3K by DmGluRA is mediated by CaMKII and DFak.

  14. Performance evaluation of multi-junction solar cells by spatially resolved electroluminescence microscopy.

    PubMed

    Kong, Lijing; Wu, Zhiming; Chen, Shanshan; Cao, Yiyan; Zhang, Yong; Li, Heng; Kang, Junyong

    2015-01-01

    An electroluminescence microscopy combined with a spectroscopy was developed to visually analyze multi-junction solar cells. Triple-junction solar cells with different conversion efficiencies were characterized by using this system. The results showed that the mechanical damages and material defects in solar cells can be clearly distinguished, indicating a high-resolution imaging. The external quantum efficiency (EQE) measurements demonstrated that different types of defects or damages impacted cell performance in various degrees and the electric leakage mostly degraded the EQE. Meanwhile, we analyzed the relationship between electroluminescence intensity and short-circuit current density J SC. The results indicated that the gray value of the electroluminescence image corresponding to the intensity was almost proportional to J SC. This technology provides a potential way to evaluate the current matching status of multi-junction solar cells.

  15. Constraining Convection Properties with VLTI

    NASA Astrophysics Data System (ADS)

    Paladini, Claudia

    2018-04-01

    We recently imaged the stellar surface of the asymptotic giant branch (AGB) star pi1 Gruis using the PIONIER instrument mounted on the Very Large Telescope Interferometer. The three images are very little contaminated by molecular and dust opacity, and show a stellar surface characterized by large convective granulation. In this contribution I will describe the method used to derive the size of the granulation pattern, the challenges of image reconstruction, and our results. I will conclude describing shortly what the next generation of interferometric instruments will bring to our study.

  16. Self-Oscillating Josephson Quantum Heat Engine

    NASA Astrophysics Data System (ADS)

    Marchegiani, G.; Virtanen, P.; Giazotto, F.; Campisi, M.

    2016-11-01

    The design of a mesoscopic self-oscillating heat engine that works thanks to purely quantum effects is presented. The proposed scheme is amenable to experimental implementation with current state-of-the-art nanotechnology and materials. One of the main features of the structure is its versatility: The engine can deliver work to a generic load without galvanic contact. This versatility makes it a promising building block for low-temperature on-chip energy-management applications. The heat engine consists of a circuit featuring a thermoelectric element based on a ferromagnetic insulator-superconductor tunnel junction and a Josephson weak link that realizes a purely quantum dc-ac converter. This makeup enables the contactless transfer of work to the load (a generic RL circuit). The performance of the heat engine is investigated as a function of the thermal gradient applied to the thermoelectric junction. Power up to 1 pW can be delivered to a load RL=10 Ω .

  17. The determination of transport parameters of minority carriers in n-p junctions by means of an electron microscope - Critique of recent developments

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1980-01-01

    It has recently been shown that amplitude modulated electron beams provide a novel means for the determination of minority carrier lifetimes, diffusion lengths, etc., in n-p junctions. In this paper it is shown that: (1) a recently published analysis based on a cylindrically symmetric configuration is incorrect, (2) the correct approach leads to a system of dual integral equations for which the formal solution is given, (3) in general, the short circuit current can only be determined by means of extensive computer calculations except in the case of large front surface recombination velocities, and (4) the difficulties encountered with cylindrically symmetric configurations (circular ohmic contacts and the like) are completely avoided with a choice of a planar geometry since simple closed form expressions for the short circuit current are readily available in this case.

  18. The need for control of magnetic parameters for energy efficient performance of magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Farhat, I. A. H.; Gale, E.; Alpha, C.; Isakovic, A. F.

    2017-07-01

    Optimizing energy performance of Magnetic Tunnel Junctions (MTJs) is the key for embedding Spin Transfer Torque-Random Access Memory (STT-RAM) in low power circuits. Due to the complex interdependencies of the parameters and variables of the device operating energy, it is important to analyse parameters with most effective control of MTJ power. The impact of threshold current density, Jco , on the energy and the impact of HK on Jco are studied analytically, following the expressions that stem from Landau-Lifshitz-Gilbert-Slonczewski (LLGS-STT) model. In addition, the impact of other magnetic material parameters, such as Ms , and geometric parameters such as tfree and λ is discussed. Device modelling study was conducted to analyse the impact at the circuit level. Nano-magnetism simulation based on NMAGTM package was conducted to analyse the impact of controlling HK on the switching dynamics of the film.

  19. Concatenated logic circuits based on a three-way DNA junction: a keypad-lock security system with visible readout and an automatic reset function.

    PubMed

    Chen, Junhua; Zhou, Shungui; Wen, Junlin

    2015-01-07

    Concatenated logic circuits operating as a biocomputing keypad-lock security system with an automatic reset function have been successfully constructed on the basis of toehold-mediated strand displacement and three-way-DNA-junction architecture. In comparison with previously reported keypad locks, the distinctive advantage of the proposed security system is that it can be reset and cycled spontaneously a large number of times without an external stimulus, thus making practical applications possible. By the use of a split-G-quadruplex DNAzyme as the signal reporter, the output of the keypad lock can be recognized readily by the naked eye. The "lock" is opened only when the inputs are introduced in an exact order. This requirement provides defense against illegal invasion to protect information at the molecular scale. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Modeling of thin, back-wall silicon solar cells

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.

    1979-01-01

    The performance of silicon solar cells with p-n junctions on the nonilluminated surface (i.e., upside-down or back-wall cells) was calculated. These structures consisted of a uniformly shaped p-type substrate layer, a p(+)-type field layer on the front (illuminated) surface, and a shallow, n-type junction on the back (nonilluminated) surface. A four-layer solar cell model was used to calculate efficiency, open-circuit voltage, and short-circuit current. The effect on performance of p-layer thickness and resistivity was determined. The diffusion length was varied to simulate the effect of radiation damage. The results show that peak initial efficiencies greater than 15 percent are possible for cell thicknesses or 100 micrometers or less. After 10 years of radiation damage in geosynchronous orbit, thin (25 to 50 micrometers thick) cells made from 10 to 100 ohm cm material show the smallest decrease (approximately 10 percent) in performance.

  1. Cell chip temperature measurements in different operation regimes of HCPV modules

    NASA Astrophysics Data System (ADS)

    Rumyantsev, V. D.; Chekalin, A. V.; Davidyuk, N. Yu.; Malevskiy, D. A.; Pokrovskiy, P. V.; Sadchikov, N. A.; Pan'chak, A. N.

    2013-09-01

    A new method has been developed for accurate measurements of the solar cell temperature in maximum power point (MPP) operation regime in comparison with that in open circuit (OC) regime (TMPP and TOC). For this, an electronic circuit has been elaborated for fast variation of the cell load conditions and for voltage measurements, so that VOC values could serve as an indicator of TMPP at the first moment after the load disconnection. The method was verified in indoor investigations of the single-junction AlGaAs/GaAs cells under CW laser irradiation, where different modifications of the heat spreaders were involved. PV modules of the "SMALFOC" design (Small-size concentrators; Multijunction cells; "All-glass" structure; Lamination technology; Fresnel Optics for Concentration) with triple-junction InGaP/GaAs/Ge cells were examined outdoors to evaluate temperature regimes of their operation.

  2. Highly efficient on-chip direct electronic-plasmonic transducers

    NASA Astrophysics Data System (ADS)

    Du, Wei; Wang, Tao; Chu, Hong-Son; Nijhuis, Christian A.

    2017-10-01

    Photonic elements can carry information with a capacity exceeding 1,000 times that of electronic components, but, due to the optical diffraction limit, these elements are large and difficult to integrate with modern-day nanoelectronics or upcoming packages, such as three-dimensional integrated circuits or stacked high-bandwidth memories1-3. Surface plasmon polaritons can be confined to subwavelength dimensions and can carry information at high speeds (>100 THz)4-6. To combine the small dimensions of nanoelectronics with the fast operating speed of optics via plasmonics, on-chip electronic-plasmonic transducers that directly convert electrical signals into plasmonic signals (and vice versa) are required. Here, we report electronic-plasmonic transducers based on metal-insulator-metal tunnel junctions coupled to plasmonic waveguides with high-efficiency on-chip generation, manipulation and readout of plasmons. These junctions can be readily integrated into existing technologies, and we thus believe that they are promising for applications in on-chip integrated plasmonic circuits.

  3. Fiber-optic projected-fringe digital interferometry

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1990-01-01

    A phase-stepped projected-fringe interferometer was developed which uses a closed-loop fiber-optic phase-control system to make very accurate surface profile measurements. The closed-loop phase-control system greatly reduces phase-stepping error, which is frequently the dominant source of error in digital interferometers. Two beams emitted from a fiber-optic coupler are combined to form an interference fringe pattern on a diffusely reflecting object. Reflections off of the fibers' output faces are used to create a phase-indicating signal for the closed-loop optical phase controller. The controller steps the phase difference between the two beams by pi/2 radians in order to determine the object's surface profile using a solid-state camera and a computer. The system combines the ease of alignment and automated data reduction of phase-stepping projected-fringe interferometry with the greatly improved phase-stepping accuracy of our closed-loop phase-controller. The system is demonstrated by measuring the profile of a plate containing several convex surfaces whose heights range from 15 to 25 micron high.

  4. A PI3-kinase-mediated negative feedback regulates neuronal excitability.

    PubMed

    Howlett, Eric; Lin, Curtis Chun-Jen; Lavery, William; Stern, Michael

    2008-11-01

    Use-dependent downregulation of neuronal activity (negative feedback) can act as a homeostatic mechanism to maintain neuronal activity at a particular specified value. Disruption of this negative feedback might lead to neurological pathologies, such as epilepsy, but the precise mechanisms by which this feedback can occur remain incompletely understood. At one glutamatergic synapse, the Drosophila neuromuscular junction, a mutation in the group II metabotropic glutamate receptor gene (DmGluRA) increased motor neuron excitability by disrupting an autocrine, glutamate-mediated negative feedback. We show that DmGluRA mutations increase neuronal excitability by preventing PI3 kinase (PI3K) activation and consequently hyperactivating the transcription factor Foxo. Furthermore, glutamate application increases levels of phospho-Akt, a product of PI3K signaling, within motor nerve terminals in a DmGluRA-dependent manner. Finally, we show that PI3K increases both axon diameter and synapse number via the Tor/S6 kinase pathway, but not Foxo. In humans, PI3K and group II mGluRs are implicated in epilepsy, neurofibromatosis, autism, schizophrenia, and other neurological disorders; however, neither the link between group II mGluRs and PI3K, nor the role of PI3K-dependent regulation of Foxo in the control of neuronal excitability, had been previously reported. Our work suggests that some of the deficits in these neurological disorders might result from disruption of glutamate-mediated homeostasis of neuronal excitability.

  5. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter.

    PubMed

    Fandiño, Javier S; Muñoz, Pascual

    2013-11-01

    A photonic system capable of estimating the unknown frequency of a CW microwave tone is presented. The core of the system is a complementary optical filter monolithically integrated in InP, consisting of a ring-assisted Mach-Zehnder interferometer with a second-order elliptic response. By simultaneously measuring the different optical powers produced by a double-sideband suppressed-carrier modulation at the outputs of the photonic integrated circuit, an amplitude comparison function that depends on the input tone frequency is obtained. Using this technique, a frequency measurement range of 10 GHz (5-15 GHz) with a root mean square value of frequency error lower than 200 MHz is experimentally demonstrated. Moreover, simulations showing the impact of a residual optical carrier on system performance are also provided.

  6. Very High Current Density Nb/AlN/Nb Tunnel Junctions for Low-Noise Submillimeter Mixers

    NASA Technical Reports Server (NTRS)

    Kawamura, Jonathan; Miller, David; Chen, Jian; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.

    2000-01-01

    We have fabricated and tested submillimeter-wave superconductor-insulator-superconductor (SIS) mixers using very high current density Nb/AlN/Nb tunnel junctions (J(sub c) approximately equal 30 kA/sq cm) . The junctions have low resistance-area products (R(sub N)A approximately 5.6 Omega.sq micron), good subgap to normal resistance ratios R(sub sg)/R(sub N) approximately equal 10, and good run-to-run reproducibility. From Fourier transform spectrometer measurements, we infer that omega.R(sub N)C = 1 at 270 GHz. This is a factor of 2.5 improvement over what is generally available with Nb/AlO(x)/Nb junctions suitable for low-noise mixers. The AlN-barrier junctions are indeed capable of low-noise operation: we measure an uncorrected receiver noise temperature of T(sub RX) = 110 K (DSB) at 533 GHz for an unoptimized device. In addition to providing wider bandwidth operation at lower frequencies, the AlN-barrier junctions will considerably improve the performance of THz SIS mixers by reducing RF loss in the tuning circuits.

  7. Determination of bulk diffusion lengths for angle-lapped semiconductor material via the scanning electron microscope: A theoretical analysis

    NASA Technical Reports Server (NTRS)

    Vonroos, O.

    1978-01-01

    A standard procedure for the determination of the minority carrier diffusion length by means of a scanning electron microscope (SEM) consists in scanning across an angle-lapped surface of a P-N junction and measuring the resultant short circuit current I sub sc as a function of beam position. A detailed analysis of the I sub sc originating from this configuration is presented. It is found that, for a point source excitation, the I sub sc depends very simply on x, the variable distance between the surface and the junction edge. The expression for the I sub sc of a planar junction device is well known. If d, the constant distance between the plane of the surface of the semiconductor and the junction edge in the expression for the I of a planar junction is merely replaced by x, the variable distance of the corresponding angle-lapped junction, an expression results which is correct to within a small fraction of a percent as long as the angle between the surfaces, 2 theta sub 1, is smaller than 10 deg.

  8. Prolonged 500 C Operation of 100+ Transistor Silicon Carbide Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Lukco, Dorothy; Chen, Liangyu; Krasowski, Michael J.; Prokop, Norman F.; Chang, Carl W.; Beheim, Glenn M.

    2017-01-01

    This report describes more than 5000 hours of successful 500 C operation of semiconductor integrated circuits (ICs) with more than 100 transistors. Multiple packaged chips with two different 4H-SiC junction field effect transistor (JFET) technology demonstrator circuits have surpassed thousands of hours of oven-testing at 500 C. After 100 hours of 500 C burn-in, the circuits (except for 2 failures) exhibit less than 10% change in output characteristics for the remainder of 500 C testing. We also describe the observation of important differences in IC materials durability when subjected to the first nine constituents of Venus-surface atmosphere at 9.4 MPa and 460 C in comparison to what is observed for Earth-atmosphere oven testing at 500 C.

  9. Prolonged 500 C Operation of 100+ Transistor Silicon Carbide Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Lukco, Dorothy; Chen, Liangyu; Krasowski, Michael J.; Prokop, Norman F.; Chang, Carl W.; Beheim, Glenn M.

    2017-01-01

    This report describes more than 5000 hours of successful 500 C operation of semiconductor integrated circuits (ICs) with more than 100 transistors. Multiple packaged chips with two different 4H-SiC junction field effect transistor (JFET) technology demonstrator circuits have surpassed thousands of hours of oven-testing at 500 C. After 100 hours of 500 C burn-in, the circuits (except for 2 failures) exhibit less than 10 change in output characteristics for the remainder of 500C testing. We also describe the observation of important differences in IC materials durability when subjected to the first nine constituents of Venus-surface atmosphere at 9.4 MPa and 460C in comparison to what is observed for Earth-atmosphere oven testing at 500 C.

  10. Investigation on high-efficiency Ga0.51In0.49P/In0.01Ga0.99As/Ge triple-junction solar cells for space applications

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Niu, Pingjuan; Li, Yuqiang; Song, Minghui; Zhang, Jianxin; Ning, Pingfan; Chen, Peizhuan

    2017-12-01

    Ga0.51In0.49P/In0.01Ga0.99As/Ge triple-junction solar cells for space applications were grown on 4 inch Ge substrates by metal organic chemical vapor deposition methods. The triple-junction solar cells were obtained by optimizing the subcell structure, showing a high open-circuit voltage of 2.77 V and a high conversion efficiency of 31% with 30.15 cm2 area under the AM0 spectrum at 25 °C. In addition, the In0.01Ga0.99As middle subcell structure was focused by optimizing in order to improve the anti radiation ability of triple-junction solar cells, and the remaining factor of conversion efficiency for middle subcell structure was enhanced from 84% to 92%. Finally, the remaining factor of external quantum efficiency for triple-junction solar cells was increased from 80% to 85.5%.

  11. Electron transport in dipyridazine and dipyridimine molecular junctions: a first-principles investigation

    NASA Astrophysics Data System (ADS)

    Parashar, Sweta

    2018-05-01

    We present density functional theory-nonequilibrium Green’s function method for electron transport of dipyridazine and dipyridimine molecular junctions with gold, copper and nickel electrodes. Our investigation reveals that the junctions formed with gold and copper electrodes bridging dipyridazine molecule through thiol anchoring group enhance current as compared to the junctions in which the molecule and electrode were coupled directly. Further, nickel electrode displays weak decrease of current with increase of voltage at about 1.2 V. The result is fully rationalized by means of the distribution of molecular orbitals as well as shift in molecular energy levels and HOMO-LUMO gap with applied bias voltage. Our findings are compared with theoretical and experimental results available for other molecular junctions. Present results predict potential avenues for changing the transport behavior by not only changing the electrodes, but also the position of nitrogen atom and type of anchoring-atom that connect molecule and electrodes, thus extending applications of dipyridazine and dipyridimine molecule in future integrated circuits.

  12. Modeling of charge transport in ion bipolar junction transistors.

    PubMed

    Volkov, Anton V; Tybrandt, Klas; Berggren, Magnus; Zozoulenko, Igor V

    2014-06-17

    Spatiotemporal control of the complex chemical microenvironment is of great importance to many fields within life science. One way to facilitate such control is to construct delivery circuits, comprising arrays of dispensing outlets, for ions and charged biomolecules based on ionic transistors. This allows for addressability of ionic signals, which opens up for spatiotemporally controlled delivery in a highly complex manner. One class of ionic transistors, the ion bipolar junction transistors (IBJTs), is especially attractive for these applications because these transistors are functional at physiological conditions and have been employed to modulate the delivery of neurotransmitters to regulate signaling in neuronal cells. Further, the first integrated complementary ionic circuits were recently developed on the basis of these ionic transistors. However, a detailed understanding of the device physics of these transistors is still lacking and hampers further development of components and circuits. Here, we report on the modeling of IBJTs using Poisson's and Nernst-Planck equations and the finite element method. A two-dimensional model of the device is employed that successfully reproduces the main characteristics of the measurement data. On the basis of the detailed concentration and potential profiles provided by the model, the different modes of operation of the transistor are analyzed as well as the transitions between the different modes. The model correctly predicts the measured threshold voltage, which is explained in terms of membrane potentials. All in all, the results provide the basis for a detailed understanding of IBJT operation. This new knowledge is employed to discuss potential improvements of ion bipolar junction transistors in terms of miniaturization and device parameters.

  13. Large-scale quantum photonic circuits in silicon

    NASA Astrophysics Data System (ADS)

    Harris, Nicholas C.; Bunandar, Darius; Pant, Mihir; Steinbrecher, Greg R.; Mower, Jacob; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Englund, Dirk

    2016-08-01

    Quantum information science offers inherently more powerful methods for communication, computation, and precision measurement that take advantage of quantum superposition and entanglement. In recent years, theoretical and experimental advances in quantum computing and simulation with photons have spurred great interest in developing large photonic entangled states that challenge today's classical computers. As experiments have increased in complexity, there has been an increasing need to transition bulk optics experiments to integrated photonics platforms to control more spatial modes with higher fidelity and phase stability. The silicon-on-insulator (SOI) nanophotonics platform offers new possibilities for quantum optics, including the integration of bright, nonclassical light sources, based on the large third-order nonlinearity (χ(3)) of silicon, alongside quantum state manipulation circuits with thousands of optical elements, all on a single phase-stable chip. How large do these photonic systems need to be? Recent theoretical work on Boson Sampling suggests that even the problem of sampling from e30 identical photons, having passed through an interferometer of hundreds of modes, becomes challenging for classical computers. While experiments of this size are still challenging, the SOI platform has the required component density to enable low-loss and programmable interferometers for manipulating hundreds of spatial modes. Here, we discuss the SOI nanophotonics platform for quantum photonic circuits with hundreds-to-thousands of optical elements and the associated challenges. We compare SOI to competing technologies in terms of requirements for quantum optical systems. We review recent results on large-scale quantum state evolution circuits and strategies for realizing high-fidelity heralded gates with imperfect, practical systems. Next, we review recent results on silicon photonics-based photon-pair sources and device architectures, and we discuss a path towards large-scale source integration. Finally, we review monolithic integration strategies for single-photon detectors and their essential role in on-chip feed forward operations.

  14. Josephson Circuits as Vector Quantum Spins

    NASA Astrophysics Data System (ADS)

    Samach, Gabriel; Kerman, Andrew J.

    While superconducting circuits based on Josephson junction technology can be engineered to represent spins in the quantum transverse-field Ising model, no circuit architecture to date has succeeded in emulating the vector quantum spin models of interest for next-generation quantum annealers and quantum simulators. Here, we present novel Josephson circuits which may provide these capabilities. We discuss our rigorous quantum-mechanical simulations of these circuits, as well as the larger architectures they may enable. This research was funded by the Office of the Director of National Intelligence (ODNI) and the Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  15. Depth Measurements Using Alpha Particles and Upsettable SRAMs

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Reier, M.; Soli, G. A.

    1995-01-01

    A custom designed SRAM was used to measure the thickness of integrated circuit over layers and the epi-layer thickness using alpha particles and a test SRAM. The over layer consists of oxide, nitride, metal, and junction regions.

  16. Novel patterning of CdS / CdTe thin film with back contacts for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Ilango, Murugaiya Sridar; Ramasesha, Sheela K.

    2018-04-01

    The heterostructure of patterned CdS / CdTe thin films with back contact have been devised with electron beam lithography and fabricated using sputter deposition technique. The metallic contacts for n-CdS and p-CdTe are patterned such that both are placed at the bottom of the cell. This avoids losses due to contact shading and increases absorption in the window layer. Patterning of the device surface helps in increasing the junction area which can modulate the absorption of more number of photons due to total internal reflection. Computing the surface area between a planar and a patterned device has revealed 133% increase in the junction area. The physical and optical properties of the sputter-deposited CdS / CdTe layers are also presented. J- V characteristics of the solar cell showed the fill factor to be 25.9%, open circuit voltage to be 17 mV and short-circuit current density to be 113.68 A/m2. The increase in surface area is directly related to the increase in the short circuit current of the photovoltaic cell, which is observed from the results of simulated model in Atlas / Silvaco.

  17. Molecular-Scale Electronics: From Concept to Function.

    PubMed

    Xiang, Dong; Wang, Xiaolong; Jia, Chuancheng; Lee, Takhee; Guo, Xuefeng

    2016-04-13

    Creating functional electrical circuits using individual or ensemble molecules, often termed as "molecular-scale electronics", not only meets the increasing technical demands of the miniaturization of traditional Si-based electronic devices, but also provides an ideal window of exploring the intrinsic properties of materials at the molecular level. This Review covers the major advances with the most general applicability and emphasizes new insights into the development of efficient platform methodologies for building reliable molecular electronic devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. First, we summarize a number of different approaches of forming molecular-scale junctions and discuss various experimental techniques for examining these nanoscale circuits in details. We then give a full introduction of characterization techniques and theoretical simulations for molecular electronics. Third, we highlight the major contributions and new concepts of integrating molecular functionalities into electrical circuits. Finally, we provide a critical discussion of limitations and main challenges that still exist for the development of molecular electronics. These analyses should be valuable for deeply understanding charge transport through molecular junctions, the device fabrication process, and the roadmap for future practical molecular electronics.

  18. A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics

    NASA Astrophysics Data System (ADS)

    Zhao, Qing-Yuan; McCaughan, Adam N.; Dane, Andrew E.; Berggren, Karl K.; Ortlepp, Thomas

    2017-04-01

    Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a ‘super-hybrid’ system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.

  19. JPO2/CDCA7L and LEDGF/p75 Are Novel Mediators of PI3K/AKT Signaling and Aggressive Phenotypes in Medulloblastoma.

    PubMed

    Chan, Tiffany Sin Yu; Hawkins, Cynthia; Krieger, Jonathan R; McGlade, C Jane; Huang, Annie

    2016-05-01

    Substantial evidence links Myc-PI3K/AKT signaling to the most aggressive subtype of medulloblastoma and this axis in medulloblastoma therapy. In this study, we advance understanding of how Myc-PI3K/AKT signaling contributes to this malignancy, specifically, in identifying the Myc-interacting protein JPO2 and its partner binding protein LEDGF/p75 as critical modulators of PI3K/AKT signaling and metastasis in medulloblastoma. JPO2 overexpression induced metastatic medulloblastoma in vivo through two synergistic feed-forward regulatory circuits involving LEDGF/p75 and AKT that promote metastatic phenotypes in this setting. Overall, our findings highlight two novel prometastatic loci in medulloblastoma and point to the JPO2:LEDGF/p75 protein complex as a potentially new targetable component of PI3K/AKT signaling in medulloblastoma. Cancer Res; 76(9); 2802-12. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations

    PubMed Central

    2011-01-01

    Background Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. Results Isolated GoCs coupled by gap junctions had a strong tendency to generate spontaneous oscillations without affecting their mean firing frequencies in response to distributed mossy fiber input. Conversely, when GoCs were synaptically connected in the granular layer, gap junctions increased the power of the oscillations, but the oscillations were primarily driven by the synaptic feedback loop between GoCs and GCs, and the gap junctions did not change oscillation frequency or the mean firing rate of either GoCs or GCs. Conclusion Our modeling results suggest that gap junctions between GoCs increase the robustness of cerebellar cortex oscillations that are primarily driven by the feedback loop between GoCs and GCs. The robustness effect of gap junctions on synaptically driven oscillations observed in our model may be a general mechanism, also present in other regions of the brain. PMID:22330240

  1. Marx Generator Charged via Biperiodic Resonant Cascaded Transformers

    NASA Astrophysics Data System (ADS)

    Potter, Rudolf H.

    In this work, a novel method for charging solid state Marx generators is described for the first time. We first review the utility of modulators for powering high power microwave devices. The principal of operation of the Marx generator is then described starting with the classic topology and leading to solid state topologies. The concept of a generalized Marx generator is introduced and several methods of charging are discussed. A resonant cascaded transformers topology emerges from this discussion. Resonant modes are discussed and the topology is refined to take advantage of the pi/2 mode leading to the circuit that is the focus of this work. We begin our analysis of this circuit by considering the corresponding infinite biperiodic system and derive the characteristic dispersion relation. Motivation for closing the stopband is discussed and benefits of the pi/2 mode are noted. We proceed next to derive the matrix equation for the corresponding lossless system of coupled oscillators. To test and verify the analytic work, a five cell benchtop prototype of the charging system is built and its resonant modes are determined empirically. Capacitors in odd numbered resonators are each connected to the input of a voltage doubler circuit and high voltage dc is generated. A MOSFET is added to the output of each doubler circuit and pulsed output is demonstrated. A SPICE simulation of the physical circuit is created. The mode frequencies from the simulation are in good agreement with those measured and calculated. A practical high-power design is considered for the E2V/Teledyne MG7095 magnetron and simulated in SPICE.

  2. Single n-GaN microwire/p-Silicon thin film heterojunction light-emitting diode.

    PubMed

    Ahn, Jaehui; Mastro, Michael A; Klein, Paul B; Hite, Jennifer K; Feigelson, Boris; Eddy, Charles R; Kim, Jihyun

    2011-10-24

    The emission and waveguiding properties of individual GaN microwires as well as devices based on an n-GaN microwire/p-Si (100) junction were studied for relevance in optoelectronics and optical circuits. Pulsed photoluminescence of the GaN microwire excited in the transverse or longitudinal direction demonstrated gain. These n-type GaN microwires were positioned mechanically or by dielectrophoretic force onto pre-patterned electrodes on a p-type Si (100) substrate. Electroluminescence from this p-n point junction was characteristic of a heterostructure light-emitting diode. Additionally, waveguiding was observed along the length of the microwire for light originating from photoluminescence as well as from electroluminescence generated at the p-n junction. © 2011 Optical Society of America

  3. Prolonged 500 C Operation of 6H-SiC JFET Integrated Circuitry

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Spry, David J.; Chen, Liang-Yu; Chang, Carl W.; Beheim, Glenn M.; Okojie, Robert S.; Evans, Laura J.; Meredith, Roger D.; Ferrier, Terry L.; Krasowski, Michael J.; hide

    2008-01-01

    This paper updates the long-term 500 C electrical testing results from 6H-SiC junction field effect transistors (JFETs) and small integrated circuits that were introduced at ICSCRM-2007. Two packaged JFETs have now been operated in excess of 7000 hours at 500 degC with less than 10% degradation in linear I-V characteristics. Several simple digital and analog demonstration integrated circuits successfully operated for 2000-6500 hours at 500 C before failure.

