Science.gov

Sample records for pichia pastoris purification

  1. Dissociation and purification of the endogenous membrane-bound Vo complex from Pichia pastoris.

    PubMed

    Li, Sumei; Hong, Tao; Wang, Kun; Lu, Yinghong; Zhou, Min

    2017-10-01

    Most proteins occur and function in complexes rather than as isolated entities in membranes. In most cases macromolecules with multiple subunits are purified from endogenous sources. In this study, an endogenous membrane-protein complex was obtained from Pichia pastoris, which can be grown at high densities to significantly improve the membrane protein yield. We successfully isolated the membrane-bound Vo complex of V-ATPase from P. pastoris using a fusion FLAG tag attached to the C-terminus of subunit a to generate the vph-tag strain, which was used for dissociation and purification. After FLAG affinity and size exclusion chromatography purification, the production quantity and purity of the membrane-bound Vo complex was 20 μg l(-1) and >98%, respectively. The subunits of the endogenous membrane-bound Vo complex observed in P. pastoris were similar to those obtained from S. cerevisiae, as demonstrated by liquid chromatography-tandem mass spectrometry (LC-MS-MS). Therefore, successful dissociation and purification of the membrane-bound Vo complex at a high purity and sufficient quantity was achieved via a rapid and simple procedure that can be used to obtain the endogenous membrane-protein complexes from P. pastoris. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Expression, Purification, and Characteristic of Tibetan Sheep Breast Lysozyme Using Pichia pastoris Expression System

    PubMed Central

    Li, Jianbo; Jiang, Mingfeng; Wang, Yong

    2014-01-01

    A lysozyme gene from breast of Tibetan sheep was successfully expressed by secretion using a-factor signal sequence in the methylotrophic yeast, Pichia pastoris GS115. An expression yield and specific activity greater than 500 mg/L and 4,000 U/mg was obtained. Results at optimal pH and temperature showed recombinant lysozyme has higher lytic activity at pH 6.5 and 45°C. This study demonstrates the successful expression of recombinant lysozyme using the eukaryotic host organism P. pastoris paving the way for protein engineering. Additionally, this study shows the feasibility of subsequent industrial manufacture of the enzyme with this expression system together with a high purity scheme for easy high-yield purification. PMID:25049990

  3. Expression and purification of non-N-glycosylated porcine interleukin 3 in yeast Pichia pastoris.

    PubMed

    Hermanrud, Christina E; Pathiraja, Vimukthi; Matar, Abraham; Duran-Struuck, Raimon; Crepeau, Rebecca L; Srinivasan, Srimathi; Sachs, David H; Huang, Christene A; Wang, Zhirui

    2012-03-01

    Yeast Pichia pastoris has been widely utilized to express heterologous recombinant proteins. P. pastoris expressed recombinant porcine interleukin 3 (IL3) has been used for porcine stem cell mobilization in allo-hematopoietic cell transplantation models and pig-to-primate xeno-hematopoietic cell transplantation models in our lab for many years. Since the yeast glycosylation mechanism is not exactly the same as those of other mammalian cells, P. pastoris expressed high-mannose glycoprotein porcine IL3 has been shown to result in a decreased serum half-life. Previously this was avoided by separation of the non-glycosylated porcine IL3 from the mixture of expressed glycosylated and non-glycosylated porcine IL3. However, this process was very inefficient and lead to a poor yield following purification. To overcome this problem, we engineered a non-N-glycosylated version of porcine IL3 by replacing the four potential N-glycosylation sites with four alanines. The codon-optimized non-N-glycosylated porcine IL3 gene was synthesized and expressed in P. pastoris. The expressed non-N-glycosylated porcine IL3 was captured using Ni-Sepharose 6 fast flow resin and further purified using strong anion exchange resin Poros 50 HQ. In vivo mobilization studies performed in our research facility demonstrated that the non-N-glycosylated porcine IL3 still keeps the original stem cell mobilization function. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. High yield production of a mutant Nippostrongylus brasiliensis acetylcholinesterase in Pichia pastoris and its purification.

    PubMed

    Richter, Sven; Nieveler, Jens; Schulze, Holger; Bachmann, Till T; Schmid, Rolf D

    2006-04-05

    The mutant M301A of the acetylcholinesterase B from Nippostrongylus brasiliensis (NbAChE) was produced in a high-cell-density fermentation of a recombinant methylotrophic yeast Pichia pastoris. Dissolved oxygen (DO) spikes were used as an indicator for feeding the carbon source. Wet cell weight (WCW) reached after 8 days a maximum value of 316 g/L and the OD600 at this time was 280. The acetylcholinesterase activity increased up to 6,600 U/mL corresponding to an expression rate of 2 g of NbAChE per liter supernatant. The specific activity of the mutant NbAChE was determined after purification as 3,300 U/mg. Active site titration with chlorpyrifos, a strong AChE inhibitor, yielded in a specific activity of 3,400 U/mg. The enzyme was secreted by Pichia pastoris. Therefore, it could be concentrated from culture broth by cross-flow-filtration (50 kDa cut-off membrane). It was further purified in one-step anion-exchange chromatography, using a XK 50/20 column filled with 125 mL Q Sepharose HP. Mutant NbAChE was purified 1.9-fold up to a purity of 97% and a yield of 87%. The isolated enzyme was nearly homogenous, as seen on the silver stained SDS-PAGE as well as by a single peak after gel filtration. This extraordinary high expression rate and the ease of purification is an important prerequisite for their practical application, for example in biosensors for the detection of neurotoxic insecticides.

  5. Cloning, expression, and purification of lipoprotein-associated phospholipase A(2) in Pichia pastoris.

    PubMed

    Zhang, Fujun; Wang, Yiping

    2006-05-01

    Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) has been shown to play a crucial role in atherosclerosis, and has been proposed as a promising target for drug discovery. Here, we cloned the Lp-PLA(2) gene from differentiated THP-1 cells, and inserted a carboxy-terminal His(6)-tagged version of the gene into the pPIC9 Pichia expression vector. The Lp-PLA(2) fusion protein was successfully expressed in Pichia pastoris expression system and could be rapidly purified to apparent homogeneity using a single-step purification method. The activity of our recombinant Lp-PLA(2) was strong when [3H] PAF was used as a substrate, and the Lp-PLA(2) inhibitor SB435495 exhibited an inhibitory curve against the recombinant Lp-PLA2 (IC50 = 15.93 +/- 1 microM). This novel recombinant Lp-PLA(2) could prove useful as a screening model for Lp-PLA(2) inhibitors, and may facilitate further investigation of this protein in atherosclerosis.

  6. Expression of Cellobiose Dehydrogenase from Neurospora crassa in Pichia pastoris and its purification and characterization

    USDA-ARS?s Scientific Manuscript database

    A gene encoding cellobiose dehydrogenase (CDH) from Neurospora crassa strain FGSC 2489 has been cloned and expressed in the heterologous host Pichia pastoris, under the control of the AOX1 methanol inducible promoter. Recombinant CDH without the native signal sequence and fused with a his6-tag (rNC-...

  7. Expression and Purification of C-Peptide Containing Insulin Using Pichia pastoris Expression System.

    PubMed

    Baeshen, Mohammed N; Bouback, Thamer A F; Alzubaidi, Mubarak A; Bora, Roop S; Alotaibi, Mohammed A T; Alabbas, Omar T O; Alshahrani, Sultan M; Aljohani, Ahmed A M; Munshi, Rayan A A; Al-Hejin, Ahmed; Ahmed, Mohamed M M; Redwan, Elrashdy M; Ramadan, Hassan A I; Saini, Kulvinder S; Baeshen, Nabih A

    2016-01-01

    Increase in the incidence of Insulin Dependent Diabetes Mellitus (IDDM) among people from developed and developing countries has created a large global market for insulin. Moreover, exploration of new methods for insulin delivery including oral or inhalation route which require very high doses would further increase the demand of cost-effective recombinant insulin. Various bacterial and yeast strains have been optimized to overproduce important biopharmaceuticals. One of the approaches we have taken is the production of recombinant human insulin along with C-peptide in yeast Pichia pastoris. We procured a cDNA clone of insulin from Origene Inc., USA. Insulin cDNA was PCR amplified and cloned into yeast vector pPICZ-α. Cloned insulin cDNA was confirmed by restriction analysis and DNA sequencing. pPICZ-α-insulin clone was transformed into Pichia pastoris SuperMan 5 strain. Several Zeocin resistant clones were obtained and integration of insulin cDNA in Pichia genome was confirmed by PCR using insulin specific primers. Expression of insulin in Pichia clones was confirmed by ELISA, SDS-PAGE, and Western blot analysis. In vivo efficacy studies in streptozotocin induced diabetic mice confirmed the activity of recombinant insulin. In conclusion, a biologically active human proinsulin along with C-peptide was expressed at high level using Pichia pastoris expression system.

  8. Expression and Purification of C-Peptide Containing Insulin Using Pichia pastoris Expression System

    PubMed Central

    Baeshen, Mohammed N.; Bouback, Thamer A. F.; Alzubaidi, Mubarak A.; Alabbas, Omar T. O.; Alshahrani, Sultan M.; Aljohani, Ahmed A. M.; Munshi, Rayan A. A.; Al-Hejin, Ahmed; Redwan, Elrashdy M.; Ramadan, Hassan A. I.; Saini, Kulvinder S.; Baeshen, Nabih A.

    2016-01-01

    Increase in the incidence of Insulin Dependent Diabetes Mellitus (IDDM) among people from developed and developing countries has created a large global market for insulin. Moreover, exploration of new methods for insulin delivery including oral or inhalation route which require very high doses would further increase the demand of cost-effective recombinant insulin. Various bacterial and yeast strains have been optimized to overproduce important biopharmaceuticals. One of the approaches we have taken is the production of recombinant human insulin along with C-peptide in yeast Pichia pastoris. We procured a cDNA clone of insulin from Origene Inc., USA. Insulin cDNA was PCR amplified and cloned into yeast vector pPICZ-α. Cloned insulin cDNA was confirmed by restriction analysis and DNA sequencing. pPICZ-α-insulin clone was transformed into Pichia pastoris SuperMan 5 strain. Several Zeocin resistant clones were obtained and integration of insulin cDNA in Pichia genome was confirmed by PCR using insulin specific primers. Expression of insulin in Pichia clones was confirmed by ELISA, SDS-PAGE, and Western blot analysis. In vivo efficacy studies in streptozotocin induced diabetic mice confirmed the activity of recombinant insulin. In conclusion, a biologically active human proinsulin along with C-peptide was expressed at high level using Pichia pastoris expression system. PMID:27579308

  9. Purification and immunogenicity study of human papillomavirus 58 virus-like particles expressed in Pichia pastoris.

    PubMed

    Jiang, Zijun; Tong, Guangjie; Cai, Beibei; Xu, Yihan; Lou, Jueren

    2011-12-01

    Two human papillomavirus (HPV) prophylactic vaccines are currently available in the market: Gardasil and Cervarix. These two vaccines work against tumor high-risk subtypes HPV 16 and HPV 18. However, they do not include other high-risk subtypes such as HPV 58. Epidemiological research in China shows that HPV 58 is a prevalent high-risk subtype, second only to HPV 16 and HPV 18. Thus, for cervical cancer prevention in China, developing a vaccine against HPV 58 is necessary. In this study, HPV 58 virus-like particles (VLPs) were expressed in the Pichia pastoris, and subsequently purified through pretreatment and a three-step purification process consisting of strong cation exchange chromatography, size-exclusion chromatography, and hydroxyapatite chromatography. The highly purified HPV 58 VLPs were confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, electron microscopy, dynamic laser scattering, and ultracentrifugation. The purified VLPs were used to immunize mice to test their ability to induce humoral immunity. Enzyme-linked immunosorbent assays were performed on the sera of the immunized mice and significantly high anti-HPV 58 VLP antibody titers were observed. The immunogenicity study demonstrates that the purified HPV 58 VLPs are HPV vaccine candidates.

  10. Expression of chitin deacetylase from Colletotrichum lindemuthianum in Pichia pastoris: purification and characterization.

    PubMed

    Shrestha, Binesh; Blondeau, Karine; Stevens, Willem F; Hegarat, Françoise L

    2004-12-01

    The chitin deacetylase gene from Colletotrichum lindemuthianum UPS9 was isolated and cloned in Pichia pastoris as a tagged protein with six added terminal histidine residues. The expressed enzyme was recovered from the culture supernatant and further characterized. A single-step purification based on specific binding of the histidine residues was achieved. The purified enzyme has a molecular mass of 25 kDa and is not glycosylated as determined by mass spectrometry. The activity of the recombinant chitin deacetylase on chitinous substrates was investigated. With chitotetraose as substrate, the optimum temperature and pH for enzyme activity are 60 degrees C and 8.0, respectively. The specific activity of the pure protein is 72 U/mg. One unit of enzyme activity is defined as the amount of enzyme that produces 1 micromol of acetate per minute under the assay conditions employed. The enzyme activity is enhanced in the presence of Co2+ ions. A possible use of the recombinant chitin deacetylase for large-scale biocatalytic conversion of chitin to chitosan is discussed.

  11. Expression and purification of a recombinant avidin with a lowered isoelectric point in Pichia pastoris.

    PubMed

    Zocchi, Andrea; Jobé, Anna Marya; Neuhaus, Jean-Marc; Ward, Thomas R

    2003-12-01

    A recombinant glycosylated avidin (recGAvi) with an acidic isoelectric point was expressed and secreted by the methylotrophic yeast Pichia pastoris. The coding sequence for recGAvi was de novo synthesized based on the codon usage of P. pastoris. RecGAvi is secreted at approximately 330mg/L of culture supernatant. RecGAvi monomer displays a molecular weight of 16.5kDa, as assessed by ESI mass spectrometry. N-terminal amino acid sequencing indicates the presence of three additional amino acids (E-A-E), which contribute to further lowering the isoelectric point to 5.4. The data presented here demonstrate that the P. pastoris system is suitable for the production of recGAvi and that the recombinant avidin displays biotin-binding properties similar to those of the hen-egg white protein.

  12. Expression, purification, and characterization of a recombinant methionine adenosyltransferase pDS16 in Pichia pastoris.

    PubMed

    Yao, Gaofeng; Qin, Xiulin; Chu, Ju; Wu, Xiaole; Qian, Jiangchao

    2014-02-01

    Methionine adenosyltransferase (MAT, EC2.5.1.6) catalyzes the synthesis of S-adenosylmethionine (SAM) using L-methionine and adenosine triphosphate (ATP) as substrates. The mutant MAT pDS16 was obtained through DNA shuffling previously in our lab. Overexpression of pDS16 in Pichia pastoris led to about 65 % increase of MAT activity and SAM accumulation, compared with the strain overexpressing Saccharomyces cerevisiae MAT gene SAM2. Different strategies were tested to facilitate the expression and purification of pDS16. However, addition of the hexahistidine tag to pDS16 was shown to decrease the enzyme activity, and the yeast α-factor signal sequence could not effectivley direct the secretion of pDS16. The intracellular pDS16 was purified by a simple two-step procedure combining an ion exchange and hydrophobic interaction chromatography. Protein purity was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis to be 93%, with the specific activity of 1.828 U/mg. Two-dimensional electrophoresis revealed pI of ∼5.5. The purified enzyme followed Michaelis kinetics with a Km of 1.72 and 0.85 mM, and Vmax of 1.54 and 1.15 μmol/min/mg for ATP and L-methionine, respectively. pDS16 exhibited optimal activity at pH 8.5 and 45 °C with the requirement of divalent cation Mg(2+) and was slightly stimulated by the monovalent cation K(+). It showed an improved thermostability, about 50% of the enzyme activity was retained even after preincubation at 50 °C for 2 h.

  13. Monitoring the human beta1, beta2, beta3 adrenergic receptors expression and purification in Pichia pastoris using the fluorescence properties of the enhanced green fluorescent protein.

    PubMed

    Talmont, Franck

    2009-01-01

    The three beta adrenergic receptor subtypes, beta1-, beta2- and beta3-, were expressed in the methylotrophic yeast Pichia pastoris. These receptors were N-terminally fused to the enhanced green fluorescent protein (EGFP) and the fluorescent properties of EGFP were used: (1) to select the recombinant strains, (2) to monitor the expression of the fluorescent receptors, and (3) to monitor the purification of the receptors by immobilized metal affinity chromatography. We demonstrate here that Pichia pastoris can be an alternative host to express and purify milligram amounts of human beta adrenergic receptors.

  14. Purification and characterization of the first recombinant bird pancreatic lipase expressed in Pichia pastoris: the turkey.

    PubMed

    Bou Ali, Madiha; Ben Ali, Yassine; Karray, Aida; Fendri, Ahmed; Gargouri, Youssef

    2011-01-27

    The turkey pancreatic lipase (TPL) was purified from delipidated pancreases. Some biochemical properties and kinetic studies were determined using emulsified system and monomolecular film techniques. Those studies have shown that despite the accumulation of free fatty acids at the olive oil/water interface, TPL continues to hydrolyse efficiently the olive oil and the TC4 in the absence of colipase and bile salts, contrary to most classical digestive lipases which denaturate rapidly under the same conditions. The aim of the present study was to express TPL in the methylotrophic yeast Pichia pastoris in order to get a large amount of this enzyme exhibiting interesting biochemical properties, to purify and characterize the recombinant enzyme. The recombinant TPL was secreted into the culture medium and the expression level reached about 15 mg/l after 4 days of culture. Using Q-PCR, the number of expression cassette integrated on Pichia genomic DNA was estimated to 5. The purified rTPL, with molecular mass of 50 kDa, has a specific activity of 5300 U/mg on emulsified olive oil and 9500 U/mg on tributyrin. The optimal temperature and pH of rTPL were 37°C and pH 8.5. The stability, reaction kinetics and effects of calcium ions and bile salts were also determined. Our results show that the expressed TPL have the same properties as the native TPL previously purified. This result allows us the use of the recombinant enzyme to investigate the TPL structure-function relationships.

  15. Purification and characterization of the first recombinant bird pancreatic lipase expressed in Pichia pastoris: The turkey

    PubMed Central

    2011-01-01

    Background The turkey pancreatic lipase (TPL) was purified from delipidated pancreases. Some biochemical properties and kinetic studies were determined using emulsified system and monomolecular film techniques. Those studies have shown that despite the accumulation of free fatty acids at the olive oil/water interface, TPL continues to hydrolyse efficiently the olive oil and the TC4 in the absence of colipase and bile salts, contrary to most classical digestive lipases which denaturate rapidly under the same conditions. The aim of the present study was to express TPL in the methylotrophic yeast Pichia pastoris in order to get a large amount of this enzyme exhibiting interesting biochemical properties, to purify and characterize the recombinant enzyme. Results The recombinant TPL was secreted into the culture medium and the expression level reached about 15 mg/l after 4 days of culture. Using Q-PCR, the number of expression cassette integrated on Pichia genomic DNA was estimated to 5. The purified rTPL, with molecular mass of 50 kDa, has a specific activity of 5300 U/mg on emulsified olive oil and 9500 U/mg on tributyrin. The optimal temperature and pH of rTPL were 37°C and pH 8.5. The stability, reaction kinetics and effects of calcium ions and bile salts were also determined. Conclusions Our results show that the expressed TPL have the same properties as the native TPL previously purified. This result allows us the use of the recombinant enzyme to investigate the TPL structure-function relationships. PMID:21272342

  16. Purification and biochemical characterization of simplified eukaryotic nitrate reductase expressed in Pichia pastoris.

    PubMed

    Barbier, Guillaume G; Joshi, Rama C; Campbell, Ellen R; Campbell, Wilbur H

    2004-09-01

    NAD(P)H:nitrate reductase (NaR, EC 1.7.1.1-3) is a useful enzyme in biotechnological applications, but it is very complex in structure and contains three cofactors-flavin adenine dinucleotide, heme-Fe, and molybdenum-molybdopterin (Mo-MPT). A simplified nitrate reductase (S-NaR1) consisting of Mo-MPT-binding site and nitrate-reducing active site was engineered from yeast Pichia angusta NaR cDNA (YNaR1). S-NaR1 was cytosolically expressed in high-density fermenter culture of methylotrophic yeast Pichia pastoris. Total amount of S-NaR1 protein produced was approximately 0.5 g per 10 L fermenter run, and methanol phase productivity was 5 microg protein/g wet cell weight/h. Gene copy number in genomic DNA of different clones showed direct correlation with the expression level. S-NaR1 was purified to homogeneity in one step by immobilized metal affinity chromatography (IMAC) and total amount of purified protein per run of fermentation was approximately 180 mg. Polypeptide size was approximately 55 kDa from electrophoretic analysis, and S-NaR1 was mainly homo-tetrameric in its active form, as shown by gel filtration. S-NaR1 accepted electrons efficiently from reduced bromphenol blue (kcat = 2081 s(-1)) and less so from reduced methyl viologen (kcat = 159 s(-1)). The nitrate KM for S-NaR1 was 30 +/- 3 microM, which is very similar to YNaR1. S-NaR1 is capable of specific nitrate reduction, and direct electric current, as shown by catalytic nitrate reduction using protein film cyclic voltammetry, can drive this reaction. Thus, S-NaR1 is an ideal form of this enzyme for commercial applications, such as an enzymatic nitrate biosensor formulated with S-NaR1 interfaced to an electrode system.

  17. Screen-less expanded bed column: new approach for the recovery and purification of a malaria transmission blocking vaccine candidate from Pichia pastoris.

    PubMed

    Trinh, Loc; Phue, Je-Nie; Jaluria, Pratik; Tsai, Chiawei W; Narum, David L; Shiloach, Joseph

    2006-07-01

    An experimental malaria transmission blocking vaccine antigen, Pfs25H, expressed and secreted from Pichia pastoris was recovered and purified using a screenless expanded bed column equipped with a rotating fluid distribution system. This column was able to accommodate feed stock, containing 30% biomass, at a flow rate of 300-400 cm/h without affecting column stability. This capability is three times higher than the capability of the expanded bed column currently in use, which is equipped with a perforated plate fluid distribution system; this design could accommodate biomass concentrations of only up to 10%. The screen-less design did not affect the binding capacity, purification level or process yield and, therefore, shorten the process. Purified Pfs25H of 6.4 g were recovered from 37 l of Pichia pastoris culture in one step.

  18. Expression of the GM2-activator protein in the methylotrophic yeast Pichia pastoris, purification, isotopic labeling, and biophysical characterization.

    PubMed

    Wendeler, Michaela; Hoernschemeyer, Joerg; John, Michael; Werth, Norbert; Schoeniger, Maike; Lemm, Thorsten; Hartmann, Rudolf; Kessler, Horst; Sandhoff, Konrad

    2004-03-01

    The GM2-activator protein (GM2AP) belongs to a group of five small, nonenzymatic proteins that are essential cofactors for the degradation of glycosphingolipids in the lysosome. It mediates the interaction between the water-soluble enzyme beta-hexosaminidase A and its membrane-embedded substrate, ganglioside GM2, at the lipid-water interphase. Inherited defects in the gene encoding this glycoprotein cause a fatal neurological storage disorder, the AB variant of GM2 gangliosidosis. With the aim to establish a convenient eukaryotic system that allows the efficient production of functionally folded, glycosylated GM2AP and offers the potential of cost-efficient isotopic labeling for structural studies by NMR spectroscopy, we established the expression of recombinant GM2AP in the methylotrophic yeast Pichia pastoris. For the construction of expression plasmids, either the full cDNA encoding human GM2AP preproprotein was cloned in the expression vector pPIC3.5K, or the cDNA encoding only the mature form of GM2AP was inserted in the vector pPIC9K under control of the alcohol oxidase 1 promoter. Both plasmids led to the successful secretory expression of active, glycosylated GM2AP, which could easily be purified by Ni-NTA chromatography due to the hexahistidine tag introduced at the C-terminus. Remarkably, the expression of this membrane-active protein in P. pastoris was accompanied by two peculiarities which were not encountered in other expression systems for GM2AP: First, a significant fraction of the secreted protein existed in the form of aggregates, and second, considerable amounts of noncovalently bound lipids were associated with the recombinant protein. A three-step purification scheme was therefore devised consisting of Ni-NTA, reversed phase, and gel filtration chromatography, which finally yielded 10-12 mg of purified, monomeric GM2AP per liter of expression supernatant. MALDI- and ESI-TOF mass spectrometry were employed to assess the processing, homogeneity

  19. High-Level Expression of Pro-Form Lipase from Rhizopus oryzae in Pichia pastoris and Its Purification and Characterization

    PubMed Central

    Wang, Jian-Rong; Li, Yang-Yuan; Xu, Shu-De; Li, Peng; Liu, Jing-Shan; Liu, Dan-Ni

    2014-01-01

    A gene encoding Rhizopus oryzae lipase containing prosequence (ProROL) was cloned into the pPICZαA and electrotransformed into the Pichia pastoris X-33 strain. The lipase was functionally expressed and secreted in Pichia pastoris with a molecular weight of 35 kDa. The maximum lipase activity of recombinant lipase (rProROL) was 21,000 U/mL, which was obtained in a fed-batch cultivation after 168 h induction with methanol in a 50-L bioreactor. After fermentation, the supernatant was concentrated by ultrafiltration with a 10 kDa cut off membrane and purified with ion exchange chromatography using SP Sepharose Fast Flow chromatography. The optimum pH and temperature of the rProROL were pH 9.0 and 40 °C, respectively. The lipase was stable from pH 4.0 to 9.0 and from 25 to 55 °C. The enzyme activity was enhanced by Ca2+ and inhibited by Hg2+ and Ag+. The lipase showed high activity toward triglyceride-Tripalmitin (C16:0) and triglyceride-Trilaurin (C12:0). PMID:24368519

  20. Heterologous expression of Cenchritis muricatus protease inhibitor II (CmPI-II) in Pichia pastoris system: Purification, isotopic labeling and preliminary characterization.

    PubMed

    Cabrera-Muñoz, Aymara; Rojas, Laritza; Gil, Dayrom F; González-González, Yamile; Mansur, Manuel; Camejo, Ayamey; Pires, José R; Alonso-Del-Rivero Antigua, Maday

    2016-10-01

    Cenchritis muricatus protease inhibitor II (CmPI-II) is a tight-binding serine protease inhibitor of the Kazal family with an atypical broad specificity, being active against several proteases such as bovine pancreatic trypsin, human neutrophil elastase and subtilisin A. CmPI-II 3D structures are necessary for understanding the molecular basis of its activity. In the present work, we describe an efficient and straightforward recombinant expression strategy, as well as a cost-effective procedure for isotope labeling for NMR structure determination purposes. The vector pCM101 containing the CmPI-II gene, under the control of Pichia pastoris AOX1 promoter was constructed. Methylotrophic Pichia pastoris strain KM71H was then transformed with the plasmid and the recombinant protein (rCmPI-II) was expressed in benchtop fermenter in unlabeled or (15)N-labeled forms using ammonium chloride ((15)N, 99%) as the sole nitrogen source. Protein purification was accomplished by sequential cation exchange chromatography in STREAMLINE DirectHST, anion exchange chromatography on Hitrap Q-Sepharose FF and gel filtration on Superdex 75 10/30, yielding high quantities of pure rCmPI-II and (15)N rCmPI-II. Recombinant proteins displayed similar functional features as compared to the natural inhibitor and NMR spectra indicated folded and homogeneously labeled samples, suitable for further studies of structure and protease-inhibitor interactions.

  1. Expression of codon optimized major capsid protein (L1) of human papillomavirus type 16 and 18 in Pichia pastoris; purification and characterization of the virus-like particles

    PubMed Central

    Rao, N. Hanumantha; Babu, P. Baji; Rajendra, L.; Sriraman, R.; Pang, Yuk-Ying S.; Schiller, John T.; Srinivasan, V.A.

    2012-01-01

    The major capsid protein (L1) of human papillomaviruses (HPV) expressed in heterologous systems assembles into virus-like particles (VLPs). We report cloning and expression of codon optimized HPV L1 genes of the two high-risk HPV types 16 and 18 in methylotropic yeast, Pichia pastoris. The VLPs produced in P. pastoris were subjected to three step purification method involving density gradient centrifugations and size exclusion chromatography. The enriched VLPs were characterized using conformation-specific monoclonal antibodies in ELISA and by transmission electron microscopy. Mice immunized with a bivalent HPV16 and HPV18 VLPs developed high serum antibody titers to both HPV types that persisted for 190 days post vaccination. Serum of mice immunized with the HPV-VLP preparations could neutralize homologous pseudoviruses in an in vitro assays. Our results demonstrate that the L1 proteins expressed in P. pastoris fold properly as evidenced by assembly into VLPs and induction of type-specific neutralizing antibody response in mice. This work constitutes a step towards developing an alternate production platform for generating an affordable HPV vaccine to meet the needs of developing countries. PMID:21803095

  2. High-yield fermentation and a novel heat-precipitation purification method for hydrophobin HGFI from Grifola frondosa in Pichia pastoris.

    PubMed

    Song, Dongmin; Gao, Zhendong; Zhao, Liqiang; Wang, Xiangxiang; Xu, Haijin; Bai, Yanling; Zhang, Xiuming; Linder, Markus B; Feng, Hui; Qiao, Mingqiang

    2016-12-01

    Hydrophobins are proteins produced by filamentous fungi with high natural-surfactant activities and that can self-assemble in interfaces of air-water or solid-water to form amphiphilic membranes. Here, we reported a high-yield fermentation method for hydrophobin HGFI from Grifola frondosa in Pichia pastoris, attaining production of 300 mg/L by keeping the dissolved oxygen level at 15%-25% by turning the methanol-feeding speed. We also developed a novel HGFI-purification method enabling large-scare purification of HGFI, with >90% recovery. Additionally, we observed that hydrophobin HGFI in fermentation broth precipitated at pH < 7.0 and temperatures >90 °C. We also identified the structure and properties of proteins purified by this method through atomic force microscopy, circular dichroism, X-ray photoelectron spectroscopy, and water-contact angle measurement, which is similar to protein purification by ultrafiltration without heating treatment that enables our method to maintain native HGFI structure and properties. Furthermore, the purification method presented here can be applied to large-scale purification of other type I hydrophobins. Copyright © 2016. Published by Elsevier Inc.

  3. [Fermentation and purification of recombinant alpha-galactosidase from Pichia pastoris].

    PubMed

    Gao, Xin; Yang, Jun; Li, Su-Bo; Liu, Ze-Peng; Zhang, Yang-Pei

    2003-03-01

    In order to obtain an adequate supply of alpha-galactosidase for research and practical use, the fermentation, purification and identification of the recombinant coffee bean a-galactosidase were carried out. Baffled flasks containing 100mL BMGY were inoculated with the pPIC9K-Gal/GS115 strain and allowed to grow at 30 degrees C, 250- 300r/min until a maximum optical density at 600nm (OD600) between 2.0 to 6.0 was attained. Entire 400 mL seed culture was transferred aseptically to the 5-liter fermenter, which contained 4 liter sterilized basal salts medium and 4% glycerol. The batch culture grew at 30 degrees C, pH 5.0 until the glycerol was completely consumed, and a glycerol feed was initiated to increase the cell biomass prior to induction with methanol. The culture was centrifuged at 8000 x g and the supernatant was collected. Following ultrafiltration, the retentate was balanced in 20 mmol/L sodium formicate buffer, pH 3.8 and loaded onto a cation-exchange column, HiTrap SP. The column was washed with the same buffer and bound proteins were eluted with 1 mol/L NaCl. The fractions containing recombinant a-galactosidase were pooled and concentrated with PEG20 000. Subsequently, the biochemical properties of the enzyme were determined with typical methods. At last, the fresh human blood A and B erythrocytes were incubated with the purified alpha-galactosidase at 26 degrees C for 2 4 hours. Hemagglutinins were assayed by the standard method. After an elapsed fermentation times (EFT) of 18h, the fed-batch phase was initiated to increase the cell biomass. A cellular yield of nearly 200 g/liter wet cells was achieved when induction was initiated. 72h later, the alpha-galactosidase activity against artificial substrate PNPG (PNP-alpha-galactopyranoside) achieved 36 000u per liter culture. The crude fementation supernatant contained few impurities as detected by SDS-PAGE. The supernatant was purified by cation-exchange chromatography, the target alpha-galactosidase was

  4. Expression, purification and characterization of recombinant human serine proteinase inhibitor Kazal-type 6 (SPINK6) in Pichia pastoris.

    PubMed

    Lu, Hairong; Huang, Jinjiang; Li, Guodong; Ge, Kuikui; Wu, Hongyu; Huang, Qingshan

    2012-03-01

    Human serine proteinase inhibitor Kazal-type 6 (SPINK6) belongs to the medically important SPINK family. Malfunctions of SPINK members are linked to many diseases, including pancreatitis, skin barrier defects, and cancer. SPINK6 has been shown to selectively inhibit Kallikrein-related peptidases (KLKs) in human skin. As a SPINK protein, it contains a typical Kazal domain, which requires three intramolecular disulfide bonds for correct folding and activity. Preparation of functional protein is a prerequisite for studying this important human factor. Here, we report the successful generation of tagless SPINK6 using a yeast expression system. The recombinant protein was secreted and purified by cation exchange and size-exclusion chromatography. The protein identity was confirmed by MALDI-TOF MS and N-terminal sequencing. Pichia pastoris-derived recombinant human SPINK6 (rhSPINK6) showed higher inhibitory activity against Kallikrein-related peptidase 14 (KLK14) (K(i)=0.16 nM) than previously reported Escherichia coli-derived rhSPINK6 (K(i)=0.5 nM). This protein also exhibited moderate inhibition of bovine trypsin (K(i)=33 nM), while previous E. coli-derived rhSPINK6 did not. The results indicate that P. pastoris is a better system to generate active rhSPINK6, warranting further studies on this medically important SPINK family candidate.

  5. Expression, purification, and immunogenic characterization of Epstein-Barr virus recombinant EBNA1 protein in Pichia pastoris.

    PubMed

    Wang, Man; Jiang, Shuai; Liu, Xiaoying; Wang, Yefu

    2013-07-01

    Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus associated with the development of both lymphoid and epithelial tumors. EBNA1 is the only viral protein expressed in all EBV-associated malignancies and plays important roles in EBV latency. Thus, EBNA1 is thought to be a promising antigen for immunotherapy of all EBV-associated malignancies. This study was undertaken to produce recombinant EBNA1 protein in Pichia pastoris and evaluate its immunogenicity. The truncated EBNA1 (E1ΔGA, codons 390-641) was expressed as a secretory protein with an N-terminal histidine tag in the methylotrophic yeast P. pastoris and purified by Ni-NTA affinity chromatography. The purified proteins were then used as antigens to immunize BALB/c mice for production of polyclonal antibodies. Western blot analysis showed that the polyclonal antibodies specifically recognized the EBNA1 protein in B95-8 cell lysates. The recombinant E1ΔGA also induced strong lymphoproliferative and Th1 cytokine responses in mice. Furthermore, mice immunized with E1ΔGA developed CD4+ and CD8+ T cell responses. These findings showed that the yeast-expressed E1ΔGA retained good immunogenicity and might be a promising vaccine candidate against EBV-associated malignancies.

  6. Recombinant expression, purification and antimicrobial activity of a novel antimicrobial peptide PaDef in Pichia pastoris.

    PubMed

    Meng, De-Mei; Zhao, Jing-Fang; Ling, Xiao; Dai, Hong-Xia; Guo, Ya-Jun; Gao, Xiao-Fang; Dong, Bin; Zhang, Zi-Qi; Meng, Xin; Fan, Zhen-Chuan

    2017-02-01

    The antimicrobial peptide PaDef was isolated from Mexican avocado fruit and was reported to inhibit the growth of Escherichia coli and Staphylococcus aureus in 2013. In this study, an N-terminal 6 × His tagged recombinant PaDef (rPaDef) with a molecular weight of 7.5 KDa, for the first time, was expressed as a secreted peptide in Pichia pastoris. The optimal culture condition for rPaDef expression was determined to be incubation with 1.5% methanol for 72 h at 28 °C under pH 6.0. Under this condition, the amount of the rPaDef accumulation reached as high as 79.6 μg per 1 ml of culture medium. Once the rPaDef peptide was purified to reach a 95.7% purity using one-step nickel affinity chromatography, its strong and concentration-dependent antimicrobial activity was detected to be against a broad-spectrum of bacteria of both Gram-negative and Gram-positive. The growth of these bacterial pathogens was almost completely inhibited when the rPaDef peptide was at a concentration of as low as 90 μg/ml. In summary, our data showed that rPaDef derived from Mexican avocado fruit can be expressed and secreted efficiently when P. pastoris was used as a cell factory. This is the first report on heterologous expression of PaDef in P. pastoris and the approach described holds great promise for antibacterial drug development. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Detergent Screening and Purification of the Human Liver ABC Transporters BSEP (ABCB11) and MDR3 (ABCB4) Expressed in the Yeast Pichia pastoris

    PubMed Central

    Stindt, Jan; Smits, Sander H. J.; Schmitt, Lutz

    2013-01-01

    The human liver ATP-binding cassette (ABC) transporters bile salt export pump (BSEP/ABCB11) and the multidrug resistance protein 3 (MDR3/ABCB4) fulfill the translocation of bile salts and phosphatidylcholine across the apical membrane of hepatocytes. In concert with ABCG5/G8, these two transporters are responsible for the formation of bile and mutations within these transporters can lead to severe hereditary diseases. In this study, we report the heterologous overexpression and purification of human BSEP and MDR3 as well as the expression of the corresponding C-terminal GFP-fusion proteins in the yeast Pichia pastoris. Confocal laser scanning microscopy revealed that BSEP-GFP and MDR3-GFP are localized in the plasma membrane of P. pastoris. Furthermore, we demonstrate the first purification of human BSEP and MDR3 yielding ∼1 mg and ∼6 mg per 100 g of wet cell weight, respectively. By screening over 100 detergents using a dot blot technique, we found that only zwitterionic, lipid-like detergents such as Fos-cholines or Cyclofos were able to extract both transporters in sufficient amounts for subsequent functional analysis. For MDR3, fluorescence-detection size exclusion chromatography (FSEC) screens revealed that increasing the acyl chain length of Fos-Cholines improved monodispersity. BSEP purified in n-dodecyl-β-D-maltoside or Cymal-5 after solubilization with Fos-choline 16 from P. pastoris membranes showed binding to ATP-agarose. Furthermore, detergent-solubilized and purified MDR3 showed a substrate-inducible ATPase activity upon addition of phosphatidylcholine lipids. These results form the basis for further biochemical analysis of human BSEP and MDR3 to elucidate the function of these clinically relevant ABC transporters. PMID:23593265

  8. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.750 Pichia pastoris dried yeast. (a) Identity. The food additive Pichia... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Pichia pastoris dried yeast. 573.750 Section 573...

  9. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.750 Pichia pastoris dried yeast. (a) Identity. The food additive Pichia... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Pichia pastoris dried yeast. 573.750 Section 573...

  10. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.750 Pichia pastoris dried yeast. (a) Identity. The food additive Pichia... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Pichia pastoris dried yeast. 573.750 Section 573...

  11. Saccharomyces cerevisiae asparaginase II, a potential antileukemic drug: Purification and characterization of the enzyme expressed in Pichia pastoris.

    PubMed

    Facchinetti de Castro Girão, Luciana; Gonçalves da Rocha, Surza Lucia; Sobral, Ricardo Sposina; Dinis Ano Bom, Ana Paula; Franco Sampaio, André Luiz; Godinho da Silva, José; Ferrara, Maria Antonieta; Pinto da Silva Bon, Elba; Perales, Jonas

    2016-04-01

    Asparaginase obtained from Escherichia coli and Erwinia chrysanthemi are used to treat acute lymphocytic leukaemia and non-Hodgkin's lymphoma. However, these agents cause severe adverse effects. Saccharomyces cerevisiae asparaginase II, encoded by the ASP3 gene, could be a potential candidate for the formulation of new drugs. This work aimed to purify and characterize the periplasmic asparaginase produced by a recombinant Pichia pastoris strain harbouring the ASP3 gene. The enzyme was purified to homogeneity with an activity recovery of 51.3%. The estimated molecular mass of the enzyme was 136 kDa (under native conditions) and 48.6 kDa and 44.6 kDa (under reducing conditions), suggesting an oligomeric structure. The recombinant asparaginase is apparently non-phosphorylated, and the major difference between the monomers seems to be their degree of glycosylation. The enzyme showed an isoelectric point of 4.5 and maximum activity at 46 °C and pH 7.2, retaining 92% of the activity at 37 °C. Circular dichroism and fluorescence analyses showed that the enzyme structure is predominantly α-helical with the contribution of β-sheet and that it remains stable up to 45 °C and in the pH range of 6-10. In vitro tests indicated that the recombinant asparaginase demonstrated antitumoural activity against K562 leukaemic cells.

  12. A high-capacity RNA affinity column for the purification of human IRP1 and IRP2 overexpressed in Pichia pastoris

    PubMed Central

    ALLERSON, CHARLES R.; MARTINEZ, ALAN; YIKILMAZ, EMINE; ROUAULT, TRACEY A.

    2003-01-01

    Regulated expression of proteins involved in mammalian iron metabolism is achieved in part through the interaction of the iron regulatory proteins IRP1 and IRP2 with highly conserved RNA stem-loop structures, known as iron-responsive elements (IREs), that are located within the 5′ or 3′ untranslated regions of regulated transcripts. As part of an effort to determine the structures of the IRP–IRE complexes using crystallographic methods, we have developed an efficient process for obtaining functionally pure IRP1 and IRP2 that relies upon the improved overexpression (>10 mg of soluble IRP per liter of culture) of each human IRP in the yeast Pichia pastoris and large-scale purification using RNA affinity chromatography. Despite the utility of RNA affinity chromatography in the isolation of RNA-binding proteins, current methods for preparing RNA affinity matrices produce columns of low capacity and limited stability. To address these limitations, we have devised a simple method for preparing stable, reusable, high-capacity RNA affinity columns. This method utilizes a bifunctional linker to covalently join a 5′-amino tethered RNA with a thiol-modified Sepharose, and can be used to load 150 nmole or more of RNA per milliliter of solid support. We demonstrate here the use of an IRE affinity column in the large-scale purification of IRP1 and IRP2, and suggest that the convenience of this approach will prove attractive in the analysis of other RNA-binding proteins. PMID:12592010

  13. Purification, Potency, and Efficacy of the Botulinum Neurotoxin Type A Binding Domain from Pichia pastoris as a Recombinant Vaccine Candidate

    PubMed Central

    Byrne, Michael P.; Smith, Theresa J.; Montgomery, Vicki A.; Smith, Leonard A.

    1998-01-01

    Recombinant botulinum neurotoxin serotype A binding domain [BoNT/A(Hc)], expressed in Pichia pastoris, was developed as a vaccine candidate for preventing botulinum neurotoxin type A (BoNT/A) intoxication. After fermentation and cell disruption, BoNT/A(Hc) was purified by using a three-step chromatographic process consisting of expanded-bed chromatography, Mono S cation-exchange chromatography, and hydrophobic interaction chromatography. Two pools of immunogenic product were separated on the Mono S column and processed individually. Both products were more than 95% pure and indistinguishable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blot analysis, and enzyme-linked immunosorbent assay (ELISA). Each protein was assayed for potency in mice at immunogen doses ranging from 2.4 ng to 10 μg, followed by challenge with 1,000 mouse intraperitoneal 50% lethal doses (i.p. LD50) of BoNT/A. The calculated 50% effective dose for both peaks was approximately 0.1 μg/mouse. Peak 1 was evaluated further in a mouse efficacy assay. Mice were injected either once, twice, or three times at five different doses and subsequently challenged with 100,000 mouse i.p. LD50 of BoNT/A. In general, multiple injections protected better than one, with complete or nearly complete protection realized at doses of ≥0.5 μg/mouse. Serum neutralization and ELISA titers were also determined. Tellingly, 82 of 83 mice with antibody titers of ≥1,600, as measured by ELISA, survived, but only 6 of 42 mice with titers of ≤100 survived. This work shows that the purified BoNT/A(Hc) produced was a highly effective immunogen, able to protect against a high challenge dose of neurotoxin. PMID:9746584

  14. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin

    PubMed Central

    2010-01-01

    Background The prevalence of diabetes is predicted to rise significantly in the coming decades. A recent analysis projects that by the year 2030 there will be ~366 million diabetics around the world, leading to an increased demand for inexpensive insulin to make this life-saving drug also affordable for resource poor countries. Results A synthetic insulin precursor (IP)-encoding gene, codon-optimized for expression in P. pastoris, was cloned in frame with the Saccharomyces cerevisiae α-factor secretory signal and integrated into the genome of P. pastoris strain X-33. The strain was grown to high-cell density in a batch procedure using a defined medium with low salt and high glycerol concentrations. Following batch growth, production of IP was carried out at methanol concentrations of 2 g L-1, which were kept constant throughout the remaining production phase. This robust feeding strategy led to the secretion of ~3 gram IP per liter of culture broth (corresponding to almost 4 gram IP per liter of cell-free culture supernatant). Using immobilized metal ion affinity chromatography (IMAC) as a novel approach for IP purification, 95% of the secreted product was recovered with a purity of 96% from the clarified culture supernatant. Finally, the purified IP was trypsin digested, transpeptidated, deprotected and further purified leading to ~1.5 g of 99% pure recombinant human insulin per liter of culture broth. Conclusions A simple two-phase cultivation process composed of a glycerol batch and a constant methanol fed-batch phase recently developed for the intracellular production of the Hepatitis B surface antigen was adapted to secretory IP production. Compared to the highest previously reported value, this approach resulted in an ~2 fold enhancement of IP production using Pichia based expression systems, thus significantly increasing the efficiency of insulin manufacture. PMID:20462406

  15. Expression of lignocellulolytic enzymes in Pichia pastoris

    PubMed Central

    2012-01-01

    Background Sustainable utilization of plant biomass as renewable source for fuels and chemical building blocks requires a complex mixture of diverse enzymes, including hydrolases which comprise the largest class of lignocellulolytic enzymes. These enzymes need to be available in large amounts at a low price to allow sustainable and economic biotechnological processes. Over the past years Pichia pastoris has become an attractive host for the cost-efficient production and engineering of heterologous (eukaryotic) proteins due to several advantages. Results In this paper codon optimized genes and synthetic alcohol oxidase 1 promoter variants were used to generate Pichia pastoris strains which individually expressed cellobiohydrolase 1, cellobiohydrolase 2 and beta-mannanase from Trichoderma reesei and xylanase A from Thermomyces lanuginosus. For three of these enzymes we could develop strains capable of secreting gram quantities of enzyme per liter in fed-batch cultivations. Additionally, we compared our achieved yields of secreted enzymes and the corresponding activities to literature data. Conclusion In our experiments we could clearly show the importance of gene optimization and strain characterization for successfully improving secretion levels. We also present a basic guideline how to correctly interpret the interplay of promoter strength and gene dosage for a successful improvement of the secretory production of lignocellulolytic enzymes in Pichia pastoris. PMID:22583625

  16. Expression, purification and identification of a thermolysin-like protease, neutral protease I, from Aspergillus oryzae with the Pichia pastoris expression system.

    PubMed

    Ma, Xiaojian; Liu, Yunyun; Li, Qingqing; Liu, Lu; Yi, Li; Ma, Lixin; Zhai, Chao

    2016-12-01

    Neutral proteases are widely used in the textile, food and medical industries. This study was designed to obtain high expression levels of neutral protease I from Aspergillus oryzae 3.042 by using Pichia pastoris GS115 as the host strain for industrial purposes. The coding sequence of the target gene was modified, synthesized, and then cloned into the expression vector pHBM905BDM, which harbored the d1+2 × 201 AOX1 promoter and the MF4I leader sequence. The recombinant plasmid was transformed into Pichia pastoris GS115. The recombinant strain was used for high-density fermentation in a 4-L fermenter. The yield of the target protein reached 12.87 mg/mL, and the enzyme activity was approximately 49370 U/mL, which indicated that this enzyme was expressed in Pichia pastoris at a high level. The target protein was purified and characterized. Its optimum temperature and pH were 55 °C and 8.0, respectively. This enzyme was extremely sensitive to EDTA, which is consistent with the previous reports that it is a zinc-dependent metalloprotease. Our results indicated that low concentrations of zinc, calcium and magnesium ions stimulated the enzyme activity, whereas high concentrations inhibited its activity. In addition, calcium and magnesium ions increased the thermostability of the enzyme. All of the evidence indicated that this protease is a thermolysin-like peptidase. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Overexpression of membrane proteins using Pichia pastoris.

    PubMed

    Bornert, Olivier; Alkhalfioui, Fatima; Logez, Christel; Wagner, Renaud

    2012-02-01

    Among the small number of expression systems validated for the mass production of eukaryotic membrane proteins (EMPs), the methylotrophic yeast Pichia pastoris stands as one of the most efficient hosts. This system has been used to produce crystallization-grade proteins for a variety of EMPs, from which high-resolution 3D structures have been determined. This unit describes a set of guidelines and instructions to overexpress membrane proteins using the P. pastoris system. Using a G protein-coupled receptor (GPCR) as a model EMP, these protocols illustrate the necessary steps, starting with the design of the DNA sequence to be expressed, through the preparation and analysis of samples containing the corresponding membrane protein of interest. In addition, recommendations are given on a series of experimental parameters that can be optimized to substantially improve the amount and/or the functionality of the expressed EMPs.

  18. Synthetic Core Promoters for Pichia pastoris

    PubMed Central

    2013-01-01

    Synthetic promoters are commonly used tools for circuit design or high level protein production. Promoter engineering efforts in yeasts, such as Saccharomyces cerevisiae and Pichia pastoris have mostly been focused on altering upstream regulatory sequences such as transcription factor binding sites. In higher eukaryotes synthetic core promoters, directly needed for transcription initiation by RNA Polymerase II, have been successfully designed. Here we report the first synthetic yeast core promoter for P. pastoris, based on natural yeast core promoters. Furthermore we used this synthetic core promoter sequence to engineer the core promoter of the natural AOX1 promoter, thereby creating a set of core promoters providing a range of different expression levels. As opposed to engineering strategies of the significantly longer entire promoter, such short core promoters can directly be added on a PCR primer facilitating library generation and are sufficient to obtain variable expression yields. PMID:24187969

  19. Refined Pichia pastoris reference genome sequence.

    PubMed

    Sturmberger, Lukas; Chappell, Thomas; Geier, Martina; Krainer, Florian; Day, Kasey J; Vide, Ursa; Trstenjak, Sara; Schiefer, Anja; Richardson, Toby; Soriaga, Leah; Darnhofer, Barbara; Birner-Gruenberger, Ruth; Glick, Benjamin S; Tolstorukov, Ilya; Cregg, James; Madden, Knut; Glieder, Anton

    2016-10-10

    Strains of the species Komagataella phaffii are the most frequently used "Pichia pastoris" strains employed for recombinant protein production as well as studies on peroxisome biogenesis, autophagy and secretory pathway analyses. Genome sequencing of several different P. pastoris strains has provided the foundation for understanding these cellular functions in recent genomics, transcriptomics and proteomics experiments. This experimentation has identified mistakes, gaps and incorrectly annotated open reading frames in the previously published draft genome sequences. Here, a refined reference genome is presented, generated with genome and transcriptome sequencing data from multiple P. pastoris strains. Twelve major sequence gaps from 20 to 6000 base pairs were closed and 5111 out of 5256 putative open reading frames were manually curated and confirmed by RNA-seq and published LC-MS/MS data, including the addition of new open reading frames (ORFs) and a reduction in the number of spliced genes from 797 to 571. One chromosomal fragment of 76kbp between two previous gaps on chromosome 1 and another 134kbp fragment at the end of chromosome 4, as well as several shorter fragments needed re-orientation. In total more than 500 positions in the genome have been corrected. This reference genome is presented with new chromosomal numbering, positioning ribosomal repeats at the distal ends of the four chromosomes, and includes predicted chromosomal centromeres as well as the sequence of two linear cytoplasmic plasmids of 13.1 and 9.5kbp found in some strains of P. pastoris.

  20. Towards systems metabolic engineering in Pichia pastoris.

    PubMed

    Schwarzhans, Jan-Philipp; Luttermann, Tobias; Geier, Martina; Kalinowski, Jörn; Friehs, Karl

    2017-11-01

    The methylotrophic yeast Pichia pastoris is firmly established as a host for the production of recombinant proteins, frequently outperforming other heterologous hosts. Already, a sizeable amount of systems biology knowledge has been acquired for this non-conventional yeast. By applying various omics-technologies, productivity features have been thoroughly analyzed and optimized via genetic engineering. However, challenging clonal variability, limited vector repertoire and insufficient genome annotation have hampered further developments. Yet, in the last few years a reinvigorated effort to establish P. pastoris as a host for both protein and metabolite production is visible. A variety of compounds from terpenoids to polyketides have been synthesized, often exceeding the productivity of other microbial systems. The clonal variability was systematically investigated and strategies formulated to circumvent untargeted events, thereby streamlining the screening procedure. Promoters with novel regulatory properties were discovered or engineered from existing ones. The genetic tractability was increased via the transfer of popular manipulation and assembly techniques, as well as the creation of new ones. A second generation of sequencing projects culminated in the creation of the second best functionally annotated yeast genome. In combination with landmark physiological insights and increased output of omics-data, a good basis for the creation of refined genome-scale metabolic models was created. The first application of model-based metabolic engineering in P. pastoris showcased the potential of this approach. Recent efforts to establish yeast peroxisomes for compartmentalized metabolite synthesis appear to fit ideally with the well-studied high capacity peroxisomal machinery of P. pastoris. Here, these recent developments are collected and reviewed with the aim of supporting the establishment of systems metabolic engineering in P. pastoris. Copyright © 2017. Published

  1. High-Level Expression of Recombinant Bovine Lactoferrin in Pichia pastoris with Antimicrobial Activity

    PubMed Central

    Iglesias-Figueroa, Blanca; Valdiviezo-Godina, Norberto; Siqueiros-Cendón, Tania; Sinagawa-García, Sugey; Arévalo-Gallegos, Sigifredo; Rascón-Cruz, Quintín

    2016-01-01

    In this study, bovine lactoferrin (bLf), an iron-binding glycoprotein considered an important nutraceutical protein because of its several properties, was expressed in Pichia pastoris KM71-H under AOX1 promoter control, using pJ902 as the recombinant plasmid. Dot blotting analysis revealed the expression of recombinant bovine lactoferrin (rbLf) in Pichia pastoris. After Bach fermentation and purification by molecular exclusion, we obtained an expression yield of 3.5 g/L of rbLf. rbLf and predominantly pepsin-digested rbLf (rbLfcin) demonstrated antibacterial activity against Escherichia coli (E. coli) BL21DE3, Staphylococcus aureus (S. aureus) FRI137, and, in a smaller percentage, Pseudomonas aeruginosa (Ps. Aeruginosa) ATCC 27833. The successful expression and characterization of functional rbLf expressed in Pichia pastoris opens a prospect for the development of natural antimicrobial agents produced recombinantly. PMID:27294912

  2. Immobilization of Pichia pastoris cells containing alcohol oxidase activity

    PubMed Central

    Maleknia, S; Ahmadi, H; Norouzian, D

    2011-01-01

    Background and Objectives The attempts were made to describe the development of a whole cell immobilization of P. pastoris by entrapping the cells in polyacrylamide gel beads. The alcohol oxidase activity of the whole cell Pichia pastoris was evaluated in comparison with yeast biomass production. Materials and Methods Methylotrophic yeast P. pastoris was obtained from Collection of Standard Microorganisms, Department of Bacterial Vaccines, Pasteur Institute of Iran (CSMPI). Stock culture was maintained on YPD agar plates. Alcohol oxidase was strongly induced by addition of 0.5% methanol as the carbon source. The cells were harvested by centrifugation then permeabilized. Finally the cells were immobilized in polyacrylamide gel beads. The activity of alcohol oxidase was determined by method of Tane et al. Results At the end of the logarithmic phase of cell culture, the alcohol oxidase activity of the whole cell P. Pastoris reached the highest level. In comparison, the alcohol oxidase activity was measured in an immobilized P. pastoris when entrapped in polyacrylamide gel beads. The alcohol oxidase activity of cells was induced by addition of 0.5% methanol as the carbon source. The cells were permeabilized by cetyltrimethylammonium bromide (CTAB) and immobilized. CTAB was also found to increase the gel permeability. Alcohol oxidase activity of immobilized cells was then quantitated by ABTS/POD spectrophotometric method at OD 420. There was a 14% increase in alcohol oxidase activity in immobilized cells as compared with free cells. By addition of 2-butanol as a substrate, the relative activity of alcohol oxidase was significantly higher as compared with other substrates added to the reaction media. Conclusion Immobilization of cells could eliminate lengthy and expensive procedures of enzyme separation and purification, protect and stabilize enzyme activity, and perform easy separation of the enzyme from the reaction media. PMID:22530090

  3. Development of quantitative metabolomics for Pichia pastoris.

    PubMed

    Carnicer, Marc; Canelas, André B; Ten Pierick, Angela; Zeng, Zhen; van Dam, Jan; Albiol, Joan; Ferrer, Pau; Heijnen, Joseph J; van Gulik, Walter

    2012-04-01

    Accurate, reliable and reproducible measurement of intracellular metabolite levels has become important for metabolic studies of microbial cell factories. A first critical step for metabolomic studies is the establishment of an adequate quenching and washing protocol, which ensures effective arrest of all metabolic activity and removal of extracellular metabolites, without causing leakage of metabolites from the cells. Five different procedures based on cold methanol quenching and cell separation by filtration were tested for metabolomics of Pichia pastoris regarding methanol content and temperature of the quenching solution as key parameters. Quantitative evaluation of these protocols was carried out through mass balance analysis, based on metabolite measurements in all sample fractions, those are whole broth, quenched and washed cells, culture filtrate and quenching and washing solution. Finally, the optimal method was used to study the time profiles of free amino acid and central carbon metabolism intermediates in glucose-limited chemostat cultures. Acceptable recoveries (>90%) were obtained for all quenching procedures tested. However, quenching at -27°C in 60% v/v methanol performed slightly better in terms of leakage minimization. We could demonstrate that five residence times under glucose limitation are enough to reach stable intracellular metabolite pools. Moreover, when comparing P. pastoris and S. cerevisiae metabolomes, under the same cultivation conditions, similar metabolite fingerprints were found in both yeasts, except for the lower glycolysis, where the levels of these metabolites in P. pastoris suggested an enzymatic capacity limitation in that part of the metabolism. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-011-0308-1) contains supplementary material, which is available to authorized users.

  4. In vivo unnatural amino acid expression in the methylotrophic yeast Pichia pastoris

    DOEpatents

    Young, Travis [San Diego, CA; Schultz, Peter G [La Jolla, CA

    2014-02-11

    The invention provides orthogonal translation systems for the production of polypeptides comprising unnatural amino acids in methyltrophic yeast such as Pichia pastoris. Methods for producing polypeptides comprising unnatural amino acids in methyltrophic yeast such as Pichia pastoris are also provided.

  5. In vivo unnatural amino acid expression in the methylotrophic yeast Pichia pastoris

    DOEpatents

    Young, Travis; Schultz, Peter G.

    2017-08-15

    The invention provides orthogonal translation systems for the production of polypeptides comprising unnatural amino acids in methylotrophic yeast such as Pichia pastoris. Methods for producing polypeptides comprising unnatural amino acids in methylotrophic yeast such as Pichia pastoris are also provided.

  6. Expression, Purification and Immunogenic Description of a Hepatitis C Virus Recombinant CoreE1E2 Protein Expressed by Yeast Pichia pastoris

    PubMed Central

    Fazlalipour, Mehdi; Keyvani, Hossein; Monavari, Seyed Hamid Reza; Mollaie, Hamid Reza

    2015-01-01

    Background: Gradual development of a useful vaccine can be the main point in the control and eradication of Hepatitis C virus (HCV) infection. Hepatitis C Virus envelope glycoproteins are considered as the main HCV vaccine candidate. Objectives: In this study, the Pichia pastoris expression system was used to express a recombinant HCV CoreE1E2 protein, which consists of Core (269 nt-841nt) E1 (842 nt-1417nt) and E2 (1418 nt-2506nt). Materials and Methods: By a codon optimization technique based on the P. pastoris expression system, we could increase the rate of recombinant proteins. Moreover, the purified protein can efficiently induce anti-CoreE1E2 antibodies in rabbits, and also by developing a homemade Enzyme-Linked ELISA kit we can detect antibody of HCV Iranian patients with genotype 1a. Results: In our study, the virus-like particle of rCoreE1E2 with 70 nm size, was shown by Electron microscopy and proved the self-assembly in vitro in a yeast expression system. Conclusions: These findings of the present study indicate that the recombinant CoreE1E2 glycoprotein is effective in inducing neutralizing antibodies, and is an influential HCV vaccine candidate. PMID:26034544

  7. High-level expression, purification and study of bioactivity of fusion protein M-IL-2((88)Arg, (125)Ala) in Pichia pastoris.

    PubMed

    Li, Lin; Qian, Dongmeng; Shao, Guangcan; Yan, Zhiyong; Li, Ronggui; Hua, Xiaomin; Song, Xuxia; Wang, Bin

    2014-09-01

    M-IL-2((88)Arg, (125)Ala) is a fusion protein comprising melittin genetically linked to a mutant human interleukin 2((88)Arg, (125)Ala). In this study, we constructed an expression system of M-IL-2((88)Arg, (125)Ala) in Pichia pastoris: GS115/pPICZα A/M-IL-2((88)Arg, (125)Ala), and achieved the high-level expression of the fusion protein. The maximum yield of the fusion protein M-IL-2((88)Arg, (125)Ala) reached up to 814.5mg/L, higher than the system in Escherichiacoli. The fusion protein was purified by means of ammonium sulfate fractionation, dialysis and nickel ion affinity chromatography. The molecular weight of the fusion protein is about 26kDa, conforming the theoretical value. And M-IL-2((88)Arg, (125)Ala) possesses strong antigen-specificity by Western blot detection. Bioassay results indicated that the fusion protein could directly inhibit the growth of human ovarian cancer SKOV3 cells and Hela cells in vitro. This study provides an alternative strategy for large-scale production of bioactive M-IL-2((88)Arg, (125)Ala) using P. pastoris as an expression host and paves the way to clinical practice.

  8. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  9. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  10. Overproduction, purification and characterization of human interferon alpha2a-human serum albumin fusion protein produced in methilotropic yeast Pichia pastoris

    NASA Astrophysics Data System (ADS)

    Ningrum, R. A.; Santoso, A.; Herawati, N.

    2017-05-01

    Human interferon alpha2a (hIFNα2a) is a therapeutic protein that used in cancer and hepatitis B/C therapy. The main problem of using hIFNα-2a is its short elimination half life due to its low molecular weight. Development of higher molecular weight protein by albumin fusion technology is a rational strategy to solve the problem. In our previous research we constructed an open reading frame (ORF) encoding hIFNα2a-human serum albumin (HSA) fusion protein that expressed in Pichia pastoris (P. pastoris) protease deficient strain SMD1168. This research was performed to overproduce, purify and characterize the fusion protein. To overproduce the protein, cultivation was performed in buffered complex medium containing glyserol (BMGY) for 24 h and protein overproduction was applied in buffered complex medium containing methanol (BMMY) for 48 hours at 30°C. The fusion protein was purified by blue sepharose affinity chromatography. Molecular weight characterization by SDS PAGE corresponds with its theoretical size, 85 kDa. Western blot analysis demonstrated that the fusion protein was recognized by anti hIFNα2 and anti HSA monoclonal antibody as well. Amino acid sequence of the fusion protein was determined by LC MS/MS2 mass spectrometry with trypsin as proteolitic enzyme. There were three fragments that identified as hIFNα2a and seven fragments that identified as HSA. Total identified amino acids were 150 residues with 20% coverage from total residues. To conclude, hIFNα2a-HSA fusion protein was overproduced, purified and characterized. Characterization based on molecular weight, antibody recognition and amino acid sequence confirmed that the fusion protein has correct identity as theoretically thought.

  11. An acidic and thermostable carboxymethyl cellulase from the yeast Cryptococcus sp. S-2: purification, characterization and improvement of its recombinant enzyme production by high cell-density fermentation of Pichia pastoris.

    PubMed

    Thongekkaew, Jantaporn; Ikeda, Hiroko; Masaki, Kazuo; Iefuji, Haruyuki

    2008-08-01

    The extracellular carboxymethyl cellulase (CSCMCase) from the yeast, Cryptococcus sp. S-2, was produced when grown on cellobiose. It was purified to homogeneity from the supernatant by ultrafiltration, DEAE-5PW anion exchange column and TSK-Gel G3000SW gel filtration. The purified enzyme was monomeric protein with molecular mass of approximately 34kDa. The optimum temperature and pH for the action of the enzyme were at 40-50 degrees C and 3.5, respectively. It was stable at pH range of 5.5-7.5 and retained approximately 50% of its maximum activity after incubating at 90 degrees C for 1h. Moreover, it could able to hydrolyze carboxymethyl cellulose sodium salt higher than insoluble cellulose substrate such as Avicel, SIGMACELL and CM cellulose. Due to its action at acidic pH and moderately stable at high temperature, the gene encoding carboxymethyl cellulase (CSCMCase) was isolated and improved the enzyme yield by high cell-density fermentation of Pichia pastoris. The CSCMCase cDNA contains 1023 nucleotides and encodes a 341-amino acid. It was successfully expressed under the control of alcohol oxidase I promoter using methanol induction of P. pastoris fermentation in a 2L ABLE bioreactor. The production of the recombinant carboxymethyl cellulases was higher than that from Cryptococcus sp. S-2 of 657-fold (2.75 and 4.2 x 10(-3) mg protein L(-1), respectively) indicating that the leader sequence of CSCMCase has been recognized and processed as efficiently by P. pastoris. Furthermore, the recombinant enzyme was purified in two-step of ultrafiltration and hydrophobic interaction chromatography which would be much more convenient for large-scale purification for successful industrial application.

  12. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Pichia pastoris dried yeast. 573.750 Section 573.750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS...

  13. Functional interactions of phospholemman (PLM) (FXYD1) with Na+,K+-ATPase. Purification of alpha1/beta1/PLM complexes expressed in Pichia pastoris.

    PubMed

    Lifshitz, Yael; Lindzen, Moshit; Garty, Haim; Karlish, Steven J D

    2006-06-09

    Human FXYD1 (phospholemman, PLM) has been expressed in Pichia pastoris with porcine alpha1/His10-beta1 subunits of Na+,K+-ATPase or alone. Dodecyl-beta-maltoside-soluble complexes of alpha1/beta1/PLM have been purified by metal chelate chromatography, either from membranes co-expressing alpha1,His10-beta1, and PLM or by in vitro reconstitution of PLM with alpha1/His10-beta1 subunits. Comparison of functional properties of purified alpha1/His10-beta1 and alpha1/His10-beta1/PLM complexes show that PLM lowered K0.5 for Na+ ions moderately (approximately 30%) but did not affect the turnover rate or Km of ATP for activating Na+,K+-ATPase activity. PLM also stabilized the alpha1/His10-beta1 complex. In addition, PLM markedly (>3-fold) reduced the K0.5 of Na+ ions for activating Na+-ATPase activity. In membranes co-expressing alpha1/His10-beta1 with PLM the K0.5 of Na+ ions was also reduced, compared with the control, excluding the possibility that detergent or lipid in purified complexes compromise functional interactions. When expressed in HeLa cells with rat alpha1, rat PLM significantly raised the K0.5 of Na+ ions, whereas for a chimeric molecule consisting of transmembranes segments of PLM and extramembrane segments of FXYD4, the K0.5 of Na+ ions was significantly reduced, compared with the control. The opposite functional effects in P. pastoris and HeLa cells are correlated with endogenous phosphorylation of PLM at Ser68 or unphosphorylated PLM, respectively, as detected with antibodies, which recognize PLM phosphorylated at Ser68 (protein kinase A site) or unphosphorylated PLM. We hypothesize that PLM interacts with alpha1/His10-beta1 subunits at multiple locations, the different functional effects depending on the degree of phosphorylation at Ser68. We discuss the role of PLM in regulation of Na+,K+-ATPase in cardiac or skeletal muscle cells.

  14. Cloning and Expression of Yak Active Chymosin in Pichia pastoris

    PubMed Central

    Luo, Fan; Jiang, Wei Hua; Yang, Yuan Xiao; Li, Jiang; Jiang, Ming Feng

    2016-01-01

    Rennet, a complex of enzymes found in the stomachs of ruminants, is an important component for cheese production. In our study, we described that yak chymosin gene recombinant Pichia pastoris strain could serve as a novel source for rennet production. Yaks total RNA was extracted from the abomasum of an unweaned yak. The yak preprochymosin, prochymosin, and chymosin genes from total RNA were isolated using gene specific primers based on cattle chymosin gene sequence respectively and analyzed their expression pattern byreal time-polymerase chain reaction. The result showed that the chymosin gene expression level of the sucking yaks was 11.45 times higher than one of adult yaks and yak chymosin belongs to Bovidae family in phylogenetic analysis. To express each, the preprochymosin, prochymosin, and chymosin genes were ligated into the expression vector pPICZαA, respectively, and were expressed in Pichia pastoris X33. The results showed that all the recombinant clones of P. pastoris containing the preprochymosin, prochymosin or chymosin genes could produce the active form of recombinant chymosin into the culture supernatant. Heterologous expressed prochymosin (14.55 Soxhlet unit/mL) had the highest enzyme activity of the three expressed chymosin enzymes. Therefore, we suggest that the yak chymosin gene recombinant Pichia pastoris strain could provide an alternative source of rennet production. PMID:27004812

  15. Expression and characterization of human CB1 cannabinoid receptor in methylotrophic yeast Pichia pastoris.

    PubMed

    Kim, Tae-Kang; Zhang, Rundong; Feng, Wenke; Cai, Jian; Pierce, William; Song, Zhao-Hui

    2005-03-01

    For the purpose of purification and structural characterization, the CB1 cannabinoid receptors are expressed in methylotrophic yeast Pichia pastoris. The expression plasmid was constructed in which the CB1 gene is under the control of the highly inducible promoter of P. pastoris alcohol oxidase I gene. To facilitate easy detection and purification, a FLAG tag was introduced at the N-terminal, a c-myc epitope and a hexahistidine tag were introduced at the C-terminal of the CB1. In membrane preparations of CB1 gene transformed yeast cells, Western blot analysis detected the expression of CB1 proteins. Radioligand binding assays demonstrated that the tagged CB1 receptors expressed in P. pastoris have a pharmacological profile similar to that of the untagged CB1 receptors expressed in mammalian systems. Furthermore, the tagged CB1 receptors were purified by anti-FLAG M2 affinity chromatography and the identity of the purified CB1 receptor proteins was confirmed by Western blot analysis. MALDI/TOF mass spectrometry analysis of the peptides extracted from tryptic digestions of purified CB1 preparations detected 17 peptide fragments derived from the CB1, thus further confirming the identity of the purified receptor. In conclusion, these data demonstrated for the first time that epitope tagged, functional CB1 cannabinoid receptors can be expressed in P. pastoris for purification and mass spectrometry characterization.

  16. Applications of recombinant Pichia pastoris in the healthcare industry.

    PubMed

    Weinacker, Daniel; Rabert, Claudia; Zepeda, Andrea B; Figueroa, Carolina A; Pessoa, Adalberto; Farías, Jorge G

    2013-12-01

    Since the 1970s, the establishment and development of the biotech industry has improved exponentially, allowing the commercial production of biopharmaceutical proteins. Nowadays, new recombinant protein production is considered a multibillion-dollar market, in which about 25% of commercial pharmaceuticals are biopharmaceuticals. But to achieve a competitive production process is not an easy task. Any production process has to be highly productive, efficient and economic. Despite that the perfect host is still not discovered, several research groups have chosen Pichia pastoris as expression system for the production of their protein because of its many features. The attempt of this review is to embrace several research lines that have adopted Pichia pastoris as their expression system to produce a protein on an industrial scale in the health care industry.