  4. Effect of micro-particles on cavitation erosion of Ti6Al4V alloy in sulfuric acid solution.

    PubMed

    Li, D G; Long, Y; Liang, P; Chen, D R

    2017-05-01

    The influences of micro-particles on ultrasonic cavitation erosion of Ti6Al4V alloy in 0.1M H 2 SO 4 solution were investigated using mass loss weight, scanning electron microscopy (SEM) and white light interferometer. Mass loss results revealed that the cavitation erosion damage obviously decreased with increasing particle size and mass concentration. Open circuit potential recorded during cavitation erosion shifted to positive direction with the decreased mass loss. Meanwhile, the mass loss sharply decreased with applying a positive potential during the entire ultrasonic cavitation erosion, and the relationship between the open circuit potential and the cavitation erosion resistance was discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The mechanism in junctional failure of thoraco-lumbar fusions. Part II: Analysis of a series of PJK after thoraco-lumbar fusion to determine parameters allowing to predict the risk of junctional breakdown.

    PubMed

    Faundez, Antonio A; Richards, Jonathon; Maxy, Philippe; Price, Rachel; Léglise, Amélie; Le Huec, Jean-Charles

    2018-02-01

    To identify risk factors, in 12 patients with junctional breakdown (JBD) after thoraco-sacral fusions and to test a software locating maximal bending moment on full spine EOS images. Twelve patients underwent long fusions for lumbar degenerative pathologies. Preop EOS images were compared to first postop EOS showing JBD. Parameters analyzed were: spinopelvic parameters [pelvic incidence (PI), pelvic tilt (PT), sacral slope (SS), sagittal vertical axis (SVA), spinosacral angle (SSA), lordosis, and kyphosis], proximal junctional angle (PJA), odontoid-hip axis angle (ODHA), and CIA. A new software estimated the location of maximum bending moment (M max ) before and after JBD. All patients except one had a JBD located between T10 and L1, diagnosed at average follow-up of 18.58 months. JBD was a fracture in six patients, severe adjacent disc degeneration in the remaining. Average PI was 52°. PT increased, SS decreased after JBD versus preop (p > 0.05). Average PJA was 34.5°. Global lordosis (GLL), upper lordosis (ULL), L4-S1 lordosis, and thoracic kyphosis (TK) were increased (p < 0.05). Lower lumbar lordosis (LLL), was not increased postJBD (p = 0.6). SVA, SSA, ODHA, and C7 slope were not modified (p > 0.05). CIA average value decreased by 7.5% after JBD. T1-T5 alignment was correlated to C7 slope before (R 2  = 0.77075) and after JBD (R 2  = 0.85409). ODHA decreased after JBD (p > 0.05). Most JBD occurred at or one level away from preoperative M max location. This study confirms the importance of harmonious distribution of lumbar (GLL, ULL, and ILL) and thoracic curves (TK, T1-T5 segment) in thoraco-sacral fusions. All patients showed an exaggerated ULL, resulting in a posterior shift and increased lever arm at the thoraco-lumbar junction, leading to JBD.

  6. Hydrothermal Exploration at the Chile Triple Junction - ABE's last adventure?

    NASA Astrophysics Data System (ADS)

    German, C. R.; Shank, T. M.; Lilley, M. D.; Lupton, J. E.; Blackman, D. K.; Brown, K. M.; Baumberger, T.; Früh-Green, G.; Greene, R.; Saito, M. A.; Sylva, S.; Nakamura, K.; Stanway, J.; Yoerger, D. R.; Levin, L. A.; Thurber, A. R.; Sellanes, J.; Mella, M.; Muñoz, J.; Diaz-Naveas, J. L.; Inspire Science Team

    2010-12-01

    In February and March 2010 we conducted preliminary exploration for hydrothermal plume signals along the East Chile Rise where it intersects the continental margin at the Chile Triple Junction (CTJ). This work was conducted as one component of our larger NOAA-OE funded INSPIRE project (Investigation of South Pacific Reducing Environments) aboard RV Melville cruise MV 1003 (PI: Andrew Thurber, Scripps) with all shiptime funded through an award of the State of California to Andrew Thurber and his co-PI's. Additional support came from the Census of Marine Life (ChEss and CoMarge projects). At sea, we conducted a series of CTD-rosette and ABE autonomous underwater vehicle operations to prospect for and determine the nature of any seafloor venting at, or adjacent to, the point where the the East Chile Rise subducts beneath the continental margin. Evidence from in situ sensing (optical backscatter, Eh) and water column analyses of dissolved CH4, δ3He and TDFe/TDMn concentrations document the presence of two discrete sites of venting, one right at the triple junction and the other a further 10km along axis, north of the Triple Junction, but still within the southernmost segment of the East Chile Rise. From an intercomparison of the abundance of different chemical signals we can intercompare likely characteristics of these differet source sites and also differentiate between them and the high methane concentrations released from cold seep sites further north along the Chile Margin, both with the CTJ region and also at the Concepcion Methane Seep Area (CMSA). This multi-disciplinary and international collaboration - involving scientists from Chile, the USA, Europe and Japan - can serve as an excellent and exciting launchpoint for wide-ranging future investigations of the Chile Triple Junction area - the only place on Earth where an oceanic spreading center is being actively subducted beneath a continent and also the only place on Earth where all known forms of deep-sea chemically-reducing ecosystem (hydrothermal vents, cold seeps, oxygen minimum zones and large organic falls) have the potential to co-exist.

  7. A new method to synthesize complicated multi-branched carbon nanotubes with controlled architecture and composition.

    PubMed

    Wei, Dacheng; Liu, Yunqi; Cao, Lingchao; Fu, Lei; Li, Xianglong; Wang, Yu; Yu, Gui; Zhu, Daoben

    2006-02-01

    Here we develop a simple method by using flow fluctuation to synthesize arrays of multi-branched carbon nanotubes (CNTs) that are far more complex than those previously reported. The architectures and compositions can be well controlled, thus avoiding any template or additive. A branching mechanism of fluctuation-promoted coalescence of catalyst particles is proposed. This finding will provide a hopeful approach to the goal of CNT-based integrated circuits and be valuable for applying branched junctions in nanoelectronics and producing branched junctions of other materials.

  8. Comparative radiation resistance, temperature dependence and performance of diffused junction indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Ghandhi, S. K.; Borrego, J. M.

    1987-01-01

    Indium phosphide solar cells whose p-n junctions were processed by the open tube capped diffusion and by the closed tube uncapped diffusion of sulfur into Czochralski-grown p-type substrates are compared. Differences found in radiation resistance were attributed to the effects of increased base dopant concentration. Both sets of cells showed superior radiation resistance to that of gallium arsenide cells, in agreement with previous results. No correlation was, however, found between the open-circuit voltage and the temperature dependence of the maximum power.

  9. Polynomial time blackbox identity testers for depth-3 circuits : the field doesn't matter.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshadhri, Comandur; Saxena, Nitin

    Let C be a depth-3 circuit with n variables, degree d and top fanin k (called {Sigma}{Pi}{Sigma}(k, d, n) circuits) over base field F. It is a major open problem to design a deterministic polynomial time blackbox algorithm that tests if C is identically zero. Klivans & Spielman (STOC 2001) observed that the problem is open even when k is a constant. This case has been subjected to a serious study over the past few years, starting from the work of Dvir & Shpilka (STOC 2005). We give the first polynomial time blackbox algorithm for this problem. Our algorithm runsmore » in time poly(n)d{sup k}, regardless of the base field. The only field for which polynomial time algorithms were previously known is F = Q (Kayal & Saraf, FOCS 2009, and Saxena & Seshadhri, FOCS 2010). This is the first blackbox algorithm for depth-3 circuits that does not use the rank based approaches of Karnin & Shpilka (CCC 2008). We prove an important tool for the study of depth-3 identities. We design a blackbox polynomial time transformation that reduces the number of variables in a {Sigma}{Pi}{Sigma}(k, d, n) circuit to k variables, but preserves the identity structure. Polynomial identity testing (PIT) is a major open problem in theoretical computer science. The input is an arithmetic circuit that computes a polynomial p(x{sub 1}, x{sub 2},..., x{sub n}) over a base field F. We wish to check if p is the zero polynomial, or in other words, is identically zero. We may be provided with an explicit circuit, or may only have blackbox access. In the latter case, we can only evaluate the polynomial p at various domain points. The main goal is to devise a deterministic blackbox polynomial time algorithm for PIT.« less

  10. Hardware implementation of Lorenz circuit systems for secure chaotic communication applications.

    PubMed

    Chen, Hsin-Chieh; Liau, Ben-Yi; Hou, Yi-You

    2013-02-18

    This paper presents the synchronization between the master and slave Lorenz chaotic systems by slide mode controller (SMC)-based technique. A proportional-integral (PI) switching surface is proposed to simplify the task of assigning the performance of the closed-loop error system in sliding mode. Then, extending the concept of equivalent control and using some basic electronic components, a secure communication system is constructed. Experimental results show the feasibility of synchronizing two Lorenz circuits via the proposed SMC. 

  11. Implementing Bayesian networks with embedded stochastic MRAM

    NASA Astrophysics Data System (ADS)

    Faria, Rafatul; Camsari, Kerem Y.; Datta, Supriyo

    2018-04-01

    Magnetic tunnel junctions (MTJ's) with low barrier magnets have been used to implement random number generators (RNG's) and it has recently been shown that such an MTJ connected to the drain of a conventional transistor provides a three-terminal tunable RNG or a p-bit. In this letter we show how this p-bit can be used to build a p-circuit that emulates a Bayesian network (BN), such that the correlations in real world variables can be obtained from electrical measurements on the corresponding circuit nodes. The p-circuit design proceeds in two steps: the BN is first translated into a behavioral model, called Probabilistic Spin Logic (PSL), defined by dimensionless biasing (h) and interconnection (J) coefficients, which are then translated into electronic circuit elements. As a benchmark example, we mimic a family tree of three generations and show that the genetic relatedness calculated from a SPICE-compatible circuit simulator matches well-known results.

  12. A SMN-Dependent U12 Splicing Event Essential for Motor Circuit Function

    PubMed Central

    Lotti, Francesco; Imlach, Wendy L.; Saieva, Luciano; Beck, Erin S.; Hao, Le T.; Li, Darrick K.; Jiao, Wei; Mentis, George Z.; Beattie, Christine E.; McCabe, Brian D.; Pellizzoni, Livio

    2012-01-01

    SUMMARY Spinal muscular atrophy (SMA) is a motor neuron disease caused by deficiency of the ubiquitous survival motor neuron (SMN) protein. To define the mechanisms of selective neuronal dysfunction in SMA, we investigated the role of SMN-dependent U12 splicing events in the regulation of motor circuit activity. We show that SMN deficiency perturbs splicing and decreases the expression of a subset of U12 intron-containing genes in mammalian cells and Drosophila larvae. Analysis of these SMN target genes identifies Stasimon as a novel protein required for motor circuit function. Restoration of Stasimon expression in the motor circuit corrects defects in neuromuscular junction transmission and muscle growth in Drosophila SMN mutants and aberrant motor neuron development in SMN-deficient zebrafish. These findings directly link defective splicing of critical neuronal genes induced by SMN deficiency to motor circuit dysfunction, establishing a molecular framework for the selective pathology of SMA. PMID:23063131

  13. Ultra-wideband Ge-rich silicon germanium integrated Mach-Zehnder interferometer for mid-infrared spectroscopy.

    PubMed

    Vakarin, Vladyslav; Ramírez, Joan Manel; Frigerio, Jacopo; Ballabio, Andrea; Le Roux, Xavier; Liu, Qiankun; Bouville, David; Vivien, Laurent; Isella, Giovanni; Marris-Morini, Delphine

    2017-09-01

    This Letter explores the use of Ge-rich Si 0.2 Ge 0.8 waveguides on graded Si 1-x Ge x substrate for the demonstration of ultra-wideband photonic integrated circuits in the mid-infrared (mid-IR) wavelength range. We designed, fabricated, and characterized broadband Mach-Zehnder interferometers fully covering a range of 3 μm in the mid-IR band. The fabricated devices operate indistinctly in quasi-TE and quasi-TM polarizations, and have an extinction ratio higher than 10 dB over the entire operating wavelength range. The obtained results are in good correlation with theoretical predictions, while numerical simulations indicate that the device bandwidth can reach one octave with low additional losses. This Letter paves the way for further realization of mid-IR integrated spectrometers using low-index-contrast Si 1-x Ge x waveguides with high germanium concentration.

  14. System and Method for Scan Range Gating

    NASA Technical Reports Server (NTRS)

    Lindemann, Scott (Inventor); Zuk, David M. (Inventor)

    2017-01-01

    A system for scanning light to define a range gated signal includes a pulsed coherent light source that directs light into the atmosphere, a light gathering instrument that receives the light modified by atmospheric backscatter and transfers the light onto an image plane, a scanner that scans collimated light from the image plane to form a range gated signal from the light modified by atmospheric backscatter, a control circuit that coordinates timing of a scan rate of the scanner and a pulse rate of the pulsed coherent light source so that the range gated signal is formed according to a desired range gate, an optical device onto which an image of the range gated signal is scanned, and an interferometer to which the image of the range gated signal is directed by the optical device. The interferometer is configured to modify the image according to a desired analysis.

  15. Is spin transport through molecules really occurring in organic spin valves? A combined magnetoresistance and inelastic electron tunnelling spectroscopy study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galbiati, Marta; Tatay, Sergio; Delprat, Sophie

    2015-02-23

    Molecular and organic spintronics is an emerging research field which combines the versatility of chemistry with the non-volatility of spintronics. Organic materials have already proved their potential as tunnel barriers (TBs) or spacers in spintronics devices showing sizable spin valve like magnetoresistance effects. In the last years, a large effort has been focused on the optimization of these organic spintronics devices. Insertion of a thin inorganic tunnel barrier (Al{sub 2}O{sub 3} or MgO) at the bottom ferromagnetic metal (FM)/organic interface seems to improve the spin transport efficiency. However, during the top FM electrode deposition, metal atoms are prone to diffusemore » through the organic layer and potentially short-circuit it. This may lead to the formation of a working but undesired FM/TB/FM magnetic tunnel junction where the organic plays no role. Indeed, establishing a protocol to demonstrate the effective spin dependent transport through the organic layer remains a key issue. Here, we focus on Co/Al{sub 2}O{sub 3}/Alq{sub 3}/Co junctions and show that combining magnetoresistance and inelastic electron tunnelling spectroscopy measurements one can sort out working “organic” and short-circuited junctions fabricated on the same wafer.« less

  16. Electroless Plating of Copper on Polyimide Film Modified by 50 Hz Plasma Graft Polymerization with 1-Vinylimidazole

    NASA Astrophysics Data System (ADS)

    Wong, Chiow San; Lem, Hon Pong; Goh, Boon Tong; Wong, Cin Wie

    2009-03-01

    This paper reports on the proof of concept work on the novel process of producing metalized polyimide (PI) film by coating a layer of copper (Cu) thin film on the surface of the PI film without using any adhesive. The method which is employed to produce a metalized PI film used in flexible printed circuit (FPC) is based on plasma graft polymerization of 1-vinlyimidazole (VIDz) on plasma pre-treated PI surface. The plasma grafted PI film (VIDz-g-PI) surfaces are characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). AFM results show that the PI film surface has been successfully treated and grafted with VIDz. As post-thermal treatment is known to promote adhesion strength between the metallic film and the PI surface, the effects of post-thermal treatment environment and temperature on the adhesion property of Cu plated VIDz-g-PI (Cu/VIDz-g-PI) are evaluated. Post-thermal treatment in air shows better adhesion strength than in vacuum. The adhesion strength decreases as the post-thermal treatment temperature is increased. In the present development work, the adhesion strength obtained has met the initial market targeted 9-10 N/cm adhesion strength. Samples obtained at a pre-selected plasma power and time window are able to maintain their adhesion strength after being subjected to ageing at 100 °C for 168 h.

  17. A miniature microcontroller curve tracing circuit for space flight testing transistors.

    PubMed

    Prokop, N; Greer, L; Krasowski, M; Flatico, J; Spina, D

    2015-02-01

    This paper describes a novel miniature microcontroller based curve tracing circuit, which was designed to monitor the environmental effects on Silicon Carbide Junction Field Effect Transistor (SiC JFET) device performance, while exposed to the low earth orbit environment onboard the International Space Station (ISS) as a resident experiment on the 7th Materials on the International Space Station Experiment (MISSE7). Specifically, the microcontroller circuit was designed to operate autonomously and was flown on the external structure of the ISS for over a year. This curve tracing circuit is capable of measuring current vs. voltage (I-V) characteristics of transistors and diodes. The circuit is current limited for low current devices and is specifically designed to test high temperature, high drain-to-source resistance SiC JFETs. The results of each I-V data set are transmitted serially to an external telemetered communication interface. This paper discusses the circuit architecture, its design, and presents example results.

  18. Influence of the transition region between p- and n-type polycrystalline silicon passivating contacts on the performance of interdigitated back contact silicon solar cells

    NASA Astrophysics Data System (ADS)

    Reichel, Christian; Müller, Ralph; Feldmann, Frank; Richter, Armin; Hermle, Martin; Glunz, Stefan W.

    2017-11-01

    Passivating contacts based on thin tunneling oxides (SiOx) and n- and p-type semi-crystalline or polycrystalline silicon (poly-Si) enable high passivation quality and low contact resistivity, but the integration of these p+/n emitter and n+/n back surface field junctions into interdigitated back contact silicon solar cells poses a challenge due to high recombination at the transition region from p-type to n-type poly-Si. Here, the transition region was created in different configurations—(a) p+ and n+ poly-Si regions are in direct contact with each other ("pn-junction"), using a local overcompensation (counterdoping) as a self-aligning process, (b) undoped (intrinsic) poly-Si remains between the p+ and n+ poly-Si regions ("pin-junction"), and (c) etched trenches separate the p+ and n+ poly-Si regions ("trench")—in order to investigate the recombination characteristics and the reverse breakdown behavior of these solar cells. Illumination- and injection-dependent quasi-steady state photoluminescence (suns-PL) and open-circuit voltage (suns-Voc) measurements revealed that non-ideal recombination in the space charge regions with high local ideality factors as well as recombination in shunted regions strongly limited the performance of solar cells without a trench. In contrast, solar cells with a trench allowed for open-circuit voltage (Voc) of 720 mV, fill factor of 79.6%, short-circuit current (Jsc) of 41.3 mA/cm2, and a conversion efficiencies (η) of 23.7%, showing that a lowly conducting and highly passivating intermediate layer between the p+ and n+ poly-Si regions is mandatory. Independent of the configuration, no hysteresis was observed upon multiple stresses in reverse direction, indicating a controlled and homogeneously distributed breakdown, but with different breakdown characteristics.

  19. Multi-Instrument Study to Investigate the Formation and Growth of Equatorial Irregularities

    DTIC Science & Technology

    2011-11-01

    located at Huancayo, Peru (geographic: 12.01 oS, 284.80 oE; geomagnetic : 0.62 oN, 356.23 oE; see Figure for the experimental geometry) [Figures 2...interferometer (FPI) located at Arequipa, Peru (geographic: 16.47 oS, 288.52 oE; geomagnetic : 3.4 oS, 0.0 oE, proposal Co-I Meriwether is the instrument PI...Cerro Tololo Inter-American Observatory (CTIO) near La Serena, Chile (geographic: 30.17 oS, 289.19 oE; geomagnetic : 16.72 oS, 0.42 oE, proposal Co-I

  20. Vertical high-precision Michelson wavemeter

    NASA Astrophysics Data System (ADS)

    Morales, A.; de Urquijo, J.; Mendoza, A.

    1993-01-01

    We have designed and tested a traveling, Michelson-type vertical wavemeter for the wavelength measurement of tunable continuous-wave lasers in the visible part of the spectrum. The interferometer has two movable corner cubes, suspending vertically from a driving setup resembling Atwood's machine. To reduce the fraction-of-fringe error, a vernier-type coincidence circuit was used. Although simple, this wavemeter has a relative precision of 3.2 parts in 109 for an overall fringe count of about 7×106.

  1. 4H-SiC JFET Multilayer Integrated Circuit Technologies Tested Up to 1000 K

    NASA Technical Reports Server (NTRS)

    Spry, D. J.; Neudeck, P. G.; Chen, L.; Chang, C. W.; Lukco, D.; Beheim, G. M.

    2015-01-01

    Testing of semiconductor electronics at temperatures above their designed operating envelope is recognized as vital to qualification and lifetime prediction of circuits. This work describes the high temperature electrical testing of prototype 4H silicon carbide (SiC) junction field effect transistor (JFET) integrated circuits (ICs) technology implemented with multilayer interconnects; these ICs are intended for prolonged operation at temperatures up to 773K (500 C). A 50 mm diameter sapphire wafer was used in place of the standard NASA packaging for this experiment. Testing was carried out between 300K (27 C) and 1150K (877 C) with successful electrical operation of all devices observed up to 1000K (727 C).

  2. Processing and Prolonged 500 C Testing of 4H-SiC JFET Integrated Circuits with Two Levels of Metal Interconnect

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.

    2015-01-01

    Complex integrated circuit (IC) chips rely on more than one level of interconnect metallization for routing of electrical power and signals. This work reports the processing and testing of 4H-SiC junction field effect transistor (JFET) prototype ICs with two levels of metal interconnect capable of prolonged operation at 500 C. Packaged functional circuits including 3-and 11-stage ring oscillators, a 4-bit digital to analog converter, and a 4-bit address decoder and random access memory cell have been demonstrated at 500 C. A 3-stage oscillator functioned for over 3000 hours at 500 C in air ambient.

  3. Millimeter-wave and optoelectronic applications of heterostructure integrated circuits

    NASA Technical Reports Server (NTRS)

    Pavlidis, Dimitris

    1991-01-01

    The properties are reviewed of heterostructure devices for microwave-monolithic-integrated circuits (MMICs) and optoelectronic integrated circuits (OICs). Specific devices examined include lattice-matched and pseudomorphic InAlAs/InGaAs high-electron mobility transistors (HEMTs), mixer/multiplier diodes, and heterojunction bipolar transistors (HBTs) developed with a number of materials. MMICs are reviewed that can be employed for amplification, mixing, and signal generation, and receiver/transmitter applications are set forth for OICs based on GaAs and InP heterostructure designs. HEMTs, HBTs, and junction-FETs can be utilized in combination with PIN, MSM, and laser diodes to develop novel communication systems based on technologies that combine microwave and photonic capabilities.

  4. Millimeter-wave and optoelectronic applications of heterostructure integrated circuits

    NASA Astrophysics Data System (ADS)

    Pavlidis, Dimitris

    1991-02-01

    The properties are reviewed of heterostructure devices for microwave-monolithic-integrated circuits (MMICs) and optoelectronic integrated circuits (OICs). Specific devices examined include lattice-matched and pseudomorphic InAlAs/InGaAs high-electron mobility transistors (HEMTs), mixer/multiplier diodes, and heterojunction bipolar transistors (HBTs) developed with a number of materials. MMICs are reviewed that can be employed for amplification, mixing, and signal generation, and receiver/transmitter applications are set forth for OICs based on GaAs and InP heterostructure designs. HEMTs, HBTs, and junction-FETs can be utilized in combination with PIN, MSM, and laser diodes to develop novel communication systems based on technologies that combine microwave and photonic capabilities.

  5. Switching and Rectification in Carbon-Nanotube Junctions

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Andriotis, Antonis N.; Menon, Madhu; Chernozatonskii, Leonid

    2003-01-01

    Multi-terminal carbon-nanotube junctions are under investigation as candidate components of nanoscale electronic devices and circuits. Three-terminal "Y" junctions of carbon nanotubes (see Figure 1) have proven to be especially interesting because (1) it is now possible to synthesize them in high yield in a controlled manner and (2) results of preliminary experimental and theoretical studies suggest that such junctions could exhibit switching and rectification properties. Following the preliminary studies, current-versus-voltage characteristics of a number of different "Y" junctions of single-wall carbon nanotubes connected to metal wires were computed. Both semiconducting and metallic nanotubes of various chiralities were considered. Most of the junctions considered were symmetric. These computations involved modeling of the quantum electrical conductivity of the carbon nanotubes and junctions, taking account of such complicating factors as the topological defects (pentagons, heptagons, and octagons) present in the hexagonal molecular structures at the junctions, and the effects of the nanotube/wire interfaces. A major component of the computational approach was the use of an efficient Green s function embedding scheme. The results of these computations showed that symmetric junctions could be expected to support both rectification and switching. The results also showed that rectification and switching properties of a junction could be expected to depend strongly on its symmetry and, to a lesser degree, on the chirality of the nanotubes. In particular, it was found that a zigzag nanotube branching at a symmetric "Y" junction could exhibit either perfect rectification or partial rectification (asymmetric current-versus-voltage characteristic, as in the example of Figure 2). It was also found that an asymmetric "Y" junction would not exhibit rectification.

  6. Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction

    DOEpatents

    Toet, Daniel; Sigmon, Thomas W.

    2004-12-07

    A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

  7. Process For Direct Integration Of A Thin-Film Silicon P-N Junction Diode With A Magnetic Tunnel Junction

    DOEpatents

    Toet, Daniel; Sigmon, Thomas W.

    2005-08-23

    A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

  8. Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction

    DOEpatents

    Toet, Daniel; Sigmon, Thomas W.

    2003-01-01

    A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

  9. Experiments with d-wave Superconductors

    NASA Astrophysics Data System (ADS)

    Mannhart, J.; Hilgenkamp, H.; Hammerl, G.; Schneider, C. W.

    2003-10-01

    The predominant dx2-y2-wave pairing-symmetry of most high-Tc, superconductors provides the opportunity to fabricate Josephson junction circuits in which part of the junctions are biased by a phase difference of the superconducting order parameter of π. To explore the road to such π-electronics, we have fabricated and studied all-high-Tc dc superconducting quantum interference devices (dc SQUIDs) realized with thin film technology, of which the Josephson junctions consist of one standard junction and one junction with a π-phase shift. These π-SQUIDs provide clear evidence of the dx2-y2-wave symmetry of the order parameter, the amount of complex admixtures of other symmetry components being undetectably small. This seems to contradict other experiments, the results of which have been presented as evidence for an s-wave order parameter or for complex admixtures. Possible solutions to resolve this apparent contradiction are presented. In particular it is pointed out that even in the bulk of a superconductor the order parameter symmetry (the admixture of various symmetry components) may be spatially dependent.

  10. Electrical transport characterization of PEDOT:PSS/n-Si Schottky diodes and their applications in solar cells.

    PubMed

    Khurelbaatar, Zagarzusem; Hyung, Jung-Hwan; Kim, Gil-Sung; Park, No-Won; Shim, Kyu-Hwan; Lee, Sang-Kwon

    2014-06-01

    We demonstrate locally contacted PEDOT:PSS Schottky diodes with excellent rectifying behavior, fabricated on n-type Si substrates using a spin-coating process and a reactive-ion etching process. Electrical transport characterizations of these Schottky diodes were investigated by both current-voltage (I-V) and capacitance-voltage (C-V) measurements. We found that these devices exhibit excellent modulation in the current with an on/off ratio of - 10(6). Schottky junction solar cells composed of PEDOT:PSS and n-Si structures were also examined. From the current density-voltage (J-V) measurement of a solar cell under illumination, the short circuit current (I(sc)), open circuit voltage (V(oc)), and conversion efficiency (eta) were - 19.7 mA/cm2, - 578.5 mV, and - 6.5%, respectively. The simple and low-cost fabrication process of the PEDOT:PSS/n-Si Schottky junctions makes them a promising candidate for further high performance solar cell applications.