  17. Applications of recombinant Pichia pastoris in the healthcare industry

    PubMed Central

    Weinacker, Daniel; Rabert, Claudia; Zepeda, Andrea B.; Figueroa, Carolina A.; Pessoa, Adalberto; Farías, Jorge G.

    2013-01-01

    Since the 1970s, the establishment and development of the biotech industry has improved exponentially, allowing the commercial production of biopharmaceutical proteins. Nowadays, new recombinant protein production is considered a multibillion-dollar market, in which about 25% of commercial pharmaceuticals are biopharmaceuticals. But to achieve a competitive production process is not an easy task. Any production process has to be highly productive, efficient and economic. Despite that the perfect host is still not discovered, several research groups have chosen Pichia pastoris as expression system for the production of their protein because of its many features. The attempt of this review is to embrace several research lines that have adopted Pichia pastoris as their expression system to produce a protein on an industrial scale in the health care industry. PMID:24688491

  18. Functional analysis of alcohol dehydrogenase (ADH) genes in Pichia pastoris.

    PubMed

    Karaoglan, Mert; Karaoglan, Fidan Erden; Inan, Mehmet

    2016-03-01

    To characterize the genes responsible for ethanol utilization in Pichia pastoris. ADH3 (XM_002491337) and ADH (FN392323) genes were disrupted in P. pastoris. The ADH3 mutant strain, MK115 (Δadh3), lost its ability to grow on minimal ethanol media but produced ethanol in minimal glucose medium. ADH3p was responsible for 92 % of total Adh enzyme activity in glucose media. The double knockout strain MK117 (Δadh3Δadh) also produced ethanol. The Adh activities of X33 and MK116 (Δadh) strains were not different. Thus, the ADH gene does not play a role in ethanol metabolism. The PpADH3 is the only gene responsible for consumption of ethanol in P. pastoris.

  19. A system for dual protein expression in Pichia pastoris and Escherichia coli.

    PubMed

    Lueking, A; Holz, C; Gotthold, C; Lehrach, H; Cahill, D

    2000-12-01

    We have constructed a novel Pichia pastoris/Escherichia coli dual expression vector for the production of recombinant proteins in both host systems. In this vector, an E. coli T7 promoter region, including the ribosome binding site from the phage T7 major capsid protein for efficient translation is placed downstream from the yeast alcohol oxidase promoter (AOX). For detection and purification of the target protein, the vector contains an amino-terminal oligohistidine domain (His6) followed by the hemaglutinine epitope (HA) adjacent to the cloning sites. A P. pastoris autonomous replicating sequence (PARS) was integrated enabling simple propagation and recovery of plasmids from yeast and bacteria (1). In the present study, the expression of human proteins in P. pastoris and E. coli was compared using this single expression vector. For this purpose we have subcloned a cDNA expression library deriving from human fetal brain (2) into our dual expression T7 vector and investigated 96 randomly picked clones. After sequencing, 29 clones in the correct reading frame have been identified, their plasmids isolated and shuttled from yeast to bacteria. All proteins were expressed soluble in P. pastoris, whereas in E. coli only 31% could be purified under native conditions. Our data indicates that this dual expression vector allows the economic expression and purification of proteins in different hosts without subcloning.

  20. Pichia pastoris: a recombinant microfactory for antibodies and human membrane proteins.

    PubMed

    Gonçalves, A M; Pedro, A Q; Maia, C; Sousa, F; Queiroz, J A; Passarinha, L A

    2013-05-01

    During the last few decades, it has become evident that the compatibility of the yeast biochemical environment with the ability to process and translate the RNA transcript, along with its capacity to modify a translated protein, are relevant requirements for selecting this host cell for protein expression in several pharmaceutical and clinical applications. In particular, Pichia pastoris is used as an industrial host for recombinant protein and metabolite production, showing a powerful capacity to meet required biomolecular target production levels in high-throughput assays for functional genomics and drug screening. In addition, there is a great advantage to using P. pastoris for protein secretion, even at high molecular weights, since the recovery and purification steps are simplified owing to relatively low levels of endogenous proteins in the extracellular medium. Clearly, no single microexpression system can provide all of the desired properties for human protein production. Moreover, chemical and physical bioprocess parameters, including culture medium formulation, temperature, pH, agitation, aeration rates, induction, and feeding strategies, can highly influence product yield and quality. In order to benefit from the currently available wide range of biosynthesis strategies using P. pastoris, this mini review focuses on the developments and technological fermentation achievements, providing both a comparative and an overall integration analysis. The main aim is to highlight the relevance and versatility of the P. pastoris biosystem to the design of more cost-effective microfactories to meet the increasing demands for recombinant membrane proteins and clinical antibodies for several therapeutic applications.

  1. Characterization of wheat germin (oxalate oxidase) expressed by Pichia pastoris

    PubMed Central

    Pan, Heng-Yen; Whittaker, Mei M.; Bouveret, Romaric; Berna, Anne; Bernier, François; Whittaker, James W.

    2007-01-01

    High-level secretory expression of wheat (Triticum aestivum) germin/oxalate oxidase was achieved in Pichia pastoris fermentation cultures as an α-mating factor signal peptide fusion, based on the native wheat cDNA coding sequence. The oxalate oxidase activity of the recombinant enzyme is substantially increased (7-fold) by treatment with sodium periodate, followed by ascorbate reduction. Using these methods, approximately 1 g (4×104 U) of purified, activated enzyme was obtained following eight days of induction of a high density Pichia fermentation culture, demonstrating suitability for large-scale production of oxalate oxidase for biotechnological applications. Characterization of the recombinant protein shows that it is glycosylated, with N-linked glycan attached at Asn47. For potential biomedical applications, a nonglycosylated (S49A) variant was also prepared which retains essentially full enzyme activity, but exhibits altered protein-protein interactions. PMID:17399681

  2. Characterization of wheat germin (oxalate oxidase) expressed by Pichia pastoris

    SciTech Connect

    Pan, Heng-Yen; Whittaker, Mei M.; Bouveret, Romaric; Berna, Anne; Bernier, Francois; Whittaker, James W. . E-mail: jim@ebs.ogi.edu

    2007-05-18

    High-level secretory expression of wheat (Triticum aestivum) germin/oxalate oxidase was achieved in Pichia pastoris fermentation cultures as an {alpha}-mating factor signal peptide fusion, based on the native wheat cDNA coding sequence. The oxalate oxidase activity of the recombinant enzyme is substantially increased (7-fold) by treatment with sodium periodate, followed by ascorbate reduction. Using these methods, approximately 1 g (4 x 10{sup 4} U) of purified, activated enzyme was obtained following eight days of induction of a high density Pichia fermentation culture, demonstrating suitability for large-scale production of oxalate oxidase for biotechnological applications. Characterization of the recombinant protein shows that it is glycosylated, with N-linked glycan attached at Asn47. For potential biomedical applications, a nonglycosylated (S49A) variant was also prepared which retains essentially full enzyme activity, but exhibits altered protein-protein interactions.

  3. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation

    PubMed Central

    Zhang, Biao; Li, Baizhi; Chen, Dai; Zong, Jie; Sun, Fei; Qu, Huixin; Liang, Chongyang

    2016-01-01

    In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field. PMID:27537181

  4. Utilization of glycerin byproduct derived from soybean oil biodiesel as a carbon source for heterologous protein production in Pichia pastoris.

    PubMed

    Anastácio, G S; Santos, K O; Suarez, P A Z; Torres, F A G; De Marco, J L; Parachin, N S

    2014-01-01

    Crude glycerol, also known as glycerin, is the main byproduct of the biodiesel industry. It has been estimated that up to 40,000 tons of glycerin will be produced each year by 2020. This study evaluated the value-added use of crude glycerol derived from soybean biodiesel preparation as a carbon source for heterologous protein production using the yeast Pichia pastoris. Eleven glycerin samples were obtained by methanolysis of soybean oil using different acids or bases as catalysts. Cell growth experiments showed that crude glycerol containing either potassium or sodium hydroxide resulted in 1.5-2 times higher final cell densities when compared to glycerol P.A. Finally, crude glycerol containing sodium hydroxide was successfully utilized for constitutive heterologous α-amylase production in P. pastoris. This study demonstrated that crude glycerol without any purification steps may be directly used as carbon source for protein production in P. pastoris.

  5. Production of sialylated O-linked glycans in Pichia pastoris.

    PubMed

    Hamilton, Stephen R; Cook, W James; Gomathinayagam, Sujatha; Burnina, Irina; Bukowski, John; Hopkins, Daniel; Schwartz, Shaina; Du, Min; Sharkey, Nathan J; Bobrowicz, Piotr; Wildt, Stefan; Li, Huijuan; Stadheim, Terrance A; Nett, Juergen H

    2013-10-01

    The methylotrophic yeast, Pichia pastoris, is an important organism used for the production of therapeutic proteins. Previously, we have reported the glycoengineering of this organism to produce human-like N-linked glycans but up to now no one has addressed engineering the O-linked glycosylation pathway. Typically, O-linked glycans produced by wild-type P. pastoris are linear chains of four to five α-linked mannose residues, which may be capped with β- or phospho-mannose. Previous genetic engineering of the N-linked glycosylation pathway of P. pastoris has eliminated both of these two latter modifications, resulting in O-linked glycans which are linear α-linked mannose structures. Here, we describe a method for the co-expression of an α-1,2-mannosidase, which reduces these glycans to primarily a single O-linked mannose residue. In doing so, we have reduced the potential of these glycans to interact with carbohydrate-binding proteins, such as dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin. Furthermore, the introduction of the enzyme protein-O-linked-mannose β-1,2-N-acetylglucosaminyltransferase 1, resulted in the capping of the single O-linked mannose residues with N-acetylglucosamine. Subsequently, this glycoform was extended into human-like sialylated glycans, similar in structure to α-dystroglycan-type glycoforms. As such, this represents the first example of sialylated O-linked glycans being produced in yeast and extends the utility of the P. pastoris production platform beyond N-linked glycosylated biotherapeutics to include molecules possessing O-linked glycans.

  6. Recombinant shrimp (Litopenaeus vannamei) trypsinogen production in Pichia pastoris.

    PubMed

    Guerrero-Olazarán, Martha; Escamilla-Treviño, Luis L; Castillo-Galván, Mauricio; Gallegos-López, Juan A; Viader-Salvadó, José M

    2009-01-01

    Shrimp (Litopenaeus vannamei) trypsinogen has never been isolated from its natural source. To assess the production of L. vannamei trypsinogen, we engineered Pichia pastoris strains and evaluated two culture approaches with three induction culture media, to produce recombinant shrimp trypsinogen for the first time. The trypsinogen II cDNA was fused to the signal sequence of the Saccharomyces cerevisiae alpha mating factor, placed under the control of the P. pastoris AOX1 promoter, and integrated into the genome of P. pastoris host strain GS115. Using standard culture conditions for heterologous gene induction of a GS115 strain in shake flasks, recombinant shrimp trypsinogen was not detected by SDS-PAGE and Western blot analysis. Growth kinetics revealed a toxicity of recombinant shrimp trypsinogen or its activated form over the cell host. Thus, a different culture approach was tested for the induction step, involving the use of high cell density cultures, a higher frequency of methanol feeding (every 12 h), and a buffered minimal methanol medium supplemented with sorbitol or alanine; alanine supplemented medium was found to be more efficient. After 96 h of induction with alanine supplemented medium, a 29-kDa band from the cell-free culture medium was clearly observed by SDS-PAGE, and confirmed by Western blot to be shrimp trypsinogen, at a concentration of 14 microg/mL. Our results demonstrate that high density cell cultures with alanine in the induction medium allow the production of recombinant shrimp trypsinogen using the P. pastoris expression system, because of improved cell viability and greater stability of the recombinant trypsinogen.

  7. Production of Equine Infectious Anemia Virus (EIAV) antigen in Pichia pastoris.

    PubMed

    de Arruda Coutinho, Luciana Cavalcanti; de Jesus, André Luiz Santos; de Paiva Fontes, Karin Florêncio Lins; Coimbra, Eliane Campos; Mariz, Filipe Colaço; de Freitas, Antonio Carlos; de Cássia Carvalho Maia, Rita; de Castro, Roberto Soares

    2013-08-01

    Equine Infectious Anemia (EIA) is a persistent lentivirus infection of horses which causes a chronic clinical condition with worldwide importance in veterinary medicine. The p26 protein is usually prepared for use as an antigen in serological tests for EIA diagnosis since it is a well-conserved gene sequence and very immunogenic. In view of the ability of yeast to make post-translational modifications of proteins, this study was carried out to allow Pichia pastoris to be used for the expression of a synthetic codon-optimized EIAV p26 gene. The gene was cloned into pPICZαA vector after appropriate enzymatic digestion. P. pastoris clones transformed with the pPICZαAp26 construction were induced to produce the recombinant p26 protein (rp26) under the regulation of alcohol oxidase 1 promoter by adding methanol to the culture medium. The p26 gene expression was detected by RT-PCR and the production of rp26 was confirmed by dot blotting, Western blotting, ELISA and AGID. The P. pastoris expression system was capable of producing a functional EIAV p26 protein that can be used directly in the functionality tests without requiring laborious purification or recovery steps. This is the first reported study of EIAV p26 protein production in yeast cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Overexpression of Escherichia coli phytase in Pichia pastoris and its biochemical properties.

    PubMed

    Tai, Hsueh-Ming; Yin, Li-Jung; Chen, Wei-Chuan; Jiang, Shann-Tzong

    2013-06-26

    To obtain a Pichia pastoris mutant with an Escherichia coli phytase gene, which was synthesized according to P. pastoris codon preference, a mature phytase cDNA of E. coli being altered according to the codons usage preference of P. pastoris was artificially synthesized and cloned into an expression vector of pGAPZαC. The final extracellular phytase activity was 112.5 U/mL after 72 h of cultivation. The phytase, with a molecular mass of 46 kDa, was purified to electrophoretical homogeneity after Ni Sepharose 6 Fast Flow chromatography. The yield, purification fold, and specific activity were 63.97%, 26.17, and 1.57 kU/mg, respectively. It had an optimal pH and temperature of 4.0-6.0 and 50 °C, respectively, and was stable at pH 3.0-8.0 and 25-40 °C. The purified recombinant phytase was resistant to trypsin, highly inhibited by Cu(2+), Zn(2+), Hg(2+), Fe(2+), Fe(3+), phenylmethylsulfonyl fluoride, and N-tosyl-l-lysine chloromethyl ketone, but activated by Mg(2+), Ca(2+), Sr(2+), Ba(2+), glutathione, ethylenediaminetetraacetic acid, and N-ethylmaleimide. It revealed higher affinity to calcium phytate than to other phosphate conjugates.

  9. [Heterologous expression and characterization of Yarrowia lipolytica lipase 4 and lipase 5 in Pichia pastoris].

    PubMed

    Zhao, Heyun; Xiao, Xiao; Xu, Li; Liu, Yun; Yan, Yunjun

    2011-10-01

    To clone cDNA sequences of lipase 4 (LIP4) and lipase 5 (LIPS), analyze gene structures and express them in Pichia pastoris so as to investigate their enzymatic characteristics. We first cloned cDNA sequences of LIP4 and LIP5 by reverse transcription PCR and analyzed their gene structures by SignalP 3.0. Then, intracellular expression vectors pPIC3. 5K-Lip4, pPIC3. 5K-Lip5 and inducible secretion vectors pPIC9K-Lip4, pPIC9K-Lip5 were constructed. All vectors were transformed into Pichia pastoris GS115 by electroporation, resulting in a series of engineered strains. After fermentation and NTA-Ni resin purification, the enzymatic properties of LIP4 and LIP5 were examined. The cloned cDNA sequences revealed that there was no intron in both of Lip4 and Lip5. The two lipases both contained catalytic triads and conserved GHSLG motifs. Their optimal substrate, pH, temperature were respectively pNP-caprylate (C8), 7.0 and 40 degrees C. The activities of LIP4 and LIPS were 10.16 U/mg and 5.1 U/mg, respectively. It was found that LIP4 was more sensitive to the variations of pH and temperature than LIP5. LIP4 and LIP5 could both be stimulated by Ca2+, besides LIPS could also be activated by Mg2+. They were both strongly inhibited by Hg2+, Phenylmethanesulfonyl fluoride (PMSF) and Dithiothreitol (DTT). The cloning of Lip4 and Lip5, expression in P. pastoris and characterization of their properties would offer a solid basis for their large-scale production and future application. In addition, the results also enriched the data for a systematic research on the lipase gene family of Y. lipolytica.

  10. Surface display and bioactivity of Bombyx mori acetylcholinesterase on Pichia pastoris

    USDA-ARS?s Scientific Manuscript database

    To construct the Pichia pastoris (P. pastoris) cell surface display system of Bombyx mori acetylcholinesterase (BmAChE), the gene for the anchor protein (AGa1) was obtained from Saccharomyces cerevisiae and was fused with the modified Bombyx mori acetylcholinesterase gene (bmace) and transformed int...

  11. A simple Pichia pastoris fermentation and downstream processing strategy for making recombinant pandemic Swine Origin Influenza a virus Hemagglutinin protein.

    PubMed

    Athmaram, T N; Singh, Anil Kumar; Saraswat, Shweta; Srivastava, Saurabh; Misra, Princi; Kameswara Rao, M; Gopalan, N; Rao, P V L

    2013-02-01

    The present Influenza vaccine manufacturing process has posed a clear impediment to initiation of rapid mass vaccination against spreading pandemic influenza. New vaccine strategies are therefore needed that can accelerate the vaccine production. Pichia offers several advantages for rapid and economical bulk production of recombinant proteins and, hence, can be attractive alternative for producing an effective influenza HA based subunit vaccine. The recombinant Pichia harboring the transgene was subjected to fed-batch fermentation at 10 L scale. A simple fermentation and downstream processing strategy is developed for high-yield secretory expression of the recombinant Hemagglutinin protein of pandemic Swine Origin Influenza A virus using Pichia pastoris via fed-batch fermentation. Expression and purification were optimized and the expressed recombinant Hemagglutinin protein was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blot and MALDI-TOF analysis. In this paper, we describe a fed-batch fermentation protocol for the secreted production of Swine Influenza A Hemagglutinin protein in the P. pastoris GS115 strain. We have shown that there is a clear relationship between product yield and specific growth rate. The fed-batch fermentation and downstream processing methods optimized in the present study have immense practical application for high-level production of the recombinant H1N1 HA protein in a cost effective way using P. pastoris.

  12. Production and Analysis of Perdeuterated Lipids from Pichia pastoris Cells

    PubMed Central

    de Ghellinck, Alexis; Schaller, Hubert; Laux, Valérie; Haertlein, Michael; Sferrazza, Michele; Maréchal, Eric; Wacklin, Hanna; Jouhet, Juliette; Fragneto, Giovanna

    2014-01-01

    Probing molecules using perdeuteration (i.e deuteration in which all hydrogen atoms are replaced by deuterium) is extremely useful in a wide range of biophysical techniques. In the case of lipids, the synthesis of the biologically relevant unsaturated perdeuterated lipids is challenging and not usually pursued. In this work, perdeuterated phospholipids and sterols from the yeast Pichia pastoris grown in deuterated medium are extracted and analyzed as derivatives by gas chromatography and mass spectrometry respectively. When yeast cells are grown in a deuterated environment, the phospholipid homeostasis is maintained but the fatty acid unsaturation level is modified while the ergosterol synthesis is not affected by the deuterated culture medium. Our results confirm that the production of well defined natural unsaturated perdeuterated lipids is possible and gives also new insights about the process of desaturase enzymes. PMID:24747350

  13. Biotechnological advances towards an enhanced peroxidase production in Pichia pastoris.

    PubMed

    Krainer, Florian W; Gerstmann, Michaela A; Darnhofer, Barbara; Birner-Gruenberger, Ruth; Glieder, Anton

    2016-09-10

    Horseradish peroxidase (HRP) is a high-demand enzyme for applications in diagnostics, bioremediation, biocatalysis and medicine. Current HRP preparations are isolated from horseradish roots as mixtures of biochemically diverse isoenzymes. Thus, there is a strong need for a recombinant production process enabling a steady supply with enzyme preparations of consistent high quality. However, most current recombinant production systems are limited at titers in the low mg/L range. In this study, we used the well-known yeast Pichia pastoris as host for recombinant HRP production. To enhance recombinant enzyme titers we systematically evaluated engineering approaches on the secretion process, coproduction of helper proteins, and compared expression from the strong methanol-inducible PAOX1 promoter, the strong constitutive PGAP promoter, and a novel bidirectional promoter PHTX1. Ultimately, coproduction of HRP and active Hac1 under PHTX1 control yielded a recombinant HRP titer of 132mg/L after 56h of cultivation in a methanol-independent and easy-to-do bioreactor cultivation process. With regard to the many versatile applications for HRP, the establishment of a microbial host system suitable for efficient recombinant HRP production was highly overdue. The novel HRP production platform in P. pastoris presented in this study sets a new benchmark for this medically relevant enzyme. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Constitutive expression of Botrytis aclada laccase in Pichia pastoris

    PubMed Central

    Kittl, Roman; Gonaus, Christoph; Pillei, Christian; Haltrich, Dietmar; Ludwig, Roland

    2012-01-01

    The heterologous expression of laccases is important for their large-scale production and genetic engineering—a prerequisite for industrial application. Pichia pastoris is the preferred expression host for fungal laccases. The recently cloned laccase from the ascomycete Botrytis aclada (BaLac) has been efficiently expressed in P. pastoris under the control of the inducible alcohol oxidase (AOX1) promoter. In this study, we compare these results to the constitutive expression in the same organism using the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. The results show that the amounts of BaLac produced with the GAP system (517 mgL-1) and the AOX1 system (495 mgL-1) are comparable. The constitutive expression is, however, faster, and the specific activity of BaLac in the culture supernatant is higher (41.3 Umg-1 GAP, 14.2 Umg-1 AOX1). In microtiter plates, the constitutive expression provides a clear advantage due to easy manipulation (simple medium, no methanol feeding) and fast enzyme production (high-throughput screening assays can already be performed after 48 h). PMID:22705842

  15. Production of human pro-relaxin H2 in the yeast Pichia pastoris.

    PubMed

    Cimini, D; Corte, K Della; Finamore, R; Andreozzi, L; Stellavato, A; Pirozzi, A V A; Ferrara, F; Formisano, R; De Rosa, M; Chino, M; Lista, L; Lombardi, A; Pavone, V; Schiraldi, C

    2017-01-14

    Initially known as the reproductive hormone, relaxin was shown to possess other therapeutically useful properties that include extracellular matrix remodeling, anti-inflammatory, anti-ischemic and angiogenic effects. All these findings make relaxin a potential drug for diverse medical applications. Its precursor, pro-relaxin, is an 18 kDa protein, that shows activity in in vitro assays. Since extraction of relaxin from animal tissues raises several issues, prokaryotes and eukaryotes were both used as expression systems for recombinant relaxin production. Most productive results were obtained when using Escherichia coli as a host for human relaxin expression. However, in such host, relaxin precipitated in the form of inclusion bodies and, therefore, required several expensive recovery steps as cell lysis, refolding and reduction. To overcome the issues related to prokaryotic expression here we report the production and purification of secreted human pro-relaxin H2 by using the methylotrophic yeast Pichia pastoris as expression host. The methanol inducible promoter AOX1 was used to drive expression of the native and histidine tagged forms of pro-relaxin H2 in dual phase fed-batch experiments on the 22 L scale. Both protein forms presented the correct structure, as determined by mass spectrometry and western blotting analyses, and demonstrated to be biologically active in immune enzymatic assays. The presence of the tag allowed to simplify pro-relaxin purification obtaining higher purity. This work presents a strategy for microbial production of recombinant human pro-relaxin H2 in Pichia pastoris that allowed the obtainment of biologically active pro-hormone, with a final concentration in the fermentation broth ranging between 10 and 14 mg/L of product, as determined by densitometric analyses.

  16. Cloning, Expression, and Characterization of Siamese Crocodile (Crocodylus siamensis) Hemoglobin from Escherichia coli and Pichia pastoris.

    PubMed

    Anwised, Preeyanan; Jangpromma, Nisachon; Temsiripong, Theeranan; Patramanon, Rina; Daduang, Sakda; Jitrapakdee, Sarawut; Araki, Tomohiro; Klaynongsruang, Sompong

    2016-08-01

    Recombinant Crocodylus siamensis hemoglobin (cHb) has been constructed and expressed using Escherichia coli as the expression system in conjunction with a trigger factor from the Cold-shock system as the fusion protein. While successful processing as soluble protein in E. coli was achieved, the net yields of active protein from downstream purification processes remained still unsatisfactory. In this study, cHb was constructed and expressed in the eukaryotic expression system Pichia pastoris. The results showed that cHb was excreted from P. pastoris as a soluble protein after 72 h at 25 °C. The amino acid sequence of recombinant cHb was confirmed using LC-MS/MS. Indeed, the characteristic of Hb was investigated by external heme incorporation. The UV-Vis profile showed a specific pattern of the absorption at 415 nm, indicating the recombinant cHb was formed complex with heme, resulting in active oxyhemoglobin (OxyHb). This result suggests that the heme molecules were fully combined with heme binding site of the recombinant cHb, thus producing characteristic red color for the OxyHb at 540 and 580 nm. The results revealed that the recombinant cHb was prosperously produced in P. pastoris and exhibited a property as protein-ligand binding. Thus, our work described herein offers a great potential to be applied for further studies of heme-containing protein expression. It represents further pleasing option for protein production and purification on a large scale, which is important for determination and characterization of the authenticity features of cHb proteins.

  17. Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications.

    PubMed

    Kang, Zhen; Huang, Hao; Zhang, Yunfeng; Du, Guocheng; Chen, Jian

    2017-01-01

    Pichia pastoris: (reclassified as Komagataella phaffii), a methylotrophic yeast strain has been widely used for heterologous protein production because of its unique advantages, such as readily achievable high-density fermentation, tractable genetic modifications and typical eukaryotic post-translational modifications. More recently, P. pastoris as a metabolic pathway engineering platform has also gained much attention. In this mini-review, we addressed recent advances of molecular toolboxes, including synthetic promoters, signal peptides, and genome engineering tools that established for P. pastoris. Furthermore, the applications of P. pastoris towards synthetic biology were also discussed and prospected especially in the context of genome-scale metabolic pathway analysis.

  18. Production of in vivo biotinylated scFv specific to almond (Prunus dulcis) proteins by recombinant Pichia pastoris.

    PubMed

    de la Cruz, Silvia; Alcocer, Marcos; Madrid, Raquel; García, Aina; Martín, Rosario; González, Isabel; García, Teresa

    2016-06-10

    The methylotropic yeast Pichia pastoris has demonstrated its suitability for large-scale production of recombinant proteins. As an eukaryotic organism P. pastoris presents a series of advantages at expression and processing of heterologous proteins when compared with Escherichia coli. In this work, P. pastoris has been used to express a scFv from a human synthetic library previously shown to bind almond proteins. In order to facilitate purification and post processing manipulations, the scFv was engineered with a C-terminal tag and biotinylated in vivo. After purification, biotinylated scFv were bound to avidin conjugated with HRP producing a multimeric scFv. The multimeric scFv showed to maintain their ability to recognize almond protein when assayed in ELISA, reaching a LOD of 470mgkg(-1). This study describes an easy method to produce large quantities of in vivo biotinylated scFv in P. pastoris. By substituting the enzyme or fluorochromes linked to avidin, it will be possible to generate a diverse number of multimeric scFv as probes to suit different analytical platforms in the detection of almond in food products.

  19. Cloning and expression in Pichia pastoris of a blue mussel (Mytilus edulis) beta-mannanase gene.

    PubMed

    Xu, Bingze; Sellos, Daniel; Janson, Jan-Christer

    2002-03-01

    Using PCR, cloning and sequencing techniques, a 1.1-kb complementary DNA fragment encoding for a beta-mannanase (mannan endo-1,4-beta-mannosidase, EC 3.2.1.78) has been identified in the digestive gland of blue mussel, Mytilus edulis. The cDNA sequence shows significant sequence identity to several beta-mannanases in glycoside hydrolase family 5. The beta-mannanase gene has been isolated and sequenced from gill tissue of blue mussel and contains five introns. The beta-mannanase has been expressed extracellularly in Pichia pastoris using the Saccharomyces cerevisiae alpha-factor signal sequence. The beta-mannanase was produced in a 14-L fermenter with an expression level of 900 mg.L-1. The expression level is strongly affected by the induction temperature. A two-step purification procedure, composed of a combination of immobilized metal ion affinity chromatography and ion exchange chromatography, is required to give a pure beta-mannanase. However, due to post-translational modifications, structural varieties regarding molecular mass and isoelectric point were obtained. The specific activity of the purified recombinant M. edulis beta-mannanase was close to that of the wild-type enzyme. Also pH and temperature optima were the same as for the native protein. In conclusion, P. pastoris is regarded as a suitable host strain for the production of blue mussel beta-mannanase. This is the first time a mollusc beta-mannanase has been characterized at the DNA level.

  20. NMR monitoring of accumulation and folding of 15N-labeled protein overexpressed in Pichia pastoris.

    PubMed

    de Lamotte, F; Boze, H; Blanchard, C; Klein, C; Moulin, G; Gautier, M F; Delsuc, M A

    2001-07-01

    Postgenomic studies have led to an increasing demand for isotope-labeled proteins. We present a method for producing large quantities of truly native (15)N-labeled protein. Based on the secretion capabilities of the yeast Pichia pastoris, the recombinant protein is easily purified in a single step as it is secreted. Control of all nitrogen sources permits very high labeling yields. As a result, accumulation and folding of the recombinant protein can be monitored by heteronuclear NMR without purification. Comparison of sample spectra with the spectrum of the purified recombinant protein allows detection of the secreted protein in the culture and monitoring of its folding, from the start of the induction phase. The detection limit for a (15)N-labeled protein is estimated as 20 microM and corresponds, for a 10-kDa protein, to a load of 40 mg/liter in the fermentor. This concentration is reached by most reported preparations in P. pastoris. Further concentration by ultrafiltration would compensate for lower production. This procedure may be useful in many structural genomics and combinatorial chemistry screening projects where most protein productions meet the requirements for this method. Copyright 2001 Academic Press.

  1. High-level secretory production of recombinant bovine enterokinase light chain by Pichia pastoris.

    PubMed

    Peng, Lisheng; Zhong, Xiaofen; Ou, Jingxing; Zheng, Suilan; Liao, Jian; Wang, Lei; Xu, Anlong

    2004-03-04

    Enterokinase (EC 3.4.21.9) is a serine proteinase with a specific digest sequence (Asp)4-Lys in the duodenum. Its high specificity for the recognition site makes enterokinase (EK) a useful tool for an in vitro cleavage of fusion proteins. In this work, an active bovine enterokinase light chain (EK(L)) was produced in secretory form by a recombinant strain of the methylotrophic yeast Pichia pastoris. The influences of methanol utilization phenotype of the host strain, induction pH, and carbon source on the recombinant production were studied. The production of recombinant EK(L) by Mut(s) strain was much higher than that by Mut+ strain. When inducted at pH 6.0, on a glycerol/methanol medium, the concentration of recombinant EK(L) (rEK(L)) reached 350 mg l(-1), which was 20-fold higher than that reported previously. The recombinant EK(L) was purified in a simple procedure on the anion exchange chromatography and 15 mg pure active EK(L) were obtained from 100 ml culture broth supernatant. The specific activity of purified rEK(L) was approximately 9000 u mg(-1). To facilitate purification and removal of rEKL after cleavage of fusion protein, the C-terminal His-tagged EK(L) (EK(L)/His) was also expressed in P. pastoris, and this His-tagged EK(L) exhibited a similar enzymatic activity to the untagged EK(L).

  2. Functional inclusion bodies produced in the yeast Pichia pastoris.

    PubMed

    Rueda, Fabián; Gasser, Brigitte; Sánchez-Chardi, Alejandro; Roldán, Mònica; Villegas, Sandra; Puxbaum, Verena; Ferrer-Miralles, Neus; Unzueta, Ugutz; Vázquez, Esther; Garcia-Fruitós, Elena; Mattanovich, Diethard; Villaverde, Antonio

    2016-10-01

    Bacterial inclusion bodies (IBs) are non-toxic protein aggregates commonly produced in recombinant bacteria. They are formed by a mixture of highly stable amyloid-like fibrils and releasable protein species with a significant extent of secondary structure, and are often functional. As nano structured materials, they are gaining biomedical interest because of the combination of submicron size, mechanical stability and biological activity, together with their ability to interact with mammalian cell membranes for subsequent cell penetration in absence of toxicity. Since essentially any protein species can be obtained as IBs, these entities, as well as related protein clusters (e.g., aggresomes), are being explored in biocatalysis and in biomedicine as mechanically stable sources of functional protein. One of the major bottlenecks for uses of IBs in biological interfaces is their potential contamination with endotoxins from producing bacteria. To overcome this hurdle, we have explored here the controlled production of functional IBs in the yeast Pichia pastoris (Komagataella spp.), an endotoxin-free host system for recombinant protein production, and determined the main physicochemical and biological traits of these materials. Quantitative and qualitative approaches clearly indicate the formation of IBs inside yeast, similar in morphology, size and biological activity to those produced in E. coli, that once purified, interact with mammalian cell membranes and penetrate cultured mammalian cells in absence of toxicity. Structurally and functionally similar from those produced in E. coli, the controlled production of IBs in P. pastoris demonstrates that yeasts can be used as convenient platforms for the biological fabrication of self-organizing protein materials in absence of potential endotoxin contamination and with additional advantages regarding, among others, post-translational modifications often required for protein functionality.

  3. Differential secretion pathways of proteins fused to the Escherichia coli maltose binding protein (MBP) in Pichia pastoris.

    PubMed

    Moua, Pachai S; Gonzalez, Alfonso; Oshiro, Kristin T; Tam, Vivian; Li, Zhiguo Harry; Chang, Jennifer; Leung, Wilson; Yon, Amy; Thor, Der; Venkatram, Sri; Franz, Andreas H; Risser, Douglas D; Lin-Cereghino, Joan; Lin-Cereghino, Geoff P

    2016-08-01

    The Escherichia coli maltose binding protein (MBP) is an N-terminal fusion partner that was shown to enhance the secretion of some heterologous proteins from the yeast Pichia pastoris, a popular host for recombinant protein expression. The amount of increase in secretion was dependent on the identity of the cargo protein, and the fusions were proteolyzed prior to secretion, limiting its use as a purification tag. In order to overcome these obstacles, we used the MBP as C-terminal partner for several cargo peptides. While the Cargo-MBP proteins were no longer proteolyzed in between these two moieties when the MBP was in this relative position, the secretion efficiency of several fusions was lower than when MBP was located at the opposite end of the cargo protein (MBP-Cargo). Furthermore, fluorescence analysis suggested that the MBP-EGFP and EGFP-MBP proteins followed different routes within the cell. The effect of several Pichia pastoris beta-galactosidase supersecretion (bgs) strains, mutants showing enhanced secretion of select reporters, was also investigated on both MBP-EGFP and EGFP-MBP. While the secretion efficiency, proteolysis and localization of the MBP-EGFP was influenced by the modified function of Bgs13, EGFP-MBP behavior was not affected in the bgs strain. Taken together, these results indicate that the location of the MBP in a fusion affects the pathway and trans-acting factors regulating secretion in P. pastoris. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Optimization of the expression of surface antigen SAG1/2 of Toxoplasma gondii in the yeast Pichia pastoris.

    PubMed

    Thiruvengadam, G; Init, I; Fong, M Y; Lau, Y L

    2011-12-01

    Surface antigens are the most abundant proteins found on the surface of the parasite Toxoplasma gondii. Surface antigen 1 (SAG1) and Surface antigen 2 (SAG2) remain the most important and extensively studied surface proteins. These antigens have been identified to play a role in host cell invasion, immune modulation, virulence attenuation. Recombinant SAG1/2 was cloned and expressed in yeast Pichia pastoris. We describe here optimization of critical parameters involved in high yield expression of the recombinant SAG1/2. Our results suggest that recombinant SAG1/2 were best expressed at 30ºC, pH 6 and 1% methanol as the carbon source by X33 Pichia cells. Additional optimizations included the downstream process such as ammonium sulphate precipitation and dialysis. The fusion protein was purified using Ni-NTA purification system with 80% recovery. The purified protein was 100% specific and sensitive in detection of toxoplasmosis.

  5. Electrochemical studies of a truncated laccase produced in Pichia pastoris

    SciTech Connect

    Gelo-Pujic, M.; Kim, H.H.; Butlin, N.G.; Palmore, G.T.R.

    1999-12-01

    The cDNA that encodes an isoform is laccase from Trametes versicolor (LCCI), as well as a truncated version (LCCIa), was subcloned and expressed by using the yeast Pichia pastoris as the heterologous host. The amino acid sequence of LCCIa is identical to that of LCCI except that the final 11 amino acids at the C terminus of LCCI are replaced with a single cysteine residue. This modification was introduced for the purpose of improving the kinetics of electron transfer between an electrode and the copper-containing active site of laccase. The two laccases (LCCI and LCCIa) are compared in terms of their relative activity with two substrates that have different redox potentials. Results from electrochemical studies on solutions containing LCCI and LCCIa indicate that the redox potential of the active site of LCCIa is shifted to more negative values (411 mV versus normal hydrogen electrode voltage) than that found in other fungal laccases. In addition, replacing the 11 codons at the C terminus of the laccase gene with a single cysteine codon influences the rate of heterogeneous electron transfer between and electrode and the copper-containing active site. These results demonstrate for the first time that the rate of electron transfer between an oxidoreductase and an electrode can be enhanced by changes to the primary structure of a protein via site-directed mutagenesis.

  6. Expression and characterization of Aspergillus thermostable phytases in Pichia pastoris.

    PubMed

    Promdonkoy, Patcharee; Tang, Kittapong; Sornlake, Warasirin; Harnpicharnchai, Piyanun; Kobayashi, Rutchadaporn Sriprang; Ruanglek, Vasimon; Upathanpreecha, Tewa; Vesaratchavest, Mongkol; Eurwilaichitr, Lily; Tanapongpipat, Sutipa

    2009-01-01

    Two thermostable phytases were identified from Thai isolates of Aspergillus japonicus BCC18313 (TR86) and Aspergillus niger BCC18081 (TR170). Both genes of 1404 bp length, coding for putative phytases of 468 amino acid residues, were cloned and transferred into Pichia pastoris. The recombinant phytases, r-PhyA86 and r-PhyA170, were expressed as active extracellular, glycosylated proteins with activities of 140 and 100 U mL(-1), respectively. Both recombinant phytases exhibited high affinity for phytate but not for p-nitrophenyl phosphate. Optimal phytase activity was observed at 50 degrees C and pH 5.5. High thermostability, which is partly dependent on glycosylation, was demonstrated for both enzymes, as >50% activity was retained after heating at 100 degrees C for 10 min. The recombinant phytases also exhibited broad pH stability from 2.0 to 8.0 and are resistant to pepsin. In vitro digestibility tests suggested that r-PhyA86 and r-PhyA170 are at least as efficient as commercial phytase for hydrolyzing phytate in corn-based animal feed and are therefore suitable sources of phytase supplement.

  7. Crystal Structure of Alcohol Oxidase from Pichia pastoris

    PubMed Central

    Valerius, Oliver; Feussner, Ivo; Ficner, Ralf

    2016-01-01

    FAD-dependent alcohol oxidases (AOX) are key enzymes of methylotrophic organisms that can utilize lower primary alcohols as sole source of carbon and energy. Here we report the crystal structure analysis of the methanol oxidase AOX1 from Pichia pastoris. The crystallographic phase problem was solved by means of Molecular Replacement in combination with initial structure rebuilding using Rosetta model completion and relaxation against an averaged electron density map. The subunit arrangement of the homo-octameric AOX1 differs from that of octameric vanillyl alcohol oxidase and other dimeric or tetrameric alcohol oxidases, due to the insertion of two large protruding loop regions and an additional C-terminal extension in AOX1. In comparison to other alcohol oxidases, the active site cavity of AOX1 is significantly reduced in size, which could explain the observed preference for methanol as substrate. All AOX1 subunits of the structure reported here harbor a modified flavin adenine dinucleotide, which contains an arabityl chain instead of a ribityl chain attached to the isoalloxazine ring. PMID:26905908

  8. Electrochemical Studies of a Truncated Laccase Produced in Pichia pastoris

    PubMed Central

    Gelo-Pujic, Mirjana; Kim, Hyug-Han; Butlin, Nathan G.; Palmore, G. Tayhas R.

    1999-01-01

    The cDNA that encodes an isoform of laccase from Trametes versicolor (LCCI), as well as a truncated version (LCCIa), was subcloned and expressed by using the yeast Pichia pastoris as the heterologous host. The amino acid sequence of LCCIa is identical to that of LCCI except that the final 11 amino acids at the C terminus of LCCI are replaced with a single cysteine residue. This modification was introduced for the purpose of improving the kinetics of electron transfer between an electrode and the copper-containing active site of laccase. The two laccases (LCCI and LCCIa) are compared in terms of their relative activity with two substrates that have different redox potentials. Results from electrochemical studies on solutions containing LCCI and LCCIa indicate that the redox potential of the active site of LCCIa is shifted to more negative values (411 mV versus normal hydrogen electrode voltage) than that found in other fungal laccases. In addition, replacing the 11 codons at the C terminus of the laccase gene with a single cysteine codon (i.e., LCCI→LCCIa) influences the rate of heterogeneous electron transfer between an electrode and the copper-containing active site (khet for LCCIa = 1.3 × 10−4 cm s−1). These results demonstrate for the first time that the rate of electron transfer between an oxidoreductase and an electrode can be enhanced by changes to the primary structure of a protein via site-directed mutagenesis. PMID:10584012

  9. [Expression of Arabidopsis thaliana thioesterase gene in Pichia pastoris].

    PubMed

    Hao, Zhaocheng; Wang, Tengfei; Li, Zhongkui; Hao, Zikai; Dai, Kun; Wang, Ruiming

    2015-01-01

    Thioesterase catalyzes the hydrolysis of acyl-ACP and saturated fatty acyl chain. It plays a key role in the accumulation of medium chain fatty acids in vivo. In this study, to construct an engineering strain to produce MCFAs, the Arabidopsis acyl-ACP thioesterase gene AtFatA was amplified by PCR from cDNA of arabidopsis and double digested by EcoR I/Xba I, then linked to the plasmid digested with same enzymes to get the recombinant plasmid pPICZaA-AtFatA. We transformed the gene into Pichia pastoris GS115 by electroporation and screened positive colonies by YPD medium with Zeocin. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that the recombinant enzyme had a molecular of 45 kDa band which was consistent with the predicted molecular mass and we constructed the expression system of gene AtFatA in fungus for the first time. Under shake-flask conditions, Gas Chromatograph-Mass Spectrometer-computer results indicated that recombinant strain produced 51% more extracellular free MCFAs than the wild and its yield reached 28.7% of all extracellular fatty acids. This figure is 10% higher than the control group. The result provides a new way to produce MCFAs.

  10. Integrated single-cell analysis shows Pichia pastoris secretes protein stochastically.

    PubMed

    Love, Kerry Routenberg; Panagiotou, Vasiliki; Jiang, Bo; Stadheim, Terrance A; Love, J Christopher

    2010-06-01

    The production of heterologous proteins by secretion from cellular hosts is an important determinant for the cost of biotherapeutics. A single-cell analytical method called microengraving was used to examine the heterogeneity in secretion by the methylotrophic yeast Pichia pastoris. We show that constitutive secretion of a human Fc fragment by P. pastoris is not cell-cycle dependent, but rather fluctuates between states of high and low productivity in a stochastic manner.

  11. Enrichment and identification of Δ(9)-Tetrahydrocannabinolic acid synthase from Pichia pastoris culture supernatants.

    PubMed

    Lange, Kerstin; Poetsch, Ansgar; Schmid, Andreas; Julsing, Mattijs K

    2015-09-01

    This data article refers to the report Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) production in Pichia pastoris enables chemical synthesis of cannabinoids (Lange et. al. 2015) [2]. THCAS was produced on a 2 L lab scale using recombinant P. pastoris KM71 KE1. Enrichment of THCAS as a technically pure enzyme was realized using dialysis and cationic exchange chromatography. nLC-ESI-MS/MS analysis identified THCAS in different fractions obtained by cationic exchange chromatography.

  12. High-level expression, purification and characterisation of porcine β-defensin 2 in Pichia pastoris and its potential as a cost-efficient growth promoter in porcine feed.

    PubMed

    Peng, Zixin; Wang, Anru; Feng, Qiuyue; Wang, Zhaoyue; Ivanova, Iskra Vitanova; He, Xiuping; Zhang, Borun; Song, Weiping

    2014-06-01

    Porcine β-defensin 2 (pBD2), a recently discovered porcine defensin that is produced by the intestine, exerts antimicrobial activities and innate immune effects that are linked to intestinal diseases in pigs. Here, we report a codon-optimised protein corresponding to mature pBD2 cDNA that was expressed and purified in Pichia pastoris yeast. The highest amount of secreted protein (3,694.0 mg/L) was reached 144 h into a 150-h induction during high-density cultivation. Precipitation followed by gel exclusion chromatography yielded 383.7 mg/L purified recombinant pBD2 (rpBD2) with a purity of ~93.7 %. Two recombinant proteins of 5,458.5 and 5,258.4 Da were detected in the mass spectrum due to variation in the amino-terminus. The rpBD2 exhibited high antimicrobial activity against a broad range of pig pathogenic bacteria (minimal inhibitory concentration [MIC] 32-128 μg/mL); the highest activity was observed against Salmonella choleraesuis, Staphylococcus aureus and Streptococcus suis (MIC 32-64 μg/mL). However, rpBD2 also inhibited the growth of probiotics such as Lactobacillus plantarum, Bacillus subtilis and Saccharomyces cerevisiae, but at lower efficacies than the pathogens. Purified or unpurified rpBD2 also maintained high activity over a wide range of pH values (2.0-10.0), a high thermal stability at 100 °C for 40 min and significant resistance to papain, pepsin and trypsin. In addition, the activity of rpBD2 towards S. aureus was unaffected by 10 mM dithiothreitol (DTT) and 20 % dimethyl sulphoxide (DMSO). Our results suggest that pBD2 could be produced efficiently in large quantities in P. pastoris and be a substitute for traditional antibiotics for growth promotion in the porcine industry.

  13. Expression and characterization of HPV-16 L1 capsid protein in Pichia pastoris

    PubMed Central

    Bazan, Silvia Boschi; de Alencar Muniz Chaves, Agtha; Aires, Karina Araújo; Cianciarullo, Aurora Marques; Garcea, Robert L.; Ho, Paulo Lee

    2013-01-01

    Human papillomaviruses (HPVs) are responsible for the most common human sexually transmitted viral infections. Infection with high-risk HPVs, particularly HPV16, is associated with the development of cervical cancer. The papillomavirus L1 major capsid protein, the basis of the currently marketed vaccines, self-assembles into virus-like particles (VLPs). Here, we describe the expression, purification and characterization of recombinant HPV16 L1 produced by a methylotrophic yeast. A codon-optimized HPV16 L1 gene was cloned into a non-integrative expression vector under the regulation of a methanol-inducible promoter and used to transform competent Pichia pastoris cells. Purification of L1 protein from yeast extracts was performed using heparin–sepharose chromatography, followed by a disassembly/reassembly step. VLPs could be assembled from the purified L1 protein, as demonstrated by electron microscopy. The display of conformational epitopes on the VLPs surface was confirmed by hemagglutination and hemagglutination inhibition assays and by immuno-electron microscopy. This study has implications for the development of an alternative platform for the production of a papillomavirus vaccine that could be provided by public health programs, especially in resource-poor areas, where there is a great demand for low-cost vaccines. PMID:19756360

  14. High level expression of human enteropeptidase light chain in Pichia pastoris.

    PubMed

    Pepeliaev, Stanislav; Krahulec, Ján; Černý, Zbyněk; Jílková, Jana; Tlustá, Marcela; Dostálová, Jana

    2011-10-20

    Human enterokinase (enteropeptidase, rhEP), a serine protease expressed in the proximal part of the small intestine, converts the inactive form of trypsinogen to active trypsin by endoproteolytic cleavage. The high specificity of the target site makes enterokinase an ideal tool for cleaving fusion proteins at defined cleavage sites. The mature active enzyme is comprised of two disulfide-linked polypeptide chains. The heavy chain anchors the enzyme in the intestinal brush border membrane, whereas the light chain represents the catalytic enzyme subunit. The synthetic gene encoding human enteropeptidase light chain with His-tag added at the C-terminus to facilitate protein purification was cloned into Pichia pastoris expression plasmids under the control of an inducible AOX1 or constitutive promoters GAP and AAC. Cultivation media and conditions were optimized as well as isolation and purification of the target protein. Up to 4 mg/L of rhEP was obtained in shake-flask experiments and the expression level of about 60-70 mg/L was achieved when cultivating in lab-scale fermentors. The constitutively expressing strains proved more efficient and less labor-demanding than the inducible ones. The rhEP was immobilized on AV 100 sorbent (Iontosorb) to allow repeated use of enterokinase, showing specific activity of 4U/mL of wet matrix.

  15. Production of recombinant human antithrombin by Pichia pastoris.

    PubMed

    Kuwae, Shinobu; Ohyama, Masao; Ohya, Tomoshi; Ohi, Hideyuki; Kobayashi, Kaoru

    2005-03-01

    This paper deals with the production of recombinant human antithrombin (rAT) by the methylotrophic yeast Pichia pastoris. In preliminary methanol-limited fed-batch fermentation, the rAT concentration reached 324 mg/l at 192 h of cultivation, but the specific heparin cofactor (HC) activity of rAT in the culture supernatant was 10% of that of plasma-derived antithrombin (pAT). To improve the specific HC activity of rAT, effort was first focused on the optimization of culture pH and media composition, resulting in protection of rAT against pH-dependent instability and proteolytic degradation. However, even in the optimized methanol-limited fed-batch fermentation, the specific HC activity of rAT in the culture supernatant was still 20% that of pAT. To investigate the unknown mechanisms involved in the decreased specific HC activity of rAT, the culture supernatant of mock-transfected cells was prepared by methanol-limited fed-batch fermentation. When pAT was added to this supernatant, a rapid decrease in HC activity was observed; the residual HC activity was 26% after 24 h of incubation at 25 degrees C. The loss of pAT activity was prevented by addition of a formaldehyde scavenger, amino urea, to the supernatant. In addition, alcohol oxidase activity was observed in the supernatant, resulting in the accumulation of formaldehyde in the culture broth. These results suggest that the formaldehyde produced by methanol oxidation in the culture broth of P. pastoris might decrease the HC activity of rAT during fermentation. Replacing the methanol with glycerol as the carbon source improved the specific HC activity of rAT from 20% to above 40% of that of pAT. In the glycerol-limited fed-batch fermentation, rAT is expressed at 100 mg/l under the control of the truncated mutated AOX2 promoter.

  16. Recent advances in the production of recombinant subunit vaccines in Pichia pastoris.

    PubMed

    Wang, Man; Jiang, Shuai; Wang, Yefu

    2016-04-01

    Recombinant protein subunit vaccines are formulated using defined protein antigens that can be produced in heterologous expression systems. The methylotrophic yeast Pichia pastoris has become an important host system for the production of recombinant subunit vaccines. Although many basic elements of P. pastoris expression system are now well developed, there is still room for further optimization of protein production. Codon bias, gene dosage, endoplasmic reticulum protein folding and culture condition are important considerations for improved production of recombinant vaccine antigens. Here we comment on current advances in the application of P. pastoris for the synthesis of recombinant subunit vaccines.

  17. Toxicological Evaluation of Lactase Derived from Recombinant Pichia pastoris

    PubMed Central

    Liu, Yifei; Chen, Delong; Luo, Yunbo; Huang, Kunlun; Zhang, Wei; Xu, Wentao

    2014-01-01

    A recombinant lactase was expressed in Pichia pastoris, resulting in enzymatic activity of 3600 U/mL in a 5 L fermenter. The lactase product was subjected to a series of toxicological tests to determine its safety for use as an enzyme preparation in the dairy industry. This recombinant lactase had the highest activity of all recombinant strains reported thus far. Acute oral toxicity, mutagenicity, genotoxic, and subchronic toxicity tests performed in rats and mice showed no death in any groups. The lethal dose 50% (LD50) based on the acute oral toxicity study is greater than 30 mL/kg body weight, which is in accordance with the 1500 L milk consumption of a 50 kg human daily. The lactase showed no mutagenic activity in the Ames test or a mouse sperm abnormality test at levels of up to 5 mg/plate and 1250 mg/kg body weight, respectively. It also showed no genetic toxicology in a bone marrow cell micronucleus test at levels of up to 1250 mg/kg body weight. A 90-day subchronic repeated toxicity study via the diet with lactase levels up to 1646 mg/kg (1000-fold greater than the mean human exposure) did not show any treatment-related significant toxicological effects on body weight, food consumption, organ weights, hematological and clinical chemistry, or histopathology compared to the control groups. This toxicological evaluation system is comprehensive and can be used in the safety evaluation of other enzyme preparations. The lactase showed no acute, mutagenic, genetic, or subchronic toxicity under our evaluation system. PMID:25184300

  18. Toxicological evaluation of lactase derived from recombinant Pichia pastoris.

    PubMed

    Zou, Shiying; He, Xiaoyun; Liu, Yifei; Chen, Delong; Luo, Yunbo; Huang, Kunlun; Zhang, Wei; Xu, Wentao

    2014-01-01

    A recombinant lactase was expressed in Pichia pastoris, resulting in enzymatic activity of 3600 U/mL in a 5 L fermenter. The lactase product was subjected to a series of toxicological tests to determine its safety for use as an enzyme preparation in the dairy industry. This recombinant lactase had the highest activity of all recombinant strains reported thus far. Acute oral toxicity, mutagenicity, genotoxic, and subchronic toxicity tests performed in rats and mice showed no death in any groups. The lethal dose 50% (LD50) based on the acute oral toxicity study is greater than 30 mL/kg body weight, which is in accordance with the 1500 L milk consumption of a 50 kg human daily. The lactase showed no mutagenic activity in the Ames test or a mouse sperm abnormality test at levels of up to 5 mg/plate and 1250 mg/kg body weight, respectively. It also showed no genetic toxicology in a bone marrow cell micronucleus test at levels of up to 1250 mg/kg body weight. A 90-day subchronic repeated toxicity study via the diet with lactase levels up to 1646 mg/kg (1000-fold greater than the mean human exposure) did not show any treatment-related significant toxicological effects on body weight, food consumption, organ weights, hematological and clinical chemistry, or histopathology compared to the control groups. This toxicological evaluation system is comprehensive and can be used in the safety evaluation of other enzyme preparations. The lactase showed no acute, mutagenic, genetic, or subchronic toxicity under our evaluation system.

  19. A high-throughput protein expression system in Pichia pastoris using a newly developed episomal vector

    USDA-ARS?s Scientific Manuscript database

    We describe here the construction of a Gateway-compatible vector, pBGP1-DEST, for rapid and convenient preparation of expression plasmids for production of secretory proteins in Pichia pastoris. pBGP1-DEST directs the synthesis of a fusion protein consisting of the N-terminal signal and pro-sequence...

  20. Optimization of the fermentation and downstream processes for human enterokinase production in Pichia pastoris.

    PubMed

    Melicherová, Kristína; Krahulec, Ján; Šafránek, Martin; Lišková, Veronika; Hopková, Diana; Széliová, Diana; Turňa, Ján

    2017-03-01

    Enterokinase is one of the most frequently used enzymes for the removal of affinity tags from target recombinant proteins. In this study, several fermentation strategies were assayed for the production of human enterokinase in Pichia pastoris under constitutive GAP promoter. Two of them with controlled specific growth rate during whole cultivation showed a very low enterokinase activity, under 1 U/ml, of the fermentation medium. On the contrary, the combined fermentation with a maximum specific growth rate at the initial phase of the fermentation and stationary-like phase during the rest of the fermentation showed a significant accumulation of the enterokinase in the medium, which counted up to 1400 U/ml. Lower cultivation temperature had a negative impact on the enzyme accumulation during this fermentation strategy. Downstream processes were focused on buffer environment optimization directly after cultivation, as at this time, the most amount of the activity is eliminated by endogenous proteases. Slightly positive effect on enzyme activity in the medium had an addition of liquid storage solution of EDTA and KOH to adjust pH to 8 and molarity of the EDTA to 50 mM. During the purification process, a significant amount of the enzyme was detected to be lost, which counted up to 90%. The purified enzyme, enterokinase, kept quality standard of the published enzymes.

  1. A Simplified and Efficient Process for Insulin Production in Pichia pastoris

    PubMed Central

    Polez, Sulena; Origi, Domenico; Zahariev, Sotir; Guarnaccia, Corrado; Tisminetzky, Sergio G.; Skoko, Nataša

    2016-01-01

    A significant barrier to insulin is affordability. In this manuscript we describe improvements to key steps in the insulin production process in Pichia pastoris that reduce cost and time. The strategy for recovery and processing of human insulin precursor has been streamlined to two steps from bioreactor to the transpeptidation reaction. In the first step the insulin precursor secreted during the methanol induction phase is recovered directly from the culture broth using Tangential Flow Filtration with a Prostak™ module eliminating the laborious and time-consuming multi-step clarification, including centrifugation. In the second step the protein is applied at very high loadings on a cation exchange resin and eluted in a mixture of water and ethanol to obtain a concentrated insulin precursor, suitable for use directly in the transpeptidation reaction. Overall the yield from insulin precursor to human insulin was 51% and consisted of three purification chromatography steps. In addition we describe a method for recovery of the excess of H-Thr(tBu)-OtBu from the transpeptidation reaction mixture, one of the more costly reagents in the process, along with its successful reuse. PMID:27907132

  2. Heterologous expression of the plant cysteine protease bromelain and its inhibitor in Pichia pastoris.

    PubMed

    Luniak, Nora; Meiser, Peter; Burkart, Sonja; Müller, Rolf

    2017-01-01

    Expression of proteases in heterologous hosts remains an ambitious challenge due to severe problems associated with digestion of host proteins. On the other hand, proteases are broadly used in industrial applications and resemble promising drug candidates. Bromelain is an herbal drug that is medicinally used for treatment of oedematous swellings and inflammatory conditions and consists in large part of proteolytic enzymes. Even though various experiments underline the requirement of active cysteine proteases for biological activity, so far no investigation succeeded to clearly clarify the pharmacological mode of action of bromelain. The potential role of proteases themselves and other molecules of this multi-component extract currently remain largely unknown or ill defined. Here, we set out to express several bromelain cysteine proteases as well as a bromelain inhibitor molecule in order to gain defined molecular entities for subsequent studies. After cloning the genes from its natural source Ananas comosus (pineapple plant) into Pichia pastoris and subsequent fermentation and purification, we obtained active protease and inhibitor molecules which were subsequently biochemically characterized. Employing purified bromelain fractions paves the way for further elucidation of pharmacological activities of this natural product. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:54-65, 2017. © 2016 American Institute of Chemical Engineers.

  3. Recombinant expression and biological characterization of the antimicrobial peptide fowlicidin-2 in Pichia pastoris

    PubMed Central

    Xing, Li-Wei; Tian, Shi-Xun; Gao, Wei; Yang, Na; Qu, Pei; Liu, Di; Jiao, Jian; Wang, Jue; Feng, Xing-Jun

    2016-01-01

    Fowlicidins are a group of cathelicidin antimicrobial peptides that were initially identified in chickens. Fowlicidin-2, which is composed of 31 amino acids, is widely expressed in the majority of tissues in chickens and has an important role in innate immunity. In the present study, a recombinant expression system for fowlicidin-2 was successfully constructed using Pichia pastoris X-33 and the expression vector pPICZα-A. Under the optimized fermentation conditions, 85.6 mg fowlicidin-2 with >95% purity was obtained from 1 liter culture medium following purification by ion exchange chromatography and reversed phase high performance liquid chromatography. The recombinant fowlicidin-2 exhibited broad spectrum antimicrobial activity and had a minimum inhibitory concentration ranging from 1 to 4 µM. Furthermore, recombinant fowlicidin-2 exhibited hemolytic activity, promoting 50% human erythrocyte hemolysis in the concentration range of 128–256 µM, and anticancer activity, resulting in the death of 50% of A375 human malignant melanoma cells in the concentration range of 2–4 µM. The results of the present study suggest that recombinant fowlicidin-2 may be a promising candidate for therapeutic applications. PMID:27698732

  4. High yield of recombinant human Apolipoprotein A-I expressed in Pichia pastoris by using mixed-mode chromatography.

    PubMed

    Narasimhan Janakiraman, Vignesh; Noubhani, Abdelmajid; Venkataraman, Krishnan; Vijayalakshmi, Mookambeswaran; Santarelli, Xavier

    2016-01-01

    A vast majority of the cardioprotective properties exhibited by High-Density Lipoprotein (HDL) is mediated by its major protein component Apolipoprotein A-I (ApoA1). In order to develop a simplified bioprocess for producing recombinant human Apolipoprotein A-I (rhApoA1) in its near-native form, rhApoA1was expressed without the use of an affinity tag in view of its potential therapeutic applications. Expressed in Pichia pastoris at expression levels of 58.2 mg ApoA1 per litre of culture in a reproducible manner, the target protein was purified by mixed-mode chromatography using Capto™ MMC ligand with a purity and recovery of 84% and 68%, respectively. ApoA1 purification was scaled up to Mixed-mode Expanded Bed Adsorption chromatography to establish an 'on-line' process for the efficient capture of rhApoA1 directly from the P. pastoris expression broth. A polishing step using anion exchange chromatography enabled the recovery of ApoA1 up to 96% purity. Purified ApoA1 was identified and verified by RPLC-ESI-Q-TOF mass spectrometry. This two-step process would reduce processing times and therefore costs in comparison to the twelve-step procedure currently used for recovering rhApoA1 from P. pastoris. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Recombinant production of bacterial toxins and their derivatives in the methylotrophic yeast Pichia pastoris

    PubMed Central

    Gurkan, Cemal; Ellar, David J

    2005-01-01

    The methylotrophic yeast Pichia pastoris is a popular heterologous expression host for the recombinant production of a variety of prokaryotic and eukaryotic proteins. The rapid emergence of P. pastoris as a robust heterologous expression host was facilitated by the ease with which it can be manipulated and propagated, which is comparable to that of Escherichia coli and Saccharomyces cerevisiae. P. pastoris offers further advantages such as the tightly-regulated alcohol oxidase promoter that is particularly suitable for heterologous expression of foreign genes. While recombinant production of bacterial toxins and their derivatives is highly desirable, attempts at their heterologous expression using the traditional E. coli expression system can be problematic due to the formation of inclusion bodies that often severely limit the final yields of biologically active products. However, recent literature now suggests that P. pastoris may be an attractive alternative host for the heterologous production of bacterial toxins, such as those from the genera Bacillus, Clostridium, and Corynebacterium, as well as their more complex derivatives. Here, we review the recombinant production of bacterial toxins and their derivatives in P. pastoris with special emphasis on their potential clinical applications. Considering that de novo design and construction of synthetic toxin genes have often been necessary to achieve optimal heterologous expression in P. pastoris, we also present general guidelines to this end based on our experience with the P. pastoris expression of the Bacillus thuringiensis Cyt2Aa1 toxin. PMID:16336647

  6. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins.

    PubMed

    Irani, Zahra Azimzadeh; Kerkhoven, Eduard J; Shojaosadati, Seyed Abbas; Nielsen, Jens

    2016-05-01

    Pichia pastoris is used for commercial production of human therapeutic proteins, and genome-scale models of P. pastoris metabolism have been generated in the past to study the metabolism and associated protein production by this yeast. A major challenge with clinical usage of recombinant proteins produced by P. pastoris is the difference in N-glycosylation of proteins produced by humans and this yeast. However, through metabolic engineering, a P. pastoris strain capable of producing humanized N-glycosylated proteins was constructed. The current genome-scale models of P. pastoris do not address native nor humanized N-glycosylation, and we therefore developed ihGlycopastoris, an extension to the iLC915 model with both native and humanized N-glycosylation for recombinant protein production, but also an estimation of N-glycosylation of P. pastoris native proteins. This new model gives a better prediction of protein yield, demonstrates the effect of the different types of N-glycosylation of protein yield, and can be used to predict potential targets for strain improvement. The model represents a step towards a more complete description of protein production in P. pastoris, which is required for using these models to understand and optimize protein production processes.

  7. Codon modification for the DNA sequence of a single-chain Fv antibody against clenbuterol and expression in Pichia pastoris

    USDA-ARS?s Scientific Manuscript database

    To improve expression efficiency of the recombinant single-chain variable fragment (scFv) against clenbuterol (CBL) obtained from mouse in the methylotrophic yeast Pichia pastoris (P. pastoris) GS115, the DNA sequence encoding for CBL-scFv was designed and synthesized based on the codon bias of P. p...

  8. Codon Optimization Significantly Improves the Expression Level of a Keratinase Gene in Pichia pastoris

    PubMed Central

    Hu, Hong; Gao, Jie; He, Jun; Yu, Bing; Zheng, Ping; Huang, Zhiqing; Mao, Xiangbing; Yu, Jie; Han, Guoquan; Chen, Daiwen

    2013-01-01

    The main keratinase (kerA) gene from the Bacillus licheniformis S90 was optimized by two codon optimization strategies and expressed in Pichia pastoris in order to improve the enzyme production compared to the preparations with the native kerA gene. The results showed that the corresponding mutations (synonymous codons) according to the codon bias in Pichia pastoris were successfully introduced into keratinase gene. The highest keratinase activity produced by P. pastoris pPICZαA-kerAwt, pPICZαA-kerAopti1 and pPICZαA-kerAopti2 was 195 U/ml, 324 U/ml and 293 U/ml respectively. In addition, there was no significant difference in biomass concentration, target gene copy numbers and relative mRNA expression levels of every positive strain. The molecular weight of keratinase secreted by recombinant P. pastori was approx. 39 kDa. It was optimally active at pH 7.5 and 50°C. The recombinant keratinase could efficiently degrade both α-keratin (keratin azure) and β-keratin (chicken feather meal). These properties make the P. pastoris pPICZαA-kerAopti1 a suitable candidate for industrial production of keratinases. PMID:23472192

  9. New opportunities by synthetic biology for biopharmaceutical production in Pichia pastoris

    PubMed Central

    Vogl, Thomas; Hartner, Franz S; Glieder, Anton

    2013-01-01

    Biopharmaceuticals are an integral part of modern medicine and pharmacy. Both, the development and the biotechnological production of biopharmaceuticals are highly cost-intensive and require suitable expression systems. In this review we discuss established and emerging tools for reengineering the methylotrophic yeast Pichia pastoris for biopharmaceutical production. Recent advancements of this industrial expression system through synthetic biology include synthetic promoters to avoid methanol induction and to fine-tune protein production. New platform strains and molecular cloning tools as well as in vivo glycoengineering to produce humanized glycoforms have made P. pastoris an important host for biopharmaceutical production. PMID:23522654

  10. High-level expression of Rhodotorula gracilis D-amino acid oxidase in Pichia pastoris.

    PubMed

    Abad, Sandra; Nahalka, Jozef; Winkler, Margit; Bergler, Gabriele; Speight, Robert; Glieder, Anton; Nidetzky, Bernd

    2011-03-01

    By combining gene design and heterologous over-expression of Rhodotorula gracilis D-amino acid oxidase (RgDAO) in Pichia pastoris, enzyme production was enhanced by one order of magnitude compared to literature benchmarks, giving 350 kUnits/l of fed-batch bioreactor culture with a productivity of 3.1 kUnits/l h. P. pastoris cells permeabilized by freeze-drying and incubation in 2-propanol (10% v/v) produce a highly active (1.6 kUnits/g dry matter) and stable oxidase preparation. Critical bottlenecks in the development of an RgDAO catalyst for industrial applications have been eliminated.

  11. Production of bioactive recombinant rat soluble receptor for advanced glycation end products (rrsRAGE) in Pichia pastoris.

    PubMed

    Xia, Peng; Gao, Jin; Guan, Wen; Li, Jingjing; Yu, Xiaolan; Wang, Fangyuan; He, Honglin; Deng, Qing; Zhou, Liang; Yuan, Yunsheng; Han, Wei; Yu, Yan

    2017-10-01

    Soluble receptor for advanced glycation end products (sRAGE), a natural inhibitor of RAGE, is considered to be a putative therapeutic molecule for a variety of diseases and a biomarker for certain conditions. To further study the function of sRAGE, recombinant rat sRAGE (rrsRAGE) was expressed and produced in a eukaryotic system. The open reading frame of rat sRAGE was cloned downstream of the methanol-inducible alcohol oxidase promoter of pPICZαA vector, and Pichia pastoris strain X-33 was used as the host strain. The expression of rrsRAGE was achieved by fermentation in a 15-L bioreactor and the resulting fermentation broth was subjected to purification on a cation exchange chromatography column. The purification of rrsRAGE reached 95% after size exclusion chromatography(SEC). The bioactivity of the purified protein was confirmed in a SH-SY5Y cell proliferation assay. The biological function of the purified rrsRAGE protein rat CCl4-induced model was then examined. Treatment with rrsRAGE resulted in significantly lower liver fibrosis and lower serum level of ALT, suggesting that sRAGE prevent liver from injury and fibrosis. In conclusion, we achieved high-efficiency production of bioactive rrsRAGE in P. pastoris. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... pastoris dried yeast may be used in feed formulations of broiler chickens as a source of protein not to... the following percent-by-weight specifications: (1) Crude protein, not less than 60 percent. (2) Crude...

  13. Cloning and expression of Pectobacterium carotovorum endo-polygalacturonase gene in Pichia pastoris for production of oligogalacturonates

    USDA-ARS?s Scientific Manuscript database

    A bacterial endo-polygalacturonase (endo-PGase) gene from the plant pathogen Pectobacterium carotovorum was cloned into pGAPZaA vector and constitutively expressed in Pichia pastoris. The recombinant endo-PGase secreted by the Pichia clone showed a 1.7 fold increase when the culture medium included ...

  14. Novel homologous lactate transporter improves L-lactic acid production from glycerol in recombinant strains of Pichia pastoris.

    PubMed

    de Lima, Pollyne Borborema Almeida; Mulder, Kelly Cristina Leite; Melo, Nadiele Tamires Moreira; Carvalho, Lucas Silva; Menino, Gisele Soares; Mulinari, Eduardo; de Castro, Virgilio H; Dos Reis, Thaila F; Goldman, Gustavo Henrique; Magalhães, Beatriz Simas; Parachin, Nádia Skorupa

    2016-09-15

    Crude glycerol is the main byproduct of the biodiesel industry. Although it can have different applications, its purification is costly. Therefore, in this study a biotechnological route has been proposed for further utilization of crude glycerol in the fermentative production of lactic acid. This acid is largely utilized in food, pharmaceutical, textile, and chemical industries, making it the hydroxycarboxylic acid with the highest market potential worldwide. Currently, industrial production of lactic acid is done mainly using sugar as the substrate. Thus here, for the first time, Pichia pastoris has been engineered for heterologous L-lactic acid production using glycerol as a single carbon source. For that, the Bos taurus lactate dehydrogenase gene was introduced into P. pastoris. Moreover, a heterologous and a novel homologous lactate transporter have been evaluated for L-lactic acid production. Batch fermentation of the P. pastoris X-33 strain producing LDHb allowed for lactic acid production in this yeast. Although P. pastoris is known for its respiratory metabolism, batch fermentations were performed with different oxygenation levels, indicating that lower oxygen availability increased lactic acid production by 20 %, pushing the yeast towards a fermentative metabolism. Furthermore, a newly putative lactate transporter from P. pastoris named PAS has been identified by search similarity with the lactate transporter from Saccharomyces cerevisiae Jen1p. Both heterologous and homologous transporters, Jen1p and PAS, were evaluated in one strain already containing LDH activity. Fed-batch experiments of P. pastoris strains carrying the lactate transporter were performed with the batch phase at aerobic conditions followed by an aerobic oxygen-limited phase where production of lactic acid was favored. The results showed that the strain containing PAS presented the highest lactic acid titer, reaching a yield of approximately 0.7 g/g. We showed that P. pastoris has a

  15. Expression of the human tumor suppressor p53 induces cell death in Pichia pastoris.

    PubMed

    Abdelmoula-Souissi, Salma; Mabrouk, Imed; Gargouri, Ali; Mokdad-Gargouri, Raja

    2012-02-01

    The human tumor suppressor p53 is known as guardian of genome because of its involvement in many signals related to cell life or death. In this work, we report that human p53 induces cell death in the yeast Pichia pastoris. We showed a growth inhibition effect, which increased with the p53 protein expression level in recombinant Mut(s) (methanol utilization slow) strain of Pichia. However, no effect of p53 was observed in recombinant strain of Mut(+) (methanol utilization plus) phenotype. Interestingly, human p53 induces cell death in recombinant strains Mut(s) with characteristic markers of apoptosis such as DNA fragmentation, exposure of phosphatidylserine, and reactive oxygen species generation. Taken together, our results strongly suggest that human p53 is biologically active in this heterologous context. Thus, we propose that P. pastoris could be a useful tool to better understand the biological function of human p53.

  16. [Optimization on the production of analgesic peptide from Buthus martensii Karsch in Pichia pastoris].

    PubMed

    Yang, Jin-ling; He, Hui-xia; Zhu, Hui-xin; Cheng, Ke-di; Zhu, Ping

    2009-01-01

    The technology of liquid fermentation for producing the recombinant analgesic peptide BmK AngM1 from Buthus martensii Karsch in Pichia pastoris was studied by single-factor and orthogonal test. The results showed that the optimal culture conditions were as follows: 1.2% methanol, 0.6% casamino acids, initial pH 6.0, and three times of basal inoculation volume. Under the above culture conditions, the expression level of recombinant BmK AngM1 in Pichia pastoris was above 500 mg x L(-1), which was more than three times of the control. The study has laid a foundation for the large-scale preparation of BmK AngM1 to meet the needs of theoretical research of BmK AngM1 and development of new medicines.

  17. Pichia pastoris is superior to E. coli for the production of recombinant allergenic non-specific lipid-transfer proteins.

    PubMed

    Pokoj, Sven; Lauer, Iris; Fötisch, Kay; Himly, Martin; Mari, Adriano; Enrique, Ernesto; Miguel-Moncin, Maria Del Mar San; Lidholm, Jonas; Vieths, Stefan; Scheurer, Stephan

    2010-01-01

    Non-specific lipid-transfer proteins (nsLTP) from food and pollen are clinically important allergens, especially in patients recruited from the Mediterranean area. For the use of recombinant nsLTPs in allergy diagnosis and preclinical allergy studies the preparation of nsLTPs in a properly folded and biologically active form is required. Using hazelnut nsLTP (Cor a 8) as a model allergen, heterologous over-expression in Escherichia coli and Pichia pastoris was compared. Recombinant Cor a 8 derived from E. coli and P. pastoris was purified by IMAC and SEC or ammonium sulphate precipitation followed by IEC and SEC, respectively. The recombinant proteins were characterized with regard to IgE-binding by immunoblotting and ELISA, structure by N-terminal sequencing, CD-spectroscopy and LS and to their biological activity using an in vitro basophil histamine release assay. Purification of hazelnut nsLTP from bacterial lysate under native conditions resulted in a low yield of Cor a 8. In addition, the preparation contained non-IgE-reactive aggregations besides the IgE-reactive monomer. In contrast, the yield of rCor a 8 produced in P. pastoris was approximately 270-fold higher and impurities with oligomers have not been detected. Purified monomeric Cor a 8 from bacteria and yeast showed similar IgE-antibody reactivity and secondary structures, and both were capable of inducing histamine release from basophils. In summary, P. pastoris is superior to E. coli as expression system for the production of large quantities of soluble, properly folded, and biologically active rCor a 8.

  18. Differential gene expression in recombinant Pichia pastoris analysed by heterologous DNA microarray hybridisation

    PubMed Central

    Sauer, Michael; Branduardi, Paola; Gasser, Brigitte; Valli, Minoska; Maurer, Michael; Porro, Danilo; Mattanovich, Diethard

    2004-01-01

    Background Pichia pastoris is a well established yeast host for heterologous protein expression, however, the physiological and genetic information about this yeast remains scanty. The lack of a published genome sequence renders DNA arrays unavailable, thereby hampering more global investigations of P. pastoris from the beginning. Here, we examine the suitability of Saccharomyces cerevisiae DNA microarrays for heterologous hybridisation with P. pastoris cDNA. Results We could show that it is possible to obtain new and valuable information about transcriptomic regulation in P. pastoris by probing S. cerevisiae DNA microarrays. The number of positive signals was about 66 % as compared to homologous S. cerevisiae hybridisation, and both the signal intensities and gene regulations correlated with high significance between data obtained from P. pastoris and S. cerevisiae samples. The differential gene expression patterns upon shift from glycerol to methanol as carbon source were investigated in more detail. Downregulation of TCA cycle genes and a decrease of genes related to ribonucleotide and ribosome synthesis were among the major effects identified. Conclusions We could successfully demonstrate that heterologous microarray hybridisations allow deep insights into the transcriptomic regulation processes of P. pastoris. The observed downregulation of TCA cycle and ribosomal synthesis genes correlates to a significantly lower specific growth rate during the methanol feed phase. PMID:15610561

  19. Optimization of a glycoengineered Pichia pastoris cultivation process for commercial antibody production.

    PubMed

    Ye, Jianxin; Ly, Jeffrey; Watts, Kathryn; Hsu, Amy; Walker, Andre; McLaughlin, Kathleen; Berdichevsky, Marina; Prinz, Bianka; Sean Kersey, D; d'Anjou, Marc; Pollard, David; Potgieter, Thomas

    2011-01-01

    Glycoengineering enabled the production of proteins with human N-linked glycans by Pichia pastoris. This study used a glycoengineered P. pastoris strain which is capable of producing humanized glycoprotein with terminal galactose for monoclonal antibody production. A design of experiments approach was used to optimize the process parameters. Followed by further optimization of the specific methanol feed rate, induction duration, and the initial induction biomass, the resulting process yielded up to 1.6 g/L of monoclonal antibody. This process was also scaled-up to 1,200-L scale, and the process profiles, productivity, and product quality were comparable with 30-L scale. The successful scale-up demonstrated that this glycoengineered P. pastoris fermentation process is a robust and commercially viable process.

  20. Sterol glucosyltransferases have different functional roles in Pichia pastoris and Yarrowia lipolytica.

    PubMed

    Stasyk, Oleh V; Nazarko, Taras Y; Stasyk, Olena G; Krasovska, Olena S; Warnecke, Dirk; Nicaud, Jean-Marc; Cregg, James M; Sibirny, Andrei A

    2003-01-01

    Mutants of the methanol-utilizing yeast Pichia pastoris and the alkane-utilizing yeast Yarrowia lipolytica defective in the orthologue of UGT51 (encoding sterol glucosyltransferase) were isolated and compared. These mutants do not contain the specific ergosterol derivate, ergosterol glucoside. We observed that the P. pastoris UGT51 gene is required for pexophagy, the process by which peroxisomes containing methanol-metabolizing enzymes are selectively shipped to and degraded in the vacuole upon shifting methanol-grown cells of this yeast to glucose or ethanol. PpUGT51 is also required for other vacuole related processes. In contrast, the Y. lipolytica UGT51 gene is required for utilization of decane, but not for pexophagy. Thus, sterol glucosyltransferases play different functional roles in P. pastoris and Y. lipolytica.

  1. Expression of enzymes for the usage in food and feed industry with Pichia pastoris.

    PubMed

    Spohner, Sebastian C; Müller, Hagen; Quitmann, Hendrich; Czermak, Peter

    2015-05-20

    The methylotrophic yeast Pichia pastoris is an established protein expression host for the production of industrial enzymes. This yeast can be grown to very high cell densities and produces high titers of recombinant protein, which can be expressed intercellularly or be secreted to the fermentation medium. P. pastoris offers some advantages over other established expression systems especially in protein maturation. In food and feed production many enzymatically catalyzed processes are reported and the demand for new enzymes grows continuously. For instance the unique catalytic properties of enzymes are used to improve resource efficiency, maintain quality, functionalize food, and to prevent off-flavors. This review aims to provide an overview on recent developments in heterologous production of enzymes with P. pastoris and their application within the food sector.

  2. An episomal expression vector for screening mutant gene libraries in Pichia pastoris.

    PubMed

    Lee, Charles C; Williams, Tina G; Wong, Dominic W S; Robertson, George H

    2005-07-01

    Screening mutant gene libraries for isolating improved enzyme variants is a powerful technique that benefits from effective and reliable biological expression systems. Pichia pastoris is a very useful organism to express proteins that are inactive in other hosts such as Escherichia coli and Saccharomyces cerevisiae. However, most P. pastoris expression plasmids are designed to integrate into the host chromosome and hence are not as amenable to high-throughput screening projects. We have designed a P. pastoris expression vector, pBGP1, incorporating an autonomous replication sequence that allows the plasmid to exist as an episomal element. This vector contains the alpha-factor signal sequence to direct secretion of the mutant enzymes. Expression of the genes is driven by the constitutive GAP promoter, thus eliminating the need for timed or cell density-specific inductions. The pBGP1 plasmid was used to screen a xylanase gene library to isolate higher activity mutants.

  3. Enhancement of heterogeneous alkaline xylanase production in Pichia pastoris GS115

    NASA Astrophysics Data System (ADS)

    Zheng, Wei

    2017-08-01

    A series of strategies were applied to improve expression level of the recombinant alkaline xylanase from Bacillus pumilus G1-3 in Pichia pastoris GS115. Codon optimization of xylanase gene xynG1-3 from B. pumilus G1-3 were carried out for its heterogeneous expression in P. pastoris. The activity of xylanase encoded by optimized gene (xynG1-3-opt) was up to 33641 U/mL, which was 37% higher than that by wild-type (xynG1-3) gene. The results will greatly contribute to increasing the production of recombinant proteins in P. pastoris and improving the industrial production of the alkaline xylanase.

  4. Evaluating Potential Risks of Food Allergy and Toxicity of Soy Leghemoglobin Expressed in Pichia Pastoris.

    PubMed

    Jin, Yuan; He, Xiaoyun; Andoh-Kumi, Kwame; Fraser, Rachel Z; Lu, Mei; Goodman, Richard E

    2017-09-18

    The Soybean (Glycine max) leghemoglobin c2 (LegHb) gene was introduced into Pichia pastoris yeast for sustainable production of a heme-carrying protein, for organoleptic use in plant-based meat. The potential allergenicity and toxicity of LegHb and 17 Pichia host-proteins each representing ≥1% of total protein in production batches were evaluated by literature review, bioinformatics sequence comparisons to known allergens or toxins, and in vitro pepsin digestion. Literature searches found no evidence of allergenicity or toxicity for these proteins. There were no significant sequence matches of LegHb to known allergens or toxins. Eleven Pichia proteins had modest identity matches to minor environmental allergens and thirteen Pichia proteins had significant matches to proteins from toxic sources. Yet the matched allergens and toxins had similar matches to proteins from the commonly consumed yeast Saccharomyces cerevisiae, without evidence of food allergy or toxicity. The demonstrated history of safe use indicates additional tests for allergenicity and toxicity are not needed. The LegHb and Pichia sp. proteins were rapidly digested by pepsin at pH 2. These results demonstrate that foods containing recombinant soy LegHb produced in Pichia sp. are unlikely to present an unacceptable risk of allergenicity or toxicity to consumers. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris.

    PubMed

    Wriessnegger, Tamara; Augustin, Peter; Engleder, Matthias; Leitner, Erich; Müller, Monika; Kaluzna, Iwona; Schürmann, Martin; Mink, Daniel; Zellnig, Günther; Schwab, Helmut; Pichler, Harald

    2014-07-01

    The sesquiterpenoid (+)-nootkatone is a highly demanded and highly valued aroma compound naturally found in grapefruit, pummelo or Nootka cypress tree. Extraction of (+)-nootkatone from plant material or its production by chemical synthesis suffers from low yields and the use of environmentally harmful methods, respectively. Lately, major attention has been paid to biotechnological approaches, using cell extracts or whole-cell systems for the production of (+)-nootkatone. In our study, the yeast Pichia pastoris initially was applied as whole-cell biocatalyst for the production of (+)-nootkatone from (+)-valencene, the abundant aroma compound of oranges. Therefore, we generated a strain co-expressing the premnaspirodiene oxygenase of Hyoscyamus muticus (HPO) and the Arabidopsis thaliana cytochrome P450 reductase (CPR) that hydroxylated extracellularly added (+)-valencene. Intracellular production of (+)-valencene by co-expression of valencene synthase from Callitropsis nootkatensis resolved the phase-transfer issues of (+)-valencene. Bi-phasic cultivations of P. pastoris resulted in the production of trans-nootkatol, which was oxidized to (+)-nootkatone by an intrinsic P. pastoris activity. Additional overexpression of a P. pastoris alcohol dehydrogenase and truncated hydroxy-methylglutaryl-CoA reductase (tHmg1p) significantly enhanced the (+)-nootkatone yield to 208mg L(-1) cell culture in bioreactor cultivations. Thus, metabolically engineered yeast P. pastoris represents a valuable, whole-cell system for high-level production of (+)-nootkatone from simple carbon sources. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Cloning and expression of an active aspartic proteinase from Mucor circinelloides in Pichia pastoris.

    PubMed

    Gama Salgado, Jose Antonio; Kangwa, Martin; Fernandez-Lahore, Marcelo

    2013-11-09

    Extracellular aspartic proteinase (MCAP) produced by Mucor circinelloides in solid state fermentations has been shown to possess milk clotting activity and represents a potential replacement for bovine chymosin in cheese manufacturing. Despite its prospects in the dairy industry, the molecular characteristics of this enzyme remain unknown. This work focuses on MCAP cloning and optimization of heterologous expression in Pichia pastoris, and characterization of the enzyme. The cloning of cDNA sequence encoding MCAP from M. circinelloides was performed using a fragment of approximately 1 kbp as a probe. The fragment was amplified using non-specific primers designed from the NDIEYYG and KNNYVVFN consensus motifs from aspartic proteinases of different fungi. Gene specific primers were designed to amplify a full-length cDNA using SMART™ RACE PCR. MCAP was expressed in P. pastoris under the control of the constitutive GAP promoter. It was shown that P. pastoris secreted non-glycosylated and glycosylated MCAPs with molecular weights of 33 and 37 kDa, respectively. A novel MCAP was expressed in P. pastoris and efficiently secreted into the culture medium. The expression of the heterologous proteins was significantly increased due to advantages in codon usage as compared to other expression systems. The results suggest that P. pastoris could be exploited as a safe production platform for the milk clotting enzyme.

  7. Cloning and expression of an active aspartic proteinase from Mucor circinelloides in Pichia pastoris

    PubMed Central

    2013-01-01

    Background Extracellular aspartic proteinase (MCAP) produced by Mucor circinelloides in solid state fermentations has been shown to possess milk clotting activity and represents a potential replacement for bovine chymosin in cheese manufacturing. Despite its prospects in the dairy industry, the molecular characteristics of this enzyme remain unknown. This work focuses on MCAP cloning and optimization of heterologous expression in Pichia pastoris, and characterization of the enzyme. Results The cloning of cDNA sequence encoding MCAP from M. circinelloides was performed using a fragment of approximately 1 kbp as a probe. The fragment was amplified using non-specific primers designed from the NDIEYYG and KNNYVVFN consensus motifs from aspartic proteinases of different fungi. Gene specific primers were designed to amplify a full-length cDNA using SMART™ RACE PCR. MCAP was expressed in P. pastoris under the control of the constitutive GAP promoter. It was shown that P. pastoris secreted non-glycosylated and glycosylated MCAPs with molecular weights of 33 and 37 kDa, respectively. Conclusion A novel MCAP was expressed in P. pastoris and efficiently secreted into the culture medium. The expression of the heterologous proteins was significantly increased due to advantages in codon usage as compared to other expression systems. The results suggest that P. pastoris could be exploited as a safe production platform for the milk clotting enzyme. PMID:24206750

  8. Camelid-derived heavy-chain nanobody against Clostridium botulinum neurotoxin E in Pichia pastoris.

    PubMed

    Baghban, Roghayyeh; Gargari, Seyed Latif Mousavi; Rajabibazl, Masoumeh; Nazarian, Shahram; Bakherad, Hamid

    2016-01-01

    Botulinum neurotoxins (BoNTs) result in severe and often fatal disease, botulism. Common remedial measures such as equine antitoxin and human botulism immunoglobulin in turn are problematic and time-consuming. Therefore, diagnosis and therapy of BoNTs are vital. The variable domain of heavy-chain antibodies (VHH) has unique features, such as the ability to identify and bind specifically to target epitopes and ease of production in bacteria and yeast. The Pichia pastoris is suitable for expression of recombinant antibody fragments. Disulfide bond formation and correct folds of protein with a high yield are some of the advantages of this eukaryotic host. In this study, we have expressed and purified the camelid VHH against BoNT/E in P. pastoris. The final yield of P. pastoris-expressed antibody was estimated to be 16 mg/l, which is higher than that expressed by Escherichia coli. The nanobody expressed in P. pastoris neutralized 4LD50 of the BoNT/E upon i.p. injection in 25% of mice. The nanobody expressed in E. coli extended the mice's survival to 1.5-fold compared to the control. This experiment indicated that the quality of expressed protein in the yeast is superior to that of the bacterial expression. Favorable protein folding by P. pastoris seems to play a role in its better toxin-binding property.

  9. Surface Display and Bioactivity of Bombyx mori Acetylcholinesterase on Pichia pastoris

    PubMed Central

    He, Yong-Sheng; Beier, Ross C.; Sun, Yuan-Ming; Xu, Zhen-Lin; Wu, Wei-Jian; Shen, Yu-Dong; Xiao, Zhi-Li; Lai, Li-Na; Wang, Hong; Yang, Jin-Yi

    2013-01-01

    A Pichia pastoris (P. pastoris) cell surface display system of Bombyx mori acetylcholinesterase (BmAChE) was constructed and its bioactivity was studied. The modified Bombyx mori acetylcholinesterase gene (bmace) was fused with the anchor protein (AGα1) from Saccharomyces cerevisiae and transformed into P. pastoris strain GS115. The recombinant strain harboring the fusion gene bmace-AGα1 was induced to display BmAChE on the P. pastoris cell surface. Fluorescence microscopy and flow cytometry assays revealed that the BmAChE was successfully displayed on the cell surface of P. pastoris GS115. The enzyme activity of the displayed BmAChE was detected by the Ellman method at 787.7 U/g (wet cell weight). In addition, bioactivity of the displayed BmAChE was verified by inhibition tests conducted with eserine, and with carbamate and organophosphorus pesticides. The displayed BmAChE had an IC50 of 4.17×10−8 M and was highly sensitive to eserine and five carbamate pesticides, as well as seven organophosphorus pesticides. Results suggest that the displayed BmAChE had good bioactivity. PMID:23940577

  10. Surface display and bioactivity of Bombyx mori acetylcholinesterase on Pichia pastoris.

    PubMed

    Dong, Jie-Xian; Xie, Xi; He, Yong-Sheng; Beier, Ross C; Sun, Yuan-Ming; Xu, Zhen-Lin; Wu, Wei-Jian; Shen, Yu-Dong; Xiao, Zhi-Li; Lai, Li-Na; Wang, Hong; Yang, Jin-Yi

    2013-01-01

    A Pichia pastoris (P. pastoris) cell surface display system of Bombyx mori acetylcholinesterase (BmAChE) was constructed and its bioactivity was studied. The modified Bombyx mori acetylcholinesterase gene (bmace) was fused with the anchor protein (AGα1) from Saccharomyces cerevisiae and transformed into P. pastoris strain GS115. The recombinant strain harboring the fusion gene bmace-AGα1 was induced to display BmAChE on the P. pastoris cell surface. Fluorescence microscopy and flow cytometry assays revealed that the BmAChE was successfully displayed on the cell surface of P. pastoris GS115. The enzyme activity of the displayed BmAChE was detected by the Ellman method at 787.7 U/g (wet cell weight). In addition, bioactivity of the displayed BmAChE was verified by inhibition tests conducted with eserine, and with carbamate and organophosphorus pesticides. The displayed BmAChE had an IC50 of 4.17×10(-8) M and was highly sensitive to eserine and five carbamate pesticides, as well as seven organophosphorus pesticides. Results suggest that the displayed BmAChE had good bioactivity.

  11. Production of Chimeric Acidic α-Amylase by the Recombinant Pichia pastoris and Its Applications

    PubMed Central

    Parashar, Deepak; Satyanarayana, Tulasi

    2017-01-01

    Recombinant chimeric α-amylase (Ba-Gt-amy) has been produced extracellularly in Pichia pastoris under AOX promoter. Clones of P. pastoris with multiple gene copies have been generated by multiple transformations and post-transformational vector amplification, which led to 10.7-fold enhancement in α-amylase titre as compared to a clone with a copy of the gene. The recombinant P. pastoris integrated eight copies of Ba-Gt-amy in the genome of P. pastoris, as revealed by real time PCR data analysis. Heterologous protein expression as well as mRNA level of Ba-Gt-amy was higher in multi-copy clone than that with single copy. The pure Ba-Gt-amy expressed in P. pastoris is a glycoprotein of 75 kDa, which is optimally active at pH 4.0 and 60°C with T1/2 of 40 min at 70°C. The Kinetic parameters and end product analysis suggested that glycosylation has no effect on catalytic properties of Ba-Gt-amy. The enzyme saccharifies soluble as well as raw starches efficiently and generates maltose and maltooligosaccharides, thus, useful in baking and sugar syrup industries. The strategy for generating multi-copy clones is being reported for the first time, which could be useful in enhancing the production of other recombinant proteins. PMID:28382032

  12. Expression of endoglucanases in Pichia pastoris under control of the GAP promoter

    PubMed Central

    2014-01-01

    Background Plant-derived biomass is a potential alternative to fossil feedstocks for a greener economy. Enzymatic saccharification of biomass has been studied extensively and endoglucanases have been found to be a prerequisite for quick initial liquefaction of biomass under industrial conditions. Pichia pastoris, widely used for heterologous protein expression, can be utilized for fungal endoglucanase production. The recently marketed PichiaPink™ expression system allows for rapid clone selection, and employs the methanol inducible AOX1 promoter to ensure high protein expression levels. However, methanol is toxic and poses a fire hazard, issues which become more significant at an industrial scale. It is possible to eliminate these risks and still maintain high productivity by switching to the constitutive GAP promoter. Results In the present study, a plasmid carrying the constitutive GAP promoter was created for PichiaPink™. We then studied expression of two endoglucanases, AfCel12A from Aspergillus fumigatus and TaCel5A from Thermoascus aurantiacus, regulated by either the AOX1 promoter or the GAP promoter. Initial experiments in tubes and small bioreactors showed that the levels of AfCel12A obtained with the constitutive promoter were similar or higher, compared to the AOX1 promoter, whereas the levels of TaCel5A were somewhat lower. After optimization of cultivation conditions using a 15-l bioreactor, the recombinant P. pastoris strains utilizing the GAP promoter produced ca. 3–5 g/l of total secreted protein, with CMCase activity equivalent to 1200 nkat/ml AfCel12A and 170 nkat/ml TaCel5A. Conclusions We present a strategy for constitutive recombinant protein expression in the novel PichiaPink™ system. Both AfCel12A and TaCel5A were successfully expressed constitutively in P. pastoris under the GAP promoter. Reasonable protein levels were reached after optimizing cultivation conditions. PMID:24742273

  13. Biomarkers to evaluate the effects of temperature and methanol on recombinant Pichia pastoris

    PubMed Central

    Zepeda, Andrea B.; Figueroa, Carolina A.; Abdalla, Dulcineia S.P.; Maranhão, Andrea Q.; Ulloa, Patricio H.; Pessoa, Adalberto; Farías, Jorge G.

    2014-01-01

    Pichia pastoris is methylotrophic yeast used as an efficient expression system for heterologous protein production. In order to evaluate the effects of temperature (10 and 30 °C) and methanol (1 and 3% (v/v)) on genetically-modified Pichia pastoris, different biomarkers were evaluated: Heat stress (HSF-1 and Hsp70), oxidative stress (OGG1 and TBARS) and antioxidant (GLR). Three yeast cultures were performed: 3X = 3% methanol-10 °C, 4X = 3% methanol-30 °C, and 5X = 1% methanol-10°C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. Ours results show that at 3% methanol −30 °C there is an increase of mitochondrial OGG1 (mtOGG1), Glutathione Reductase (GLR) and TBARS. In addition, there was a cytosolic expression of HSF-1 and HSP-70, which indicates a deprotection against nucleolar fragmentation (apoptosis). On the other hand, at 3% methanol −10 °C and 1% and at methanol −10 °C conditions there was nuclear expression of OGG1, lower levels of TBARS and lower expression of GLR, cytosolic expression of HSF-1 and nuclear expression HSP-70. In conclusion, our results suggest that 3% methanol-30 °C is a condition that induces a strong oxidative stress and risk factors of apoptosis in modified-genetically P. pastoris. PMID:25242930

  14. Biomarkers to evaluate the effects of temperature and methanol on recombinant Pichia pastoris.

    PubMed

    Zepeda, Andrea B; Figueroa, Carolina A; Abdalla, Dulcineia S P; Maranhão, Andrea Q; Ulloa, Patricio H; Pessoa, Adalberto; Farías, Jorge G

    2014-01-01

    Pichia pastoris is methylotrophic yeast used as an efficient expression system for heterologous protein production. In order to evaluate the effects of temperature (10 and 30 °C) and methanol (1 and 3% (v/v)) on genetically-modified Pichia pastoris, different biomarkers were evaluated: Heat stress (HSF-1 and Hsp70), oxidative stress (OGG1 and TBARS) and antioxidant (GLR). Three yeast cultures were performed: 3X = 3% methanol-10 °C, 4X = 3% methanol-30 °C, and 5X = 1% methanol-10°C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. Ours results show that at 3% methanol -30 °C there is an increase of mitochondrial OGG1 (mtOGG1), Glutathione Reductase (GLR) and TBARS. In addition, there was a cytosolic expression of HSF-1 and HSP-70, which indicates a deprotection against nucleolar fragmentation (apoptosis). On the other hand, at 3% methanol -10 °C and 1% and at methanol -10 °C conditions there was nuclear expression of OGG1, lower levels of TBARS and lower expression of GLR, cytosolic expression of HSF-1 and nuclear expression HSP-70. In conclusion, our results suggest that 3% methanol-30 °C is a condition that induces a strong oxidative stress and risk factors of apoptosis in modified-genetically P. pastoris.

  15. [Expression of capsid gene of Chinese isolate of rabbit hemorrhagic disease virus in Pichia pastoris].

    PubMed

    Yan, Wei-Wei; Cui, Zhi-Zhong; Wang, Yong-Kun

    2005-01-01

    The capsid protein (VP60) gene of RHDV was subcloned into the Pichia expressin vector pPICZ B to express the VP60 protein intracellularly. The recombinant plasmid was initially transformed into a E. coli strain TOP10 F'. After verification of the construct by sequencing, the recombinant plasmid was linearized by Sac I in the 5' AOX1 region and then transformed into Pichia pastoris strain GS115 using the Pichia EasyComp Kit. After selecting and verifing for the insertion of VP60 gene in the genome, two clones of Pichia transformants were select for expression test. The recombinant clones were first inoculate with BMGY in baffled flask at 28-30 degrees C in a shaking incubator (250-300 r/min) until culture reaches an OD600 = 2-6, then resuspend the cell pellet to an OD6oo of 1.0 in BMMY medium to induce expression for 5 days by methanol at a concentration of 0.5% in a 1 liter baffled flask covered with 2 layers of sterile gauze. Collect the cell pellets and break it by acid-washed 0.5 mm glass beads. The expression of recombinant Pichia strains was detected by SDS-PAGE and Western analysis with a polyclonal serum which showed a specific protein band of 60kD. Theses results indicates that the recombinant VP60 produced in Pichia was antigenically similar to the viral polypeptide. Electron microscopic observation of the recombinant Pichia-derived protein revealed the presence of virus-like particles similar in size and appearance to native virus capsids. In the haemagglutination test, the recombinant VLPs, like the native RHDV, also agglutinated human blood type O erythrocytes and could be inhibited by the anti-RHDV polyclonal serum.

  16. A multi-level study of recombinant Pichia pastoris in different oxygen conditions

    PubMed Central

    2010-01-01

    Background Yeasts are attractive expression platforms for many recombinant proteins, and there is evidence for an important interrelation between the protein secretion machinery and environmental stresses. While adaptive responses to such stresses are extensively studied in Saccharomyces cerevisiae, little is known about their impact on the physiology of Pichia pastoris. We have recently reported a beneficial effect of hypoxia on recombinant Fab secretion in P. pastoris chemostat cultivations. As a consequence, a systems biology approach was used to comprehensively identify cellular adaptations to low oxygen availability and the additional burden of protein production. Gene expression profiling was combined with proteomic analyses and the 13C isotope labelling based experimental determination of metabolic fluxes in the central carbon metabolism. Results The physiological adaptation of P. pastoris to hypoxia showed distinct traits in relation to the model yeast S. cerevisiae. There was a positive correlation between the transcriptomic, proteomic and metabolic fluxes adaptation of P. pastoris core metabolism to hypoxia, yielding clear evidence of a strong transcriptional regulation component of key pathways such as glycolysis, pentose phosphate pathway and TCA cycle. In addition, the adaptation to reduced oxygen revealed important changes in lipid metabolism, stress responses, as well as protein folding and trafficking. Conclusions This systems level study helped to understand the physiological adaptations of cellular mechanisms to low oxygen availability in a recombinant P. pastoris strain. Remarkably, the integration of data from three different levels allowed for the identification of differences in the regulation of the core metabolism between P. pastoris and S. cerevisiae. Detailed comparative analysis of the transcriptomic data also led to new insights into the gene expression profiles of several cellular processes that are not only susceptible to low oxygen

  17. A multi-level study of recombinant Pichia pastoris in different oxygen conditions.

    PubMed

    Baumann, Kristin; Carnicer, Marc; Dragosits, Martin; Graf, Alexandra B; Stadlmann, Johannes; Jouhten, Paula; Maaheimo, Hannu; Gasser, Brigitte; Albiol, Joan; Mattanovich, Diethard; Ferrer, Pau

    2010-10-22

    Yeasts are attractive expression platforms for many recombinant proteins, and there is evidence for an important interrelation between the protein secretion machinery and environmental stresses. While adaptive responses to such stresses are extensively studied in Saccharomyces cerevisiae, little is known about their impact on the physiology of Pichia pastoris. We have recently reported a beneficial effect of hypoxia on recombinant Fab secretion in P. pastoris chemostat cultivations. As a consequence, a systems biology approach was used to comprehensively identify cellular adaptations to low oxygen availability and the additional burden of protein production. Gene expression profiling was combined with proteomic analyses and the 13C isotope labelling based experimental determination of metabolic fluxes in the central carbon metabolism. The physiological adaptation of P. pastoris to hypoxia showed distinct traits in relation to the model yeast S. cerevisiae. There was a positive correlation between the transcriptomic, proteomic and metabolic fluxes adaptation of P. pastoris core metabolism to hypoxia, yielding clear evidence of a strong transcriptional regulation component of key pathways such as glycolysis, pentose phosphate pathway and TCA cycle. In addition, the adaptation to reduced oxygen revealed important changes in lipid metabolism, stress responses, as well as protein folding and trafficking. This systems level study helped to understand the physiological adaptations of cellular mechanisms to low oxygen availability in a recombinant P. pastoris strain. Remarkably, the integration of data from three different levels allowed for the identification of differences in the regulation of the core metabolism between P. pastoris and S. cerevisiae. Detailed comparative analysis of the transcriptomic data also led to new insights into the gene expression profiles of several cellular processes that are not only susceptible to low oxygen concentrations, but might also

  18. Efficient expression of codon-adapted human acetaldehyde dehydrogenase 2 cDNA with 6xHis tag in Pichia pastoris.

    PubMed

    Zhao, YuFeng; Lei, MingKe; Wu, YuanXin; Zhang, ZiSheng; Wang, CunWen

    2009-10-01

    Human mitochondrial acetaldehyde dehydrogenase 2 (ALDH2) catalyzes the oxidation of acetaldehyde to acetic acid. Therefore, ALDH2 has therapeutic potential in detoxification of acetaldehyde. Furthermore, ALDH2 catalyzes nitroglycerin to nitrate and 1, 2-glyceryldinitrate during therapy for angina pectoris, myocardial infarction, and heart failure. Large quantities of ALDH2 will be needed for potential clinical practice. In this study, Pichia pastoris was used as a platform for expression of human ALDH2. Based on the ALDH2*1 cDNA sequence, we designed ALDH2 cDNA by choosing the P. pastoris preferred codons and by decreasing the G + C content level. The sequence was synthesized using the overlap extension PCR method. The cDNA and 6xHis tags were subcloned into the plasmid pPIC9K. The recombinant protein was expressed in P. pastoris GS115 and purified using Ni(2+)-Sepharose affinity chromatography. The amount of secreted protein in the culture was 80 mg/L in shake-flask cultivation and 260 mg/L in high-density bioreactor fermentation. Secreted ALDH2 was easily purified from the culture supernatant by using Ni(2+)-Sepharose affinity chromatography. After purification of the fermentation supernatant, the enzyme had a specific activity of 1.2 U/mg protein. The yield was about 16 mg/L in a shake flask culture of P. pastoris GS115 which contained the original human ALDH2*1 cDNA.

  19. Production in Pichia pastoris of protein-based polymers with small heterodimer-forming blocks.

    PubMed

    Domeradzka, Natalia E; Werten, Marc W T; de Vries, Renko; de Wolf, Frits A

    2016-05-01

    Some combinations of leucine zipper peptides are capable of forming α-helical heterodimeric coiled coils with very high affinity. These can be used as physical cross-linkers in the design of protein-based polymers that form supramolecular structures, for example hydrogels, upon mixing solutions containing the complementary blocks. Such two-component physical networks are of interest for many applications in biomedicine, pharmaceutics, and diagnostics. This article describes the efficient secretory production of A and B type leucine zipper peptides fused to protein-based polymers in Pichia pastoris. By adjusting the fermentation conditions, we were able to significantly reduce undesirable proteolytic degradation. The formation of A-B heterodimers in mixtures of the purified products was confirmed by size exclusion chromatography. Our results demonstrate that protein-based polymers incorporating functional heterodimer-forming blocks can be produced with P. pastoris in sufficient quantities for use in future supramolecular self-assembly studies and in various applications.

  20. Structural and functional characterization of recombinant medaka fish alpha-amylase expressed in yeast Pichia pastoris.

    PubMed

    Mizutani, Kimihiko; Toyoda, Mayuko; Otake, Yuichiro; Yoshioka, Soshi; Takahashi, Nobuyuki; Mikami, Bunzo

    2012-08-01

    The medaka fish α-amylase was expressed and purified. The expression systems were constructed using methylotrophic yeast Pichia pastoris, and the recombinant proteins were secreted into the culture medium. Purified recombinant α-amylase exhibited starch hydrolysis activity. The optimal pH, denaturation temperature, and K(M) and V(max) values were determined; chloride ions were essential for enzyme activity. The purified protein was also crystallized and examined by X-ray crystallography. The structure has the (α/β)(8) barrel fold, as do other known α-amylases, and the overall structure is very similar to the structure of vertebrate (human and pig) α-amylases. A novel expression plasmid was developed. Using this plasmid, high-throughput construction of an expression system by homologous recombination in P. pastoris cells, previously reported for membrane proteins, was successfully applied to the secretory protein.

  1. Production of Delta(1)-tetrahydrocannabinolic acid by the biosynthetic enzyme secreted from transgenic Pichia pastoris.

    PubMed

    Taura, Futoshi; Dono, Emi; Sirikantaramas, Supaart; Yoshimura, Kohji; Shoyama, Yukihiro; Morimoto, Satoshi

    2007-09-28

    Delta(1)-Tetrahydrocannabinolic acid (THCA) synthase is the enzyme that catalyzes the oxidative cyclization of cannabigerolic acid into THCA, the acidic precursor of Delta(1)-tetrahydrocannabinol. We developed a novel expression system for THCA synthase using a methylotrophic yeast Pichia pastoris as a host. Under optimized conditions, the transgenic P. pastoris secreted approximately 1.32nkat/l of THCA synthase activity, and the culture medium, from which the cells were removed, effectively synthesized THCA from cannabigerolic acid with a approximately 98% conversion rate. The secreted THCA synthase was readily purified to homogeneity. Interestingly, endoglycosidase treatment afforded a deglycosylated THCA synthase with more catalytic activity than that of the glycosylated form. The non-glycosylated THCA synthase should be suitable for structure-function studies because it displayed much more activity than the previously reported native enzyme from Cannabis sativa as well as the recombinant enzyme from insect cell cultures.

  2. Expression of a Deschampsia antarctica Desv. Polypeptide with Lipase Activity in a Pichia pastoris Vector

    PubMed Central

    Rabert, Claudia; Gutiérrez-Moraga, Ana; Navarrete-Gallegos, Alejandro; Navarrete-Campos, Darío; Bravo, León A.; Gidekel, Manuel

    2014-01-01

    The current study isolated and characterized the Lip3F9 polypeptide sequence of Deschampsia antarctica Desv. (GeneBank Accession Number JX846628), which was found to be comprised of 291 base pairs and was, moreover, expressed in Pichia pastoris X-33 cells. The enzyme was secreted after 24 h of P. pastoris culture incubation and through induction with methanol. The expressed protein showed maximum lipase activity (35 U/L) with an optimal temperature of 37 °C. The lipase-expressed enzyme lost 50% of its specific activity at 25 °C, a behavior characteristic of a psychrotolerant enzyme. Recombinant enzyme activity was measured in the presence of ionic and non-ionic detergents, and a decrease in enzyme activity was detected for all concentrations of ionic and non-ionic detergents assessed. PMID:24514564

  3. Expression of a Deschampsia antarctica Desv. polypeptide with lipase activity in a Pichia pastoris vector.

    PubMed

    Rabert, Claudia; Gutiérrez-Moraga, Ana; Navarrete, Alejandro; Navarrete-Campos, Darío; Bravo, León; Gidekel, Manuel

    2014-02-07

    The current study isolated and characterized the Lip3F9 polypeptide sequence of Deschampsia antarctica Desv. (GeneBank Accession Number JX846628), which was found to be comprised of 291 base pairs and was, moreover, expressed in Pichia pastoris X-33 cells. The enzyme was secreted after 24 h of P. pastoris culture incubation and through induction with methanol. The expressed protein showed maximum lipase activity (35 U/L) with an optimal temperature of 37 °C. The lipase-expressed enzyme lost 50% of its specific activity at 25 °C, a behavior characteristic of a psychrotolerant enzyme. Recombinant enzyme activity was measured in the presence of ionic and non-ionic detergents, and a decrease in enzyme activity was detected for all concentrations of ionic and non-ionic detergents assessed.

  4. Bioremediation of Parboiled Rice Effluent Supplemented with Biodiesel-Derived Glycerol Using Pichia pastoris X-33

    PubMed Central

    Gil de los Santos, Diego; Gil Turnes, Carlos; Rochedo Conceição, Fabricio

    2012-01-01

    This paper describes the use of Pichia pastoris X-33 as a bioremediator to reduce the chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and phosphorus (P-PO4   3−), after culture in parboiled rice effluent supplemented with p.a. glycerol or a glycerol by-product of the biodiesel industry. The greatest reduction in the COD (55%), TKN (45%), and P-PO4   3− (52%) of the effluent was observed in cultures of P. pastoris X-33 supplemented with 15 g ·L−1 of biodiesel-derived glycerol. Furthermore, the overall biomass yield was 2.1 g ·L−1. These data suggest that biodiesel-derived glycerol is an efficient carbon source for the bioremediation of parboiled rice effluent and biomass production. PMID:22919327

  5. [Synthesis of diisooctyl adipate catalyzed by lipase-displaying Pichia pastoris whole-cell biocatalysts].

    PubMed

    Zhang, Na; Jin, Zi; Lin, Ying; Zheng, Suiping; Han, Shuangyan

    2013-07-01

    An enzyme-displaying yeast as a whole-cell biocatalyst is an alternative to immobilized enzyme, due to its low-cost preparation and simple recycle course. Here, lipase-displaying Pichia pastoris whole-cell was used as a biocatalyst to synthesize diisooctyl adipate in the non-aqueous system. The maximum productivity of diisooctyl adipate was obtained as 85.0% in a 10 mL reaction system. The yield could be reached as high as 97.8% when the reaction system was scaled up to 200 mL. The purity obtained is 98.2% after vacuum distillation. Thus, the lipase-displaying P. pastoris whole-cell biocatalyst was promising in commercial application for diisooctyl adipate synthesis in non-aqueous phase.

  6. Improving 3'-Hydroxygenistein Production in Recombinant Pichia pastoris Using Periodic Hydrogen Peroxide-Shocking Strategy.

    PubMed

    Wang, Tzi-Yuan; Tsai, Yi-Hsuan; Yu, I-Zen; Chang, Te-Sheng

    2016-03-01

    3'-Hydroxygenistein can be obtained from the biotransformation of genistein by the engineered Pichia pastoris X-33 strain, which harbors a fusion gene composed of CYP57B3 from Aspergillus oryzae and a cytochrome P450 oxidoreductase gene (sCPR) from Saccharomyces cerevisiae. P. pastoris X-33 mutants with higher 3'-hydroxygenistein production were selected using a periodic hydrogen peroxide-shocking strategy. One mutant (P2-D14-5) produced 23.0 mg/l of 3'-hydroxygenistein, representing 1.87-fold more than that produced by the recombinant X-33. When using a 5 L fermenter, the P2-D14-5 mutant produced 20.3 mg/l of 3'- hydroxygenistein, indicating a high potential for industrial-scale 3'-hydroxygenistein production.

  7. Synthesis and high expression of chitin deacetylase from Colletotrichum lindemuthianum in Pichia pastoris GS115.

    PubMed

    Kang, Lixin; Chen, Xiaomei; Zhai, Chao; Ma, Lixin

    2012-09-01

    A gene, ClCDA, encoding chitin deacetylase from Colletotrichum lindemuthianum, was optimized according to the codon usage bias of Pichia pastoris and synthesized in vitro by overlap extension PCR. It was secretorily expressed in P. pastoris GS115 using the constitutive expression vector pHMB905A. The expression level reached the highest with 110 mg/l culture supernatant after 72 h of methanol induction, which comprised 77.27 U/mg chitin deacetylase activity. SDS-PAGE, mass spectrometry, and deglycosylation assays demonstrated that partial recombinant protein was glycosylated with an apparent molecular mass of 33 kDa. The amino acid sequences of recombinant proteins were confirmed by mass spectrometry.

  8. Synergistic modular promoter and gene optimization to push cellulase secretion by Pichia pastoris beyond existing benchmarks.

    PubMed

    Mellitzer, Andrea; Ruth, Claudia; Gustafsson, Claes; Welch, Mark; Birner-Grünberger, Ruth; Weis, Roland; Purkarthofer, Thomas; Glieder, Anton

    2014-12-10

    Although successfully used for heterologous gene expression for more than twenty years, general knowledge about all factors influencing protein expression by Pichia pastoris is still lacking. For high titers of protein clones are optimized individually for each target protein. Optimization efforts in this study were focused on the DNA level, evaluating a set of 48 different individual synthetic genes (TrCBH2) coding for the same protein sequence of a Trichoderma reesei cellulase in combination with three different promoter sequences: PGAP (constitutive) and the synthetic AOX1 promoter variants PDeS (derepressed) and PEn (enhanced, inducible). Expression of active secreted enzyme varied from undetectable to ∼300% of the best known gene, as determined by secreted enzyme activity analyses of supernatants from 96 well plate and bioreactor cultivations. Finally, the best optimized gene and new promoters were combined to engineer highly productive P. pastoris CBH2 expression strains. Although no methanol was used for induction a final titer of more than 18g/l of secreted protein was produced under controlled conditions in small scale bioreactor cultivations after 60-70h of growth limiting glycerol feed. This is the highest concentration of secreted enzyme in P. pastoris published so far and single parts of the expression cassette could be independently optimized showing additive effects for improvements in protein production by P. pastoris.

  9. A toolbox of endogenous and heterologous nuclear localization sequences for the methylotrophic yeast Pichia pastoris.

    PubMed

    Weninger, Astrid; Glieder, Anton; Vogl, Thomas

    2015-11-01

    Nuclear localization sequences (NLSs) are required for the import of proteins in the nucleus of eukaryotes. However many proteins from bacteria or bacteriophages are used for basic studies in molecular biology, to generate synthetic genetic circuits or for genome editing applications. Prokaryotic recombinases, CRISPR-associated proteins such as Cas9 or bacterial and viral polymerases require efficient NLSs to function in eukaryotes. The yeast Pichia pastoris is a widely used expression platform for heterologous protein production, but molecular tools such as NLSs are limited. Here we have characterized a set of 10 NLSs for P. pastoris, including the first endogenous NLSs (derived from P. pastoris proteins) and commonly used heterologous NLSs. The NLSs were evaluated by fusing them in N- and C-terminal position to an enhanced green fluorescent protein showing pronounced differences in fluorescence levels and nuclear targeting. Thereby we provide a set of different NLSs that can be applied to optimize the nuclear import of heterologous proteins in P. pastoris, paving the way for the establishment of intricate synthetic biology applications.

  10. Cloning and expression of Trichoderma reesei cellobiohydrolase I in Pichia pastoris

    SciTech Connect

    Godbole, S.; Decker, S.R.; Nieves, R.A.; Adney, W.S.; Vinzant, T.B.; Baker, J.O.; Thomas, S.R.; Himmel, M.E.

    1999-10-01

    Pichia pastoris was transformed with the Trichoderma reesei cbh1 gene, and the recombinant enzyme was purified and analyzed kinetically and by circular dichroism. The P. pastoris rCBH I was recognized by MoAb raised to T. reesei CBH I but was found in multiple molecular weight species on SDS-PAGE gels. Carbohydrate content determination and SDS-PAGE western analysis indicated that the recombinant protein was hyperglycosylated, although a species very similar in molecular weight to the T. reesei enzyme could be isolated chromatographically. The P. pastoris rCBH I also demonstrated activity toward soluble and insoluble substrates (i.e., pNPL and Sigmacell), although at a level significantly lower than the wild-type enzyme. More seriously, the yeast-expressed enzyme showed non-wild-type secondary structure by circular dichroism. The authors conclude that P. pastoris may not serve as an adequate host for the site-directed mutagenesis of T. reesei CBH I.

  11. Expression and Characterization of the RKOD DNA Polymerase in Pichia pastoris

    PubMed Central

    Wang, Fei; Li, Shuntang; Zhao, Hui; Bian, Lu; Chen, Liang; Zhang, Zhen; Zhong, Xing; Ma, Lixin; Yu, Xiaolan

    2015-01-01

    The present study assessed high-level expression of the KOD DNA polymerase in Pichia pastoris. Thermococcus kodakaraensis KOD1 is a DNA polymerase that is widely used in PCR. The DNA coding sequence of KOD was optimized based on the codon usage bias of P. pastoris and synthesized by overlapping PCR, and the nonspecific DNA-binding protein Sso7d from the crenarchaeon Sulfolobus solfataricus was fused to the C-terminus of KOD. The resulting novel gene was cloned into a pHBM905A vector and introduced into P. pastoris GS115 for secretory expression. The yield of the target protein reached approximately 250 mg/l after a 6-d induction with 1% (v/v) methanol in shake flasks. This yield is much higher than those of other DNA polymerases expressed heterologously in Escherichia coli. The recombinant enzyme was purified, and its enzymatic features were studied. Its specific activity was 19,384 U/mg. The recombinant KOD expressed in P. pastoris exhibited excellent thermostability, extension rate and fidelity. Thus, this report provides a simple, efficient and economic approach to realize the production of a high-performance thermostable DNA polymerase on a large scale. This is the first report of the expression in yeast of a DNA polymerase for use in PCR. PMID:26134129

  12. A toolbox of endogenous and heterologous nuclear localization sequences for the methylotrophic yeast Pichia pastoris

    PubMed Central

    Weninger, Astrid; Glieder, Anton; Vogl, Thomas

    2015-01-01

    Nuclear localization sequences (NLSs) are required for the import of proteins in the nucleus of eukaryotes. However many proteins from bacteria or bacteriophages are used for basic studies in molecular biology, to generate synthetic genetic circuits or for genome editing applications. Prokaryotic recombinases, CRISPR-associated proteins such as Cas9 or bacterial and viral polymerases require efficient NLSs to function in eukaryotes. The yeast Pichia pastoris is a widely used expression platform for heterologous protein production, but molecular tools such as NLSs are limited. Here we have characterized a set of 10 NLSs for P. pastoris, including the first endogenous NLSs (derived from P. pastoris proteins) and commonly used heterologous NLSs. The NLSs were evaluated by fusing them in N- and C-terminal position to an enhanced green fluorescent protein showing pronounced differences in fluorescence levels and nuclear targeting. Thereby we provide a set of different NLSs that can be applied to optimize the nuclear import of heterologous proteins in P. pastoris, paving the way for the establishment of intricate synthetic biology applications. PMID:26347503

  13. Binding of DC-SIGN to glycoproteins expressed in glycoengineered Pichia pastoris.

    PubMed

    Cukan, Michael C; Hopkins, Daniel; Burnina, Irina; Button, Michelle; Giaccone, Erin; Houston-Cummings, Nga Rewa; Jiang, Youwei; Li, Fang; Mallem, Muralidhar; Mitchell, Teresa; Moore, Renée; Nylen, Adam; Prinz, Bianka; Rios, Sandra; Sharkey, Nathan; Zha, Dongxing; Hamilton, Stephen; Li, Huijuan; Stadheim, Terrance A

    2012-12-14

    Previous studies have shown that glycoproteins expressed in wild-type Pichia pastoris bind to Dendritic cell-SIGN (DC-Specific Intercellular adhesion molecule-3 Grabbing Nonintegrin), a mannose-binding receptor found on dendritic cells in peripheral tissues which is involved in antigen presentation and the initiation of an immune response. However, the binding of DC-SIGN to glycoproteins purified from P. pastoris strains engineered to express humanized N- and O-linked glycans has not been tested to date. In this study, the binding of glycoproteins with specific high-mannose or human N- and O-linked glycan structures to DC-SIGN was tested. Proteins with humanized N-glycans including Man5 structures and O-glycans (up to as many as 24) with single mannose chain length showed DC-SIGN binding that was comparable to that measured for a CHO-produced IgG1 which lacks O-linked mannose. Glycoproteins with wild-type N-glycans and mannotriose and higher O-glycans bound to DC-SIGN in a manner that was strongly inhibited by either the use of enzymatic N-deglycosylation or sodium meta-periodate oxidation. Mannan purified from humanized P. pastoris also showed lower ability to inhibit DC-SIGN binding to glycoproteins with wild type fungal glycosylation than mannan purified from wild type strains. This study shows that humanized P. pastoris can produce glycoproteins that do not bind to DC-SIGN.

  14. An efficient screen for peroxisome-deficient mutants of Pichia pastoris.

    PubMed Central

    Liu, H; Tan, X; Veenhuis, M; McCollum, D; Cregg, J M

    1992-01-01

    We describe a rapid and efficient screen for peroxisome-deficient (per) mutants in the yeast Pichia pastoris. The screen relies on the unusual ability of P. pastoris to grow on two carbon sources, methanol and oleic acid, both of which absolutely require peroxisomes to be metabolized. A collection of 280 methanol utilization-defective (Mut-) P. pastoris mutants was isolated, organized into 46 complementation groups, and tested for those that were also oleate-utilization defective (Out-) but still capable of growth on ethanol and glucose. Mutants in 10 groups met this phenotypic description, and 8 of these were observed by electron microscopy to be peroxisome deficient (Per-). In each per mutant, Mut-, Out-, and Per- phenotypes were tightly linked and therefore were most likely due to a mutation at a single locus. Subcellular fractionation experiments indicated that the peroxisomal marker enzyme catalase was mislocalized to the cytosol in both methanol- and oleate-induced cultures of the mutants. In contrast, alcohol oxidase, a peroxisomal methanol utilization pathway enzyme, was virtually absent from per mutant cells. The relative ease of per mutant isolation in P. pastoris, in conjunction with well-developed procedures for its molecular and genetic manipulation, makes this organism an attractive system for studies on peroxisome biogenesis. Images PMID:1629154

  15. Improving the Secretory Expression of an α-Galactosidase from Aspergillus niger in Pichia pastoris

    PubMed Central

    Zheng, Xianliang; Fang, Bo; Han, Dongfei; Yang, Wenxia; Qi, Feifei; Chen, Hui; Li, Shengying

    2016-01-01

    α-Galactosidases are broadly used in feed, food, chemical, pulp, and pharmaceutical industries. However, there lacks a satisfactory microbial cell factory that is able to produce α-galactosidases efficiently and cost-effectively to date, which prevents these important enzymes from greater application. In this study, the secretory expression of an Aspergillus niger α-galactosidase (AGA) in Pichia pastoris was systematically investigated. Through codon optimization, signal peptide replacement, comparative selection of host strain, and saturation mutagenesis of the P1’ residue of Kex2 protease cleavage site for efficient signal peptide removal, a mutant P. pastoris KM71H (Muts) strain of AGA-I with the specific P1’ site substitution (Glu to Ile) demonstrated remarkable extracellular α-galactosidase activity of 1299 U/ml upon a 72 h methanol induction in 2.0 L fermenter. The engineered yeast strain AGA-I demonstrated approximately 12-fold higher extracellular activity compared to the initial P. pastoris strain. To the best of our knowledge, this represents the highest yield and productivity of a secreted α-galactosidase in P. pastoris, thus holding great potential for industrial application. PMID:27548309

  16. Isolation and characterization of the plasma membrane from the yeast Pichia pastoris.

    PubMed

    Grillitsch, Karlheinz; Tarazona, Pablo; Klug, Lisa; Wriessnegger, Tamara; Zellnig, Günther; Leitner, Erich; Feussner, Ivo; Daum, Günther

    2014-07-01

    Despite similarities of cellular membranes in all eukaryotes, every compartment displays characteristic and often unique features which are important for the functions of the specific organelles. In the present study, we biochemically characterized the plasma membrane of the methylotrophic yeast Pichia pastoris with emphasis on the lipids which form the matrix of this compartment. Prerequisite for this effort was the design of a standardized and reliable isolation protocol of the plasma membrane at high purity. Analysis of isolated plasma membrane samples from P. pastoris revealed an increase of phosphatidylserine and a decrease of phosphatidylcholine compared to bulk membranes. The amount of saturated fatty acids in the plasma membrane was higher than in total cell extracts. Ergosterol, the final product of the yeast sterol biosynthetic pathway, was found to be enriched in plasma membrane fractions, although markedly lower than in Saccharomyces cerevisiae. A further characteristic feature of the plasma membrane from P. pastoris was the enrichment of inositol phosphorylceramides over neutral sphingolipids, which accumulated in internal membranes. The detailed analysis of the P. pastoris plasma membrane is discussed in the light of cell biological features of this microorganism especially as a microbial cell factory for heterologous protein production. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effects of pre- and pro-sequence of thaumatin on the secretion by Pichia pastoris.

    PubMed

    Ide, Nobuyuki; Masuda, Tetsuya; Kitabatake, Naofumi

    2007-11-23

    Thaumatin is a 22-kDa sweet-tasting protein containing eight disulfide bonds. When thaumatin is expressed in Pichia pastoris using the thaumatin cDNA fused with both the alpha-factor signal sequence and the Kex2 protease cleavage site from Saccharomyces cerevisiae, the N-terminal sequence of the secreted thaumatin molecule is not processed correctly. To examine the role of the thaumatin cDNA-encoded N-terminal pre-sequence and C-terminal pro-sequence on the processing of thaumatin and efficiency of thaumatin production in P. pastoris, four expression plasmids with different pre-sequence and pro-sequence were constructed and transformed into P. pastoris. The transformants containing pre-thaumatin gene that has the native plant signal, secreted thaumatin molecules in the medium. The N-terminal amino acid sequence of the secreted thaumatin molecule was processed correctly. The production yield of thaumatin was not affected by the C-terminal pro-sequence, and the pro-sequence was not processed in P. pastoris, indicating that pro-sequence is not necessary for thaumatin synthesis.

  18. Enhanced heterologous protein production in Pichia pastoris under increased air pressure.

    PubMed

    Lopes, Marlene; Oliveira, Carla; Domingues, Lucília; Mota, Manuel; Belo, Isabel

    2014-01-01

    Pichia pastoris is a widely used host for the production of heterologous proteins. In this case, high cell densities are needed and oxygen is a major limiting factor. The increased air pressure could be used to improve the oxygen solubility in the medium and to reach the high oxygen demand of methanol metabolism. In this study, two P. pastoris strains producing two different recombinant proteins, one intracellular (β-galactosidase) and other extracellular (frutalin), were used to investigate the effect of increased air pressure on yeast growth in glycerol and heterologous protein production, using the methanol AOX1-inducible system. Experiments were carried out in a stainless steel bioreactor under total air pressure of 1 bar and 5 bar. The use of an air pressure raise of up to 5 bar proved to be applicable for P. pastoris cultivation. Moreover, no effects on the kinetic growth parameters and methanol utilization (Mut) phenotype of strains were found, while an increase in recombinant β-galactosidase-specific activity (ninefold) and recombinant frutalin production was observed. Furthermore, the air pressure raise led to a reduction in the secreted protease specific activity. This work shows for the first time that the application of an air pressure of 5 bar may be used as a strategy to decrease protease secretion and improve recombinant protein production in P. pastoris. © 2014 American Institute of Chemical Engineers.

  19. Cell culture using centrifugal microfluidic platform with demonstration on Pichia pastoris.

    PubMed

    Ren, Yong; Chow, Larry Ming-Cheung; Leung, Wallace Woon-Fong

    2013-04-01

    This paper discusses the vortical flow, mixing and cell culture of Pichia pastoris using a centrifugal microfluidic (CM) chamber. The resultant "spiral toroidal vortex" in the chamber is made up of a primary vortex induced from inertial acceleration/deceleration of the chamber superposed by a secondary toroidal vortex due to Coriolis acceleration acting on the primary vortex. A validated numerical fluid-flow model with minimized numerical diffusion effect has been developed to investigate the flow and consequently mixing of two-color liquids through cyclic constant acceleration-and-deceleration in the same rotation direction until homogeneous mixing of the two liquids in the CM chamber has been established. The specific mixing time is found to improve with increase in acceleration/deceleration and angular span of the chamber. An experimental CM platform with three cell-culture chambers of different angular spans has been built and Pichia pastoris cell culture has been successfully demonstrated. Cell growth can be monitored over time on the extracted samples by measuring the optical density at 600-nm wave-length. Comparing with conventional cell culture, Pichia pastoris cultured on CM platform exhibits a very short lag (cell preparation/budding) phase prior to the log phase (cell growth). While it takes 8 to 12 h for the conventional shake flask in the lag phase, it takes only 2 h for the CM platform irrespective of initial cell concentration (8.1 × 10(4) to 8.1 × 10(5)/ml), acceleration/deceleration (10 to 32/s(2)) and angular span of the culture chamber (π/12 to π/4), representing significant time reduction. This is largely attributed to better growth conditions due to enhanced mixing and appropriate shear-stress stimulation from the efficient spiral toroidal vortex.

  20. [Construction of Pichia pastoris strain expressing salivary plasminogen activator from vampire bat (Desmodus rotundus)].

    PubMed

    Liu, Yan; Su, Chang; Song, Xiaoshuang; Tang, Yalan; Bao, Zhenhong

    2009-04-01

    Vampire bat saliva contains a plasminogen activator that presumably assists these hematophagous animals during feeding. Bat-PA (H), the full-length form of Vampire Bat Salivary Plasminogen Activator (DSPAalpha1), is homologous and similar efficacy to tissue-type plasminogen activator (t-PA). The strict fibrin dependence of activity is a characteristic which could be desirable in the fibrinolytic therapy. It is a unique fibrinolytic enzyme that does not promote neurodegeneration. In this study, according to the reported gene sequence (GenBank Accession No. J05082) of Vampire bat (D. rotundus) plasminogen activator. It was the first time to synthesize the full sequence of DSPAalpha1 in vitro and clone it into the expression vector pPIC9K, the recombinant plasmid was linearized and transformed into Pichia pastoris GS115 strain. Secreted expression of recombinant DSPAalpha1 was attained by methanol induction and its molecular mass is 47 kD. To get recombinant GS115 with high amount of protein, hundreds of His+ transformants had been screened to isolate clones resistant to high levels G418 (2-4 mg/mL), the selected clones mini-expressed in Pichia pastoris, and tested their fibrinolytic activities and expressed protein bands by fibrin plate assay and SDS-PAGE. DSPAalpha1 was determined by optical density after SDS-PAGE, the yield is about 30 mg per liter of fermentation culture. DSPAalpha1 derived often from mammalian cells: Chinese hamster ovary (CHO) cells, Baby hamster kidney (BHK) cells, COS cells, which might be produced at high cost. In Pichia pastoris, it is expected to higher yield and lower cost, thus it might be able to serve as new thrombolytic candidate.

  1. Inactivation of a GAL4-like transcription factor improves cell fitness and product yield in glycoengineered Pichia pastoris strains.

    PubMed

    Jiang, Bo; Argyros, Rebecca; Bukowski, John; Nelson, Stephanie; Sharkey, Nathan; Kim, Sehoon; Copeland, Victoria; Davidson, Robert C; Chen, Ronghua; Zhuang, Jun; Sethuraman, Natarajan; Stadheim, Terrance A

    2015-01-01

    With a completely reengineered and humanized glycosylation pathway, glycoengineered Pichia pastoris has emerged as a promising production host for the manufacture of therapeutic glycoproteins. However, the extensive genetic modifications have also negatively affected the overall fitness levels of the glycoengineered host cells. To make glycoengineered Pichia strains more compatible with a scalable industrial fermentation process, we sought to identify genetic solutions to broadly improve cell robustness during fermentation. In this study, we report that mutations within the Pichia pastoris ATT1 (PpATT1) gene (a homolog of the Saccharomyces cerevisiae GAL4 [ScGAL4] transcriptional activator) dramatically increased the cellular fitness levels of glycoengineered Pichia strains. We demonstrate that deletion of the PpATT1 gene enabled glycoengineered Pichia strains to improve their thermal tolerance levels, reduce their cell lysis defects, and greatly improve fermentation robustness. The extension of the duration of fermentation enabled the PpATT1-modified glycoengineered Pichia strains to increase their product yields significantly without any sacrifice in product quality. Because the ATT1 gene could be deleted from any Pichia strains, including empty hosts and protein-expressing production strains alike, we suggest that the findings described in this study are broadly applicable to any Pichia strains used for the production of therapeutic proteins, including monoclonal antibodies, Fc fusions, peptides, hormones, and growth factors.

  2. Inactivation of a GAL4-Like Transcription Factor Improves Cell Fitness and Product Yield in Glycoengineered Pichia pastoris Strains

    PubMed Central

    Argyros, Rebecca; Bukowski, John; Nelson, Stephanie; Sharkey, Nathan; Kim, Sehoon; Copeland, Victoria; Davidson, Robert C.; Chen, Ronghua; Zhuang, Jun; Sethuraman, Natarajan; Stadheim, Terrance A.

    2014-01-01

    With a completely reengineered and humanized glycosylation pathway, glycoengineered Pichia pastoris has emerged as a promising production host for the manufacture of therapeutic glycoproteins. However, the extensive genetic modifications have also negatively affected the overall fitness levels of the glycoengineered host cells. To make glycoengineered Pichia strains more compatible with a scalable industrial fermentation process, we sought to identify genetic solutions to broadly improve cell robustness during fermentation. In this study, we report that mutations within the Pichia pastoris ATT1 (PpATT1) gene (a homolog of the Saccharomyces cerevisiae GAL4 [ScGAL4] transcriptional activator) dramatically increased the cellular fitness levels of glycoengineered Pichia strains. We demonstrate that deletion of the PpATT1 gene enabled glycoengineered Pichia strains to improve their thermal tolerance levels, reduce their cell lysis defects, and greatly improve fermentation robustness. The extension of the duration of fermentation enabled the PpATT1-modified glycoengineered Pichia strains to increase their product yields significantly without any sacrifice in product quality. Because the ATT1 gene could be deleted from any Pichia strains, including empty hosts and protein-expressing production strains alike, we suggest that the findings described in this study are broadly applicable to any Pichia strains used for the production of therapeutic proteins, including monoclonal antibodies, Fc fusions, peptides, hormones, and growth factors. PMID:25344235

  3. Metabolic engineering of Pichia pastoris for the production of dammarenediol-II.

    PubMed

    Liu, Xin-Bin; Liu, Min; Tao, Xin-Yi; Zhang, Zhong-Xi; Wang, Feng-Qing; Wei, Dong-Zhi

    2015-12-20

    Dammarenediol-II is the nucleus of dammarane-type ginsenosides, which are a group of active triterpenoids exhibiting various pharmacological activities. Based on the native triterpene synthetic pathway, a dammarenediol-II synthetic pathway was established in Pichia pastoris by introducing a dammarenediol-II synthase gene (PgDDS) from Panax ginseng, which is responsible for the cyclization of 2,3-oxidosqualene to dammarenediol-II in this study. To enhance productivity, a strategy of "increasing supply and reducing competitive consumption of 2,3-oxidosqualene" was used. To increase the supply of 2,3-oxidosqualene, we augmented expression of the ERG1 gene, which is responsible for 2,3-oxidosqualene synthesis. This significantly improved the yield of dammarenediol-II over 6.7-fold, from 0.030mg/g dry cell weight (DCW) to 0.203mg/g DCW. Subsequently, to reduce competition for 2,3-oxidosqualene from ergosterol biosynthesis without affecting the normal growth of P. pastoris, we targeted the ERG7gene, which is responsible for conversion of 2,3-oxidosqualene to lanosterol. This gene was downregulated by replacing its native promoter with a thiamine-repressible promoter, using a marker-recycling and gene-targeting Cre- lox71/66 system developed for P. pastoris herein. The yield of dammarenediol-II was further increased more than 3.6-fold, to 0.736mg/g DCW. Furthermore, the direct addition of 0.5g/L squalene into the culture medium further enhanced the yield of dammarenediol-II to 1.073mg/g DCW, which was 37.5-fold higher than the yield from the strain with the PgDDS gene introduction only. The P. pastoris strains engineered in this study constitute a good platform for further production of ginsenosides in Pichia species.

  4. Methyl labeling and TROSY NMR spectroscopy of proteins expressed in the eukaryote Pichia pastoris.

    PubMed

    Clark, Lindsay; Zahm, Jacob A; Ali, Rustam; Kukula, Maciej; Bian, Liangqiao; Patrie, Steven M; Gardner, Kevin H; Rosen, Michael K; Rosenbaum, Daniel M

    2015-07-01

    (13)C Methyl TROSY NMR spectroscopy has emerged as a powerful method for studying the dynamics of large systems such as macromolecular assemblies and membrane proteins. Specific (13)C labeling of aliphatic methyl groups and perdeuteration has been limited primarily to proteins expressed in E. coli, preventing studies of many eukaryotic proteins of physiological and biomedical significance. We demonstrate the feasibility of efficient (13)C isoleucine δ1-methyl labeling in a deuterated background in an established eukaryotic expression host, Pichia pastoris, and show that this method can be used to label the eukaryotic protein actin, which cannot be expressed in bacteria. This approach will enable NMR studies of previously intractable targets.

  5. [Cloning of mMR-1 gene and expression in Pichia pastoris systems].

    PubMed

    Li, Tian-Bo; Hu, Yang; Wang, Yi-Guang; Xia, Huan-Zhang

    2005-01-01

    hMR-1 (Homo Myofibrillogenesis Regulator 1, AF417001) is a novel homo gene, which was firstly cloned in our laboratory. The former studies revealed that hMR-1 is a transmembrane protein which shows protein interaction with sarcomeric proteins like myomesin I, myosin regulatory light chain, alpha-enolase and some cell regulator proteins such as eukaryotic translation initiation factor3 subunit 5 (eIF3S5) and etc. In this work, we focused on cloning the homologous gene of hMR-1 from mouse C57BL/6J and exploring its expression using Pichia pastoris yeast system. Two pairs of primers were synthesized according to the hMR-1 gene homologous sequence on mouse genome chromosome 1. The mouse MR-1 gene (mMR-1) was cloned by PCR following the first round RT-PCR from mouse C57BL/6J spleen total RNA. Sequence analysis verified that mMR-1 gene and amino acids sequence showed 90.4% and 90.1% identity with hMR-1, respectively. The prediction of hydrophobic transmembrane structure of mMR-1 suggested it is also a transmembrane protein. The mMR-1 Pichia pastoris expression vector pPIC9-mMR-1 was constructed by fusion of the flanking mMR-1 ORF in the pPIC9 plasmid. After linearization of pPIC9-mMR-1 with Sal I, the 8.5kb DNA fragment was transformed into Pichia pastoris GS115 strain by electroporation. GS115/Mut+ pPIC9-mMR-1 transformants were selected on minimal methanol medium. Integration of mMR-1 gene into the yeast genome in the recombinants was verified by PCR from the transformants total DNA. The mMR-1 protein was expressed by induction under the concentration of 0.5 % methanol. The specific induced protein of 25 kD molecular mass in SDS-PAGE was confirmed to be the mMR-1 protein by Western blot rsing hMR-1 polyclonal antibody. The expression level of this recombinant mMR-1 protein was about 50 mg/L. The successful expression of mMR-1 in the Pichia pastoris GS115 will facilitate the further functional analysis of the novel gene MR-1 in animal model.

  6. Improving functional annotation for industrial microbes: a case study with Pichia pastoris

    PubMed Central

    Dikicioglu, Duygu; Wood, Valerie; Rutherford, Kim M.; McDowall, Mark D.; Oliver, Stephen G.

    2014-01-01

    The research communities studying microbial model organisms, such as Escherichia coli or Saccharomyces cerevisiae, are well served by model organism databases that have extensive functional annotation. However, this is not true of many industrial microbes that are used widely in biotechnology. In this Opinion piece, we use Pichia (Komagataella) pastoris to illustrate the limitations of the available annotation. We consider the resources that can be implemented in the short term both to improve Gene Ontology (GO) annotation coverage based on annotation transfer, and to establish curation pipelines for the literature corpus of this organism. PMID:24929579

  7. Secretory Expression and Characterization of Chinese Narcissus GNA-Like Lectin in Pichia pastoris.

    PubMed

    Li, Xinyu; Zhang, Pengpeng; Zhang, Ning; Liang, Xiao; Wang, Wenya; Yuan, Qipeng; Li, Qiang

    2017-08-01

    Narcissus tazetta lectin (NTL) is a GNA-like lectin, which has a wide potential application in medicine, agriculture, and glycobiology. In the present paper, the codon-optimized ntl gene was transformed into the yeast Pichia pastoris; SDS-PAGE gel and western blotting analysis revealed that the recombinant lectin was expressed successfully in Pichia yeast. The similarity between the recombinant NTL and the native NTL was confirmed by circular dichroism (CD) and hemagglutination assay further. In the 5-L scale fermentator, the protein yield was as high as 1.2 g/L after fermentation for 96 h. In addition, the effect of metal ions (K(+), Mg(2+), Ca(2+), and Cu(2+)), acid, and alkaline on hemagglutinating activity of NTL was tested, which provided biochemical characterizations of the mannose-binding lectin from Chinese Narcissus.