  11. Reduced insulin signaling maintains electrical transmission in a neural circuit in aging flies

    PubMed Central

    McGourty, Kieran; Allen, Marcus J.; Madem, Sirisha Kudumala; Adcott, Jennifer; Kerr, Fiona; Wong, Chi Tung; Vincent, Alec; Godenschwege, Tanja; Boucrot, Emmanuel; Partridge, Linda

    2017-01-01

    Lowered insulin/insulin-like growth factor (IGF) signaling (IIS) can extend healthy lifespan in worms, flies, and mice, but it can also have adverse effects (the “insulin paradox”). Chronic, moderately lowered IIS rescues age-related decline in neurotransmission through the Drosophila giant fiber system (GFS), a simple escape response neuronal circuit, by increasing targeting of the gap junctional protein innexin shaking-B to gap junctions (GJs). Endosomal recycling of GJs was also stimulated in cultured human cells when IIS was reduced. Furthermore, increasing the activity of the recycling small guanosine triphosphatases (GTPases) Rab4 or Rab11 was sufficient to maintain GJs upon elevated IIS in cultured human cells and in flies, and to rescue age-related loss of GJs and of GFS function. Lowered IIS thus elevates endosomal recycling of GJs in neurons and other cell types, pointing to a cellular mechanism for therapeutic intervention into aging-related neuronal disorders. PMID:28902870

  12. Fill factor in organic solar cells can exceed the Shockley-Queisser limit

    NASA Astrophysics Data System (ADS)

    Trukhanov, Vasily A.; Bruevich, Vladimir V.; Paraschuk, Dmitry Yu.

    2015-06-01

    The ultimate efficiency of organic solar cells (OSC) is under active debate. The solar cell efficiency is calculated from the current-voltage characteristic as a product of the open-circuit voltage (VOC), short-circuit current (JSC), and the fill factor (FF). While the factors limiting VOC and JSC for OSC were extensively studied, the ultimate FF for OSC is scarcely explored. Using numerical drift-diffusion modeling, we have found that the FF in OSC can exceed the Shockley-Queisser limit (SQL) established for inorganic p-n junction solar cells. Comparing charge generation and recombination in organic donor-acceptor bilayer heterojunction and inorganic p-n junction, we show that such distinctive properties of OSC as interface charge generation and heterojunction facilitate high FF, but the necessary condition for FF exceeding the SQL in OSC is field-dependence of charge recombination at the donor-acceptor interface. These findings can serve as a guideline for further improvement of OSC.

  13. Report on Project to Characterize Multi-Junction Solar Cells in the Stratosphere using Low-Cost Balloon and Communication Technologies

    NASA Technical Reports Server (NTRS)

    Mirza, Ali; Sant, David; Woodyard, James R.; Johnston, Richard R.; Brown, William J.

    2002-01-01

    Balloon, control and communication technologies are under development in our laboratory for testing multi-junction solar cells in the stratosphere to achieve near AM0 conditions. One flight, Suntracker I, has been carried out reported earlier. We report on our efforts in preparation for a second flight, Suntracker II, that was aborted due to hardware problems. The package for Suntracker I system has been modified to include separate electronics and battery packs for the 70 centimeter and 2 meter systems. The collimator control system and motor gearboxes have been redesigned to address problems with the virtual stops and backlash. Surface mount technology on a printed circuit board was used in place of the through-hole prototype circuit in efforts to reduce weight and size, and improve reliability. A mobile base station has been constructed that includes a 35' tower with a two axis rotator and multi-element yagi antennas. Modifications in Suntracker I and the factors that lead to aborting Suntracker II are discussed.

  14. In Situ Irradiation and Measurement of Triple Junction Solar Cells at Low Intensity, Low Temperature (LILT) Conditions

    NASA Technical Reports Server (NTRS)

    Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.

    2008-01-01

    The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell

  15. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grezes, C.; Alzate, J. G.; Cai, X.

    2016-01-04

    We report electric-field-induced switching with write energies down to 6 fJ/bit for switching times of 0.5 ns, in nanoscale perpendicular magnetic tunnel junctions (MTJs) with high resistance-area product and diameters down to 50 nm. The ultra-low switching energy is made possible by a thick MgO barrier that ensures negligible spin-transfer torque contributions, along with a reduction of the Ohmic dissipation. We find that the switching voltage and time are insensitive to the junction diameter for high-resistance MTJs, a result accounted for by a macrospin model of purely voltage-induced switching. The measured performance enables integration with same-size CMOS transistors in compact memorymore » and logic integrated circuits.« less

  16. A physicochemical mechanism of chemical gas sensors using an AC analysis.

    PubMed

    Moon, Jaehyun; Park, Jin-Ah; Lee, Su-Jae; Lee, Jeong-Ik; Zyung, Taehyong; Shin, Eui-Chol; Lee, Jong-Sook

    2013-06-21

    Electrical modeling of the chemical gas sensors was successfully applied to TiO2 nanofiber gas sensors by developing an equivalent circuit model where the junction capacitance as well as the resistance can be separated from the comparable stray capacitance. The Schottky junction impedance exhibited a characteristic skewed arc described by a Cole-Davidson function, and the variation of the fit and derived parameters with temperature, bias, and NO2 gas concentration indicated definitely a physicochemical sensing mechanism based on the Pt|TiO2 Schottky junctions against the conventional supposition of the enhanced sensitivity in nanostructured gas sensors with high grain boundary/surface area. Analysis on a model Pt|TiO2|Pt structure also confirmed the characteristic impedance response of TiO2 nanofiber sensors.

  17. Environment-insensitive and gate-controllable photocurrent enabled by bandgap engineering of MoS2 junctions.

    PubMed

    Shih, Fu-Yu; Wu, Yueh-Chun; Shih, Yi-Siang; Shih, Ming-Chiuan; Wu, Tsuei-Shin; Ho, Po-Hsun; Chen, Chun-Wei; Chen, Yang-Fang; Chiu, Ya-Ping; Wang, Wei-Hua

    2017-03-21

    Two-dimensional (2D) materials are composed of atomically thin crystals with an enormous surface-to-volume ratio, and their physical properties can be easily subjected to the change of the chemical environment. Encapsulation with other layered materials, such as hexagonal boron nitride, is a common practice; however, this approach often requires inextricable fabrication processes. Alternatively, it is intriguing to explore methods to control transport properties in the circumstance of no encapsulated layer. This is very challenging because of the ubiquitous presence of adsorbents, which can lead to charged-impurity scattering sites, charge traps, and recombination centers. Here, we show that the short-circuit photocurrent originated from the built-in electric field at the MoS 2 junction is surprisingly insensitive to the gaseous environment over the range from a vacuum of 1 × 10 -6   Torr to ambient condition. The environmental insensitivity of the short-circuit photocurrent is attributed to the characteristic of the diffusion current that is associated with the gradient of carrier density. Conversely, the photocurrent with bias exhibits typical persistent photoconductivity and greatly depends on the gaseous environment. The observation of environment-insensitive short-circuit photocurrent demonstrates an alternative method to design device structure for 2D-material-based optoelectronic applications.

  18. Research on design feasibility of high-power light-weight dc-to-dc converters for space power applications

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.

    1981-01-01

    Utilizing knowledge gained from past experience with experimental current-or-voltage step-up dc-to-dc converter power stages operating at output powers up to and in excess of 2 kW, a new experimental current-or-voltage step-up power stage using paralleled bipolar junction transistors (BJTs) as the controlled power switch, was constructed during the current reporting period. The major motivation behind the construction of this new experimental power stage was to improve the circuit layout so as to reduce the effects of stray circuit parasitic inductances resulting from excess circuit lead lengths and circuit loops, and to take advantage of the layout improvements which could be made when some recently-available power components, particularly power diodes and polypropylene filter capacitors, were incorporated into the design.

  19. All-Optical Ultrasound Transducers for High Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Sheaff, Clay Smith

    High frequency ultrasound (HFUS) has increasingly been used within the past few decades to provide high resolution (< 200 mum) imaging in medical applications such as endoluminal imaging, intravascular imaging, ophthalmology, and dermatology. The optical detection and generation of HFUS using thin films offers numerous advantages over traditional piezoelectric technology. Circumvention of an electronic interface with the device head is one of the most significant given the RF noise, crosstalk, and reduced capacitance that encumbers small-scale electronic transducers. Thin film Fabry-Perot interferometers - also known as etalons - are well suited for HFUS receivers on account of their high sensitivity, wide bandwidth, and ease of fabrication. In addition, thin films can be used to generate HFUS when irradiated with optical pulses - a method referred to as Thermoelastic Ultrasound Generation (TUG). By integrating a polyimide (PI) film for TUG into an etalon receiver, we have created for the first time an all-optical ultrasound transducer that is both thermally stable and capable of forming fully sampled 2-D imaging arrays of arbitrary configuration. Here we report (1) the design and fabrication of PI-etalon transducers; (2) an evaluation of their optical and acoustic performance parameters; (3) the ability to conduct high-resolution imaging with synthetic 2-D arrays of PI-etalon elements; and (4) work towards a fiber optic PI-etalon for in vivo use. Successful development of a fiber optic imager would provide a unique field-of-view thereby exposing an abundance of prospects for minimally-invasive analysis, diagnosis, and treatment of disease.

  20. Efficient G(sup 4)FET-Based Logic Circuits

    NASA Technical Reports Server (NTRS)

    Vatan, Farrokh

    2008-01-01

    A total of 81 optimal logic circuits based on four-gate field-effect transistors (G(sup 4)4FETs) have been designed to implement all Boolean functions of up to three variables. The purpose of this development was to lend credence to the expectation that logic circuits based on G(sup 4)FETs could be more efficient (in the sense that they could contain fewer transistors), relative to functionally equivalent logic circuits based on conventional transistors. A G(sup 4)FET a combination of a junction field-effect transistor (JFET) and a metal oxide/semiconductor field-effect transistor (MOSFET) superimposed in a single silicon island and can therefore be regarded as two transistors sharing the same body. A G(sup 4)FET can also be regarded as a single device having four gates: two side junction-based gates, a top MOS gate, and a back gate activated by biasing of a silicon-on-insulator substrate. Each of these gates can be used to control the conduction characteristics of the transistor; this possibility creates new options for designing analog, radio-frequency, mixed-signal, and digital circuitry. One such option is to design a G(sup 4)FET to function as a three-input NOT-majority gate, which has been shown to be a universal and programmable logic gate. Optimal NOT-majority-gate, G(sup 4)FET-based logic-circuit designs were obtained in a comparative study that also included formulation of functionally equivalent logic circuits based on NOR and NAND gates implemented by use of conventional transistors. In the study, the problem of finding the optimal design for each logic function and each transistor type was solved as an integer-programming optimization problem. Considering all 81 non-equivalent Boolean functions included in the study, it was found that in 63% of the cases, fewer logic gates (and, hence, fewer transistors) would be needed in the G(sup 4)FET-based implementations.

  1. Nanoprobe studies: Electrical transport in carbon nanotubes and crystal structure of aluminum nitride surfaces

    NASA Astrophysics Data System (ADS)

    Biswas, Sujit Kumar

    Nanoprobes are an extraordinary set of experimental tools that allow fabrication, manipulation, and measurement in nano-scale systems. The primary use of a nanoprobe for imaging tiny objects is supplemented by powerful electrical techniques, namely scanning surface potential microscopy and current sensing atomic force microscopy. They allow us to measure potential, and current in carbon nanotube circuits. Nanoprobes are superior to conventional two- or four-probe measurements because they can provide spatial information of local electronic properties. This makes them highly attractive in studying junctions and contacts with carbon nanotubes. We have studied single-walled carbon nanotube circuits, forming junctions to other nanotubes. The experimental results indicate that these junctions act like potential barriers of about 50 meV that can confine electrons with an effective mass of 0.003 me , within nanotube channels of length 0.5 mum lying in-between two such potential barriers. This leads to quantization of the channel, forming a resonant tunneling structure. We have also found that single-walled nanotubes have phase coherence lengths of the order of 1 mum. This leads to situations where the electron interference effects at scattering centers need to be considered. We have seen direct evidence of this, in the non-linear resistance increase within nanotubes with few defects. Ambipolar transistor behavior was measured in a p-type single-walled nanotube circuit that showed electron injection across the Schottky junction at high positive bias. We have also studied multi-walled carbon nanotube circuits using scanning potential microscopy, and found that a back gate potential can vary the resistance of the channel. Vertical nanotube arrays, suitable for interconnects, were also measured. These hollow multi-walled nanotube channels were about 45 nm in diameter, and 50 mum in length, fabricated in an anodized alumina template. We found that these structures could sustain current densities greater than 105 A/cm2. Conventional use of nanoprobes in imaging aluminum nitride surfaces displayed curious step bunching structures. We have used an innovative analysis technique with which the bulk lattice constant of the crystal was measured to an accuracy of about 4% of X-ray crystallography value of 0.497 nm. In addition, this technique showed that there were regions on the surface that had a larger lattice parameter of 0.64 nm, which we interpreted to be due to a variation in the chemical composition of the surface such as oxide formation. We believe that this technique may prove useful as a study of chemical-composition variations on a surface as well as relaxation of the surface layer.

  2. Design and optimization of the plasmonic graphene/InP thin-film solar-cell structure

    NASA Astrophysics Data System (ADS)

    Nematpour, Abedin; Nikoufard, Mahmoud; Mehragha, Rouholla

    2018-06-01

    In this paper, a graphene/InP thin-film Schottky-junction solar cell with a periodic array of plasmonic back-reflector is proposed. In this structure, a single-layer graphene sheet is deposited on the surface of the InP to form a Schottky junction. Then, the layer stack of the proposed solar-cell is optimized to have a maximum optical absorption of 〈A W〉  =  0.985 (98.5%) and short-circuit current density of J sc  =  33.01 mA cm‑2.

  3. Magnetic tunnel junction thermocouple for thermoelectric power harvesting

    NASA Astrophysics Data System (ADS)

    Böhnert, T.; Paz, E.; Ferreira, R.; Freitas, P. P.

    2018-05-01

    The thermoelectric power generated in magnetic tunnel junctions (MTJs) is determined as a function of the tunnel barrier thickness for a matched electric circuit. This study suggests that lower resistance area product and higher tunnel magnetoresistance will maximize the thermoelectric power output of the MTJ structures. Further, the thermoelectric behavior of a series of two MTJs, a MTJ thermocouple, is investigated as a function of its magnetic configurations. In an alternating magnetic configurations the thermovoltages cancel each other, while the magnetic contribution remains. A large array of MTJ thermocouples could amplify the magnetic thermovoltage signal significantly.

  4. Formation of a pn junction on an anisotropically etched GaAs surface using metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Leon, R. P.; Bailey, S. G.; Mazaris, G. A.; Williams, W. D.

    1986-01-01

    A continuous p-type GaAs epilayer has been deposited on an n-type sawtooth GaAs surface using MOCVD. A wet chemical etching process was used to expose the intersecting (111)Ga and (-1 -1 1)Ga planes with 6-micron periodicity. Charge-collection microscopy was used to verify the presence of the pn junction thus formed and to measure its depth. The ultimate goal of this work is to fabricate a V-groove GaAs cell with improved absorptivity, high short-circuit current, and tolerance to particle radiation.

  5. Method for shallow junction formation

    DOEpatents

    Weiner, K.H.

    1996-10-29

    A doping sequence is disclosed that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated. 8 figs.

  6. Method for shallow junction formation

    DOEpatents

    Weiner, Kurt H.

    1996-01-01

    A doping sequence that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated.

  7. Dynamic magnetoelectric effect in ferromagnet/superconductor tunnel junctions.

    PubMed

    Trif, Mircea; Tserkovnyak, Yaroslav

    2013-08-23

    We study the magnetization dynamics in a ferromagnet/insulator/superconductor tunnel junction and the associated buildup of the electrical polarization. We show that for an open circuit, the induced voltage varies strongly and nonmonotonically with the precessional frequency, and can be enhanced significantly by the superconducting correlations. For frequencies much smaller or much larger than the superconducting gap, the voltage drops to zero, while when these two energy scales are comparable, the voltage is peaked at a value determined by the driving frequency. We comment on the potential utilization of the effect for the low-temperature spatially resolved spectroscopy of magnetic dynamics.

  8. MLCK-mediated intestinal permeability promotes immune activation and visceral hypersensitivity in PI-IBS mice.

    PubMed

    Long, Y; Du, L; Kim, J J; Chen, B; Zhu, Y; Zhang, Y; Yao, S; He, H; Zheng, X; Huang, Z; Dai, N

    2018-04-11

    Alterations in intestinal permeability regulated by tight junctions (TJs) are associated with immune activation and visceral hypersensitivity in irritable bowel syndrome (IBS). Myosin light chain kinase (MLCK) is an important mediator of epithelial TJ. The aim of this study is to investigate the role of MLCK in the pathogenesis of IBS using a post infectious IBS (PI-IBS) mouse model. Trichinella spiralis-infected PI-IBS mouse model was used. Urine lactulose/mannitol ratio was measured to assess intestinal epithelial permeability. Western blotting was used to evaluate intestinal TJ protein (zonula occludens-1) and MLCK-associated protein expressions. Immune profile was assessed by measuring Th (T helper) 1/Th2 cytokine expression. Visceral sensitivity was determined by abdominal withdrawal reflex in response to colorectal distension. Eight weeks after inoculation with T. spiralis, PI-IBS mice developed decreased pain and volume thresholds during colorectal distention, increased urine lactulose/mannitol ratio, elevated colonic Th1/Th2 cytokine ratio, and decreased zonula occludens-1 expression compared to the control mice. MLCK expression was dramatically elevated in the colonic mucosa of PI-IBS mice compared to the control mice, alongside increased pMLC/MLC and decreased MLCP expression. Administration of MLCK inhibitor and TJ blocker both reversed the increased intestinal permeability, visceral hypersensitivity, and Th1-dominant immune profile in PI-IBS mice. MLCK is a pivotal step in inducing increased intestinal permeability promoting low-grade intestinal immune activation and visceral hypersensitivity in PI-IBS mice. MLCK inhibitor may provide a potential therapeutic option in the treatment of IBS. © 2018 John Wiley & Sons Ltd.

  9. Flat-Passband 3 × 3 Interleaving Filter Designed With Optical Directional Couplers in Lattice Structure

    NASA Astrophysics Data System (ADS)

    Wang, Qi Jie; Zhang, Ying; Soh, Yeng Chai

    2005-12-01

    This paper presents a novel lattice optical delay-line circuit using 3 × 3 directional couplers to implement three-port optical interleaving filters. It is shown that the proposed circuit can deliver three channels of 2pi/3 phase-shifted interleaving transmission spectra if the coupling ratios of the last two directional couplers are selected appropriately. The other performance requirements of an optical interleaver can be achieved by designing the remaining part of the lattice circuit. A recursive synthesis design algorithm is developed to calculate the design parameters of the lattice circuit that will yield the desired filter response. As illustrative examples, interleavers with maximally flat-top passband transmission and with given transmission performance on passband ripples and passband bandwidth, respectively, are designed to verify the effectiveness of the proposed design scheme.

  10. Engineering a robust DNA split proximity circuit with minimized circuit leakage

    PubMed Central

    Ang, Yan Shan; Tong, Rachel; Yung, Lin-Yue Lanry

    2016-01-01

    DNA circuit is a versatile and highly-programmable toolbox which can potentially be used for the autonomous sensing of dynamic events, such as biomolecular interactions. However, the experimental implementation of in silico circuit designs has been hindered by the problem of circuit leakage. Here, we systematically analyzed the sources and characteristics of various types of leakage in a split proximity circuit which was engineered to spatially probe for target sites held within close proximity. Direct evidence that 3′-truncated oligonucleotides were the major impurity contributing to circuit leakage was presented. More importantly, a unique strategy of translocating a single nucleotide between domains, termed ‘inter-domain bridging’, was introduced to eliminate toehold-independent leakages while enhancing the strand displacement kinetics across a three-way junction. We also analyzed the dynamics of intermediate complexes involved in the circuit computation in order to define the working range of domain lengths for the reporter toehold and association region respectively. The final circuit design was successfully implemented on a model streptavidin-biotin system and demonstrated to be robust against both circuit leakage and biological interferences. We anticipate that this simple signal transduction strategy can be used to probe for diverse biomolecular interactions when used in conjunction with specific target recognition moieties. PMID:27207880

  11. Diffusion length measurements of thin GaAs solar cells by means of energetic electrons

    NASA Technical Reports Server (NTRS)

    Vonross, O.

    1980-01-01

    A calculation of the short circuit current density (j sub sc) of a thin GaAs solar cell induced by fast electrons is presented. It is shown that in spite of the disparity in thickness between the N-type portion of the junction and the P-type portion of the junction, the measurement of the bulk diffusion length L sub p of the N-type part of the junction is seriously hampered due to the presence of a sizable contribution to the j sub sc from the P-type region of the junction. Corrections of up to 50% had to be made in order to interpret the data correctly. Since these corrections were not amenable to direct measurements it is concluded that the electron beam method for the determination of the bulk minority carrier diffusion length, which works so well for Si solar cells, is a poor method when applied to thin GaAs cells.

  12. Ballistic One-Dimensional InAs Nanowire Cross-Junction Interconnects.

    PubMed

    Gooth, Johannes; Borg, Mattias; Schmid, Heinz; Schaller, Vanessa; Wirths, Stephan; Moselund, Kirsten; Luisier, Mathieu; Karg, Siegfried; Riel, Heike

    2017-04-12

    Coherent interconnection of quantum bits remains an ongoing challenge in quantum information technology. Envisioned hardware to achieve this goal is based on semiconductor nanowire (NW) circuits, comprising individual NW devices that are linked through ballistic interconnects. However, maintaining the sensitive ballistic conduction and confinement conditions across NW intersections is a nontrivial problem. Here, we go beyond the characterization of a single NW device and demonstrate ballistic one-dimensional (1D) quantum transport in InAs NW cross-junctions, monolithically integrated on Si. Characteristic 1D conductance plateaus are resolved in field-effect measurements across up to four NW-junctions in series. The 1D ballistic transport and sub-band splitting is preserved for both crossing-directions. We show that the 1D modes of a single injection terminal can be distributed into multiple NW branches. We believe that NW cross-junctions are well-suited as cross-directional communication links for the reliable transfer of quantum information as required for quantum computational systems.

  13. Enhanced Conversion Efficiency of III–V Triple-junction Solar Cells with Graphene Quantum Dots

    PubMed Central

    Lin, Tzu-Neng; Santiago, Svette Reina Merden S.; Zheng, Jie-An; Chao, Yu-Chiang; Yuan, Chi-Tsu; Shen, Ji-Lin; Wu, Chih-Hung; Lin, Cheng- An J.; Liu, Wei-Ren; Cheng, Ming-Chiang; Chou, Wu-Ching

    2016-01-01

    Graphene has been used to synthesize graphene quantum dots (GQDs) via pulsed laser ablation. By depositing the synthesized GQDs on the surface of InGaP/InGaAs/Ge triple-junction solar cells, the short-circuit current, fill factor, and conversion efficiency were enhanced remarkably. As the GQD concentration is increased, the conversion efficiency in the solar cell increases accordingly. A conversion efficiency of 33.2% for InGaP/InGaAs/Ge triple-junction solar cells has been achieved at the GQD concentration of 1.2 mg/ml, corresponding to a 35% enhancement compared to the cell without GQDs. On the basis of time-resolved photoluminescence, external quantum efficiency, and work-function measurements, we suggest that the efficiency enhancement in the InGaP/InGaAs/Ge triple-junction solar cells is primarily caused by the carrier injection from GQDs to the InGaP top subcell. PMID:27982073

  14. Building mechanism for a high open-circuit voltage in an all-solution-processed tandem polymer solar cell.

    PubMed

    Kong, Jaemin; Lee, Jongjin; Kim, Geunjin; Kang, Hongkyu; Choi, Youna; Lee, Kwanghee

    2012-08-14

    Additional post-processing techniques, such as post-thermal annealing and UV illumination, were found to be required to obtain desirable values of the cell parameters in a tandem polymer solar cell incorporated with solution-processed basic n-type titanium sub-oxide (TiO(x))/acidic p-type poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) interlayers. Subsequent to the fabrication of the tandem polymer solar cells, the open-circuit voltage (V(OC)) of the cells exhibited half of the expected value. Only after the application of the post-treatments, the V(OC) of a tandem cell increased from the initial half-cell value (∼0.6 V) to its full-cell value (∼1.2 V). The selective light-biased incident photon-to-current efficiency (IPCE) measurements indicated that the initial V(OC) originated from the back subcell and that the application of the post-processing treatments revived the front subcell, such that the net photocurrent of the tandem cell was finally governed by a recombination process of holes from the back subcell and electrons from the front subcell. Based on our experimental results, we suggest that a V(OC) enhancement could be ascribed to two types of subsequent junction formations at the interface between the TiO(x) and PEDOT:PSS interlayers: an 'ion-mediated dipole junction', resulting from the electro-kinetic migration of cationic ions in the interlayers during post-thermal annealing in the presence of a low-work-function metal cathode, and a 'photoinduced Schottky junction', formed by increasing the charge carrier density in the n-type TiO(x) interlayer during UV illumination process. The two junctions separately contributed to the formation of a recombination junction through which the electrons in TiO(x) and the holes in PEDOT:PSS were able to recombine without substantial voltage drops.

  15. Understanding the Role of MDSCs in Castration-Resistant Prostate Cancer and Metastasis

    DTIC Science & Technology

    2015-10-01

    Ar+ cells down-regulate Ar expression in the CRPC tumors. Further, a significant amount of normal epithelium was identified in castrated Ptenpc... junction (consistent with their epithelial nature), stromal cells display activation of more diverse signaling pathways involved in chronic...will attend “Faculty Development Workshop and Seminar Series” of MDACC regularly to help me prepare the transition to independent PI. o How were the

  16. Molecular diodes and ultra-thin organic rectifying junctions: Au-S-CnH2n-Q3CNQ and TCNQ derivatives.

    PubMed

    Ashwell, Geoffrey J; Moczko, Katarzyna; Sujka, Marta; Chwialkowska, Anna; Hermann High, L R; Sandman, Daniel J

    2007-02-28

    Attempts to obtain derivatives of the molecular diode, 2-{4-[1-cyano-2-(1-(omega-acetylsulfanylalkyl)-1H-quinolin-4-ylidene)-ethylidene]-cyclohexa-2,5-dienylidene}-malonitrile [1, CH(3)CO-S-C(n)H(2n)-Q3CNQ], from either 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-p-quinodimethane (TCNQF(4)) or 2,3,5,6-tetramethyl-7,7,8,8-tetracyano-p-quinodimethane (TMTCNQ) result in ring closure via the cyano group of the pi-bridge and yield di-substituted analogues: 2-{2,3,5,6-tetrafluoro-4-[6-(10-acetylsulfanyldecyl)-3-(1-(10-acetylsulfanyldecyl)-1H-quinolin-4-ylidenemethyl)-6H-benzo[f][1,7]naphthyridin-2-ylidene]-cyclohexa-2,5-dienylidene}-malonitrile (2a) and the 2,3,5,6-tetramethyl derivative (2b). Self-assembled monolayers (SAMs) of these donor-(pi-bridge)-acceptor molecular diodes exhibit asymmetric current-voltage characteristics with electron flow at forward bias from the top contact to surface C(CN)(2) groups. Comparison is made with I-V curves from ultra-thin films of an organic rectifying junction in which TCNQ(-) is electron-donating and a donor-(sigma-bridge)-acceptor diode in which TCNQ degrees is electron-accepting.

  17. Low noise charge sensitive preamplifier DC stabilized without a physical resistor

    DOEpatents

    Bertuccio, Giuseppe; Rehak, Pavel; Xi, Deming

    1994-09-13

    The invention is a novel charge sensitive preamplifier (CSP) which has no resistor in parallel with the feedback capacitor. No resetting circuit is required to discharge the feedback capacitor. The DC stabilization of the preamplifier is obtained by means of a second feedback loop between the preamplifier output and the common base transistor of the input cascode. The input transistor of the preamplifier is a Junction Field Transistor (JFET) with the gate-source junction forward biased. The detector leakage current flows into this junction. This invention is concerned with a new circuit configuration for a charge sensitive preamplifier and a novel use of the input Field Effect Transistor of the CSP itself. In particular this invention, in addition to eliminating the feedback resistor, eliminates the need for external devices between the detector and the preamplifier, and it eliminates the need for external circuitry to sense the output voltage and reset the CSP. Furthermore, the noise level of the novel CSP is very low, comparable with the performance achieved with other solutions. Experimental tests prove that this configuration for the charge sensitive preamplifier permits an excellent noise performance at temperatures including room temperature. An equivalent noise charge of less than 20 electrons r.m.s. has been measured at room temperature by using a commercial JFET as input device of the preamplifier.

  18. Low noise charge sensitive preamplifier DC stabilized without a physical resistor

    DOEpatents

    Bertuccio, G.; Rehak, P.; Xi, D.