  8. A novel bi-directional promoter system allows tunable recombinant protein production in Pichia pastoris.

    PubMed

    Rajamanickam, Vignesh; Metzger, Karl; Schmid, Christian; Spadiut, Oliver

    2017-09-13

    The methylotrophic yeast Pichia pastoris is a well-studied host organism for recombinant protein production, which is usually regulated either by a constitutive promoter (e.g. promoter of glyceraldehyde-3-phosphate dehydrogenase; PGAP) or an inducible promoter (e.g. promoter of alcohol oxidase 1; PAOX1). Both promoter systems have several advantages and disadvantages; with one of the main disadvantages being their lack of tunability. Various novel promoter systems, which are either inducible or de-repressed, allowing higher degrees of freedom, have been reported. Recently, bi-directional promoter systems in P. pastoris with two promoter systems regulating recombinant expression of one or more genes were developed. In this study, we introduce a novel bi-directional promoter system combining a modified catalase promoter system (PDC; derepressible and inducible) and the traditional PAOX1, allowing tunable recombinant protein production. We characterized a recombinant P. pastoris strain, carrying the novel bi-directional promoter system, during growth and production in three dynamic bioreactor cultivations. We cloned the model enzyme cellobiohydralase downstream of either promoter and applied different feeding strategies to determine the physiological boundaries of the strain. We succeeded in demonstrating tunability of recombinant protein production solely in response to the different feeding strategies and identified a mixed feed regime allowing highest productivity. In this feasibility study, we present the first controlled bioreactor experiments with a recombinant P. pastoris strain carrying a novel bi-directional promotor combination of a catalase promoter variant (PDC) and the traditional PAOX1. We demonstrated that this bi-directional promoter system allows tunable recombinant protein expression only in response to the available C-sources. This bi-directional promoter system offers a high degree of freedom for bioprocess design and development, making bi

  9. Protective Oral Vaccination against Infectious bursal disease virus Using the Major Viral Antigenic Protein VP2 Produced in Pichia pastoris

    PubMed Central

    Taghavian, Omid; Spiegel, Holger; Hauck, Rüdiger; Hafez, Hafez M.; Fischer, Rainer; Schillberg, Stefan

    2013-01-01

    Infectious bursal disease virus (IBDV) causes economically important immunosuppressive disease in young chickens. The self-assembling capsid protein (VP2) from IBDV strain IR01 was expressed in Pichia pastoris resulting in the formation of homomeric, 23-nm infectious bursal disease subviral particles (IBD-SVPs) with a yield of 76 mg/l before and 38 mg/l after purification. Anti-IBDV antibodies were detected in chickens injected with purified IBD-SVPs or fed with either purified IBD-SVPs or inactivated P. pastoris cells containing IBD-VP2 (cell-encapsulated). Challenge studies using the heterologous classical IBDV strain (MB3) showed that intramuscular vaccination with 20 µg purified IBD-SVPs conferred full protection, achieved complete virus clearance and prevented bursal damage and atrophy, compared with only 40% protection, 0–10% virus clearance accompanied by severe atrophy and substantial bursal damage in mock-vaccinated and challenge controls. The commercial IBDV vaccine also conferred full protection and achieved complete virus clearance, albeit with partial bursal atrophy. Oral administration of 500 µg purified IBD-SVPs with and without adjuvant conferred 100% protection but achieved only 60% virus clearance with adjuvant and none without it. Moderate bursal damage was observed in both cases but the inclusion of adjuvant resulted in bursal atrophy similar to that observed with live-attenuated vaccine and parenteral administration of 20 µg purified IBD-SVPs. The oral administration of 250 mg P. pastoris cells containing IBD-VP2 resulted in 100% protection with adjuvant and 60% without, accompanied by moderate bursal damage and atrophy in both groups, whereas 25 mg P. pastoris cells containing IBD-VP2 resulted in 90–100% protection with moderate bursal lesions and severe atrophy. Finally, the oral delivery of 50 µg purified IBD-SVPs achieved 40–60% protection with severe bursal lesions and atrophy. Both oral and parenteral administration of yeast

  10. Overexpression and biochemical characterization of a thermostable phytase from Bacillus subtilis US417 in Pichia pastoris.

    PubMed

    Hmida-Sayari, Aïda; Elgharbi, Fatma; Farhat, Ameny; Rekik, Hatem; Blondeau, Karine; Bejar, Samir

    2014-09-01

    The overexpression of the native gene encoding the thermostable Bacillus subtilis US417 phytase using Pichia pastoris system is described. The phytase gene, in which the sequence encoding the signal peptide was replaced by that of the α-factor of Saccharomyces cerevisiae, was placed under the control of the methanol-inducible promoter of the alcohol oxidase 1 gene and expressed in Pichia pastoris. Small-scale expression experiments and activity assays were used to screen positive colonies. A recombinant strain was selected and produces 43 and 227 U/mL of phytase activity in shake flasks and in high-cell-density fermentation, respectively. The purified phytase was glycosylated protein and varied in size (50-65 kDa). It has a molecular mass of 43 kDa when it was deglycosylated. The purified r-PHY maintains 100% of its activity after 10 min incubation at 75 °C and pH 7.5. This thermostable phytase, which is also active over broad pH ranges, may be useful as feed additives, since it can resist the temperature used in the feed-pelleting process.

  11. Heterologous, Expression, and Characterization of Thermostable Glucoamylase Derived from Aspergillus flavus NSH9 in Pichia pastoris

    PubMed Central

    Karim, Kazi Muhammad Rezaul; Hossain, Md. Anowar; Sing, Ngieng Ngui; Mohd Sinang, Fazia; Hussain, Mohd Hasnain Md.; Roslan, Hairul Azman

    2016-01-01

    A novel thermostable glucoamylase cDNA without starch binding domain (SBD) of Aspergillus flavus NSH9 was successfully identified, isolated, and overexpressed in Pichia pastoris GS115. The complete open reading frame of glucoamylase from Aspergillus flavus NSH9 was identified by employing PCR that encodes 493 amino acids lacking in the SBD. The first 17 amino acids were presumed to be a signal peptide. The cDNA was cloned into Pichia pastoris and the highest expression of recombinant glucoamylase (rGA) was observed after 8 days of incubation period with 1% methanol. The molecular weight of the purified rGA was about 78 kDa and exhibited optimum catalytic activity at pH 5.0 and temperature of 70°C. The enzyme was stable at higher temperature with 50% of residual activity observed after 20 min at 90°C and 100°C. Low concentration of metal (Mg++, Fe++, Zn++, Cu++, and Pb++) had positive effect on rGA activity. This rGA has the potential for use and application in the saccharification steps, due to its thermostability, in the starch processing industries. PMID:27504454

  12. Expression of a cold-adapted fish trypsin in Pichia pastoris.

    PubMed

    Macouzet, Martin; Simpson, Benjamin K; Lee, Byong H

    2005-06-01

    Trypsin is a highly valuable protease that has many industrial and biomedical applications. The growing demand for non-animal sources of the enzyme and for trypsins with special properties has driven the interest to clone and express this protease in microorganisms. Reports about expression of recombinant trypsins show wide differences in the degree of success and are contained mainly in patent applications, which disregard the difficulties associated with the developments. Although the yeast Pichia pastoris appears to be the microbial host with the greatest potential for the production of trypsin, it has shown problems when expressing cold-adapted fish trypsins (CAFTs). CAFTs are considered of immense value for their comparative advantage over other trypsins in a number of food-processing and biotechnological applications. Thus, to investigate potential obstacles related to the production of CAFTs in P. pastoris, the cunner fish trypsin (CFT) was cloned in different Pichia expression vectors. The vectors were constructed targeting both internal and secreted expression and keeping the CFT native signal peptide. Western-blotting analysis confirmed the expression with evident differences for each construct, observing a major effect of the leader peptide sequence on the expression patterns. Immobilized nickel affinity chromatography yielded a partially purified recombinant CFT, which exhibited trypsin-specific activity after activation with bovine enterokinase.

  13. Optimization of Recombinant Expression of Synthetic Bacterial Phytase in Pichia pastoris Using Response Surface Methodology

    PubMed Central

    Akbarzadeh, Ali; Dehnavi, Ehsan; Aghaeepoor, Mojtaba; Amani, Jafar

    2015-01-01

    Background: Escherichia coli phytase is an acidic histidine phytase with great specific activity. Pichia pastoris is a powerful system for the heterologous expression of active and soluble proteins which can express recombinant proteins in high cell density fermenter without loss of product yield and efficiently secrete heterologous proteins into the media. Recombinant protein expression is influenced by expression conditions such as temperature, concentration of inducer, and pH. By optimization, the yield of expressed proteins can be increase. Response surface methodology (RSM) has been widely used for the optimization and studying of different parameters in biotechnological processes. Objectives: In this study, the expression of synthetic appA gene in P. pastoris was greatly improved by adjusting the expression condition. Materials and Methods: The appA gene with 410 amino acids was synthesized by P. pastoris codon preference and cloned in expression vector pPinkα-HC, under the control of AOX1 promoter, and it was transformed into P. pastoris GS115 by electroporation. Recombinant phytase was expressed in buffered methanol-complex medium (BMMY) and the expression was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and enzymatic assay. To achieve the highest level of expression, methanol concentration, pH and temperature were optimized via RSM. Finally, the optimum pH and temperature for recombinant phytase activity was determined. Results: Escherichia coli phytase was expressed in P. pastoris under different cultivation conditions (post-induction temperature, methanol concentration, and post-induction pH). The optimized conditions by RSM using face centered central composite design were 1% (v/v) methanol, pH = 5.8, and 24.5°C. Under the optimized conditions, appA was successfully expressed in P. pastoris and the maximum phytase activity was 237.2 U/mL after 72 hours of expression. Conclusions: By optimization of recombinant

  14. Comparison of laccase production levels in Pichia pastoris and Cryptococcus sp. S-2.

    PubMed

    Nishibori, Nahoko; Masaki, Kazuo; Tsuchioka, Hiroaki; Fujii, Tsutomu; Iefuji, Haruyuki

    2013-04-01

    The heterologous expression of the laccase gene from Trametes versicolor and Gaeumannomyces graminis was evaluated in the yeasts Pichia pastoris and Cryptococcus sp. S-2. The expression levels of both laccase genes in Cryptococcus sp. S-2 were considerably higher than those in P. pastoris. The codon usage of Cryptococcus sp. S-2 as well as the GC content were similar to those of T. versicolor and G. graminis. These results suggest that using a host with a similar codon usage for the expressed gene may improve protein expression. The use of Cryptococcus sp. S-2 as a host may be advantageous for the heterologous expression of genes with high GC content. Moreover, this yeast provides the same advantages as P. pastoris for the production of recombinant proteins, such as growth on minimal medium, capacity for high-density growth during fermentation, and capability for post-translational modifications. Therefore, we propose that Cryptococcus sp. S-2 be used as an expression host to improve enzyme production levels when other hosts have not yielded good results.

  15. Heterologous expression of codon optimized Trichoderma reesei Cel6A in Pichia pastoris.

    PubMed

    Sun, Fubao Fuelbiol; Bai, Renhui; Yang, Huimin; Wang, Fei; He, Jing; Wang, Chundi; Tu, Maobing

    2016-10-01

    The Cel6A deficiency has become one of the limiting factors for cellulose saccharification in biochemical conversion of cellulosic biomass to fuels and chemicals. The work attempted to use codon optimization to enhance Trichoderma reesei Cel6A expression in Pichia pastoris. Two recombinants P. pastoris GS115 containing AOX1 and GAP promotors were successfully constructed, respectively. The optimal temperatures and pHs of the expressed Cel6A from two recombinants were consistent with each other, were also in the extremely similar range to that reported on the native Cel6A from T. reesei. Based on the shake flask fermentation, AOX1 promotor enabled the recombinant to produce 265U/L and 300mg/L of the Cel6A enzyme, and the GAP promotor resulted in 145U/L and 200mg/L. High cell density fed batch (HCDFB) fermentation significantly improved the enzyme titer (1100U/L) and protein yield (2.0g/L) for the recombinant with AOX1 promotor. Results have showed that the AOX1 promotor is more suitable than the GAP for the Cel6A expression in P. pastoris. And the HCDFB cultivation is a favorable way to express the Cel6A highly in the methanol inducible yeast.

  16. The effect of hypoxia on the lipidome of recombinant Pichia pastoris.

    PubMed

    Adelantado, Núria; Tarazona, Pablo; Grillitsch, Karlheinz; García-Ortega, Xavier; Monforte, Sergi; Valero, Francisco; Feussner, Ivo; Daum, Günther; Ferrer, Pau

    2017-05-19

    Cultivation of recombinant Pichia pastoris (Komagataella sp.) under hypoxic conditions has a strong positive effect on specific productivity when the glycolytic GAP promoter is used for recombinant protein expression, mainly due to upregulation of glycolytic conditions. In addition, transcriptomic analyses of hypoxic P. pastoris pointed out important regulation of lipid metabolism and unfolded protein response (UPR). Notably, UPR that plays a role in the regulation of lipid metabolism, amino acid metabolism and protein secretion, was found to be upregulated under hypoxia. To improve our understanding of the interplay between lipid metabolism, UPR and protein secretion, the lipidome of a P. pastoris strain producing an antibody fragment was studied under hypoxic conditions. Furthermore, lipid composition analyses were combined with previously available transcriptomic datasets to further understand the impact of hypoxia on lipid metabolism. Chemostat cultures operated under glucose-limiting conditions under normoxic and hypoxic conditions were analyzed in terms of intra/extracellular product distribution and lipid composition. Integrated analysis of lipidome and transcriptome datasets allowed us to demonstrate an important remodeling of the lipid metabolism under limited oxygen availability. Additionally, cells with reduced amounts of ergosterol through fluconazole treatment were also included in the study to observe the impact on protein secretion and its lipid composition. Our results show that cells adjust their membrane composition in response to oxygen limitation mainly by changing their sterol and sphingolipid composition. Although fluconazole treatment results a different lipidome profile than hypoxia, both conditions result in higher recombinant protein secretion levels.

  17. Glycerophosphate as a phosphorus source in a defined medium for Pichia pastoris fermentation.

    PubMed

    Zhang, Wenhui; Sinha, Jayanta; Meagher, Michael M

    2006-08-01

    Pichia pastoris has emerged as a commercially important yeast for the production of a vast majority of recombinant therapeutic proteins and vaccines. The organism can be grown to very high cell densities using a defined basal salts media (BSM). However, BSM contains bi-cation or tri-cation phosphate, which precipitates out of the medium at pH above 5.5, although the optimal fermentation pH of most recombinant protein fermentation varies between 5.5 and 7.0. In this article, the application of glycerophosphates was investigated as a substitute phosphate source in an effort to eliminate precipitation. The solubility of BSM containing sodium or potassium glycerophosphates was examined before and after autoclaving at various pHs. Sodium glycerophosphate was found stable at autoclave temperature but formed complexes with coexisting magnesium and calcium ions that were insoluble above pH 7.0. Medium where sodium glycerophosphate was autoclaved separately and then added to the growth medium did not produce any precipitate up to pH 10.5. The performance of P. pastoris fermentations expressing alpha-galactosidase and ovine interferon-tau using a glycerolphosphate-based medium was found to be comparable to a conventional BSM. The results from this work demonstrate that sodium glycerophosphate can be assimilated by the P. pastoris strains and can be employed as a reliable phosphorus source for both cell growth and recombinant protein production.

  18. Codon optimisation improves the expression of Trichoderma viride sp. endochitinase in Pichia pastoris

    PubMed Central

    Yu, Ping; Yan, Yuan; Gu, Qing; Wang, Xiangyang

    2013-01-01

    The mature cDNA of endochitinase from Trichoderma viride sp. was optimised based on the codon bias of Pichia pastoris GS115 and synthesised by successive PCR; the sequence was then transformed into P. pastoris GS115 via electroporation. The transformant with the fastest growth rate on YPD plates containing 4 mg/mL G418 was screened and identified. This transformant produced 23.09 U/mL of the recombinant endochitinase, a 35% increase compared to the original strain bearing the wild-type endochitinase cDNA. The recombinant endochitinase was sequentially purified by ammonia sulphate precipitation, DE-52 anion-exchange chromatography and Sephadex G-100 size-exclusion chromatography. Thin-layer chromatography indicated that the purified endochitinase could hydrolyse chito-oligomers or colloidal chitin to generate diacetyl-chitobiose (GlcNAc)2 as the main product. This study demonstrates (1) a means for high expression of Trichoderma viride sp. endochitinase in P. pastoris using codon optimisation and (2) the preparation of chito-oligomers using endochitinase. PMID:24154717

  19. rhEPO (recombinant human eosinophil peroxidase): expression in Pichia pastoris and biochemical characterization

    PubMed Central

    Ciaccio, Chiara; Gambacurta, Alessandra; Sanctis, Giampiero DE; Spagnolo, Domenico; Sakarikou, Christina; Petrella, Giovanni; Coletta, Massimo

    2006-01-01

    A Pichia pastoris expression system has for the first time been successfully developed to produce rhEPO (recombinant human eosinophil peroxidase). The full-length rhEPO coding sequence was cloned into the pPIC9 vector in frame with the yeast α-Factor secretion signal under the transcriptional control of the AOX (acyl-CoA oxidase) promoter, and transformed into P. pastoris strain GS115. Evidence for the production of rhEPO by P. pastoris as a glycosylated dimer precursor of approx. 80 kDa was determined by SDS/PAGE and gel filtration chromatography. Recombinant hEPO undergoes proteolytic processing, similar to that in the native host, to generate two chains of approx. 50 and 20 kDa. A preliminary biochemical characterization of purified rhEPO demonstrated that the spectral and kinetic properties of the recombinant wild-type EPO are comparable with those of the native enzyme and are accompanied by oxidizing activity towards several physiological anionic substrates such as SCN−, Br− and Cl−. On the basis of the estimated Km and kcat values it is evident that the pseudohalide SCN− is the most specific substrate for rhEPO, consistent with the catalytic properties of other mammalian EPOs purified from blood. PMID:16396635

  20. Recombinant expression of human cathelicidin (hCAP18/LL-37) in Pichia pastoris.

    PubMed

    Hong, In-Pyo; Lee, Sung-Jae; Kim, Yong-Seok; Choi, Shin-Geon

    2007-01-01

    The constitutive expression of human cathelicidin LL-37 antimicrobial peptide was achieved using the methylotrophic yeast, Pichia pastoris. An LL-37 cDNA clone was amplified by PCR using human fetal cDNA library as template. The 111 bp fragment encoding mature LL-37 gene was subcloned into pGAPZ-E, an episomal form of the pGAPZB vector incorporating PARS1. It was then transformed into the P. pastoris X-33 strain for intracellular expression. A small peptide with a molecular mass of about 5 kDa was detected by 17% peptide-PAGE analysis. The recombinant LL-37 peptide was purified from the gel and its amino acid sequence was determined by LC-ESI-MS/MS analysis. The initiating amino acid, methionine, was still attached to the N-terminal region of recombinant LL-37. LL-37 crude extract from P. pastoris showed an antimicrobial activity against Micrococcus luteus as the test strain. The successful expression of human LL-37 indicates that the system may be applicable to the expression of other human defensins without resorting to fusion protein constructions.

  1. Expression and Characterization of Windmill Palm Tree (Trachycarpus fortunei) Peroxidase by Pichia pastoris.

    PubMed

    Wen, Boting; Baker, Margaret R; Zhao, Hongwei; Cui, Zongjun; Li, Qing X

    2017-06-14

    Currently, commercial plant peroxidases are all native and are isolated from plants such as horseradish and soybean. No recombinant plant peroxidase products have been available on the commercial market. The gene encoding peroxidase was cloned from windmill palm tree leaves. The codon-optimized gene was transformed into Pichia pastoris for expression. The recombinant windmill palm tree peroxidase (rWPTP) expressed by P. pastoris showed high stability under pH 2-10 and temperatures up to 70 °C to many metallic salts and organic solvents. The substrate specificity of WPTP was determined, and among the substrates tested, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was most suitable for WPTP. The Michaelis constants with the substrates H2O2 and ABTS were 4.6 × 10(-4) and 1.6 × 10(-4) M, respectively. The rWPTP expressed in P. pastoris may be a suitable enzyme for the biosynthesis of polymers because of its high stability and activity under acidic conditions.

  2. Expression of soluble recombinant transglutaminase from Zea mays in Pichia pastoris.

    PubMed

    Li, Hongbo; Zhang, Lanwei; Cui, Yanhua; Luo, Xue; Xue, Chaohui; Wang, Shumei

    2013-05-01

    Transglutaminases (TGases) catalyze post-translational protein modifications by ε-(γ-glutamyl) links and covalent amide bonds. In plant, this enzyme is poorly studied and only the Zea mays TGase gene (tgz) has been cloned. The tgz had been expressed in Escherichia coli, but the recombinant protein was mainly present in inclusion bodies. Therefore, to obtain active, soluble protein, we optimized its coding sequence according to the codon bias of Pichia pastoris and synthesized the sequence with SOEing-PCR. The optimized fragment was successfully transformed into P. pastoris GS115 by electroporation. The optimal conditions for expression were under a final concentration of 0.5 % methanol and a time-course of 96 h. The synthesized recombinant Zea mays transglutaminase (TGZs) was purified by affinity method, its production was 4.4 mg/L, and the specific activity was 0.889 U/mg under optimal expression condition. Optimal activity for TGZs was observed at 37 °C and a pH of 8.0, respectively. The cross-linking reaction of TGZs to the casein was studied, and the result was same as the reaction of casein by microbial transglutaminase. These results indicated that an effective procedure for expressing and purifying TGZs in P. pastoris GS115 was established.

  3. Non-canonical integration events in Pichia pastoris encountered during standard transformation analysed with genome sequencing

    PubMed Central

    Schwarzhans, Jan-Philipp; Wibberg, Daniel; Winkler, Anika; Luttermann, Tobias; Kalinowski, Jörn; Friehs, Karl

    2016-01-01

    The non-conventional yeast Pichia pastoris is a popular host for recombinant protein production in scientific research and industry. Typically, the expression cassette is integrated into the genome via homologous recombination. Due to unknown integration events, a large clonal variability is often encountered consisting of clones with different productivities as well as aberrant morphological or growth characteristics. In this study, we analysed several clones with abnormal colony morphology and discovered unpredicted integration events via whole genome sequencing. These include (i) the relocation of the locus targeted for replacement to another chromosome (ii) co-integration of DNA from the E. coli plasmid host and (iii) the disruption of untargeted genes affecting colony morphology. Most of these events have not been reported so far in literature and present challenges for genetic engineering approaches in this yeast. Especially, the presence and independent activity of E. coli DNA elements in P. pastoris is of concern. In our study, we provide a deeper insight into these events and their potential origins. Steps preventing or reducing the risk for these phenomena are proposed and will help scientists working on genetic engineering of P. pastoris or similar non-conventional yeast to better understand and control clonal variability. PMID:27958335

  4. Heterologous Expression of Tulip Petal Plasma Membrane Aquaporins in Pichia pastoris for Water Channel Analysis▿

    PubMed Central

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2009-01-01

    Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs. PMID:19251885

  5. Heterologous expression of tulip petal plasma membrane aquaporins in Pichia pastoris for water channel analysis.

    PubMed

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2009-05-01

    Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs.

  6. Characteristics and applications of recombinant thermostable amylopullulanase of Geobacillus thermoleovorans secreted by Pichia pastoris.

    PubMed

    Nisha, M; Satyanarayana, T

    2017-03-01

    The 3'-deleted amylopullulanase gene from the extreme thermophile Geobacillus thermoleovorans (Gt-apuΔC) was expressed extracellularly in Pichia pastoris under both methanol-inducible AOX1 and constitutive GAP promoters. The expression of the gene (Gt-apuΔC) was higher under GAP promoter (36.2 U ml(-1), α-amylase; 33.5 U ml(-1), pullulanase) than that under AOX1 promoter (32.5 and 28.6 U ml(-1)). The heavily glycosylated Gt-apuΔC from the recombinant P. pastoris displays higher substrate specificity, thermal stability and starch saccharification efficiency than that expressed in Escherichia coli. The enzyme hydrolyses maltotriose and maltotetraose unlike that expressed in E. coli. The enzyme action on wheat bran liberates maltose and glucose without detectable amount(s) of maltooligosaccharides. The sugars released from wheat bran (glucose and maltose) could be fractionated by ultrafiltration, as confirmed by TLC and HPLC analysis. This is the first report on the production of recombinant amylopullulanase extracellularly in P. pastoris.

  7. A Recombinant Human Anti-Platelet scFv Antibody Produced in Pichia pastoris for Atheroma Targeting

    PubMed Central

    Vallet-Courbin, Amelie; Larivière, Mélusine; Hocquellet, Agnès; Hemadou, Audrey; Parimala, Sarjapura-Nagaraja; Laroche-Traineau, Jeanny; Santarelli, Xavier; Clofent-Sanchez, Gisèle; Jacobin-Valat, Marie-Josée; Noubhani, Abdelmajid

    2017-01-01

    Cells of the innate and adaptive immune system are key factors in the progression of atherosclerotic plaque, leading to plaque instability and rupture, potentially resulting in acute atherothrombotic events such as coronary artery disease, cerebrovascular disease and peripheral arterial disease. Here, we describe the cloning, expression, purification, and immunoreactivity assessment of a recombinant single-chain variable fragment (scFv) derived from a human anti-αIIbβ3 antibody (HuAb) selected to target atheromatous lesions for the presence of platelets. Indeed, platelets within atheroma plaques have been shown to play a role in inflammation, in platelet-leucocyte aggregates and in thrombi formation and might thus be considered relevant biomarkers of atherosclerotic progression. The DNA sequence that encodes the anti-αIIbβ3 TEG4 scFv previously obtained from a phage-display selection on activated platelets, was inserted into the eukaryote vector (pPICZαA) in fusion with a tag sequence encoding 2 cysteines useable for specific probes grafting experiments. The recombinant protein was expressed at high yields in Pichia pastoris (30 mg/L culture). The advantage of P. pastoris as an expression system is the production and secretion of recombinant proteins in the supernatant, ruling out the difficulties encountered when scFv are produced in the cytoplasm of bacteria (low yield, low solubility and reduced affinity). The improved conditions allowed for the recovery of highly purified and biologically active scFv fragments ready to be grafted in a site-directed way to nanoparticles for the imaging of atherosclerotic plaques involving inflammatory processes and thus at high risk of instability. PMID:28125612

  8. Human chymotrypsinogen B production from Pichia pastoris by integrated development of fermentation and downstream processing. Part 2. Protein recovery.

    PubMed

    Thömmes, J; Halfar, M; Gieren, H; Curvers, S; Takors, R; Brunschier, R; Kula, M R

    2001-01-01

    The purification of human chymotrypsinogen B (hCTRB) after expression and secretion by the yeast Pichia pastoris is described based on two different approaches using integrated initial recovery. Extraction employing aqueous two-phase systems (ATPS) from poly(ethylene glycol) and sodium sulfate allows direct processing of cell containing yeast suspensions of 50% wet weight. The target protein is obtained partially purified in the top phase while cells and cell debris are partitioned to the bottom phase of the system. hCTRB is further purified by adsorption from the top phase to the cation exchanger SP Sepharose Big Beads and elution in a salt step. The single step isolation of hCTRB is possible by expanded bed adsorption (EBA) using a fluidized cation exchanger (Streamline SP XL). A design strategy is shown taking both target protein binding and stable fluidization of the stationary phase in cell containing suspensions into consideration. For the example of hCTRB isolation from cell containing P. pastoris suspensions, a successful use of this strategy is demonstrated. Both initial recovery strategies deliver a product that can be further purified and formulated by ultrafiltration/diafiltration followed by lyophilization, resulting in a homogeneous product. Scale-up to 30-90 L of culture suspension was shown for both methods, resulting in a product of similar quality. Comparing both strategies reveals that the two-step ATPS route is better suited for high cell density cultures, while the single step EBA method is preferred for cultures of moderate cell density. This is due to the fact that application of EBA is restricted to suspensions of 10-12.5% wet weight cell concentration, thus necessitating dilution of the original broth prior to sample application. The data presented show that integrated recovery operations are a valuable alternative to traditional processing for systems that are problematic during initial solid-liquid separation.

  9. Enhancement in production of recombinant two-chain Insulin Glargine by over-expression of Kex2 protease in Pichia pastoris.

    PubMed

    Sreenivas, Suma; Krishnaiah, Sateesh M; Govindappa, Nagaraja; Basavaraju, Yogesh; Kanojia, Komal; Mallikarjun, Niveditha; Natarajan, Jayaprakash; Chatterjee, Amarnath; Sastry, Kedarnath N

    2015-01-01

    Glargine is an analog of Insulin currently being produced by recombinant DNA technology using two different hosts namely Escherichia coli and Pichia pastoris. Production from E. coli involves the steps of extraction of inclusion bodies by cell lysis, refolding, proteolytic cleavage and purification. In P. pastoris, a single-chain precursor with appropriate disulfide bonding is secreted to the medium. Downstream processing currently involves use of trypsin which converts the precursor into two-chain final product. The use of trypsin in the process generates additional impurities due to presence of Lys and Arg residues in the Glargine molecule. In this study, we describe an alternate approach involving over-expression of endogenous Kex2 proprotein convertase, taking advantage of dibasic amino acid sequence (Arg-Arg) at the end of B-chain of Glargine. KEX2 gene over-expression in Pichia was accomplished by using promoters of varying strengths to ensure production of greater levels of fully functional two-chain Glargine product, confirmed by HPLC and mass analysis. In conclusion, this new production process involving Kex2 protease over-expression improves the downstream process efficiency, reduces the levels of impurities generated and decreases the use of raw materials.

  10. Citrobacter amalonaticus phytase on the cell surface of Pichia pastoris exhibits high pH stability as a promising potential feed supplement.

    PubMed

    Li, Cheng; Lin, Ying; Huang, Yuanyuan; Liu, Xiaoxiao; Liang, Shuli

    2014-01-01

    Phytase expressed and anchored on the cell surface of Pichia pastoris avoids the expensive and time-consuming steps of protein purification and separation. Furthermore, yeast cells with anchored phytase can be used as a whole-cell biocatalyst. In this study, the phytase gene of Citrobacter amalonaticus was fused with the Pichia pastoris glycosylphosphatidylinositol (GPI)-anchored glycoprotein homologue GCW61. Phytase exposed on the cell surface exhibits a high activity of 6413.5 U/g, with an optimal temperature of 60°C. In contrast to secreted phytase, which has an optimal pH of 5.0, phytase presented on the cell surface is characterized by an optimal pH of 3.0. Moreover, our data demonstrate that phytase anchored on the cell surface exhibits higher pH stability than its secreted counterpart. Interestingly, our in vitro digestion experiments demonstrate that phytase attached to the cell surface is a more efficient enzyme than secreted phytase.

  11. Citrobacter amalonaticus Phytase on the Cell Surface of Pichia pastoris Exhibits High pH Stability as a Promising Potential Feed Supplement

    PubMed Central

    Li, Cheng; Lin, Ying; Huang, Yuanyuan; Liu, Xiaoxiao; Liang, Shuli

    2014-01-01

    Phytase expressed and anchored on the cell surface of Pichia pastoris avoids the expensive and time-consuming steps of protein purification and separation. Furthermore, yeast cells with anchored phytase can be used as a whole-cell biocatalyst. In this study, the phytase gene of Citrobacter amalonaticus was fused with the Pichia pastoris glycosylphosphatidylinositol (GPI)-anchored glycoprotein homologue GCW61. Phytase exposed on the cell surface exhibits a high activity of 6413.5 U/g, with an optimal temperature of 60°C. In contrast to secreted phytase, which has an optimal pH of 5.0, phytase presented on the cell surface is characterized by an optimal pH of 3.0. Moreover, our data demonstrate that phytase anchored on the cell surface exhibits higher pH stability than its secreted counterpart. Interestingly, our in vitro digestion experiments demonstrate that phytase attached to the cell surface is a more efficient enzyme than secreted phytase. PMID:25490768

  12. A functional Kv1.2-hERG chimaeric channel expressed in Pichia pastoris

    PubMed Central

    Dhillon, Mandeep S.; Cockcroft, Christopher J.; Munsey, Tim; Smith, Kathrine J.; Powell, Andrew J.; Carter, Paul; Wrighton, David C.; Rong, Hong-lin; Yusaf, Shahnaz P.; Sivaprasadarao, Asipu

    2014-01-01

    Members of the six-transmembrane segment family of ion channels share a common structural design. However, there are sequence differences between the members that confer distinct biophysical properties on individual channels. Currently, we do not have 3D structures for all members of the family to help explain the molecular basis for the differences in their biophysical properties and pharmacology. This is due to low-level expression of many members in native or heterologous systems. One exception is rat Kv1.2 which has been overexpressed in Pichia pastoris and crystallised. Here, we tested chimaeras of rat Kv1.2 with the hERG channel for function in Xenopus oocytes and for overexpression in Pichia. Chimaera containing the S1–S6 transmembrane region of HERG showed functional and pharmacological properties similar to hERG and could be overexpressed and purified from Pichia. Our results demonstrate that rat Kv1.2 could serve as a surrogate to express difficult-to-overexpress members of the six-transmembrane segment channel family. PMID:24569544

  13. Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology.

    PubMed

    Jacobs, Pieter P; Geysens, Steven; Vervecken, Wouter; Contreras, Roland; Callewaert, Nico

    2009-01-01

    Here we provide a protocol for engineering the N-glycosylation pathway of the yeast Pichia pastoris. The general strategy consists of the disruption of an endogenous glycosyltransferase gene (OCH1) and the stepwise introduction of heterologous glycosylation enzymes. Each engineering step results in the introduction of one glycosidase or glycosyltransferase activity into the Pichia endoplasmic reticulum or Golgi complex and consists of a number of stages: transformation with the appropriate GlycoSwitch vector, small-scale cultivation of a number of transformants, sugar analysis and heterologous protein expression analysis. If desired, the resulting clone can be further engineered by repeating the procedure with the next GlycoSwitch vector. Each engineering step takes approximately 3 weeks. The conversion of any wild-type Pichia strain into a strain that modifies its glycoproteins with Gal(2)GlcNAc(2)Man(3)GlcNAc(2)N-glycans requires the introduction of five GlycoSwitch vectors. Three examples of the full engineering procedure are provided to illustrate the results that can be expected.

  14. A functional Kv1.2-hERG chimaeric channel expressed in Pichia pastoris

    NASA Astrophysics Data System (ADS)

    Dhillon, Mandeep S.; Cockcroft, Christopher J.; Munsey, Tim; Smith, Kathrine J.; Powell, Andrew J.; Carter, Paul; Wrighton, David C.; Rong, Hong-Lin; Yusaf, Shahnaz P.; Sivaprasadarao, Asipu

    2014-02-01

    Members of the six-transmembrane segment family of ion channels share a common structural design. However, there are sequence differences between the members that confer distinct biophysical properties on individual channels. Currently, we do not have 3D structures for all members of the family to help explain the molecular basis for the differences in their biophysical properties and pharmacology. This is due to low-level expression of many members in native or heterologous systems. One exception is rat Kv1.2 which has been overexpressed in Pichia pastoris and crystallised. Here, we tested chimaeras of rat Kv1.2 with the hERG channel for function in Xenopus oocytes and for overexpression in Pichia. Chimaera containing the S1-S6 transmembrane region of HERG showed functional and pharmacological properties similar to hERG and could be overexpressed and purified from Pichia. Our results demonstrate that rat Kv1.2 could serve as a surrogate to express difficult-to-overexpress members of the six-transmembrane segment channel family.

  15. Use of synthetic genes for cloning, production and functional expression of the bacteriocins enterocin A and bacteriocin E 50-52 by Pichia pastoris and Kluyveromyces lactis.

    PubMed

    Jiménez, Juan J; Borrero, Juan; Gútiez, Loreto; Arbulu, Sara; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2014-06-01

    The use of synthetic genes may constitute a successful approach for the heterologous production and functional expression of bacterial antimicrobial peptides (bacteriocins) by recombinant yeasts. In this work, synthetic genes with adapted codon usage designed from the mature amino acid sequence of the bacteriocin enterocin A (EntA), produced by Enterococcus faecium T136, and the mature bacteriocin E 50-52 (BacE50-52), produced by E. faecium NRRL B-32746, were synthesized. The synthetic entA and bacE50-52 were cloned into the protein expression vectors pPICZαA and pKLAC2 for transformation of derived vectors into Pichia pastoris X-33 and Kluyveromyces lactis GG799, respectively. The recombinant vectors were linearized and transformed into competent cells selecting for P. pastoris X-33EAS (entA), P. pastoris X-33BE50-52S (bacE50-52), K. lactis GG799EAS (entA), and K. lactis GG799BE50-52S (bacE50-52). P. pastoris X-33EAS and K. lactis GG799EAS, but not P. pastoris X-33BE50-52S and K. lactis GG799BE50-52S, showed antimicrobial activity in their supernatants. However, purification of the supernatants of the producer yeasts permitted recovery of the bacteriocins EntA and BacE50-52. Both purified bacteriocins were active against Gram-positive bacteria such as Listeria monocytogenes but not against Gram-negative bacteria, including Campylobacter jejuni.

  16. Structural and functional characterization of recombinant napin-like protein of Momordica charantia expressed in methylotrophic yeast Pichia pastoris.

    PubMed

    Yadav, Shailesh Kumar R; Sahu, Tejram; Dixit, Aparna

    2016-08-01

    Napin and napin-like proteins belong to the 2S albumin seed storage family of proteins and have been shown to display a variety of biological activities. However, due to a high degree of polymorphism, purification of a single napin or napin-like protein exhibiting biological activity is extremely difficult. In the present study, we have produced the napin-like protein of Momordica charantia using the methylotrophic Pichia pastoris expression system. The recombinant napin-like protein (rMcnapin) secreted in the extracellular culture supernatant was enriched by ammonium sulfate precipitation, and purified using size exclusion chromatography at a yield of ∼290 mg/L of culture. Secondary structure analysis of the purified rMcnapin revealed it to be predominantly α-helical with minimal β strand content. CD spectroscopic and fluorescence spectroscopic analyses revealed the rMcnapin to be stable at a wide range of temperatures and pH. The rMcnapin exhibited antifungal activity against Trichoderma viride with an IC50 of ∼3.7 μg/ml and trypsin inhibitor activity with an IC50 of 4.2 μM. Thus, large amounts of homogenous preparations of the biologically active rMcnapin could be obtained at shake flask level, which is otherwise difficult from its natural source.

  17. Two variants of the major serine protease inhibitor from the sea anemone Stichodactyla helianthus, expressed in Pichia pastoris.

    PubMed

    García-Fernández, Rossana; Ziegelmüller, Patrick; González, Lidice; Mansur, Manuel; Machado, Yoan; Redecke, Lars; Hahn, Ulrich; Betzel, Christian; Chávez, María de Los Ángeles

    2016-07-01

    The major protease inhibitor from the sea anemone Stichodactyla helianthus (ShPI-1) is a non-specific inhibitor that binds trypsin and other trypsin-like enzymes, as well as chymotrypsin, and human neutrophil elastase. We performed site-directed mutagenesis of ShPI-1 to produce two variants (rShPI-1/K13L and rShPI/Y15S) that were expressed in Pichia pastoris, purified, and characterized. After a single purification step, 65 mg and 15 mg of protein per liter of culture supernatant were obtained for rShPI-1/K13L and rShPI/Y15S, respectively. Functional studies demonstrated a 100-fold decreased trypsin inhibitory activity as result of the K13L substitution at the reactive (P1) site. This protein variant has a novel tight-binding inhibitor activity of pancreatic elastase and increased activity toward neutrophil elastase in comparison to rShPI-1A. In contrast, the substitution Y15S at P2' site did not affect the Ki value against trypsin, but did reduce activity 10-fold against chymotrypsin and neutrophil elastase. Our results provide two new ShPI-1 variants with modified inhibitory activities, one of them with increased biomedical potential. This study also offers new insight into the functional impact of the P1 and P2' sites on ShPI-1 specificity.

  18. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures

    PubMed Central

    2012-01-01

    Background The methylotrophic yeast Pichia pastoris has emerged as one of the most promising yeast hosts for the production of heterologous proteins. Mixed feeds of methanol and a multicarbon source instead of methanol as sole carbon source have been shown to improve product productivities and alleviate metabolic burden derived from protein production. Nevertheless, systematic quantitative studies on the relationships between the central metabolism and recombinant protein production in P. pastoris are still rather limited, particularly when growing this yeast on mixed carbon sources, thus hampering future metabolic network engineering strategies for improved protein production. Results The metabolic flux distribution in the central metabolism of P. pastoris growing on a mixed feed of glucose and methanol was analyzed by Metabolic Flux Analysis (MFA) using 13C-NMR-derived constraints. For this purpose, we defined new flux ratios for methanol assimilation pathways in P. pastoris cells growing on glucose:methanol mixtures. By using this experimental approach, the metabolic burden caused by the overexpression and secretion of a Rhizopus oryzae lipase (Rol) in P. pastoris was further analyzed. This protein has been previously shown to trigger the unfolded protein response in P. pastoris. A series of 13C-tracer experiments were performed on aerobic chemostat cultivations with a control and two different Rol producing strains growing at a dilution rate of 0.09 h−1 using a glucose:methanol 80:20 (w/w) mix as carbon source. The MFA performed in this study reveals a significant redistristribution of carbon fluxes in the central carbon metabolism when comparing the two recombinant strains vs the control strain, reflected in increased glycolytic, TCA cycle and NADH regeneration fluxes, as well as higher methanol dissimilation rates. Conclusions Overall, a further 13C-based MFA development to characterise the central metabolism of methylotrophic yeasts when growing on mixed

  19. The response to unfolded protein is involved in osmotolerance of Pichia pastoris

    PubMed Central

    2010-01-01

    Background The effect of osmolarity on cellular physiology has been subject of investigation in many different species. High osmolarity is of importance for biotechnological production processes, where high cell densities and product titers are aspired. Several studies indicated that increased osmolarity of the growth medium can have a beneficial effect on recombinant protein production in different host organisms. Thus, the effect of osmolarity on the cellular physiology of Pichia pastoris, a prominent host for recombinant protein production, was studied in carbon limited chemostat cultures at different osmolarities. Transcriptome and proteome analyses were applied to assess differences upon growth at different osmolarities in both, a wild type strain and an antibody fragment expressing strain. While our main intention was to analyze the effect of different osmolarities on P. pastoris in general, this was complemented by studying it in context with recombinant protein production. Results In contrast to the model yeast Saccharomyces cerevisiae, the main osmolyte in P. pastoris was arabitol rather than glycerol, demonstrating differences in osmotic stress response as well as energy metabolism. 2D Fluorescence Difference Gel electrophoresis and microarray analysis were applied and demonstrated that processes such as protein folding, ribosome biogenesis and cell wall organization were affected by increased osmolarity. These data indicated that upon increased osmolarity less adaptations on both the transcript and protein level occurred in a P. pastoris strain, secreting the Fab fragment, compared with the wild type strain. No transcriptional activation of the high osmolarity glycerol (HOG) pathway was observed at steady state conditions. Furthermore, no change of the specific productivity of recombinant Fab was observed at increased osmolarity. Conclusion These data point out that the physiological response to increased osmolarity is different to S. cerevisiae

  20. Establishment of Cyanophycin Biosynthesis in Pichia pastoris and Optimization by Use of Engineered Cyanophycin Synthetases▿ †

    PubMed Central

    Steinle, Anna; Witthoff, Sabrina; Krause, Jens P.; Steinbüchel, Alexander

    2010-01-01

    Two strains of the methylotrophic yeast Pichia pastoris were used to establish cyanophycin (multi-l-arginyl-poly-l-aspartic acid [CGP]) synthesis and to explore the applicability of this industrially widely used microorganism for the production of this polyamide. Therefore, the CGP synthetase gene from the cyanobacterium Synechocystis sp. strain PCC 6308 (cphA6308) was expressed under the control of the alcohol oxidase 1 promoter, yielding CGP contents of up to 10.4% (wt/wt), with the main fraction consisting of the soluble form of the polymer. To increase the polymer contents and to obtain further insights into the structural or catalytic properties of the enzyme, site-directed mutagenesis was applied to cphA6308 and the mutated gene products were analyzed after expression in P. pastoris and Escherichia coli, respectively. CphA6308Δ1, which was truncated by one amino acid at the C terminus; point mutated CphA6308C595S; and the combined double-mutant CphA6308Δ1C595S protein were purified. They exhibited up to 2.5-fold higher enzyme activities of 4.95 U/mg, 3.20 U/mg, and 4.17 U/mg, respectively, than wild-type CphA6308 (2.01 U/mg). On the other hand, CphA proteins truncated by two (CphA6308Δ2) or three (CphA6308Δ3) amino acids at the C terminus showed similar or reduced CphA enzyme activity in comparison to CphA6308. In flask experiments, a maximum of 14.3% (wt/wt) CGP was detected after the expression of CphA6308Δ1 in P. pastoris. For stabilization of the expression plasmid, the his4 gene from Saccharomyces cerevisiae was cloned into the expression vector used and the constructs were transferred to histidine auxotrophic P. pastoris strain GS115. Parallel fermentations at a one-to-one scale revealed 26°C and 6.0 as the optimal temperature and pH, respectively, for CGP synthesis. After optimization of fermentation parameters, medium composition, and the length of the cultivation period, CGP contents could be increased from 3.2 to 13.0% (wt/wt) in cells of P

  1. Comparison of Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Spodoptera frugiperda, and COS7 cells for recombinant gene expression. Application to a rabbit liver carboxylesterase.

    PubMed

    Morton, C L; Potter, P M

    2000-11-01

    Expression of a rabbit liver carboxylesterase has been achieved in several different model systems including Escherichia coli, Pichia pastoris, Saccharomyces cerevisiae, Spodoptera frugiperda, and COS7 cells. Although, recombinant protein was observed in E. coli sonicates, little or no enzymatic activity was detected. Similarly, no activity was observed following expression in S. cerevisiae. In contrast, active protein was produced in P. pastoris, from S. frugiperda following baculoviral infection and in COS7 cells following transient transfection of plasmid DNA. For the preparation of small amounts of protein for kinetic and biochemical studies, enzyme expressed in P. pastoris has proved sufficient. However, to produce large amounts of carboxylesterase for structural studies, baculoviral-mediated expression of a secreted form of the protein in S. frugiperda was the most efficient. Using this system, we have generated and purified milligram quantities of essentially pure protein. These results demonstrate that the choice of in vitro system for the generation of large amounts of active carboxylesterase, and probably most endoplasmic reticulum processed proteins, is crucial for high level expression and subsequent purification.

  2. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  3. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  4. Comparative Production and Characterization of a Catalytically Inactive BoNT/C1 Holoprotein in Two Production Strains of Pichia Pastoris

    DTIC Science & Technology

    2008-01-01

    phosphoribosylaminoimidazole carboxylase gene AOX1 alcohol oxidase 1 gene AEBSF 4-(2-Aminomethyl)benzenesulfonyl fluoride hydrochloride BabyBIG botulism...PichiaPink A synthetic ciBoNT/C1 HP open reading frame (ORF) containing a P. pastoris alcohol oxidase 1 (AOX1) gene codon bias was manufactured by DNA...COMPARATIVE PRODUCTION AND CHARACTERIZATION OF A CATALYTICALLY INACTIVE BoNT/C1 HOLOPROTEIN IN TWO PRODUCTION STRAINS OF PICHIA PASTORIS by

  5. [Expression of Chinese sturgeon cystatin in yeast Pichia pastoris and its proteinase inhibitory activity analysis].

    PubMed

    Ma, Dong-Mei; Bai, Jun-Jie; Jian, Qing; Lao, Hai-Hua; Ye, Xing; Luo, Jian-Ren

    2003-09-01

    Cystatin, which widely distributed in both tissues and body fluids of animal and plant, was a superfamily of cysteine proteinase inhibitors. It could form activity-inhibitor complexes with cysteine proteinases to inhibit the hydrolytic activity of proteinases. Cystatin played important roles not only in the inhibition of the proteolytic degradation of fish muscle, but also in biological defense systems against invaders. To explore the functions of fish cystatin and the potential values in fish disease prevention and cure, as well as seafood processing, the recombinant yeast strains which could express Chinese sturgeon cystatin were constructed. First, the cystatin cDNA of Chinese sturgeon, which had been PCR modified, was subcloned into yeast integrated vector pPICZaA. After extracted and purified, the recombinant plasmids were linearized by Sac I. The yeast Pichia pastoris GS115 strain was transformed by use of the Lithium Chloride transformation method, and the recombinant cystatin yeast strains got. After 0.5% methanol induction, SDS-PAGE analysis of the culture supernatant indicated that the yield of recombinant cystatin was about 215mg x L(-1) with the percentage about 73.6%. The recombinant cystatin was purified through Q-Sepharose anion-exchange chromatography, and the purity reached about 94.2%. The inhibitory activity of recombinant cystatin was measured by inhibiting the proteinase activity of papain. The results showed that about 1 microg recombinant cystatin could inhibit the activity of 15 microg papain. Heat stability assay results showed that there was a decrease in inhibitory activity of cystatin with the increasing of temperature. When solution of recombinant cystatin was kept at 70 degrees C for 5min, the inhibitory activity reduced fast. While the recombinant cystatin was heated to 90 degrees C for 5min, the inhibitory activity of recombinant cystatin was undetected. The inhibitory activity for recombinant Chinese sturgeon cystatin was higher

  6. Influence of Pichia pastoris cellular material on polymerase chain reaction performance as a synthetic biology standard for genome monitoring.

    PubMed

    Templar, Alexander; Woodhouse, Stefan; Keshavarz-Moore, Eli; Nesbeth, Darren N

    2016-08-01

    Advances in synthetic genomics are now well underway in yeasts due to the low cost of synthetic DNA. These new capabilities also bring greater need for quantitating the presence, loss and rearrangement of loci within synthetic yeast genomes. Methods for achieving this will ideally; i) be robust to industrial settings, ii) adhere to a global standard and iii) be sufficiently rapid to enable at-line monitoring during cell growth. The methylotrophic yeast Pichia pastoris (P. pastoris) is increasingly used for industrial production of biotherapeutic proteins so we sought to answer the following questions for this particular yeast species. Is time-consuming DNA purification necessary to obtain accurate end-point polymerase chain reaction (e-pPCR) and quantitative PCR (qPCR) data? Can the novel linear regression of efficiency qPCR method (LRE qPCR), which has properties desirable in a synthetic biology standard, match the accuracy of conventional qPCR? Does cell cultivation scale influence PCR performance? To answer these questions we performed e-pPCR and qPCR in the presence and absence of cellular material disrupted by a mild 30s sonication procedure. The e-pPCR limit of detection (LOD) for a genomic target locus was 50pg (4.91×10(3) copies) of purified genomic DNA (gDNA) but the presence of cellular material reduced this sensitivity sixfold to 300pg gDNA (2.95×10(4) copies). LRE qPCR matched the accuracy of a conventional standard curve qPCR method. The presence of material from bioreactor cultivation of up to OD600=80 did not significantly compromise the accuracy of LRE qPCR. We conclude that a simple and rapid cell disruption step is sufficient to render P. pastoris samples of up to OD600=80 amenable to analysis using LRE qPCR which we propose as a synthetic biology standard. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system.

    PubMed

    Rabert, Claudia; Weinacker, Daniel; Pessoa, Adalberto; Farías, Jorge G

    2013-01-01

    The innovation in industrial process with impact in the efficient production is the major challenge for actual industry. A high numerous of enzymes are utilized in at different level of process; the search for new alternatives with better characteristic has become a field of study of great interest, the recombinant protein achievement in a different host system is an alternative widely assessed for production of this. The microorganism Pichia pastoris has been used like a successful expression system in diverse areas, improved the yield and extraction-recovery of the product expressed. The reported of diverse authors in the production of enzymes with different application in industry is varied, in this review the different industry areas and the characteristic of the enzymes produced are detailed.

  8. Methyl labeling and TROSY NMR spectroscopy of proteins expressed in the eukaryote Pichia pastoris

    PubMed Central

    Clark, Lindsay; Zahm, Jacob A.; Ali, Rustam; Kukula, Maciej; Bian, Liangqiao; Patrie, Steven M.; Gardner, Kevin H.; Rosen, Michael K.; Rosenbaum, Daniel M.

    2015-01-01

    13C Methyl TROSY NMR spectroscopy has emerged as a powerful method for studying the dynamics of large systems such as macromolecular assemblies and membrane proteins. Specific 13C labeling of aliphatic methyl groups and perdeuteration has been limited primarily to proteins expressed in E. coli, preventing studies of many eukaryotic proteins of physiological and biomedical significance. We demonstrate the feasibility of efficient 13C isoleucine δ1-methyl labeling in a deuterated background in an established eukaryotic expression host, Pichia pastoris, and show that this method can be used to label the eukaryotic protein actin, which cannot be expressed in bacteria. This approach will enable NMR studies of previously intractable targets. PMID:26025061

  9. Automated pipeline for rapid production and screening of HIV-specific monoclonal antibodies using pichia pastoris.

    PubMed

    Shah, Kartik A; Clark, John J; Goods, Brittany A; Politano, Timothy J; Mozdzierz, Nicholas J; Zimnisky, Ross M; Leeson, Rachel L; Love, J Christopher; Love, Kerry R

    2015-12-01

    Monoclonal antibodies (mAbs) that bind and neutralize human pathogens have great therapeutic potential. Advances in automated screening and liquid handling have resulted in the ability to discover antigen-specific antibodies either directly from human blood or from various combinatorial libraries (phage, bacteria, or yeast). There remain, however, bottlenecks in the cloning, expression and evaluation of such lead antibodies identified in primary screens that hinder high-throughput screening. As such, "hit-to-lead identification" remains both expensive and time-consuming. By combining the advantages of overlap extension PCR (OE-PCR) and a genetically stable yet easily manipulatable microbial expression host Pichia pastoris, we have developed an automated pipeline for the rapid production and screening of full-length antigen-specific mAbs. Here, we demonstrate the speed, feasibility and cost-effectiveness of our approach by generating several broadly neutralizing antibodies against human immunodeficiency virus (HIV).

  10. [Expression Of DNA-Encoded Antidote to Organophosphorus Toxins in the Methylotrophic Yeast Pichia Pastoris].

    PubMed

    Terekhov, S S; Bobik, T V; Mokrushina, Yu A; Stepanova, A V; Aleksandrova, N M; Smirnov, I V; Belogurov, A A; Ponomarenko, N A; Gabibov, A G

    2016-01-01

    A platform for the cloning and expression of active human butyrylcholinesterase (BuChE) in the yeast Pichia pastoris is first presented. Genetic constructs for BuChE gene expression, separately and in conjunction with a proline-rich peptide called proline-rich attachment domain (PRAD), are based on the vector pPICZαA. It is shown that the highest level of production is achieved in the expression of a BuChE gene without PRAD pPICZαA. It is found that one can obtain up to 125 mg of active enzyme from 1 L of culture medium at an optimal pH environment (pH 7.6), an optical seed culture density of 3 o.u., and an optimum methanol addition mode of (0.5% methanol in the first day and 0.2% thereafter from the second day).

  11. Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system

    PubMed Central

    Rabert, Claudia; Weinacker, Daniel; Pessoa, Adalberto; Farías, Jorge G.

    2013-01-01

    The innovation in industrial process with impact in the efficient production is the major challenge for actual industry. A high numerous of enzymes are utilized in at different level of process; the search for new alternatives with better characteristic has become a field of study of great interest, the recombinant protein achievement in a different host system is an alternative widely assessed for production of this. The microorganism Pichia pastoris has been used like a successful expression system in diverse areas, improved the yield and extraction-recovery of the product expressed. The reported of diverse authors in the production of enzymes with different application in industry is varied, in this review the different industry areas and the characteristic of the enzymes produced are detailed. PMID:24294221

  12. Multiple gene copy number enhances insulin precursor secretion in the yeast Pichia pastoris.

    PubMed

    Mansur, Manuel; Cabello, Cecilia; Hernández, Lester; País, José; Varas, Laura; Valdés, Jorge; Terrero, Yanet; Hidalgo, Abdel; Plana, Liuba; Besada, Vladimir; García, Liudys; Lamazares, Emilio; Castellanos, Lila; Martínez, Eduardo

    2005-03-01

    We have found a direct relationship between protein production in Pichia pastoris and the number of introduced synthetic genes of miniproinsulin (MPI), fused to the Saccharomyces cerevisiae pre-pro alpha factor used as secretion signal, and inserted between the alcohol oxidase 1 (AOX1) promoter and terminator sequences. Two consecutive approaches were followed to increase the number of integrated cassettes: the head-to-tail expression cassette multimerization procedure and re-transformation with a dominant selection marker. This increased expression from 19 to 250 mg l(-1) when about 11 copies have been integrated. Further, the correct position of one of the disulphide bridges of the purified molecule was verified by digestion with Glu-C endoprotease, followed by mass spectrometry of the isolated fragments.

  13. High-throughput recombinant gene expression systems in Pichia pastoris using newly developed plasmid vectors.

    PubMed

    Sasagawa, Takahiro; Matsui, Makoto; Kobayashi, Yuki; Otagiri, Masato; Moriya, Shigeharu; Sakamoto, Yasuharu; Ito, Yukishige; Lee, Charles C; Kitamoto, Katsuhiko; Arioka, Manabu

    2011-01-01

    We describe here the construction of Gateway-compatible vectors, pBGP1-DEST and pPICZα-DEST, for rapid and convenient preparation of expression plasmids for production of secretory proteins in Pichia pastoris. Both vectors direct the synthesis of fusion proteins consisting of the N-terminal signal and pro-sequences of Saccharomyces cerevisiae α-factor, the recognition sites for Kex2 and Ste13 processing proteases, the mature region of a foreign protein flanked by attB1- and attB2-derived sequences at N- and C-termini, respectively, and myc plus hexahistidine tags added at the extreme C-terminus. To test the usefulness of these vectors, production of endo-glucanases and xylanases from termite symbionts, as well as a fungal glucuronoyl esterase, was performed. Enzyme activities were detected in the culture supernatants, indicating that the chimeric proteins were synthesized and secreted as designed.

  14. Metabolomics sampling of Pichia pastoris revisited: rapid filtration prevents metabolite loss during quenching.

    PubMed

    Russmayer, Hannes; Troyer, Christina; Neubauer, Stefan; Steiger, Matthias G; Gasser, Brigitte; Hann, Stephan; Koellensperger, Gunda; Sauer, Michael; Mattanovich, Diethard

    2015-09-01

    Metabolomics can be defined as the quantitative assessment of a large number of metabolites of a biological system. A prerequisite for the accurate determination of intracellular metabolite concentrations is a reliable and reproducible sample preparation method, which needs to be optimized for each organism individually. Here, we compare the performance of rapid filtration and centrifugation after quenching of Pichia pastoris cells in cold methanol. During incubation in the quenching solution, metabolites are lost from the cells with a half-life of 70-180 min. Metabolites with lower molecular weights showed lower half-lifes compared to metabolites with higher molecular weight. Rapid filtration within 2 min after quenching leads to only minor losses below 2%, and is thus the preferred method for cell separation.

  15. Variable production windows for porcine trypsinogen employing synthetic inducible promoter variants in Pichia pastoris.

    PubMed

    Ruth, C; Zuellig, T; Mellitzer, A; Weis, R; Looser, V; Kovar, K; Glieder, A

    2010-09-01

    Natural tools for recombinant protein production show technological limitations. Available natural promoters for gene expression in Pichia pastoris are either constitutive, weak or require the use of undesirable substances or procedures for induction. Here we show the application of deletion variants based on the well known methanol inducible AOX1 promoter and small synthetic promoters, where cis-acting elements were fused to core promoter fragments. They enable differently regulated target protein expression and at the same time to replace methanol induction by a glucose or glycerol feeding strategy. Trypsinogen, the precursor of the serine protease trypsin, was expressed using these different promoters. Depending on the applied promoter the production window (i.e. the time of increasing product concentration) changed significantly. In fedbatch processes trypsinogen yields before induction with methanol were up to 10 times higher if variants of the AOX1 promoter were applied. In addition, the starting point of autoproteolytic product degradation can be predetermined by the promoter choice.

  16. Systematic single-cell analysis of Pichia pastoris reveals secretory capacity limits productivity.

    PubMed

    Love, Kerry Routenberg; Politano, Timothy J; Panagiotou, Vasiliki; Jiang, Bo; Stadheim, Terrance A; Love, J Christopher

    2012-01-01

    Biopharmaceuticals represent the fastest growing sector of the global pharmaceutical industry. Cost-efficient production of these biologic drugs requires a robust host organism for generating high titers of protein during fermentation. Understanding key cellular processes that limit protein production and secretion is, therefore, essential for rational strain engineering. Here, with single-cell resolution, we systematically analysed the productivity of a series of Pichia pastoris strains that produce different proteins both constitutively and inducibly. We characterized each strain by qPCR, RT-qPCR, microengraving, and imaging cytometry. We then developed a simple mathematical model describing the flux of folded protein through the ER. This combination of single-cell measurements and computational modelling shows that protein trafficking through the secretory machinery is often the rate-limiting step in single-cell production, and strategies to enhance the overall capacity of protein secretion within hosts for the production of heterologous proteins may improve productivity.

  17. Bioproduction of benzaldehyde in a solid-liquid two-phase partitioning bioreactor using Pichia pastoris.

    PubMed

    Jain, Ashu N; Khan, Tanya R; Daugulis, Andrew J

    2010-11-01

    The bioproduction of benzaldehyde from benzyl alcohol using Pichia pastoris was examined in a solid-liquid two-phase partitioning bioreactor (TPPB) to reduce substrate and product inhibition. Rational polymer selection identified Elvax 40W as an effective sequestering phase, possessing partition coefficients for benzyl alcohol and benzaldehyde of 3.5 and 35.4, respectively. The use of Elvax 40W increased the overall mass of benzaldehyde produced by approx. 300% in a 5 l bioreactor, relative to a single phase biotransformation. The two-phase system had a molar yield of 0.99, indicating that only minor losses occurred. These results provide a promising starting point for solid-liquid TPPBs to enhance benzaldehyde production, and suggest that multiple, targeted polymers may provide relief for transformations characterized by multiple inhibitory substrates/product/by-products.

  18. Characterization of the oligosaccharides assembled on the Pichia pastoris-expressed recombinant aspartic protease.

    PubMed

    Montesino, R; Nimtz, M; Quintero, O; García, R; Falcón, V; Cremata, J A

    1999-10-01

    Aspartic protease, widely used as a milk-coagulating agent in industrial cheese production, contains three potential N-glycosylation sites. In this study, we report the characterization of N-linked oligosaccharides on recombinant aspartic protease secreted from the methylotrophic yeast Pichia pastoris using a combination of mass spectrometric, 2D chromatographic, chemical and enzymatic methods. The carbohydrates from site I (Asn79) were found to range from Man6-17GlcNAc2 with 50% bearing a phospho-diester-motif, site II (Asn113) was not occupied and site III (Asn188) contained mostly uncharged species ranging from Man-13GlcNAc2. These charged groups are not affecting the transport through the secretion pathway of the recombinant glycoprotein. Changes from a molasses-based medium to a minimal salts-based medium led to a clear reduction of the degree of phosphorylation of the N-glycan population.

  19. Stepwise engineering of a Pichia pastoris D-amino acid oxidase whole cell catalyst.

    PubMed

    Abad, Sandra; Nahalka, Jozef; Bergler, Gabriele; Arnold, S Alison; Speight, Robert; Fotheringham, Ian; Nidetzky, Bernd; Glieder, Anton

    2010-04-26

    Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 x 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of >or= 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Stepwise optimization using a multi

  20. Stepwise engineering of a Pichia pastoris D-amino acid oxidase whole cell catalyst

    PubMed Central

    2010-01-01

    Background Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. Results As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 × 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of ≥ 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Conclusions

  1. Efficient expression and secretion of recombinant human growth hormone in the methylotrophic yeast Pichia pastoris: potential applications for other proteins.

    PubMed

    Apte-Deshpande, Anjali; Rewanwar, Sachin; Kotwal, Prakash; Raiker, Veena A; Padmanabhan, Sriram

    2009-11-13

    A simple high yielding process for the production of rhGH (recombinant human growth hormone) in the Pichia pastoris system is described. The approach adopted the addition of surfactants during fermentation along with methanol induction. A Pichia integrant harbouring multiple-copy, non-codon-optimized hGH showed poor expression in complex and defined media. Inclusion of the surfactants Tween 20 or Tween 80 during induction enhanced the expression levels significantly in shake flask studies. The combination of 2 litres of basal salt medium and Tween 20 in a bioreactor culminated in 3 x 10(4)-fold elevated expression of the protein (approximately 500 mg/l) as estimated by ELISA. SDS/PAGE and Western-blot analyses revealed that the Pichia-derived rhGH migrated as a single band with a molecular mass of approximately 22 kDa and had the same immunoreactivity as native commercial rhGH. Analysis of Pichia-derived purified rhGH and commercial rhGH on an Agilent 2100 Bioanalyzer revealed overlapping peaks displaying authentic N-terminal processing of Pichia-derived rhGH, which was further confirmed by N-terminal sequencing. In addition, matrix-assisted laser-desorption ionization-time of flight analysis of the protein confirmed its authenticity. These results indicate that the P. pastoris expression system can be effective in the production of rhGH at commercially relevant levels.

  2. [Optimization of plant des-pGlu1-Brazzein gene according to yeasty biased codons and its expression in Pichia pastoris].

    PubMed

    Li, Chunli; Han, Lu; Zheng, Zhenyu; Zhao, Weidong

    2011-08-01

    According to the amino acid sequence of des-pGlu1-Brazzein, 4 pairs of oligonucleotide with cosmic site were synthesized by using yeasty biased codons. After linkage and PCR, the 179 bp code area of des-pGlu1-Brazzein was obtained and inserted into pPIC9K, which resulted in the recombinant expression vector pPIC9K-Bra. By digestion with Sal I, the lined pPIC9K-Bra was transformed into Pichia pastoris GS115 by electric shock. The results of expression indicted that the secreted target protein accounted for 51.6% of total protein in the supernatant and showed biological activity after purification.

  3. Engineering Pichia pastoris for improved NADH regeneration: A novel chassis strain for whole-cell catalysis.

    PubMed

    Geier, Martina; Brandner, Christoph; Strohmeier, Gernot A; Hall, Mélanie; Hartner, Franz S; Glieder, Anton

    2015-01-01

    Many synthetically useful reactions are catalyzed by cofactor-dependent enzymes. As cofactors represent a major cost factor, methods for efficient cofactor regeneration are required especially for large-scale synthetic applications. In order to generate a novel and efficient host chassis for bioreductions, we engineered the methanol utilization pathway of Pichia pastoris for improved NADH regeneration. By deleting the genes coding for dihydroxyacetone synthase isoform 1 and 2 (DAS1 and DAS2), NADH regeneration via methanol oxidation (dissimilation) was increased significantly. The resulting Δdas1 Δdas2 strain performed better in butanediol dehydrogenase (BDH1) based whole-cell conversions. While the BDH1 catalyzed acetoin reduction stopped after 2 h reaching ~50% substrate conversion when performed in the wild type strain, full conversion after 6 h was obtained by employing the knock-out strain. These results suggest that the P. pastoris Δdas1 Δdas2 strain is capable of supplying the actual biocatalyst with the cofactor over a longer reaction period without the over-expression of an additional cofactor regeneration system. Thus, focusing the intrinsic carbon flux of this methylotrophic yeast on methanol oxidation to CO2 represents an efficient and easy-to-use strategy for NADH-dependent whole-cell conversions. At the same time methanol serves as co-solvent, inductor for catalyst and cofactor regeneration pathway expression and source of energy.

  4. Engineering Pichia pastoris for improved NADH regeneration: A novel chassis strain for whole-cell catalysis

    PubMed Central

    Geier, Martina; Brandner, Christoph; Strohmeier, Gernot A; Hall, Mélanie; Hartner, Franz S

    2015-01-01

    Summary Many synthetically useful reactions are catalyzed by cofactor-dependent enzymes. As cofactors represent a major cost factor, methods for efficient cofactor regeneration are required especially for large-scale synthetic applications. In order to generate a novel and efficient host chassis for bioreductions, we engineered the methanol utilization pathway of Pichia pastoris for improved NADH regeneration. By deleting the genes coding for dihydroxyacetone synthase isoform 1 and 2 (DAS1 and DAS2), NADH regeneration via methanol oxidation (dissimilation) was increased significantly. The resulting Δdas1 Δdas2 strain performed better in butanediol dehydrogenase (BDH1) based whole-cell conversions. While the BDH1 catalyzed acetoin reduction stopped after 2 h reaching ~50% substrate conversion when performed in the wild type strain, full conversion after 6 h was obtained by employing the knock-out strain. These results suggest that the P. pastoris Δdas1 Δdas2 strain is capable of supplying the actual biocatalyst with the cofactor over a longer reaction period without the over-expression of an additional cofactor regeneration system. Thus, focusing the intrinsic carbon flux of this methylotrophic yeast on methanol oxidation to CO2 represents an efficient and easy-to-use strategy for NADH-dependent whole-cell conversions. At the same time methanol serves as co-solvent, inductor for catalyst and cofactor regeneration pathway expression and source of energy. PMID:26664594

  5. Modular Integrated Secretory System Engineering in Pichia pastoris To Enhance G-Protein Coupled Receptor Expression.

    PubMed

    Claes, Katrien; Vandewalle, Kristof; Laukens, Bram; Laeremans, Toon; Vosters, Olivier; Langer, Ingrid; Parmentier, Marc; Steyaert, Jan; Callewaert, Nico

    2016-10-21

    Membrane protein research is still hampered by the generally very low levels at which these proteins are naturally expressed, necessitating heterologous expression. Protein degradation, folding problems, and undesired post-translational modifications often occur, together resulting in low expression levels of heterogeneous protein products that are unsuitable for structural studies. We here demonstrate how the integration of multiple engineering modules in Pichia pastoris can be used to increase both the quality and the quantity of overexpressed integral membrane proteins, with the human CXCR4 G-protein coupled receptor as an example. The combination of reduced proteolysis, enhanced ER folding capacity, GlycoDelete-based N-Glycan trimming, and nanobody-based fold stabilization improved the expression of this GPCR in P. pastoris from a low expression level of a heterogeneously glycosylated, proteolyzed product to substantial quantities (2-3 mg/L shake flask culture) of a nonproteolyzed, homogeneously glycosylated proteoform. We expect that this set of tools will contribute to successful expression of more membrane proteins in a quantity and quality suitable for functional and structural studies.

  6. Codon optimization and expression of irisin in Pichia pastoris GS115.

    PubMed

    Duan, Huikun; Wang, Haisong; Ma, Baicheng; Jiang, Pingzhe; Tu, Peipei; Ni, Zaizhong; Li, Xiaodan; Li, Miao; Ma, Xiaofeng; Wang, Bin; Wu, Ri; Li, Minggang

    2015-08-01

    Irisin is a novel hormone which is related to many metabolic diseases. In order to illuminate the function and therapeutic effect of irisin, gaining active irisin is necessary. In this work, a codon-optimized irisin gene was designed according to Pichia pastoris synonymous codon usage bias and cloned into the pPIC9K expression vector. Sequencing result indicating that the sequence of irisin was consistent with the modified irisin and the irisin was in frame with α-factor secretion signal ATG. The plasmid pPIC9K-irisin was transformed into GS115 P. pastoris cells through electroporation. The positive transformants were screened on MD medium and analyzed by PCR. Five recombinant GS115/pPIC9K-irisin strains were obtained, but only one strain expressed irisin successfully. SDS-PAGE and Western blot were used to assess the expression level and purity of irisin. The irisin was also simply purified and the effect of pH value, methanol concentration and induction time on the production of irisin was investigated. The results showed that the best conditions of irisin expression were as follows: pH 6.0, 2.0% methanol and induction for 96 h. This work laid the basis for further investigation into the therapeutic and pharmacological effects of irisin, as well as development of irisin-based therapy.

  7. Artificial synthesis of swine hepcidin gene and expression in Pichia pastoris.

    PubMed

    Di, Yuanran; Cheng, Wei; Chang, Juan; Yin, Qingqiang; Lu, Min; Yuan, Lin; Dang, Xiaowei

    2014-01-01

    In order to express swine hepcidin gene in Pichia pastoris, a DNA fragment coding hepcidin gene was synthesized with adaptation to yeast codon usage of highly expressed genes. A Kex2 signal cleavage site was fused in the 5' end of the DNA fragment for getting a peptide with the same N-end as native hepcidin. The 96-bp DNA fragment was ligated into the expression plasmid of pGAPZaA to construct pGAPZaA-hepcidin vector, which was transferred into P. pastoris (X33) to express hepcidin gene for extracellular secretion of protein at 86 µg/mL. A band of 2.76 kD molecular mass was detected by Tricine sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) analysis. Through antibacterial assay, the expressed hepcidin displayed obvious antibacterial activity. The minimal inhibitory concentration (MIC) was 5.38 and 2.69 µg/mL for Staphylococcus aureus and Bacillus subtilis prolification inhibitions, respectively.

  8. Improvement of N-glycan site occupancy of therapeutic glycoproteins produced in Pichia pastoris.

    PubMed

    Choi, Byung-Kwon; Warburton, Shannon; Lin, Heping; Patel, Rohan; Boldogh, Istvan; Meehl, Michael; Meehl, Meehl; d'Anjou, Marc; Pon, Liza; Stadheim, Terrance A; Sethuraman, Natarajan

    2012-08-01

    Yeast is capable of performing posttranslational modifications, such as N- or O-glycosylation. It has been demonstrated that N-glycans play critical biological roles in therapeutic glycoproteins by modulating pharmacokinetics and pharmacodynamics. However, N-glycan sites on recombinant glycoproteins produced in yeast can be underglycosylated, and hence, not completely occupied. Genomic homology analysis indicates that the Pichia pastoris oligosaccharyltransferase (OST) complex consists of multiple subunits, including OST1, OST2, OST3, OST4, OST5, OST6, STT3, SWP1, and WBP1. Monoclonal antibodies produced in P. pastoris show that N-glycan site occupancy ranges from 75-85 % and is affected mainly by the OST function, and in part, by process conditions. In this study, we demonstrate that N-glycan site occupancy of antibodies can be improved to greater than 99 %, comparable to that of antibodies produced in mammalian cells (CHO), by overexpressing Leishmania major STT3D (LmSTT3D) under the control of an inducible alcohol oxidase 1 (AOX1) promoter. N-glycan site occupancy of non-antibody glycoproteins such as recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) was also significantly improved, suggesting that LmSTT3D has broad substrate specificity. These results suggest that the glycosylation status of recombinant proteins can be improved by heterologous STT3 expression, which will allow for the customization of therapeutic protein profiles.

  9. Δ(9)-Tetrahydrocannabinolic acid synthase production in Pichia pastoris enables chemical synthesis of cannabinoids.

    PubMed

    Lange, Kerstin; Schmid, Andreas; Julsing, Mattijs K

    2015-10-10

    Δ(9)-Tetrahydrocannabinol (THC) is of increasing interest as a pharmaceutical and bioactive compound. Chemical synthesis of THC uses a laborious procedure and does not satisfy the market demand. The implementation of biocatalysts for specific synthesis steps might be beneficial for making natural product availability independent from the plant. Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) from C. sativa L. catalyzes the cyclization of cannabigerolic acid (CBGA) to Δ(9)-tetrahydrocannabinolic acid (THCA), which is non-enzymatically decarboxylated to THC. We report the preparation of THCAS in amounts sufficient for the biocatalytic production of THC(A). Active THCAS was most efficiently obtained from Pichia pastoris. THCAS was produced on a 2L bioreactor scale and the enzyme was isolated by single-step chromatography with a specific activity of 73Ug(-1)total protein. An organic/aqueous two-liquid phase setup for continuous substrate delivery facilitated in situ product removal. In addition, THCAS activity in aqueous environments lasted for only 20min whereas the presence of hexane stabilized the activity over 3h. In conclusion, production of THCAS in P. pastoris Mut(S) KM71 KE1, subsequent isolation, and its application in a two-liquid phase setup enables the synthesis of THCA on a mg scale.

  10. Peroxisome Degradation by Microautophagy in Pichia pastoris: Identification of Specific Steps and Morphological Intermediates

    PubMed Central

    Sakai, Yasuyoshi; Koller, Antonius; Rangell, Linda K.; Keller, Gilbert A.; Subramani, Suresh

    1998-01-01

    We used the dye N-(3-triethylammoniumpropyl)-4-(p-diethylaminophenylhexatrienyl) pyridinium dibromide (FM4-64) and a fusion protein, consisting of the green fluorescent protein appended to the peroxisomal targeting signal, Ser-Lys-Leu (SKL), to label the vacuolar membrane and the peroxisomal matrix, respectively, in living Pichia pastoris cells and followed by fluorescence microscopy the morphological and kinetic intermediates in the vacuolar degradation of peroxisomes by microautophagy and macroautophagy. Structures corresponding to the intermediates were also identified by electron microscopy. The kinetics of appearance and disappearance of these intermediates is consistent with a precursor–product relationship between intermediates, which form the basis of a model for microautophagy. Inhibitors affecting different steps of microautophagy did not impair peroxisome delivery to the vacuole via macroautophagy, although inhibition of vacuolar proteases affected the final vacuolar degradation of green fluorescent protein (S65T mutant version [GFP])-SKL via both autophagic pathways. P. pastoris mutants defective in peroxisome microautophagy (pag mutants) were isolated and characterized for the presence or absence of the intermediates. These mutants, comprising 6 complementation groups, support the model for microautophagy. Our studies indicate that the microautophagic degradation of peroxisomes proceeds via specific intermediates, whose generation and/or processing is controlled by PAG gene products, and shed light on the poorly understood phenomenon of peroxisome homeostasis. PMID:9566964

  11. Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris.

    PubMed Central

    Cregg, J M; Madden, K R; Barringer, K J; Thill, G P; Stillman, C A

    1989-01-01

    In Pichia pastoris, alcohol oxidase (AOX) is the first enzyme in the methanol utilization pathway and is encoded by two genes, AOX1 and AOX2. The DNA and predicted amino acid sequences of the protein-coding portions of the genes are closely homologous, whereas flanking sequences share no homology. The functional roles of AOX1 and AOX2 in the metabolism of methanol were examined. Studies of strains with disrupted AOX genes revealed that AOX1 was the major source of methanol-oxidizing activity in methanol-grown P. pastoris. The results of two types of experiments each suggested that the difference in AOX activity contributed by the two genes was a consequence of sequences located 5' of the protein-coding portions of the genes. First, the coding portion of AOX2 was able to functionally substitute for that of AOX1 when placed under the control of AOX1 regulatory sequences. Second, when labeled oligonucleotide probes specific for the 5' nontranslated region of each gene were used, it was apparent that the steady-state level of AOX1 mRNA was much higher than that of AOX2. Except for the difference in the amount of mRNA present, the two genes appeared to be regulated in the same manner. A physiological reason for the existence of AOX2 was sought but was not apparent. Images PMID:2657390

  12. Characterization of Trichoderma reesei endoglucanase II expressed heterologously in Pichia pastoris for better biofinishing and biostoning.

    PubMed

    Samanta, Sutanu; Basu, Asitava; Halder, Umesh Chandra; Sen, Soumitra Kumar

    2012-06-01

    The endoglucanase II of Trichoderma reesei is considered the most effective enzyme for biofinishing cotton fabrics and biostoning denim garments. However, the commercially available preparation of endoglucanase II is usually mixed with other cellulase components, especially endoglucanase I, resulting in hydrolysis and weight loss of garments during biofinishing and biostoning. We thus isolated the endoglucanase II gene from T. reesei to express this in Pichia pastoris, under the control of a methanol-inducible AOX1 promoter, to avoid the presence of other cellulase components. A highly expressible Mut(+) transformant was selected and its expression in BMMH medium was found most suitable for the production of large amounts of the recombinant protein. Recombinant endoglucanase II was purified to electrophoretic homogeneity, and functionally characterized by activity staining. The specific activity of recombinant endoglucanase II was found to be 220.57 EU/mg of protein. Purified recombinant endoglucanase II was estimated to have a molecular mass of 52.8 kDa. The increase in molecular mass was likely due to hyperglycosylation. Hyperglycosylation of recombinant endoglucanase II secreted by P. pastoris did not change the temperature or pH optima as compared to the native protein, but did result in increased thermostability. Kinetic analysis showed that recombinant endoglucanase was most active against amorphous cellulose, such as carboxymethyl cellulose, for which it also had a high affinity.

  13. UBX domain-containing proteins are involved in lipid homeostasis and stress responses in Pichia pastoris.

    PubMed

    Zhang, Meng; Yu, Qilin; Liu, Zhe; Liang, Chen; Zhang, Biao; Li, Mingchun

    2017-09-01

    Ubiquitin regulatory X (UBX) domain-containing proteins constitute a family of proteins and are substrate adaptors of AAA ATPase Cdc48. UBX proteins can bind to the N-terminal region of Cdc48 to perform endoplasmic reticulum associated protein degradation (ERAD). In this study, we identified two UBX domain-containing proteins, Ubx1 and Ubx2, in Pichia pastoris and found that the two proteins could recover the growth defect of Saccharomyces cerevisiae in ubx2Δ. Our results revealed that Ubx1 and Ubx2 play critical roles in synthesis of unsaturated fatty acids by affecting Spt23. In addition, the results demonstrated that both Ubx1 and Ubx2 are involved in lipid droplet formation and protein degradation. Deletion of UBX1 led to increased sensitivity to oxidative stress and disruption of UBX2 impaired cell viability under osmotic stress. The phenotypes of ubx1Δ+UBX2, ubx2Δ+UBX1 and ubx1Δubx2Δ and RNA-seq data suggested that Ubx1 and Ubx2 play different roles in cell functions, and the roles of Ubx1 may be more numerous than Ubx2. In summary, our findings provide new insights into the relationship between lipid homeostasis and cell functions in the oil-producing organism P. pastoris. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in the methylotrophic yeast Pichia pastoris

    PubMed Central

    Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J.; Sánchez, Jhonnathan; Moreno, Jefferson; Beltran, Laura; Díaz, Dennis; Pardo, Andrea; Ramírez, Aura María; Espejo-Mojica, Angela J.; Pimentel, Luisa; Barrera, Luis A.

    2016-01-01

    Mucopolysaccharidosis IV A (MPS IV A, Morquio A disease) is a lysosomal storage disease (LSD) produced by mutations on N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Recently an enzyme replacement therapy (ERT) for this disease was approved using a recombinant enzyme produced in CHO cells. Previously, we reported the production of an active GALNS enzyme in Escherichia coli that showed similar stability properties to that of a recombinant mammalian enzyme though it was not taken-up by culture cells. In this study, we showed the production of the human recombinant GALNS in the methylotrophic yeast Pichia pastoris GS115 (prGALNS). We observed that removal of native signal peptide and co-expression with human formylglycine-generating enzyme (SUMF1) allowed an improvement of 4.5-fold in the specific GALNS activity. prGALNS enzyme showed a high stability at 4 °C, while the activity was markedly reduced at 37 and 45 °C. It was noteworthy that prGALNS was taken-up by HEK293 cells and human skin fibroblasts in a dose-dependent manner through a process potentially mediated by an endocytic pathway, without any additional protein or host modification. The results show the potential of P. pastoris in the production of a human recombinant GALNS for the development of an ERT for Morquio A. PMID:27378276

  15. Molecular genetic manipulation of Pichia pastoris SEC4 governs cell growth and glucoamylase secretion

    SciTech Connect

    Liu, S.-H.; Chou, W.-I; Lin, S.-C.; Sheu, C.-C.; Chang, Margaret Dah-Tsyr . E-mail: dtchang@life.nthu.edu.tw

    2005-11-04

    We have previously engineered a recombinant Pichia pastoris GS115 transformant, MSPGA-7, harboring seven copies of glucoamylase (GA) fused with modified signal peptide. High yield secretion of GA was achieved as an extra copy of SEC4 was integrated to the transformant. To elucidate the physiological role of SEC4, a dominant-negative mutant of SEC4, SEC4 {sub S28N}, was overexpressed under the control of alchohol oxidase 1 (AOX1) promoter in P. pastoris strain MSPGA-7 as well as a set of host cells harboring multi-copy of wild type SEC4. We found that SEC4 {sub S28N} mutation in the key guanine nucleotide binding domain reduced guanine nucleotide binding affinity, hence it blocked the transport of vesicles required for targeting and fusion to the plasma membrane. The inhibitory levels of cell growth and GA secretion were correlated with the dosage of SEC4 {sub S28N} gene. In addition, overexpression of SEC4 driven by AOX1 promoter in MSPGA-7 improved the secretory production of GA, but demonstrated the delay of cell growth by increased gene dosage of SEC4. Interestingly, a limited level of Sec4p did not disturb the cell growth. It was because expression of only one copy of SEC4 resulted in delay of cell growth at an early stage while still maintaining high level Sec4p at long-term incubation. Accordingly, as glyceraldehyde-3-phosphate dehydrogenase promoter was used to substitute AOX1 promoter to drive the SEC4 expression, enhanced GA secretion but not inhibition of cell growth was achieved. Taken together, our results demonstrate that SEC4 is essential for P. pastoris in regulating cell growth and heterologous protein secretion in a dosage-dependent manner.

  16. Effect of molecular chaperones on the expression of Candida antarctica lipase B in Pichia pastoris.

    PubMed

    Samuel, Premsingh; Prasanna Vadhana, Ashok Kumar; Kamatchi, Ramakrishnan; Antony, Aju; Meenakshisundaram, Sankaranarayanan

    2013-12-14

    One of the reasons for limited heterologous protein secretion in Pichia pastoris is the suboptimal folding conditions inside the cell. The Hsp70 and Hsp40 chaperone families in the cytoplasm or the ER regulate the folding and secretion of heterologous proteins. Here, we have studied the effect of chaperones Ydj1p, Ssa1p, Sec63p and Kar2p on the secretory expression of Candida antarctica lipase B (CalB) protein. Expression of CalB in P. pastoris resulted in the induction of Kar2p secretion into the medium surpassing the retrieval capacity of the cell. Individual overexpression of Ydj1p, Ssa1p and Sec63p in recombinant P. pastoris increased CalB expression level by 1.6-, 1.4- and 1.4-fold respectively compared to the control strain harboring only the CalB gene. However, overexpression of Kar2p had a negative effect on the expression of CalB. Moreover, Western blot analysis indicated accumulation and secretion of Kar2p in the ER, Golgi and extracellular medium in the chaperone coexpression strains. When expressed in combinations such as Ydj1p-Ssa1p, Ydj1p-Sec63p, Kar2p-Ssa1p, Kar2p-Sec63p, the expression level of CalB was increased by 2.5-, 1.5-, 1.5- and 1.5-fold respectively. Contrastingly, the Kar2p-Ydj1p combination resulted in decreased CalB secretion in the supernatant. From these results, we conclude that overexpression of Kar2p is not required for the secretion of CalB. Also, our work confirmed the synergistic effect of Ssa1p and Ydj1p chaperones in the expression of CalB. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Constitutive expression of recombinant human hyaluronidase PH20 by Pichia pastoris.

    PubMed

    Chen, Kuan-Jung; Sabrina, Sabrina; El-Safory, Nermeen S; Lee, Guan-Chiun; Lee, Cheng-Kang

    2016-12-01

    PH20 is known as sperm adhesion molecule 1 (SPAM1) and also has hyaluronidase function to preferentially hydrolyze the glycosidic linkage of hyaluronic acid (HA). A DNA fragment containing core domain of human PH20 gene was cloned into a constitutive expression plasmid (pGAPZαC) of Pichia pastoris to produce a fusion protein with α factor signal in the N-terminus and 6 × His as well as c-Myc tags in the C-terminus. The resulting plasmid pGAPZαC-PH20 was integrated into the genome of P. pastoris strain GS115. Functional recombinant human PH20 (rHuPH20) was successfully expressed and secreted by the recombinant P. pastoris transformant. Highest hyaluronidase activity of 2 mU/mL could be obtained at 3 day in an YPD culture. After purified by phenylboronic acid resin adsorption, rHuPH20 with a specific activity of 230 mU/mg was obtained. Via periodic acid-Schiff staining and zymogram analysis, the partially purified rHuPH20 was determined to be highly glycosylated to various extents with molecular mass in the range of 100-300 kDa. The enzyme showed a maximal activity at pH 5.0 but no appreciable activity at pH ≤3 and pH ≥8. The hyaluronidase activity could be stably maintained at 4°C but lost 40% after incubating at 30°C for 4 h. Both N-acetyl cysteine and glutathione showed a half maximal inhibitory concentration (IC50) of 8 mM against rHuPH20.

  18. Upscale of recombinant α-L-rhamnosidase production by Pichia pastoris Mut(S) strain.

    PubMed

    Markošová, Kristína; Weignerová, Lenka; Rosenberg, Michal; Křen, Vladimír; Rebroš, Martin

    2015-01-01

    Pichia pastoris is currently one of the most preferred microorganisms for recombinant enzyme production due to its efficient expression system. The advantages include the production of high amounts of recombinant proteins containing the appropriate posttranslational modifications and easy cultivation conditions. α-L-Rhamnosidase is a biotechnologically important enzyme in food and pharmaceutical industry, used for example in debittering of citrus fruit juices, rhamnose pruning from naringin, or enhancement of wine aromas, creating a demand for the production of an active and stable enzyme. The production of recombinant α-L-rhamnosidase cloned in the Mut(S) strain of P. pastoris KM71H was optimized. The encoding gene is located under the control of the AOX promoter, which is induced by methanol whose concentration is instrumental for these strain types. Fermentation was upscaled in bioreactors employing various media and several methanol-feeding strategies. It was found that fed batch with BSM media was more effective compared to BMMH (Buffered Methanol-complex Medium) media due to lower cost and improved biomass formation. In BSM (Basal Salt Medium) medium, the dry cell weight reached approximately 60 g/L, while in BMMH it was only 8.3 g/L, without additional glycerol, which positively influenced the amount of enzyme produced. New methanol feeding strategy, based on the level of dissolved oxygen was developed in this study. This protocol that is entirely independent on methanol monitoring was up scaled to a 19.5-L fermenter with 10-L working volume with the productivity of 13.34 mgprot/L/h and specific activity of α-L-rhamnosidase of 82 U/mg. The simplified fermentation protocol was developed for easy and effective fermentation of P. pastoris Mut(S) based on dissolved oxygen monitoring in the induction phase of an enzyme production.

  19. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight.

    PubMed

    Jeong, Euijoon; Shim, Woo Yong; Kim, Jung Hoe

    2014-09-20

    The high molecular weight (>1 MDa) of hyaluronic acid (HA) is important for its biological functions. The reported limiting factors for the production of HA with high molecular weight (MW) by microbial fermentation are the insufficient HA precursor pool and cell growth inhibition. To overcome these issues, the Xenopus laevis xhasA2 and xhasB genes encoding hyaluronan synthase 2 (xhasA2) and UDP-glucose dehydrogenase (xhasB), were expressed in Pichia pastoris widely used for production of heterologous proteins. In this study, expression vectors containing various combination cassettes of HA pathway genes including xhasA2 and xhasB from X. laevis as well as UDP-glucose pyrophosphorylase (hasC), UDP-N-acetylglucosamine pyrophosphorylase (hasD) and phosphoglucose isomerase (hasE) from P. pastoris were constructed and tested. First, HA pathway genes were overexpressed using pAO815 and pGAPZB vectors, resulting in the production of 1.2 MDa HA polymers. Second, in order to decrease hyaluronan synthase expression a strong AOX1 promoter in the xhasA2 gene was replaced by a weak AOX2 promoter which increased the mean MW of HA to 2.1 MDa. Finally, the MW of HA polymer was further increased to 2.5 MDa by low-temperature cultivation (26 °C) which reduced cell growth inhibition. The yield of HA production by the P. pastoris recombinant strains in 1L of fermentation culture was 0.8-1.7 g/L.

  20. High level expression of organophosphorus hydrolase in Pichia pastoris by multicopy ophcM assembly.

    PubMed

    Shen, Wei; Shu, Min; Ma, Lixin; Ni, Hong; Yan, Hong

    2016-03-01

    The residues of organophosphorus pesticides bring serious impact on the environmental safety and people's health. Biodegradation of organophosphorus pesticides is recognized as an ideal method. An organophosphorus hydrolase (OPHCM) from Pseudomonas pseudoalcaligenes was synthesized and expressed in Pichia pastoris. The yield reached approximately 470 mg/l after a 6-d induction in shake flasks. To improve the enzyme production, we describe a novel approach to express OPHCM efficiently with a biobrick assembly method in vitro. Four recombinant plasmids containing 1-4 copies of ophcM-expressing cassettes were constructed and transformed into P. pastoris. Increasing the copy number of ophcM gene enhanced the expression level of OPHCM. The maximum yield and specific activity in P. pastoris harboring two-copy tandem ophcM-expressing cassettes reached 610 mg/l after a 6-d induction in shake flasks and 7.8 g/l in high-density fermentation with specific activity of 13.7 U/mg. The optimum pH and temperature of the recombinant OPHCM activity were 11.0 and 50 °C, respectively. In addition, the enzyme activity of recombinant OPHCM enhanced 57.6% and 30.1% in the presence of 1 mM Cd(2+) and 5% glycerol, respectively. The high expression and good properties of recombinant OPHCM provide an effective solution to solve the pollution of organophosphorus pesticides in the environment. Moreover, the approach for generating multicopy gene expressing vectors here will benefit the study for enhancing the expression level of genes of interest.

  1. Quantitative metabolomics analysis of amino acid metabolism in recombinant Pichia pastoris under different oxygen availability conditions

    PubMed Central

    2012-01-01

    Background Environmental and intrinsic stress factors can result in the global alteration of yeast physiology, as evidenced by several transcriptional studies. Hypoxia has been shown to have a beneficial effect on the expression of recombinant proteins in Pichia pastoris growing on glucose. Furthermore, transcriptional profiling analyses revealed that oxygen availability was strongly affecting ergosterol biosynthesis, central carbon metabolism and stress responses, in particular the unfolded protein response. To contribute to the better understanding of the effect and interplay of oxygen availability and foreign protein secretion on central metabolism, a first quantitative metabolomic analysis of free amino acids pools in a recombinant P. pastoris strain growing under different oxygen availability conditions has been performed. Results The values obtained indicate significant variations in the intracellular amino acid pools due to different oxygen availability conditions, showing an overall increase of their size under oxygen limitation. Notably, even while foreign protein productivities were relatively low (about 40–80 μg Fab/gDCW·h), recombinant protein production was found to have a limited but significant impact on the intracellular amino acid pools, which were generally decreased in the producing strain compared with the reference strain. However, observed changes in individual amino acids pools were not correlated with their corresponding relative abundance in the recombinant protein sequence, but to the overall cell protein amino acid compositional variations. Conclusions Overall, the results obtained, combined with previous transcriptomic and proteomic analyses provide a systematic metabolic fingerprint of the oxygen availability impact on recombinant protein production in P. pastoris. PMID:22704468

  2. Functionalized silk assembled from a recombinant spider silk fusion protein (Z-4RepCT) produced in the methylotrophic yeast Pichia pastoris.

    PubMed

    Jansson, Ronnie; Lau, Cheuk H; Ishida, Takuya; Ramström, Margareta; Sandgren, Mats; Hedhammar, My

    2016-05-01

    Functional biological materials are a growing research area with potential applicability in medicine and biotechnology. Using genetic engineering, the possibility to introduce additional functions into spider silk-based materials has been realized. Recently, a recombinant spider silk fusion protein, Z-4RepCT, was produced intracellularly in Escherichia coli and could after purification self-assemble into silk-like fibers with ability to bind antibodies via the IgG-binding Z domain. In this study, the use of the methylotrophic yeast Pichia pastoris for production of Z-4RepCT has been investigated. Temperature, pH and production time were influencing the amount of soluble Z-4RepCT retrieved from the extracellular fraction. Purification of secreted Z-4RepCT resulted in a mixture of full-length and degraded silk proteins that failed to self-assemble into fibers. A position in the C-terminal domain of 4RepCT was identified as being subjected to proteolytic cleavage by proteases in the Pichia culture supernatant. Moreover, the C-terminal domain was subjected to glycosylation during production in P. pastoris. These observed alterations of the CT domain are suggested to contribute to the failure in fiber assembly. As alternative approach, Z-4RepCT retrieved from the intracellular fraction, which was less degraded, was used and shown to retain ability to assemble into silk-like fibers after enzymatic deglycosylation. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase

    PubMed Central

    2012-01-01

    Background Laccases are blue multi-copper oxidases and catalyze the oxidation of phenolic and non-phenolic compounds. There is considerable interest in using these enzymes for dye degradation as well as for synthesis of aromatic compounds. Laccases are produced at relatively low levels and, sometimes, as isozymes in the native fungi. The investigation of properties of individual enzymes therefore becomes difficult. The goal of this study was to over-produce a previously reported laccase from Cyathus bulleri using the well-established expression system of Pichia pastoris and examine and compare the properties of the recombinant enzyme with that of the native laccase. Results In this study, complete cDNA encoding laccase (Lac) from white rot fungus Cyathus bulleri was amplified by RACE-PCR, cloned and expressed in the culture supernatant of Pichia pastoris under the control of the alcohol oxidase (AOX)1 promoter. The coding region consisted of 1,542 bp and encodes a protein of 513 amino acids with a signal peptide of 16 amino acids. The deduced amino acid sequence of the matured protein displayed high homology with laccases from Trametes versicolor and Coprinus cinereus. The sequence analysis indicated the presence of Glu 460 and Ser 113 and LEL tripeptide at the position known to influence redox potential of laccases placing this enzyme as a high redox enzyme. Addition of copper sulfate to the production medium enhanced the level of laccase by about 12-fold to a final activity of 7200 U L-1. The recombinant laccase (rLac) was purified by ~4-fold to a specific activity of ~85 U mg-1 protein. A detailed study of thermostability, chloride and solvent tolerance of the rLac indicated improvement in the first two properties when compared to the native laccase (nLac). Altered glycosylation pattern, identified by peptide mass finger printing, was proposed to contribute to altered properties of the rLac. Conclusion Laccase of C. bulleri was successfully produced extra

  4. Functional identification of a rice ent-kaurene oxidase, OsKO2, using the Pichia pastoris expression system.

    PubMed

    Ko, Kwang-Wook; Lin, Fengqiu; Katsumata, Takumi; Sugai, Yoshinori; Miyazaki, Sho; Kawaide, Hiroshi; Okada, Kazunori; Nojiri, Hideaki; Yamane, Hisakazu

    2008-12-01

    Rice ent-kaurene oxidase 2 (OsKO2) perhaps functions in the early steps of gibberellin biosynthesis. We found that microsomes from the methylotropic yeast Pichia pastoris expressing both OsKO2 and a fungal cytochrome P450 monooxygenase (P450) reductase converted ent-kaurene to ent-kaurenoic acid. This is direct evidence that OsKO2 is involved in the sequential oxidation of ent-kaurene to ent-kaurenoic acid in gibberellin biosynthesis in rice.

  5. A dynamic method based on the specific substrate uptake rate to set up a feeding strategy for Pichia pastoris

    PubMed Central

    2011-01-01

    Background Pichia pastoris is one of the most important host organisms for the recombinant production of proteins in industrial biotechnology. To date, strain specific parameters, which are needed to set up feeding profiles for fed batch cultivations, are determined by time-consuming continuous cultures or consecutive fed batch cultivations, operated at different parameter sets. Results Here, we developed a novel approach based on fast and easy to do batch cultivations with methanol pulses enabling a more rapid determination of the strain specific parameters specific substrate uptake rate qs, specific productivity qp and the adaption time (Δtimeadapt) of the culture to methanol. Based on qs, an innovative feeding strategy to increase the productivity of a recombinant Pichia pastoris strain was developed. Higher specific substrate uptake rates resulted in increased specific productivity, which also showed a time dependent trajectory. A dynamic feeding strategy, where the setpoints for qs were increased stepwise until a qs max of 2.0 mmol·g-1·h-1 resulted in the highest specific productivity of 11 U·g-1·h-1. Conclusions Our strategy describes a novel and fast approach to determine strain specific parameters of a recombinant Pichia pastoris strain to set up feeding profiles solely based on the specific substrate uptake rate. This approach is generic and will allow application to other products and other hosts. PMID:21371310

  6. High-level expression of the Penicillium notatum glucose oxidase gene in Pichia pastoris using codon optimization.

    PubMed

    Gao, Zhaowei; Li, Zhuofu; Zhang, Yuhong; Huang, Huoqing; Li, Mu; Zhou, Liwei; Tang, Yunming; Yao, Bin; Zhang, Wei

    2012-03-01

    The glucose oxidase (GOD) gene from Penicillium notatum was expressed in Pichia pastoris. The 1,815 bp gene, god-w, encodes 604 amino acids. Recombinant GOD-w had optimal activity at 35-40°C and pH 6.2 and was stable, from pH 3 to 7 maintaining >75% maximum activity after incubation at 50°C for 1 h. GOD-w worked as well as commercial GODs to improve bread making. To achieve high-level expression of recombinant GOD in P. pastoris, 272 nucleotides involving 228 residues were mutated, consistent with the codon bias of P. pastoris. The optimized recombinant GOD-m yielded 615 U ml(-1) (2.5 g protein l(-1)) in a 3 l fermentor--410% higher than GOD-w (148 U ml(-1)), and thus is a low-cost alternative for the bread baking industry.

  7. Cell Surface Display and Characterization of Rhizopus oryzae Lipase in Pichia pastoris Using Sed1p as an Anchor Protein.

    PubMed

    Li, Wenqian; Shi, Hao; Ding, Huaihai; Wang, Liangliang; Zhang, Yu; Li, Xun; Wang, Fei

    2015-07-01

    It has been investigated to conduct the surface displaying of lipase from Rhizopus oryzae onto the cells of Pichia pastoris yeast using Sed1p as an anchor protein. A yeast cell surface display plasmid pPICZαA-rol-histag-sed1p was constructed by fusing rol and sed1p gene fragments into the plasmid pPICZαA, followed by introducing recombinant plasmid into P. pastoris cells. Surface display levels were monitored by Western Blot and immunofluorescence microscopy. The activity of displaying lipase obtained from recombinant mutS reached at 60 U/g-dry cell. In addition, the displaying lipase was stable in broad ranges of temperatures and pH, with the optimum temperature at 40 °C and pH 7.5. These results indicate that the P. pastoris displaying lipase may have potential in whole-cell biocatalyst.

  8. Reconstruction and visualization of carbohydrate, N-glycosylation pathways in Pichia pastoris CBS7435 using computational and system biology approaches.

    PubMed

    Srivastava, Akriti; Somvanshi, Pallavi; Mishra, Bhartendu Nath

    2013-06-01

    Pichia pastoris is an efficient expression system for production of recombinant proteins. To understand its physiology for building novel applications it is important to understand and reconstruct its metabolic network. The metabolic reconstruction approach connects genotype with phenotype. Here, we have attempted to reconstruct carbohydrate metabolism pathways responsible for high biomass density and N-glycosylation pathways involved in the post translational modification of proteins of P. pastoris CBS7435. Both these metabolic pathways play a crucial role in heterologous protein production. We report novel, missing and unannotated enzymes involved in the target metabolic pathways. A strong possibility of cellulose and xylose metabolic processes in P. pastoris CBS7435 suggests its use in the area of biofuels. The reconstructed metabolic networks can be used for increased yields and improved product quality, for designing appropriate growth medium, for production of recombinant therapeutics and for making biofuels.

  9. Engineered fungal polyketide biosynthesis in Pichia pastoris: a potential excellent host for polyketide production

    PubMed Central

    2013-01-01

    Background Polyketides are one of the most important classes of secondary metabolites and usually make good drugs. Currently, heterologous production of fungal polyketides for developing a high potential industrial application system with high production capacity and pharmacutical feasibility was still at its infancy. Pichia pastoris is a highly successful system for the high production of a variety of heterologous proteins. In this work, we aim to develop a P. pastoris based in vivo fungal polyketide production system for first time and evaluate its feasibility for future industrial application. Results A recombinant P. pastoris GS115-NpgA-ATX with Aspergillus nidulans phosphopantetheinyl transferase (PPtase) gene npgA and Aspergillus terrus 6-methylsalicylic acid (6-MSA) synthase (6-MSAS) gene atX was constructed. A specific compound was isolated and idenified as 6-MSA by HPLC, LC-MS and NMR. Transcription of both genes were detected. In 5-L bioreactor, the GS115-NpgA-ATX grew well and produced 6-MSA quickly until reached a high value of 2.2 g/L by methanol induction for 20 hours. Thereafter, the cells turned to death ascribing to high concentration of antimicrobial 6-MSA. The distribution of 6-MSA changed that during early and late induction phase it existed more in supernatant while during intermediate stage it mainly located intracellular. Different from 6-MSA production strain, recombinant M. purpureus pksCT expression strains for citrinin intermediate production, no matter PksCT located in cytoplasm or in peroxisomes, did not produce any specfic compound. However, both npgA and pksCT transcripted effectively in cells and western blot analysis proved the expression of PPtase. Then the PPTase was expressed and purified, marked by fluorescent probes, and reacted with purified ACP domain and its mutant ACPm of PksCT. Fluoresence was only observed in ACP but not ACPm, indicating that the PPTase worked well with ACP to make it bioactive holo-ACP. Thus, some

  10. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway

    PubMed Central

    2012-01-01

    Βackground The methylotrophic yeast Pichia pastoris has become an important host organism for recombinant protein production and is able to use methanol as a sole carbon source. The methanol utilization pathway describes all the catalytic reactions, which happen during methanol metabolism. Despite the importance of certain key enzymes in this pathway, so far very little is known about possible effects of overexpressing either of these key enzymes on the overall energetic behavior, the productivity and the substrate uptake rate in P. pastoris strains. Results A fast and easy-to-do approach based on batch cultivations with methanol pulses was used to characterize different P. pastoris strains. A strain with MutS phenotype was found to be superior over a strain with Mut+ phenotype in both the volumetric productivity and the efficiency in expressing recombinant horseradish peroxidase C1A. Consequently, either of the enzymes dihydroxyacetone synthase, transketolase or formaldehyde dehydrogenase, which play key roles in the methanol utilization pathway, was co-overexpressed in MutS strains harboring either of the reporter enzymes horseradish peroxidase or Candida antarctica lipase B. Although the co-overexpression of these enzymes did not change the stoichiometric yields of the recombinant MutS strains, significant changes in the specific growth rate, the specific substrate uptake rate and the specific productivity were observed. Co-overexpression of dihydroxyacetone synthase yielded a 2- to 3-fold more efficient conversion of the substrate methanol into product, but also resulted in a reduced volumetric productivity. Co-overexpression of formaldehyde dehydrogenase resulted in a 2-fold more efficient conversion of the substrate into product and at least similar volumetric productivities compared to strains without an engineered methanol utilization pathway, and thus turned out to be a valuable strategy to improve recombinant protein production. Conclusions Co

  11. Protein trafficking, ergosterol biosynthesis and membrane physics impact recombinant protein secretion in Pichia pastoris

    PubMed Central

    2011-01-01

    Background The increasing availability of 'omics' databases provide important platforms for yeast engineering strategies since they offer a lot of information on the physiology of the cells under diverse growth conditions, including environmental stresses. Notably, only a few of these approaches have considered a performance under recombinant protein production conditions. Recently, we have identified a beneficial effect of low oxygen availability on the expression of a human Fab fragment in Pichia pastoris. Transcriptional analysis and data mining allowed for the selection of potential targets for strain improvement. A first selection of these candidates has been evaluated as recombinant protein secretion enhancers. Results Based on previous transcriptomics analyses, we selected 8 genes for co-expression in the P. pastoris strain already secreting a recombinant Fab fragment. Notably, WSC4 (which is involved in trafficking through the ER) has been identified as a novel potential target gene for strain improvement, with up to a 1.2-fold increase of product yield in shake flask cultures. A further transcriptomics-based strategy to modify the yeast secretion system was focused on the ergosterol pathway, an aerobic process strongly affected by oxygen depletion. By specifically partially inhibiting ergosterol synthesis with the antifungal agent fluconazole (inhibiting Erg11p), we tried to mimic the hypoxic conditions, in which the cellular ergosterol content was significantly decreased. This strategy led to an improved Fab yield (2-fold) without impairing cellular growth. Since ergosterol shortage provokes alterations in the plasma membrane composition, an important role of this cellular structure in protein secretion is suggested. This hypothesis was additionally supported by the fact that the addition of non-ionic surfactants also enhanced Fab secretion. Conclusions The current study presents a systems biotechnology-based strategy for the engineering of the

  12. Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions

    PubMed Central

    Gasser, Brigitte; Maurer, Michael; Rautio, Jari; Sauer, Michael; Bhattacharyya, Anamitra; Saloheimo, Markku; Penttilä, Merja; Mattanovich, Diethard

    2007-01-01

    Background It has become evident that host cells react to recombinant protein production with a variety of metabolic and intrinsic stresses such as the unfolded protein response (UPR) pathway. Additionally, environmental conditions such as growth temperature may have a strong impact on cell physiology and specific productivity. However, there is little information about the molecular reactions of the host cells on a genomic level, especially in context to recombinant protein secretion. For the first time, we monitored transcriptional regulation of a subset of marker genes in the common production host Pichia pastoris to gain insights into the general physiological status of the cells under protein production conditions, with the main focus on secretion stress related genes. Results Overexpression of the UPR activating transcription factor Hac1p was employed to identify UPR target genes in P. pastoris and the responses were compared to those known for Saccharomyces cerevisiae. Most of the folding/secretion related genes showed similar regulation patterns in both yeasts, whereas genes associated with the general stress response were differentially regulated. Secretion of an antibody Fab fragment led to induction of UPR target genes in P. pastoris, however not to the same magnitude as Hac1p overproduction. Overexpression of S. cerevisiae protein disulfide isomerase (PDI1) enhances Fab secretion rates 1.9 fold, but did not relief UPR stress. Reduction of cultivation temperature from 25°C to 20°C led to a 1.4-fold increase of specific product secretion rate in chemostat cultivations, although the transcriptional levels of the product genes (Fab light and heavy chain) were significantly reduced at the lower temperature. A subset of folding related genes appeared to be down-regulated at the reduced temperature, whereas transcription of components of the ER associated degradation and the secretory transport was enhanced. Conclusion Monitoring of genomic regulation of

  13. Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay.

    PubMed

    Kittl, Roman; Kracher, Daniel; Burgstaller, Daniel; Haltrich, Dietmar; Ludwig, Roland

    2012-10-26

    Recent studies demonstrate that enzymes from the glycosyl hydrolase family 61 (GH61) show lytic polysaccharide monooxygenase (PMO) activity. Together with cellobiose dehydrogenase (CDH) an enzymatic system capable of oxidative cellulose cleavage is formed, which increases the efficiency of cellulases and put PMOs at focus of biofuel research. Large amounts of purified PMOs, which are difficult to obtain from the native fungal producers, are needed to study their reaction kinetics, structure and industrial application. In addition, a fast and robust enzymatic assay is necessary to monitor enzyme production and purification. Four pmo genes from Neurospora crassa were expressed in P. pastoris under control of the AOX1 promoter. High yields were obtained for the glycosylated gene products PMO-01867, PMO-02916 and PMO-08760 (>300 mg L-1), whereas the yield of non-glycosylated PMO-03328 was moderate (~45 mg L-1). The production and purification of all four enzymes was specifically followed by a newly developed, fast assay based on a side reaction of PMO: the production of H2O2 in the presence of reductants. While ascorbate is a suitable reductant for homogeneous PMO preparations, fermentation samples require the specific electron donor CDH. P. pastoris is a high performing expression host for N. crassa PMOs. The pmo genes under control of the native signal sequence are correctly processed and active. The novel CDH-based enzyme assay allows fast determination of PMO activity in fermentation samples and is robust against interfering matrix components.

  14. Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay

    PubMed Central

    2012-01-01

    Background Recent studies demonstrate that enzymes from the glycosyl hydrolase family 61 (GH61) show lytic polysaccharide monooxygenase (PMO) activity. Together with cellobiose dehydrogenase (CDH) an enzymatic system capable of oxidative cellulose cleavage is formed, which increases the efficiency of cellulases and put PMOs at focus of biofuel research. Large amounts of purified PMOs, which are difficult to obtain from the native fungal producers, are needed to study their reaction kinetics, structure and industrial application. In addition, a fast and robust enzymatic assay is necessary to monitor enzyme production and purification. Results Four pmo genes from Neurospora crassa were expressed in P. pastoris under control of the AOX1 promoter. High yields were obtained for the glycosylated gene products PMO-01867, PMO-02916 and PMO-08760 (>300 mg L-1), whereas the yield of non-glycosylated PMO-03328 was moderate (~45 mg L-1). The production and purification of all four enzymes was specifically followed by a newly developed, fast assay based on a side reaction of PMO: the production of H2O2 in the presence of reductants. While ascorbate is a suitable reductant for homogeneous PMO preparations, fermentation samples require the specific electron donor CDH. Conclusions P. pastoris is a high performing expression host for N. crassa PMOs. The pmo genes under control of the native signal sequence are correctly processed and active. The novel CDH-based enzyme assay allows fast determination of PMO activity in fermentation samples and is robust against interfering matrix components. PMID:23102010

  15. Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement

    PubMed Central

    2010-01-01

    Background Pichia pastoris has been recognized as an effective host for recombinant protein production. A number of studies have been reported for improving this expression system. However, its physiology and cellular metabolism still remained largely uncharacterized. Thus, it is highly desirable to establish a systems biotechnological framework, in which a comprehensive in silico model of P. pastoris can be employed together with high throughput experimental data analysis, for better understanding of the methylotrophic yeast's metabolism. Results A fully compartmentalized metabolic model of P. pastoris (iPP668), composed of 1,361 reactions and 1,177 metabolites, was reconstructed based on its genome annotation and biochemical information. The constraints-based flux analysis was then used to predict achievable growth rate which is consistent with the cellular phenotype of P. pastoris observed during chemostat experiments. Subsequent in silico analysis further explored the effect of various carbon sources on cell growth, revealing sorbitol as a promising candidate for culturing recombinant P. pastoris strains producing heterologous proteins. Interestingly, methanol consumption yields a high regeneration rate of reducing equivalents which is substantial for the synthesis of valuable pharmaceutical precursors. Hence, as a case study, we examined the applicability of P. pastoris system to whole-cell biotransformation and also identified relevant metabolic engineering targets that have been experimentally verified. Conclusion The genome-scale metabolic model characterizes the cellular physiology of P. pastoris, thus allowing us to gain valuable insights into the metabolism of methylotrophic yeast and devise possible strategies for strain improvement through in silico simulations. This computational approach, combined with synthetic biology techniques, potentially forms a basis for rational analysis and design of P. pastoris metabolic network to enhance humanized

  16. A Rapid Method for Determining the Concentration of Recombinant Protein Secreted from Pichia pastoris

    NASA Astrophysics Data System (ADS)

    Sun, L. W.; Zhao, Y.; Niu, L. P.; Jiang, R.; Song, Y.; Feng, H.; feng, K.; Qi, C.

    2011-02-01

    Pichia secretive expression system is one of powerful eukaryotic expression systems in genetic engineering, which is especially suitable for industrial utilization. Because of the low concentration of the target protein in initial experiment, the methods and conditions for expression of the target protein should be optimized according to the protein yield repetitively. It is necessary to set up a rapid, simple and convenient analysis method for protein expression levels instead of the generally used method such as ultrafiltration, purification, dialysis, lyophilization and so on. In this paper, acetone precipitation method was chosen to concentrate the recombinant protein firstly after comparing with four different protein precipitation methods systematically, and then the protein was analyzed by SDS-Polyacrylamide Gel Electrophoresis. The recombinant protein was determined with the feature of protein band by the Automated Image Capture and 1-D Analysis Software directly. With this method, the optimized expression conditions of basic fibroblast growth factor secreted from pichia were obtained, which is as the same as using traditional methods. Hence, a convenient tool to determine the optimized conditions for the expression of recombinant proteins in Pichia was established.

  17. Secretory expression of thermostable alkaline protease from Bacillus stearothermophilus FI by using native signal peptide and α-factor secretion signal in Pichia pastoris.

    PubMed

    Latiffi, Amaliawati Ahmad; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abd; Oslan, Siti Nurbaya; Basri, Mahiran

    2013-01-01

    The thermostable alkaline protease from Bacillus stearothermophilus F1 has high potential for industrial applications, and attempt to produce the enzyme in yeast for higher yield was undertaken. Secretory expression of F1 protease through yeast system could improve enzyme's capability, thus simplifying the purification steps. Mature and full genes of F1 protease were cloned into Pichia pastoris expression vectors (pGAPZαB and pPICZαB) and transformed into P. pastoris strains (GS115 and SMD1168H) via electroporation method. Recombinant F1 protease under regulation constitutive GAP promoter revealed that the highest expression was achieved after 72 h cultivation. While inducible AOX promoter showed that 0.5% (v/v) methanol was the best to induce expression. It was proven that constitutive expression strategy was better than inducible system. The α-secretion signal from the plasmid demonstrated higher secretory expression level of F1 protease as compared to native Open Reading Frame (ORF) in GS115 strain (GE6GS). Production medium YPTD was found to be the best for F1 protease expression with the highest yield of 4.13 U/mL. The protein was expressed as His-tagged fusion protein with a size about 34 kDa.

  18. Expression of coxsackievirus and adenovirus receptor (CAR)-Fc fusion protein in Pichia pastoris and characterization of its anti-coxsackievirus activity.

    PubMed

    Zhang, Kebin; Yu, Hua; Xie, Wei; Xu, Zihui; Zhou, Shiwen; Huang, Chunji; Sheng, Halei; He, Xiaomei; Xiong, Junzhi; Qian, Guisheng

    2013-04-15

    Coxsackievirus and adenovirus receptors (CARs) are the common cellular receptors which mediate coxsackievirus or adenovirus infection. Receptor trap therapy, which uses soluble viral receptors to block the attachment and internalization of virus, has been developed for the inhibition of virus infection. In this study, we have constructed a pPIC3.5K/CAR-Fc expression plasmid for the economical and scale-up production of CAR-Fc fusion protein in Pichia pastoris. The coding sequence of the fusion protein was optimized according to the host codon usage bias. The amount of the CAR-Fc protein to total cell protein was up to 10% by 1% methanol induction for 96h and the purity was up to 96% after protein purification. Next, the virus pull-down assay demonstrated the binding activity of the CAR-Fc to coxsackievirus. The analyses of MTT assay, immunofluorescence staining and quantitative real-time PCR after virus neutralization assay revealed that CAR-Fc could significantly block coxsackievirus B3 infection in vitro. In coxsackievirus B3 infected mouse models, CAR-Fc treatment reduced mortality, myocardial edema, viral loads and inflammation, suggesting the significant virus blocking effect in vivo. Our results indicated that the P. pastoris expression system could be used to produce large quantities of bioactive CAR-Fc for further clinical purpose.

  19. Production in stirred-tank bioreactor of recombinant bovine chymosin B by a high-level expression transformant clone of Pichia pastoris.

    PubMed

    Noseda, Diego Gabriel; Recúpero, Matías; Blasco, Martín; Bozzo, Joaquín; Galvagno, Miguel Ángel

    2016-07-01

    An intense screening of Pichia pastoris clones transformed with the gene of bovine chymosin under methanol-inducible AOX1 promoter was performed, obtaining a transformant clone with a higher milk-clotting activity value in comparison with our previous studies. The scaling of recombinant-chymosin production was carried out by a fed-batch strategy in a stirred-tank bioreactor using biodiesel-byproduct crude glycerol as the carbon source and pure methanol for the induction of chymosin expression, achieving a biomass concentration of 158 g DCW/L and a maximum coagulant activity of 192 IMCU/ml after 120 h of methanol induction. Recombinant bovine chymosin was purified from bioreactor-fermentation culture by a procedure including anion-exchange chromatography which allowed obtaining heterologous chymosin with high level of purity and activity; suggesting that this downstream step could be scaled up in a successful manner for chymosin purification. Thermoestability assay permitted to establish that unformulated recombinant chymosin could be stored at 5 °C without decrease of enzyme activity throughout at least 120 days. Finally, reiterative methanol-inductions of recombinant chymosin expression in bioreactor demonstrated that the reutilization of cell biomass overcame the low enzyme productivity usually reached by P. pastoris system.

  20. Cloning and constitutive expression of Deschampsia antarctica Cu/Zn superoxide dismutase in Pichia pastoris

    PubMed Central

    Sánchez-Venegas, Jaime R; Navarrete, Alejandro; Dinamarca, Jorge; Bravo Ramírez, León A; Moraga, Ana Gutiérrez; Gidekel, Manuel

    2009-01-01

    Background Deschampsia antarctica shows tolerance to extreme environmental factors such as low temperature, high light intensity and an increasing UV radiation as result of the Antarctic ozone layer thinning. It is very likely that the survival of this species is due to the expression of genes that enable it to tolerate high levels of oxidative stress. On that account, we planned to clone the D. antarctica Cu/ZnSOD gene into Pichia pastoris and to characterize the heterologous protein. Findings The Copper/Zinc superoxide dismutase (Cu/ZnSOD) gene, SOD gene, was isolated from a D. antarctica by cDNA library screening. This SOD gene was cloned in the expression vector pGAPZαA and successfully integrated into the genome of the yeast P. pastoris SMD1168H. A constitutive expression system for the expression of the recombinant SOD protein was used. The recombinant protein was secreted into the YPD culture medium as a glycosylated protein with a 32 mg/l expression yield. The purified recombinant protein possesses a specific activity of 440 U/mg. Conclusion D. antarctica Cu/ZnSOD recombinant protein was expressed in a constitutive system, and purified in a single step by means of an affinity column. The recombinant SOD was secreted to the culture medium as a glycoprotein, corresponding to approximately 13% of the total secreted protein. The recombinant protein Cu/ZnSOD maintains 60% of its activity after incubation at 40°C for 30 minutes and it is stable (80% of activity) between -20°C and 20°C. The recombinant SOD described in this study can be used in various biotechnological applications. PMID:19821975

  1. Heterologous expression and functional characterization of a plant alkaline phytase in Pichia pastoris.

    PubMed

    Johnson, Steven C; Yang, Mimi; Murthy, Pushpalatha P N

    2010-12-01

    Phytases catalyze the sequential hydrolysis of phytic acid (myo-insositol hexakisphosphate), the most abundant inositol phosphate in cells. Phytic acid constitutes 3-5% of the dry weight of cereal grains and legumes such as corn and soybean. The high concentration of phytates in animal feed and the inability of non-ruminant animals such as swine and poultry to digest phytates leads to phosphate contamination of soil and water bodies. The supplementation of animal feed with phytases results in increased bioavailability to animals and decreased environmental contamination. Therefore, phytases are of great commercial importance. Phytases with a range of properties are needed to address the specific digestive needs of different animals. Alkaline phytase (LlALP1 and LlALP2) which possess unique catalytic properties that have the potential to be useful as feed and food supplement has been identified in lily pollen. Substantial quantities of alkaline phytase are needed for animal feed studies. In this paper, we report the heterologous expression of LlALP2 from lily pollen in Pichia pastoris. The expression of recombinant LlALP2 (rLlALP2) was optimized by varying the cDNA coding for LlALP2, host strain and growth conditions. The catalytic properties of recombinant LlALP2 were investigated extensively (substrate specificity, pH- and temperature dependence, and the effect of Ca(2+), EDTA and inhibitors) and found to be very similar to that of the native LlALP2 indicating that rLlALP2 from P. pastoris can serve as a potential source for structural and animal feed studies.

  2. Characterization of Full-Length and Truncated Recombinant κ-Carrageenase Expressed in Pichia pastoris

    PubMed Central

    Yu, Yuan; Liu, Zhemin; Yang, Min; Chen, Meng; Wei, Zhihan; Shi, Lixia; Li, Li; Mou, Haijin

    2017-01-01

    κ-Carrageenase belongs to glycoside hydrolase family 16 and cleaves the β-(1→4) linkages of κ-carrageenan. In this study, genes encoding the full-length (cgkZ), Por secretion tail-truncated (cgkZΔPst) and carbohydrate binding domain-truncated (cgkZΔCBM) κ-carrageenase proteins were expressed in Pichia pastoris. The copy numbers of gene cgkZ, cgkZΔPst and cgkZΔCBM were 7, 7 and 6, respectively. The enzymatic activities of recombinant enzymes cgkZ, cgkZΔPst and cgkZΔCBM reached 4.68, 5.70, and 3.02 U/mL, respectively, after 120 h of shake flask fermentation at 22°C and pH 6 in the presence of 1 % (v/v) methanol. The molecular weights of recombinant cgkZ, cgkZΔPst, and cgkZΔCBM were approximately 65, 45, and 40 kDa; their Km values were 2.07, 1.85, and 1.04 mg/mL; and they exhibited optimal activity at 45–50°C and pH 6–7. All the recombinant enzymes were stimulated by Na+, Mg2+, Ca2+, and dithiothreitol. The end-products of enzymatic hydrolysis were mainly composed of κ-carrageenan tetrasaccharide and hexasaccharide. The removal of the Por secretion tail of κ-carrageenase promoted the transcription of κ-carrageenase gene, enhancing the specific activity of κ-carrageenase without significantly changing its catalytic properties. Although the transcription level of κ-carrageenase gene after the removal of the carbohydrate binding domain was relatively high, the specific activity of the recombinant enzyme significantly decreased. The comprehensive application of the P. pastoris expression system combined with the rational modification of genes may provide a novel approach for the heterologous expression of various marine enzymes with high activities. PMID:28861059

  3. Secretory expression of functional barley limit dextrinase by Pichia pastoris using high cell-density fermentation.

    PubMed

    Vester-Christensen, Malene Bech; Hachem, Maher Abou; Naested, Henrik; Svensson, Birte

    2010-01-01

    Heterologous production of large multidomain proteins from higher plants is often cumbersome. Barley limit dextrinase (LD), a 98kDa multidomain starch and alpha-limit dextrin debranching enzyme, plays a major role in starch mobilization during seed germination and is possibly involved in starch biosynthesis by trimming of intermediate branched alpha-glucan structures. Highly active barley LD is obtained by secretory expression during high cell-density fermentation of Pichia pastoris. The LD encoding gene fragment without signal peptide was subcloned in-frame with the Saccharomyces cerevisiae alpha-factor secretion signal of the P. pastoris vector pPIC9K under control of the alcohol oxidase 1 promoter. Optimization of a fed-batch fermentation procedure enabled efficient production of LD in a 5-L bioreactor, which combined with affinity chromatography on beta-cyclodextrin-Sepharose followed by Hiload Superdex 200 gel filtration yielded 34 mg homogenous LD (84% recovery). The identity of the recombinant LD was verified by N-terminal sequencing and by mass spectrometric peptide mapping. A molecular mass of 98kDa was estimated by SDS-PAGE in excellent agreement with the theoretical value of 97419Da. Kinetic constants of LD catalyzed pullulan hydrolysis were found to K(m,app)=0.16+/-0.02 mg/mL and k(cat,app)=79+/-10s(-1) by fitting the uncompetitive substrate inhibition Michaelis-Menten equation, which reflects significant substrate inhibition and/or transglycosylation. The resulting catalytic coefficient, k(cat,app)/K(m,app)=488+/-23mL/(mgs) is 3.5-fold higher than for barley malt LD. Surface plasmon resonance analysis showed alpha-, beta-, and gamma-cyclodextrin binding to LD with K(d) of 27.2, 0.70, and 34.7 microM, respectively.

  4. Design of a novel automated methanol feed system for pilot-scale fermentation of Pichia pastoris.

    PubMed

    Hamaker, Kent H; Johnson, Daniel C; Bellucci, Joseph J; Apgar, Kristie R; Soslow, Sherry; Gercke, John C; Menzo, Darrin J; Ton, Christopher

    2011-01-01

    Large-scale fermentation of Pichia pastoris requires a large volume of methanol feed during the induction phase. However, a large volume of methanol feed is difficult to use in the processing suite because of the inconvenience of constant monitoring, manual manipulation steps, and fire and explosion hazards. To optimize and improve safety of the methanol feed process, a novel automated methanol feed system has been designed and implemented for industrial fermentation of P. pastoris. Details of the design of the methanol feed system are described. The main goals of the design were to automate the methanol feed process and to minimize the hazardous risks associated with storing and handling large quantities of methanol in the processing area. The methanol feed system is composed of two main components: a bulk feed (BF) system and up to three portable process feed (PF) systems. The BF system automatically delivers methanol from a central location to the portable PF system. The PF system provides precise flow control of linear, step, or exponential feed of methanol to the fermenter. Pilot-scale fermentations with linear and exponential methanol feeds were conducted using two Mut(+) (methanol utilization plus) strains, one expressing a recombinant therapeutic protein and the other a monoclonal antibody. Results show that the methanol feed system is accurate, safe, and efficient. The feed rates for both linear and exponential feed methods were within ± 5% of the set points, and the total amount of methanol fed was within 1% of the targeted volume. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  5. A Gene Optimization Strategy that Enhances Production of Fully Functional P-Glycoprotein in Pichia pastoris

    PubMed Central

    Protasevich, Irina I.; Brouillette, Christie G.; Harrell, Patina M.; Hildebrandt, Ellen; Gasser, Brigitte; Mattanovich, Diethard; Ward, Andrew; Chang, Geoffrey; Urbatsch, Ina L.

    2011-01-01

    Background Structural and biochemical studies of mammalian membrane proteins remain hampered by inefficient production of pure protein. We explored codon optimization based on highly expressed Pichia pastoris genes to enhance co-translational folding and production of P-glycoprotein (Pgp), an ATP-dependent drug efflux pump involved in multidrug resistance of cancers. Methodology/Principal Findings Codon-optimized “Opti-Pgp” and wild-type Pgp, identical in primary protein sequence, were rigorously analyzed for differences in function or solution structure. Yeast expression levels and yield of purified protein from P. pastoris (∼130 mg per kg cells) were about three-fold higher for Opti-Pgp than for wild-type protein. Opti-Pgp conveyed full in vivo drug resistance against multiple anticancer and fungicidal drugs. ATP hydrolysis by purified Opti-Pgp was strongly stimulated ∼15-fold by verapamil and inhibited by cyclosporine A with binding constants of 4.2±2.2 µM and 1.1±0.26 µM, indistinguishable from wild-type Pgp. Maximum turnover number was 2.1±0.28 µmol/min/mg and was enhanced by 1.2-fold over wild-type Pgp, likely due to higher purity of Opti-Pgp preparations. Analysis of purified wild-type and Opti-Pgp by CD, DSC and limited proteolysis suggested similar secondary and ternary structure. Addition of lipid increased the thermal stability from Tm ∼40°C to 49°C, and the total unfolding enthalpy. The increase in folded state may account for the increase in drug-stimulated ATPase activity seen in presence of lipids. Conclusion The significantly higher yields of protein in the native folded state, higher purity and improved function establish the value of our gene optimization approach, and provide a basis to improve production of other membrane proteins. PMID:21826197

  6. Optimization of the secretory expression of recombinant human C-reactive protein in Pichia pastoris.

    PubMed

    Li, Junming; Sun, Chengming; Chen, Lei; Sun, Lihui; Duan, Lijun; Zheng, Qing; Hu, Xuejun

    2017-10-01

    Human C-reactive protein (CRP), a classical human acute-phase plasma protein, is not only a sensitive systemic inflammatory marker but also an independent risk predictor of cardiovascular diseases. However, existing heterologous expression systems for expressing CRP is not efficient and cost-effective for large-scale industrial production of CRP to meet the growing market demand for CRP. This study aims to improve the secretion of recombinant CRP by Pichia pastoris via optimizing signal peptides, promoters and carbon sources. The CRP genes with encoding four different signal peptides were designed and synthesized. The genes were cloned into pPICZαA or pPICZ B, respectively via splicing by overlap extension polymerase chain reaction (SOE-PCR) technology and expressed in P. pastoris X-33, regulated by the alcohol oxidase I promoter (pAOX1). The CRP led by the α-mating factor secretion signal peptide (α-MF) was secreted at the highest level in these signal peptides. Then, a constitutive construct and expression of the CRP genes were achieved by switching to the glyceraldehyde-3-phosphate dehydrogenase promoter (pGAP). Subsequently, different carbon sources and at different concentrations were used to further improve the secretion of CRP. The expression of CRP with the α-MF driven by the pGAP gave the highest yield of secreted CRP, about 3 mg/l of culture on the optimized culture conditions. The purified recombinant CRP exhibited good immunoreactivity determined by ELISA with anti-human CRP monoclonal antibody. The efficient engineering strategy established in this work might provide potential uses in large-scale industrial production of human CRP in the future.

  7. Constitutive expression of Yarrowia lipolytica lipase LIP2 in Pichia pastoris using GAP as promoter.

    PubMed

    Wang, Xiaofeng; Sun, Yongchuan; Ke, Feng; Zhao, Heyun; Liu, Tao; Xu, Li; Liu, Yun; Yan, Yunjun

    2012-03-01

    A gene encoding Yarrowia lipolytica lipase LIP2 (YlLIP2) was cloned into a constitutive expression vector pGAPZαA and electrotransformed into the Pichia pastoris X-33 strain. The high-yield clones obtained by high copy and enzyme activity screening were chosen as the host strains for shaking flask and fermentor culture. The results showed that glucose was the optimum carbon source for YlLIP2 production, and the maximum hydrolytic activity of recombinant YlLIP2 reached 1,315 U/ml under the flask culture at 28 °C, pH 7.0, for 48 h. The fed-batch fermentation was carried out in 3- and 10-l bioreactors by continuously feeding glucose into the growing medium for achieving high cell density and YlLIP2 yields. The maximum hydrolytic activity of YlLIP2 and cell density obtained in the 3-l bioreactor were 10,300 U/ml and 116 g dry cell weight (DCW)/l, respectively. The peak hydrolytic activity of YlLIP2 and cell density were further improved in the 10-l fermentor where the values respectively attained were 13,500 U/ml and 120 g DCW/l. The total protein concentration in the supernatant reached 3.3 g/l and the cell viability remained approximately 99% after 80 h of culture. Furthermore, the recombinant YlLIP2 produced in P. pastoris pGAP and pAOX1 systems have similar content of sugar (about 12%) and biochemical characteristics. The above results suggest that the GAP promoter-derived expression system of P. pastoris is effective for the expression of YlLIP2 by high cell density culture and is probably an alternative to the conventional AOX1 promoter expression system in large-scale production of industrial lipases.

  8. Codon optimization, promoter and expression system selection that achieved high-level production of Yarrowia lipolytica lipase in Pichia pastoris.

    PubMed

    Zhou, Wen-Jing; Yang, Jiang-Ke; Mao, Lin; Miao, Li-Hong

    2015-04-01

    Lipase (EC 3.1.1.3) stands amongst the most important and promising biocatalysts for industrial applications. In this study, in order to realize a high-level expression of the Yarrowia lipolytica lipase gene in Pichia pastoris, we optimized the codon of LIP2 by de novo gene design and synthesis, which significantly improved the lipase expression when compared to the native lip2 gene. We also comparatively analyzed the effects of the promoter types (PAOX1 and PFLD1) and the Pichia expression systems, including the newly developed PichiaPink system, on lipase production and obtained the optimal recombinants. Bench-top scale fermentation studies indicated that the recombinant carrying the codon-optimized lipase gene syn-lip under the control of promoter PAOX1 has a significantly higher lipase production capacity in the fermenter than other types of recombinants. After undergoing methanol inducible expression for 96h, the wet cell weight of Pichia, the lipase activity and the protein content in the fermentation broth reached their highest values of 262g/L, 38,500U/mL and 2.82g/L, respectively. This study has not only greatly facilitated the bioapplication of lipase in industrial fields but the strategies utilized, such as de novo gene design and synthesis, the comparative analysis among promoters and different generations of Pichia expression systems will also be useful as references for future work in this field. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Production of an anti-Aβ antibody fragment in Pichia pastoris and in vitro and in vivo validation of its therapeutic effect.

    PubMed

    Montoliu-Gaya, Laia; Esquerda-Canals, Gisela; Bronsoms, Silvia; Villegas, Sandra

    2017-01-01

    ScFv-h3D6 has been shown as an efficient therapy in the 3xTg-AD mouse model of Alzheimer's Disease. Because one of the major bottlenecks for the therapeutic uses of proteins produced in Escherichia coli is their potential contamination with endotoxins, LPS were extensively removed by a rather low-efficient, expensive, and time-consuming purification step. In addition, disulfide scrambling is favored in the reducing bacterial cytoplasm albeit the use of reductase deficient strains. To overcome these hurdles, as well as to improve the yield, the yeast Pichia pastoris, an endotoxin-free host system for recombinant protein production, has been used to produce scFv-h3D6, both in flask and in a fed-batch bioreactor. Comparison of the thermal stability of the obtained protein with that from E. coli showed no differences. Opposite to the case of the protein obtained from E. coli, no disulfide scrambled conformations or LPS traces were detected in that produced in P. pastoris. Cytotoxicity assays in SH-SY5Y neuroblastoma cell-cultures demonstrated that proteins from both expression systems were similarly efficient in precluding Aβ-induced toxicity. Finally, the 3xTg-AD mouse model was used to test the therapeutic effect of both proteins. Quantification of Aβ levels from cortex and hippocampus protein extracts by ELISA, and Aβ-immunohistochemistry, showed that both proteins reduced Aβ burden. This work demonstrates that scFv-h3D6 obtained from P. pastoris shows the same benefits as those already known for that obtained from E. coli, with multiple advantages in terms of recombinant production and safety.

  10. Production of an anti-Aβ antibody fragment in Pichia pastoris and in vitro and in vivo validation of its therapeutic effect

    PubMed Central

    Montoliu-Gaya, Laia; Esquerda-Canals, Gisela; Bronsoms, Silvia

    2017-01-01

    ScFv-h3D6 has been shown as an efficient therapy in the 3xTg-AD mouse model of Alzheimer’s Disease. Because one of the major bottlenecks for the therapeutic uses of proteins produced in Escherichia coli is their potential contamination with endotoxins, LPS were extensively removed by a rather low-efficient, expensive, and time-consuming purification step. In addition, disulfide scrambling is favored in the reducing bacterial cytoplasm albeit the use of reductase deficient strains. To overcome these hurdles, as well as to improve the yield, the yeast Pichia pastoris, an endotoxin-free host system for recombinant protein production, has been used to produce scFv-h3D6, both in flask and in a fed-batch bioreactor. Comparison of the thermal stability of the obtained protein with that from E. coli showed no differences. Opposite to the case of the protein obtained from E. coli, no disulfide scrambled conformations or LPS traces were detected in that produced in P. pastoris. Cytotoxicity assays in SH-SY5Y neuroblastoma cell-cultures demonstrated that proteins from both expression systems were similarly efficient in precluding Aβ-induced toxicity. Finally, the 3xTg-AD mouse model was used to test the therapeutic effect of both proteins. Quantification of Aβ levels from cortex and hippocampus protein extracts by ELISA, and Aβ-immunohistochemistry, showed that both proteins reduced Aβ burden. This work demonstrates that scFv-h3D6 obtained from P. pastoris shows the same benefits as those already known for that obtained from E. coli, with multiple advantages in terms of recombinant production and safety. PMID:28771492

  11. Expression and characterization of recombinant Locusta migratoria manilensis acetylcholinesterase 1 in Pichia pastoris.

    PubMed

    Zhou, Xiaoxia; Xia, Yuxian

    2011-05-01

    The acetylcholinesterase 1 from Locusta migratoria manilensis (LmAChE1) was successfully expressed in methylotrophic yeast Pichia pastoris KM71. The maximum expression of recombinant LmAChE1 (reLmAChE1) was achieved after 9 days of induction at 2.5% methanol. The reLmAChE1 was first precipitated with ammonium sulfate (50% saturation) and then was purified with nickel affinity chromatography. The enzyme was purified 3.2×10(3)-fold with a yield of 68% and a specific activity of 8.1 U/mg. The purified reLmAChE1 exhibited highest activity at 30°C in 100 mM phosphate buffer (pH 7.4), and its activity could be inhibited by eserine sulfate and pentan-3-one-dibromide (BW284c51). Substrate specificity analysis showed that the purified reLmAChE1 preferred acetylthiocholine (ATC) and propionylthiocholine (BTC) rather than butyrylthiocholine (BTC). When ATC was used as substrate, the K(m) and V(max) values for the reLmAChE1 were 24.8 μM and 9.5 μmol/min/mg, respectively.

  12. Efficient microbial production of stylopine using a Pichia pastoris expression system

    PubMed Central

    Hori, Kentaro; Okano, Shunsuke; Sato, Fumihiko

    2016-01-01

    Stylopine is a protoberberine-type alkaloid that has potential biological activities. Based on the successful microbial production of (S)-reticuline, we attempted to produce stylopine from (S)-reticuline by the reaction of berberine bridge enzyme, cheilanthifoline synthase (CYP719A5), and stylopine synthase (CYP719A2). Biosynthetic enzyme expression was examined in a methanol-utilizing yeast (Pichia pastoris), and both a “consolidated” system with all genes expressed in one cell and a “co-culture” system with three cell lines that each express a single gene were examined. Although both systems efficiently converted reticuline to stylopine, the consolidated system was more rapid and efficient than the co-culture system. However, substrate-feeding experiments revealed a decrease in the conversion efficiency in the consolidated system during successive cultures, whereas the conversion efficiency in the co-culture system remained constant. Thus, the final amount of stylopine produced from reticuline after successive feedings in the co-culture system was more than 150 nmoles from 750 nmoles of (R, S)-reticuline (375 nmoles of (S)-reticuline). The advantages and drawbacks of the “consolidated” system and the “co-culture” system are discussed. PMID:26923560

  13. Comparison of two codon optimization strategies enhancing recombinant Sus scrofa lysozyme production in Pichia pastoris.

    PubMed

    Zhu, D; Cai, G; Wu, D; Lu, J

    2015-05-16

    Lysozyme has played an important role in animal feed additive industry, food additive industry and biological engineering. For improving expression efficiency of recombinant lysozyme from Sus scrofa, two genes respectively designed by the most used codon optimization strategies, "one amino acid one codon" and "codon randomization", were synthesized and expressed in Pichia pastoris X—33. At shaking flask level, Sus scrofa lysozyme (SSL) under two conditions had a highest activity of 153.33±10.41 and 538.33±15.18 U/mL after a 5 days induction of 1% methanol, with secreted protein concentration 80.03±1.94 and 239.60±4.16 mg/L, respectively. Compared with the original SSL gene, the expression of optimized SSL gene by the second strategy showed a 2.6 fold higher level, while the first method had no obvious improvement in production. In total secreted protein, the proportions of recombinant SSL encoded by the original gene, first method optimized gene and the second—strategy optimized one were 75.06±0.25%, 74.56±0.14% and 79.00±0.14%, respectively, with the same molecular weight about 18 kDa, optimum acidity pH 6.0 and optimum temperature 35degC.