    1994-09-13

    The invention is a novel charge sensitive preamplifier (CSP) which has no resistor in parallel with the feedback capacitor. No resetting circuit is required to discharge the feedback capacitor. The DC stabilization of the preamplifier is obtained by means of a second feedback loop between the preamplifier output and the common base transistor of the input cascode. The input transistor of the preamplifier is a Junction Field Transistor (JFET) with the gate-source junction forward biased. The detector leakage current flows into this junction. This invention is concerned with a new circuit configuration for a charge sensitive preamplifier and a novel use of the input Field Effect Transistor of the CSP itself. In particular this invention, in addition to eliminating the feedback resistor, eliminates the need for external devices between the detector and the preamplifier, and it eliminates the need for external circuitry to sense the output voltage and reset the CSP. Furthermore, the noise level of the novel CSP is very low, comparable with the performance achieved with other solutions. Experimental tests prove that this configuration for the charge sensitive preamplifier permits an excellent noise performance at temperatures including room temperature. An equivalent noise charge of less than 20 electrons r.m.s. has been measured at room temperature by using a commercial JFET as input device of the preamplifier. 6 figs.

  19. Evidence of Processing Non-Idealities in 4H-SiC Integrated Circuits Fabricated with Two Levels of Metal Interconnect

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Liangyu, Chen; Evans, Laura J.; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.

    2015-01-01

    The fabrication and prolonged 500 C electrical testing of 4H-SiC junction field effect transistor (JFET) integrated circuits (ICs) with two levels of metal interconnect is reported in another submission to this conference proceedings. While some circuits functioned more than 1000 hours at 500 C, the majority of packaged ICs from this wafer electrically failed after less than 200 hours of operation in the same test conditions. This work examines the root physical degradation and failure mechanisms believed responsible for observed large discrepancies in 500 C operating time. Evidence is presented for four distinct issues that significantly impacted 500 C IC operational yield and lifetime for this wafer.

  20. Evidence of Processing Non-Idealities in 4H-SiC Integrated Circuits Fabricated With Two Levels of Metal Interconnect

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Evans, Laura J.; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.

    2015-01-01

    The fabrication and prolonged 500 C electrical testing of 4H-SiC junction field effect transistor (JFET) integrated circuits (ICs) with two levels of metal interconnect is reported in another submission to this conference proceedings. While some circuits functioned more than 3000 hours at 500 C, the majority of packaged ICs from this wafer electrically failed after less than 200 hours of operation in the same test conditions. This work examines the root physical degradation and failure mechanisms believed responsible for observed large discrepancies in 500 C operating time. Evidence is presented for four distinct issues that significantly impacted 500 C IC operational yield and lifetime for this wafer.

  1. Processing and Prolonged 500 C Testing of 4H-SiC JFET Integrated Circuits with Two Levels of Metal Interconnect

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.

    2015-01-01

    Complex integrated circuit (IC) chips rely on more than one level of interconnect metallization for routing of electrical power and signals. This work reports the processing and testing of 4H-SiC junction field effect transistor (JFET) prototype IC's with two levels of metal interconnect capable of prolonged operation at 500 C. Packaged functional circuits including 3- and 11-stage ring oscillators, a 4-bit digital to analog converter, and a 4-bit address decoder and random access memory cell have been demonstrated at 500 C. A 3-stage oscillator functioned for over 3000 hours at 500 C in air ambient. Improved reproducibility remains to be accomplished.

  2. Microfabrication of low-loss lumped-element Josephson circuits for non-reciprocal and parametric devices

    NASA Astrophysics Data System (ADS)

    Cicak, Katarina; Lecocq, Florent; Ranzani, Leonardo; Peterson, Gabriel A.; Kotler, Shlomi; Teufel, John D.; Simmonds, Raymond W.; Aumentado, Jose

    Recent developments in coupled mode theory have opened the doors to new nonreciprocal amplification techniques that can be directly leveraged to produce high quantum efficiency in current measurements in microwave quantum information. However, taking advantage of these techniques requires flexible multi-mode circuit designs comprised of low-loss materials that can be implemented using common fabrication techniques. In this talk we discuss the design and fabrication of a new class of multi-pole lumped-element superconducting parametric amplifiers based on Nb/Al-AlOx/Nb Josephson junctions on silicon or sapphire. To reduce intrinsic loss in these circuits we utilize PECVD amorphous silicon as a low-loss dielectric (tanδ 5 ×10-4), resulting in nearly quantum-limited directional amplification.

  3. Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls

    PubMed Central

    Currivan-Incorvia, J. A.; Siddiqui, S.; Dutta, S.; Evarts, E. R.; Zhang, J.; Bono, D.; Ross, C. A.; Baldo, M. A.

    2016-01-01

    Spintronic computing promises superior energy efficiency and nonvolatility compared to conventional field-effect transistor logic. But, it has proven difficult to realize spintronic circuits with a versatile, scalable device design that is adaptable to emerging material physics. Here we present prototypes of a logic device that encode information in the position of a magnetic domain wall in a ferromagnetic wire. We show that a single three-terminal device can perform inverter and buffer operations. We demonstrate one device can drive two subsequent gates and logic propagation in a circuit of three inverters. This prototype demonstration shows that magnetic domain wall logic devices have the necessary characteristics for future computing, including nonlinearity, gain, cascadability, and room temperature operation. PMID:26754412

  4. Realization of radial p-n junction silicon nanowire solar cell based on low-temperature and shallow phosphorus doping

    NASA Astrophysics Data System (ADS)

    Dong, Gangqiang; Liu, Fengzhen; Liu, Jing; Zhang, Hailong; Zhu, Meifang

    2013-12-01

    A radial p-n junction solar cell based on vertically free-standing silicon nanowire (SiNW) array is realized using a novel low-temperature and shallow phosphorus doping technique. The SiNW arrays with excellent light trapping property were fabricated by metal-assisted chemical etching technique. The shallow phosphorus doping process was carried out in a hot wire chemical vapor disposition chamber with a low substrate temperature of 250°C and H2-diluted PH3 as the doping gas. Auger electron spectroscopy and Hall effect measurements prove the formation of a shallow p-n junction with P atom surface concentration of above 1020 cm-3 and a junction depth of less than 10 nm. A short circuit current density of 37.13 mA/cm2 is achieved for the radial p-n junction SiNW solar cell, which is enhanced by 7.75% compared with the axial p-n junction SiNW solar cell. The quantum efficiency spectra show that radial transport based on the shallow phosphorus doping of SiNW array improves the carrier collection property and then enhances the blue wavelength region response. The novel shallow doping technique provides great potential in the fabrication of high-efficiency SiNW solar cells.

  5. Compact, high-speed algorithm for laying out printed circuit board runs

    NASA Astrophysics Data System (ADS)

    Zapolotskiy, D. Y.

    1985-09-01

    A high speed printed circuit connection layout algorithm is described which was developed within the framework of an interactive system for designing two-sided printed circuit broads. For this reason, algorithm speed was considered, a priori, as a requirement equally as important as the inherent demand for minimizing circuit run lengths and the number of junction openings. This resulted from the fact that, in order to provide psychological man/machine compatibility in the design process, real-time dialog during the layout phase is possible only within limited time frames (on the order of several seconds) for each circuit run. The work was carried out for use on an ARM-R automated work site complex based on an SM-4 minicomputer with a 32K-word memory. This limited memory capacity heightened the demand for algorithm speed and also tightened data file structure and size requirements. The layout algorithm's design logic is analyzed. The structure and organization of the data files are described.

  6. Heat transport through atomic contacts.

    PubMed

    Mosso, Nico; Drechsler, Ute; Menges, Fabian; Nirmalraj, Peter; Karg, Siegfried; Riel, Heike; Gotsmann, Bernd

    2017-05-01

    Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems. Whereas charge transport in atomic junctions has been studied intensively in the past two decades, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts. Here we report heat-transfer measurements through atomic junctions and analyse the thermal conductance of single-atom gold contacts at room temperature. Simultaneous measurements of charge and heat transport reveal the proportionality of electrical and thermal conductance, quantized with the respective conductance quanta. This constitutes a verification of the Wiedemann-Franz law at the atomic scale.

  7. Low-noise current amplifier based on mesoscopic Josephson junction.

    PubMed

    Delahaye, J; Hassel, J; Lindell, R; Sillanpää, M; Paalanen, M; Seppä, H; Hakonen, P

    2003-02-14

    We used the band structure of a mesoscopic Josephson junction to construct low-noise amplifiers. By taking advantage of the quantum dynamics of a Josephson junction, i.e., the interplay of interlevel transitions and the Coulomb blockade of Cooper pairs, we created transistor-like devices, Bloch oscillating transistors, with considerable current gain and high-input impedance. In these transistors, the correlated supercurrent of Cooper pairs is controlled by a small base current made up of single electrons. Our devices reached current and power gains on the order of 30 and 5, respectively. The noise temperature was estimated to be around 1 kelvin, but noise temperatures of less than 0.1 kelvin can be realistically achieved. These devices provide quantum-electronic building blocks that will be useful at low temperatures in low-noise circuit applications with an intermediate impedance level.

  8. Low Intensity Low Temperature (LILT) Measurements and Coefficients on New Photovoltaic Structures

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Jenkins, Phillip P.; Brinker, David J.; Appelbaum, Joseph

    1995-01-01

    Past NASA missions to Mars, Jupiter and the outer planets were powered by radioisotope thermal generators (RTGs). Although these devices proved to be reliable, their high cost and highly toxic radioactive heat source has made them far less desirable for future planetary missions. This has resulted in a renewed search for alternate energy sources, some of them being photovoltaics (PV) and thermophotovoltaics (TPV). Both of these alternate energy sources convert light/thermal energy directly into electricity. In order to create a viable PV data base for planetary mission planners and cell designers, we have compiled low intensity low temperature (LILT) I-V data on single junction and multi-junction high efficiency solar cells. The cells tested here represent the latest photovoltaic technology. Using this LILT data to calculate Short Circuit Current (I(sub sc)), Open Circuit Voltage (V(sub os)), and Fill Factor (FF) as a function of temperature and intensity, an accurate prediction of cell performance under the AM0 spectrum can be determined. When combined with QUantum efficiency at Low Temperature (QULT) data, one can further enhance the data by adding spectral variations to the measurements. This paper presents an overview of LILT measurements and is only intended to be used as a guideline for material selection and performance predictions. As single junction and multi-junction cell technologies emerge, new test data must be collected. Cell materials included are Si, GaAs/Ge, GaInP/GaAs/GaAs, InP, InGaAs/InP, InP/InGaAs/InP, and GaInP. Temperatures range down to as low as -180 C and intensities range from 1 sun down to 0.02 suns. The coefficients presented in this paper represent experimental results and are intended to provide the user with approximate numbers.

  9. Modeling the instability behavior of thin film devices: Fermi Level Pinning

    NASA Astrophysics Data System (ADS)

    Moeini, Iman; Ahmadpour, Mohammad; Gorji, Nima E.

    2018-05-01

    We investigate the underlying physics of degradation/recovery of a metal/n-CdTe Schottcky junction under reverse or forward bias stressing conditions. We used Sah-Noyce-Shockley (SNS) theory to investigate if the swept of Fermi level pinning at different levels (under forward/reverse bias) is the origin of change in current-voltage characteristics of the device. This theory is based on Shockley-Read-Hall recombination within the depletion width and takes into account the interface defect levels. Fermi Level Pinning theory was primarily introduced by Ponpon and developed to thin film solar cells by Dharmadasa's group in Sheffield University-UK. The theory suggests that Fermi level pinning at multiple levels occurs due to high concentration of electron-traps or acceptor-like defects at the interface of a Schottky or pn junction and this re-arranges the recombination rate and charage collection. Shift of these levels under stress conditions determines the change in current-voltage characteristics of the cell. This theory was suggested for several device such as metal/n-CdTe, CdS/CdTe, CIGS/CdS or even GaAs solar cells without a modeling approach to clearly explain it's physics. We have applied the strong SNS modeling approach to shed light on Fermi Level Pinning theory. The modeling confirms that change in position of Fermi Level and it's pining in a lower level close to Valence band increases the recombination and reduces the open-circuit voltage. In contrast, Fermi Level pinning close to conduction band strengthens the electric field at the junction which amplifies the carrier collection and boosts the open-circuit voltage. This theory can well explain the stress effect on device characteristics of various solar cells or Schottky junctions by simply finding the right Fermi level pinning position at every specific stress condition.

  10. Series circuit of organic thin-film solar cells for conversion of water into hydrogen.

    PubMed

    Aoki, Atsushi; Naruse, Mitsuru; Abe, Takayuki

    2013-07-22

    A series circuit of bulk hetero-junction (BHJ) organic thin-film solar cells (OSCs) is investigated for electrolyzing water to gaseous hydrogen and oxygen. The BHJ OSCs applied consist of poly(3-hexylthiophene) as a donor and [6,6]-phenyl C61 butyric acid methyl ester as an acceptor. A series circuit of six such OSC units has an open circuit voltage (V(oc)) of 3.4 V, which is enough to electrolyze water. The short circuit current (J(sc)), fill factor (FF), and energy conversion efficiency (η) are independent of the number of unit cells. A maximum electric power of 8.86 mW cm(-2) is obtained at the voltage of 2.35 V. By combining a water electrolysis cell with the series circuit solar cells, the electrolyzing current and voltage obtained are 1.09 mA and 2.3 V under a simulated solar light irradiation (100 mW cm(-2), AM1.5G), and in one hour 0.65 mL hydrogen is generated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nonlinear system analysis in bipolar integrated circuits

    NASA Astrophysics Data System (ADS)

    Fang, T. F.; Whalen, J. J.

    1980-01-01

    Since analog bipolar integrated circuits (IC's) have become important components in modern communication systems, the study of the Radio Frequency Interference (RFI) effects in bipolar IC amplifiers is an important subject for electromagnetic compatibility (EMC) engineering. The investigation has focused on using the nonlinear circuit analysis program (NCAP) to predict RF demodulation effects in broadband bipolar IC amplifiers. The audio frequency (AF) voltage at the IC amplifier output terminal caused by an amplitude modulated (AM) RF signal at the IC amplifier input terminal was calculated and compared to measured values. Two broadband IC amplifiers were investigated: (1) a cascode circuit using a CA3026 dual differential pair; (2) a unity gain voltage follower circuit using a micro A741 operational amplifier (op amp). Before using NCAP for RFI analysis, the model parameters for each bipolar junction transistor (BJT) in the integrated circuit were determined. Probe measurement techniques, manufacturer's data, and other researcher's data were used to obtain the required NCAP BJT model parameter values. An important contribution included in this effort is a complete set of NCAP BJT model parameters for most of the transistor types used in linear IC's.

  12. VizieR Online Data Catalog: The close circumstellar environment of the semi-regular S-type star pi1

    NASA Astrophysics Data System (ADS)

    Sacuto, S.; Jorissen, A.; Cruzalebes, P.; Chesneau, O.; Ohnaka, K.; Quirrenbach, A.; Lopez, B.

    2008-02-01

    All the data products are stored in the FITS-based, optical interferometry data exchange format (OI-FITS), described in Pauls et al. (2005PASP..117.1255P). The OI Exchange Format is a standard for exchanging calibrated data from optical (visible/infrared) stellar interferometers. The standard is based on the Flexible Image Transport System (FITS), and supports storage of the optical interferometric observables including visibilities and differential phases. Several routines to read and write this format in various languages can be found in: Webpage http://www.mrao.cam.ac.uk/research/OAS/oi_data/oifits.html (2 data files).

  13. Pi/4-QPSK modems for satellite sound/data broadcast systems

    NASA Technical Reports Server (NTRS)

    Liu, Chia-Liang; Feher, Kamilo

    1991-01-01

    The use of pi/4-quadrature phase-shift keying (QPSK) modems for satellite sound broadcast systems (SSBS) broadcasting to mobile or portable receivers is proposed. Three different differential detectors (including the FM-discriminator followed by integrate-sample-and-dump filter) and a novel coherent detector are discussed. The degradation caused by the frequency offset between the local oscillator (LO) and the unmodulated carrier (CR) in the baseband differential detector is studied. The performance of both coherently and differentially detected pi/4-QPSK in a Gaussian channel is also studied. It is shown that with a frequency offset of more than 3 percent of the symbol rate, the performance degradation is more than 1 dB at 0.0001. The out-of-band power of the nonlinearly amplified bandlimited pi/4-QPSK signals is reduced from -13 dB to -37 dB if a 2-dB output back-off amplifier is used instead of a hardlimiter. The performance of the pi/4-QPSK is equivalent to that of QPSK, although the pi/4-QPSK has the advantage of less spectrum restoration after nonlinear amplification. The coherent demodulator and differential decoder avoid the three-level detection and achieve the same bit-error-rate performance as DEQPSK with a simple circuit.

  14. Abnormal Neural Network of Primary Insomnia: Evidence from Spatial Working Memory Task fMRI.

    PubMed

    Li, Yongli; Liu, Liya; Wang, Enfeng; Zhang, Hongju; Dou, Shewei; Tong, Li; Cheng, Jingliang; Chen, Chuanliang; Shi, Dapeng

    2016-01-01

    Contemporary functional MRI (fMRI) methods can provide a wealth of information about the neural mechanisms associated with primary insomnia (PI), which centrally involve neural network circuits related to spatial working memory. A total of 30 participants diagnosed with PI and without atypical brain anatomy were selected along with 30 age- and gender-matched healthy controls. Subjects were administered the Pittsburgh Sleep Quality Index (PSQI), Hamilton Rating Scale for Depression and clinical assessments of spatial working memory, followed by an MRI scan and fMRI in spatial memory task state. Statistically significant differences between PSQI and spatial working memory were observed between PI patients and controls (p < 0.01). Activation of neural networks related to spatial memory task state in the PI group was observed at the left temporal lobe, left occipital lobe and right frontal lobe. Lower levels of activation were observed in the left parahippocampal gyrus, right parahippocampal gyrus, bilateral temporal cortex, frontal cortex and superior parietal lobule. Participants with PI exhibited characteristic abnormalities in the neural network connectivity related to spatial working memory. These results may be indicative of an underlying pathological mechanism related to spatial working memory deterioration in PI, analogous to recently described mechanisms in other mental health disorders. © 2016 S. Karger AG, Basel.

  15. An Ethylene-Protected Achilles’ Heel of Etiolated Seedlings for Arthropod Deterrence

    PubMed Central

    Boex-Fontvieille, Edouard; Rustgi, Sachin; von Wettstein, Diter; Pollmann, Stephan; Reinbothe, Steffen; Reinbothe, Christiane

    2016-01-01

    A small family of Kunitz protease inhibitors exists in Arabidopsis thaliana, a member of which (encoded by At1g72290) accomplishes highly specific roles during plant development. Arabidopsis Kunitz-protease inhibitor 1 (Kunitz-PI;1), as we dubbed this protein here, is operative as cysteine PI. Activity measurements revealed that despite the presence of the conserved Kunitz-motif the bacterially expressed Kunitz-PI;1 was unable to inhibit serine proteases such as trypsin and chymotrypsin, but very efficiently inhibited the cysteine protease RESPONSIVE TO DESICCATION 21. Western blotting and cytolocalization studies using mono-specific antibodies recalled Kunitz-PI;1 protein expression in flowers, young siliques and etiolated seedlings. In dark-grown seedlings, maximum Kunitz-PI;1 promoter activity was detected in the apical hook region and apical parts of the hypocotyls. Immunolocalization confirmed Kunitz-PI;1 expression in these organs and tissues. No transmitting tract (NTT) and HECATE 1 (HEC1), two transcription factors previously implicated in the formation of the female reproductive tract in flowers of Arabidopsis, were identified to regulate Kunitz-PI;1 expression in the dark and during greening, with NTT acting negatively and HEC1 acting positively. Laboratory feeding experiments with isopod crustaceans such as Porcellio scaber (woodlouse) and Armadillidium vulgare (pillbug) pinpointed the apical hook as ethylene-protected Achilles’ heel of etiolated seedlings. Because exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and mechanical stress (wounding) strongly up-regulated HEC1-dependent Kunitz-PI;1 gene expression, our results identify a new circuit controlling herbivore deterrence of etiolated plants in which Kunitz-PI;1 is involved. PMID:27625656

  16. (Al)GaInP/GaAs Tandem Solar Cells for Power Conversion at Elevated Temperature and High Concentration

    DOE PAGES

    Perl, Emmett E.; Simon, John; Friedman, Daniel J.; ...

    2018-01-12

    We demonstrate dual-junction (Al)GaInP/GaAs solar cells designed for operation at 400 degrees C and 1000x concentration. For the top junction, we compare (Al)GaInP solar cells with room-temperature bandgaps ranging from 1.9 to 2.0 eV. At 400 degrees C, we find that ~1.9 eV GaInP solar cells have a higher open-circuit voltage and a lower sheet resistance than higher bandgap (Al)GaInP solar cells, giving them a clear advantage in a tandem configuration. Dual-junction GaInP/GaAs solar cells are fabricated, and we show temperature-dependent external quantum efficiency, illuminated current-voltage, and concentrator measurements from 25 degrees C to 400 degrees C. We measure amore » power conversion efficiency of 16.4% +/- 1% at 400 degrees C and 345 suns for the best dual-junction cell, and discuss multiple pathways to improve the performance further. After undergoing a 200 h soak at 400 degrees C, the dual-junction device shows a relative loss in efficiency of only ~1%.« less

  17. Analysis of the attainable efficiency of a direct-bandgap betavoltaic element

    NASA Astrophysics Data System (ADS)

    Sachenko, A. V.; Shkrebtii, A. I.; Korkishko, R. M.; Kostylyov, V. P.; Kulish, M. R.; Sokolovskyi, I. O.; Evstigneev, M.

    2015-11-01

    Conversion of energy of beta-particles into electric energy in a p-n junction based on direct-bandgap semiconductors, such as GaAs, is analyzed considering realistic semiconductor system parameters. An expression for the collection coefficient, Q, of the electron-hole pairs generated by beta-electrons is derived taking into account the existence of the dead layer. We show that the collection coefficient of beta-electrons emitted by a 3H-source to a GaAs p-n junction is close to 1 in a broad range of electron lifetimes in the junction, ranging from 10-9to 10-7 s. For the combination 147Pm/GaAs, Q is relatively large (≥slant 0.4) only for quite long lifetimes (about 10-7 s) and large thicknesses (about 100 μm) of GaAs p-n junctions. For realistic lifetimes of minority carriers and their diffusion coefficients, the open-circuit voltage realized due to the irradiation of a GaAs p-n junction by beta-particles is obtained. The attainable beta-conversion efficiency η in the case of a 3H/GaAs combination is found to exceed that of the 147Pm/GaAs combination.

  18. Sensitive thermal microsensor with pn junction for heat measurement of a single cell

    NASA Astrophysics Data System (ADS)

    Yamada, Taito; Inomata, Naoki; Ono, Takahito

    2016-02-01

    A sensitive thermal microsensor based on a pn junction diode for heat measurements of biological single cells is developed and evaluated. Using a fabricated device, we demonstrated the heat measurement of a single brown fat cell. The principle of the sensor relies on the temperature dependence of the pn junction diode resistance. This method has a capability of the highly thermal sensitivity by downsizing and the advantage of a simple experimental setup using electrical circuits without any special equipment. To achieve highly sensitive heat measurement of single cells, downsizing of the sensor is necessary to reduce the heat capacity of the sensor itself. The sensor with the pn junction diode can be downsized by microfabrication. A bridge beam structure with the pn junction diode as a thermal sensor is placed in vacuum using a microfludic chip to decrease the heat loss to the surroundings. A temperature coefficient of resistance of 1.4%/K was achieved. The temperature and thermal resolutions of the fabricated device are 1.1 mK and 73.6 nW, respectively. The heat measurements of norepinephrine stimulated and nonstimulated single brown fat cells were demonstrated, and different behaviors in heat generation were observed.

  19. (Al)GaInP/GaAs Tandem Solar Cells for Power Conversion at Elevated Temperature and High Concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perl, Emmett E.; Simon, John; Friedman, Daniel J.

    We demonstrate dual-junction (Al)GaInP/GaAs solar cells designed for operation at 400 degrees C and 1000x concentration. For the top junction, we compare (Al)GaInP solar cells with room-temperature bandgaps ranging from 1.9 to 2.0 eV. At 400 degrees C, we find that ~1.9 eV GaInP solar cells have a higher open-circuit voltage and a lower sheet resistance than higher bandgap (Al)GaInP solar cells, giving them a clear advantage in a tandem configuration. Dual-junction GaInP/GaAs solar cells are fabricated, and we show temperature-dependent external quantum efficiency, illuminated current-voltage, and concentrator measurements from 25 degrees C to 400 degrees C. We measure amore » power conversion efficiency of 16.4% +/- 1% at 400 degrees C and 345 suns for the best dual-junction cell, and discuss multiple pathways to improve the performance further. After undergoing a 200 h soak at 400 degrees C, the dual-junction device shows a relative loss in efficiency of only ~1%.« less

  20. Electro-optic routing of photons from a single quantum dot in photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Midolo, Leonardo; Hansen, Sofie L.; Zhang, Weili; Papon, Camille; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Lodahl, Peter; Stobbe, Søren

    2017-12-01

    Recent breakthroughs in solid-state photonic quantum technologies enable generating and detecting single photons with near-unity efficiency as required for a range of photonic quantum technologies. The lack of methods to simultaneously generate and control photons within the same chip, however, has formed a main obstacle to achieving efficient multi-qubit gates and to harness the advantages of chip-scale quantum photonics. Here we propose and demonstrate an integrated voltage-controlled phase shifter based on the electro-optic effect in suspended photonic waveguides with embedded quantum emitters. The phase control allows building a compact Mach-Zehnder interferometer with two orthogonal arms, taking advantage of the anisotropic electro-optic response in gallium arsenide. Photons emitted by single self-assembled quantum dots can be actively routed into the two outputs of the interferometer. These results, together with the observed sub-microsecond response time, constitute a significant step towards chip-scale single-photon-source de-multiplexing, fiber-loop boson sampling, and linear optical quantum computing.

  1. Trapping photons on the line: controllable dynamics of a quantum walk

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Qin, Hao; Tang, Bao

    2014-04-01

    Optical interferometers comprising birefringent-crystal beam displacers, wave plates, and phase shifters serve as stable devices for simulating quantum information processes such as heralded coined quantum walks. Quantum walks are important for quantum algorithms, universal quantum computing circuits, quantum transport in complex systems, and demonstrating intriguing nonlinear dynamical quantum phenomena. We introduce fully controllable polarization-independent phase shifters in optical pathes in order to realize site-dependent phase defects. The effectiveness of our interferometer is demonstrated through realizing single-photon quantum-walk dynamics in one dimension. By applying site-dependent phase defects, the translational symmetry of an ideal standard quantum walk is broken resulting in localization effect in a quantum walk architecture. The walk is realized for different site-dependent phase defects and coin settings, indicating the strength of localization signature depends on the level of phase due to site-dependent phase defects and coin settings and opening the way for the implementation of a quantum-walk-based algorithm.