  14. Expression of a Bacillus phytase C gene in Pichia pastoris and properties of the recombinant enzyme.

    PubMed

    Guerrero-Olazarán, Martha; Rodríguez-Blanco, Lilí; Carreon-Treviño, J Gerardo; Gallegos-López, Juan A; Viader-Salvadó, José M

    2010-08-01

    The cloning and expression of a native gene encoding a Bacillus subtilis phytase using Pichia pastoris as the host is described. In addition, the influence of N-glycosylation on the biochemical properties of the B. subtilis phytase, the influence of pH on the thermostability of the recombinant and native B. subtilis phytases, and the resistance of both phytases to shrimp digestive enzymes and porcine trypsin are also described. After 48 h of methanol induction in shake flasks, a selected recombinant strain produced and secreted 0.82 U/ml (71 mg/liter) recombinant phytase. This phytase was N-glycosylated, had a molecular mass of 39 kDa after N-deglycosylation, exhibited activity within a pH range of 2.5 to 9 and at temperatures of 25 to 70 degrees C, had high residual activity (85% +/- 2%) after 10 min of heat treatment at 80 degrees C and pH 5.5 in the presence of 5 mM CaCl(2), and was resistant to shrimp digestive enzymes and porcine trypsin. Although the recombinant Bacillus phytase had pH and temperature activity profiles that were similar to those of the corresponding nonglycosylated native phytase, the thermal stabilities of the recombinant and native phytases were different, although both were calcium concentration and pH dependent.

  15. A novel methanol-free Pichia pastoris system for recombinant protein expression.

    PubMed

    Shen, Wei; Xue, Ying; Liu, Yiqi; Kong, Chuixing; Wang, Xiaolong; Huang, Mengmeng; Cai, Menghao; Zhou, Xiangshan; Zhang, Yuanxing; Zhou, Mian

    2016-10-21

    As one of the most popular expression systems, recombinant protein expression in Pichia pastoris relies on the AOX1 promoter (P AOX1 ) which is strongly induced by methanol. However, the toxic and inflammatory nature of methanol restricts its application, especially in edible and medical products. Therefore, constructing a novel methanol-free system becomes necessary. The kinases involved in P AOX1 activation or repression by different carbon sources may be promising targets. We identified two kinase mutants: Δgut1 and Δdak, both of which showed strong alcohol oxidase activity under non-methanol carbon sources. Based on these two kinases, we constructed two methanol-free expression systems: Δgut1-HpGCY1-glycerol (P AOX1 induced by glycerol) and Δdak-DHA (P AOX1 induced by DHA). By comparing their GFP expression efficiencies, the latter one showed better potential. To further test the Δdak-DHA system, three more recombinant proteins were expressed as examples. We found that the expression ability of our novel methanol-free Δdak-DHA system was generally better than the constitutive GAP promoter, and reached 50-60 % of the traditional methanol induced system. We successfully constructed a novel methanol-free expression system Δdak-DHA. This modified expression platform preserved the favorable regulatable nature of P AOX1 , providing a potential alternative to the traditional system.

  16. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance.

    PubMed

    Meesapyodsuk, Dauenpen; Chen, Yan; Ng, Siew Hon; Chen, Jianan; Qiu, Xiao

    2015-11-01

    Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a "push" (synthesis) and "pull" (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses.

  17. Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris.

    PubMed

    Hong, Feng; Meinander, Nina Q; Jönsson, Leif J

    2002-08-20

    Improved expression of recombinant laccase by Pichia pastoris carrying the lcc1 cDNA isolated from Trametes versicolor was achieved by optimization of the cultivation conditions in a fermentor equipped with a methanol sensor system. The results indicated that the activity obtained in fermentor cultivations was at least 7 times higher than in shake-flask cultures. Three different strategies for fermentor cultivations were compared: A (30 degrees C, 1.0% methanol), B (20 degrees C, 1.0% methanol), and C (20 degrees C, 0.5% methanol). The laccase activity, particularly the specific activity, could be improved by decreasing the cultivation temperature. The mechanisms behind the temperature effect on the laccase activity may be ascribed to poor stability, release of more proteases from dead cells, and folding problems at higher temperature. The results showed that the methanol concentration had a marked effect on the production of active heterologous laccase. A fivefold higher volumetric laccase activity was obtained when the methanol concentration was kept at 0.5% instead of 1.0%. The detrimental effect of methanol on the production of recombinant laccase may be attributed to lower laccase stability, a higher proteolytic activity, and folding problems due to higher growth rate at 1.0% methanol.

  18. Expression of Recombinant Human Mast Cell Chymase with Asn-linked Glycans in Glycoengineered Pichia pastoris

    PubMed Central

    Smith, Eliot T.; Perry, Evan T.; Sears, Megan B.; Johnson, David A.

    2014-01-01

    Recombinant human mast cell chymase (rhChymase) was expressed in secreted form as an active enzyme in the SuperMan5 strain of GlycoSwitch® Pichia pastoris, which is engineered to produce proteins with (Man)5(GlcNAc)2 Asn-linked glycans. Cation exchange and heparin affinity chromatography yielded 5 mg of active rhChymase per liter of fermentation medium. Purified rhChymase migrated on SDSPAGE as a single band of 30 kDa and treatment with peptide N-glycosidase F decreased this to 25 kDa, consistent with the established properties of native human chymase (hChymase). Polyclonal antibodies against hChymase detected rhChymase by Western blot. Active site titration with Eglin C, a potent chymase inhibitor, quantified the concentration of purified active enzyme. Kinetic analyses with succinyl-Ala-Ala-Pro-Phe (suc-AAPF) p-nitroanilide and thiobenzyl ester synthetic substrates showed that heparin significantly reduced Km, whereas heparin effects on kcat were minor. Pure rhChymase with Asn-linked glycans closely resembles hChymase. This bioengineering approach avoided hyperglycosylation and provides a source of active rhChymase for other studies as well as a foundation for production of recombinant enzyme with human glycosylation patterns. PMID:25131858

  19. Production of a soluble and functional recombinant apolipoproteinD in the Pichia pastoris expression system.

    PubMed

    Armanmehr, Shiva; Kalhor, Hamid Reza; Tabarraei, Alijan

    2016-05-01

    ApolipoproteinD (ApoD) is a human glycoprotein from the lipocalin family. ApoD contains a conserved central motif of an 8-stranded antiparallel β-sheet, which forms a beta-barrel that can be used for transport and storage of diverse hydrophobic ligands. Due to hydrophobic nature of ApoD, it has been difficult to generate a recombinant version of this protein. In the present work, we aimed at the production of ApoD in the robust Pichia pastoris expression system. To this end, the ApoD gene sequence was synthesized and subcloned for expression in the yeast host cells. Following integration of the ApoD gene into the yeast genomic region using homologous recombination, the ApoD recombinant protein was induced using methanol, reaching its maximum induction at 96 h. Having purified the ApoD recombinant protein by affinity chromatography, we measured the dissociation constant (KD) using its natural ligands: progesterone and arachidonic acid. Our results provide a viable solution to the production of recombinant ApoD protein in lieu of previous obstacles in generating soluble and functional ApoD protein. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Efficient production and characterization of the sweet-tasting brazzein secreted by the yeast Pichia pastoris.

    PubMed

    Poirier, Nicolas; Roudnitzky, Natacha; Brockhoff, Anne; Belloir, Christine; Maison, Marie; Thomas-Danguin, Thierry; Meyerhof, Wolfgang; Briand, Loïc

    2012-10-03

    Brazzein is a small, heat-, and pH-stable sweet protein present in the fruits of the West African plant Pentadiplandra brazzeana Baillon. It exists in two forms differing in sweetness intensity. The major form, called pyrE-bra, contains a pyroglutamic acid at its N-terminus, while the minor form, called des-pyrE-bra, lacks this residue. Here we describe the heterologous expression in the methylotrophic yeast Pichia pastoris of two natural forms of brazzein, pyrE-bra and des-pyrE-bra, and an additional form, called Q1-bra, which is not naturally occurring in the fruit. Q1-bra differs from pyrE-bra in having a glutamine residue instead of pyrE at its N-terminus. Over an expression period of 6 days, we obtained approximately 90, 30, and 90 mg/L of purified recombinant pyrE-bra, Q1-bra, and des-pyrE-bra brazzein forms, respectively. Recombinant proteins were purified and submitted to mass spectrometry and (1)H NMR spectroscopy. The data indicate that the recombinant brazzein forms were properly folded. Moreover, they activated the human sweet receptor in vitro and evoked sweetness in vivo with properties similar to those of the two natural brazzein forms.

  1. Heterologous expression of a Penicillium purpurogenum exo-arabinanase in Pichia pastoris and its biochemical characterization.

    PubMed

    Mardones, Wladimir; Callegari, Eduardo; Eyzaguirre, Jaime

    2015-12-01

    Arabinan is a component of pectin, which is one of the polysaccharides present in lignocelluose. The enzymes degrading the main chain of arabinan are the endo- (EC 3.2.1.99) and exo-arabinanases (3.2.1.-). Only three exo-arabinanases have been biochemically characterized; they belong to glycosyl hydrolase family 93. In this work, the cDNA of an exo-arabinanase (Arap2) from Penicillium purpurogenum has been heterologously expressed in Pichia pastoris. The gene is 1310 bp long, has three introns and codes for a protein of 380 amino acid residues; the mature protein has a calculated molecular mass of 39 823 Da. The heterologously expressed Arap2 has a molecular mass in the range of 60-80 kDa due to heterogeneous glycosylation. The enzyme is active on debranched arabinan with optimum pH of 4-5.5 and optimal temperature of 40 °C, and has an exo-type action mode, releasing arabinobiose from its substrates. The expression profile of arap2 in corncob and sugar beet pulp follows a different pattern and is not related to the presence of arabinan. This is the first exo-arabinanase studied from P. purpurogenum and the first expressed in yeast. The availability of heterologous Arap2 may be useful for biotechnological applications requiring acidic conditions. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  2. Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production

    PubMed Central

    Nocon, Justyna; Steiger, Matthias G.; Pfeffer, Martin; Sohn, Seung Bum; Kim, Tae Yong; Maurer, Michael; Rußmayer, Hannes; Pflügl, Stefan; Ask, Magnus; Haberhauer-Troyer, Christina; Ortmayr, Karin; Hann, Stephan; Koellensperger, Gunda; Gasser, Brigitte; Lee, Sang Yup; Mattanovich, Diethard

    2014-01-01

    The production of recombinant proteins is frequently enhanced at the levels of transcription, codon usage, protein folding and secretion. Overproduction of heterologous proteins, however, also directly affects the primary metabolism of the producing cells. By incorporation of the production of a heterologous protein into a genome scale metabolic model of the yeast Pichia pastoris, the effects of overproduction were simulated and gene targets for deletion or overexpression for enhanced productivity were predicted. Overexpression targets were localized in the pentose phosphate pathway and the TCA cycle, while knockout targets were found in several branch points of glycolysis. Five out of 9 tested targets led to an enhanced production of cytosolic human superoxide dismutase (hSOD). Expression of bacterial β-glucuronidase could be enhanced as well by most of the same genetic modifications. Beneficial mutations were mainly related to reduction of the NADP/H pool and the deletion of fermentative pathways. Overexpression of the hSOD gene itself had a strong impact on intracellular fluxes, most of which changed in the same direction as predicted by the model. In vivo fluxes changed in the same direction as predicted to improve hSOD production. Genome scale metabolic modeling is shown to predict overexpression and deletion mutants which enhance recombinant protein production with high accuracy. PMID:24853352

  3. Macromolecular antimicrobial glycoprotein, achacin, expressed in a methylotrophic yeast Pichia pastoris.

    PubMed

    Ogawa, M; Nakamura, S; Atsuchi, T; Tamiya, T; Tsuchiya, T; Nakai, S

    1999-04-01

    A cDNA encoding achacin, an antimicrobial glycoprotein from the body surface mucus of giant African snail Achacina fulica Férussac, was expressed in a methylotrophic yeast, Pichia pastoris, and recombinant achacin (rAch) was secreted in yeast minimal medium in a polyglycosylated form with 80 kDa. Carbohydrate analysis revealed that the glycosylated moiety of rAch was composed of 50 mol mannose and 2 mol N-acetylglucosamine residues. Antimicrobial activity using Escherichia coli and Staphylococcus aureus showed that the rAch had a behavior similar to its native counterpart. The rAch showed so wide an antimicrobial spectrum that 0.1 mg/ml rAch inhibited the growth of Pseudomonas fluorescens, Staphylococcus epidermidis, and Streptococcus faecalis in addition to E. coli and S. aureus, whereas it did not appreciably affect the growth of Proteus mirabilis, Bacillus cereus and Micrococcus luteus. The rAch was also effective in preventing growth of Vibrio anguillarum and Vibrio parahaemolyticus. The results suggested that the rAch had great potential of using as an antimicrobial agent.

  4. Peroxisomal Targeting, Import, and Assembly of Alcohol Oxidase in Pichia pastoris

    PubMed Central

    Waterham, Hans R.; Russell, Kimberly A.; Vries, Yne de; Cregg, James M.

    1997-01-01

    Alcohol oxidase (AOX), the first enzyme in the yeast methanol utilization pathway is a homooctameric peroxisomal matrix protein. In peroxisome biogenesis-defective (pex) mutants of the yeast Pichia pastoris, AOX fails to assemble into active octamers and instead forms inactive cytoplasmic aggregates. The apparent inability of AOX to assemble in the cytoplasm contrasts with other peroxisomal proteins that are able to oligomerize before import. To further investigate the import of AOX, we first identified its peroxisomal targeting signal (PTS). We found that sequences essential for targeting AOX are primarily located within the four COOH-terminal amino acids of the protein leucine-alanine-arginine-phenylalanine COOH (LARF). To examine whether AOX can oligomerize before import, we coexpressed AOX without its PTS along with wild-type AOX and determined whether the mutant AOX could be coimported into peroxisomes. To identify the mutant form of AOX, the COOH-terminal LARF sequence of the protein was replaced with a hemagglutinin epitope tag (AOX–HA). Coexpression of AOX–HA with wild-type AOX (AOX-WT) did not result in an increase in the proportion of AOX–HA present in octameric active AOX, suggesting that newly synthesized AOX–HA cannot oligomerize with AOX-WT in the cytoplasm. Thus, AOX cannot initiate oligomerization in the cytoplasm, but must first be targeted to the organelle before assembly begins. PMID:9396748

  5. Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processes

    PubMed Central

    2011-01-01

    Background Cellobiose dehydrogenase (CDH) is an extracellular hemoflavoenzyme produced by lignocellulose-degrading fungi including Pycnoporus cinnabarinus. We investigated the cellulolytic system of P. cinnabarinus, focusing on the involvement of CDH in the deconstruction of lignocellulosic biomass. Results First, P. cinnabarinus growth conditions were optimized for CDH production. Following growth under cellulolytic conditions, the main components secreted were cellulases, xylanases and CDH. To investigate the contribution of P. cinnabarinus secretome in saccharification processes, the Trichoderma reesei enzymatic cocktail was supplemented with the P. cinnabarinus secretome. A significant enhancement of the degradation of wheat straw was observed with (i) the production of a large amount of gluconic acid, (ii) increased hemicellulose degradation, and (iii) increased overall degradation of the lignocellulosic material. P. cinnabarinus CDH was heterologously expressed in Pichia pastoris to obtain large amounts of pure enzyme. In a bioreactor, the recombinant CDH (rCDH) expression level reached 7800 U/L. rCDH exhibited values of biochemical parameters similar to those of the natural enzyme, and was able to bind cellulose despite the absence of a carbohydrate-binding module (CBM). Following supplementation of purified rCDH to T. reesei enzymatic cocktail, formation of gluconic acid and increased hemicellulose degradation were observed, thus confirming the previous results observed with P. cinnabarinus secretome. Conclusions We demonstrate that CDH offers an attractive tool for saccharification process enhancement due to gluconic acid production from raw lignocellulosic material. PMID:22204630

  6. The Membrane Dynamics of Pexophagy Are Influenced by Sar1p in Pichia pastoris

    PubMed Central

    Schroder, Laura A.; Ortiz, Michael V.

    2008-01-01

    Several Sec proteins including a guanosine diphosphate/guanosine triphosphate exchange factor for Sar1p have been implicated in autophagy. In this study, we investigated the role of Sar1p in pexophagy by expressing dominant-negative mutant forms of Sar1p in Pichia pastoris. When expressing sar1pT34N or sar1pH79G, starvation-induced autophagy, glucose-induced micropexophagy, and ethanol-induced macropexophagy are dramatically suppressed. These Sar1p mutants did not affect the initiation or expansion of the sequestering membranes nor the trafficking of Atg11p and Atg9p to these membranes during micropexophagy. However, the lipidation of Atg8p and assembly of the micropexophagic membrane apparatus, which are essential to complete the incorporation of the peroxisomes into the degradative vacuole, were inhibited when either Sar1p mutant protein was expressed. During macropexophagy, the expression of sar1pT34N inhibited the formation of the pexophagosome, whereas sar1pH79G suppressed the delivery of the peroxisome from the pexophagosome to the vacuole. The pexophagosome contained Atg8p in wild-type cells, but in cells expressing sar1pH79G these organelles contain both Atg8p and endoplasmic reticulum components as visualized by DsRFP-HDEL. Our results demonstrate key roles for Sar1p in both micro- and macropexophagy. PMID:18768759

  7. Characterization of Bovine Interferon α1: Expression in Yeast Pichia pastoris, Biological Activities, and Physicochemical Characteristics

    PubMed Central

    Shao, Jianwei; Cao, Chong; Bao, Jun; Liu, Hongtao; Peng, Tongquan

    2015-01-01

    A bovine interferon α (BoIFNα) gene that included signal sequence was amplified from bovine liver genomic DNA. The gene was named BoIFN-α1 according to the position at which the encoded gene of the bovine IFN was located in the bovine genome. The sequence included a 23-amino-acid signal peptide and a 166-amino-acid mature peptide. The structural characteristics and phylogenetic relationships of the BoIFN-α1 gene were analyzed. A recombinant mature BoIFN-α1 (rBoIFN-α1) was expressed in the yeast Pichia pastoris. Physicochemical characteristics and antiviral activity were determined in vitro. Recombinant BoIFN-α1 was found to be highly sensitive to trypsin and stable at pH 2.0 or 65°C. It also exhibited antiviral activity, which was neutralized by a rabbit anti-rBoIFNα polyclonal antibody. This study revealed that rBoIFN-α1 has the typical characteristics of IFNα and can be used for both research and industrial application. PMID:25343404

  8. Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processes.

    PubMed

    Bey, Mathieu; Berrin, Jean-Guy; Poidevin, Laetitia; Sigoillot, Jean-Claude

    2011-12-28

    Cellobiose dehydrogenase (CDH) is an extracellular hemoflavoenzyme produced by lignocellulose-degrading fungi including Pycnoporus cinnabarinus. We investigated the cellulolytic system of P. cinnabarinus, focusing on the involvement of CDH in the deconstruction of lignocellulosic biomass. First, P. cinnabarinus growth conditions were optimized for CDH production. Following growth under cellulolytic conditions, the main components secreted were cellulases, xylanases and CDH. To investigate the contribution of P. cinnabarinus secretome in saccharification processes, the Trichoderma reesei enzymatic cocktail was supplemented with the P. cinnabarinus secretome. A significant enhancement of the degradation of wheat straw was observed with (i) the production of a large amount of gluconic acid, (ii) increased hemicellulose degradation, and (iii) increased overall degradation of the lignocellulosic material. P. cinnabarinus CDH was heterologously expressed in Pichia pastoris to obtain large amounts of pure enzyme. In a bioreactor, the recombinant CDH (rCDH) expression level reached 7800 U/L. rCDH exhibited values of biochemical parameters similar to those of the natural enzyme, and was able to bind cellulose despite the absence of a carbohydrate-binding module (CBM). Following supplementation of purified rCDH to T. reesei enzymatic cocktail, formation of gluconic acid and increased hemicellulose degradation were observed, thus confirming the previous results observed with P. cinnabarinus secretome. We demonstrate that CDH offers an attractive tool for saccharification process enhancement due to gluconic acid production from raw lignocellulosic material.

  9. Centromeres of the Yeast Komagataella phaffii (Pichia pastoris) Have a Simple Inverted-Repeat Structure

    PubMed Central

    Coughlan, Aisling Y.; Hanson, Sara J.; Byrne, Kevin P.; Wolfe, Kenneth H.

    2016-01-01

    Centromere organization has evolved dramatically in one clade of fungi, the Saccharomycotina. These yeasts have lost the ability to make normal eukaryotic heterochromatin with histone H3K9 methylation, which is a major component of pericentromeric regions in other eukaryotes. Following this loss, several different types of centromere emerged, including two types of sequence-defined (“point”) centromeres, and the epigenetically defined “small regional” centromeres of Candida albicans. Here we report that centromeres of the methylotrophic yeast Komagataella phaffii (formerly called Pichia pastoris) are structurally defined. Each of its four centromeres consists of a 2-kb inverted repeat (IR) flanking a 1-kb central core (mid) region. The four centromeres are unrelated in sequence. CenH3 (Cse4) binds strongly to the cores, with a decreasing gradient along the IRs. This mode of organization resembles Schizosaccharomyces pombe centromeres but is much more compact and lacks the extensive flanking heterochromatic otr repeats. Different isolates of K. phaffii show polymorphism for the orientation of the mid regions, due to recombination in the IRs. CEN4 is located within a 138-kb region that changes orientation during mating-type switching, but switching does not induce recombination of centromeric IRs. Our results demonstrate that evolutionary transitions in centromere organization have occurred in multiple yeast clades. PMID:27497317

  10. Expression of xyloglucan endotransglycosylases of Gerbera hybrida and Betula pendula in Pichia pastoris.

    PubMed

    Toikkanen, Jaana H; Niku-Paavola, Marja-Leena; Bailey, Michael; Immanen, Juha; Rintala, Eija; Elomaa, Paula; Helariutta, Yrjö; Teeri, Teemu H; Fagerström, Richard

    2007-06-15

    The plant enzyme xyloglucan endotransglycosylase (XET; EC 2.4.1.207, xyloglucan:xyloglucosyl transferase) participates in selective modification of plant cell walls during cell growth. XETs are potential catalysts in various applications. Here, sequences encoding two XETs from Gerbera hybrida and Betula pendula are reported. The encoded proteins, which are 51% identical at the amino acid level, were expressed in the yeast Pichia pastoris in secreted form with the aid of mating factor alpha signal sequence. XET production in shake flask cultivations was better at 22 degrees C than at 30 degrees C. Both the yield of protein of expected molecular mass and the XET activity improved at the lower temperature. Under all cultivation conditions studied, higher amounts of XET from B. pendula (BXET) were expressed than XET from G. hybrida (GXET). Both XET enzymes were produced in 16l fed-batch bioreactor cultures. GXET was produced in methanol-limited fed-batch cultivation in minimal medium, and BXET in temperature-limited fed-batch (TLFB) in minimal or complex medium. Production was highest in TLFB in complex medium. BXET was purified from the culture filtrate and characterized. Based on the specific activity of the purified protein, 60-70 mg l(-1) BXET was produced in the TLFB in complex medium.

  11. Discovery of a rhamnose utilization pathway and rhamnose-inducible promoters in Pichia pastoris

    PubMed Central

    Liu, Bo; Zhang, Yuwei; Zhang, Xue; Yan, Chengliang; Zhang, Yuhong; Xu, Xinxin; Zhang, Wei

    2016-01-01

    The rhamnose utilization pathway in Pichia pastoris has not been clarified although this strain can grow well on rhamnose as a sole carbon source. In this study, four genes, PAS_chr4_0338, PAS_chr4_0339, PAS_chr4_0340, and PAS_chr4_0341, were, for the first time, predicted to be involved in rhamnose metabolism along with the previously identified gene PAS_chr1_4-0075. Moreover, expression of these genes, especially PAS_chr4_0341 and PAS_chr1_4-0075 designated as LRA4 and LRA3, was confirmed to significantly increase and clearly decrease in the presences of rhamnose and glucose, respectively. LRA4 encoding a putative L-2-keto-3-deoxyrhamnonate aldolase, was further confirmed via gene disruption and gene complementation to participate in rhamnose metabolism. Using β-galactosidase and green fluorescent protein as reporters, the promoters of LRA4 and LRA3 performed well in driving efficient production of heterologous proteins. By using food grade rhamnose instead of the toxic compound methanol as the inducer, the two promoters would be excellent candidates for driving the production of food-grade and therapeutically important recombinant proteins. PMID:27256707

  12. Enzymic, spectroscopic and calorimetric studies of a recombinant dextranase expressed in Pichia pastoris.

    PubMed

    Beldarraín, Alejandro; Acosta, Niuris; Betancourt, Lázaro; González, Luis J; Pons, Tirso

    2003-12-01

    Conformational stability and structural characterization of an rDex (recombinant dextranase) expressed in Pichia pastoris were studied by enzymic assays, fluorescence, CD and DSC (differential scanning calorimetry). We also identified two disulphide bridges (Cys9-Cys14, Cys484-Cys488) and two free Cys residues (Cys336, Cys415) that are not conserved between bacterial and fungal dextranases of GH-49 (glycoside hydrolase family 49) by MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS. Enzymic and fluorescence studies revealed that rDex is biological and conformationally stable at acidic pH, with maximum activity at pH 4.5-5.0, while CD spectra indicated a secondary structure basically composed of beta-sheets. rDex loses biological activity at neutral pH without total disruption of its conformation. In addition, rDex preserves its conformation close to 60 degrees C, but it is thermally denatured with appreciable aggregation at temperatures above 75 degrees C. DSC studies always displayed irreversible transitions and a strong dependence on the scan rate. Our combined analysis suggested that the denaturation process of rDex is under kinetic control, which is described reasonably well by the two-state kinetic scheme.

  13. Production of poplar xyloglucan endotransglycosylase using the methylotrophic yeast Pichia pastoris.

    PubMed

    Bollok, Monika; Henriksson, Hongbin; Kallas, Asa; Jahic, Mehmedalija; Teeri, Tuula T; Enfors, Sven-Olof

    2005-07-01

    The gene XET16A encoding the enzyme xyloglucan endotransglycosylase (XET) from hybrid aspen (Populus tremula x tremuloides Mich) was transformed into Pichia pastoris GS115 and the enzyme was secreted to the medium. The influence of process conditions on the XET production, activity, and proteolytic degradation were examined. Inactivation of XET occurred in the foam, but could be decreased significantly by using an efficient antifoam. Rich medium (yeast extract plus peptone) was needed for product accumulation, but not for growth. The proteolytic degradation of the enzyme in the medium was substantially decreased by also adding yeast extract and peptone to the glycerol medium before induction with methanol. Decreasing the fermentation pH from 5.0 to 4.0 further reduced the proteolysis. The specific activity was further improved by production at 15 degrees C instead of 22 degrees C. In this way a XET production of 54 mg/L active enzyme could be achieved in the process with a specific activity of 18 Unit/mg protein after a downstream process including centrifugation, micro- and ultrafiltration, and ion exchange chromatography.

  14. Incorporation of Nasutitermes takasagoensis endoglucanase into cell surface-displayed minicellulosomes in Pichia pastoris X33.

    PubMed

    Ou, Jingshen; Cao, Yicheng

    2014-09-01

    In this study, the yeast Pichia pastoris was genetically modified to assemble minicellulosomes on its cell surface by the heterologous expression of a truncated scaffoldin CipA from Clostridium acetobutylicum. Fluorescence microscopy and western blot analysis confirmed that CipA was targeted to the yeast cell surface and that NtEGD, the Nasutitermes takasagoensis endoglucanase that was fused with dockerin, interacted with CipA on the yeast cell surface, suggesting that the cohesin and dockerin domains and cellulose-binding module of C. acetobutylicum were functional in the yeasts. The enzymatic activities of the cellulases in the minicellulosomes that were displayed on the yeast cell surfaces increased dramatically following interaction with the cohesin-dockerin domains. Additionally, the hydrolysis efficiencies of NtEGD for carboxymethyl cellulose, microcrystal cellulose, and filter paper increased up to 1.4-fold, 2.0-fold, and 3.2-fold, respectively. To the best of our knowledge, this is the first report describing the expression of C. acetobutylicum minicellulosomes in yeast and the incorporation of animal cellulases into cellulosomes. This strategy of heterologous cellulase incorporation lends novel insight into the process of cellulosome assembly. Potentially, the surface display of cellulosomes, such as that reported in this study, may be utilized in the engineering of S. cerevisiae for ethanol production from cellulose and additional future applications.

  15. High-level expression and characterization of a thermostable xylanase mutant from Trichoderma reesei in Pichia pastoris.

    PubMed

    Li, Yang-yuan; Zhong, Kai-xin; Hu, Ai-hong; Liu, Dan-ni; Chen, Li-zhi; Xu, Shu-de

    2015-04-01

    A gene encoding xylanase 2 mutant from Trichoderma reesei (T2C/T28C, named mxyn2) was cloned into the Pichia pastoris X33 strain using the vector pPICZαA. Recombinant Mxyn2p was functionally expressed in P. pastoris X33 and secreted into the supernatant. Real time qPCR demonstrated that an increase in gene copy number correlated with higher levels of expression. Supernatant from methanol induced cells was concentrated by ultrafiltration with a 10kDa cut off membrane, and purified with ion exchange chromatography using SP Sepharose Fast Flow chromatography. Recombinant Mxyn2p protein had the highest activity at 75°C, while recombinant protein encoded by the "wild type" xylanase gene xyn2, also expressed in Pichia, was 20°C lower. The Mxyn2p enzyme retained more than 70% of its activity after incubation at 80°C for 10min. The effects of the optimal pH and temperature for higher expression levels in P. pastoris were also determined, 6.0 and 22°C, respectively. The maximum xylanase activity of Mxyn2p was 13,000nkat/mg (9.88g/l) in fed-batch cultivation after 168h induction with methanol in a 50l bioreactor.

  16. High-Level Expression of Endo-β-N-Acetylglucosaminidase H from Streptomyces plicatus in Pichia pastoris and Its Application for the Deglycosylation of Glycoproteins

    PubMed Central

    Wang, Fei; Wang, Xiaojuan; Yu, Xiaolan; Fu, Lin; Liu, Yunyun; Ma, Lixin; Zhai, Chao

    2015-01-01

    Endo-β-N-acetylglucosaminidase H (Endo H, EC3.2.1.96) is a glycohydrolase that is widely used in the study of glycoproteins. The present study aimed to assess the effect of high-level endo-β-N-acetylglucosaminidase H expression in Pichia pastoris. The DNA coding sequence of this enzyme was optimized based on the codon usage bias of Pichia pastoris and synthesized through overlapping PCR. This novel gene was cloned into a pHBM905A vector and introduced into Pichia pastoris GS115 for secretary expression. The yield of the target protein reached approximately 397 mg/l after a 6-d induction with 1% (v/v) methanol in shake flasks, which is much higher than that observed upon heterologous expression in Escherichia coli and silkworm. This recombinant enzyme was purified and its enzymatic features were studied. Its specific activity was 461573 U/mg. Its optimum pH and temperature were pH 5.5 and 37°C, respectively. Moreover, our study showed that the N-linked glycan side-chains of several recombinant proteins expressed in Pichia pastoris can be efficiently removed through either the co-fermentation of this recombinant strain with strains expressing substrates or by mixing the cell culture supernatants of the endo-β-N-acetylglucosaminidase H expressing strain with strains expressing substrates after fermentation. This is the first report of high-level endo-β-N-acetylglucosaminidase H expression in Pichia pastoris and the application of this enzyme in the deglycosylation of raw glycoproteins heterologously expressed in Pichia pastoris using simplified methods. PMID:25781897

  17. The expression and processing of two recombinant 2S albumins from soybean (Glycine max) in the yeast Pichia pastoris.

    PubMed

    Lin, Jing; Fido, Roger; Shewry, Peter; Archer, David B; Alcocer, Marcos J C

    2004-05-06

    Soybean seeds contain two 2S albumin storage proteins (AL1 and AL3) which may contribute to their industrial processing quality and allergenicity. We show that these proteins (AL1 and AL3) are well expressed by the methylotrophic yeast Pichia pastoris and that one of the secreted proteins (AL3) has a similar conformation and stability to that purified from soybean seeds. Further, we show that the subunits are post-translationally processed within the same loop region as the native protein but with some differences in the precise sites. This internal processing provides useful information on the endoproteolytic activity in P. pastoris. We also show that, similar to many plant allergens, the 2S albumins from soybean are stable to heat and chemical treatments.

  18. Improving the secretion of a methyl parathion hydrolase in Pichia pastoris by modifying its N-terminal sequence.

    PubMed

    Wang, Ping; Huang, Lu; Jiang, Hu; Tian, Jian; Chu, Xiaoyu; Wu, Ningfeng

    2014-01-01

    Pichia pastoris is commonly used to express and secrete target proteins, although not all recombinant proteins can be successfully produced. In this study, we used methyl parathion hydrolase (MPH) from Ochrobactrum sp. M231 as a model to study the importance of the N-terminus of the protein for its secretion. While MPH can be efficiently expressed intracellularly in P. pastoris, it is not secreted into the extracellular environment. Three MPH mutants (N66-MPH, D10-MPH, and N9-MPH) were constructed through modification of its N-terminus, and the secretion of each by P. pastoris was improved when compared to wild-type MPH. The level of secreted D10-MPH was increased to 0.21 U/mL, while that of N9-MPH was enhanced to 0.16 U/mL. Although N66-MPH was not enzymatically active, it was secreted efficiently, and was identified by SDS-PAGE. These results demonstrate that the secretion of heterologous proteins in P. pastoris may be improved by modifying their N-terminal structures.

  19. Rivoflavin may interfere with on-line monitoring of secreted green fluorescence protein fusion proteins in Pichia pastoris

    PubMed Central

    Surribas, Anna; Resina, David; Ferrer, Pau; Valero, Francisco

    2007-01-01

    Background Together with the development of optical sensors, fluorometry is becoming an increasingly attractive tool for the monitoring of cultivation processes. In this context, the green fluorescence protein (GFP) has been proposed as a molecular reporter when fused to target proteins to study their subcellular localization or secretion behaviour. The present work evaluates the use of the GFP fusion partner for monitoring extracellular production of a Rhizopus oryzae lipase (ROL) in Pichia pastoris by means of 2D-fluorimetric techniques Results In this study, the GFP-ROL fusion protein was successfully produced as a secreted fusion form in P. pastoris batch cultivations. Furthermore, both the fusion enzyme and the fluorescent protein (GFP S65T mutant) retained their biological activity. However, when multiwavelength spectrofluorometry was used for extracellular fusion protein monitoring, riboflavin appeared as a major interfering component with GFP signal. Only when riboflavin was removed by ultrafiltration from cultivation supernatants, GFP fluorescence signal linearly correlated to lipase activity Conclusion P. pastoris appears to secrete/excrete significant amounts of riboflavin to the culture medium. When attempting to monitor extracellular protein production in P. pastoris using GFP fusions combined with multiwavelength spectrofluorimetric techniques, riboflavin may interfere with GFP fluorescence signal, thus limiting the application of some GFP variants for on-line extracellular recombinant protein quantification and monitoring purposes. PMID:17511861

  20. Codon Optimization Significantly Improves the Expression Level of α -Amylase Gene from Bacillus licheniformis in Pichia pastoris.

    PubMed

    Wang, Jian-Rong; Li, Yang-Yuan; Liu, Dan-Ni; Liu, Jing-Shan; Li, Peng; Chen, Li-Zhi; Xu, Shu-De

    2015-01-01

    α-Amylase as an important industrial enzyme has been widely used in starch processing, detergent, and paper industries. To improve expression efficiency of recombinant α-amylase from Bacillus licheniformis (B. licheniformis), the α-amylase gene from B. licheniformis was optimized according to the codon usage of Pichia pastoris (P. pastoris) and expressed in P. pastoris. Totally, the codons encoding 305 amino acids were optimized in which a total of 328 nucleotides were changed and the G+C content was increased from 47.6 to 49.2%. The recombinants were cultured in 96-deep-well microplates and screened by a new plate assay method. Compared with the wild-type gene, the optimized gene is expressed at a significantly higher level in P. pastoris after methanol induction for 168 h in 5- and 50-L bioreactor with the maximum activity of 8100 and 11000 U/mL, which was 2.31- and 2.62-fold higher than that by wild-type gene. The improved expression level makes the enzyme a good candidate for α-amylase production in industrial use.

  1. Pathway analysis of Pichia pastoris to elucidate methanol metabolism and its regulation for production of recombinant proteins.

    PubMed

    Unrean, Pornkamol

    2014-01-01

    This research rationally analyzes metabolic pathways of Pichia pastoris to study the metabolic flux responses of this yeast under methanol metabolism. A metabolic model of P. pastoris was constructed and analyzed by elementary mode analysis (EMA). EMA was used to comprehensively identify the cell's metabolic flux profiles and its underlying regulation mechanisms for the production of recombinant proteins from methanol. Change in phenotypes and flux profiles during methanol adaptation with varying feed mixture of glycerol and methanol was examined. EMA identified increasing and decreasing fluxes during the glycerol-methanol metabolic shift, which well agreed with experimental observations supporting the validity of the metabolic network model. Analysis of all the identified pathways also led to the determination of the metabolic capacities as well as the optimum metabolic pathways for recombinant protein synthesis during methanol induction. The network sensitivity analysis revealed that the production of proteins can be improved by manipulating the flux ratios at the pyruvate branch point. In addition, EMA suggested that protein synthesis is optimum under hypoxic culture conditions. The metabolic modeling and analysis presented in this study could potentially form a valuable knowledge base for future research on rational design and optimization of P. pastoris by determining target genes, pathways, and culture conditions for enhanced recombinant protein synthesis. The metabolic pathway analysis is also of considerable value for production of therapeutic proteins by P. pastoris in biopharmaceutical applications.

  2. Combining Protein and Strain Engineering for the Production of Glyco-Engineered Horseradish Peroxidase C1A in Pichia pastoris

    PubMed Central

    Capone, Simona; Ćorajević, Lejla; Bonifert, Günther; Murth, Patrick; Maresch, Daniel; Altmann, Friedrich; Herwig, Christoph; Spadiut, Oliver

    2015-01-01

    Horseradish peroxidase (HRP), conjugated to antibodies and lectins, is widely used in medical diagnostics. Since recombinant production of the enzyme is difficult, HRP isolated from plant is used for these applications. Production in the yeast Pichia pastoris (P. pastoris), the most promising recombinant production platform to date, causes hyperglycosylation of HRP, which in turn complicates conjugation to antibodies and lectins. In this study we combined protein and strain engineering to obtain an active and stable HRP variant with reduced surface glycosylation. We combined four mutations, each being beneficial for either catalytic activity or thermal stability, and expressed this enzyme variant as well as the unmutated wildtype enzyme in both a P. pastoris benchmark strain and a strain where the native α-1,6-mannosyltransferase (OCH1) was knocked out. Considering productivity in the bioreactor as well as enzyme activity and thermal stability, the mutated HRP variant produced in the P. pastoris benchmark strain turned out to be interesting for medical diagnostics. This variant shows considerable catalytic activity and thermal stability and is less glycosylated, which might allow more controlled and efficient conjugation to antibodies and lectins. PMID:26404235

  3. Combining Protein and Strain Engineering for the Production of Glyco-Engineered Horseradish Peroxidase C1A in Pichia pastoris.

    PubMed

    Capone, Simona; Ćorajević, Lejla; Bonifert, Günther; Murth, Patrick; Maresch, Daniel; Altmann, Friedrich; Herwig, Christoph; Spadiut, Oliver

    2015-09-24

    Horseradish peroxidase (HRP), conjugated to antibodies and lectins, is widely used in medical diagnostics. Since recombinant production of the enzyme is difficult, HRP isolated from plant is used for these applications. Production in the yeast Pichia pastoris (P. pastoris), the most promising recombinant production platform to date, causes hyperglycosylation of HRP, which in turn complicates conjugation to antibodies and lectins. In this study we combined protein and strain engineering to obtain an active and stable HRP variant with reduced surface glycosylation. We combined four mutations, each being beneficial for either catalytic activity or thermal stability, and expressed this enzyme variant as well as the unmutated wildtype enzyme in both a P. pastoris benchmark strain and a strain where the native α-1,6-mannosyltransferase (OCH1) was knocked out. Considering productivity in the bioreactor as well as enzyme activity and thermal stability, the mutated HRP variant produced in the P. pastoris benchmark strain turned out to be interesting for medical diagnostics. This variant shows considerable catalytic activity and thermal stability and is less glycosylated, which might allow more controlled and efficient conjugation to antibodies and lectins.

  4. Purification and basic biochemical characterization of 19 recombinant plant peroxidase isoenzymes produced in Pichia pastoris☆

    PubMed Central

    Krainer, Florian W.; Pletzenauer, Robert; Rossetti, Laura; Herwig, Christoph; Glieder, Anton; Spadiut, Oliver

    2014-01-01

    The plant enzyme horseradish peroxidase (HRP) is used in several important industrial and medical applications, of which especially biosensors and diagnostic kits describe an emerging field. Although there is an increasing demand for high amounts of pure enzyme preparations, HRP is still isolated from the plant as a mixture of different isoenzymes with different biochemical properties. Based on a recent next generation sequencing approach of the horseradish transcriptome, we produced 19 individual HRP isoenzymes recombinantly in the yeast Pichia pastoris. After optimizing a previously reported 2-step purification strategy for the recombinant isoenzyme HRP C1A by substituting an unfavorable size exclusion chromatography step with an anion exchange step using a monolithic column, we purified the 19 HRP isoenzymes with varying success. Subsequent basic biochemical characterization revealed differences in catalytic activity, substrate specificity and thermal stability of the purified HRP preparations. The preparations of the isoenzymes HRP A2A and HRP A2B were found to be highly interesting candidates for future applications in diagnostic kits with increased sensitivity. PMID:24342173

  5. New Genetic Constructs for Generation of Stable Therapeutic Antibodies to Organophosphorus Toxins in Methylotrophic Yeasts Pichia Pastoris.

    PubMed

    Mokrushina, Yu A; Stepanova, A V; Bobik, T V; Smirnov, I V; Gabibov, A G

    2016-05-01

    We propose a new method of obtaining of stable Fab-fragments of antibodies in Pichia pastoris expression system. Recently, we obtained Fab-fragments of antibodies neutralizing organophosphorus toxins. However, high yield of the target products was not attained because of high level of proteolytic degradation. In the present study, we identified sites of proteolytic degradation in Fab-fragments and endogenous proteases performing degradation, which allowed obtaining optimized genetic constructs for expression of antibody heavy chains (IgGγ1) and kappa and lambda isotypes of light chains. Co-transformation of these vectors allowed obtaining Fab-fragments of antibodies to organophosphorus toxins without proteolytic degradation of the product.

  6. Optimized growth kinetics of Pichia pastoris and recombinant Candida rugosa LIP1 production by RSM.

    PubMed

    Chang, Shu-Wei; Shieh, Chwen-Jen; Lee, Guan-Chiun; Akoh, Casimir C; Shaw, Jei-Fu

    2006-01-01

    A predictive model for Pichia pastoris expression of highly active recombinant Candida rugosa LIP1 was developed by combining the Gompertz function and response surface methodology (RSM) to evaluate the effect of yeast extract concentration, glucose concentration, temperature, and pH on specific responses. Each of the responses (maximum population densities, specific growth rate (mumax), protein concentration, and minimum lag phase duration) was determined using the modified Gompertz function. RSM and 4-factor-5-level central composite rotatable design (CCRD) were adopted to evaluate the effects of growth parameters, such as temperature (21.6-38.4 degrees C), glucose concentration (0.3-3.7%), yeast extract (0.16-1.84%), and pH (5.3-8.7) on the responses of P. pastoris growth kinetics. Based on ridge maximum analysis, the optimum population density conditions were: temperature 24.4 degrees C, glucose concentration 2.0%, yeast extract 1.5%, and pH 7.6. The optimum specific growth rate conditions were: temperature 28.9 degrees C, glucose concentration 2.0%, yeast extract 1.1%, and pH 6.9. The optimum protein concentration conditions were: temperature 24.2 degrees C, glucose concentration 1.9%, yeast extract 1.5%, and pH 7.6. Based on ridge minimum analysis, the minimal lag phase conditions were: temperature 32.3 degrees C, glucose concentration 2.1%, yeast extract 1.1%, and pH 5.4. For the predicted value, the maximum population density, specific growth rate, protein concentration, and minimum lag phase duration were 15.7 mg/ml, 3.4 h(-1), 0.78 mg/ml, and 4.2 h, and the actual values were 14.3 +/- 3.5 mg/ml, 3.6 +/- 0.6 h(-1), 0.72 +/- 0.2 mg/ml, and 4.4 +/- 1.6 h, respectively.

  7. Induction without methanol: novel regulated promoters enable high-level expression in Pichia pastoris

    PubMed Central

    2013-01-01

    Background Inducible high-level expression is favoured for recombinant protein production in Pichia pastoris. Therefore, novel regulated promoters are desired, ideally repressing heterologous gene expression during initial growth and enabling it in the production phase. In a typical large scale fed-batch culture repression is desired during the batch phase where cells grow on a surplus of e.g. glycerol, while heterologous gene expression should be active in the feed phase under carbon (e.g. glucose) limitation. Results DNA microarray analysis of P. pastoris wild type cells growing in glycerol-based batch and glucose-based fed batch was used for the identification of genes with both, strong repression on glycerol and high-level expression in the feed phase. Six novel glucose-limit inducible promoters were successfully applied to express the intracellular reporter eGFP. The highest expression levels together with strong repression in pre-culture were achieved with the novel promoters PG1 and PG6. Human serum albumin (HSA) was used to characterize the promoters with an industrially relevant secreted protein. A PG1 clone with two gene copies reached about 230% of the biomass specific HSA titer in glucose-based fed batch fermentation compared to a PGAP clone with identical gene copy number, while PG6 only achieved 39%. Two clones each carrying eleven gene copies, expressing HSA under control of PG1 and PG6 respectively were generated by post-transformational vector amplification. They produced about 1.0 and 0.7 g L-1 HSA respectively in equal fed batch processes. The suitability in production processes was also verified with HyHEL antibody Fab fragment for PG1 and with porcine carboxypeptidase B for PG6. Moreover, the molecular function of the gene under the control of PG1 was determined to encode a high-affinity glucose transporter and named GTH1. Conclusions A set of novel regulated promoters, enabling induction without methanol, was successfully identified by using

  8. Recombinant sterol esterase from Ophiostoma piceae: an improved biocatalyst expressed in Pichia pastoris

    PubMed Central

    2012-01-01

    Background The ascomycete Ophiostoma piceae produces a sterol esterase (OPE) with high affinity towards p-nitrophenol, glycerol and sterol esters. Its hydrolytic activity on natural mixtures of triglycerides and sterol esters has been proposed for pitch biocontrol in paper industry since these compounds produce important economic losses during paper pulp manufacture. Results Recently, this enzyme has been heterologously expressed in the methylotrophic yeast Pichia pastoris, and the hydrolytic activity of the recombinant protein (OPE*) studied. After the initial screening of different clones expressing the enzyme, only one was selected for showing the highest production rate. Different culture conditions were tested to improve the expression of the recombinant enzyme. Complex media were better than minimal media for production, but in any case the levels of enzymatic activity were higher (7-fold in the best case) than those obtained from O. piceae. The purified enzyme had a molecular mass of 76 kDa, higher than that reported for the native enzyme under SDS-PAGE (60 kDa). Steady-state kinetic characterization of the recombinant protein showed improved catalytic efficiency for this enzyme as compared to the native one, for all the assayed substrates (p-nitrophenol, glycerol, and cholesterol esters). Different causes for this were studied, as the increased glycosylation degree of the recombinant enzyme, their secondary structures or the oxidation of methionine residues. However, none of these could explain the improvements found in the recombinant protein. N-terminal sequencing of OPE* showed that two populations of this enzyme were expressed, having either 6 or 8 amino acid residues more than the native one. This fact affected the aggregation behaviour of the recombinant protein, as was corroborated by analytical ultracentrifugation, thus improving the catalytic efficiency of this enzyme. Conclusion P. pastoris resulted to be an optimum biofactory for the

  9. Pichia pastoris Exhibits High Viability and a Low Maintenance Energy Requirement at Near-Zero Specific Growth Rates

    PubMed Central

    Rebnegger, Corinna; Vos, Tim; Graf, Alexandra B.; Valli, Minoska; Pronk, Jack T.

    2016-01-01

    ABSTRACT The yeast Pichia pastoris is a widely used host for recombinant protein production. Understanding its physiology at extremely low growth rates is a first step in the direction of decoupling product formation from cellular growth and therefore of biotechnological relevance. Retentostat cultivation is an excellent tool for studying microbes at extremely low specific growth rates but has so far not been implemented for P. pastoris. Retentostat feeding regimes were based on the maintenance energy requirement (mS) and maximum biomass yield on glucose (YX/Smax) estimated from steady-state glucose-limited chemostat cultures. Aerobic retentostat cultivation enabled reproducible, smooth transitions from a specific growth rate (μ) of 0.025 h−1 to near-zero specific growth rates (μ < 0.001 h−1). At these near-zero specific growth rates, viability remained at least 97%. The value of mS at near-zero growth rates was 3.1 ± 0.1 mg glucose per g biomass and h, which was 3-fold lower than the mS estimated from faster-growing chemostat cultures. This difference indicated that P. pastoris reduces its maintenance energy requirement at extremely low μ, a phenomenon not previously observed in eukaryotes. Intracellular levels of glycogen and trehalose increased, while μ progressively declined during retentostat cultivation. Transcriptional reprogramming toward zero growth included the upregulation of many transcription factors as well as stress-related genes and the downregulation of cell cycle genes. This study underlines the relevance of comparative analysis of maintenance energy metabolism, which has an important impact on large-scale industrial processes. IMPORTANCE The yeast Pichia pastoris naturally lives on trees and can utilize different carbon sources, among them glucose, glycerol, and methanol. In biotechnology, it is widely used for the production of recombinant proteins. For both the understanding of life in its natural habitat and optimized production

  10. [Expression of Vitreoscilla hemoglobin improves recombinant lipase production in Pichia pastoris].

    PubMed

    Wang, Xiaofeng; Sun, Yongchuan; Shen, Xuguang; Ke, Feng; Xu, Li; Liu, Yun; Yan, Yunjun

    2011-12-01

    Yarrowia lipolytica lipase Lip2 (YlLip2) is an important industrial enzyme with many potential applications. To alleviate the dissolved oxygen (DO) limitation and improve YlLip2 production during high-cell density fermentation, the YlLip2 gene lip2 and Vitreoscilla hemoglobin (VHb) gene vgb were co-expressed in Pichiapastoris under the control of AOX1 and PsADH2 promoter, respectively. The PsADH2 promoter from Pichia stipitis could be activated under oxygen limitation. The SDS-PAGE and CO-difference spectrum analysis indicated that VHb and YlLip2 had successfully co-expressed in recombinant strains. Compared with the control cells (VHb-, GS115/9Klip2), the expression levels of YlLip2 in VHb-expressing cells (VHb+, GS115/9Klip2-pZPVT) under oxygen limitation were improved 25% in shake-flask culture and 83% in a 10 L fermentor. Moreover, the VHb+ cells displayed higher biomass than VHb- cells at lower DO levels in a 10 L fermentor. In this study, we also achieved a VHb-expressing clone harboring multicopy lip2 gene (GS115/9Klip2-pZPVTlip2 49#), which showed the maximum lipolytic activity of 33 900 U/mL in a 10 L fermentor under lower DO conditions. Therefore, it can be seen that expression of VHb with PsADH2 promoter in P. pastoris combined with increasing copies of lip2 gene is an effective strategy to improve YlLip2 production.

  11. RP-HPLC determination of recombinant human interferon omega in the Pichia pastoris fermentation broth.

    PubMed

    Liu, Hong; Pan, Hong-Chun; Peng, Li; Cai, Shao-Xi

    2005-07-15

    A rapid and valid reversed-phase high performance liquid chromatography (RP-HPLC) method for determination of recombinant human interferon omega (rhIFNomega) in the yeast Pichia pastoris fermentation broth was developed. The method is based on the hydrophobicity of rhIFNomega followed by RP-HPLC separation with UV detection. The chromatography analysis was performed on EC 250/4 NUCLEOSIL 300-5 C18 (250 mm x 4 mm i.d., 300 A, with a particle size of 5 microm) column. The compositions of the mobile phase A and B were 999:1 (v/v) water/TFA and 999:1 (v/v) acetonitrile/TFA at a flow rate of 1.0 ml min(-1). Detection was done by spectrophotometry at 280 nm and the column temperature was 30+/-1 degrees C. Calibration curve was linear (r=0.9986, n=7) in the range of 0.074-0.555 mg ml(-1) for rhIFNomega and the regression equation was y=2.02 x 10(6)x-1.27 x 10(5). Limit of detection for rhIFNomega was 0.053 mg ml(-1). The values of R.S.D. (%) of intra-day and inter-day precision were <5.65 and <5.68 (n=6), respectively. The R.S.D. (%) values and the average recovery rate of recovery experiment were <1.23 (n=3) and 97.97%.

  12. Characterization of an N-glycosylated Bacillus subtilis leucine aminopeptidase expressed in Pichia pastoris.

    PubMed

    Xi, Hongxing; Tian, Yaping; Zhou, Nandi; Zhou, Zhemin; Shen, Wei

    2015-02-01

    Aminopeptidase is an important flavorsome especially in protein hydrolysate debittering by removing hydrophobic amino acid residue at the N-terminal end. Besides, it is also applied to preparation of active peptides and analysis of protein sequence. In this study, leucine aminopeptidase from Bacillus subtilis was cloned and expressed in Pichia pastoris, a widely used heterologous protein expression host. Then it was purified and characterized. After methanol induction for 96 h, the aminopeptidase activity in culture supernatant reached 28.4 U ml(À1) , which was 7.1 times that of wild strain B. subtilis Zj016. The optimal temperature and pH of the purified recombinant enzyme were 60 °C and 8.5, respectively. The purified aminopeptidase was stable within 30-60 °C and pH 8.0-9.0. It was intensively inhibited by Ni(2β) , Ca(2β) , DL-dithiothreitol (DTT) and ethylene diamine tetraacetic acid (EDTA), but activated by Co(2β) . The Km toward leucine-p-nitroanilines (Leu-pNA) of the enzyme was 0.97 mM. The sequence analysis of aminopeptidase indicated three potential N-glycosylation sites and it was further verified via MALDI-TOF-MS analysis. Consequently, the N-glycosylated aminopeptidase exhibited higher thermostability and catalytic efficiency. The purified enzyme exhibited two bands through sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) while a single band can be identified when the enzyme was deglycosylated. Circular dichroism spectroscopy indicated that the secondary structure of recombinant aminopeptidase was similar to the wild-type.

  13. Dynamic flux balance analysis for pharmaceutical protein production by Pichia pastoris: human growth hormone.

    PubMed

    Calık, Pınar; Sahin, Merve; Taşpınar, Hatice; Soyaslan, Elif Ş; Inankur, Bahar

    2011-03-07

    The influence of methanol feeding rate on intracellular reaction network of recombinant human growth hormone (rhGH) producing Pichia pastoris was investigated at three different specific growth rates, namely, 0.02 (MS-0.02), 0.03 (MS-0.03), and 0.04 h(-1) (MS-0.04) where Period-I (33 ≤ t <42 h) includes the early exponential growth phase; Period-II (42 ≤ t<48 h) is the exponential growth phase where the specific cell growth rate decreases; Period-III (48 ≤ t ≤51 h) is the exponential growth phase where rhGH concentration was the highest; and Period-IV (t>51 h) is the diminution phase for rhGH and cell synthesis. In Period-I, almost all of the formaldehyde entered the assimilatory pathway, at MS-0.02 and MS-0.03, whereas, at MS-0.04 high methanol feeding rate resulted in an adaptation problem. In Period-III, only at MS-0.02 co-carbon source sorbitol uptake-flux was active showing that sorbitol uptake does not affected from the predetermined feeding rate of methanol at μ(0)>0.02 h(-1). The biomass synthesis flux value was the highest in Period-I, -II and -III, respectively at MS-0.03 & MS-0.04, MS-0.04 and MS-0.02; whereas, rhGH flux was the highest in Period-I, -II, and -III, respectively at MS-0.03, MS-0.02 and MS-0.03. Based on the fluxes, Period-I should start with MS-0.03 methanol feeding rate and starting from the middle of Period-II methanol feeding rate should be shifted to MS-0.02.

  14. A Thermostable phytase from Neosartorya spinosa BCC 41923 and its expression in Pichia pastoris.

    PubMed

    Pandee, Patcharaporn; Summpunn, Pijug; Wiyakrutta, Suthep; Isarangkul, Duangnate; Meevootisom, Vithaya

    2011-04-01

    A phytase gene was cloned from Neosartorya spinosa BCC 41923. The gene was 1,455 bp in size, and the mature protein contained a polypeptide of 439 amino acids. The deduced amino acid sequence contains the consensus motif (RHGXRXP) which is conserved among phytases and acid phosphatases. Five possible disulfide bonds and seven potential N-glycosylation sites have been predicted. The gene was expressed in Pichia pastoris KM71 as an extracellular enzyme. The purified enzyme had specific activity of 30.95 U/mg at 37°C and 38.62 U/mg at 42°C. Molecular weight of the deglycosylated recombinant phytase, determined by SDS-PAGE, was approximately 52 kDa. The optimum pH and temperature for activity were pH 5.5 and 50°C. The residual phytase activity remained over 80% of initial activity after the enzyme was stored in pH 3.0 to 7.0 for 1 h, and at 60% of initial activity after heating at 90°C for 20 min. The enzyme exhibited broad substrate specificity, with phytic acid as the most preferred substrate. Its K (m) and V (max) for sodium phytate were 1.39 mM and 434.78 U/mg, respectively. The enzyme was highly resistant to most metal ions tested, including Fe(2+), Fe(3+), and Al(3+). When incubated with pepsin at a pepsin/phytase ratio of 0.02 (U/U) at 37°C for 2 h, 92% of its initial activity was retained. However, the enzyme was very sensitive to trypsin, as 5% of its initial activity was recovered after treating with trypsin at a trypsin/phytase ratio of 0.01 (U/U).

  15. [Connection of hepcidin genes from two fish species and their expression in Pichia pastoris].

    PubMed

    Li, Wenjing; Tao, Yan; Zhao, Dongmei; Xu, Bingbing

    2015-05-01

    Hepcidin are small cationic peptides with antibacterial activity expressed mainly in the liver of living organisms, and they play important roles in the host's immune response against microbial invasion and regulation of iron metabolism. Thus, they are considered to be good substitutes for traditional antibiotics. It is a good choice that the antimicrobial peptides are prepared by recombinant DNA expression. In the present study, two hepcidin mature peptide cDNAs from channel catfish (Ictalurus punctatus) (mCH) and tilapia (Oreochromis niloticus) (mTH) were connected by SOE-PCR in order to obtain more recombinant hepcidin with broad antimicrobial spectrum, and EcoR I and Not I sites were added to 5'- and 3'- ends of the fragment, respectively. The recombinant eukaryotic expression vector "pPIC9K-mCH-mTH" was successfully constructed, and transformed into Pichia pastoris GS115. The transformants containing multicopy gene insertion were selected by using different concentrations of G418 and other specific mediums, and identified by PCR for yeast genomic DNA. Expression was induced by adding 1% methanol at 30 degrees C for different times. Tricine-SDS-PAGE analysis demonstrated that the most appropriate expression time was 72 h, at which a high expression yield (77 mg/L) for the target protein was exhibited. The highly purified target protein was obtained from the fermentation supernatant by SP-Sepharose cation exchange chromatography. Bacteriostatic activity assay demonstrated that the fermentation supernatant containing the target protein and purified recombinant target protein had bacteriostatic activities against gram-positive and gram-negative bacterium. The present result provides the important initial value for industrial production of hepcidin antimicrobial peptide.

  16. Droplet digital PCR-aided screening and characterization of Pichia pastoris multiple gene copy strains.

    PubMed

    Cámara, Elena; Albiol, Joan; Ferrer, Pau

    2016-07-01

    Pichia (syn. Komagataella) pastoris is a widely used yeast platform for heterologous protein production. Expression cassettes are usually stably integrated into the genome of this host via homologous recombination. Although increasing gene dosage is a powerful strategy to improve recombinant protein production, an excess in the number of gene copies often leads to decreased product yields and increased metabolic burden, particularly for secreted proteins. We have constructed a series of strains harboring different copy numbers of a Rhizopus oryzae lipase gene (ROL), aiming to find the optimum gene dosage for secreted Rol production. In order to accurately determine ROL gene dosage, we implemented a novel protocol based on droplet digital PCR (ddPCR), and cross validated it with conventional real-time PCR. Gene copy number determination based on ddPCR allowed for an accurate ranking of transformants according to their ROL gene dosage. Results indicated that ddPCR was particularly superior at lower gene dosages (one to five copies) over quantitative real-time PCR (qPCR). This facilitated the determination of the optimal ROL gene dosage as low as two copies. The ranking of ROL gene dosage versus Rol yield was consistent at both small scale and bioreactor chemostat cultures, thereby easing clone characterization in terms of gene dosage dependent physiological effects, which could be discriminated even among strains differing by only one ROL copy. A selected two-copy strain showed twofold increase in Rol specific production in a chemostat culture over the single copy strain. Conversely, strains harboring more than two copies of the ROL gene showed decreased product and biomass yields, as well as altered substrate consumption specific rates, compared to the reference (one-copy) strain. Biotechnol. Bioeng. 2016;113: 1542-1551. © 2015 Wiley Periodicals, Inc.

  17. Identification and Functional Characterization of Glycosylation of Recombinant Human Platelet-Derived Growth Factor-BB in Pichia pastoris.

    PubMed

    Dai, Mengmeng; Yu, Changming; Fang, Ting; Fu, Ling; Wang, Jing; Zhang, Jun; Ren, Jun; Xu, Junjie; Zhang, Xiaopeng; Chen, Wei

    2015-01-01

    Yeast Pichia pastoris is a widely used system for heterologous protein expression. However, post-translational modifications, especially glycosylation, usually impede pharmaceutical application of recombinant proteins because of unexpected alterations in protein structure and function. The aim of this study was to identify glycosylation sites on recombinant human platelet-derived growth factor-BB (rhPDGF-BB) secreted by P. pastoris, and investigate possible effects of O-linked glycans on PDGF-BB functional activity. PDGF-BB secreted by P. pastoris is very heterogeneous and contains multiple isoforms. We demonstrated that PDGF-BB was O-glycosylated during the secretion process and detected putative O-glycosylation sites using glycosylation staining and immunoblotting. By site-directed mutagenesis and high-resolution LC/MS analysis, we, for the first time, identified two threonine residues at the C-terminus as the major O-glycosylation sites on rhPDGF-BB produced in P. pastoris. Although O-glycosylation resulted in heterogeneous protein expression, the removal of glycosylation sites did not affect rhPDGF-BB mitogenic activity. In addition, the unglycosylated PDGF-BBΔGly mutant exhibited the immunogenicity comparable to that of the wild-type form. Furthermore, antiserum against PDGF-BBΔGly also recognized glycosylated PDGF-BB, indicating that protein immunogenicity was unaltered by glycosylation. These findings elucidate the effect of glycosylation on PDGF-BB structure and biological activity, and can potentially contribute to the design and production of homogeneously expressed unglycosylated or human-type glycosylated PDGF-BB in P. pastoris for pharmaceutical applications.

  18. Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization.

    PubMed

    Schwarzhans, Jan-Philipp; Wibberg, Daniel; Winkler, Anika; Luttermann, Tobias; Kalinowski, Jörn; Friehs, Karl

    2016-05-20

    The classic AOX1 replacement approach is still one of the most often used techniques for expression of recombinant proteins in the methylotrophic yeast Pichia pastoris. Although this approach is largely successful, it frequently delivers clones with unpredicted production characteristics and a work-intense screening process is required to find the strain with desired productivity. In this project 845 P. pastoris clones, transformed with a GFP expression cassette, were analyzed for their methanol-utilization (Mut)-phenotypes, GFP gene expression levels and gene copy numbers. Several groups of strains with irregular features were identified. Such features include GFP expression that is markedly higher or lower than expected based on gene copy number as well as strains that grew under selective conditions but where the GFP gene cassette and its expression could not be detected. From these classes of strains 31 characteristic clones were selected and their genomes sequenced. By correlating the assembled genome data with the experimental phenotypes novel insights were obtained. These comprise a clear connection between productivity and cassette-to-cassette orientation in the genome, the occurrence of false-positive clones due to a secondary recombination event, and lower total productivity due to the presence of untransformed cells within the isolates were discovered. To cope with some of these problems, the original vector was optimized by replacing the AOX1 terminator, preventing the occurrence of false-positive clones due to the secondary recombination event. Standard methods for transformation of P. pastoris led to a multitude of unintended and sometimes detrimental integration events, lowering total productivity. By documenting the connections between productivity and integration event we obtained a deeper understanding of the genetics of mutation in P. pastoris. These findings and the derived improved mutagenesis and transformation procedures and tools will help

  19. Methionine synthase is localized to the nucleus in Pichia pastoris and Candida albicans and to the cytoplasm in Saccharomyces cerevisiae.

    PubMed

    Sahu, Umakant; Rajendra, Vinod K H; Kapnoor, Shankar S; Bhagavat, Raghu; Chandra, Nagasuma; Rangarajan, Pundi N

    2017-09-08

    Methionine synthase (MS) catalyzes methylation of homocysteine, the last step in the biosynthesis of methionine, which is essential for the regeneration of tetrahydrofolate and biosynthesis of S-adenosylmethionine. Here, we report that MS is localized to the nucleus of Pichia pastoris and Candida albicans but is cytoplasmic in Saccharomyces cerevisiae The P. pastoris strain carrying a deletion of the MET6 gene encoding MS (Ppmet6) exhibits methionine as well as adenine auxotrophy indicating that MS is required for methionine as well as adenine biosynthesis. Nuclear localization of P. pastoris MS (PpMS) was abrogated by the deletion of 107 C-terminal amino acids or the R742A mutation. In silico analysis of the PpMS structure indicated that PpMS may exist in a dimer-like configuration in which Arg-742 of a monomer forms a salt bridge with Asp-113 of another monomer. Biochemical studies indicate that R742A as well as D113R mutations abrogate nuclear localization of PpMS and its ability to reverse methionine auxotrophy of Ppmet6 Thus, association of two PpMS monomers through the interaction of Arg-742 and Asp-113 is essential for catalytic activity and nuclear localization. When PpMS is targeted to the cytoplasm employing a heterologous nuclear export signal, it is expressed at very low levels and is unable to reverse methionine and adenine auxotrophy of Ppmet6 Thus, nuclear localization is essential for the stability and function of MS in P. pastoris. We conclude that nuclear localization of MS is a unique feature of respiratory yeasts such as P. pastoris and C. albicans, and it may have novel moonlighting functions in the nucleus. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Production of barley endoprotease B2 in Pichia pastoris and its proteolytic activity against native and recombinant hordeins.

    PubMed

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben B; Brinch-Pedersen, Henrik

    2014-01-01

    Barley (Hordeum vulgare L.) cysteine proteases are of fundamental biological importance during germination but may also have a large potential as commercial enzyme. Barley cysteine endoprotease B2 (HvEPB2) was expressed in Pichia pastoris from a pPICZαA based construct encoding a HvEPB2 C-terminal truncated version (HvEPB2ΔC) and a proteolytic resistant His6 tag. Maximum yield was obtained after 4 days of induction. Recombinant HvEPB2ΔC (r-HvEPB2ΔC) was purified using a single step of Ni(2+)-affinity chromatography. Purified protein was evaluated by SDS-PAGE, Western blotting and activity assays. A purification yield of 4.26 mg r-HvEPB2ΔC per L supernatant was obtained. r-HvEPB2ΔC follows first order kinetics (Km=12.37 μM) for the substrate Z-Phe-Arg-pNA and the activity was significantly inhibited by the cysteine protease specific inhibitors E64 and leupeptin. The temperature optimum for r-HvEPB2ΔC was 60°C, thermal stability T50 value was 44°C and the pH optimum was 4.5. r-HvEPB2ΔC was incubated with native purified barley seed storage proteins for up to 48 h. After 12h, r-HvEPB2ΔC efficiently reduced the C and D hordeins almost completely, as evaluated by SDS-PAGE. The intensities of the B and γ hordein bands decreased continuously over the 48 h. No degradation occurred in the presence of E64. Recombinant hordeins (B1, B3 and γ1) were expressed in Escherichia coli. After 2h of incubation with r-HvEPB2ΔC, an almost complete degradation of γ1 and partial digests of hordein B1 and B3 were observed.

  1. Expression of recombinant AccMRJP1 protein from royal jelly of Chinese honeybee in Pichia pastoris and its proliferation activity in an insect cell line

    USDA-ARS?s Scientific Manuscript database

    Main royal jelly protein 1 (MRJP1) is the most abundant member of the main royal jelly protein (MRJP) family among honeybees. Mature MRJP1 cDNA of the Chinese honeybee (Apis cerana cerana MRJP1, or AccMRJP1) was expressed in Pichia pastoris. SDS-PAGE showed that recombinant AccMRJP1 was identical in...

  2. Constitutive Optimized Production of Streptokinase in Saccharomyces cerevisiae Utilizing Glyceraldehyde 3-Phosphate Dehydrogenase Promoter of Pichia pastoris

    PubMed Central

    Vellanki, Ravi N.; Doddapaneni, Kiran K.; Anubrolu, Naveen; Mangamoori, Lakshmi N.

    2013-01-01

    A novel expression vector constructed from genes of Pichia pastoris was applied for heterologous gene expression in Saccharomyces cerevisiae. Recombinant streptokinase (SK) was synthesized by cloning the region encoding mature SK under the control of glyceraldehyde 3-phosphate dehydrogenase (GAP) promoter of Pichia pastoris in Saccharomyces cerevisiae. SK was intracellularly expressed constitutively, as evidenced by lyticase-nitroanilide and caseinolytic assays. The functional activity was confirmed by plasminogen activation assay and in vitro clot lysis assay. Stability and absence of toxicity to the host with the recombinant expression vector as evidenced by southern analysis and growth profile indicate the application of this expression system for large-scale production of SK. Two-stage statistical approach, Plackett-Burman (PB) design and response surface methodology (RSM) was used for SK production medium optimization. In the first stage, carbon and organic nitrogen sources were qualitatively screened by PB design and in the second stage there was quantitative optimization of four process variables, yeast extract, dextrose, pH, and temperature, by RSM. PB design resulted in dextrose and peptone as best carbon and nitrogen sources for SK production. RSM method, proved as an efficient technique for optimizing process conditions which resulted in 110% increase in SK production, 2352 IU/mL, than for unoptimized conditions. PMID:24171161

  3. Virus-Like Particles Produced in Pichia Pastoris Induce Protective Immune Responses Against Coxsackievirus A16 in Mice

    PubMed Central

    Feng, Qianjin; He, Yaqing; Lu, Jiahai

    2016-01-01

    Background Coxsackievirus A16 (CA16) is one of the main causative agents of hand, foot, and mouth disease (HFMD), and the development of a safe and effective vaccine has been a top priority among CA16 researchers. Material/Methods In this study, we developed a Pichia pastoris yeast system for secretory expression of the virus-like particles (VLPs) for CA16 by co-expression of the P1 and 3CD proteins of CA16. SDS-PAGE, Western blot, and transmission electron microscopy (TEM) were performed to identify the formation of VLPs. Immunogenicity and vaccine efficacy of the CA16 VLPs were assessed in BABL/c mouse models. Results Biochemical and biophysical analysis showed that the yeast-expressed CA16 VLPs were composed of VP0, VP1, and VP3 capsid subunit proteins, and present spherical particles with a diameter of 30 nm, similar to the parental infectious CA16 virus. Furthermore, CA16 VLPs elicited potent humoral and cellular immune responses, and VLPs-immunized sera conferred efficient protection to neonatal mice against lethal CA16 challenge. Conclusions Our results demonstrate that VLPs produced in Pichia pastoris represent a safe and effective vaccine strategy for CA16. PMID:27659054

  4. Cloning, expression and characterization of recombinant sweet-protein thaumatin II using the methylotrophic yeast Pichia pastoris.

    PubMed

    Masuda, Tetsuya; Tamaki, Shinobu; Kaneko, Ryosuke; Wada, Ritsuko; Fujita, Yuki; Mehta, Alka; Kitabatake, Naofumi

    2004-03-30

    Thaumatin, an intensely sweet-tasting protein, was secreted by the methylotrophic yeast Pichia pastoris. The mature thaumatin II gene was directly cloned from Taq polymerase-amplified PCR products by using TA cloning methods and fused the pPIC9K expression vector that contains Saccharomyces cerevisiae prepro alpha-mating factor secretion signal. Several additional amino acid residues were introduced at both the N- and C-terminal ends by genetic modification to investigate the role of the terminal end region for elicitation of sweetness in the thaumatin molecule. The secondary and tertiary structures of purified recombinant thaumatin were almost identical to those of the plant thaumatin molecule. Recombinant thaumatin II elicited a sweet taste as native plant thaumatin II; its threshold value of sweetness to humans was around 50 nM, which is the same as that of plant thaumatin II. These results demonstrate that the functional expression of thaumatin II was attained by Pichia pastoris systems and that the N- and C-terminal regions of the thaumatin II molecule do not -play an important role in eliciting the sweet taste of thaumatin. Copyright 2004 Wiley Periodicals, Inc.

  5. Recombinant gp90 protein expressed in Pichia pastoris induces a protective immune response against reticuloendotheliosis virus in chickens.

    PubMed

    Li, Kai; Gao, Honglei; Gao, Li; Qi, Xiaole; Gao, Yulong; Qin, Liting; Wang, Yongqiang; Wang, Xiaomei

    2012-03-16

    Reticuloendotheliosis virus (REV) causes an oncogenic, immunosuppressive and runting syndrome in multiple avian hosts worldwide. In this study, the gp90 protein of REV was secretory expressed in Pichia pastoris with high production level and good antigenicity. To fully utilize the expression potential of the P. pastoris expression system, a panel of Pichia clones carrying increasing copies of the gp90 expression cassette was created using an in vitro multimerization approach and the effects of gene dosage on gp90 expression were investigated. Results demonstrated that an increase in gp90 copy number can significantly improve the yields of gp90 protein. Following expression and scale-up, the gp90 protein production level could reach up to 400mg/L, and the protein could be detected by gp90-specific monoclonal antibody. Investigations of its vaccine efficacy demonstrated that the recombinant gp90 protein was able to induce sustained high levels of antibodies against REV as being detected by ELISA and virus neutralizing test. Furthermore, immunization of chickens with the recombinant gp90 vaccine fully protected the animals from viremia after REV infection. Overall, the yeast-expressed gp90 protein retains good immunogenicity and could be used as a potential subunit vaccine candidate for REV prevention.

  6. Lectin I from Bauhinia variegata (BVL-I) expressed by Pichia pastoris inhibits initial adhesion of oral bacteria in vitro.

    PubMed

    Klafke, Gabriel Baracy; Moreira, Gustavo Marçal Schmidt Garcia; Pereira, Juliano Lacava; Oliveira, Patrícia Diaz; Conceição, Fabricio Rochedo; Lund, Rafael Guerra; Grassmann, André Alex; Dellagostin, Odir Antonio; da Silva Pinto, Luciano

    2016-12-01

    Lectins are non-immune proteins that reversibly bind to carbohydrates in a specific manner. Bauhinia variegata lectin I (BVL-I) is a Gal/GalNAc-specific, single-chain lectin isolated from Bauhinia variegata seeds that has been implicated in the inhibition of bacterial adhesion and the healing of damaged skin. Since the source of the native protein (nBVL) is limited, this study aimed to produce recombinant BVL-I in Pichia pastoris (rBVL-Ip). The coding sequence for BVL-I containing preferential codons for P. pastoris was cloned into the pPICZαB plasmid. A single expressing clone was selected and fermented, resulting in the secretion and glycosylation of the protein. Fed-batch fermentation in 7L-scale was performed, and the recombinant lectin was purified from culture supernatant, resulting in a yield of 1.5mg/L culture. Further, rBVL-Ip was compared to nBVL and its recombinant version expressed in Escherichia coli BL21 (DE3) (rBVL-Ie). Although it was expressed as a monomer, rBVL-Ip retained its biological activity since it was able to impair the initial adhesion of Streptococcus mutans and S. sanguinis in an in vitro model of biofilm formation and bacterial adhesion. In summary, rBVL-Ip produced in Pichia pastoris represents a viable alternative to large-scale production, encouraging further biological application studies with this lectin. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. [Heterologous extracellular expression and initial characterization of the peroxisomal catalase from the methylotrophic yeast Hansenula polymorpha in Pichia pastoris].

    PubMed

    2013-01-01

    Catalase is well known to eliminate H2O2 in cells and reduces the toxicity of peroxide compounds. A catalase gene HpCat1 of methylotrophic yeast Hansenula polymorpha without the part coding the native signal peptide was cloned into expression vector pYM3165 and then integrated into genome of Pichia pastoris GS115 by electroporation. The result of the enzyme activity assay and SDS-PAGE demonstrated that the recombinant protein (HpCAT1) of H. polymorpha was extracellularly expressed in P. pastoris. The expressed catalase was recovered from the culture supernatant of P. pastoris GS 115 and purified by (NH4) 2SO4 fractionation and Ni-NTA affinity chromatography. The main biochemical properties of the recombinant protein HpCAT1, such as thermodependence and thermostability, pH optimum and pH stability, as well as the effect of metal ions and chemicals, were characterized. With H2O2 as the substrate, HpCAT1 displayed pH and tem- perature optima of approximately 2.6 and 45°C,respectively. The recombinant HpCAT1 activity was inhibited by 1 mM Hg2+ and Cu2+, but was highly enhanced by 1.0 mM Fe2+.

  8. Curation of the genome annotation of Pichia pastoris (Komagataella phaffii) CBS7435 from gene level to protein function.

    PubMed

    Valli, Minoska; Tatto, Nadine E; Peymann, Armin; Gruber, Clemens; Landes, Nils; Ekker, Heinz; Thallinger, Gerhard G; Mattanovich, Diethard; Gasser, Brigitte; Graf, Alexandra B

    2016-09-01

    As manually curated and non-automated BLAST analysis of the published Pichia pastoris genome sequences revealed many differences between the gene annotations of the strains GS115 and CBS7435, RNA-Seq analysis, supported by proteomics, was performed to improve the genome annotation. Detailed analysis of sequence alignment and protein domain predictions were made to extend the functional genome annotation to all P. pastoris sequences. This allowed the identification of 492 new ORFs, 4916 hypothetical UTRs and the correction of 341 incorrect ORF predictions, which were mainly due to the presence of upstream ATG or erroneous intron predictions. Moreover, 175 previously erroneously annotated ORFs need to be removed from the annotation. In total, we have annotated 5325 ORFs. Regarding the functionality of those genes, we improved all gene and protein descriptions. Thereby, the percentage of ORFs with functional annotation was increased from 48% to 73%. Furthermore, we defined functional groups, covering 25 biological cellular processes of interest, by grouping all genes that are part of the defined process. All data are presented in the newly launched genome browser and database available at www.pichiagenome.org In summary, we present a wide spectrum of curation of the P. pastoris genome annotation from gene level to protein function.

  9. Engineering of bottlenecks in Rhizopus oryzae lipase production in Pichia pastoris using the nitrogen source-regulated FLD1 promoter.

    PubMed

    Resina, David; Maurer, Michael; Cos, Oriol; Arnau, Carolina; Carnicer, Marc; Marx, Hans; Gasser, Brigitte; Valero, Francisco; Mattanovich, Diethard; Ferrer, Pau

    2009-09-01

    The yeast Pichia pastoris has been previously used for extracellular expression of a Rhizopus oryzae lipase (Rol). However, limitations in Rol folding and secretion through the cell wall became apparent when producing it in fed-batch cultivations. In this study, we have investigated the effect of combining two cell engineering strategies to alleviate putative bottlenecks in Rol secretion, namely the constitutive expression of the induced form of the Saccharomyces cerevisiae unfolded protein response transcriptional factor Hac1 and the deletion of the GAS1 gene encoding beta-1,3-glucanosyltransglycosylase, GPI-anchored to the outer leaflet of the plasma membrane, playing a key role in yeast cell wall assembly. The performance of these engineered Rol-producing strains has been compared in fed-batch cultivations set at a low specific growth rate of about 0.005 h-(1). It was found that Rol overexpression in a P. pastoris strain expressing constitutively the induced form of S. cerevisiae Hac1 and the deletion of GAS1 resulted in about a 3-fold and 4-fold increase in the overall process specific productivity, respectively, whereas the double mutant HAC1/deltagas1 strain yielded about a 7-fold increase. Overall, these results reflect the multiplicity of physiological bottlenecks at different levels/steps throughout the Rol synthesis, secretion and excretion processes in P. pastoris.

  10. Optimized expression of (S)-carbonyl reductase in Pichia pastoris for efficient production of (S)-1-phenyl-1, 2-ethanediol.

    PubMed

    Zhang, Rongzhen; Xu, Yan; Xiao, Rong; Wang, Lei; Zhang, Botao

    2014-08-01

    The recombinant (S)-carbonyl reductase (SCR) in Escherichia coli catalyzed the reduction of 2-hydroxyacetophenone to (S)-1-phenyl-1,2-ethanediol (PED) with low efficiency. In this work, its 6× histidine fusion gene his6 -scr was cloned in Pichia pastoris under the control of the AOX1 methanol inducible promoter. The heterologous protein SCR was expressed through a Mut(s) phenotype. Under the optimal conditions: pH 7.0, initial OD600 2.5, methanol daily addition concentration 1.0% and induction duration 4-5 days, the recombinant protein SCR was produced at the highest level. The enzyme activity in the cell-free exacts of P. pastoris was 0.38, which was over twofold than that of the recombinant E. coli-SCR. The enzyme was purified to homogeneity with a specific activity of 3.41 U mg(-1) , and it catalyzed the biotransformation of (S)-PED with a high optical purity of 96.9% in a high yield of 89.7% at optimum pH of 7.0. The developed effective system of P. pastoris-SCR will facilitate the preparation of pure chiral alcohol in industry.

  11. Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process.

    PubMed

    Cheng, Hairong; Lv, Jiyang; Wang, Hengwei; Wang, Ben; Li, Zilong; Deng, Zixin

    2014-04-01

    Xylitol is industrially synthesized by chemical reduction of D-xylose, which is more expensive than glucose. Thus, there is a growing interest in the production of xylitol from a readily available and much cheaper substrate, such as glucose. The commonly used yeast Pichia pastoris strain GS115 was shown to produce D-arabitol from glucose, and the derivative strain GS225 was obtained to produce twice amount of D-arabitol than GS115 by adaptive evolution during repetitive growth in hyperosmotic medium. We cloned the D-xylulose-forming D-arabitol dehydrogenase (DalD) gene from Klebsiella pneumoniae and the xylitol dehydrogenase (XDH) gene from Gluconobacter oxydans. Recombinant P. pastoris GS225 strains with the DalD gene only or with both DalD and XDH genes could produce xylitol from glucose in a single-fermentation process. Three-liter jar fermentation results showed that recombinant P. pastoris cells with both DalD and XDH converted glucose to xylitol with the highest yield of 0.078 g xylitol/g glucose and productivity of 0.29 g xylitol/L h. This was the first report to convert xylitol from glucose by the pathway of glucose-D-arabitol-D-xylulose-xylitol in a single process. The recombinant yeast could be used as a yeast cell factory and has the potential to produce xylitol from glucose.

  12. Enhanced cell disruption strategy in the release of recombinant hepatitis B surface antigen from Pichia pastoris using response surface methodology

    PubMed Central

    2012-01-01

    Background Cell disruption strategies by high pressure homogenizer for the release of recombinant Hepatitis B surface antigen (HBsAg) from Pichia pastoris expression cells were optimized using response surface methodology (RSM) based on the central composite design (CCD). The factors studied include number of passes, biomass concentration and pulse pressure. Polynomial models were used to correlate the above mentioned factors to project the cell disruption capability and specific protein release of HBsAg from P. pastoris cells. Results The proposed cell disruption strategy consisted of a number of passes set at 20 times, biomass concentration of 7.70 g/L of dry cell weight (DCW) and pulse pressure at 1,029 bar. The optimized cell disruption strategy was shown to increase cell disruption efficiency by 2-fold and 4-fold for specific protein release of HBsAg when compared to glass bead method yielding 75.68% cell disruption rate (CDR) and HBsAg concentration of 29.20 mg/L respectively. Conclusions The model equation generated from RSM on cell disruption of P. pastoris was found adequate to determine the significant factors and its interactions among the process variables and the optimum conditions in releasing HBsAg when validated against a glass bead cell disruption method. The findings from the study can open up a promising strategy for better recovery of HBsAg recombinant protein during downstream processing. PMID:23039947

  13. Enhanced cell disruption strategy in the release of recombinant hepatitis B surface antigen from Pichia pastoris using response surface methodology.

    PubMed

    Tam, Yew Joon; Allaudin, Zeenathul Nazariah; Lila, Mohd Azmi Mohd; Bahaman, Abdul Rani; Tan, Joo Shun; Rezaei, Morvarid Akhavan

    2012-10-05

    Cell disruption strategies by high pressure homogenizer for the release of recombinant Hepatitis B surface antigen (HBsAg) from Pichia pastoris expression cells were optimized using response surface methodology (RSM) based on the central composite design (CCD). The factors studied include number of passes, biomass concentration and pulse pressure. Polynomial models were used to correlate the above mentioned factors to project the cell disruption capability and specific protein release of HBsAg from P. pastoris cells. The proposed cell disruption strategy consisted of a number of passes set at 20 times, biomass concentration of 7.70 g/L of dry cell weight (DCW) and pulse pressure at 1,029 bar. The optimized cell disruption strategy was shown to increase cell disruption efficiency by 2-fold and 4-fold for specific protein release of HBsAg when compared to glass bead method yielding 75.68% cell disruption rate (CDR) and HBsAg concentration of 29.20 mg/L respectively. The model equation generated from RSM on cell disruption of P. pastoris was found adequate to determine the significant factors and its interactions among the process variables and the optimum conditions in releasing HBsAg when validated against a glass bead cell disruption method. The findings from the study can open up a promising strategy for better recovery of HBsAg recombinant protein during downstream processing.

  14. Impacts of high β-galactosidase expression on central metabolism of recombinant Pichia pastoris GS115 using glucose as sole carbon source via (13)C metabolic flux analysis.

    PubMed

    Nie, Yongsheng; Huang, Mingzhi; Lu, Junjie; Qian, Jiangchao; Lin, Weilu; Chu, Ju; Zhuang, Yingping; Zhang, Siliang

    2014-10-10

    The yeast Pichia pastoris GS115 is a widely used microbial cell factory for the production of heterologous protein. In order to reveal the impacts of high heterologous protein expression on the central metabolism of Pichia pastoris GS115 using glucose as sole carbon source, we engineered a high β-galactosidase expression strain P. pastoris G1HL and a low expression control strain P. pastoris GHL through controlling the initiation strength of constitutive promoter pGAP. The carbon flux distributions in these two strains were quantified via (13)C metabolic flux analysis. Compared to the control strain, G1HL showed a lower growth rate, a higher flux through glycolysis pathway, a higher flux through pentose phosphate pathway, and a lower flux through by-products secretion pathway. The metabolic flux redistribution in G1HL was thought to compensate the increased redox cofactors and energy demands caused by the high protein expression. Although the fluxes through Krebs cycle in two engineered strains were almost the same, they were significantly lower than those in wild strain. The enhanced expression of β-galactosidase by glutamate supplementation demonstrated the potential of P. pastoris GS115 to catabolize more carbon through the Krebs cycle for even higher protein expression. In conclusion, our work indicates that P. pastoris GS115 can readjusts the central metabolism for higher heterologous protein expression and provides strategies for strain development or process optimization for enhancing production of heterologous protein.

  15. Binding studies using Pichia pastoris expressed human aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator proteins.

    PubMed

    Zheng, Yujuan; Xie, Jinghang; Huang, Xin; Dong, Jin; Park, Miki S; Chan, William K

    2016-06-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor which activates gene transcription by binding to its corresponding enhancer as the heterodimer, which is consisted of AHR and the aryl hydrocarbon receptor nuclear translocator (ARNT). Human AHR can be rather difficult to study, when compared among the AHR of other species, since it is relatively unstable and less sensitive to some ligands in vitro. Overexpression of human AHR has been limited to the baculovirus expression, which is costly and tedious due to the need of repetitive baculovirus production. Here we explored whether we could generate abundant amounts of human AHR and ARNT in a better overexpression system for functional study. We observed that human AHR and ARNT can be expressed in Pichia pastoris with yields that are comparable to the baculovirus system only if their cDNAs are optimized for Pichia expression. Fusion with a c-myc tag at their C-termini seems to increase the expression yield. These Pichia expressed proteins can effectively heterodimerize and form the ternary AHR/ARNT/enhancer complex in the presence of β-naphthoflavone or kynurenine. Limited proteolysis using thermolysin can be used to study the heterodimerization of these human AHR and ARNT proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Optimising expression of the recombinant fusion protein biopesticide ω-hexatoxin-Hv1a/GNA in Pichia pastoris: sequence modifications and a simple method for the generation of multi-copy strains.

    PubMed

    Pyati, Prashant; Fitches, Elaine; Gatehouse, John A

    2014-08-01

    Production of recombinant protein bio-insecticides on a commercial scale can only be cost effective if host strains with very high expression levels are available. A recombinant fusion protein containing an arthropod toxin, ω-hexatoxin-Hv1a, (from funnel web spider Hadronyche versuta) linked to snowdrop lectin (Galanthus nivalis agglutinin; GNA) is an effective oral insecticide and candidate biopesticide. However, the fusion protein was vulnerable to proteolysis during production in the yeast Pichia pastoris. To prevent proteolysis, the Hv1a/GNA fusion expression construct was modified by site-directed mutagenesis to remove a potential Kex2 cleavage site at the C-terminus of the Hv1a peptide. To obtain a high expressing clone of P. pastoris to produce recombinant Hv1a/GNA, a straightforward method was used to produce multi-copy expression plasmids, which does not require multiple integrations to give clones of P. pastoris containing high copy numbers of the introduced gene. Removal of the Kex2 site resulted in increased levels of intact fusion protein expressed in wild-type P. pastoris strains, improving levels of intact recombinant protein recoverable. Incorporation of a C-terminal (His)6 tag enabled single step purification of the fusion protein. These modifications did not affect the insecticidal activity of the recombinant toxin towards lepidopteran larvae. Introduction of multiple expression cassettes increased the amount of secreted recombinant fusion protein in a laboratory scale fermentation by almost tenfold on a per litre of culture basis. Simple modifications in the expression construct can be advantageous for the generation of high expressing P. pastoris strains for production of a recombinant protein, without altering its functional properties.

  17. Construction of Recombinant Pichia pastoris Carrying a Constitutive AvBD9 Gene and Analysis of Its Activity.

    PubMed

    Tu, Jian; Qi, Kezong; Xue, Ting; Wei, Haiting; Zhang, Yongzheng; Wu, Yanli; Zhou, Xiuhong; Lv, Xiaolong

    2015-12-28

    Avian beta-defensin 9 (AvBD9) is a small cationic peptide consisting of 41 amino acids that plays a crucial rule in innate immunity and acquired immunity in chickens. Owing to its wide antibacterial spectrum, lack of a residue, and failure to induce bacterial drug resistance, AvBD9 is expected to become a substitute for conventional antibiotics in the livestock and poultry industries. Using the preferred codon of Pichia pastoris, the mature AvBD9 peptide was designed and synthesized, based on the sequence from GenBank. The P. pastoris constitutive expression vector pGHKα was used to construct a pGHKα-AvBD9 recombinant plasmid. Restriction enzyme digestion was performed using SacI and BglII to remove the ampicillin resistance gene, and the plasmid was electrotransformed into P. pastoris GS115. High-expression strains with G418 resistance were screened, and the culture supernatant was analyzed by Tricine-SDS-PAGE and western blot assay to identify target bands of about 6 kDa. A concentrate of the supernatant containing AvBD9 was used for determination of antimicrobial activity. The supernatant concentrate was effective against Escherichia coli, Salmonella paratyphi, Salmonella pullorum, Pseudomonas aeruginosa, Enterococcus faecalis, and Enterobacter cloacae. The fermentation product of P. pastoris carrying the recombinant AvBD9 plasmid was adjusted to 1.0 × 10(8) CFU/ml and added to the drinking water of white feather broilers at different concentrations. The daily average weight gain and immune organ indices in broilers older than 7 days were significantly improved by the AvBD9 treatment.

  18. Expression of recombinant Newcastle disease virus F protein in Pichia pastoris and its immunogenicity using flagellin as the adjuvant.

    PubMed

    Kang, Xilong; Wang, Jing; Jiao, Yang; Tang, Peipei; Song, Li; Xiong, Dan; Yin, Yuelan; Pan, Zhiming; Jiao, Xinan

    2016-12-01

    Newcastle disease (ND), a highly contagious, acute, and potent infectious disease caused by Newcastle disease virus (NDV), has a considerable impact on the global poultry industry. Although both live attenuated and inactivated vaccines are used to prevent and control the spread of ND among chickens, the increasing number of ND outbreaks in commercial poultry flocks worldwide indicates that routine vaccinations are insufficient to control ND. Hence, efforts are being invested into developing alternative and more effective vaccination strategies. In this study, we focus on F protein, the neutralizing and protective antigen of NDV, and flagellin (FliC), a toll-like receptor 5 (TLR5) agonist that is an effective inducer of innate immune responses. We amplified F gene from velogenic NDV strain F48E8. The recombinant histidine (His)-tagged F protein was efficiently expressed in a Pichia pastoris (P. pastoris) eukaryotic system and verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blotting. The conditions for F protein expression in P. pastoris were optimal. The immunogenicity of F protein with FliC as the adjuvant was evaluated in a C3H/HeJ mouse model. FliC was found to enhance both F-specific and NDV-specific IgG responses and F-specific cellular immune responses following intraperitoneal co-administration with F protein. Thus, the recombinant F protein expressed by P. pastoris when used with flagellin as the adjuvant has potential as a subunit vaccine candidate.

  19. Novel Strategy of Using Methyl Esters as Slow Release Methanol Source during Lipase Expression by mut+ Pichia pastoris X33

    PubMed Central

    Kumari, Arti; Gupta, Rani

    2014-01-01

    One of the major issues with heterologous production of proteins in Pichia pastoris X33 under AOX1 promoter is repeated methanol induction. To obviate repeated methanol induction, methyl esters were used as a slow release source of methanol in lipase expressing mut+ recombinant. Experimental design was based on the strategy that in presence of lipase, methyl esters can be hydrolysed to release their products as methanol and fatty acid. Hence, upon break down of methyl esters by lipase, first methanol will be used as a carbon source and inducer. Then P. pastoris can switch over to fatty acid as a carbon source for multiplication and biomass maintenance till further induction by methyl esters. We validated this strategy using recombinant P. pastoris expressing Lip A, Lip C from Trichosporon asahii and Lip11 from Yarrowia lipolytica. We found that the optimum lipase yield under repeated methanol induction after 120 h was 32866 U/L, 28271 U/L and 21978 U/L for Lip C, Lip A and Lip 11 respectively. In addition, we found that a single dose of methyl ester supported higher production than repeated methanol induction. Among various methyl esters tested, methyl oleate (0.5%) caused 1.2 fold higher yield for LipA and LipC and 1.4 fold for Lip11 after 120 h of induction. Sequential utilization of methanol and oleic acid by P. pastoris was observed and was supported by differential peroxisome proliferation studies by transmission electron microscopy. Our study identifies a novel strategy of using methyl esters as slow release methanol source during lipase expression. PMID:25170843

  20. Cloning of a thermostable xylanase from Actinomadura sp. S14 and its expression in Escherichia coli and Pichia pastoris.

    PubMed

    Sriyapai, Thayat; Somyoonsap, Peechapack; Matsui, Kenji; Kawai, Fusako; Chansiri, Kosum

    2011-05-01

    A thermophilic xylan-degrading Actinomadura sp. S14 was isolated from compost in Thailand. Hemicellulase activities such as endo-1,4-β-xylanase, β-xylosidase and α-arabinofuranosidase were induced with xylan-containing agriculture wastes and oat spelt xylan. The gene encoding xylanase consisting of 687bp was cloned from Actinomadura sp. S14. The deduced amino acid sequence contained a signal peptide of 41 amino acids and a probable mature xylanase of 188 amino acids. An open reading frame (xynS14) corresponding to a mature xylanase was expressed in Escherichia coli and Pichia pastoris. The specific activity of purified XynS14 (P. pastoris) was 2.4-fold higher than XynS14 (E. coli). Both XynS14s showed the same basic properties such as optimal pH and temperature (pH 6.0 and 80°C) and stability in a broad pH range (pH 5.0-11.0) and at high temperatures up to 80°C. Both XynS14s showed approximately the same substrate specificity and K(m) values toward various xylans, but XynS14 (P. pastoris) showed higher V(max) and K(cat) than XynS14 (E. coli). Higher specific activities of XynS14 (P. pastoris) may be due to protein-folding in the host. Purified XynS14 showed more endo-1,4-β-xylanase activity on xylan and xylooligosaccharides than on xylotriose.

  1. Novel strategy of using methyl esters as slow release methanol source during lipase expression by mut+ Pichia pastoris X33.

    PubMed

    Kumari, Arti; Gupta, Rani

    2014-01-01

    One of the major issues with heterologous production of proteins in Pichia pastoris X33 under AOX1 promoter is repeated methanol induction. To obviate repeated methanol induction, methyl esters were used as a slow release source of methanol in lipase expressing mut+ recombinant. Experimental design was based on the strategy that in presence of lipase, methyl esters can be hydrolysed to release their products as methanol and fatty acid. Hence, upon break down of methyl esters by lipase, first methanol will be used as a carbon source and inducer. Then P. pastoris can switch over to fatty acid as a carbon source for multiplication and biomass maintenance till further induction by methyl esters. We validated this strategy using recombinant P. pastoris expressing Lip A, Lip C from Trichosporon asahii and Lip11 from Yarrowia lipolytica. We found that the optimum lipase yield under repeated methanol induction after 120 h was 32866 U/L, 28271 U/L and 21978 U/L for Lip C, Lip A and Lip 11 respectively. In addition, we found that a single dose of methyl ester supported higher production than repeated methanol induction. Among various methyl esters tested, methyl oleate (0.5%) caused 1.2 fold higher yield for LipA and LipC and 1.4 fold for Lip11 after 120 h of induction. Sequential utilization of methanol and oleic acid by P. pastoris was observed and was supported by differential peroxisome proliferation studies by transmission electron microscopy. Our study identifies a novel strategy of using methyl esters as slow release methanol source during lipase expression.

  2. Development of a mixed feed strategy for a recombinant Pichia pastoris strain producing with a de-repression promoter.

    PubMed

    Capone, Simona; Horvat, Jernej; Herwig, Christoph; Spadiut, Oliver

    2015-07-10

    Recombinant protein production in the yeast Pichia pastoris is usually based on the alcohol oxidase promoters pAOX1 and pAOX2, which are regulated by methanol and strongly repressed by other C-sources, like glycerol and glucose. However, the use of methanol brings several disadvantages, which is why current trends in bioprocess development with P. pastoris are focussing on minimizing the required amount of methanol or even avoid its employment. In this respect novel promoter systems which do not rely on methanol have been investigated and promoter variants were designed to fine-tune gene expression. Amongst these novel promoter systems, mutated AOX promoters, which are regulated by available carbon source concentration (so-called de-repressed promoters), are currently raising attention. However, the main disadvantage of such a production system is that expression and growth usually cannot happen concomitantly resulting in low space-time-yields. Here we show the development of a mixed-feed strategy for an industrial recombinant P. pastoris de-repression strain aiming at increased productivity and maximum space-time-yield. By doing dynamic experiments we determined a ratio between the specific substrate uptake rates of glycerol and sorbitol allowing a more than 2-fold increased productivity compared to the conventional single substrate de-repression strategy. Based on our results we recommend adjusting q(s glycerol) = 0.04 g g(-1) h(-1) and q(s sorbitol) = 0.055 g g(-1) h(-1) to obtain highest productivity with a P. pastoris de-repression strain. Our methodological approach of designing mixed-feed strategies based on physiological strain characterization using dynamic experiments proved to be beneficial.

  3. Macromolecular and elemental composition analysis and extracellular metabolite balances of Pichia pastoris growing at different oxygen levels

    PubMed Central

    2009-01-01

    Background Analysis of the cell operation at the metabolic level requires collecting data of different types and to determine their confidence level. In addition, the acquired information has to be combined in order to obtain a consistent operational view. In the case of Pichia pastoris, information of its biomass composition at macromolecular and elemental level is scarce particularly when different environmental conditions, such as oxygen availability or, genetic backgrounds (e.g. recombinant protein production vs. non production conditions) are compared. Results P. pastoris cells growing in carbon-limited chemostat cultures under different oxygenation conditions (% O2 in the bioreactor inlet gas: 21%, 11% and 8%, corresponding to normoxic, oxygen-limiting and hypoxic conditions, respectively), as well as under recombinant protein (antibody fragment, Fab) producing and non-producing conditions, were analyzed from different points of view. On the one hand, the macromolecular and elemental composition of the biomass was measured using different techniques at the different experimental conditions and proper reconciliation techniques were applied for gross error detection of the measured substrates and products conversion rates. On the other hand, fermentation data was analyzed applying elemental mass balances. This allowed detecting a previously missed by-product secreted under hypoxic conditions, identified as arabinitol (aka. arabitol). After identification of this C5 sugar alcohol as a fermentation by-product, the mass balances of the fermentation experiments were validated. Conclusions After application of a range of analytical and statistical techniques, a consistent view of growth parameters and compositional data of P. pastoris cells growing under different oxygenation conditions was obtained. The obtained data provides a first view of the effects of oxygen limitation on the physiology of this microorganism, while recombinant Fab production seems to have

  4. High-level expression of a sika deer (Cervus nippon) Cu/Zn superoxide dismutase in Pichia pastoris and its characterization.

    PubMed

    Li, Ren-Kuan; Fu, Cai-Li; Chen, Ping; Ng, Tzi Bun; Ye, Xiu-Yun

    2013-03-01

    Production of a sika deer Cu/Zn-SOD was achieved in Pichia pastoris after the reconstituted expression vector pPIC9K was transformed into the strain GS115. By employing Saccharomyces cerevisiae secretion signal peptide (α-factor) under the regulation of the methanol-inducible promoter of the gene of alcohol oxidase 1 (AOX1), sika deer Cu/Zn-SOD with a molecular mass of 16kDa was expressed while recombinant sika deer Cu/Zn-SOD with an activity of 3500U/mL was obtained from a 5L bioreactor. After two successive steps of chromatography on DEAE-650C and Superdex75, recombinant sika deer Cu/Zn-SOD was obtained with 13.8% yield, 14.5-fold purification, and a specific activity of 3447U/mg. Its optimum temperature and optimum pH were 40°C and 7.0, respectively. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  5. High yield expression of an AHL-lactonase from Bacillus sp. B546 in Pichia pastoris and its application to reduce Aeromonas hydrophila mortality in aquaculture

    PubMed Central

    2010-01-01

    Background Aeromonas hydrophila is a serious pathogen and can cause hemorrhagic septicemia in fish. To control this disease, antibiotics and chemicals are widely used which can consequently result in "superbugs" and chemical accumulation in the food chain. Though vaccine against A. hydrophila is available, its use is limited due to multiple serotypes of this pathogen and problems of safety and efficacy. Another problem with vaccination is the ability to apply it to small fish especially in high numbers. In this study, we tried a new way to attenuate the A. hydrophila infection by using a quorum quenching strategy with a recombinant AHL-lactonase expressed in Pichia pastoris. Results The AHL-lactonase (AiiAB546) from Bacillus sp. B546 was produced extracellularly in P. pastoris with a yield of 3,558.4 ± 81.3 U/mL in a 3.7-L fermenter when using 3-oxo-C8-HSL as the substrate. After purification with a HiTrap Q Sepharose column, the recombinant homogenous protein showed a band of 33.6 kDa on SDS-PAGE, higher than the calculated molecular mass (28.14 kDa). Deglycosylation of AiiAB546 with Endo H confirmed the occurrence of N-glycosylation. The purified recombinant AiiAB546 showed optimal activity at pH 8.0 and 20°C, exhibited excellent stability at pH 8.0-12.0 and thermal stability at 70°C, was firstly confirmed to be significantly protease-resistant, and had wide substrate specificity. In application test, when co-injected with A. hydrophila in common carp, recombinant AiiAB546 decreased the mortality rate and delayed the mortality time of fish. Conclusions Our results not only indicate the possibility of mass-production of AHL-lactonase at low cost, but also open up a promising foreground of application of AHL-lactonase in fish to control A. hydrophila disease by regulating its virulence. To our knowledge, this is the first report on heterologous expression of AHL-lactonase in P. pastoris and attenuating A. hydrophila virulence by co-injection with AHL

  6. Pichia pastoris-expressed dengue 2 envelope forms virus-like particles without pre-membrane protein and induces high titer neutralizing antibodies.

    PubMed

    Mani, Shailendra; Tripathi, Lav; Raut, Rajendra; Tyagi, Poornima; Arora, Upasana; Barman, Tarani; Sood, Ruchi; Galav, Alka; Wahala, Wahala; de Silva, Aravinda; Swaminathan, Sathyamangalam; Khanna, Navin

    2013-01-01

    Dengue is a mosquito-borne viral disease with a global prevalence. It is caused by four closely-related dengue viruses (DENVs 1-4). A dengue vaccine that can protect against all four viruses is an unmet public health need. Live attenuated vaccine development efforts have encountered unexpected interactions between the vaccine viruses, raising safety concerns. This has emphasized the need to explore non-replicating dengue vaccine options. Virus-like particles (VLPs) which can elicit robust immunity in the absence of infection offer potential promise for the development of non-replicating dengue vaccine alternatives. We have used the methylotrophic yeast Pichia pastoris to develop DENV envelope (E) protein-based VLPs. We designed a synthetic codon-optimized gene, encoding the N-terminal 395 amino acid residues of the DENV-2 E protein. It also included 5' pre-membrane-derived signal peptide-encoding sequences to ensure proper translational processing, and 3' 6× His tag-encoding sequences to facilitate purification of the expressed protein. This gene was integrated into the genome of P. pastoris host and expressed under the alcohol oxidase 1 promoter by methanol induction. Recombinant DENV-2 protein, which was present in the insoluble membrane fraction, was extracted and purified using Ni(2+)-affinity chromatography under denaturing conditions. Amino terminal sequencing and detection of glycosylation indicated that DENV-2 E had undergone proper post-translational processing. Electron microscopy revealed the presence of discrete VLPs in the purified protein preparation after dialysis. The E protein present in these VLPs was recognized by two different conformation-sensitive monoclonal antibodies. Low doses of DENV-2 E VLPs formulated in alum were immunogenic in inbred and outbred mice eliciting virus neutralizing titers >1,1200 in flow cytometry based assays and protected AG129 mice against lethal challenge (p<0.05). The formation of immunogenic DENV-2 E VLPs in the

  7. High-level expression of a xylanase gene from the thermophilic fungus Paecilomyces thermophila in Pichia pastoris.

    PubMed

    Fan, Guangsen; Katrolia, Priti; Jia, Huiyong; Yang, Shaoqing; Yan, Qiaojuan; Jiang, Zhengqiang

    2012-11-01

    A xylanase gene from Paecilomyces thermophila was functionally expressed in Pichia pastoris. The recombinant xylanase (xynA) was predominantly extracellular; in a 5 l fermentor culture, the total extracellular protein was 8.1 g l(-1) with an activity of 52,940 U ml(-1). The enzyme was purified to homogeneity with a recovery of 48 %. The recombinant xynA was optimally active at 75 °C, as measured over 10 min, and at pH 7. The enzyme was stable up to 80 °C for 30 min. It hydrolyzed birchwood xylan, beechwood xylan and xylooligosaccharides to produce xylobiose and xylotriose as the main products.

  8. Recombinant expression of a laccase from Coriolopsis gallica in Pichia pastoris using a modified α-factor preproleader.

    PubMed

    Avelar, Mayra; Olvera, Clarita; Aceves-Zamudio, Denise; Folch, Jorge Luis; Ayala, Marcela

    2017-08-01

    In this work we communicate the heterologous expression of a laccase from Coriolopsis gallica in Pichia pastoris. This enzyme has been reported to efficiently degrade a variety of pollutants such as industrial dyes. The expression strategy included using a previously reported modified α-factor preproleader for enhanced secretion and pAOX1, a methanol-responsive promoter. Methanol concentration, copper salts concentration and temperature were varied in order to enhance laccase expression in this heterologous system. A volumetric activity of 250 U/L was achieved after 12-day culture in Fernbach flasks. The protein was recovered from the supernatant and purified, obtaining a preparation with 90% electrophoretic purity. The catalytic constants of the recombinant enzyme are almost identical to the fungal enzyme, thus rendering this system a useful tool for protein engineering of laccase from C. gallica. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: A review

    PubMed Central

    Cos, Oriol; Ramón, Ramón; Montesinos, José Luis; Valero, Francisco

    2006-01-01

    The methylotrophic yeast Pichia pastoris has been widely reported as a suitable expression system for heterologous protein production. The use of different phenotypes under PAOX promoter, other alternative promoters, culture medium, and operational strategies with the objective to maximize either yield or productivity of the heterologous protein, but also to obtain a repetitive product batch to batch to get a robust process for the final industrial application have been reported. Medium composition, kinetics growth, fermentation operational strategies from fed-batch to continuous cultures using different phenotypes with the most common PAOX promoter and other novel promoters (GAP, FLD, ICL), the use of mixed substrates, on-line monitoring of the key fermentation parameters (methanol) and control algorithms applied to the bioprocess are reviewed and discussed in detail. PMID:16600031

  10. Enhancement of cell viability and alkaline polygalacturonate lyase production by sorbitol co-feeding with methanol in Pichia pastoris fermentation.

    PubMed

    Wang, Zhihao; Wang, Yun; Zhang, Dongxu; Li, Jianghua; Hua, Zhaozhe; Du, Guocheng; Chen, Jian

    2010-02-01

    Alkaline polygalacturonate lyase (PGL) production by Pichia pastoris GS115 was used as a model to study the mechanism and strategy for enhancing heterologous protein production. In order to enhance cell viability and volumetric recombinant protein productivity, sorbitol, which had been confirmed to be a non-repressive carbon source, was added together with methanol during the induction phase. The resultant PGL activity was up to 1593 U mL(-1), which was enhanced 1.85-fold compared to the control (863 U mL(-1)) cultured with sorbitol added at a constant rate of 3.6 g h(-1)L(-1) after an induction period of 100 h. Further results revealed that an appropriate sorbitol co-feeding strategy not only decreased the cell mortality to 8.8% (the control is about 23.1%) in the end of fermentation, but also reduced the proteolytic degradation of PGL.

  11. Improvement of porcine interferon-α production by recombinant Pichia pastoris via induction at low methanol concentration and low temperature.

    PubMed

    Jin, Hu; Liu, Guoqiang; Dai, Keke; Wang, Huihui; Li, Zhen; Shi, Zhongping

    2011-09-01

    Improved porcine interferon-α (pIFN-α) production by recombinant Pichia pastoris was achieved by culture conditions optimization in a 5-l bioreactor. The results indicated that the pIFN-α concentration, specific methanol consumption rate, specific activities of alcohol oxidase, formaldehyde dehydrogenase, and formate dehydrogenase could be significantly enhanced by decreasing induction temperature. The highest pIFN-α concentration (1.35 g l(-1)) was obtained by simultaneously controlling methanol concentration at 5 g l(-1) and induction temperature at 20 °C, which was about 1.6-fold higher than the maximum obtained with previous optimal methanol concentration level (about 10 g l(-1)) when inducing at 30 °C. The potential mechanisms behind low temperature and low methanol concentration effect on pIFN-α production may be ascribed to higher cell metabolic activity, more carbon flux towards pIFN-α production, and less intracellular/extracellular protease release.

  12. Recombinant proteinase 3 (Wegener's antigen) expressed in Pichia pastoris is functionally active and is recognized by patient sera.

    PubMed

    Harmsen, M C; Heeringa, P; van der Geld, Y M; Huitema, M G; Klimp, A; Tiran, A; Kallenberg, C G

    1997-11-01

    The open reading frame of human proteinase 3 (PR3) without the prepro-peptide was cloned and expressed in Escherichia coli (rcPR3) and in Pichia pastoris (rpPR3). The 6-histidine tagged rpPR3 was efficiently secreted into culture supernatant from which it could be purified by immobilized metal chelate chromatography. Purified rpPR3 migrated as a single 32-kD band on SDS-PAGE and harboured protease activity that could be inhibited with inhibitors specific for serine-proteases. By indirect antigen-capture ELISA using rpPR3, 60% of sera from patients with Wegener's granulomatosis bound to the recombinant product, although it was not recognized in ELISA with directly coated rpPR3.

  13. Gene cloning of cellobiohydrolase II from the white rot fungus Irpex lacteus MC-2 and its expression in Pichia pastoris.

    PubMed

    Toda, Hiroshi; Nagahata, Naoki; Amano, Yoshihiko; Nozaki, Kouichi; Kanda, Takahisa; Okazaki, Mitsuo; Shimosaka, Makoto

    2008-12-01

    A gene (cel4) coding for a cellobiohydrolase II (Ex-4) was isolated from the white rot basidiomycete, Irpex lacteus strain MC-2. The cel4 ORF was composed of 452 amino acid residues and was interrupted by eight introns. Its deduced amino acid sequence revealed a multi domain structure composed of a cellulose-binding domain, a linker, and a catalytic domain belonging to family 6 of glycosyl hydrolases, from the N-terminus. cel4 cDNA was successfully expressed in the yeast Pichia pastoris. Recombinant Ex-4 showed endo-processive degrading activity towards cellulosic substrates, and a synergistic effect in the degradation of Avicel was observed when the enzyme acted together with either cellobiohydrolase I (Ex-1) or endoglucanase (En-1) produced by I. lacteus MC-2.

  14. Expression of discoidin domain receptor 2 (DDR2) extracellular domain in pichia pastoris and functional analysis in synovial fibroblasts and NIT3T3 cells.

    PubMed

    Zhang, Wei; Ding, Tianbing; Zhang, Jian; Su, Jin; Li, Fuyang; Liu, Xinping; Ma, Wenyu; Yao, Libo

    2006-10-01

    Discoidin domain receptor 2 (DDR2) is a kind of protein tyrosine kinases associated with cell proliferation and tumor metastasis, and collagen, identified as a ligand for DDR2, up-regulates matrix metallloproteinase 1 (MMP-1) and MMP-2 expression in cellular matrix. To investigate the roles of DDR2 in destruction of cartilage in rheumatoid arthritis (RA) and tumor metastasis, we tried to express extracellular domain of DDR2 fused with a His tag to increase protein solubility and facilitate purification (without signal peptide and transmembrane domain, designated DR) in Pichia pastoris, purify the expressed protein, and characterize its function, for purpose of future application as a specific DDR2 antagonist. Two clones of relative high expression of His-DR were obtained. After purification by a Ni-NTA (nitric-tri-acetic acid) chromatographic column, soluble fused His-DR over 90% purity were obtained. Competitive binding inhibition assay demonstrated that expressed His-DR could block the binding of DDR2 and natural DDR2 receptors on NIT3T3 and synovial cell surfaces. Results of RT-PCR, Western blotting, and gelatinase zymography showed that His-DR was capable of inhibiting MMP-1 and MMP-2 secretion from NIT3T3 cells and RA synoviocytes stimulated by collagen II. For MMP-1, the inhibitory effect was displayed at the levels of mRNA and protein, whereas for MMP-2 it was demonstrated at the level of protein physiological activity. All these findings suggested that the fused expressed His-DR inhibited the activity of natural DDR2, and relevant MMP-1 and MMP-2 expression in synoviocytes and NIH3T3 cells provoked by collagen II.

  15. Enantioselective oxidation of 2-hydroxy carboxylic acids by glycolate oxidase and catalase coexpressed in methylotrophic Pichia pastoris.

    PubMed

    Das, Shuvendu; Glenn, James H; Subramanian, Mani

    2010-01-01

    Glycolate oxidase (GO; (S)-2-hydroxyacid oxidase, EC 1.1.3.15) is a flavin mononucleotide (FMN)-dependent enzyme, which catalyzes the oxidation of 2-hydroxy carboxylic acids to the corresponding 2-keto acids. Catalase has been used as cocatalyst to decompose hydrogen peroxide produced in the reaction, thus limiting peroxide-based side reactions and GO deactivation. GO from spinach and catalase T from Saccharomyces cerevisiae previously coexpressed in Pichia pastoris strain NRRL Y-21001, was permeabilized and used for the oxidation of 3-phenyllactic acid, 3-indolelactic acid, 3-chlorolactic acid, 2-hydroxybutanoic acid, and 2-hydroxydecanoic acid to demonstrate high degree of selectivity to the (S)-enantiomers, leaving (R)-isomers intact. The rates of oxidation ranged from 1.3 to 120.0%, relative to the oxidation of lactic acid to pyruvic acid. The best substrates were 3-chlorolactic acid (110%) and 2-hydroxybutanoic acid (120%). Oxidation was carried out with (R)-, (S)-, and (RS)-3-phenyllactic acid, (RS)-lactic acid, and (RS)-2-hydroxybutanoic acid in 500 mL scale to characterize the products and stoichiometry of the reaction. All (RS)- and (S)-2-hydroxy acids produced 2-keto acids at close to the theoretical yield in 1-9 h. (R)-3-Phenyllactic acid was not oxidized over a period of 9 h. Addition of exogenous FMN and catalase were not required for this oxidation using double recombinant Pichia pastoris whole cells. As GO is absolutely specific to (S)-enantiomers, it can be used for resolution of racemic 2-hydroxy acids to (R)-2-hydroxy acids as well as for production of 2-keto acids. This is the first report on the selectivity of a broad range of 2-hydroxy acids by GO. Copyright 2009 American Institute of Chemical Engineers

  16. Cloning, Production, and Functional Expression of the Bacteriocin Enterocin A, Produced by Enterococcus faecium T136, by the Yeasts Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Arxula adeninivorans

    PubMed Central

    Borrero, Juan; Kunze, Gotthard; Jiménez, Juan J.; Böer, Erik; Gútiez, Loreto; Herranz, Carmen; Cintas, Luis M.

    2012-01-01

    The bacteriocin enterocin A (EntA) produced by Enterococcus faecium T136 has been successfully cloned and produced by the yeasts Pichia pastoris X-33EA, Kluyveromyces lactis GG799EA, Hansenula polymorpha KL8-1EA, and Arxula adeninivorans G1212EA. Moreover, P. pastoris X-33EA and K. lactis GG799EA produced EntA in larger amounts and with higher antimicrobial and specific antimicrobial activities than the EntA produced by E. faecium T136. PMID:22685156

  17. Secretion and proteolysis of heterologous proteins fused to the Escherichia coli maltose binding protein in Pichia pastoris.

    PubMed

    Li, Zhiguo; Leung, Wilson; Yon, Amy; Nguyen, John; Perez, Vincent C; Vu, Jane; Giang, William; Luong, Linda T; Phan, Tracy; Salazar, Kate A; Gomez, Seth R; Au, Colin; Xiang, Fan; Thomas, David W; Franz, Andreas H; Lin-Cereghino, Joan; Lin-Cereghino, Geoff P

    2010-07-01

    The Escherichia coli maltose binding protein (MBP) has been utilized as a translational fusion partner to improve the expression of foreign proteins made in E. coli. When located N-terminal to its cargo protein, MBP increases the solubility of intracellular proteins and improves the export of secreted proteins in bacterial systems. We initially explored whether MBP would have the same effect in the methylotrophic yeast Pichia pastoris, a popular eukaryotic host for heterologous protein expression. When MBP was fused as an N-terminal partner to several C-terminal cargo proteins expressed in this yeast, proteolysis occurred between the two peptides, and MBP reached the extracellular region unattached to its cargo. However, in two of three instances, the cargo protein reached the extracellular region as well, and its initial attachment to MBP enhanced its secretion from the cell. Extensive mutagenesis of the spacer region between MBP and its C-terminal cargo protein could not inhibit the cleavage although it did cause changes in the protease target sites in the fusion proteins, as determined by mass spectrometry. Taken together, these results suggested that an uncharacterized P. pastoris protease attacked at different locations in the region C-terminal of the MBP domain, including the spacer and cargo regions, but the MBP domain could still act to enhance the secretion of certain cargo proteins.

  18. Heterologous expression and characterization of the hydrophobin HFBI in Pichia pastoris and evaluation of its contribution to the food industry.

    PubMed

    Niu, Baolong; Wang, Dandan; Yang, Yanyan; Xu, Haijin; Qiao, Mingqiang

    2012-08-01

    The class II hydrophobin HFBI from Trichoderma reesei was heterologously expressed by Pichia pastoris using pPIC9 vector under the control of the promoter AOX1. The recombinant HFBI (rHFBI) was purified by ultrafiltration and reverse-phase high performance liquid chromatography. Tricine-SDS-PAGE and Western blotting demonstrated that rHFBI with the expected molecular weight of 7.5 kDa was secreted into the culture medium. X-ray photoelectron spectroscopy and water contact angle measurements indicated that rHFBI could lead to the conversion of the wettability of the hydrophobic siliconized glass and hydrophilic mica surfaces relying on the self-assembly membrane on hydrophobic/hydrophilic interfaces. It was demonstrated that rHFBI had the ability to stabilize oil droplets, which was far excess of the class I hydrophobin HGFI heterologously expressed in P. pastoris (rHGFI) and the typical food emulsifier sodium caseinate. In gushing experiments, it was shown that rHFBI was a strong gushing inducer in beer, whereas rHGFI did not display any signs of gushing. This provided the potential of rHFBI to be used as a novel emulsifying agent and a predictor of gushing risk.

  19. Transcription factor Mxr1 promotes the expression of Aox1 by repressing glycerol transporter 1 in Pichia pastoris.

    PubMed

    Zhan, Chunjun; Yang, Yankun; Zhang, Zhenyang; Li, Xiang; Liu, Xiuxia; Bai, Zhonghu

    2017-03-03

    In methylotrophic yeast Pichia pastoris (P. pastoris), the efficient promoter of alcohol oxidase (PAox1) is induced by methanol and repressed by glycerol, but the molecular mechanism is not clear. In this study, the relationship between alcohol oxidase 1 (aox1), methanol expression regulator 1 (mxr1) and glycerol transporter 1 (gt1) was studied. By RT-PCR, it was found that the overexpression of gt1 could increase the glycerol content in cells and repress the expression of mxr1 and aox1, and the deletion of gt1 reduced the glycerol content in cells and promoted the expression of aox1 .The overexpression of mxr1 could repress the expression of gt1, and the deletion of mxr1 could promote the expression of gt1 to some extent. By EMSA, Mxr1 binding sites were found in the promoter of gt1 (PGt1.) (-141 to -138, CCCC), and Mxr1 could regulate the expression of gt1 by binding to PGt1. The relationships among aox1, mxr1 and gt1 revealed here to provide a reference for the understanding of the mechanism of glycerol repression of PAox1.

  20. Enhanced hydrolysis of lignocellulosic biomass: Bi-functional enzyme complexes expressed in Pichia pastoris improve bioethanol production from Miscanthus sinensis.

    PubMed

    Shin, Sang Kyu; Hyeon, Jeong Eun; Kim, Young In; Kang, Dea Hee; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2015-12-01

    Lignocellulosic biomass is the most abundant utilizable natural resource. In the process of bioethanol production from lignocellulosic biomass, an efficient hydrolysis of cellulose and hemicellulose to release hexose and pentose is essential. We have developed a strain of Pichia pastoris that can produce ethanol via pentose and hexose using an assembly of enzyme complexes. The use of enzyme complexes is one of the strategies for effective lignocellulosic biomass hydrolysis. Xylanase XynB from Clostridium cellulovorans and a chimeric endoglucanase cCelE from Clostridium thermocellum were selected as enzyme subunits, and were bound to a recombinant scaffolding protein mini-CbpA from C. cellulovorans to assemble the enzyme complexes. These complexes efficiently degraded xylan and carboxymethylcellulose (CMC), producing approximately 1.18 and 1.07 g/L ethanol from each substrate, respectively, which is 2.3-fold and 2.7-fold higher than that of the free-enzyme expressing strain. Miscanthus sinensis was investigated as the lignocellulosic biomass for producing bioethanol, and 1.08 g/L ethanol was produced using our recombinant P. pastoris strain, which is approximately 1.9-fold higher than that of the wild-type strain. In future research, construction of enzyme complexes containing various hydrolysis enzymes could be used to develop biocatalysts that can completely degrade lignocellulosic biomass into valuable products such as biofuels.

  1. Disruption of genes involved in CORVET complex leads to enhanced secretion of heterologous carboxylesterase only in protease deficient Pichia pastoris.

    PubMed

    Marsalek, Lukas; Gruber, Clemens; Altmann, Friedrich; Aleschko, Markus; Mattanovich, Diethard; Gasser, Brigitte; Puxbaum, Verena

    2017-02-23

    The methylotrophic yeast Pichia pastoris (Komagataella spp.) is a popular microbial host for the production of recombinant proteins. Previous studies have shown that mis-sorting to the vacuole can be a bottleneck during production of recombinant secretory proteins in yeast, however, no information was available for P. pastoris. In this work the authors have therefore generated vps (vacuolar protein sorting) mutant strains disrupted in genes involved in the CORVET (class C core vacuole/endosome tethering) complex at the early stages of endosomal sorting. Both Δvps8 and Δvps21 strains contained lower extracellular amounts of heterologous carboxylesterase (CES) compared to the control strain, which could be attributed to a high proteolytic activity present in the supernatants of CORVET engineered strains due to rerouting of vacuolar proteases. Serine proteases were identified to be responsible for this proteolytic degradation by liquid chromatography-mass spectrometry and protease inhibitor assays. Deletion of the major cellular serine protease Prb1 in Δvps8 and Δvps21 strains did not only rescue the extracellular CES levels, but even outperformed the parental CES strain (56 and 80% higher yields, respectively). Further deletion of Ybr139W, another serine protease, did not show a further increase in secretion levels. Higher extracellular CES activity and low proteolytic activity were detected also in fed batch cultivation of Δvps21Δprb1 strains, thus confirming that modifying early steps in the vacuolar pathway has a positive impact on heterologous protein secretion.

  2. Production of flavor esters catalyzed by CALB-displaying Pichia pastoris whole-cells in a batch reactor.

    PubMed

    Jin, Zi; Ntwali, Janvier; Han, Shuang-Yan; Zheng, Sui-Ping; Lin, Ying

    2012-05-31

    Candida antarctica lipase B (CALB) has been employed as an efficient catalyst in the preparation of many flavor esters. A CALB-displaying yeast whole-cell biocatalyst could be an attractive alternative to commercial immobilized CALB because of its low-cost preparation and high enzymatic activity. We investigated the potential application of CALB-displaying Pichia pastoris cells for the production of flavor esters. The optimal conditions for flavor esters synthesis by this biocatalyst were determined in 50-ml shake flasks. Under optimized conditions, the synthesis of 12 kinds flavor esters were scaled up in a 5-l batch stirred reactor. Among these, the mole conversions of 10 exceeded 95% after reactions for 4h. In addition, this biocatalyst showed good tolerance for high substrates concentration and excellent operational stability. Repeated use of the cells in 10 batches resulted in an activity loss of less than 10%. Thus, CALB-displaying P. pastoris whole cells are robust biocatalysts with potential commercial application in the large-scale production of flavor esters in non-aqueous media.

  3. HSF-1, HIF-1 and HSP90 expression on recombinant Pichia pastoris under fed-batch fermentation.

    PubMed

    Zepeda, Andrea B; Figueroa, Carolina A; Abdalla, Dulcineia S P; Maranhão, Andrea Q; Ulloa, Patricio H; Pessoa, Adalberto; Farías, Jorge G

    2014-01-01

    Pichia pastoris is a methylotrophic yeast used as an efficient expression system for heterologous protein production as compared to other expression systems. Considering that every cell must respond to environmental changes to survive and differentiate, determination of endogenous protein related to heat stress responses and hypoxia, it would necessary to establish the temperature and methanol concentration conditions for optimal growth. The aim of this study is characterize the culture conditions through the putative biomarkers in different conditions of temperature and methanol concentration. Three yeast cultures were performed: 3X = 3% methanol -10 °C, 4X = 3% methanol -30 °C, and 5X = 1% methanol -10 °C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. The western blot results of HIF-1α and HSP-90 did not indicate statistically significant in the culture conditions studied. Respect to biomarkers location, HIF-1α and HSP-90 presented differences between cultures. In conclusion, the results suggest the cultures in a hypoxic condition produce a high density and yeast cells smaller. Beside the high density would not necessary related with a high production of recombinant proteins in modified-genetically P. pastoris.

  4. Production of recombinant human growth hormone conjugated with a transcytotic peptide in Pichia pastoris for effective oral protein delivery.

    PubMed

    Lee, Jun-Yeong; Kang, Sang-Kee; Li, Hui-Shan; Choi, Chang-Yun; Park, Tae-Eun; Bok, Jin-Duck; Lee, Seung-Ho; Cho, Chong-Su; Choi, Yun-Jaie

    2015-05-01

    Among the possible delivery routes, the oral administration of a protein is simple and achieves high patient compliance without pain. However, the low bioavailability of a protein drug in the intestine due to the physical barriers of the intestinal epithelia is the most critical problem that needs to be solved. To overcome the low bioavailability of a protein drug in the intestine, we aimed to construct a recombinant Pichia pastoris expressing a human growth hormone (hGH) fusion protein conjugated with a transcytotic peptide (TP) that was screened through peroral phage display to target goblet cells in the intestinal epithelia. The TP-conjugated hGH was successfully produced in P. pastoris in a secreted form at concentrations of up to 0.79 g/l. The function of the TP-conjugated hGH was validated by in vitro and in vivo assays. The transcytotic function of the TP through the intestinal epithelia was verified only in the C terminus conjugated hGH, which demonstrated the induction of IGF-1 in a HepG2 cell culture assay, a higher translocation of recombinant hGH into the ileal villi after oral administration in rats and both IGF-1 induction and higher body weight gain in rats after oral administration. The present study introduces the possibility for the development of an effective oral protein delivery system in the pharmaceutical and animal industries through the introduction of an effective TP into hGH.

  5. Effects of temperature and glycerol and methanol-feeding profiles on the production of recombinant galactose oxidase in Pichia pastoris

    PubMed Central

    Anasontzis, George E; Salazar Penã, Margarita; Spadiut, Oliver; Brumer, Harry; Olsson, Lisbeth

    2014-01-01

    Optimization of protein production from methanol-induced Pichia pastoris cultures is necessary to ensure high productivity rates and high yields of recombinant proteins. We investigated the effects of temperature and different linear or exponential methanol-feeding rates on the production of recombinant Fusarium graminearum galactose oxidase (EC 1.1.3.9) in a P. pastoris Mut+ strain, under regulation of the AOX1 promoter. We found that low exponential methanol feeding led to 1.5-fold higher volumetric productivity compared to high exponential feeding rates. The duration of glycerol feeding did not affect the subsequent product yield, but longer glycerol feeding led to higher initial biomass concentration, which would reduce the oxygen demand and generate less heat during induction. A linear and a low exponential feeding profile led to productivities in the same range, but the latter was characterized by intense fluctuations in the titers of galactose oxidase and total protein. An exponential feeding profile that has been adapted to the apparent biomass concentration results in more stable cultures, but the concentration of recombinant protein is in the same range as when constant methanol feeding is employed. © 2014 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 30:728–735, 2014 PMID:24493559

  6. Effects of low-shear modeled microgravity on the characterization of recombinant β-D-glucuronidase expressed in Pichia pastoris.

    PubMed

    Qi, Feng; Dai, DaZhang; Liu, Yanli; Kaleem, Imdad; Li, Chun

    2011-01-01

    In this study, we used a high-aspect-ratio vessel (HARV), which could model environment of microgravity on ground to investigate for the first time the effects of low-shear modeled microgravity (LSMMG) on the characterization of recombinant β-D-glucuronidase expressed in Pichia pastoris. The β-D-glucuronidase gene (GenBank accession no. EU095019) derived from Penicillium purpurogenum Li-3 encoding β-D-glucuronidase (PGUS) was expressed in P. pastoris GS115 in two different environments of LSMMG and normal gravity (NG). Results manifested that both LSMMG and NG conditions had insignificant effects on temperature and pH activity (optimal temperature and pH were 55 and 5.0 °C, respectively) and characteristic stability of recombinant PGUS. However, the catalytic activity of recombinant PGUS expressed under LSMMG was less affected by metal ions and EDTA as compared with that of NG. Furthermore, K (m) value of the recombinant PGUS expressed under LSMMG was nearly one fifth of that under NG (1.72 vs. 7.72), whereas catalytic efficiency (k (cat)/K (m)) of PGUS expressed under LSMMG (13.55) was 3.7 times higher than that of NG (3.61). The results initially reveal the significant alterations in catalytic properties of recombinant enzyme in response to LSMMG environment and have potential application in bioprocessing and biocatalysis.

  7. HSF-1, HIF-1and HSP90 expression on recombinant Pichia pastoris under fed-batch fermentation

    PubMed Central

    Zepeda, Andrea B.; Figueroa, Carolina A.; Abdalla, Dulcineia S.P.; Maranhão, Andrea Q.; Ulloa, Patricio H.; Pessoa, Adalberto; Farías, Jorge G.

    2014-01-01

    Pichia pastoris is a methylotrophic yeast used as an efficient expression system for heterologous protein production as compared to other expression systems. Considering that every cell must respond to environmental changes to survive and differentiate, determination of endogenous protein related to heat stress responses and hypoxia, it would necessary to establish the temperature and methanol concentration conditions for optimal growth. The aim of this study is characterize the culture conditions through the putative biomarkers in different conditions of temperature and methanol concentration. Three yeast cultures were performed: 3X = 3% methanol −10 °C, 4X = 3% methanol −30 °C, and 5X = 1% methanol −10 °C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. The western blot results of HIF-1α and HSP-90 did not indicate statistically significant in the culture conditions studied. Respect to biomarkers location, HIF-1α and HSP-90 presented differences between cultures. In conclusion, the results suggest the cultures in a hypoxic condition produce a high density and yeast cells smaller. Beside the high density would not necessary related with a high production of recombinant proteins in modified-genetically P. pastoris. PMID:25242931

  8. Cultivation of Pichia pastoris carrying the scFv anti LDL (-) antibody fragment. Effect of preculture carbon source.

    PubMed

    Arias, Cesar Andres Diaz; Marques, Daniela de Araujo Viana; Malpiedi, Luciana Pellegrini; Maranhão, Andrea Queiroz; Parra, Dulcineia Abdalla Saes; Converti, Attilio; Junior, Adalberto Pessoa

    2017-02-09

    Antibodies and antibody fragments are nowadays among the most important biotechnological products, and Pichia pastoris is one of the most important vectors to produce them as well as other recombinant proteins. The conditions to effectively cultivate a P. pastoris strain previously genetically modified to produce the single-chain variable fragment anti low density lipoprotein (-) under the control of the alcohol oxidase promoter have been investigated in this study. In particular, it was evaluated if, and eventually how, the carbon source (glucose or glycerol) used in the preculture preceding cryopreservation in 20% glycerol influences both cell and antibody fragment productions either in flasks or in bioreactor. Although in flasks the volumetric productivity of the antibody fragment secreted by cells precultured, cryopreserved and reactivated in glycerol was 42.9% higher compared with cells precultured in glucose, the use of glycerol in bioreactor led to a remarkable shortening of the lag phase, thereby increasing it by no less than thrice compared to flasks. These results are quite promising in comparison with those reported in the literature for possible future industrial applications of this cultivation, taking into account that the overall process time was reduced by around 8h.

  9. Synthesis and secretory expression of hybrid antimicrobial peptide CecA-mag and its mutants in Pichia pastoris.

    PubMed

    Wang, Xiuqing; Zhu, Mingxing; Zhang, Aijun; Yang, Fengqin; Chen, Puyan

    2012-03-01

    The hybrid peptide CA(1-7)-M(2-12) gene was designed according to the N-terminal 1-7 amino acid sequence of the antimicrobial peptide cecropin A (CA) and the N-terminal 2-12 amino acid sequence of maganin (M) and synthesized using Pichia pastoris preferred codons. The gene was cloned into pPICZαA and transformed into the P. pastoris recipient bacterium SMD1168, regulated by the alcohol oxidase (AOX). Expression of the cecA-mag hybrid antimicrobial peptide (MW, 1.9 kDa) revealed broad-spectrum antibiotic activity and to the ability to inhibit growth of most G(-) and G(+) bacteria. Three mutants of cecA-mag were designed and synthesized by recombination polymerase chain reaction site-directed mutagenesis to investigate the relationship between the structure and function of this antimicrobial peptide. The inhibition titers of these mutants against Staphylococcus aureus were evaluated using the agar diffusion method. Under the conditions of the same concentration and volume, the bacteriostatic diameters of three cecA-mag mutants were 1.2, 1.2 and 1.5 times, respectively, compared with the diameters of wild-type cecA-mag.

  10. Secretion and Proteolysis of Heterologous Proteins Fused to the Escherichia coli Maltose Binding Protein in Pichia pastoris

    PubMed Central

    Li, Zhiguo; Leung, Wilson; Yon, Amy; Nguyen, John; Perez, Vincent C.; Vu, Jane; Giang, William; Luong, Linda T.; Phan, Tracy; Salazar, Katherine A.; Gomez, Seth R.; Au, Colin; Xiang, Fan; Thomas, David W.; Franz, Andreas H.; Lin-Cereghino, Joan; Lin-Cereghino, Geoff P.

    2010-01-01

    The E. coli maltose binding protein (MBP) has been utilized as a translational fusion partner to improve the expression of foreign proteins made in E. coli. When located N-terminal to its cargo protein, MBP increases the solubility of intracellular proteins and improves the export of secreted proteins in bacterial systems. We initially explored whether MBP would have the same effect in the methylotrophic yeast Pichia pastoris, a popular eukaryotic host for heterologous protein expression. When MBP was fused as an N-terminal partner to several C-terminal cargo proteins expressed in this yeast, proteolysis occurred between the two peptides, and MBP reached the extracellular region unattached to its cargo. However, in two of three instances, the cargo protein reached the extracellular region as well, and its initial attachment to MBP enhanced its secretion from the cell. Extensive mutagenesis of the spacer region between MBP and its C-terminal cargo protein could not inhibit the cleavage although it did cause changes in the protease target sites in the fusion proteins, as determined by mass spectrometry. Taken together, these results suggested that an uncharacterized P. pastoris protease attacked at different locations in the region C-terminal of the MBP domain, including the spacer and cargo regions, but the MBP domain could still act to enhance the secretion of certain cargo proteins. PMID:20230898

  11. Development of a high-throughput microscale cell disruption platform for Pichia pastoris in rapid bioprocess design.

    PubMed

    Bláha, Benjamin A F; Morris, Stephen A; Ogonah, Olotu W; Crescente, Vincenzo; Rosenberg, William; Maucourant, Sophie; Mukhopadhyay, Tarit K

    2017-09-07

    The time and cost benefits of miniaturized fermentation platforms can only be gained by employing complementary techniques facilitating high-throughput at small sample volumes. Microbial cell disruption is a major bottleneck in experimental throughput and is often restricted to large processing volumes. Moreover, for rigid yeast species such as Pichia pastoris, no effective high-throughput disruption methods exist. This study describes the development of an automated, miniaturized, high-throughput, non-contact, scalable platform based on Adaptive Focused Acoustics (AFA) to disrupt P. pastoris and recover intracellular heterologous protein. Augmented modes of AFA were established by investigating vessel designs and a novel enzymatic pre-treatment step. Three different modes of AFA were studied and compared to the performance high pressure homogenization. For each of these modes of cell disruption, response models were developed to account for five different performance criteria. Using multiple responses not only demonstrated that different operating parameters are required for different response optima, with highest product purity requiring suboptimal values for other criteria, but also allowed for AFA-based methods to mimic large-scale homogenization processes. These results demonstrate that AFA-mediated cell disruption can be used for a wide range of applications including buffer development, strain selection, fermentation process development and whole bioprocess integration. This article is protected by copyright. All rights reserved. © 2017 American Institute of Chemical Engineers.

  12. Graphene oxide induces plasma membrane damage, reactive oxygen species accumulation and fatty acid profiles change in Pichia pastoris.

    PubMed

    Zhang, Meng; Yu, Qilin; Liang, Chen; Liu, Zhe; Zhang, Biao; Li, Mingchun

    2016-10-01

    During the past couple of years, graphene nanomaterials were extremely popular among the scientists due to the promising properties in many aspects. Before the materials being well applied, we should first focus on their biosafety and toxicity. In this study, we investigated the toxicity of synthesized graphene oxide (GO) against the model industrial organism Pichia pastoris. We found that the synthesized GO showed dose-dependent toxicity to P. pastoris, through cell membrane damage and intracellular reactive oxygen species (ROS) accumulation. In response to these cell stresses, cells had normal unsaturated fatty acid (UFA) levels but increased contents of polyunsaturated fatty acid (PUFA) with up-regulation of UFA synthesis-related genes on the transcriptional level, which made it overcome the stress under GO attack. Two UFA defective strains (spt23Δ and fad12Δ) were used to demonstrate the results above. Hence, this study suggested a close connection between PUFAs and cell survival against GO. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Intracellular expression of Vitreoscilla hemoglobin improves production of Yarrowia lipolytica lipase LIP2 in a recombinant Pichia pastoris.