  2. Suppression law of quantum states in a 3D photonic fast Fourier transform chip

    PubMed Central

    Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Bentivegna, Marco; Flamini, Fulvio; Spagnolo, Nicolò; Viggianiello, Niko; Innocenti, Luca; Mataloni, Paolo; Sciarrino, Fabio

    2016-01-01

    The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong–Ou–Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fourier transform algorithm using three-dimensional photonic integrated interferometers, fabricated via femtosecond laser writing technique. We observe the suppression law for a large number of output states with four- and eight-mode optical circuits: the experimental results demonstrate genuine quantum interference between the injected photons, thus offering a powerful tool for diagnostic of photonic platforms. PMID:26843135

  3. Tumor vessel normalization by the PI3K inhibitor HS-173 enhances drug delivery.

    PubMed

    Kim, Soo Jung; Jung, Kyung Hee; Son, Mi Kwon; Park, Jung Hee; Yan, Hong Hua; Fang, Zhenghuan; Kang, Yeo Wool; Han, Boreum; Lim, Joo Han; Hong, Soon-Sun

    2017-09-10

    Tumor vessels are leaky and immature, which causes poor oxygen and nutrient supply to tumor vessels and results in cancer cell metastasis to distant organs. This instability of tumor blood vessels also makes it difficult for anticancer drugs to penetrate and reach tumors. Numerous tumor vessel normalization approaches have been investigated for improving drug delivery into tumors. In this study, we investigated whether phosphoinositide 3-kinase (PI3K) inhibitors are able to improve vascular structure and function over the prolonged period necessary to achieve effective vessel normalization. The PI3K inhibitors, HS-173 and BEZ235 potently suppressed tumor growth and hypoxia, and increased tumor apoptosis in animal models. PI3K inhibitors also induced a regular, flat monolayer of endothelial cells (ECs) in vessels, improving stability of vessel structure, and normalized tumor vessels by increasing vascular maturity, pericyte coverage, basement membrane thickness, and tight-junctions. These effects resulted in a decrease in tumor vessel tortuosity and vessel thinning, and improved vessel function and blood flow. The tumor vessel stabilization effect of the PI3K inhibitor HS-173 also decreased the number of metastatic lung nodules in vivo metastasis model. Furthermore, HS-173 improved the delivery of doxorubicin into the tumor region, enhancing its anticancer effects. Mechanistic studies suggested that PI3K inhibitor HS-173-induced vessel normalization reflected changes in endothelial Notch signaling. Taken together, our findings indicate that vessel normalization by PI3K inhibitors restrained tumor growth and metastasis while improving chemotherapy by enhancing drug delivery into the tumor, suggesting that HS-173 may have a therapeutic value as an enhancer or an anticancer drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The High-Affinity Phosphate Transporter GmPT5 Regulates Phosphate Transport to Nodules and Nodulation in Soybean1[W][OA

    PubMed Central

    Qin, Lu; Zhao, Jing; Tian, Jiang; Chen, Liyu; Sun, Zhaoan; Guo, Yongxiang; Lu, Xing; Gu, Mian; Xu, Guohua; Liao, Hong

    2012-01-01

    Legume biological nitrogen (N) fixation is the most important N source in agroecosystems, but it is also a process requiring a considerable amount of phosphorus (P). Therefore, developing legume varieties with effective N2 fixation under P-limited conditions could have profound significance for improving agricultural sustainability. We show here that inoculation with effective rhizobial strains enhanced soybean (Glycine max) N2 fixation and P nutrition in the field as well as in hydroponics. Furthermore, we identified and characterized a nodule high-affinity phosphate (Pi) transporter gene, GmPT5, whose expression was elevated in response to low P. Yeast heterologous expression verified that GmPT5 was indeed a high-affinity Pi transporter. Localization of GmPT5 expression based on β-glucuronidase staining in soybean composite plants with transgenic roots and nodules showed that GmPT5 expression occurred principally in the junction area between roots and young nodules and in the nodule vascular bundles for juvenile and mature nodules, implying that GmPT5 might function in transporting Pi from the root vascular system into nodules. Overexpression or knockdown of GmPT5 in transgenic composite soybean plants altered nodulation and plant growth performance, which was partially dependent on P supply. Through both in situ and in vitro 33P uptake assays using transgenic soybean roots and nodules, we demonstrated that GmPT5 mainly functions in transporting Pi from roots to nodules, especially under P-limited conditions. We conclude that the high-affinity Pi transporter, GmPT5, controls Pi entry from roots to nodules, is critical for maintaining Pi homeostasis in nodules, and subsequently regulates soybean nodulation and growth performance. PMID:22740613

  5. Digitally gain controlled linear high voltage amplifier for laboratory applications.

    PubMed

    Koçum, C

    2011-08-01

    The design of a digitally gain controlled high-voltage non-inverting bipolar linear amplifier is presented. This cost efficient and relatively simple circuit has stable operation range from dc to 90 kHz under the load of 10 kΩ and 39 pF. The amplifier can swing up to 360 V(pp) under these conditions and it has 2.5 μs rise time. The gain can be changed by the aid of JFETs. The amplifiers have been realized using a combination of operational amplifiers and high-voltage discrete bipolar junction transistors. The circuit details and performance characteristics are discussed.

  6. Demonstration of a 4H SiC betavoltaic cell

    NASA Astrophysics Data System (ADS)

    Chandrashekhar, M. V. S.; Thomas, Christopher I.; Li, Hui; Spencer, M. G.; Lal, Amit

    2006-01-01

    A betavoltaic cell in 4H SiC is demonstrated. A p-n diode structure was used to collect the charge from a 1mCi Ni-63 source. An open circuit voltage of 0.72V and a short circuit current density of 16.8nA /cm2 were measured in a single p-n junction. A 6% lower bound on the power conversion efficiency was obtained. A simple photovoltaic-type model was used to explain the results. Fill factor and backscattering effects were included in the efficiency calculation. The performance of the device was limited by edge recombination.

  7. Resistive neuristor junctions

    NASA Technical Reports Server (NTRS)

    Reible, Stanley A. (Inventor)

    1976-01-01

    A neuristor R-junction is provided by coupling neuristor lines by paths of varying resistance so that a pulse being propagated on one line when coupled to a portion of the second line through a relatively high resistive path will place the second line in the refractory mode thus preventing the propagation of a pulse through that portion of second line; however the same pulse coupled to another portion of the second line through a lower resistance path will cause a pulse to be produced in the second line and propagated in that portion of second line which is not in the refractory mode. Various logic and storage circuits are included in the disclosure.

  8. Development of Fast NbN RSFQ Logic Gates in Sigma-Delta Converters for Space Telecommunications

    DTIC Science & Technology

    2005-07-13

    spatiales des circuits logiques supraconducteurs ” Internal Technical Reports, Alcatel Space & CEA, 2003. [3] P. Bunyk, K. Likharev and D. Zinoviev...films minces et de junctions Josephson en nitrures supraconducteurs (TiN et NbN), application à la logique RSFQ, PhD Thesis, Université J. Fourier

  9. Fabrication of metallic single electron transistors featuring plasma enhanced atomic layer deposition of tunnel barriers

    NASA Astrophysics Data System (ADS)

    Karbasian, Golnaz

    The continuing increase of the device density in integrated circuits (ICs) gives rise to the high level of power that is dissipated per unit area and consequently a high temperature in the circuits. Since temperature affects the performance and reliability of the circuits, minimization of the energy consumption in logic devices is now the center of attention. According to the International Technology Roadmaps for Semiconductors (ITRS), single electron transistors (SETs) hold the promise of achieving the lowest power of any known logic device, as low as 1x10-18 J per switching event. Moreover, SETs are the most sensitive electrometers to date, and are capable of detecting a fraction of an electron charge. Despite their low power consumption and high sensitivity for charge detection, room temperature operation of these devices is quite challenging mainly due to lithographical constraints in fabricating structures with the required dimensions of less than 10 nm. Silicon based SETs have been reported to operate at room temperature. However, they all suffer from significant variation in batch-to-batch performance, low fabrication yield, and temperature-dependent tunnel barrier height. In this project, we explored the fabrication of SETs featuring metal-insulator-metal (MIM) tunnel junctions. While Si-based SETs suffer from undesirable effect of dopants that result in irregularities in the device behavior, in metal-based SETs the device components (tunnel barrier, island, and the leads) are well-defined. Therefore, metal SETs are potentially more predictable in behavior, making them easier to incorporate into circuits, and easier to check against theoretical models. Here, the proposed fabrication method takes advantage of unique properties of chemical mechanical polishing (CMP) and plasma enhanced atomic layer deposition (PEALD). Chemical mechanical polishing provides a path for tuning the dimensions of the tunnel junctions, surpassing the limits imposed by electron beam lithography and lift-off, while atomic layer deposition provides precise control over the thickness of the tunnel barrier and significantly increases the choices for barrier materials. As described below in detail, the fabrication of ultra-thin (~1nm) tunnel transparent barriers with PEALD is in fact challenging; we demonstrate that in fabrication of SETs with PEALD to form the barrier in the Ni-insulator-Ni tunnel junctions, additional NiO layers are parasitically formed in the Ni layers that form the top and bottom electrodes of the tunnel junctions. The NiO on the bottom electrode is formed due to oxidizing effect of the O 2 plasma used in the PEALD process, while the NiO on the bottom of the top electrode is believed to form during the metal deposition due to oxygen-containing contaminants on the surface of the deposited tunnel barrier. We also show that due to the presence of these surface parasitic layers of NiO, the resistance of Ni-insulator-Ni tunnel junctions is drastically increased. Moreover, the transport mechanism is changed from quantum tunneling through the dielectric barrier to one consistent with the tunnel barrier in series with compound layers of NiO and possibly, NiSixOy. The parasitic component in the tunnel junctions results in conduction freeze-out at low temperatures, deviation of junction parameters from ideal model, and excessive noise in the device. The reduction of NiO to Ni is therefore necessary to restore the metal-insulator-metal structure of the junctions. We have studied forming gas anneal as well as H2 plasma treatment as techniques to reduce the NiO layers that are parasitically formed in the junctions. Using either of these two techniques, we reduced the NiO formed on the island after being covered with the PEALD dielectric and before defining the top source and drain. Later, the NiO formed on the bottom of the source/drain is reduced during a second reducing step after the source/drain are formed on the tunnel barrier. Electrical characterization of SETs that are made with the proposed reducing treatments enable us to study the effect of each reducing process on the properties of the constituent tunnel junctions. In comparison to the junctions annealed twice in forming gas at 400°C, we consistently observed a ~10x higher conductance in devices treated twice with H2 plasma at 300°C. The possible damage to the barrier during the plasma treatment and thermally induced film deformation during the anneal which respectively, is believed to increase and lower the conductance are among the possible cause of this difference. Although both types of treatments were effective in alleviating the effect of the activated components in the junctions, all the devices that were treated by two anneal steps or by two H2 plasma steps (for reducing the top and bottom NiO) show deviations from ideal simulated MIM SET model and suffer from significant random telegraph signal (RTS) noise. However, our results show that by using forming gas anneal for bottom NiO reduction and H2 plasma for the top NiO reduction, one can achieve devices close to ideal MIM SETs with significantly less noise.

  10. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.

    PubMed

    Ye, Yu; Dai, Yu; Dai, Lun; Shi, Zujin; Liu, Nan; Wang, Fei; Fu, Lei; Peng, Ruomin; Wen, Xiaonan; Chen, Zhijian; Liu, Zhongfan; Qin, Guogang

    2010-12-01

    High-performance single CdS nanowire (NW) as well as nanobelt (NB) Schottky junction solar cells were fabricated. Au (5 nm)/graphene combined layers were used as the Schottky contact electrodes to the NWs (NBs). Typical as-fabricated NW solar cell shows excellent photovoltaic behavior with an open circuit voltage of ∼0.15 V, a short circuit current of ∼275.0 pA, and an energy conversion efficiency of up to ∼1.65%. The physical mechanism of the combined Schottky electrode was discussed. We attribute the prominent capability of the devices to the high-performance Schottky combined electrode, which has the merits of low series resistance, high transparency, and good Schottky contact to the CdS NW (NB). Besides, a promising site-controllable patterned graphene transfer method, which has the advantages of economizing graphene material and free from additional etching process, was demonstrated in this work. Our results suggest that semiconductor NWs (NBs) are promising materials for novel solar cells, which have potential application in integrated nano-optoelectronic systems.

  11. Methods of improving the efficiency of photovoltaic cells. [including X ray analysis

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.; Roessler, B.; Crisman, E. E.; Chen, L. Y.; Kaul, R.

    1974-01-01

    Work on aluminum-alloyed silicon grating cells is continued. Optimization of the geometry (grating line width and spacing) confirms the analysis of such cells. A 1 sq cm grating cell was fabricated and its i-V characteristic was measured under an AMO solar simulator. It is found that the efficiency of this cell would be about 7.9%, if it were covered by the usual antireflection coating. The surface of the cell is not covered by a diffused junction. The response is blue shifted; the current is somewhat higher than that produced by a commercial Si cell. However, the open circuit voltage is low, and attempts to optimize the open circuit voltage of the aluminum-alloy junctions are described. A preliminary X-ray topographic examination of GaAs specimens of the type commonly used to make solar cells is studied. The X-ray study shows that the wafers are filled with regions having strain gradients, possibly caused by precipitates. It is possible that a correlation exists between the presence of low mechanical perfection and minority carrier diffusion lengths of GaAs crystals.

  12. CdTe Nanocrystal Hetero-Junction Solar Cells with High Open Circuit Voltage Based on Sb-doped TiO₂ Electron Acceptor Materials.

    PubMed

    Li, Miaozi; Liu, Xinyan; Wen, Shiya; Liu, Songwei; Heng, Jingxuan; Qin, Donghuan; Hou, Lintao; Wu, Hongbin; Xu, Wei; Huang, Wenbo

    2017-05-03

    We propose Sb-doped TiO₂ as electron acceptor material for depleted CdTe nanocrystal (NC) hetero-junction solar cells. Novel devices with the architecture of FTO/ZnO/Sb:TiO₂/CdTe/Au based on CdTe NC and TiO₂ precursor are fabricated by rational ambient solution process. By introducing TiO₂ with dopant concentration, we are able to tailor the optoelectronic properties of NC solar cells. Our novel devices demonstrate a very high open circuit voltage of 0.74 V, which is the highest V oc reported for any CdTe NC based solar cells. The power conversion efficiency (PCE) of solar cells increases with the increase of Sb-doped content from 1% to 3%, then decreases almost linearly with further increase of Sb content due to the recombination effect. The champion device shows J sc , V oc , FF, and PCE of 14.65 mA/cm², 0.70 V, 34.44, and 3.53% respectively, which is prospective for solution processed NC solar cells with high V oc .

  13. Upright and Inverted Single-Junction GaAs Solar Cells Grown by Hydride Vapor Phase Epitaxy

    DOE PAGES

    Simon, John; Schulte, Kevin L.; Jain, Nikhil; ...

    2016-10-19

    Hydride vapor phase epitaxy (HVPE) is a low-cost alternative to conventional metal-organic vapor phase epitaxy (MOVPE) growth of III-V solar cells. In this work, we show continued improvement of the performance of HVPE-grown single-junction GaAs solar cells. We show over an order of magnitude improvement in the interface recombination velocity between GaAs and GaInP layers through the elimination of growth interrupts, leading to increased short-circuit current density and open-circuit voltage compared with cells with interrupts. One-sun conversion efficiencies as high as 20.6% were achieved with this improved growth process. Solar cells grown in an inverted configuration that were removed frommore » the substrate showed nearly identical performance to on-wafer cells, demonstrating the viability of HVPE to be used together with conventional wafer reuse techniques for further cost reduction. As a result, these devices utilized multiple heterointerfaces, showing the potential of HVPE for the growth of complex and high-quality III-V devices.« less

  14. The SPS interference problem-electronic system effects and mitigation techniques

    NASA Technical Reports Server (NTRS)

    Juroshek, J. R.

    1980-01-01

    The potential for interference between solar power satellites (SPS) and other Earth satellite operations was examined along with interference problems involving specific electronic devices. Conclusions indicate that interference is likely in the 2500 MHz to 2690 MHz direct broadcast satellite band adjacent to SPS. Estimates of the adjacent channel noise from SPS in this band are as high as -124 dBc/4 kHz and -100 dBc/MHz, where dBc represents decibels relative to the total power in the fundamental. A second potential problem is the 7350 MHz, 3d harmonic from SPS that falls within the 7300 MHz to 7450 MHz space to Earth, government, satellite assignment. Catastrophic failures can be produced in integrated circuits when the microwave power levels coupled into inputs and power leads reach 1 to 100 watts. The failures are typically due to bonding wire melting, metallization failures, and junction shorting. Nondestructive interaction or interference, however, generally occurs with coupled power levels of the order of 10 milliwatts. This integration is due to the rectification of microwave energy by the numerous pn junctions within these circuits.

  15. CdTe Nanocrystal Hetero-Junction Solar Cells with High Open Circuit Voltage Based on Sb-doped TiO2 Electron Acceptor Materials

    PubMed Central

    Li, Miaozi; Liu, Xinyan; Wen, Shiya; Liu, Songwei; Heng, Jingxuan; Qin, Donghuan; Hou, Lintao; Wu, Hongbin; Xu, Wei; Huang, Wenbo

    2017-01-01

    We propose Sb-doped TiO2 as electron acceptor material for depleted CdTe nanocrystal (NC) hetero-junction solar cells. Novel devices with the architecture of FTO/ZnO/Sb:TiO2/CdTe/Au based on CdTe NC and TiO2 precursor are fabricated by rational ambient solution process. By introducing TiO2 with dopant concentration, we are able to tailor the optoelectronic properties of NC solar cells. Our novel devices demonstrate a very high open circuit voltage of 0.74 V, which is the highest Voc reported for any CdTe NC based solar cells. The power conversion efficiency (PCE) of solar cells increases with the increase of Sb-doped content from 1% to 3%, then decreases almost linearly with further increase of Sb content due to the recombination effect. The champion device shows Jsc, Voc, FF, and PCE of 14.65 mA/cm2, 0.70 V, 34.44, and 3.53% respectively, which is prospective for solution processed NC solar cells with high Voc. PMID:28467347

  16. Equivalent Circuit of the Neuro-Electronic Junction for Signal Recordings From Planar and Engulfed Micro-Nano-Electrodes.

    PubMed

    Massobrio, Giuseppe; Martinoia, Sergio; Massobrio, Paolo

    2018-02-01

    In the latest years, several attempts to develop extracellular microtransducers to record electrophysiological activity of excitable cells have been done. In particular, many efforts have been oriented to increase the coupling conditions, and, thus, improving the quality of the recorded signal. Gold mushroom-shaped microelectrodes (GMμE) are an example of nano-devices to achieve those requirements. In this study, we developed an equivalent electrical circuit of the neuron-microelectrode system interface to simulate signal recordings from both planar and engulfed micro-nano-electrodes. To this purpose, models of the neuron, planar, gold planar microelectrode, and GMμE, neuro-electronic junction (microelectrode-electrolyte interface, cleft effect, and protein-glycocalyx electric double layer) are presented. Then, neuronal electrical activity is simulated by Hspice software, and analyzed as a function of the most sensitive biophysical models parameters, such as the neuron-microelectrode cleft width, spreading and seal resistances, ion-channel densities, double-layer properties, and microelectrode geometries. Results are referenced to the experimentally recorded electrophysiological neuronal signals reported in the literature.

  17. The Michelson Stellar Interferometer Error Budget for Triple Triple-Satellite Configuration

    NASA Technical Reports Server (NTRS)

    Marathay, Arvind S.; Shiefman, Joe

    1996-01-01

    This report presents the results of a study of the instrumentation tolerances for a conventional style Michelson stellar interferometer (MSI). The method used to determine the tolerances was to determine the change, due to the instrument errors, in the measured fringe visibility and phase relative to the ideal values. The ideal values are those values of fringe visibility and phase that would be measured by a perfect MSI and are attributable solely to the object being detected. Once the functional relationship for changes in visibility and phase as a function of various instrument errors is understood it is then possible to set limits on the instrument errors in order to ensure that the measured visibility and phase are different from the ideal values by no more than some specified amount. This was done as part of this study. The limits we obtained are based on a visibility error of no more than 1% and a phase error of no more than 0.063 radians (this comes from 1% of 2(pi) radians). The choice of these 1% limits is supported in the literture. The approach employed in the study involved the use of ASAP (Advanced System Analysis Program) software provided by Breault Research Organization, Inc., in conjunction with parallel analytical calculations. The interferometer accepts object radiation into two separate arms each consisting of an outer mirror, an inner mirror, a delay line (made up of two moveable mirrors and two static mirrors), and a 10:1 afocal reduction telescope. The radiation coming out of both arms is incident on a slit plane which is opaque with two openings (slits). One of the two slits is centered directly under one of the two arms of the interferometer and the other slit is centered directly under the other arm. The slit plane is followed immediately by an ideal combining lens which images the radiation in the fringe plane (also referred to subsequently as the detector plane).

  18. Processing and Characterization of Thousand-Hour 500 C Durable 4H-SiC JFET Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.

    2016-01-01

    This work reports fabrication and testing of integrated circuits (ICs) with two levels of interconnect that consistently achieve greater than 1000 hours of stable electrical operation at 500 C in air ambient. These ICs are based on 4H-SiC junction field effect transistor (JFET) technology that integrates hafnium ohmic contacts with TaSi2 interconnects and SiO2 and Si3N4 dielectric layers over 1-m scale vertical topology. Following initial burn-in, important circuit parameters remain stable for more than 1000 hours of 500 C operational testing. These results advance the technology foundation for realizing long-term durable 500 C ICs with increased functional capability for sensing and control combustion engine, planetary, deep-well drilling, and other harsh-environment applications.

  19. Processing and Characterization of Thousand-Hour 500 C Durable 4H-SiC JFET Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Chen, Liang-Yu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.

    2016-01-01

    This work reports fabrication and testing of integrated circuits (ICs) with two levels of interconnect that consistently achieve greater than 1000 hours of stable electrical operation at 500 C in air ambient. These ICs are based on 4H-SiC junction field effect transistor (JFET) technology that integrates hafnium ohmic contacts with TaSi2 interconnects and SiO2 and Si3N4 dielectric layers over approximately 1-micrometer scale vertical topology. Following initial burn-in, important circuit parameters remain stable for more than 1000 hours of 500 C operational testing. These results advance the technology foundation for realizing long-term durable 500 C ICs with increased functional capability for sensing and control combustion engine, planetary, deep-well drilling, and other harsh-environment applications.

  20. Nonlinear analysis of a family of LC tuned inverters

    NASA Technical Reports Server (NTRS)

    Lee, F. C. Y.; Wilson, T. G.

    1975-01-01

    Four widely used self-oscillating dc-to-square-wave parallel inverters which employ an inductor-capacitor tuned network to determine the oscillation frequency are reduced to a common equivalent RLC network, The techniques of singular-point analysis and state-plane interpretations are employed to describe the steady-state and transient behavior of these circuits and to elucidate the three possible modes of operation: quasi-harmonic, relaxation, and discontinuous. Design guidelines are provided through a study of the influence of circuit parameter variations on the characteristics of oscillation and on frequency stability. Several examples are provided to illustrate the usefulness of this analysis when studying such problems as transistor emitter-to-base junction breakdown during oscillations and the design of starting circuits to insure self-excited oscillations in these inverters.

  1. Reversible Conversion of Dominant Polarity in Ambipolar Polymer/Graphene Oxide Hybrids

    PubMed Central

    Zhou, Ye; Han, Su-Ting; Sonar, Prashant; Ma, Xinlei; Chen, Jihua; Zheng, Zijian; Roy, V. A. L.

    2015-01-01

    The possibility to selectively modulate the charge carrier transport in semiconducting materials is extremely challenging for the development of high performance and low-power consuming logic circuits. Systematical control over the polarity (electrons and holes) in transistor based on solution processed layer by layer polymer/graphene oxide hybrid system has been demonstrated. The conversion degree of the polarity is well controlled and reversible by trapping the opposite carriers. Basically, an electron device is switched to be a hole only device or vice versa. Finally, a hybrid layer ambipolar inverter is demonstrated in which almost no leakage of opposite carrier is found. This hybrid material has wide range of applications in planar p-n junctions and logic circuits for high-throughput manufacturing of printed electronic circuits. PMID:25801827

  2. Study program to improve the open-circuit voltage of low resistivity single crystal silicon solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.; Matthei, K. W.

    1980-01-01

    The results of a 14 month program to improve the open circuit voltage of low resistivity silicon solar cells are described. The approach was based on ion implantation in 0.1- to 10.0-ohm-cm float-zone silicon. As a result of the contract effort, open circuit voltages as high as 645 mV (AMO 25 C) were attained by high dose phosphorus implantation followed by furnace annealing and simultaneous SiO2 growth. One key element was to investigate the effects of bandgap narrowing caused by high doping concentrations in the junction layer. Considerable effort was applied to optimization of implant parameters, selection of furnace annealing techniques, and utilization of pulsed electron beam annealing to minimize thermal process-induced defects in the completed solar cells.

  3. Development of Validated Computer-based Preoperative Predictive Model for Proximal Junction Failure (PJF) or Clinically Significant PJK With 86% Accuracy Based on 510 ASD Patients With 2-year Follow-up.

    PubMed

    Scheer, Justin K; Osorio, Joseph A; Smith, Justin S; Schwab, Frank; Lafage, Virginie; Hart, Robert A; Bess, Shay; Line, Breton; Diebo, Bassel G; Protopsaltis, Themistocles S; Jain, Amit; Ailon, Tamir; Burton, Douglas C; Shaffrey, Christopher I; Klineberg, Eric; Ames, Christopher P

    2016-11-15

    A retrospective review of large, multicenter adult spinal deformity (ASD) database. The aim of this study was to build a model based on baseline demographic, radiographic, and surgical factors that can predict clinically significant proximal junctional kyphosis (PJK) and proximal junctional failure (PJF). PJF and PJK are significant complications and it remains unclear what are the specific drivers behind the development of either. There exists no predictive model that could potentially aid in the clinical decision making for adult patients undergoing deformity correction. Inclusion criteria: age ≥18 years, ASD, at least four levels fused. Variables included in the model were demographics, primary/revision, use of three-column osteotomy, upper-most instrumented vertebra (UIV)/lower-most instrumented vertebra (LIV) levels and UIV implant type (screw, hooks), number of levels fused, and baseline sagittal radiographs [pelvic tilt (PT), pelvic incidence and lumbar lordosis (PI-LL), thoracic kyphosis (TK), and sagittal vertical axis (SVA)]. PJK was defined as an increase from baseline of proximal junctional angle ≥20° with concomitant deterioration of at least one SRS-Schwab sagittal modifier grade from 6 weeks postop. PJF was defined as requiring revision for PJK. An ensemble of decision trees were constructed using the C5.0 algorithm with five different bootstrapped models, and internally validated via a 70 : 30 data split for training and testing. Accuracy and the area under a receiver operator characteristic curve (AUC) were calculated. Five hundred ten patients were included, with 357 for model training and 153 as testing targets (PJF: 37, PJK: 102). The overall model accuracy was 86.3% with an AUC of 0.89 indicating a good model fit. The seven strongest (importance ≥0.95) predictors were age, LIV, pre-operative SVA, UIV implant type, UIV, pre-operative PT, and pre-operative PI-LL. A successful model (86% accuracy, 0.89 AUC) was built predicting either PJF or clinically significant PJK. This model can set the groundwork for preop point of care decision making, risk stratification, and need for prophylactic strategies for patients undergoing ASD surgery. 3.

  4. An EBIC equation for solar cells. [Electron Beam Induced Current

    NASA Technical Reports Server (NTRS)

    Luke, K. L.; Von Roos, O.

    1983-01-01

    When an electron beam of a scanning electron microscope (SEM) impinges on an N-P junction, the generation of electron-hole pairs by impact ionization causes a characteristic short circuit current I(sc) to flow. The I(sc), i.e., EBIC (electron beam induced current) depends strongly on the configuration used to investigate the cell's response. In this paper the case where the plane of the junction is perpendicular to the surface is considered. An EBIC equation amenable to numerical computations is derived as a function of cell thickness, source depth, surface recombination velocity, diffusion length, and distance of the junction to the beam-cell interaction point for a cell with an ohmic contact at its back surface. It is shown that the EBIC equation presented here is more general and easier to use than those previously reported. The effects of source depth, ohmic contact, and diffusion length on the normalized EBIC characteristic are discussed.

  5. Neural-like computing with populations of superparamagnetic basis functions.

    PubMed

    Mizrahi, Alice; Hirtzlin, Tifenn; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Grollier, Julie; Querlioz, Damien

    2018-04-18

    In neuroscience, population coding theory demonstrates that neural assemblies can achieve fault-tolerant information processing. Mapped to nanoelectronics, this strategy could allow for reliable computing with scaled-down, noisy, imperfect devices. Doing so requires that the population components form a set of basis functions in terms of their response functions to inputs, offering a physical substrate for computing. Such a population can be implemented with CMOS technology, but the corresponding circuits have high area or energy requirements. Here, we show that nanoscale magnetic tunnel junctions can instead be assembled to meet these requirements. We demonstrate experimentally that a population of nine junctions can implement a basis set of functions, providing the data to achieve, for example, the generation of cursive letters. We design hybrid magnetic-CMOS systems based on interlinked populations of junctions and show that they can learn to realize non-linear variability-resilient transformations with a low imprint area and low power.

  6. Thermocouple, multiple junction reference oven

    NASA Technical Reports Server (NTRS)

    Leblanc, L. P. (Inventor)

    1981-01-01

    An improved oven for maintaining the junctions of a plurality of reference thermocouples at a common and constant temperature is described. The oven is characterized by a cylindrical body defining a heat sink with axially extended-cylindrical cavity a singularized heating element which comprises a unitary cylindrical heating element consisting of a resistance heating coil wound about the surface of metallic spool with an axial bore defined and seated in the cavity. Other features of the oven include an annular array of radially extended bores defined in the cylindrical body and a plurality of reference thermocouple junctions seated in the bores in uniformly spaced relation with the heating element, and a temperature sensing device seated in the axial bore for detecting temperature changes as they occur in the spool and circuit to apply a voltage across the coil in response to detected drops in temperatures of the spool.

  7. Exceptionally omnidirectional broadband light harvesting scheme for multi-junction concentrator solar cells achieved via ZnO nanoneedles

    NASA Astrophysics Data System (ADS)

    Yeh, Li-Ko; Tian, Wei-Cheng; Lai, Kun-Yu; He-Hau, Jr.

    2016-12-01

    GaInP/GaAs/Ge triple-junction concentrator solar cells with significant efficiency enhancement were demonstrated with antireflective ZnO nanoneedles. The novel nanostructure was attained with a Zn(NO3)2-based solution containing vitamin C. Under one sun AM 1.5G solar spectrum, conversion efficiency of the triple-junction device was improved by 23.7% via broadband improvement in short-circuit currents of 3 sub-cells after the coverage by the nanoneedles with a graded refractive index profile. The efficiency enhancement further went up to 45.8% at 100 suns. The performance boost through the nanoneedles also became increasingly pronounced in the conditions of high incident angles and the cloudy weather, e.g. 220.0% of efficiency enhancement was observed at the incident angle of 60°. These results were attributed to the exceptional broadband omnidirectionality of the antireflective nanoneedles.

  8. Semiconductor systems utilizing materials that form rectifying junctions in both N and P-type doping regions, whether metallurgically or field induced, and methods of use

    DOEpatents

    Welch, James D.

    2000-01-01

    Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  9. Quantum-statistical theory of microwave detection using superconducting tunnel junctions

    NASA Astrophysics Data System (ADS)

    Deviatov, I. A.; Kuzmin, L. S.; Likharev, K. K.; Migulin, V. V.; Zorin, A. B.

    1986-09-01

    A quantum-statistical theory of microwave and millimeter-wave detection using superconducting tunnel junctions is developed, with a rigorous account of quantum, thermal, and shot noise arising from fluctuation sources associated with the junctions, signal source, and matching circuits. The problem of the noise characterization in the quantum sensitivity range is considered and a general noise parameter Theta(N) is introduced. This parameter is shown to be an adequate figure of merit for most receivers of interest while some devices can require a more complex characterization. Analytical expressions and/or numerically calculated plots for Theta(N) are presented for the most promising detection modes including the parametric amplification, heterodyne mixing, and quadratic videodetection, using both the quasiparticle-current and the Cooper-pair-current nonlinearities. Ultimate minimum values of Theta(N) for each detection mode are compared and found to be in agreement with limitations imposed by the quantum-mechanical uncertainty principle.

  10. Epitaxial solar cells fabrication

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Kressel, H.

    1975-01-01

    Silicon epitaxy has been studied for the fabrication of solar cell structures, with the intent of optimizing efficiency while maintaining suitability for space applications. SiH2CL2 yielded good quality layers and junctions with reproducible impurity profiles. Diode characteristics and lifetimes in the epitaxial layers were investigated as a function of epitaxial growth conditions and doping profile, as was the effect of substrates and epitaxial post-gettering on lifetime. The pyrolytic decomposition of SiH4 was also used in the epitaxial formation of highly doped junction layers on bulk Si wafers. The effects of junction layer thickness and bulk background doping level on cell performance, in particular, open-circuit voltage, were investigated. The most successful solar cells were fabricated with SiH2 CL2 to grow p/n layers on n(+) substrates. The best performance was obtained from a p(+)/p/n/n(+) structure grown with an exponential grade in the n-base layer.

  11. Design and construction of a point-contact spectroscopy rig with lateral scanning capability.

    PubMed

    Tortello, M; Park, W K; Ascencio, C O; Saraf, P; Greene, L H

    2016-06-01

    The design and realization of a cryogenic rig for point-contact spectroscopy measurements in the needle-anvil configuration is presented. Thanks to the use of two piezoelectric nano-positioners, the tip can move along the vertical (z) and horizontal (x) direction and thus the rig is suitable to probe different regions of a sample in situ. Moreover, it can also form double point-contacts on different facets of a single crystal for achieving, e.g., an interferometer configuration for phase-sensitive measurements. For the later purpose, the sample holder can also host a Helmholtz coil for applying a small transverse magnetic field to the junction. A semi-rigid coaxial cable can be easily added for studying the behavior of Josephson junctions under microwave irradiation. The rig can be detached from the probe and thus used with different cryostats. The performance of this new probe has been tested in a Quantum Design PPMS system by conducting point-contact Andreev reflection measurements on Nb thin films over large areas as a function of temperature and magnetic field.

  12. Design and construction of a point-contact spectroscopy rig with lateral scanning capability

    NASA Astrophysics Data System (ADS)

    Tortello, M.; Park, W. K.; Ascencio, C. O.; Saraf, P.; Greene, L. H.

    2016-06-01

    The design and realization of a cryogenic rig for point-contact spectroscopy measurements in the needle-anvil configuration is presented. Thanks to the use of two piezoelectric nano-positioners, the tip can move along the vertical (z) and horizontal (x) direction and thus the rig is suitable to probe different regions of a sample in situ. Moreover, it can also form double point-contacts on different facets of a single crystal for achieving, e.g., an interferometer configuration for phase-sensitive measurements. For the later purpose, the sample holder can also host a Helmholtz coil for applying a small transverse magnetic field to the junction. A semi-rigid coaxial cable can be easily added for studying the behavior of Josephson junctions under microwave irradiation. The rig can be detached from the probe and thus used with different cryostats. The performance of this new probe has been tested in a Quantum Design PPMS system by conducting point-contact Andreev reflection measurements on Nb thin films over large areas as a function of temperature and magnetic field.

  13. Design and construction of a point-contact spectroscopy rig with lateral scanning capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tortello, M.; Park, W. K., E-mail: wkpark@illinois.edu; Ascencio, C. O.

    2016-06-15

    The design and realization of a cryogenic rig for point-contact spectroscopy measurements in the needle-anvil configuration is presented. Thanks to the use of two piezoelectric nano-positioners, the tip can move along the vertical (z) and horizontal (x) direction and thus the rig is suitable to probe different regions of a sample in situ. Moreover, it can also form double point-contacts on different facets of a single crystal for achieving, e.g., an interferometer configuration for phase-sensitive measurements. For the later purpose, the sample holder can also host a Helmholtz coil for applying a small transverse magnetic field to the junction. Amore » semi-rigid coaxial cable can be easily added for studying the behavior of Josephson junctions under microwave irradiation. The rig can be detached from the probe and thus used with different cryostats. The performance of this new probe has been tested in a Quantum Design PPMS system by conducting point-contact Andreev reflection measurements on Nb thin films over large areas as a function of temperature and magnetic field.« less

  14. Phase coherent transport in hybrid superconductor-topological insulator devices

    NASA Astrophysics Data System (ADS)

    Finck, Aaron

    2015-03-01

    Heterostructures of superconductors and topological insulators are predicted to host unusual zero energy bound states known as Majorana fermions, which can robustly store and process quantum information. Here, I will discuss our studies of such heterostructures through phase-coherent transport, which can act as a unique probe of Majorana fermions. We have extensively explored topological insulator Josephson junctions through SQUID and single-junction diffraction patterns, whose unusual behavior give evidence for low-energy Andreev bound states. In topological insulator devices with closely spaced normal and superconducting leads, we observe prominent Fabry-Perot oscillations, signifying gate-tunable, quasi-ballistic transport that can elegantly interact with Andreev reflection. Superconducting disks deposited on the surface of a topological insulator generate Aharonov-Bohm-like oscillations, giving evidence for unusual states lying near the interface between the superconductor and topological insulator surface. Our results point the way towards sophisticated interferometers that can detect and read out the state of Majorana fermions in topological systems. This work was done in collaboration with Cihan Kurter, Yew San Hor, and Dale Van Harlingen. We acknowledge funding from Microsoft Project Q.

  15. Laser interferometer skin-friction measurements of crossing-shock-wave/turbulent-boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Garrison, T. J.; Settles, G. S.; Narayanswami, N.; Knight, D. D.

    1994-01-01

    Wall shear stress measurements beneath crossing-shock-wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 deg at Mach 3 and 15 deg at Mach 3.85. The measurements were made using a laser interferometer skin-friction meter, a device that determines the wall shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin-friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction center line. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k-epsilon model, are compared with the experimental results for the Mach 3.85, 15-deg interaction case. Although the k-epsilon model did a reasonable job of predicting the overall trend in portions of the skin-friction distribution, neither computation fully captured the physics of the near-surface flow in this complex interaction.

  16. Laser Interferometer Skin-Friction measurements of crossing-shock wave/turbulent boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Garrison, T. J.; Settles, G. S.

    1993-01-01

    Wall shear stress measurements beneath crossingshock wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symmetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 degrees at Mach 3 and 15 degrees at Mach 4. The measurements were made using a Laser Interferometer Skin Friction (LISF) meter; a device which determines the wail shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction centerline. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k- model, are compared to the experimental results for the Mach 4, 15 degree interaction case. While the k- model did a reasonable job of predicting the overall trend in portions of the skin friction distribution, neither computation fully captured the physics of the near surface flow in this complex interaction.

  17. Multijunction solar cell design revisited: disruption of current matching by atmospheric absorption bands: Disruption of current matching by atmospheric absorption bands

    DOE PAGES

    McMahon, William E.; Friedman, Daniel J.; Geisz, John F.

    2017-05-23

    This paper re-examines the impact of atmospheric absorption bands on series-connected multijunction cell design, motivated by the numerous local efficiency maxima that appear as the number of junctions is increased. Some of the local maxima are related to the bottom subcell bandgap and are already well understood: As the bottom subcell bandgap is varied, a local efficiency maximum is produced wherever the bottom cell bandgap crosses an atmospheric absorption band. The optimal cell designs at these local maxima are generally current matched, such that all subcells have nearly the same short-circuit current. We systematically describe additional local maxima that occurmore » wherever an upper subcell bandgap encounters an atmospheric absorption band. Moreover, these local maxima are not current matched and become more prevalent as the number of junctions increases, complicating the solution space for five-junction and six-junction designs. A systematic framework for describing this complexity is developed, and implications for numerical convergence are discussed.« less

  18. SQUID magnetometers for low-frequency applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryhaenen, T.; Seppae, H.; Ilmoniemi, R.

    1989-09-01

    The authors present a novel formulation for SQUID operation, which enables them to evaluate and compare the sensitivity and applicability of different devices. SQUID magnetometers for low-frequency applications are analyzed, taking into account the coupling circuits and electronics. They discuss nonhysteretic and hysteretic single-junction rf SQUIDs, but the main emphasis is on the dynamics, sensitivity, and coupling considerations of dc-SQUID magnetometers. A short review of current ideas on thin-film, dc-SQUID design presents the problems in coupling and the basic limits of sensitivity. The fabrication technology of tunnel-junction devices is discussed with emphasis on how it limits critical current densities, specificmore » capacitances of junctions, minimum linewidths, conductor separations, etc. Properties of high-temperature superconductors are evaluated on the basis of recently published results on increased flux creep, low density of current carriers, and problems in fabricating reliable junctions. The optimization of electronics for different types of SQUIDs is presented. Finally, the most important low-frequency applications of SQUIDs in biomagnetism, metrology, geomagnetism, and some physics experiments demonstrate the various possibilities that state-of-the-art SQUIDs can provide.« less

  19. A semiconductor nanowire Josephson junction microwave laser

    NASA Astrophysics Data System (ADS)

    Cassidy, Maja; Uilhoorn, Willemijn; Kroll, James; de Jong, Damaz; van Woerkom, David; Nygard, Jesper; Krogstrup, Peter; Kouwenhoven, Leo

    We present measurements of microwave lasing from a single Al/InAs/Al nanowire Josephson junction strongly coupled to a high quality factor superconducting cavity. Application of a DC bias voltage to the Josephson junction results in photon emission into the cavity when the bias voltage is equal to a multiple of the cavity frequency. At large voltage biases, the strong non-linearity of the circuit allows for efficient down conversion of high frequency microwave photons down to multiple photons at the fundamental frequency of the cavity. In this regime, the emission linewidth narrows significantly below the bare cavity linewidth to < 10 kHz and real time analysis of the emission statistics shows above threshold lasing with a power conversion efficiency > 50%. The junction-cavity coupling and laser emission can be tuned rapidly via an external gate, making it suitable to be integrated into a scalable qubit architecture as a versatile source of coherent microwave radiation. This work has been supported by the Netherlands Organisation for Scientific Research (NWO/OCW), Foundation for Fundamental Research on Matter (FOM), European Research Council (ERC), and Microsoft Corporation Station Q.

  20. Determination of the Electrical Junction in Cu(In, Ga)Se2 and Cu2ZnSnSe4 Solar Cells with 20-nm Spatial Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Chuanxiao; Jiang, Chun-Sheng; Moutinho, Helio

    2016-11-21

    We located the electrical junction (EJ) of Cu(In, Ga)Se2 (CIGS) and Cu2ZnSnSe4 (CZTS) solar cells with ~20-nm accuracy using a scanning capacitance spectroscopy (SCS) technique. A procedure was developed to prepare the cross-sectional samples and grow critical high-quality insulating layers for the SCS measurement. We found that CIGS has a buried homojunction with the EJ located at ~40 nm inside the CIGS/CdS interface. An n-type CIGS was probed in the region 10-30 nm away from the interface. By contrast, the CZTS/CdS cells have a heterointerface junction with a shallower EJ (~20 nm) than CIGS. The EJ is ~20 nm frommore » the CZTS/CdS interface, which is consistent with asymmetrical carrier concentrations of the p-CZTS and n-CdS in a heterojunction cell. The unambiguous determination of the junction locations helped explain the large open circuit voltage difference between the state-of-the-art devices of CIGS and CZTS.« less

  1. Enhancing light absorption within the carrier transport length in quantum junction solar cells.

    PubMed

    Fu, Yulan; Hara, Yukihiro; Miller, Christopher W; Lopez, Rene

    2015-09-10

    Colloidal quantum dot (CQD) solar cells have attracted tremendous attention because of their tunable absorption spectrum window and potentially low processing cost. Recently reported quantum junction solar cells represent a promising approach to building a rectifying photovoltaic device that employs CQD layers on each side of the p-n junction. However, the ultimate efficiency of CQD solar cells is still highly limited by their high trap state density in both p- and n-type CQDs. By modeling photonic structures to enhance the light absorption within the carrier transport length and by ensuring that the carrier generation and collection efficiencies were both augmented, our work shows that overall device current density could be improved. We utilized a two-dimensional numerical model to calculate the characteristics of patterned CQD solar cells based on a simple grating structure. Our calculation predicts a short circuit current density as high as 31  mA/cm2, a value nearly 1.5 times larger than that of the conventional flat design, showing the great potential value of patterned quantum junction solar cells.

  2. Multijunction solar cell design revisited: disruption of current matching by atmospheric absorption bands: Disruption of current matching by atmospheric absorption bands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, William E.; Friedman, Daniel J.; Geisz, John F.

    This paper re-examines the impact of atmospheric absorption bands on series-connected multijunction cell design, motivated by the numerous local efficiency maxima that appear as the number of junctions is increased. Some of the local maxima are related to the bottom subcell bandgap and are already well understood: As the bottom subcell bandgap is varied, a local efficiency maximum is produced wherever the bottom cell bandgap crosses an atmospheric absorption band. The optimal cell designs at these local maxima are generally current matched, such that all subcells have nearly the same short-circuit current. We systematically describe additional local maxima that occurmore » wherever an upper subcell bandgap encounters an atmospheric absorption band. Moreover, these local maxima are not current matched and become more prevalent as the number of junctions increases, complicating the solution space for five-junction and six-junction designs. A systematic framework for describing this complexity is developed, and implications for numerical convergence are discussed.« less

  3. A high dynamic range method for the direct readout of a dynamic phase change in homodyne interferometers

    NASA Astrophysics Data System (ADS)

    Marçal, L. A. P.; Kitano, C.; Higuti, R. T.; Nader, G.; Silva, E. C. N.

    2012-12-01

    Piezoelectric flextensional actuators (PFAs) are an efficient alternative to systems that demand nano-positioning of devices, such as in nanotechnology. Optical techniques constitute an excellent choice for contactless measurement of nano-displacements. In particular, optical interferometry constitutes an adequate choice for characterizing PFAs. There are several types of interferometers, as well as optical phase demodulation methods, used in practice. One interesting class of demodulation methods uses the spectrum of the photo-detected signal and its intrinsic properties when there is a harmonically varying time-domain modulating signal. In this work, a low cost homodyne Michelson interferometer, associated with simple electronic circuits for signal conditioning and acquisition, is used. A novel dynamic phase demodulation method, named Jm&Jm + 2, is proposed, which uses only the magnitude spectrum of the photo-detected signal, without the need to know its phase spectrum. The method is passive, direct, self-consistent, without problems of phase ambiguity and immune to fading, and presents a dynamic range from 0.45 to 100 rad displacements (between 22.6 nm and 5 µm, for λ = 632.8 nm). When applied to the measurement of half-wave voltage in a proof-of-concept Pockels cell, it presents errors smaller than 0.9% when compared to theory. For the estimation of PFA displacement, it allows the measurement of linearity and frequency response curves, with excellent results.

  4. Surface profile measurement by using the integrated Linnik WLSI and confocal microscope system

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chung; Shen, Ming-Hsing; Hwang, Chi-Hung; Yu, Yun-Ting; Wang, Tzu-Fong

    2017-06-01

    The white-light scanning interferometer (WLSI) and confocal microscope (CM) are the two major optical inspection systems for measuring three-dimensional (3D) surface profile (SP) of micro specimens. Nevertheless, in practical applications, WLSI is more suitable for measuring smooth and low-slope surfaces. On the other hand, CM is more suitable for measuring uneven-reflective and low-reflective surfaces. As for aspect of surface profiles to be measured, the characteristics of WLSI and CM are also different. WLSI is generally used in semiconductor industry while CM is more popular in printed circuit board industry. In this paper, a self-assembled multi-function optical system was integrated to perform Linnik white-light scanning interferometer (Linnik WLSI) and CM. A connecting part composed of tubes, lenses and interferometer was used to conjunct finite and infinite optical systems for Linnik WLSI and CM in the self-assembled optical system. By adopting the flexibility of tubes and lenses, switching to perform two different optical measurements can be easily achieved. Furthermore, based on the shape from focus method with energy of Laplacian filter, the CM was developed to enhance the on focal information of each pixel so that the CM can provide all-in-focus image for performing the 3D SP measurement and analysis simultaneously. As for Linnik WLSI, eleven-step phase shifting algorithm was used to analyze vertical scanning signals and determine the 3D SP.

  5. Angiopoietin-1 protects the endothelial cells against advanced glycation end product injury by strengthening cell junctions and inhibiting cell apoptosis.

    PubMed

    Zhao, Jingling; Chen, Lei; Shu, Bin; Tang, Jinming; Zhang, Lijun; Xie, Julin; Liu, Xusheng; Xu, Yingbin; Qi, Shaohai

    2015-08-01

    Endothelial dysfunction is a major characteristic of diabetic vasculopathy. Protection of the vascular endothelium is an essential aspect of preventing and treating diabetic vascular complications. Although Angiopoietin-1 (Ang-1) is an important endothelial-specific protective factor, whether Ang-1 protects vascular cells undergoing advanced glycation end product (AGE) injury has not been investigated. The aim of the present study was to determine the potential effects of Ang-1 on endothelial cells after exposure to AGE. We show here that Ang-1 prevented AGE-induced vascular leakage by enhancing the adherens junctions between endothelial cells, and this process was mediated by the phosphorylation and membrane localization of VE-cadherin. Furthermore, Ang-1 also protected endothelial cells from AGE-induced death by regulating phosphatidylinositol 3-kinase (PI3K)/Akt-dependent Bad phosphorylation. Our findings suggest that the novel protective mechanisms of Ang-1 on endothelium are achieved by strengthening endothelial cell junctions and reducing endothelial cell death after AGE injury. © 2014 Wiley Periodicals, Inc.

  6. Calculations of the displacement damage and short-circuit current degradation in proton irradiated (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Yeh, C. S.; Li, S. S.; Loo, R. Y.

    1987-01-01

    A theoretical model for computing the displacement damage defect density and the short-circuit current (I sub sc) degradation in proton-irradiated (AlGa)As-GaAs p-n junction solar cells is presented. Assumptions were made with justification that the radiation induced displacement defects form an effective recombination center which controls the electron and hole lifetimes in the junction space charge region and in the n-GaAs active layer of the irradiated GaAs p-n junction cells. The degradation of I sub sc in the (AlGa)As layer was found to be negligible compared to the total degradation. In order to determine the I sub sc degradation, the displacement defect density, path length, range, reduced energy after penetrating a distance x, and the average number of displacements formed by one proton scattering event were first calculated. The I sub sc degradation was calculated by using the electron capture cross section in the p-diffused layer and the hole capture cross section in the n-base layer as well as the wavelength dependent absorption coefficients. Excellent agreement was found between the researchers calculated values and the measured I sub sc in the proton irradiated GaAs solar cells for proton energies of 100 KeV to 10 MeV and fluences from 10 to the 10th power p/square cm to 10 to the 12th power p/square cm.

  7. Ferromagnetic-Insulator-Based Superconducting Junctions as Sensitive Electron Thermometers

    NASA Astrophysics Data System (ADS)

    Giazotto, F.; Solinas, P.; Braggio, A.; Bergeret, F. S.

    2015-10-01

    We present an exhaustive theoretical analysis of charge and thermoelectric transport in a normal-metal-ferromagnetic-insulator-superconductor junction and explore the possibility of its use as a sensitive thermometer. We investigate the transfer functions and the intrinsic noise performance for different measurement configurations. A common feature of all configurations is that the best temperature-noise performance is obtained in the nonlinear temperature regime for a structure based on an Europium chalcogenide ferromagnetic insulator in contact with a superconducting Al film structure. For an open-circuit configuration, although the maximal intrinsic temperature sensitivity can achieve 10 nK Hz-1 /2 , a realistic amplifying chain will reduce the sensitivity up to 10 μ K Hz-1 /2 . To overcome this limitation, we propose a measurement scheme in a closed-circuit configuration based on state-of-the-art superconducting-quantum-interference-device detection technology in an inductive setup. In such a case, we show that temperature-noise can be as low as 35 nK Hz-1 /2 . We also discuss a temperature-to-frequency converter where the obtained thermovoltage developed over a Josephson junction operated in the dissipative regime is converted into a high-frequency signal. We predict that the structure can generate frequencies up to approximately 120 GHz and transfer functions up to 200 GHz /K at around 1 K. If operated as an electron thermometer, the device may provide temperature-noise lower than 35 nK Hz-1 /2 thereby being potentially attractive for radiation-sensing applications.

  8. Relative Sensor with 4(pi) Coverage for Formation Flying Missions

    NASA Technical Reports Server (NTRS)

    Tien, Jeffrey Y.; Purcell, George H., Jr.; Sirinivasan, Jeffrey M.; Young, Lawrence E.

    2004-01-01

    The Terrestrial Planet Finder (TPF) pre-project, an element of NASA's Origins program, is currently developing two architectures for a mission to search for earth-like planets around nearby stars. One of the architectures being developed is the Formation Flying Interferometer (FFI). The FFI is envisioned to consist of up to seven spacecraft (as many as six 'collectors' with IR telescopes, and a 'combiner') flying in precise formation within f 1 cm of pre-determined trajectories for synchronized observations. The spacecraft-to-spacecraft separations are variable between 20 m and 100 m or more during observations to support various configurations of the interferometer in the planet-finding mode. The challenges involved with TPF autonomous operations, ranging from formation acquisition and formation maneuvering to high precision formation control during science observations, are unprecedented. In this paper we discuss the development of the formation acquisition sensor, which uses novel modulation and duplexing schemes to enable fast signal acquisition, multiple-spacecraft operation, and mitigation of inherent jamming conditions, while providing precise formation sensing and integrated radar capability. This approach performs delay synthesis and carrier cycle ambiguity resolution to improve range measurement, and uses differential carrier cycle ambiguity resolution to make precise bearing angle measurements without calibration maneuvers.

  9. Relative Sensor with 4Pi Coverage for Formation Flying Missions

    NASA Technical Reports Server (NTRS)

    Tien, Jeffrey Y.; Purcell, George H., Jr.; Srinivasan, Jeffrey M.; Young, Lawrence E.

    2004-01-01

    The Terrestrial Planet Finder (TPF) pre-project, an element of NASA s Origins program, is currently developing two architectures for a mission to search for earth-like planets around nearby stars. One of the architectures being developed is the Formation Flying Interferometer (FFI). The FFI is envisioned to consist of up to seven spacecraft (as many as six "collectors" with IR telescopes, and a "combiner") flying in precise formation within +/-1 cm of pre-determined trajectories for synchronized observations. The spacecraft-to-spacecraft separations are variable between 20 m and 100 m or more during observations to support various configurations of the interferometer in the planet-finding mode. The challenges involved with TPF autonomous operations, ranging from formation acquisition and formation maneuvering to high precision formation control during science observations, are unprecedented. In this paper we discuss the development of the formation acquisition sensor, which uses novel modulation and duplexing schemes to enable fast signal acquisition, multiple-spacecraft operation, and mitigation of inherent jamming conditions, while providing precise formation sensing and integrated radar capability. This approach performs delay synthesis and carrier cycle ambiguity resolution to improve range measurement, and uses differential carrier cycle ambiguity resolution to make precise bearing angle measurements without calibration maneuvers.

  10. Charge transport through molecular rods with reduced pi-conjugation.

    PubMed

    Lörtscher, Emanuel; Elbing, Mark; Tschudy, Meinrad; von Hänisch, Carsten; Weber, Heiko B; Mayor, Marcel; Riel, Heike

    2008-10-24

    A series of oligophenylene rods of increasing lengths is synthesized to investigate the charge-transport mechanisms. Methyl groups are attached to the phenyl rings to weaken the electronic overlap of the pi-subsystems along the molecular backbones. Out-of-plane rotation of the phenyl rings is confirmed in the solid state by means of X-ray analysis and in solution by using UV/Vis spectroscopy. The influence of the reduced pi-conjugation on the resonant charge transport is studied at the single-molecule level by using the mechanically controllable break-junction technique. Experiments are performed under ultra-high-vacuum conditions at low temperature (50 K). A linear increase of the conductance gap with increasing number of phenyl rings (from 260 meV for one ring to 580 meV for four rings) is revealed. In addition, the absolute conductance of the first resonant peaks does not depend on the length of the molecular wire. Resonant transport through the first molecular orbital is found to be dominated by charge-carrier injection into the molecule, rather than by the intrinsic resistance of the molecular wire length.

  11. Approaches for Achieving Broadband Achromatic Phase Shifts for Visible Nulling Coronagraphy

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Lyon, Richard G.

    2012-01-01

    Visible nulling coronagraphy is one of the few approaches to the direct detection and characterization of Jovian and Terrestrial exoplanets that works with segmented aperture telescopes. Jovian and Terrestrial planets require at least 10(exp -9) and 10(exp -10) image plane contrasts, respectively, within the spectral bandpass and thus require a nearly achromatic pi-phase difference between the arms of the interferometer. An achromatic pi-phase shift can be achieved by several techniques, including sequential angled thick glass plates of varying dispersive materials, distributed thin-film multilayer coatings, and techniques that leverage the polarization-dependent phase shift of total-internal reflections. Herein we describe two such techniques: sequential thick glass plates and Fresnel rhomb prisms. A viable technique must achieve the achromatic phase shift while simultaneously minimizing the intensity difference, chromatic beam spread and polarization variation between each arm. In this paper we describe the above techniques and report on efforts to design, model, fabricate, align the trades associated with each technique that will lead to an implementations of the most promising one in Goddard's Visible Nulling Coronagraph (VNC).

  12. High-latitude Pi2 pulsations associated with kink-like neutral sheet oscillations

    NASA Astrophysics Data System (ADS)

    Wang, G. Q.; Volwerk, M.; Zhang, T. L.; Schmid, D.; Yoshikawa, A.

    2017-03-01

    A kink-like neutral sheet oscillation event observed by Cluster between 1436 and 1445 UT on 15 October 2004 has been investigated. The oscillations with periods between 40 and 60 s, observed at (-13.1, 8.7, -0.5) RE, are dominant in BX and BY. And they propagate mainly duskward with a velocity of (86, 147, 46) km/s. Their periods and velocity can be explained by the magnetic double-gradient instability. These oscillations are accompanied by strong field-aligned currents (FACs), which prefer to occur near the strongly tilted current sheet, and local maximum FAC tends to occur near the neutral sheet. The FACs show one-to-one correlated with a high-latitude Pi2 pulsation event recorded by KTN and TIK stations with a delay time of 60 and 90 s, respectively. Both the Pi2 and oscillations propagate westward with a comparative conjunctive speed. These findings suggest a strong relation between the FACs and Pi2, and we infer that the Pi2 is caused by the FACs. The periods of the FACs are modulated by the oscillations but not exactly equal, which is one possible reason that the period of the Pi2 caused by the FACs could be different from the oscillations. We speculate that a current circuit between the plasma sheet and ionosphere can be formed during strongly tilted current sheet, and successive tilted current sheet could generate quasiperiodic multiple FAC systems, which can generate high-latitude Pi2 pulsations and control their periods.

  13. Realisation of all 16 Boolean logic functions in a single magnetoresistance memory cell

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Yang, Guang; Cui, Bin; Wang, Shouguo; Zeng, Fei; Song, Cheng; Pan, Feng

    2016-06-01

    Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future.Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03169b

  14. Characterization of pi-Conjugated Polymers for Transistor and Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Paulsen, Bryan D.

    pi-Conjugated polymers represent a unique class of optoelectronic materials. Being polymers, they are solution processable and inherently "soft" materials. This makes them attractive candidates for the production of roll-to-roll printed electronic devices on flexible substrates. The optical and electronic properties of pi-conjugated polymers are synthetically tunable allowing material sets to be tailored to specific applications. Two of the most heavily researched applications are the thin film transistor, the building block of electronic circuits, and the bulk heterojunction solar cell, which holds great potential as a renewable energy source. Key to developing commercially feasible pi-conjugated polymer devices is a thorough understanding of the electronic structure and charge transport behavior of these materials in relationship with polymer structure. Here this structure property relationship has been investigated through electrical and electrochemical means in concert with a variety of other characterization techniques and device test beds. The tunability of polymer optical band gap and frontier molecular orbital energy level was investigated in systems of vinyl incorporating statistical copolymers. Energy levels and band gaps are crucial parameters in developing efficient photovoltaic devices, with control of these parameters being highly desirable. Additionally, charge transport and density of electronic states were investigated in pi-conjugated polymers at extremely high electrochemically induced charge density. Finally, the effects of molecular weight on pi-conjugated polymer optical properties, energy levels, charge transport, morphology, and photovoltaic device performance was examined.

  15. Pictures of Processes: Automated Graph Rewriting for Monoidal Categories and Applications to Quantum Computing

    NASA Astrophysics Data System (ADS)

    Kumar, Bhupendra

    Light assisted or driven fuel generation by carbon dioxide and proton reduction can be achieved by a p-type semiconductor/liquid junction. There are four different types of schemes which are typically used for carbon dioxide and proton reduction for fuel generation applications. In these systems, the semiconductor can serve the dual role of a catalyst and a light absorber. Specific electrocatalysts (heterogeneous and homogeneous) can be driven by p-type semiconductor where it works only as light absorber in order to achieve better selectivity and faster rates of catalysis. The p-type semiconductor/molecular catalyst junction is primarily explored in this dissertation for CO2 and proton photoelectrochemical reduction. A general principle for the operation of p-type semiconductor/molecular junctions is proposed and validated for several molecular catalysts in contact with p-Si photocathode. It is also shown that the light assisted homogeneous and heterogeneous catalysis can coexist. This principle is extended to achieve direct conversion of CO 2 to methanol on Platinum nanoparticles decorated p-Si in aqueous medium through pyridine/pyridinium system for CO2 reduction. An open circuit voltage higher than 600 mV is achieved for p-Si/Re(bipy-tBu)(CO) 3Cl [where bipy-tBu = 4,4'- tert-butyl-2,2'-bipyridine] (Re-catalyst) junction. The photoelectrochemical conversion of CO2 to CO using a p-Si/Re-catalyst junction is obtained at 100 % Faradaic efficiency. The homogeneous catalytic current density for CO2 by p-Si/Re-catalyst junction under illumination scales linearly with illumination intensity (both polychromatic and monochromatic). This indicates that the homogeneous catalysis is light driven for the p-Si/Re-catalyst junction system up to light intensities approaching one sun. The photoelectrochemical reduction of other active members of Re(bipyridyl)(CO)3Cl molecular catalyst family is also observed on illuminated p-Si photocathode. Effects of surface modification and nanowire morphology of the p-Si photocathode on the homogeneous catalytic reduction of CO2 by using p-Si/Re-catalyst junction are also described in this dissertation. For phenyl ethyl modified p-Si photocathode, the rate of homogeneous catalysis for CO2 reduction by Re-catalyst is three times greater than glassy carbon electrode and six times greater than the hexyl modified and the hydrogen terminated p-Si photocathodes. When hexyl modified p-Si nanowires are used as photocathode, the homogeneous catalytic current density increased by a factor of two compared to planar p-Si (both freshly etched and hexyl modified) photocathode. A successful light assisted generation of syngas (H2:CO = 2:1) from CO2 and water is achieved by using p-Si/Re-catalyst. In this system, water is reduced heterogeneously on p-Si surface and CO2 is reduced homogeneously by Re-catalyst. The same principle is extended to the homogeneous proton reduction by using p-Si/[FeFe] complex junction where [FeFe] complex [Fe2(micro-bdt)(CO) 6] (bdt = benzene-1,2-dithiolate)] is a proton reduction molecular catalyst. A short circuit quantum efficiency of 79 % with 100 % Faradaic efficiency and 600 mV open circuit are achieved by using p-Si/[FeFe] complex for proton reduction with 300 mM perchloric acid as a proton source. Cobalt difluororyl-diglyoximate (Co-catalyst) is a proton reduction catalyst with only 200 mV of overpotential for the hydrogen evolution reaction (HRE). The Co-catalyst is photoelectrochemically reduced with a photovoltage of 470 mV on illuminated p-Si photocathode. For p-Si photocathodes, the overpotential for proton reduction is over 1 V. In principle, p-Si/Co-catalyst junction can reduce proton to hydrogen homogeneously at underpotential. In a concluding effort, a wireless monolithic dual face single photoelectrode (multi junction photovoltaic cell which can generate a voltage higher 1.7 V) based photochemical cell is proposed for direct conversion of solar energy into liquid fuel. In this device, the two faces of the multijunction photoelectrode are serve as an anode and a cathode for water oxidation and fuel generation, respectively, and are separated by proton exchange membrane.

  16. A Multiple-range Self-balancing Thermocouple Potentiometer

    NASA Technical Reports Server (NTRS)

    Warshawsky, I; Estrin, M

    1951-01-01

    A multiple-range potentiometer circuit is described that provides automatic measurement of temperatures or temperature differences with any one of several thermocouple-material pairs. Techniques of automatic reference junction compensation, span adjustment, and zero suppression are described that permit rapid selection of range and wire material, without the necessity for restandardization, by setting of two external tap switches.

  17. Microluminometer chip and method to measure bioluminescence

    DOEpatents

    Simpson, Michael L [Knoxville, TN; Paulus, Michael J [Knoxville, TN; Sayler, Gary S [Blaine, TN; Applegate, Bruce M [West Lafayette, IN; Ripp, Steven A [Knoxville, TN

    2008-05-13

    An integrated microluminometer includes an integrated circuit chip having at least one n-well/p-substrate junction photodetector for converting light received into a photocurrent, and a detector on the chip for processing the photocurrent. A distributed electrode configuration including a plurality of spaced apart electrodes disposed on an active region of the photodetector is preferably used to raise efficiency.

  18. Traceable quantum sensing and metrology relied up a quantum electrical triangle principle

    NASA Astrophysics Data System (ADS)

    Fang, Yan; Wang, Hengliang; Yang, Xinju; Wei, Jingsong

    2016-11-01

    Hybrid quantum state engineering in quantum communication and imaging1-2 needs traceable quantum sensing and metrology, which are especially critical to quantum internet3 and precision measurements4 that are important across all fields of science and technology-. We aim to set up a mode of traceable quantum sensing and metrology. We developed a method by specially transforming an atomic force microscopy (AFM) and a scanning tunneling microscopy (STM) into a conducting atomic force microscopy (C-AFM) with a feedback control loop, wherein quantum entanglement enabling higher precision was relied upon a set-point, a visible light laser beam-controlled an interferometer with a surface standard at z axis, diffractometers with lateral standards at x-y axes, four-quadrant photodiode detectors, a scanner and its image software, a phase-locked pre-amplifier, a cantilever with a kHz Pt/Au conducting tip, a double barrier tunneling junction model, a STM circuit by frequency modulation and a quantum electrical triangle principle involving single electron tunneling effect, quantum Hall effect and Josephson effect5. The average and standard deviation result of repeated measurements on a 1 nm height local micro-region of nanomedicine crystal hybrid quantum state engineering surface and its differential pA level current and voltage (dI/dV) in time domains by using C-AFM was converted into an international system of units: Siemens (S), an indicated value 0.86×10-12 S (n=6) of a relative standard uncertainty was superior over a relative standard uncertainty reference value 2.3×10-10 S of 2012 CODADA quantized conductance6. It is concluded that traceable quantum sensing and metrology is emerging.

  19. Universal Linear Optics: An implementation of Boson Sampling on a Fully Reconfigurable Circuit

    NASA Astrophysics Data System (ADS)

    Harrold, Christopher; Carolan, Jacques; Sparrow, Chris; Russell, Nicholas J.; Silverstone, Joshua W.; Marshall, Graham D.; Thompson, Mark G.; Matthews, Jonathan C. F.; O'Brien, Jeremy L.; Laing, Anthony; Martín-López, Enrique; Shadbolt, Peter J.; Matsuda, Nobuyuki; Oguma, Manabu; Itoh, Mikitaka; Hashimoto, Toshikazu

    Linear optics has paved the way for fundamental tests in quantum mechanics and has gone on to enable a broad range of quantum information processing applications for quantum technologies. We demonstrate an integrated photonics processor that is universal for linear optics. The device is a silica-on-silicon planar waveguide circuit (PLC) comprising a cascade of 15 Mach Zehnder interferometers, with 30 directional couplers and 30 tunable thermo-optic phase shifters which are electrically interfaced for the arbitrary setting of a phase. We input ensembles of up to six photons, and monitor the output with a 12-single-photon detector system. The calibrated device is capable of implementing any linear optical protocol. This enables the implementation of new quantum information processing tasks in seconds, which would have previously taken months to realise. We demonstrate 100 instances of the boson sampling problem with verification tests, and six-dimensional complex Hadamards. Also Imperial College London.

  20. Electro-optic Mach-Zehnder Interferometer based Optical Digital Magnitude Comparator and 1's Complement Calculator

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Raghuwanshi, Sanjeev Kumar

    2016-06-01

    The optical switching activity is one of the most essential phenomena in the optical domain. The electro-optic effect-based switching phenomena are applicable to generate some effective combinational and sequential logic circuits. The processing of digital computational technique in the optical domain includes some considerable advantages of optical communication technology, e.g. immunity to electro-magnetic interferences, compact size, signal security, parallel computing and larger bandwidth. The paper describes some efficient technique to implement single bit magnitude comparator and 1's complement calculator using the concepts of electro-optic effect. The proposed techniques are simulated on the MATLAB software. However, the suitability of the techniques is verified using the highly reliable Opti-BPM software. It is interesting to analyze the circuits in order to specify some optimized device parameter in order to optimize some performance affecting parameters, e.g. crosstalk, extinction ratio, signal losses through the curved and straight waveguide sections.

  1. The modulation and demodulation module of a high resolution MOEMS accelerometer

    NASA Astrophysics Data System (ADS)

    Jiao, Xufen; Bai, Jian; Lu, Qianbo; Lou, Shuqi

    2016-02-01

    A MOEMS accelerometer with high precision based on grating interferometer is demonstrated in this paper. In order to increase the signal-to-noise ratio (SNR) and accuracy, a specific modulator and an orthogonal phase-lock demodulator are proposed. Phase modulation is introduced to this accelerometer by applying a sinusoidal signal to a piezoelectric translator (PZT) amounted to the accelerometer. Phase demodulation module consists of a circuit design and a digital design. In the circuit design, the modulated light intensity signal is converted to a voltage signal and processed. In the digital part, the demodulator is mainly composed of a Band Pass Filter, two Phase-Sensitive Detectors, a phase shifter, and two Low Pass Filters based on virtual instrument. Simulation results indicate that this approach can decrease the noise greatly, and the SNR of this demodulator is 50dB and the relative error is less than 4%.

  2. Deep learning with coherent nanophotonic circuits

    NASA Astrophysics Data System (ADS)

    Shen, Yichen; Harris, Nicholas C.; Skirlo, Scott; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Sun, Xin; Zhao, Shijie; Larochelle, Hugo; Englund, Dirk; Soljačić, Marin

    2017-07-01

    Artificial neural networks are computational network models inspired by signal processing in the brain. These models have dramatically improved performance for many machine-learning tasks, including speech and image recognition. However, today's computing hardware is inefficient at implementing neural networks, in large part because much of it was designed for von Neumann computing schemes. Significant effort has been made towards developing electronic architectures tuned to implement artificial neural networks that exhibit improved computational speed and accuracy. Here, we propose a new architecture for a fully optical neural network that, in principle, could offer an enhancement in computational speed and power efficiency over state-of-the-art electronics for conventional inference tasks. We experimentally demonstrate the essential part of the concept using a programmable nanophotonic processor featuring a cascaded array of 56 programmable Mach-Zehnder interferometers in a silicon photonic integrated circuit and show its utility for vowel recognition.

  3. Nightside Magnetosphere-Ionosphere Current Circuit: Implications for Auroral Streamers and Pi2 Pulsations

    NASA Astrophysics Data System (ADS)

    Ohtani, S.; Uozumi, T.

    2018-01-01

    We investigate the electrodynamic coupling of the nightside magnetosphere-ionosphere system using the analogy of a current circuit. In our model circuit the generator drives a constant current, which flows through the magnetotail and ionosphere branches. The magnetotail branch has a capacitor C and resistor RT, whereas the ionospheric branch has an inductor L and resistor RI. Each element is physically described with local quantities and geometries. For RT ≪ RI the electric circuit is characterized by three time constants: τCR(=CRT), τLC= LC, and τL/R(=L/RI). It is found that τCR is of the order of the ion gyroperiod in the plasma sheet, and τLC and τL/R correspond to the eigenperiod and decay time of the field line oscillation, respectively. Therefore, despite the variability of each circuit element, τCR ≪ τLC ≪ τL/R holds generally. It is found that under this condition the current circuit is characterized as overdamped, and its decay time constant is given by τL/R. RI is smaller, and therefore, τL/R is longer as the structure is more elongated in the direction of convection. This may explain why the auroral streamers, which are considered to be the ionospheric manifestation of fast flows in the plasma sheet, last significantly longer than the flows themselves. Another application is the Pi2 pulsations at the substorm onsets. If RT increases by a factor of τLC/τCR, the system indeed becomes underdamped, and the oscillation period is given by 2πτLC. It is suggested that the substorm initiation is a distinct process with a significant enhancement of tail resistivity in a localized area.

  4. Coherent quantum transport in hybrid Nb-InGaAs-Nb Josephson junctions

    NASA Astrophysics Data System (ADS)

    Delfanazari, Kaveh; Puddy, R.; Ma, P.; Cao, M.; Yi, T.; Gul, Y.; Farrer, I.; Ritchie, D.; Joyce, H.; Kelly, M.; Smith, C.

    Because of the recently reported detection of Majorana fermions states at the superconductor-semiconductor (S-Sm) interface in InAs nanowire devices, the study of hybrid structures has received renewed interest. In this paper we present experimental results on proximity induced superconductivity in a high-mobility two-dimensional electron gas in InGaAs heterostructures. Eight symmetric S-Sm-S Josephson junctions were fabricated on a single InGaAs chip and each junction was measured individually using a lock-in measurement technique. The superconducting electrodes were made of Niobium (Nb). The measurements were carried out in a dilution fridge with a base temperature of 40 mK, and the quantum transport of junctions were measured below 800 mK. Owing to Andreev reflections at the S-Sm interfaces, the differential resistance (dV/dI) versus V curve shows the well-known subharmonic energy gap structure (SGS) at V = 2ΔNb/ne. The SGS features suppressed significantly with increasing temperature and magnetic field, leading to a shift of the SGSs toward zero bias. Our result paves the way for development of highly transparent hybrid S-Sm-S junctions and coherent circuits for quantum devices capable of performing quantum logic and processing functions.

  5. Electronic Model of a Ferroelectric Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen; Russell, Larry (Technical Monitor)

    2001-01-01

    A pair of electronic models has been developed of a Ferroelectric Field Effect transistor. These models can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The models use the Schmitt trigger circuit as a basis for their design. One model uses bipolar junction transistors and one uses MOSFET's. Each model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current from each model has similar values to an actual FFET that was measured experimentally. T'he input and o Output resistance in the models are also similar to that of the FFET. The models are valid for all frequencies below RF levels. No attempt was made to model the high frequency characteristics of the FFET. Each model can be used to design circuits using FFET's with standard electrical simulation packages. These circuits can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The models consist of only standard electrical components, such as BJT's, MOSFET's, diodes, resistors, and capacitors. Each model is compared to the experimental data measured from an actual FFET.

  6. Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Fan, Xin; Chen, Yunpeng; Xie, Yunsong; Kolodzey, James; Wilson, Jeffrey D.; Simons, Rainee N.; Xiao, John Q.

    2014-01-01

    A magnetic tunnel junction (MTJ)-based microwave detector is proposed and investigated. When the MTJ is excited by microwave magnetic fields, the relative angle between the free layer and pinned layer alternates, giving rise to an average resistance change. By measuring the average resistance change, the MTJ can be utilized as a microwave power sensor. Due to the nature of ferromagnetic resonance, the frequency of an incident microwave is directly determined. In addition, by integrating a mixer circuit, the MTJ-based microwave detector can also determine the relative phase between two microwave signals. Thus, the MTJ-based microwave detector can be used as an on-chip microwave phase and spectrum analyzer.

  7. Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Fan, Xin; Chen, Yunpeng; Xie, Yunsong; Kolodzey, James; Wilson, Jeffrey D.; Simons, Rainee N.; Xiao, John Q.

    2014-01-01

    A magnetic tunnel junction (MTJ)-based microwave detector is proposed and investigated. When the MTJ is excited by microwave magnetic fields, the relative angle between the free layer and pinned layer alternates, giving rise to an average resistance change. By measuring the average resistance change, the MTJ can be utilized as a microwave power sensor. Due to the nature of ferromagnetic resonance, the frequency of an incident microwave is directly determined. In addition, by integrating a mixer circuit, the MTJ-based microwave detector can also determine the relative phase between two microwave signals. Thus, the MTJbased microwave detector can be used as an on-chip microwave phase and spectrum analyzer.

  8. Method for characterizing the upset response of CMOS circuits using alpha-particle sensitive test circuits

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Nixon, Robert H. (Inventor); Soli, George A. (Inventor); Blaes, Brent R. (Inventor)

    1995-01-01

    A method for predicting the SEU susceptibility of a standard-cell D-latch using an alpha-particle sensitive SRAM, SPICE critical charge simulation results, and alpha-particle interaction physics. A technique utilizing test structures to quickly and inexpensively characterize the SEU sensitivity of standard cell latches intended for use in a space environment. This bench-level approach utilizes alpha particles to induce upsets in a low LET sensitive 4-k bit test SRAM. This SRAM consists of cells that employ an offset voltage to adjust their upset sensitivity and an enlarged sensitive drain junction to enhance the cell's upset rate.

  9. Development of processing procedures for advanced silicon solar cells. [antireflection coatings and short circuit currents

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.; Stella, P. M.; Avery, J. E.

    1975-01-01

    Ten ohm-cm silicon solar cells, 0.2 mm thick, were produced with short circuit current efficiencies up to thirteen percent and using a combination of recent technical advances. The cells were fabricated in conventional and wraparound contact configurations. Improvement in cell collection efficiency from both the short and long wavelengths region of the solar spectrum was obtained by coupling a shallow junction and an optically transparent antireflection coating with back surface field technology. Both boron diffusion and aluminum alloying techniques were evaluated for forming back surface field cells. The latter method is less complicated and is compatible with wraparound cell processing.

  10. Method and apparatus for increasing resistance of bipolar buried layer integrated circuit devices to single-event upsets

    NASA Technical Reports Server (NTRS)

    Zoutendyk, John A. (Inventor)

    1991-01-01

    Bipolar transistors fabricated in separate buried layers of an integrated circuit chip are electrically isolated with a built-in potential barrier established by doping the buried layer with a polarity opposite doping in the chip substrate. To increase the resistance of the bipolar transistors to single-event upsets due to ionized particle radiation, the substrate is biased relative to the buried layer with an external bias voltage selected to offset the built-in potential just enough (typically between about +0.1 to +0.2 volt) to prevent an accumulation of charge in the buried-layer-substrate junction.

  11. Nonlinear analysis of a family of LC tuned inverters. [dc to square wave circuits for power conditioning

    NASA Technical Reports Server (NTRS)

    Lee, F. C. Y.; Wilson, T. G.

    1974-01-01

    A family of four dc-to-square-wave LC tuned inverters are analyzed using singular point. Limit cycles and waveshape characteristics are given for three modes of oscillation: quasi-harmonic, relaxation, and discontinuous. An inverter in which the avalanche breakdown of the transistor emitter-to-base junction occurs is discussed and the starting characteristics of this family of inverters are presented. The LC tuned inverters are shown to belong to a family of inverters with a common equivalent circuit consisting of only three 'series' elements: a five-segment piecewise-linear current-controlled resistor, linear inductor, and linear capacitor.

  12. Special Relativity in the School Laboratory: A Simple Apparatus for Cosmic-Ray Muon Detection

    ERIC Educational Resources Information Center

    Singh, P.; Hedgeland, H.

    2015-01-01

    We use apparatus based on two Geiger-Müller tubes, a simple electronic circuit and a Raspberry Pi computer to illustrate relativistic time dilation affecting cosmic-ray muons travelling through the atmosphere to the Earth's surface. The experiment we describe lends itself to both classroom demonstration to accompany the topic of special relativity…

  13. Reversible conversion of dominant polarity in ambipolar polymer/graphene oxide hybrids

    DOE PAGES

    Zhou, Ye; Han, Su -Ting; Sonar, Prashant; ...

    2015-03-24

    The possibility to selectively modulate the charge carrier transport in semiconducting materials is extremely challenging for the development of high performance and low-power consuming logic circuits. Systematical control over the polarity (electrons and holes) in transistor based on solution processed layer by layer polymer/graphene oxide hybrid system has been demonstrated. The conversion degree of the polarity is well controlled and reversible by trapping the opposite carriers. Basically, an electron device is switched to be a hole only device or vice versa. Finally, a hybrid layer ambipolar inverter is demonstrated in which almost no leakage of opposite carrier is found. Wemore » conclude that this hybrid material has wide range of applications in planar p-n junctions and logic circuits for high-throughput manufacturing of printed electronic circuits.« less

  14. Gap junctional coupling in the vertebrate retina: variations on one theme?

    PubMed

    Völgyi, Béla; Kovács-Oller, Tamás; Atlasz, Tamás; Wilhelm, Márta; Gábriel, Róbert

    2013-05-01

    Gap junctions connect cells in the bodies of all multicellular organisms, forming either homologous or heterologous (i.e. established between identical or different cell types, respectively) cell-to-cell contacts by utilizing identical (homotypic) or different (heterotypic) connexin protein subunits. Gap junctions in the nervous system serve electrical signaling between neurons, thus they are also called electrical synapses. Such electrical synapses are particularly abundant in the vertebrate retina where they are specialized to form links between neurons as well as glial cells. In this article, we summarize recent findings on retinal cell-to-cell coupling in different vertebrates and identify general features in the light of the evergrowing body of data. In particular, we describe and discuss tracer coupling patterns, connexin proteins, junctional conductances and modulatory processes. This multispecies comparison serves to point out that most features are remarkably conserved across the vertebrate classes, including (i) the cell types connected via electrical synapses; (ii) the connexin makeup and the conductance of each cell-to-cell contact; (iii) the probable function of each gap junction in retinal circuitry; (iv) the fact that gap junctions underlie both electrical and/or tracer coupling between glial cells. These pan-vertebrate features thus demonstrate that retinal gap junctions have changed little during the over 500 million years of vertebrate evolution. Therefore, the fundamental architecture of electrically coupled retinal circuits seems as old as the retina itself, indicating that gap junctions deeply incorporated in retinal wiring from the very beginning of the eye formation of vertebrates. In addition to hard wiring provided by fast synaptic transmitter-releasing neurons and soft wiring contributed by peptidergic, aminergic and purinergic systems, electrical coupling may serve as the 'skeleton' of lateral processing, enabling important functions such as signal averaging and synchronization. 2013 Elsevier Ltd. All rights reserved.

  15. Low-frequency noise behavior of polysilicon emitter bipolar junction transistors: a review

    NASA Astrophysics Data System (ADS)

    Deen, M. Jamal; Pascal, Fabien

    2003-05-01

    For many analog integrated circuit applications, the polysilicon emitter bipolar junction transistor (PE-BJT) is still the preferred choice because of its higher operational frequency and lower noise performance characteristics compared to MOS transistors of similar active areas and at similar biasing currents. In this paper, we begin by motivating the reader with reasons why bipolar transistors are still of great interest for analog integrated circuits. This motivation includes a comparison between BJT and the MOSFET using a simple small-signal equivalent circuit to derive important parameters that can be used to compare these two technologies. An extensive review of the popular theories used to explain low frequency noise results is presented. However, in almost all instances, these theories have not been fully tested. The effects of different processing technologies and conditions on the noise performance of PE-BJTs is reviewed and a summary of some of the key technological steps and device parameters and their effects on noise is discussed. The effects of temperature and emitter geometries scaling is reviewed. It is shown that dispersion of the low frequency noise in ultra-small geometries is a serious issue since the rate of increase of the noise dispersion is faster than the noise itself as the emitter geometry is scaled to smaller values. Finally, some ideas for future research on PE-BJTs, some of which are also applicable to SiGe heteorjunction bipolar transistors and MOSFETs, are presented after the conclusions.

  16. High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes

    NASA Astrophysics Data System (ADS)

    Thomas, Christopher; Portnoff, Samuel; Spencer, M. G.

    2016-01-01

    Realization of an 18.6% efficient 4H-silicon carbide (4H-SiC) large area betavoltaic power source using the radioisotope tritium is reported. A 200 nm 4H-SiC P+N junction is used to collect high-energy electrons. The electron source is a titanium tritide (TiH3x) foil, or an integrated titanium tritide region formed by the diffusion of tritium into titanium. The specific activity of the source is directly measured. Dark current measured under short circuit conditions was less than 6.1 pA/cm2. Samples measured with an external tritium foil produced an open circuit voltage of 2.09 V, short circuit current of 75.47 nA/cm2, fill factor of 0.86, and power efficiency of 18.6%. Samples measured with an integrated source produced power efficiencies of 12%. Simulations were done to determine the beta spectrum (modified by self absorption) exiting the source and the electron hole pair generation function in the 4H-SiC. The electron-hole pair generation function in 4H-SiC was modeled as a Gaussian distribution, and a closed form solution of the continuity equation was used to analyze the cell performance. The effective surface recombination velocity in our samples was found to be 105-106 cm/s. Our analysis demonstrated that the surface recombination dominates the performance of a tritium betavoltaic device but that using a thin P+N junction structure can mitigate some of the negative effects.

  17. Flexible and fragmentable tandem photosensitive nanocrystal skins

    NASA Astrophysics Data System (ADS)

    Akhavan, S.; Uran, C.; Bozok, B.; Gungor, K.; Kelestemur, Y.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Demir, H. V.

    2016-02-01

    We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm-2 at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion.We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm-2 at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05063d

  18. Four-Quadrant Analog Multipliers Using G4-FETs

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Blalock, Benjamin; Christoloveanu, Sorin; Chen, Suheng; Akarvardar, Kerem

    2006-01-01

    Theoretical analysis and some experiments have shown that the silicon-on-insulator (SOI) 4-gate transistors known as G4-FETs can be used as building blocks of four-quadrant analog voltage multiplier circuits. Whereas a typical prior analog voltage multiplier contains between six and 10 transistors, it is possible to construct a superior voltage multiplier using only four G4-FETs. A G4-FET is a combination of a junction field-effect transistor (JFET) and a metal oxide/semiconductor field-effect transistor (MOSFET). It can be regarded as a single transistor having four gates, which are parts of a structure that affords high functionality by enabling the utilization of independently biased multiple inputs. The structure of a G4-FET of the type of interest here (see Figure 1) is that of a partially-depleted SOI MOSFET with two independent body contacts, one on each side of the channel. The drain current comprises of majority charge carriers flowing from one body contact to the other that is, what would otherwise be the side body contacts of the SOI MOSFET are used here as the end contacts [the drain (D) and the source (S)] of the G4-FET. What would otherwise be the source and drain of the SOI MOSFET serve, in the G4-FET, as two junction-based extra gates (JG1 and JG2), which are used to squeeze the channel via reverse-biased junctions as in a JFET. The G4-FET also includes a polysilicon top gate (G1), which plays the same role as does the gate in an accumulation-mode MOSFET. The substrate emulates a fourth MOS gate (G2). By making proper choices of G4-FET device parameters in conjunction with bias voltages and currents, one can design a circuit in which two input gate voltages (Vin1,Vin2) control the conduction characteristics of G4-FETs such that the output voltage (Vout) closely approximates a value proportional to the product of the input voltages. Figure 2 depicts two such analog multiplier circuits. In each circuit, there is the following: The input and output voltages are differential, The multiplier core consists of four G4- FETs (M1 through M4) biased by a constant current sink (Ibias), and The G4-FETs in two pairs are loaded by two identical resistors (RL), which convert a differential output current to a differential output voltage. The difference between the two circuits stems from their input and bias configurations. In each case, provided that the input voltages remain within their design ranges as determined by considerations of bias, saturation, and cutoff, then the output voltage is nominally given by Vout = kVin1Vin2, where k is a constant gain factor that depends on the design parameters and is different for the two circuits. In experimental versions of these circuits constructed using discrete G4- FETs and resistors, multiplication of voltages in all four quadrants (that is, in all four combinations of input polarities) was demonstrated, and deviations of the output voltages from linear dependence on the input voltages were found to amount to no more than a few percent. It is anticipated that in fully integrated versions of these circuits, the deviations from linearity will be made considerably smaller through better matching of devices.

  19. Study of the optical crosstalk in a heterodyne displacement gauge with cancelable circuit

    NASA Astrophysics Data System (ADS)

    Donazzan, Alberto; Naletto, Giampiero; Pelizzo, Maria G.

    2017-06-01

    One main focus of high precision heterodyne displacement interferometers are the means of splitting and merging for the reference (R) and measurement (M) beams when a cancelable circuit is implemented. Optical mixing of R and M gives birth to a systematc error called cyclic error, which appears as a periodic offset between the detected displacement and the actual one. A simple derivation of the cyclic error due to optical mixing is proposed for the cancelable circuit design. R and M beatings are collected by two photodiodes and conveniently converted by transimpedance amplifiers, such that the output signals are turned into ac-coupled voltages. The detected phase can be calculated as a function of the real phase (a change in optical path difference) in the case of zero-crossing detection. What turns out is a cyclic non-linearity which depends on the actual phase and on the amount of optical power leakage from the R channel into the M channel and vice versa. We then applied this result to the prototype of displacement gauge we are developing, which implements the cancelable circuit design with wavefront division. The splitting between R and M is done with a double coated mirror with a central hole, tilted by 45° with respect to the surface normal. The interferometer features two removable diffraction masks, respectively located before the merging point (a circular obscuration) and before the recombination point (a ring obscuration). In order to predict the extent of optical mixing between R and M, the whole layout was simulated by means of the Zemax ® Physical Optics Propagation (POP) tool. After the model of our setup was built and qualitatively verified, we proceeded by calculating the amount of optical leakages in various configurations: with and without the diffraction masks as well as for different sizes of both the holey mirror and the diffraction masks. The corrisponding maximum displacement error was then calculated for every configuration thanks to the previously derived formula. The insertion and optimization of the diffraction masks greatly improved the expected optical isolation inside the system. Data acquisition from our displacement gauge has just started. We plan to experimentally verify such results as soon as our prototype gauge will reach the desired sub-nanometer sensitivity.

  20. Signaling through the PI 3-K, Akt and SGK Pathway in Breast Cancer Progression

    DTIC Science & Technology

    2013-12-01

    Cancer Cell Migration The Adherens Junction Protein Afadin is an Akt substrate that Updated version 10.1158/1541-7786. MCR -13-0398doi: Access...the most recent version of this article at: Material Supplementary http://mcr.aacrjournals.org/content/suppl/2013/11/22/1541-7786. MCR -13-0398.DC1...accepted for publication but have not yet been edited. Author Manuscript Published OnlineFirst on November 22, 2013; DOI: 10.1158/1541-7786. MCR -13-0398

  1. Correlation between preoperative spinopelvic alignment and risk of proximal junctional kyphosis after posterior-only surgical correction of Scheuermann kyphosis.

    PubMed

    Nasto, Luigi A; Perez-Romera, Ana Belen; Shalabi, Saggah Tarek; Quraishi, Nasir A; Mehdian, Hossein

    2016-04-01

    Surgical correction of Scheuermann kyphosis (SK) is challenging and plagued by relatively high rates of proximal junctional kyphosis and failure (PJK and PJF). Normal sagittal alignment of the spine is determined by pelvic geometric parameters. How these parameters correlate with the risk of developing PJK in SK is not known. The study aimed to investigate the relationship between preoperative and postoperative spinopelvic alignment and occurrence of PJK and PJF. This is a retrospective observational cohort study. The sample included 37 patients who underwent posterior correction of SK from January 2006 to December 2012. The outcome measure was correlation analysis between preoperative and postoperative spinopelvic alignment parameters and the development of PJK over the course of the study period. Whole spine x-rays obtained before surgery, 3 months after surgery, and at the latest follow-up were analyzed. The following parameters were measured: thoracic kyphosis (TK), lumbar lordosis (LL), sagittal vertical axis (SVA), pelvic incidence (PI), pelvic tilt (PT), and sacral slope (SS). The development of PJK was considered the primary end point of the study. Patient population was split into a control and a PJK group; repeated-measures analysis of variance was used to assess group and time differences. Seven patients developed PJK over the study period. Although the severity of the preoperative deformity (TK) did not differ significantly between the two groups, preoperative PI was significantly higher in the PJK group (51.9°C±8.6°C vs. 42.7°C±8.8°C, p=.018). Postoperative correction of TK was similar between the two groups (39.3% and 41.2%, p=.678) and final LL did not differ as well (53.6°C±9.2°C vs. 51.3°C±11.5°C). However, because PJK patients had larger preoperative PI values, a significant deficit of LL was observed at final follow-up in this group compared with the control group (ΔLL -10.5°C±9.8°C vs. 0.6°C±10.5°C, p=.013). Scheuermann kyphosis patients who developed PJK appeared to have a significant postoperative deficit of LL (lumbopelvic mismatch). Lumbar lordosis decreases after surgery following correction of TK; therefore, TK correction should be planned according to preoperative PI values to avoid excessive reduction of LL in patients with higher PI values. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Development of a low-noise amplifier for neutron detection in harsh environment

    NASA Astrophysics Data System (ADS)

    Angelone, M.; Cardarelli, R.; Paolozzi, L.; Pillon, M.

    2014-10-01

    A fast matching charge amplifier for neutron spectroscopy in harsh environment has been developed and tested at the JET Tokamak. This front-end circuit is capable to operate at a distance up to 100 meters from a sensor without increasing its equivalent noise charge. Further improvements are possible by exploiting the intrinsic performance of silicon-germanium bipolar junction transistors.

  3. Semiconductor diode with external field modulation

    DOEpatents

    Nasby, Robert D.

    2000-01-01

    A non-destructive-readout nonvolatile semiconductor diode switching device that may be used as a memory element is disclosed. The diode switching device is formed with a ferroelectric material disposed above a rectifying junction to control the conduction characteristics therein by means of a remanent polarization. The invention may be used for the formation of integrated circuit memories for the storage of information.

  4. Reliability analysis of component-level redundant topologies for solid-state fault current limiter

    NASA Astrophysics Data System (ADS)

    Farhadi, Masoud; Abapour, Mehdi; Mohammadi-Ivatloo, Behnam

    2018-04-01

    Experience shows that semiconductor switches in power electronics systems are the most vulnerable components. One of the most common ways to solve this reliability challenge is component-level redundant design. There are four possible configurations for the redundant design in component level. This article presents a comparative reliability analysis between different component-level redundant designs for solid-state fault current limiter. The aim of the proposed analysis is to determine the more reliable component-level redundant configuration. The mean time to failure (MTTF) is used as the reliability parameter. Considering both fault types (open circuit and short circuit), the MTTFs of different configurations are calculated. It is demonstrated that more reliable configuration depends on the junction temperature of the semiconductor switches in the steady state. That junction temperature is a function of (i) ambient temperature, (ii) power loss of the semiconductor switch and (iii) thermal resistance of heat sink. Also, results' sensitivity to each parameter is investigated. The results show that in different conditions, various configurations have higher reliability. The experimental results are presented to clarify the theory and feasibility of the proposed approaches. At last, levelised costs of different configurations are analysed for a fair comparison.

  5. Analysis of the electron-beam-induced current of a polycrystalline p-n junction when the diffusion lengths of the material on either side of a grain boundary differ

    NASA Technical Reports Server (NTRS)

    Von Roos, O.; Luke, K. L.

    1984-01-01

    The short circuit current generated by the electron beam of a scanning electron microscope in p-n junctions is reduced by enhanced recombination at grain boundaries in polycrystalline material. Frequently, grain boundaries separate the semiconductor into regions possessing different minority carrier life times. This markedly affects the short circuit current I(sc) as a function of scanning distance from the grain boundary. It will be shown theoretically that (1) the minimum of the I(sc) in crossing the grain boundary with the scanning electron beam is shifted away from the grain boundary toward the region with smaller life time (shorter diffusion length), (2) the magnitude of the minimum differs markedly from those calculated under the assumption of equal diffusion lengths on either side of the grain boundary, and (3) the minimum disappears altogether for small surface recombination velocities (s less than 10,000 cm/s). These effects become negligible, however, for large recombination velocities s at grain boundaries. For p-type silicon this happens for s not less than 100,000 cm/s.

  6. Influence of Growth Temperature on the Characteristics of Single-Junction p–i–n InGaP Solar Cells.

    PubMed

    Jung, Sang Hyun; Kim, Youngjo; Kim, Chang Zoo; Jun, Dong-Hwan; Kim, Kangho; Shin, Hyun-Beom; Choi, JeHyuk; Park, Won-Kyu; Lee, Jaejin; Kang, Ho Kwan

    2017-04-01

    Single-junction p–i–n InGaP solar cells are grown at various temperatures from 620 to 700 °C by low pressure metalorganic chemical vapor deposition on GaAs (001) substrates. The short circuit current density of the p–i–n InGaP solar cells increases by up to 38.8% when the growth temperature is reduced from 700 to 620 °C, while the open circuit voltage and fill factor show relatively small changes. The external quantum efficiency, especially, in the wavelength regime below 500 nm, is improved for the p–i–n InGaP solar cells grown at lower temperatures. The improvement might be attributed to the reduced absorption loss of the photons in the n-InGaP emitter region. The highest conversion efficiency of 11.01% is attributed from the p–i–n InGaP solar cell grown at 640 °C. Electron mobility and concentration of undoped InGaP layers are investigated as a function of the growth temperature and correlated with the p–i–n InGaP solar cell performance.

  7. Design of high-throughput and low-power true random number generator utilizing perpendicularly magnetized voltage-controlled magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Lee, Hochul; Ebrahimi, Farbod; Amiri, Pedram Khalili; Wang, Kang L.

    2017-05-01

    A true random number generator based on perpendicularly magnetized voltage-controlled magnetic tunnel junction devices (MRNG) is presented. Unlike MTJs used in memory applications where a stable bit is needed to store information, in this work, the MTJ is intentionally designed with small perpendicular magnetic anisotropy (PMA). This allows one to take advantage of the thermally activated fluctuations of its free layer as a stochastic noise source. Furthermore, we take advantage of the voltage dependence of anisotropy to temporarily change the MTJ state into an unstable state when a voltage is applied. Since the MTJ has two energetically stable states, the final state is randomly chosen by thermal fluctuation. The voltage controlled magnetic anisotropy (VCMA) effect is used to generate the metastable state of the MTJ by lowering its energy barrier. The proposed MRNG achieves a high throughput (32 Gbps) by implementing a 64 ×64 MTJ array into CMOS circuits and executing operations in a parallel manner. Furthermore, the circuit consumes very low energy to generate a random bit (31.5 fJ/bit) due to the high energy efficiency of the voltage-controlled MTJ switching.

  8. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials.

    PubMed

    Ivić, Z; Lazarides, N; Tsironis, G P

    2016-07-12

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.

  9. Low-Cost High-Efficiency Solar Cells with Wafer Bonding and Plasmonic Technologies

    NASA Astrophysics Data System (ADS)

    Tanake, Katsuaki

    We fabricated a direct-bond interconnected multijunction solar cell, a two-terminal monolithic GaAs/InGaAs dual-junction cell, to demonstrate a proof-of-principle for the viability of direct wafer bonding for solar cell applications. The bonded interface is a metal-free n+GaAs/n +InP tunnel junction with highly conductive Ohmic contact suitable for solar cell applications overcoming the 4% lattice mismatch. The quantum efficiency spectrum for the bonded cell was quite similar to that for each of unbonded GaAs and InGaAs subcells. The bonded dual-junction cell open-circuit voltage was equal to the sum of the unbonded subcell open-circuit voltages, which indicates that the bonding process does not degrade the cell material quality since any generated crystal defects that act as recombination centers would reduce the open-circuit voltage. Also, the bonded interface has no significant carrier recombination rate to reduce the open circuit voltage. Engineered substrates consisting of thin films of InP on Si handle substrates (InP/Si substrates or epitaxial templates) have the potential to significantly reduce the cost and weight of compound semiconductor solar cells relative to those fabricated on bulk InP substrates. InGaAs solar cells on InP have superior performance to Ge cells at photon energies greater than 0.7 eV and the current record efficiency cell for 1 sun illumination was achieved using an InGaP/GaAs/InGaAs triple junction cell design with an InGaAs bottom cell. Thermophotovoltaic (TPV) cells from the InGaAsP-family of III-V materials grown epitaxially on InP substrates would also benefit from such an InP/Si substrate. Additionally, a proposed four-junction solar cell fabricated by joining subcells of InGaAs and InGaAsP grown on InP with subcells of GaAs and AlInGaP grown on GaAs through a wafer-bonded interconnect would enable the independent selection of the subcell band gaps from well developed materials grown on lattice matched substrates. Substitution of InP/Si substrates for bulk InP in the fabrication of such a four-junction solar cell could significantly reduce the substrate cost since the current prices for commercial InP substrates are much higher than those for Si substrates by two orders of magnitude. Direct heteroepitaxial growth of InP thin films on Si substrates has not produced the low dislocation-density high quality layers required for active InGaAs/InP in optoelectronic devices due to the ˜8% lattice mismatch between InP and Si. We successfully fabricated InP/Si substrates by He implantation of InP prior to bonding to a thermally oxidized Si substrate and annealing to exfoliate an InP thin film. The thickness of the exfoliated InP films was only 900 nm, which means hundreds of the InP/Si substrates could be prepared from a single InP wafer in principle. The photovoltaic current-voltage characteristics of the In0.53Ga0.47As cells fabricated on the wafer-bonded InP/Si substrates were comparable to those synthesized on commercially available epi-ready InP substrates, and had a ˜20% higher short-circuit current which we attribute to the high reflectivity of the InP/SiO2/Si bonding interface. This work provides an initial demonstration of wafer-bonded InP/Si substrates as an alternative to bulk InP substrates for solar cell applications. We have observed photocurrent enhancements up to 260% at 900 nm for a GaAs cell with a dense array of Ag nanoparticles with 150 nm diameter and 20 nm height deposited through porous alumina membranes by thermal evaporation on top of the cell, relative to reference GaAs cells with no metal nanoparticle array. This dramatic photocurrent enhancement is attributed to the effect of metal nanoparticles to scatter the incident light into photovoltaic layers with a wide range of angles to increase the optical path length in the absorber layer. GaAs solar cells with metallic structures at the bottom of the photovoltaic active layers, not only at the top, using semiconductor-metal direct bonding have been fabricated. These metallic back structures could incouple the incident light into surface plasmon mode propagating at the semiconductor/metal interface to increase the optical path, as well as simply act as back reflector, and we have observed significantly increased short-circuit current relative to reference cells without these metal components. (Abstract shortened by UMI.)

  10. Electronic Properties of Carbon Nanotubes and Junctions

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Han, Jie; Yang, Liu; Govindan, T. R.; Jaffe, R.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Metallic and semiconducting Single Wall Carbon Nanotubes (CNT) have recently been characterized using scanning tunneling microscopy (STM) and the manipulation of individual CNT has been demonstrated. These developments make the prospect of using CNT as molecular wires and possibly as electronic devices an even more interesting one. We have been modeling various electronic properties such as the density of states and the transmission coefficient of CNT wires and junctions. These studies involve first calculating the stability of junctions using molecular dynamics simulations and then calculating the electronic properties using a pi-electron tight binding Hamiltonian. We have developed the expertise to calculate the electronic properties of both finite-sized CNT and CNT systems with semi-infinite boundary conditions. In this poster, we will present an overview of some of our results. The electronic application of CNT that is most promising at this time is their use as molecular wires. The conductance can however be greatly reduced because of reflection due to defects and contacts. We have modeled the transmission through CNT in the presence of two types of defects: weak uniform disorder and strong isolated scatterers. We find that the conductance is affected in significantly different manners due to these defects Junctions of CNT have also been imaged using STM. This makes it essential to derive rules for the formation of junctions between tubes of different chirality, study their relative energies and electronic properties. We have generalized the rules for connecting two different CNT and have calculated the transmission and density of states through CNT junctions. Metallic and semiconducting CNT can be joined to form a stable junction and their current versus voltage characteristics are asymmetric. CNT are deformed by the application of external forces including interactions with a substrate or other CNT. In many experiments, these deformation are expected to occur naturally. We will present some preliminary results of our calculations of the modification of CNT electronic properties as a result of deformations.

  11. Recent progress in design and hybridization of planar grating-based transceivers

    NASA Astrophysics Data System (ADS)

    Bidnyk, S.; Pearson, M.; Balakrishnan, A.; Gao, M.

    2007-06-01

    We report on recent progress in simulations, physical layout, fabrication and hybridization of planar grating-based transceivers for passive optical networks (PONs). Until recently, PON transceivers have been manufactured using bulk micro-optical components. Today, advancements in modeling and simulation techniques has made it possible to design complex elements in the same silica-on silicon PLC platform and create an alternative platform for manufacturing of bi-directional transceivers. In our chips we simulated an integrated chip that monolithically combined planar reflective gratings and cascaded Mach-Zehnder interferometers. We used a combination of the finite element method and beam propagation method to model cascaded interferometers with enhanced coupling coefficients. Our simulations show that low-diffraction order planar reflective gratings, designed for small incidence and reflection angles, possess the required dispersion strength to meet the PON specifications. Subsequently, we created structures for passive alignment and hybridized photodetectors and lasers. We believe that advancements in simulation of planar lightwave circuits with embedded planar reflective gratings will result in displacement of the thin-film filters (TFFs) technology in many applications that require a high degree of monolithic and hybrid integration.

  12. TNFα promotes CAR-dependent migration of leukocytes across epithelial monolayers

    PubMed Central

    Morton, Penny E.; Hicks, Alexander; Ortiz-Zapater, Elena; Raghavan, Swetavalli; Pike, Rosemary; Noble, Alistair; Woodfin, Abigail; Jenkins, Gisli; Rayner, Emma; Santis, George; Parsons, Maddy

    2016-01-01

    Trans-epithelial migration (TEpM) of leukocytes during inflammation requires engagement with receptors expressed on the basolateral surface of the epithelium. One such receptor is Coxsackie and Adenovirus Receptor (CAR) that binds to Junctional Adhesion Molecule-like (JAM-L) expressed on leukocytes. Here we provide the first evidence that efficient TEpM of monocyte-derived THP-1 cells requires and is controlled by phosphorylation of CAR. We show that TNFα acts in a paracrine manner on epithelial cells via a TNFR1-PI3K-PKCδ pathway leading to CAR phosphorylation and subsequent transmigration across cell junctions. Moreover, we show that CAR is hyper-phosphorylated in vivo in acute and chronic lung inflammation models and this response is required to facilitate immune cell recruitment. This represents a novel mechanism of feedback between leukocytes and epithelial cells during TEpM and may be important in controlling responses to pro-inflammatory cytokines in pathological settings. PMID:27193388

  13. Mathematical analysis of the Photovoltage Decay (PVD) method for minority carrier lifetime measurements

    NASA Technical Reports Server (NTRS)

    Vonroos, O. H.

    1982-01-01

    When the diffusion length of minority carriers becomes comparable with or larger than the thickness of a p-n junction solar cell, the characteristic decay of the photon-generated voltage results from a mixture of contributions with different time constants. The minority carrier recombination lifetime tau and the time constant l(2)/D, where l is essentially the thickness of the cell and D the minority carrier diffusion length, determine the signal as a function of time. It is shown that for ordinary solar cells (n(+)-p junctions), particularly when the diffusion length L of the minority carriers is larger than the cell thickness l, the excess carrier density decays according to exp (-t/tau-pi(2)Dt/4l(2)), tau being the lifetime. Therefore, tau can be readily determined by the photovoltage decay method once D and L are known.

  14. Effects of oxygen-inserted layers on diffusion of boron, phosphorus, and arsenic in silicon for ultra-shallow junction formation

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Connelly, D.; Takeuchi, H.; Hytha, M.; Mears, R. J.; Rubin, L. M.; Liu, T.-J. K.

    2018-03-01

    The effects of oxygen-inserted (OI) layers on the diffusion of boron (B), phosphorus (P), and arsenic (As) in silicon (Si) are investigated, for ultra-shallow junction formation by high-dose ion implantation followed by rapid thermal annealing. The projected range (Rp) of the implanted dopants is shallower than the depth of the OI layers. Secondary ion mass spectrometry is used to compare the dopant profiles in silicon samples that have OI layers against the dopant profiles in control samples that do not have OI layers. Diffusion is found to be substantially retarded by the OI layers for B and P, and less for As, providing shallower junction depth. The experimental results suggest that the OI layers serve to block the diffusion of Si self-interstitials and thereby effectively reduce interstitial-aided diffusion beyond the depth of the OI layers. The OI layers also help to retain more dopants within the Si, which technology computer-aided design simulations indicate to be beneficial for achieving shallower junctions with lower sheet resistance to enable further miniaturization of planar metal-oxide-semiconductor field-effect transistors for improved integrated-circuit performance and cost per function.

  15. Strategies for improving neural signal detection using a neural-electronic interface.

    PubMed

    Szlavik, Robert B

    2003-03-01

    There have been various theoretical and experimental studies presented in the literature that focus on interfacing neurons with discrete electronic devices, such as transistors. From both a theoretical and experimental perspective, these studies have emphasized the variability in the characteristics of the detected action potential from the nerve cell. The demonstrated lack of reproducible fidelity of the nerve cell action potential at the device junction would make it impractical to implement these devices in any neural prosthetic application where reliable detection of the action potential was a prerequisite. In this study, the effects of several different physical parameters on the fidelity of the detected action potential at the device junction are investigated and discussed. The impact of variations in the extracellular resistivity, which directly affects the junction seal resistance, is studied along with the impact of variable nerve cell membrane capacitance and variations in the injected charge. These parameters are discussed in the context of their suitability to design manipulation for the purpose of improving the fidelity of the detected neural action potential. In addition to investigating the effects of variations in these parameters, the applicability of the linear equivalent circuit approach to calculating the junction potential is investigated.

  16. Modified laser-annealing process for improving the quality of electrical P-N junctions and devices

    DOEpatents

    Wood, Richard F.; Young, Rosa T.

    1984-01-01

    The invention is a process for producing improved electrical-junction devices. The invention is applicable, for example, to a process in which a light-sensitive electrical-junction device is produced by (1) providing a body of crystalline semiconductor material having a doped surface layer, (2) irradiating the layer with at least one laser pulse to effect melting of the layer, (3) permitting recrystallization of the melted layer, and (4) providing the resulting body with electrical contacts. In accordance with the invention, the fill-factor and open-circuit-voltage parameters of the device are increased by conducting the irradiation with the substrate as a whole at a selected elevated temperature, the temperature being selected to effect a reduction in the rate of the recrystallization but insufficient to effect substantial migration of impurities within the body. In the case of doped silicon substrates, the substrate may be heated to a temperature in the range of from about 200.degree. C. to 500.degree. C.

  17. Unconventional Current Scaling and Edge Effects for Charge Transport through Molecular Clusters

    PubMed Central

    2017-01-01

    Metal–molecule–metal junctions are the key components of molecular electronics circuits. Gaining a microscopic understanding of their conducting properties is central to advancing the field. In the present contribution, we highlight the fundamental differences between single-molecule and ensemble junctions focusing on the fundamentals of transport through molecular clusters. In this way, we elucidate the collective behavior of parallel molecular wires, bridging the gap between single molecule and large-area monolayer electronics, where even in the latter case transport is usually dominated by finite-size islands. On the basis of first-principles charge-transport simulations, we explain why the scaling of the conductivity of a junction has to be distinctly nonlinear in the number of molecules it contains. Moreover, transport through molecular clusters is found to be highly inhomogeneous with pronounced edge effects determined by molecules in locally different electrostatic environments. These effects are most pronounced for comparably small clusters, but electrostatic considerations show that they prevail also for more extended systems. PMID:29043825

  18. Direct Observation of 2D Electrostatics and Ohmic Contacts in Template-Grown Graphene/WS2 Heterostructures.

    PubMed

    Zheng, Changxi; Zhang, Qianhui; Weber, Bent; Ilatikhameneh, Hesameddin; Chen, Fan; Sahasrabudhe, Harshad; Rahman, Rajib; Li, Shiqiang; Chen, Zhen; Hellerstedt, Jack; Zhang, Yupeng; Duan, Wen Hui; Bao, Qiaoliang; Fuhrer, Michael S

    2017-03-28

    Large-area two-dimensional (2D) heterojunctions are promising building blocks of 2D circuits. Understanding their intriguing electrostatics is pivotal but largely hindered by the lack of direct observations. Here graphene-WS 2 heterojunctions are prepared over large areas using a seedless ambient-pressure chemical vapor deposition technique. Kelvin probe force microscopy, photoluminescence spectroscopy, and scanning tunneling microscopy characterize the doping in graphene-WS 2 heterojunctions as-grown on sapphire and transferred to SiO 2 with and without thermal annealing. Both p-n and n-n junctions are observed, and a flat-band condition (zero Schottky barrier height) is found for lightly n-doped WS 2 , promising low-resistance ohmic contacts. This indicates a more favorable band alignment for graphene-WS 2 than has been predicted, likely explaining the low barriers observed in transport experiments on similar heterojunctions. Electrostatic modeling demonstrates that the large depletion width of the graphene-WS 2 junction reflects the electrostatics of the one-dimensional junction between two-dimensional materials.

  19. Modulating light propagation in ZnO-Cu₂O-inverse opal solar cells for enhanced photocurrents.

    PubMed

    Yantara, Natalia; Pham, Thi Thu Trang; Boix, Pablo P; Mathews, Nripan

    2015-09-07

    The advantages of employing an interconnected periodic ZnO morphology, i.e. an inverse opal structure, in electrodeposited ZnO/Cu2O devices are presented. The solar cells are fabricated using low cost solution based methods such as spin coating and electrodeposition. The impact of inverse opal geometry, mainly the diameter and thickness, is scrutinized. By employing 3 layers of an inverse opal structure with a 300 nm pore diameter, higher short circuit photocurrents (∼84% improvement) are observed; however the open circuit voltages decrease with increasing interfacial area. Optical simulation using a finite difference time domain method shows that the inverse opal structure modulates light propagation within the devices such that more photons are absorbed close to the ZnO/Cu2O junction. This increases the collection probability resulting in improved short circuit currents.

  20. Distributed coupling and multi-frequency microwave accelerators

    DOEpatents

    Tantawi, Sami G.; Li, Zenghai; Borchard, Philipp

    2016-07-05

    A microwave circuit for a linear accelerator has multiple metallic cell sections, a pair of distribution waveguide manifolds, and a sequence of feed arms connecting the manifolds to the cell sections. The distribution waveguide manifolds are connected to the cell sections so that alternating pairs of cell sections are connected to opposite distribution waveguide manifolds. The distribution waveguide manifolds have concave modifications of their walls opposite the feed arms, and the feed arms have portions of two distinct widths. In some embodiments, the distribution waveguide manifolds are connected to the cell sections by two different types of junctions adapted to allow two frequency operation. The microwave circuit may be manufactured by making two quasi-identical parts, and joining the two parts to form the microwave circuit, thereby allowing for many manufacturing techniques including electron beam welding, and thereby allowing the use of un-annealled copper alloys, and hence greater tolerance to high gradient operation.

Top