    PubMed

    Wang, Xiaofeng; Sun, Yongchuan; Shen, Xuguang; Ke, Feng; Zhao, Heyun; Liu, Yun; Xu, Li; Yan, Yunjun

    2012-01-05

    The Yarrowia lipolytica lipase LIP2 (YlLIP2) gene lip2 and Vitreoscilla hemoglobin gene vgb were co-expressed in Pichia pastoris, both under the control of AOX1 promoter, in order to alleviate respiration limitation under conditions of high cell-density fermentation and enhance YlLIP2 production. The results showed that recombinant P. pastoris strains harboring the lip2 and vgb genes (VHb(+)) displayed higher biomass and YlLIP2 activity than control strains (VHb(-)). Compared with VHb(-) cells, the expression levels of YlLIP2 in VHb-expressing cells when oxygen was not a limiting factor were improved 31.5% in shake-flask culture and 22% in a 10-L fermentor. Under non-limiting dissolved oxygen (DO) conditions, the maximum YlLIP2 activity of VHb(+) in a 10-L fermentor reached 33,000 U/mL. Oxygen limitation had a more negative effect on YlLIP2 productivity in VHb(-) cells than in VHb(+) cells. The highest YlLIP2 activity of VHb(+) cells was approximately 1.84-fold higher than that of VHb(-) cells at lower DO levels. Moreover, the recombinant strain VHb(+) exhibited a higher specific oxygen uptake rate and achieved higher cell viability under oxygen limiting and non-limiting conditions compared with VHb(-) cells. Therefore, the above results suggest that intracellular expression of VHb in recombinant P. pastoris has the potential to improve cell growth and industrial enzyme production. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Recombinant expression of Thermobifida fusca E7 LPMO in Pichia pastoris and Escherichia coli and their functional characterization.

    PubMed

    Rodrigues, Kelly B; Macêdo, Jéssica K A; Teixeira, Tallyta; Barros, Jéssica S; Araújo, Ana C B; Santos, Fernanda P; Quirino, Betânia F; Brasil, Bruno S A F; Salum, Thaís F C; Abdelnur, Patrícia V; Fávaro, Léia C L

    2017-08-07

    The discovery of lytic polysaccharides monooxygenases copper dependent (LPMOs) revolutionized the classical concept that the cleavage of cellulose is a hydrolytic process in recent years. These enzymes carry out oxidative cleavage of cellulose (and other polysaccharides), acting synergistically with cellulases and other hydrolases. In fact, LPMOs have the potential for increasing the efficiency of the lignocellulosic biomass conversion in biofuels and high value chemicals. Among a small number of microbial LPMOs that have been characterized, some LPMOs were expressed and characterized biochemically from the bacteria Thermobifida fusca, using the host Escherichia coli. In this work, the E7 LPMO protein of T. fusca was expressed both in E. coli (native DNA sequence) and Pichia pastoris (codon-optimized DNA sequence), for further analysis of oxidative cleavage, with PASC (phosphoric acid swollen cellulose) and Avicel PH-101 substrates, using mass spectrometry analysis. Mass spectra results of Avicel PH-101 and PASC cleavages by purified E7 LPMO expressed in E. coli and in P. pastoris allowed the visualization of compounds corresponding to oxidized and non-oxidized oligosaccharides. Further optimization of reactions will be performed, since it was found only one degree of polymerization (DP 7). This work demonstrated that it is possible to produce the E7 LPMO from T. fusca in the host P. pastoris, and the recombinant protein was shown to be active on cellulose. The approach used in the present work could be an alternative to produce this bacterial LPMO for cellulose cleavage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Expressing anti-HIV VRC01 antibody using the murine IgG1 secretion signal in Pichia pastoris.

    PubMed

    Aw, Rochelle; McKay, Paul F; Shattock, Robin J; Polizzi, Karen M

    2017-12-01

    The use of the recombinant expression platform Pichia pastoris to produce pharmaceutically important proteins has been investigated over the past 30 years. Compared to mammalian cultures, expression in P. pastoris is cheaper and faster, potentially leading to decreased costs and process development times. Product yields depend on a number of factors including the secretion signal chosen for expression, which can influence the host cell response to recombinant protein production. VRC01, a broadly neutralising anti-HIV antibody, was expressed in P. pastoris, using the methanol inducible AOX1 promoter for both the heavy and light chains. Titre reached up to 3.05 μg mL(-1) in small scale expression. VRC01 was expressed using both the α-mating factor signal peptide from Saccharomyces cerevisiae and the murine IgG1 signal peptide. Surprisingly, using the murine IgG1 signal peptide resulted in higher yield of antibody capable of binding gp140 antigen. Furthermore, we evaluated levels of secretory stress compared to the untransformed wild-type strain and show a reduced level of secretory stress in the murine IgG1 signal peptide strains versus those containing the α-MF signal peptide. As bottlenecks in the secretory pathway are often the limiting factor in protein secretion, reduced levels of secretory stress and the higher yield of functional antibody suggest the murine IgG1 signal peptide may lead to better protein folding and secretion. This work indicates the possibilities for utilising the murine IgG1 signal peptide for a range of antibodies, resulting in high yields and reduced cellular stress.

  16. Novel helper factors influencing recombinant protein production in Pichia pastoris based on proteomic analysis under simulated microgravity.

    PubMed

    Huangfu, Jie; Qi, Feng; Liu, Hongwei; Zou, Hanfa; Ahmed, Muhammad Saad; Li, Chun

    2015-01-01

    Microgravity and simulated microgravity (SMG) have quite significant effects on numerous microbial cellular processes. The effects of SMG on the production of recombinant proteins and transcription profiling in prokaryotic and eukaryotic expression host have been investigated. The present study showed that SMG significantly enhanced the specific productivities and activities of the reporter enzymes PGUS and AtXYN that were expressed in recombinant Pichia pastoris. Proteomic profiling revealed that 21 proteins were significantly up-regulated and 35 proteins were drastically down-regulated at the stationary phase, when the recombinant P. pastoris responded to SMG. Six strongly up-regulated genes, TPX, FBA, PGAM, ENO, SBA1, and AKR-E, involved in the oxidative stress response, methanol metabolism, glycolytic pathway, and protein folding, were selected to analyze their impacts on recombinant protein production by co-overexpression in the shaker flask fermentation. The co-overexpressed strains, particularly TPX, FBA, and PGAM, demonstrated promising results with approximately 2.46-fold, 1.58-fold, and 1.33-fold increases in the specific yields of PGUS compared to the control after 48 h of methanol induction, respectively. In the meantime, the corresponding PGUS specific activities were increased by 2.33-fold, 2.09-fold, and 1.32-fold, respectively. Thiol peroxidase (TPX), which is involved in the oxidative stress response, significantly influenced the transcriptional levels of the reporter gene PGUS. The present study provides valuable information for further exploration of the molecular mechanism of P. pastoris response to SMG and facilitates simulated microgravity for finding novel helper factors to rationally engineer the strains in normal fermentation by using proteomic studies.

  17. Production in Pichia pastoris of complementary protein-based polymers with heterodimer-forming WW and PPxY domains.

    PubMed

    Domeradzka, Natalia E; Werten, Marc W T; de Vries, Renko; de Wolf, Frits A

    2016-06-10

    Specific coupling of de novo designed recombinant protein polymers for the construction of precisely structured nanomaterials is of interest for applications in biomedicine, pharmaceutics and diagnostics. An attractive coupling strategy is to incorporate specifically interacting peptides into the genetic design of the protein polymers. An example of such interaction is the binding of particular proline-rich ligands by so-called WW-domains. In this study, we investigated whether these domains can be produced in the yeast Pichia pastoris as part of otherwise non-interacting protein polymers, and whether they bring about polymer coupling upon mixing. We constructed two variants of a highly hydrophilic protein-based polymer that differ only in their C-terminal extensions. One carries a C-terminal WW domain, and the other a C-terminal proline-rich ligand (PPxY). Both polymers were produced in P. pastoris with a purified protein yield of more than 2 g L(-1) of cell-free broth. The proline-rich module was found to be O-glycosylated, and uncommonly a large portion of the attached oligosaccharides was phosphorylated. Glycosylation was overcome by introducing a Ser → Ala mutation in the PPxY peptide. Tryptophan fluorescence monitored during titration of the polymer containing the WW domain with either the glycosylated or nonglycosylated PPxY-containing polymer revealed binding. The complementary polymers associated with a Kd of ~3 µM, regardless of glycosylation state of the PPxY domain. Binding was confirmed by isothermal titration calorimetry, with a Kd of ~9 µM. This article presents a blueprint for the production in P. pastoris of protein polymers that can be coupled using the noncovalent interaction between WW domains and proline-rich ligands. The availability of this highly specific coupling tool will hereafter allow us to construct various supramolecular structures and biomaterials.

  18. High-throughput bioaccumulation, biotransformation, and production of silver and selenium nanoparticles using genetically engineered Pichia pastoris.

    PubMed

    Elahian, Fatemeh; Reiisi, Somayeh; Shahidi, Arman; Mirzaei, Seyed Abbas

    2017-04-01

    A genetically modified Pichia pastoris strain overexpressing a metal-resistant variant of cytochrome b5 reductase enzyme was developed for silver and selenium biosorption and for nanoparticle production. The maximum recombinant enzyme expression level was approximately 31 IU/ml in the intercellular fluid after 24 h of incubation, and the capacity of the recombinant biomass for the biosorption of silver and selenium in aqueous batch models were measured as 163.90 and 63.71 mg/g, respectively. The ions were reduced in the presence of enzyme, leading to the formation of stable 70-180 nm metal nanoparticles. Various instrumental analyses confirmed the well-dispersed and crystalline nature of the spherical nanometals. The purified silver and selenium nanoparticles exhibited at least 10-fold less cytotoxicity toward HDF, EPG85-257, and T47D cells than silver nitrate and selenium dioxide. These results revealed that the engineered Pichia strain is an eco-friendly, rapid, high-throughput, and versatile reduction system for nanometal production. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Conversion of starch to ethanol in a recombinant saccharomyces cerevisiae strain expressing rice [alpha]-amylase from a novel Pichia pastoris alcohol oxidase promoter

    SciTech Connect

    Kumagai, M.H.; Sverlow, G.G.; della-Cioppa, G.; Grill, L.K. )

    1993-05-01

    A recombinant Saccharomyces cerevisiae, expressing and secreting rice [alpha]-amylase, converts starch to ethanol. The rice [alpha]-amylase gene (OS103) was placed under the transcriptional control of the promoter from a newly described Pichia pastoris alcohol oxidase genomic clone. The nucleotide sequences of ZZA1 and other methanol-regulated promoters were analyzed. A highly conserved sequence (TTG-N[sub 3]-GCTTCCAA-N[sub 5]-TGGT) was found in the 5' flanking regions of alcohol oxidase, methanol oxidase, and dihydroxyacetone synthase genes in Pichia pastoris, Hansenula polymorpha, and Candida biodinii S2. The yeast strain containing the ZZA1-OS103 fusion secreted biologically active enzyme into the culture media while fermenting soluble starch. 45 refs., 8 figs.

  20. Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-β-mannosidase from Aspergillus niger BK01

    PubMed Central

    2009-01-01

    s-1, 292 s-1 and 148 s-1, respectively. Judged from the specificity constants kcat/Km, glucomannan is the preferred substrate of the A. niger β -mannanase. Analysis by thin layer chromatography showed that the main product from enzymatic hydrolysis of locust bean gum is mannobiose, with only low amounts of mannotriose and higher manno-oligosaccharides formed. Conclusion This study is the first report on the cloning and expression of a thermostable mannan endo-1,4-β-mannosidase from A. niger in Pichia pastoris. The efficient expression and ease of purification will significantly decrease the production costs of this enzyme. Taking advantage of its acidic pH optimum and high thermostability, this recombinant β-mannanase will be valuable in various biotechnological applications. PMID:19912637

  1. Expression of Bovine Viral Diarrhea Virus Envelope Glycoprotein E2 in Yeast Pichia pastoris and its Application to an ELISA for Detection of BVDV Neutralizing Antibodies in Cattle.

    PubMed

    Behera, Sthita Pragnya; Mishra, Niranjan; Nema, Ram Kumar; Pandey, Pooja Dubey; Kalaiyarasu, Semmannan; Rajukumar, Katherukamem; Prakash, Anil

    2015-01-01

    The aim of this article is to express envelope glycoprotein E2 of bovine viral diarrhea virus (BVDV) in yeast Pichia pastoris and its utility as a diagnostic antigen in ELISA. The BVDV E2 gene was cloned into the pPICZαA vector followed by integration into the Pichia pastoris strain X-33 genome for methanol-induced expression. SDS-PAGE and Western blot results showed that the recombinant BVDV E2 protein (72 kDa) was expressed and secreted into the medium at a concentration of 40 mg/L of culture under optimized conditions. An indirect ELISA was then developed by using the yeast-expressed E2 protein. Preliminary testing of 300 field cattle serum samples showed that the E2 ELISA showed a sensitivity of 91.07% and a specificity of 92.02% compared to the reference virus neutralization test. The concordance between the E2 ELISA and VNT was 91.67%. This study demonstrates feasibility of BVDV E2 protein expression in yeast Pichia pastoris for the first time and its efficacy as an antigen in ELISA for detecting BVDV neutralizing antibodies in cattle.

  2. Isolation of a single-stranded DNA-binding protein from the methylotrophic yeast, Pichia pastoris and its identification as zeta crystallin

    PubMed Central

    Kranthi, Balla Venkata; Balasubramanian, Natarajan; Rangarajan, Pundi N.

    2006-01-01

    A single-stranded DNA (ssDNA)-binding protein (SSB) that binds to specific upstream sequences of alcohol oxidase (AOX1) promoter of the methylotrophic yeast Pichia pastoris has been isolated and identified as zeta crystallin (ZTA1). The cDNA encoding P.pastoris ZTA1 (PpZTA1) was cloned into an Escherichia coli expression vector, the recombinant PpZTA1 was expressed and purified from E.coli cell lysates. The DNA-binding properties of recombinant PpZTA1 are identical to those of the SSB present in P.pastoris cell lysates. PpZTA1 binds to ssDNA sequences >24 nt and its DNA-binding activity is abolished by NADPH. This is the first report on the characterization of DNA-binding properties of a yeast ZTA1. PMID:16914438

  3. Expression of E2 gene of bovine viral diarrhea virus in Pichia pastoris: a candidate antigen for indirect Dot ELISA.

    PubMed

    Zhao, Yuelan; Ma, Tianyi; Ju, Xingyu; Zhang, Yue; Wang, Min; Liu, Teng; Cao, Wenbo; Bao, Yongzhan; Qin, Jianhua

    2015-02-01

    The E2 gene containing the EcoR I and Not I sites of bovine viral diarrhea virus (BVDV) was amplified from the plasmid pMD-18T-E2 of the HB-bd isolated, and inserted into Pichia pastoris (P. pastoris) expression vector pPIC9K, and transfected into Escherichia coli DH5α. The recombinant plasmid pPIC9K-E2 was digested by the SalI restriction enzyme and transformed into the P. pastoris strain GS115 by electroporation. High copy integrative transformants were obtained by G418 screening and induced for expression with methanol. The expressed products in the culture medium were identified by the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the Western blotting and the antibody test for immunity. An indirect Dot-ELISA for the detection of antibody against BVDV was established by the recombinant E2 protein as the coating antigen. The reaction conditions of the indirect Dot-ELISA were optimized. The coating concentration of the E2 recombinant protein antigen, the dilution of serum sample, the optimal concentration of HRP labeled antibody, the optimal blocking reagent and blocking time were studied. 100 sera samples from cows in the field were tested for the antibody against BVDV by the Dot-ELISA and the IDEXX HerdChek BVDV antibody ELISA kit simultaneously to compare the specificity, sensitivity and accuracy. The results showed that the expressed products in the culture medium resulted in single band of 44kDa by SDS-PAGE and Western blotting. The results of the immunogenicity assay indicated that the protein E2 expressed in P. pastoris could induce the experimental animals of the rabbit to produce BVDV specific antibodies. The results of the indirect Dot-ELISA showed that the optimal coating concentration of the E2 recombinant protein was 2.0μg/mL, the bovine serum dilution was 1:100, the optimal concentration of HRP-labeled rabbit anti-bovine antibody IgG was 1:500, and the optimal blocking reagent was 3% glutin-TBS and blocking for 45min. The

  4. Effect of codon optimisation on the production of recombinant fish growth hormone in Pichia pastoris.

    PubMed

    Rothan, Hussin A; Huy, Teh Ser; Mohamed, Zulqarnain

    2014-01-01

    This study was established to test the hypothesis of whether the codon optimization of fish growth hormone gene (FGH) based on P. pastoris preferred codon will improve the quantity of secreted rFGH in culture supernatant that can directly be used as fish feed supplements. The optimized FGH coding sequence (oFGH) and native sequence (nFGH) of giant grouper fish (Epinephelus lanceolatus) were cloned into P. pastoris expression vector (pPICZαA) downstream of alcohol oxidase gene (AOX1) for efficient induction of extracellular rFGH by adding 1% of absolute methanol. The results showed that recombinant P. pastoris was able to produce 2.80 ± 0.27 mg of oFGH compared to 1.75 ± 0.25 of nFGH in one litre of culture supernatant. The total body weight of tiger grouper fingerlings fed with oFGH increased significantly at third (P < 0.05) and fourth weeks (P < 0.01) of four-week experiment period compared to those fed with nFGH. Both oFGH and nFGH significantly enhanced the final biomass and fish survival percentage. In conclusion, codon optimization of FGH fragment was useful to increase rFGH quantity in the culture supernatant of P. pastoris that can be directly used as fish feed supplements. Further studies are still required for large scale production of rFGH and practical application in aquaculture production.

  5. Screening, Molecular Cloning, and Biochemical Characterization of an Alcohol Dehydrogenase from Pichia pastoris Useful for the Kinetic Resolution of a Racemic β-Hydroxy-β-trifluoromethyl Ketone.

    PubMed

    Bulut, Dalia; Duangdee, Nongnaphat; Gröger, Harald; Berkessel, Albrecht; Hummel, Werner

    2016-07-15

    The stereoselective synthesis of chiral 1,3-diols with the aid of biocatalysts is an attractive tool in organic chemistry. Besides the reduction of diketones, an alternative approach consists of the stereoselective reduction of β-hydroxy ketones (aldols). Thus, we screened for an alcohol dehydrogenase (ADH) that would selectively reduce a β-hydroxy-β-trifluoromethyl ketone. One potential starting material for this process is readily available by aldol addition of acetone to 2,2,2-trifluoroacetophenone. Over 200 strains were screened, and only a few yeast strains showed stereoselective reduction activities. The enzyme responsible for the reduction of the β-hydroxy-β-trifluoromethyl ketone was identified after purification and subsequent MALDI-TOF mass spectrometric analysis. As a result, a new NADP(+) -dependent ADH from Pichia pastoris (PPADH) was identified and confirmed to be capable of stereospecific and diastereoselective reduction of the β-hydroxy-β-trifluoromethyl ketone to its corresponding 1,3-diol. The gene encoding PPADH was cloned and heterologously expressed in Escherichia coli BL21(DE3). To determine the influence of an N- or C-terminal His-tag fusion, three different recombinant plasmids were constructed. Interestingly, the variant with the N-terminal His-tag showed the highest activity; consequently, this variant was purified and characterized. Kinetic parameters and the dependency of activity on pH and temperature were determined. PPADH shows a substrate preference for the reduction of linear and branched aliphatic aldehydes. Surprisingly, the enzyme shows no comparable activity towards ketones other than the β-hydroxy-β-trifluoromethyl ketone.

  6. Influence of key residues on the heterologous extracellular production of fungal ribonuclease U2 in the yeast Pichia pastoris.

    PubMed

    Alvarez-García, Elisa; García-Ortega, Lucía; De los Ríos, Vivian; Gavilanes, José G; Martínez-del-Pozo, Alvaro

    2009-06-01

    Ribonuclease U2, secreted by the smut fungus Ustilago sphaerogena, is a cyclizing ribonuclease that displays a rather unusual specificity within the group of microbial extracellular RNases, best represented by RNase T1. Superposition of the three-dimensional structures of RNases T1 and U2 suggests that the RNase U2 His 101 would be the residue equivalent to the RNase T1 catalytically essential His 92. RNase U2 contains three disulfide bridges but only two of them are conserved among the family of fungal extracellular RNases. The non-conserved disulfide bond is established between Cys residues 1 and 54. Mispairing of the disulfide network due to the presence of two consecutive Cys residues (54 and 55) has been invoked to explain the presence of wrongly folded RNase U2 species when produced in Pichia pastoris. In order to study both hypotheses, the RNase U2 H101Q and C1/54S variants have been produced, purified, and characterized. The results obtained support the major conclusion that His 101 is required for proper protein folding when secreted by the yeast P. pastoris. On the other hand, substitution of the first Cys residue for Ser results in a mutant version which is more efficiently processed in terms of a more complete removal of the yeast alpha-factor signal peptide. In addition, it has been shown that elimination of the Cys 1-Cys 54 disulfide bridge does not interfere with RNase U2 proper folding, generating a natively folded but much less stable protein.

  7. Gene encoding a novel invertase from a xerophilic Aspergillus niger strain and production of the enzyme in Pichia pastoris.

    PubMed

    Veana, Fabiola; Fuentes-Garibay, José Antonio; Aguilar, Cristóbal Noé; Rodríguez-Herrera, Raúl; Guerrero-Olazarán, Martha; Viader-Salvadó, José María

    2014-09-01

    β-Fructofuranosidases or invertases (EC 3.2.1.26) are enzymes that are widely used in the food industry, where fructose is preferred over sucrose, because it is sweeter and does not crystallize easily. Since Aspergillus niger GH1, an xerophilic fungus from the Mexican semi-desert, has been reported to be an invertase producer, and because of the need for new enzymes with biotechnological applications, in this work, we describe the gene and amino acid sequence of the invertase from A. niger GH1, and the use of a synthetic gene to produce the enzyme in the methylotrophic yeast Pichia pastoris. In addition, the produced invertase was characterized biochemically. The sequence of the invertase gene had a length of 1770 bp without introns, encodes a protein of 589 amino acids, and presented an identity of 93% and 97% with invertases from Aspergillus kawachi IFO 4308 and A. niger B60, respectively. A 4.2 L culture with the constructed recombinant P. pastoris strain showed an extracellular and periplasmic invertase production at 72 h induction of 498 and 3776 invertase units (U), respectively, which corresponds to 1018 U/L of culture medium. The invertase produced had an optimum pH of 5.0, optimum temperature of 60 °C, and specific activity of 3389 U/mg protein, and after storage for 96 h at 4 °C showed 93.7% of its activity. This invertase could be suitable for producing inverted sugar used in the food industry.

  8. Cloning and high level expression of the biologically active extracellular domain of Macaca mulatta CD40 in Pichia pastoris.

    PubMed

    Zhu, Shengyun; Wan, Lin; Yang, Hao; Cheng, Jingqiu; Lu, Xiaofeng

    2016-03-01

    The CD40-mediated immune response contributes to a wide variety of chronic inflammatory diseases. CD40 antagonists have potential as novel therapies for immune disorders. However, the CD40 pathway has not been well characterized in the rhesus monkey Macaca mulatta, which is a valuable animal model for human immune disease. An 834 bp transcript was cloned from peripheral blood mononuclear cells (PBMCs) of rhesus monkey using specific primers designed according to the predicted sequence of M. mulatta CD40 (mmCD40) in GenBank. Sequence analysis demonstrated that mmCD40 is highly homologous to human CD40 (hCD40), with an amino acid sequence identity of 94%. Genes encoding the extracellular domain of mmCD40 and the Fc fragment of the hIgG1 were inserted into a pPIC9K plasmid to produce mmCD40Ig by Pichia pastoris. Approximately 15-20 mg of the mmCD40Ig protein with ∼90% purity could be recovered from 1 L of culture. The purified mmCD40Ig protein can form dimers and can specifically bind CD40L-positive cells. Additionally, the mmCD40Ig protein can bind hCD40L protein in phosphate buffered saline and form a stable combination in a size-exclusion chromatography assay using a Superdex 200 column. Moreover, mmCD40Ig is as efficient as M. mulatta CTLA4Ig (mmCTLA4Ig) to suppress Con A-stimulated lymphocyte proliferation. Additionally, mmCD40Ig only showed mild immunosuppressive activity in a one-way mixed lymphocyte reaction (MLR) system. These results suggest that mmCD40Ig secreted by P. pastoris was productive and functional, and it could be used as a tool for pathogenesis and therapies for chronic inflammatory diseases in a M. mulatta model.

  9. Glycosylations and truncations of functional cereal phytases expressed and secreted by Pichia pastoris documented by mass spectrometry.

    PubMed

    Dionisio, Giuseppe; Jørgensen, Malene; Welinder, Karen Gjesing; Brinch-Pedersen, Henrik

    2012-03-01

    Cereal purple acid phosphatase-type phytases, PAPhy, play an essential role in making phosphate accessible to mammalian digestion and reducing the environmental impact of manure. Studying the potential of PAPhy requires easy access to the enzymes. For that purpose wheat and barley isophytases have been expressed in Pichia pastoris from constructs encoding the alpha-mating factor at the N-termini and a His₆ tag before the stop codon in all constructs. A protein chemical study of a C-terminally truncated recombinant wheat phytase, r-TaPAPhy_b2, was carried out to clarifying the posttranslational processing of proteins secreted from P. pastoris. Extensive mass spectrometric sequencing of tryptic, chymotryptic and AspN derived peptides of both the native and endoH deglycosylated forms showed: (i) All mating factor derived sequence had been removed and further unspecific proteolysis left highly heterogeneous N-terminal variant forms of r-TaPAPhy; (ii) The His₆ tag had been retained or slightly truncated; (iii) All seven potential N-glycan sites were glycosylated except for two sites which were partially glycosylated by ca. 90% and 30%; (iv) Among the nine cysteine residues of this phytase, the most N-terminal residue is free, whereas the remaining eight appear to be disulfide bonded. It is noteworthy that already the first step in ESI-MS/MS sequencing had fragmented the hyper glycosylated peptides into free Z, Y and X mass spectrometric glycan fragments attached to the peptide. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Expression and characterization of a Talaromyces marneffei active phospholipase B expressed in a Pichia pastoris expression system

    PubMed Central

    He, Yan; Li, Linghua; Hu, Fengyu; Chen, Wanshan; Lei, Huali; Chen, Xiejie; Cai, Weiping; Tang, Xiaoping

    2016-01-01

    Phospholipase B is a virulence factor for several clinically important pathogenic fungi, including Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus, but its role in the thermally dimorphic fungus Talaromyces marneffei remains unclear. Here, we provide the first report of the expression of a novel phospholipase gene, designated TmPlb1, from T. marneffei in the eukaryotic expression system of Pichia pastoris GS115. Sensitive real-time quantitative reverse-transcription PCR (qRT-PCR) demonstrated that the expression of TmPlb1 increased 1.85-fold in the yeast phase compared with the mycelial phase. TmPlb1 contains an open reading frame (ORF) of 732 bp that encodes a protein of 243 amino acids. The conserved serine, aspartate and histidine catalytic triad and the G-X-S-X-G domain of TmPLB1 provide the structural basis for its molecular activity. The ORF of TmPlb1 was successfully cloned into a pPIC9K vector containing an α-mating factor secretion signal that allowed the secretory expression of TmPLB1 in P. pastoris. The heterologous protein expression began 12 h after methanol induction and peaked at 96 h. Through analysis with SDS–polyacrylamide gel electrophoresis (SDS-PAGE), western blotting and mass spectrometry, we confirmed that TmPLB1 was successfully expressed. Through Ni-affinity chromatography, TmPLB1 was highly purified, and its concentration reached 240.4 mg/L of culture medium. With specific substrates, the phospholipase A1 and phospholipase A2 activities of TmPLB1 were calculated to be 5.96 and 1.59 U/mg, respectively. The high purity and activity of the TmPLB1 obtained here lay a solid foundation for further investigation. PMID:27876784

  11. VSV-G Viral Envelope Glycoprotein Prepared from Pichia pastoris Enhances Transfection of DNA into Animal Cells.

    PubMed

    Liu, Xin; Dong, Ying; Wang, Jingquan; Li, Long; Zhong, Zhenmin; Li, Yun-Pan; Chen, Shao-Jun; Fu, Yu-Cai; Xu, Wen-Can; Wei, Chi-Ju

    2017-06-28

    Vesicular stomatitis virus G glycoprotein (VSV-G) has been widely used for pseudotyping retroviral, lentiviral, and artificial viral vectors. The objective of this study was to establish a potential approach for large-scale production of VSV-G. To this end, VSV-G was cloned with an N-terminal His-tag into Pichia pastoris expression vector pPIC3.5K. Three clones (Mut(s)) containing the VSV-G expression cassette were identified by PCR. All clones proliferated normally in expansion medium, whereas the proliferation was reduced significantly under induction conditions. VSV-G protein was detected in cell lysates by western blot analysis, and the highest expression level was observed at 96 h post induction. VSV-G could also be obtained from the condition medium of yeast protoplasts. Furthermore, VSV-G could be incorporated into Ad293 cells and was able to induce cell fusion, leading to the transfer of cytoplasmic protein. Finally, VSV-G-mediated DNA transfection was assayed by flow cytometry and luciferase measurement. Incubation of VSV-G lysate with the pGL3-control DNA complex increased the luciferase activity in Ad293 and HeLa cells by about 3-fold. Likewise, incubation of VSV-G lysate with the pCMV-DsRed DNA complex improved the transfection efficiency into Ad293 by 10% and into HeLa cells by about 1-fold. In conclusion, these results demonstrate that VSV-G could be produced from P. pastoris with biofunctionalities, demonstrating that large-scale production of the viral glycoprotein is feasible.

  12. Bioprocess and downstream optimization of recombinant bovine chymosin B in Pichia (Komagataella) pastoris under methanol-inducible AOXI promoter.

    PubMed

    Noseda, Diego Gabriel; Blasco, Martín; Recúpero, Matías; Galvagno, Miguel Ángel

    2014-12-01

    A clone of the methylotrophic yeast Pichia pastoris strain GS115 transformed with the bovine prochymosin B gene was used to optimize the production and downstream of recombinant bovine chymosin expressed under the methanol-inducible AOXI promoter. Cell growth and recombinant chymosin production were analyzed in flask cultures containing basal salts medium with biodiesel-byproduct glycerol as the carbon source, obtaining values of biomass level and milk-clotting activity similar to those achieved with analytical glycerol. The effect of biomass level at the beginning of methanol-induction phase on cell growth and chymosin expression was evaluated, determining that a high concentration of cells at the start of such period generated an increase in the production of chymosin. The impact of the specific growth rate on chymosin expression was studied throughout the induction stage by methanol exponential feeding fermentations in a lab-scale stirred bioreactor, achieving the highest production of heterologous chymosin with a constant specific growth rate of 0.01h(-1). By gel filtration chromatography performed at a semi-preparative scale, recombinant chymosin was purified from exponential fed-batch fermentation cultures, obtaining a specific milk-clotting activity of 6400IMCU/mg of chymosin and a purity level of 95%. The effect of temperature and pH on milk-clotting activity was analyzed, establishing that the optimal temperature and pH values for the purified recombinant chymosin are 37°C and 5.5, respectively. This study reported the features of a sustainable bioprocess for the production of recombinant bovine chymosin in P. pastoris by fermentation in stirred-tank bioreactors using biodiesel-derived glycerol as a low-cost carbon source.

  13. High-level expression of active recombinant ubiquitin carboxyl-terminal hydrolase of Drosophila melanogaster in Pichia pastoris.

    PubMed

    Jin, Feng-liang; Xu, Xiao-xia; Yu, Xiao-qiang; Ren, Shun-xiang

    2009-06-01

    Ubiquitin carboxyl-terminal hydrolases (UCHs) are implicated in the proteolytic processing of polymeric ubiquitin. The high specificity for the recognition site makes UCHs useful enzymes for in vitro cleavage of ubiquitin fusion proteins. In this work, an active C-terminal His-tagged UCH from Drosophila melanogaster (DmUCH) was produced as a secretory form in a recombinant strain of the methylotrophic yeast Pichia pastoris. The production of recombinant DmUCH by Mut(s) strain was much higher than that by Mut(+) strain, which was confirmed by Western blot analysis. When expression was induced at pH 6.0 in a BMMY/methanol medium, the concentration of recombinant DmUCH reached 210 mg l(-1). With the (His)(6)-tag, the recombinant DmUCH was easily purified by Ni-NTA chromatography and 18 mg pure active DmUCH were obtained from 100ml culture broth supernatant. Ubiquitin-magainin fusion protein was efficiently cleaved by DmUCH, yielding recombinant magainin with high antimicrobial activity. After removing the contaminants by Ni-NTA chromatography, recombinant magainin was purified to homogeneity easily by reversed-phase HPLC. Analysis of the recombinant magainin by ESI-MS showed that the molecular weight of the purified recombinant magainin was 2465 Da, which perfectly matches the mass calculated from the amino acid sequence. The result of mass spectrometry confirmed that the purified His-tagged DmUCH can recognize the ubiquitin-magainin fusion protein and cleave it at the carboxyl terminus of ubiquitin precisely. Our results showed that P. pastoris is a robust system to express the secreted form of DmUCH.

  14. Mxr1p, a Key Regulator of the Methanol Utilization Pathway and Peroxisomal Genes in Pichia pastoris

    PubMed Central

    Lin-Cereghino, Geoffrey Paul; Godfrey, Laurie; de la Cruz, Bernard J.; Johnson, Sabrina; Khuongsathiene, Samone; Tolstorukov, Ilya; Yan, Mingda; Lin-Cereghino, Joan; Veenhuis, Marten; Subramani, Suresh; Cregg, James M.

    2006-01-01

    Growth of the yeast Pichia pastoris on methanol induces the expression of genes whose products are required for its metabolism. Three of the methanol pathway enzymes are located in an organelle called the peroxisome. As a result, both methanol pathway enzymes and proteins involved in peroxisome biogenesis (PEX proteins) are induced in response to this substrate. The most highly regulated of these genes is AOX1, which encodes alcohol oxidase, the first enzyme of the methanol pathway, and a peroxisomal enzyme. To elucidate the molecular mechanisms responsible for methanol regulation, we identify genes required for the expression of AOX1. Mutations in one gene, named MXR1 (methanol expression regulator 1), result in strains that are unable to (i) grow on the peroxisomal substrates methanol and oleic acid, (ii) induce the transcription of AOX1 and other methanol pathway and PEX genes, and (iii) form normal-appearing peroxisomes in response to methanol. MXR1 encodes a large protein with a zinc finger DNA-binding domain near its N terminus that has similarity to Saccharomyces cerevisiae Adr1p. In addition, Mxr1p is localized to the nucleus in cells grown on methanol or other gluconeogenic substrates. Finally, Mxr1p specifically binds to sequences upstream of AOX1. We conclude that Mxr1p is a transcription factor that is necessary for the activation of many genes in response to methanol. We propose that MXR1 is the P. pastoris homologue of S. cerevisiae ADR1 but that it has gained new functions and lost others through evolution as a result of changes in the spectrum of genes that it controls. PMID:16428444

  15. High-yield production of hydrophobins RodA and RodB from Aspergillus fumigatus in Pichia pastoris.

    PubMed

    Pedersen, Mona Højgaard; Borodina, Irina; Moresco, Jacob Lange; Svendsen, Winnie Edith; Frisvad, Jens Christian; Søndergaard, Ib

    2011-06-01

    Hydrophobins are small fungal proteins with amphipatic properties and the ability to self-assemble on a hydrophobic/hydrophilic interface; thus, many technical applications for hydrophobins have been suggested. The pathogenic fungus Aspergillus fumigatus expresses the hydrophobins RodA and RodB on the surface of its conidia. RodA is known to be of importance to the pathogenesis of the fungus, while the biological role of RodB is currently unknown. Here, we report the successful expression of both hydrophobins in Pichia pastoris and present fed-batch fermentation yields of 200-300 mg/l fermentation broth. Protein bands of expected sizes were detected by SDS-PAGE and western blotting, and the identity was further confirmed by tandem mass spectrometry. Both proteins were purified using his-affinity chromatography, and the high level of purity was verified by silver-stained SDS-PAGE. Recombinant RodA as well as rRodB were able to convert a glass surface from hydrophilic to hydrophobic similar to native RodA, but only rRodB was able to decrease the hydrophobicity of a Teflon-like surface to the same extent as native RodA, while rRodA showed this ability to a lesser extent. Recombinant RodA and native RodA showed a similar ability to emulsify air in water, while recombinant RodB could also emulsify oil in water better than the control protein bovine serum albumin (BSA). This is to our knowledge the first successful expression of hydrophobins from A. fumigatus in a eukaryote host, which makes it possible to further characterize both hydrophobins. Furthermore, the expression strategy and fed-batch production using P. pastoris may be transferred to hydrophobins from other species.

  16. Lipid polyunsaturation determines the extent of membrane structural changes induced by Amphotericin B in Pichia pastoris yeast.

    PubMed

    de Ghellinck, Alexis; Fragneto, Giovanna; Laux, Valerie; Haertlein, Michael; Jouhet, Juliette; Sferrazza, Michele; Wacklin, Hanna

    2015-10-01

    The activity of the potent but highly toxic antifungal drug Amphotericin B (AmB), used intravenously to treat systemic fungal and parasitic infections, is widely accepted to result from its specific interaction with the fungal sterol ergosterol. While the effect of sterols on AmB activity has been intensely investigated, the role of membrane phospholipid composition has largely been ignored, and structural studies of native membranes have been hampered by their complex and disordered nature. We show for the first time that the structure of fungal membranes derived from Pichia pastoris yeast depends on the degree of lipid polyunsaturation, which has an impact on the structural consequences of AmB activity. AmB inserts in yeast membranes even in the absence of ergosterol, and forms an extra-membraneous layer whose thickness is resolved to be 4-5 nm. In ergosterol-containing membranes, AmB insertion is accompanied by ergosterol extraction into this layer. The AmB-sponge mediated depletion of ergosterol from P. pastoris membranes gives rise to a significant membrane thinning effect that depends on the degree of lipid polyunsaturation. The resulting hydrophobic mismatch is likely to interfere with a much broader range of membrane protein functions than those directly involving ergosterol, and suggests that polyunsaturated lipids could boost the efficiency of AmB. Furthermore, a low degree of lipid polyunsaturation leads to least AmB insertion and may protect host cells against the toxic effects of AmB. These results provide a new framework based on lipid composition and membrane structure through which we can understand its antifungal action and develop better treatments.

  17. Expression and characterization of the antimicrobial peptide ABP-dHC-cecropin A in the methylotrophic yeast Pichia pastoris.

    PubMed

    Sang, Ming; Wei, Hui; Zhang, Jiaxin; Wei, Zhiheng; Wu, Xiaolong; Chen, Yan; Zhuge, Qiang

    2017-12-01

    ABP-dHC-cecropin A is a linear cationic peptide that exhibits antimicrobial properties. To explore a new approach for expression of ABP-dHC-cecropin A using the methylotrophic yeast Pichia pastoris, we cloned the ABP-dHC-cecropin A gene into the vector pPICZαA. The SacI-linearized plasmid pPICZαA-ABP-dHC-cecropin A was then transformed into P. pastoris GS115 by electroporation. Expression was induced after a 96-h incubation with 0.5% methanol at 20 °C in a culture supplied with 2% casamino acids to avoid proteolysis. Under these conditions, approximately 48 mg of ABP-dHC-cecropin A was secreted into 1L (4 × 250-mL)of medium. Recombinant ABP-dHC-cecropin A was purified using size-exclusion chromatography, and 21 mg of pure active ABP-dHC-cecropin A was obtained from 1L (4 × 250-mL)of culture. Electrophoresis on 4-20% gradient gels indicated that recombinant ABP-dHC-cecropin A was secreted as a protein approximately 4 kDa in size. Recombinant ABP-dHC-cecropin A was successfully expressed, as the product displayed antibacterial and antifungal activities (based on an antibacterial assay, scanning electron microscopy, and antifungal assay) indistinguishable from those of the synthesized protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Multistep processing of the secretion leader of the extracellular protein Epx1 in Pichia pastoris and implications for protein localization.

    PubMed

    Heiss, Silvia; Puxbaum, Verena; Gruber, Clemens; Altmann, Friedrich; Mattanovich, Diethard; Gasser, Brigitte

    2015-07-01

    Secretion leaders are required to direct nascent proteins to the secretory pathway. They are of interest in the study of intracellular protein transport, and are required for the production of secretory recombinant proteins. Secretion leaders are processed in two steps in the endoplasmic reticulum and Golgi. Although yeast cells typically contain about 150 proteins entering the secretory pathway, only a low number of proteins are actually secreted to the cell supernatant. Analysis of the secretome of the yeast Pichia pastoris revealed that the most abundant secretory protein, which we named Epx1, belongs to the cysteine-rich secretory protein family CRISP. Surprisingly, the Epx1 secretion leader undergoes a three-step processing on its way to the cell exterior instead of the usual two-step processing. The Kex2 cleavage site within the P. pastoris Epx1 leader is not conserved in the homologues of most other yeasts. We studied the effect of exchanging the Kex2-cleavage motif on the secretory behaviour of reporter proteins fused to variants of the Epx1 leader sequence, and observed mistargeting for some but not all of the variants using fluorescence microscopy. By targeting several recombinant human proteins for secretion, we revealed that a short variant of the leader sequence, as well as the Epx1 signal sequence alone, resulted in the correct N-termini of the secreted proteins. Both leader variants proved to be very efficient, even exceeding the secretion levels obtained with commonly used secretion leaders. Taken together, the novel Epx1 secretion leader sequences are a valuable tool for recombinant protein production as well as basic research of intracellular transport.

  19. Expression of the enzymatically active legumain-like cysteine proteinase TvLEGU-1 of Trichomonas vaginalis in Pichia pastoris.

    PubMed

    Reséndiz-Cardiel, Gerardo; Arroyo, Rossana; Ortega-López, Jaime

    2017-06-01

    The legumain-like cysteine proteinase TvLEGU-1 from Trichomonas vaginalis plays a major role in trichomonal cytoadherence. However, its structure-function characterization has been limited by the lack of a reliable recombinant expression platform to produce this protein in its native folded conformation. TvLEGU-1 has been expressed in Escherichia coli as inclusion bodies and all efforts to refold it have failed. Here, we describe the expression of the synthetic codon-optimized tvlegu-1 (tvlegu-1-opt) gene in Pichia pastoris strain X-33 (Mut+) under the inducible AOX1 promoter. The active TvLEGU-1 recombinant protein (rTvLEGU-1) was secreted into the medium when tvlegu-1-opt was fused to the Aspergillus niger alpha-amylase signal peptide. The rTvLEGU-1 secretion was influenced by the gene copy number and induction temperature. Data indicate that increasing tvlegu-1-opt gene copy number was detrimental for heterologous expression of the enzymatically active TvLEGU-1. Indeed, expression of TvLEGU-1 had a greater impact on cell viability for those clones with 26 or 29 gene copy number, and cell lysis was observed when the induction was carried out at 30 °C. The enzyme activity in the medium was higher when the induction was carried out at 16 °C and in P. pastoris clones with lower gene copy number. The results presented here suggest that both copy number and induction temperature affect the rTvLEGU-1 expression in its native-like and active conformation. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. De novo synthesis, constitutive expression of Aspergillus sulphureus beta-xylanase gene in Pichia pastoris and partial enzymic characterization.

    PubMed

    Cao, Yunhe; Qiao, Jiayun; Li, Yihang; Lu, Wenqing

    2007-09-01

    The endo-beta-1, 4-xylanase gene xynA from Aspergillus sulphureus, encoded a lack-of-signal peptide protein of 184 amino acids, was de novo synthesized by splicing overlap extension polymerase chain reaction according to Pichia pastoris protein's codon bias. The synthetic DNA, composed of 572 nucleotides, was ligated into the downstream sequence of an alpha-mating factor in a constitutive expression vector pGAPzalphaA and electrotransformed into the P. pastoris X-33 strain. The transformed yeast screened by Zeocin was able to constitutively secrete the xylanase in yeast-peptone-dextrose liquid medium. The heterogenous DNA was stabilized in the strain by 20-times passage culture. The recombinant enzyme was expressed with a yield of 120 units/mL under the flask culture at 28 degrees C for 3 days. The enzyme showed optimal activity at 50 degrees C and pH 2.4-3.4. Residual activity of the raw recombinant xylanase was not less than 70% when fermentation broth was directly heated at 80 degrees C for 30 min. However, the dialyzed xylanase supernatant completely lost the catalytic activity after being heated at 60 degrees C for 30 min. The recombinant xylanase showed no obvious activity alteration by being pretreated with Na(2)HPO(4)-citric acid buffer of pH 2.4 for 2 h. The xylanase also showed resistance to certain metal ions (Na(+), Mg(2+), Ca(2+), K(+), Ba(2+), Zn(2+), Fe(2+), and Mn(2+)) and EDTA. These biochemical characteristics suggest that the recombinant xylanase has a prospective application in feed industry as an additive.

  1. Protective immunity of a Pichia pastoris expressed recombinant iridovirus major capsid protein in the Chinese giant salamander, Andrias davidianus.

    PubMed

    Zhou, Yong; Fan, Yuding; LaPatra, Scott E; Ma, Jie; Xu, Jin; Meng, Yan; Jiang, Nan; Zeng, Lingbing

    2015-10-13

    The major capsid protein (MCP) is the main immunogenic protein of iridoviruses, that has been widely used as an immunogen in vaccination trials. In this study, the codon-optimized giant salamander iridovirus (GSIV) MCP gene (O-MCP) was synthesized and cloned into a pPICZα B vector for secretory expression in the methylotrophic yeast Pichia pastoris after methanol induction. The expression of the O-MCP protein was detected by the Bradford protein assay, SDS-PAGE, Western blotting and electron microscopy. The Bradford protein assay indicated that the concentration of the O-MCP expressed was about 40 μg/ml in culture supernatants. SDS-PAGE analysis revealed that the O-MCP had a molecular weight of about 66 kDa and reacted with a His-specific MAb that was confirmed by Western blotting. Electron microscopy observations revealed that the purified O-MCP could self-assemble into virus-like particles. Healthy giant salamanders were vaccinated by intramuscular injection with the O-MCP antigen at a dose of 20 μg/individual. The numbers of erythrocytes and leukocytes in the peripheral blood of immunized Chinese giant salamanders increased significantly at day 3 and reached a peak at day 5 post-immunization. Meanwhile, the differential leukocyte counts of monocytes and neutrophils increased significantly at day 5 post-immunization compared to that of the control group. The percentage of lymphocytes was 71.33 ± 3.57% at day 21 post-immunization. The neutralization assay showed that the serum neutralizing antibody titer reached 321 at day 21 post-immunization. The GSIV challenge test revealed that the relative percent survival of Chinese giant salamanders vaccinated with O-MCP was 78%. These results indicated that the O-MCP antigen expressed by the Pichia pastoris system elicited significant immune response in the Chinese giant salamander against GSIV and might represent a potential yeast-derived vaccine candidate that could be used for the control of disease caused by the

  2. Trm1p, a Zn(II)₂Cys₆-type transcription factor, is essential for the transcriptional activation of genes of methanol utilization pathway, in Pichia pastoris.

    PubMed

    Sahu, Umakant; Krishna Rao, Kamisetty; Rangarajan, Pundi N

    2014-08-15

    The zinc finger transcription factors Mxr1p and Rop are key regulators of methanol metabolism in the methylotrophic yeast, Pichia pastoris, while Trm1p and Trm2p regulate methanol metabolism in Candida boidinii. Here, we demonstrate that Trm1p is essential for the expression of genes of methanol utilization (mut) pathway in P. pastoris as well. Expression of AOXI and other genes of mut pathway is severely compromised in P. pastoris ΔTrm1 strain resulting in impaired growth on media containing methanol as the sole source of carbon. Trm1p localizes to the nucleus of cells cultured on glucose or methanol. The zinc finger domain of Mxr1p but not Trm1p binds to AOXI promoter sequences in vitro, indicating that these two positive regulators act by different mechanisms. We conclude that both Trm1p and Mxr1p are essential for the expression of genes of mut pathway in P. pastoris and the mechanism of transcriptional regulation of mut pathway may be similar in P. pastoris and C. boidinii.

  3. Determination of a Dynamic Feeding Strategy for Recombinant Pichia pastoris Strains

    PubMed Central

    Spadiut, Oliver; Dietzsch, Christian; Herwig, Christoph

    2015-01-01

    The knowledge of certain strain specific parameters of recombinant P. pastoris strains is required to be able to set up a feeding regime for fed-batch cultivations. To date, these parameters are commonly determined either by time-consuming and labor-intensive continuous cultivations or by several, consecutive fed-batch cultivations. Here, we describe a fast method based on batch experiments with methanol pulses to extract certain strain characteristic parameters, which are required to set up a dynamic feeding strategy for P. pastoris strains based on specific substrate uptake rate (qs). We further describe in detail the course of actions which have to be taken to obtain the desired dynamics during feeding. PMID:24744034

  4. Biocontrol activity of an alkaline serine protease from Aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple.

    PubMed

    Banani, Houda; Spadaro, Davide; Zhang, Dianpeng; Matic, Slavica; Garibaldi, Angelo; Gullino, Maria Lodovica

    2014-07-16

    The yeast-like fungus Aureobasidium pullulans PL5 is a microbial antagonist against postharvest pathogens of fruits. The strain is able to produce hydrolases, including glucanases, chitinases and proteases. The alkaline serine protease gene ALP5 from A. pullulans was cloned, inserted into the vector pPIC9 to construct pPIC9/ALP5, and then expressed in Pichia pastoris strain KM71. ALP5 had a molecular mass of 42.9kDa after 5days growth with 1% methanol induction at 28°C. The recombinant protease expressed in P. pastoris showed its highest activity under alkaline conditions (at pH10) and a temperature of 50°C. The antifungal activity of the recombinant protease was investigated against Penicillium expansum, Botrytis cinerea, Monilinia fructicola and Alternaria alternata in vitro and on apple. The recombinant protease reduced significantly the spore germination and the germ tube length of the tested pathogens in PDB medium. The highest level of protease efficacy was observed against M. fructicola and B. cinerea, whereas a lower efficacy was observed against P. expansum and A. alternata indicating a possible effect of the pathogen cell wall composition on the proteolytic activity of the recombinant protease. The presence of protease was able to cause the swelling of the hyphae of B. cinerea, under an optical microscope. The recombinant protease expressed in P. pastoris was more active against the pathogens in vitro than the same enzyme expressed in E. coli in previous studies. The efficacy of ALP5 was also evaluated against the pathogens in vivo on cv Golden Delicious apples. The protease was more efficient in controlling M. fructicola, B. cinerea and P. expansum than A. alternata. However, the extent of the activity was dependent on the enzyme concentration and the length of fruit storage. This study demonstrated the capacity of the alkaline serine protease to keep its enzymatic activity for some days in the unfavorable environment of the fruit wounds. The alkaline

  5. Partial Optimization of the 5-Terminal Codon Increased a Recombination Porcine Pancreatic Lipase (opPPL) Expression in Pichia pastoris

    PubMed Central

    Zhao, Hua; Chen, Dan; Tang, Jiayong; Jia, Gang; Long, Dingbiao; Liu, Guangmang; Chen, Xiaoling; Shang, Haiying

    2014-01-01

    Pancreatic lipase plays a key role in intestinal digestion of feed fat, and is often deficient in young animals such as weaning piglets. The objective of this study was to express and characterize a partial codon optimized porcine pancreatic lipase (opPPL). A 537 bp cDNA fragment encoding N-terminus amino acid residue of the mature porcine pancreatic lipase was synthesized according to the codon bias of Pichia pastoris and ligated to the full-length porcine pancreatic lipase cDNA fragment. The codon optimized PPL was cloned into the pPICZαA (Invitrogen, Beijing, China) vector. After the resultant opPPL/pPICZαΑ plasmid was transformed into P.pastoris, the over-expressed extracellular opPPL containing a His-tag to the C terminus was purified using Ni Sepharose affinity column (GE Healthcare, Piscataway, NJ, USA), and was characterized against the native enzyme (commercial PPL from porcine pancreas, Sigma). The opPPL exhibited a molecular mass of approximately 52 kDa, and showed optimal temperature (40°C), optimal pH (8.0), Km (0.041 mM), and Vmax (2.008 µmol.mg protein −1.min−1) similar to those of the commercial enzyme with p-NPP as the substrate. The recombinant enzyme was stable at 60°C, but lost 80% (P<0.05) of its activity after exposure to heat ≥60°C for 20 min. The codon optimization increased opPPL yield for ca 4 folds (146 mg.L−1 vs 36 mg.L−1) and total enzyme activity increased about 5 folds (1900 IU.L−1 vs 367 IU.L−1) compared with those native naPPL/pPICZαΑ tranformant. Comparison of gene copies and mRNA profiles between the two strains indicated the increased rePPL yields may partly be ascribed to the increased protein translational efficiency after codon optimization. In conclusion, we successfully optimized 5-terminal of porcine pancreatic lipase encoding gene and over-expressed the gene in P. pastoris as an extracellular, functional enzyme. The recombination enzyme demonstrates a potential for future use as an animal feed

  6. Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary ¹³C flux analysis.

    PubMed

    Jordà, Joel; Suarez, Camilo; Carnicer, Marc; ten Pierick, Angela; Heijnen, Joseph J; van Gulik, Walter; Ferrer, Pau; Albiol, Joan; Wahl, Aljoscha

    2013-02-28

    Several studies have shown that the utilization of mixed carbon feeds instead of methanol as sole carbon source is beneficial for protein production with the methylotrophic yeast Pichia pastoris. In particular, growth under mixed feed conditions appears to alleviate the metabolic burden related to stress responses triggered by protein overproduction and secretion. Yet, detailed analysis of the metabolome and fluxome under mixed carbon source metabolizing conditions are missing. To obtain a detailed flux distribution of central carbon metabolism, including the pentose phosphate pathway under methanol-glucose conditions, we have applied metabolomics and instationary ¹³C flux analysis in chemostat cultivations. Instationary ¹³C-based metabolic flux analysis using GC-MS and LC-MS measurements in time allowed for an accurate mapping of metabolic fluxes of glycolysis, pentose phosphate and methanol assimilation pathways. Compared to previous results from NMR-derived stationary state labelling data (proteinogenic amino acids, METAFoR) more fluxes could be determined with higher accuracy. Furthermore, using a thermodynamic metabolic network analysis the metabolite measurements and metabolic flux directions were validated. Notably, the concentration of several metabolites of the upper glycolysis and pentose phosphate pathway increased under glucose-methanol feeding compared to the reference glucose conditions, indicating a shift in the thermodynamic driving forces. Conversely, the extracellular concentrations of all measured metabolites were lower compared with the corresponding exometabolome of glucose-grown P. pastoris cells.The instationary ¹³C flux analysis resulted in fluxes comparable to previously obtained from NMR datasets of proteinogenic amino acids, but allowed several additional insights. Specifically, i) in vivo metabolic flux estimations were expanded to a larger metabolic network e.g. by including trehalose recycling, which accounted for about 1.5% of

  7. Biological production of acetaldehyde from ethanol using non-growing Pichia pastoris whole cells

    SciTech Connect

    Chiang, Heien-Kun; Foutch, G.L.; Fish, W.W.

    1991-12-31

    Acetaldehyde has been produced biologically using whole-cell Pichia Pass in a semibatch fermentor. Ethanol and air were fed continuously, and the product, acetaldehyde, was removed by the air stream. Operation of the reactor exceeded 100 h, maintaining high alcohol oxidase activity. Low cell-mass concentration (9.9 g/L) minimized product inhibition. Ethanol concentration in the broth, oxygen concentration in the air, and pH were evaluated for their effects on the fermentation process.

  8. [Expression of AIV subtype H5HA, H7HA and H9HA hemagglutinin gene in Pichia pastoris].

    PubMed

    Xu, Yi-Ming; Jin, Ning-Yi; Xia, Zhi-Ping; Ma, Ming-Xiao; Lu, Hui-Jun; Han, Song; Jin, Kuo-Shi; Liang, Guo-Dong

    2006-03-01

    The expression of the hemagglutinins of Avian influenza virus H5 H7and H9 subtypes was studied in this article by Pichia pastoris, one of the eukaryotis expression systems. Three reconstructed expression plasmids and engineering strains, named pPIC9K-H5HA, pPIC9K-H7HA, pPIC9K-H9HA and GS115/pPIC9K-H5HA, GS115/pPIC9K-H7HA, GS115/pPIC9K-H9HA repectively, were obtained. The reconstructed yeast engineering strains were identified by MD and MM plate selecting and PCR. The induced interests proteins were examined by SDS-PAGE and Western-bloting,the results showed that the interest genes were expressed exactly. And this will be helpful in the future study of antigen detection and antibody detection kit, as well in the subunit vaccines developing.

  9. Variants of PpuLcc, a multi-dye decolorizing laccase from Pleurotus pulmonarius expressed in Pichia pastoris.

    PubMed

    Behrens, Christoph J; Linke, Diana; Allister, Aldrige B; Zelena, Katerina; Berger, Ralf G

    2017-09-01

    A laccase of the basidiomycete Pleurotus pulmonarius (PpuLcc) possessed strong decolorizing abilities towards artificial and natural dyes. The PpuLcc was purified from the culture supernatant via FPLC, and the corresponding gene cloned and expressed in Pichia pastoris GS115. To examine the impact of the C-terminal tail region and the signal peptide on the recombinant expression of PpuLcc, a non-modified version or different truncations (-2, -5, -13 AA) of the target protein were combined with different secretion signals. Heterologous expression of codon optimized constructs resulted in extracellular activities of the PpuLcc variants of up to 7000 U L(-1) (substrate ABTS) which was six times higher than non-codon optimized constructs. In contrast to previous works, altering the C-terminal end of the protein did not influence kinetic parameters or the rate of expression. The His-Tag purified enzymes showed high temperature optima (50-70 °C) and thermo stability. All of the recombinant variants degraded triarylmethane and azo dyes. Rapid bleaching of β-carotene (E 160a) and the polyene acid norbixin (E 160b) using a laccase was found for the first time. Thus, the enzyme may be useful in decolorizing unwanted polyene pigments, for example from the processing of cheese, bakery, desserts, ice cream or coloured casings. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Cloning and functional expression of UGT genes encoding sterol glucosyltransferases from Saccharomyces cerevisiae, Candida albicans, Pichia pastoris, and Dictyostelium discoideum.

    PubMed

    Warnecke, D; Erdmann, R; Fahl, A; Hube, B; Müller, F; Zank, T; Zähringer, U; Heinz, E

    1999-05-07

    Sterol glucosides, typical membrane-bound lipids of many eukaryotes, are biosynthesized by a UDP-glucose:sterol glucosyltransferase (EC 2. 4.1.173). We cloned genes from three different yeasts and from Dictyostelium discoideum, the deduced amino acid sequences of which all showed similarities with plant sterol glucosyltransferases (Ugt80A1, Ugt80A2). These genes from Saccharomyces cerevisiae (UGT51 = YLR189C), Pichia pastoris (UGT51B1), Candida albicans (UGT51C1), and Dictyostelium discoideum (ugt52) were expressed in Escherichia coli. In vitro enzyme assays with cell-free extracts of the transgenic E. coli strains showed that the genes encode UDP-glucose:sterol glucosyltransferases which can use different sterols such as cholesterol, sitosterol, and ergosterol as sugar acceptors. An S. cerevisiae null mutant of UGT51 had lost its ability to synthesize sterol glucoside but exhibited normal growth under various culture conditions. Expression of either UGT51 or UGT51B1 in this null mutant under the control of a galactose-induced promoter restored sterol glucoside synthesis in vitro. Lipid extracts of these cells contained a novel glycolipid. This lipid was purified and identified as ergosterol-beta-D-glucopyranoside by nuclear magnetic resonance spectroscopy. These data prove that the cloned genes encode sterol-beta-D-glucosyltransferases and that sterol glucoside synthesis is an inherent feature of eukaryotic microorganisms.

  11. 28-day repeated dose oral toxicity of human copper-zinc superoxide dismutase from recombinant Pichia pastori in rats.

    PubMed

    Zhu, Liang; Tian, Ying-Juan; Zhu, Si-Ming

    2012-04-01

    Human copper/zinc superoxide dismutase from recombinant Pichia pastori (RH-Cu/Zn-SOD) was orally administered, via gavage, to Sprague-Dawley rats at 500, 1,000, and 2,000 mg/kg body weight/day for 28 days. During the 28-day period, animals were examined for evidence of toxicity; there were no deaths, and in-life physical signs were normal. On day 29, the animals were exsanguinated, examined for gross pathology, and tissues were preserved for histopathology. Although statistical differences were noted in some hematology and clinical chemistry, they were of questionable biological significance. The results of the 28-day oral administration demonstrated a lack of toxicity of RH-Cu/Zn-SOD in rats. There were no treatment-related, toxicologically relevant changes in clinical signs, growth, food consumption, hematology, clinical chemistry, organ weights, or pathology. The no observed adverse effect level was greater than 2,000 mg/kg/day for RH-Cu/Zn-SOD in rats.

  12. Differential Expression of Laccase Genes in Pleurotus ostreatus and Biochemical Characterization of Laccase Isozymes Produced in Pichia pastoris

    PubMed Central

    Park, Minsa; Kim, Minseek; Kim, Sinil; Ha, Byeongsuk

    2015-01-01

    In this study, transcriptome analysis of twelve laccase genes in Pleurotus ostreatus revealed that their expression was differentially regulated at different developmental stages. Lacc5 and Lacc12 were specifically expressed in fruiting bodies and primordia, respectively, whereas Lacc6 was expressed at all developmental stages. Lacc1 and Lacc3 were specific to the mycelial stage in solid medium. In order to investigate their biochemical characteristics, these laccases were heterologously expressed in Pichia pastoris using the pPICHOLI-2 expression vector. Expression of the laccases was facilitated by intermittent addition of methanol as an inducer and sole carbon source, in order to reduce the toxic effects associated with high methanol concentration. The highest expression was observed when the recombinant yeast cells were grown for 5 days at 15℃ with intermittent addition of 1% methanol at a 12-hr interval. Investigation of enzyme kinetics using 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) as a substrate revealed that the primordium-specific laccase Lacc12 was 5.4-fold less active than Lacc6 at low substrate concentration with respect to ABTS oxidation activity. The optimal pH and temperature of Lacc12 were 0.5 pH units and 5℃ higher than those of Lacc6. Lacc12 showed maximal activity at pH 3.5 and 50℃, which may reflect the physiological conditions at the primordiation stage. PMID:26539044

  13. A simple model-based control for Pichia pastoris allows a more efficient heterologous protein production bioprocess.

    PubMed

    Cos, Oriol; Ramon, Ramon; Montesinos, José Luis; Valero, Francisco

    2006-09-05

    A predictive control algorithm coupled with a PI feedback controller has been satisfactorily implemented in the heterologous Rhizopus oryzae lipase production by Pichia pastoris methanol utilization slow (Mut(s)) phenotype. This control algorithm has allowed the study of the effect of methanol concentration, ranging from 0.5 to 1.75 g/L, on heterologous protein production. The maximal lipolytic activity (490 UA/mL), specific yield (11,236 UA/g(biomass)), productivity (4,901 UA/L . h), and specific productivity (112 UA/g(biomass)h were reached for a methanol concentration of 1 g/L. These parameters are almost double than those obtained with a manual control at a similar methanol set-point. The study of the specific growth, consumption, and production rates showed different patterns for these rates depending on the methanol concentration set-point. Results obtained have shown the need of implementing a robust control scheme when reproducible quality and productivity are sought. It has been demonstrated that the model-based control proposed here is a very efficient, robust, and easy-to-implement strategy from an industrial application point of view.

  14. Molecular cloning and heterologous expression of a true lipase in Pichia pastoris isolated via a metagenomic approach.

    PubMed

    Zheng, Jianhua; Liu, Liguo; Liu, Cuina; Jin, Qi

    2012-01-01

    Lipases are important enzymes for various biotechnological applications. By using functional expression screening, lipZ03, a novel lipase gene, was isolated from a soil-derived metagenomic library. The gene was supposed to encode a protein of 617 amino acids with a C-terminal targeting signal region and four potential N-linked glycosylation sites. The protein sequence shared a conserved GXSXG motif (X represents any amino acid residue) with other microbial lipases. Gene lipZ03 was expressed in Pichia pastoris and the molecular weight was estimated to be approximately 65 kDa by electrophoresis. The optimum reaction temperature and pH value for LipZ03 was 50°C and 9.0, respectively. The enzyme was highly stable in the temperature range of 40-60°C and under alkaline conditions (pH 8-10). Lipolytic activity was significantly enhanced by Ca(2+) and Mg(2+) ions, but dramatically inhibited by Cu(2+), Ni(2+) and Hg(2+) ions and EDTA. The purified enzyme preferentially hydrolyzed relatively long-chain triacylglycerols and was a true lipase rather than an esterase. Using a multi-stepwise methanol supply, the purified LipZ03 achieved a conversion yield of biodiesel production up to 74% after 36 h. Some interesting characteristics described here showed that the recombinant lipase may have potential to be a useful enzyme in industrial applications.

  15. Expression and characterization of a cellobiohydrolase (CBH7B) from the thermophilic fungus Thielavia terrestris in Pichia pastoris.

    PubMed

    Woon, James Sy-Keen; Mackeen, Mukram Mohamed; Mahadi, Nor Muhammad; Illias, Rosli Md; Abdul Murad, Abdul Munir; Abu Bakar, Farah Diba

    2016-09-01

    The gene encoding a cellobiohydrolase 7B (CBH7B) of the thermophilic fungus Thielavia terrestris was identified, subcloned, and expressed in Pichia pastoris. CBH7B encoded 455 amino acid residues with a molecular mass of 51.8 kDa. Domain analysis indicated that CBH7B contains a family 7 glycosyl hydrolase catalytic core but lacks a carbohydrate-binding module. Purified CBH7B exhibited optimum catalytic activity at pH 5.0 and 55 °C with 4-methylumbelliferryl-cellobioside as the substrate and retained 85% of its activity following 24 H incubation at 50 °C. Despite the lack of activity toward microcrystalline substrates, this enzyme worked synergistically with the commercial enzyme cocktail Cellic(®) CTec2 to enhance saccharification by 39% when added to a reaction mixture containing 0.25% alkaline pretreated oil palm empty fruit bunch (OPEFB). Attenuated total reflectance Fourier transform infrared spectroscopy suggested a reduction of lignin and crystalline cellulose in OPEFB samples supplemented with CBH7B. Scanning electron microscopy revealed greater destruction extent of OPEFB strands in samples supplemented with CBH7B as compared with the nonsupplemented control. Therefore, CBH7B has the potential to complement commercial enzymes in hydrolyzing lignocellulosic biomass. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  16. Recombinant Expression of Trichoderma reesei Cel61A in Pichia pastoris: Optimizing Yield and N-terminal Processing.

    PubMed

    Tanghe, Magali; Danneels, Barbara; Camattari, Andrea; Glieder, Anton; Vandenberghe, Isabel; Devreese, Bart; Stals, Ingeborg; Desmet, Tom

    2015-12-01

    The auxiliary activity family 9 (AA9, formerly GH61) harbors a recently discovered group of oxidative enzymes that boost cellulose degradation. Indeed, these lytic polysaccharide monooxygenases (LPMOs) are able to disrupt the crystalline structure of cellulose, thereby facilitating the work of hydrolytic enzymes involved in biomass degradation. Since these enzymes require an N-terminal histidine residue for activity, their recombinant production as secreted protein is not straightforward. We here report the expression optimization of Trichoderma reesei Cel61A (TrCel61A) in the host Pichia pastoris. The use of the native TrCel61A secretion signal instead of the alpha-mating factor from Saccharomyces cerevisiae was found to be crucial, not only to obtain high protein yields (>400 mg/L during fermentation) but also to enable the correct processing of the N-terminus. Furthermore, the LPMO activity of the enzyme is demonstrated here for the first time, based on its degradation profile of a cellulosic substrate.

  17. Production and detailed characterization of biologically active olive pollen allergen Ole e 1 secreted by the yeast Pichia pastoris.

    PubMed

    Huecas, S; Villalba, M; González, E; Martínez-Ruiz, A; Rodríguez, R

    1999-04-01

    The glycoprotein Ole e 1 is a significant aeroallergen from the olive tree (Olea europaea) pollen, with great clinical relevance in the Mediterranean area. To produce a biologically active form of recombinant Ole e 1, heterologous expression in the methylotrophic yeast Pichia pastoris was carried out. A cDNA encoding Ole e 1, fused to a Saccharomyces cerevisiae alpha-mating factor prepropeptide using the pPIC9 vector, was inserted into the yeast genome under the control of the AOX1 promoter. After induction with methanol, the protein secreted into the extracellular medium was purified by ion-exchange and size-exclusion chromatography. The structure of the isolated recombinant Ole e 1 was determined by chemical and spectroscopic techniques, and its immunological properties analysed by blotting and ELISA inhibition with Ole e 1-specific monoclonal antibodies and IgE from sera of allergic patients. The allergen was produced at a yield of 60 mg per litre of culture as a homogeneous glycosylated protein of around 18.5 kDa. Recombinant Ole e 1 appears to be properly folded, as it displays spectroscopic properties (CD and fluorescence) and immunological reactivities (IgG binding to monoclonal antibodies sensitive to denaturation and IgE from sera of allergic patients) indistinguishable from those of the natural protein. This approach gives high-yield production of homogeneous and biologically active allergen, which should be useful for scientific and clinical purposes.

  18. Yap1-regulated glutathione redox system curtails accumulation of formaldehyde and reactive oxygen species in methanol metabolism of Pichia pastoris.

    PubMed

    Yano, Taisuke; Takigami, Emiko; Yurimoto, Hiroya; Sakai, Yasuyoshi

    2009-04-01

    The glutathione redox system, including the glutathione biosynthesis and glutathione regeneration reaction, has been found to play a critical role in the yeast Pichia pastoris during growth on methanol, and this regulation was at least partly executed by the transcription factor PpYap1. During adaptation to methanol medium, PpYap1 transiently localized to the nucleus and activated the expression of the glutathione redox system and upregulated glutathione reductase 1 (Glr1). Glr1 activates the regeneration of the reduced form of glutathione (GSH). Depletion of Glr1 caused a severe growth defect on methanol and hypersensitivity to formaldehyde (HCHO), which could be complemented by addition of GSH to the medium. Disruption of the genes for the HCHO-oxidizing enzymes PpFld1 and PpFgh1 caused a comparable phenotype, but disruption of the downstream gene PpFDH1 did not, demonstrating the importance of maintaining intracellular GSH levels. Absence of the peroxisomal glutathione peroxidase Pmp20 also triggered nuclear localization of PpYap1, and although cells were not sensitive to HCHO, growth on methanol was again severely impaired due to oxidative stress. Thus, the PpYap1-regulated glutathione redox system has two important roles, i.e., HCHO metabolism and detoxification of reactive oxygen species.

  19. Analysis of culture media screening data by projection to latent pathways: The case of Pichia pastoris X-33.

    PubMed

    Isidro, Inês A; Ferreira, Ana R; Clemente, João J; Cunha, António E; Oliveira, Rui

    2016-01-10

    Cell culture media formulations contain hundreds of individual components in water solutions which have complex interactions with metabolic pathways. The currently used statistical design methods are empirical and very limited to explore such a large design space. In a previous work we developed a computational method called projection to latent pathways (PLP), which was conceived to maximize covariance between envirome and fluxome data under the constraint of metabolic network elementary flux modes (EFM). More specifically, PLP identifies a minimal set of EFMs (i.e., pathways) with the highest possible correlation with envirome and fluxome measurements. In this paper we extend the concept for the analysis of culture media screening data to investigate how culture medium components up-regulate or down-regulate key metabolic pathways. A Pichia pastoris X-33 strain was cultivated in 26 shake flask experiments with variations in trace elements concentrations and basal medium dilution, based on the standard BSM+PTM1 medium. PLP identified 3 EFMs (growth, maintenance and by-product formation) describing 98.8% of the variance in observed fluxes. Furthermore, PLP presented an overall predictive power comparable to that of PLS regression. Our results show iron and manganese at concentrations close to the PTM1 standard inhibit overall metabolic activity, while the main salts concentration (BSM) affected mainly energy expenditures for cellular maintenance. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Heterologous Expression and Characterization of a GH3 β-Glucosidase from Thermophilic Fungi Myceliophthora thermophila in Pichia pastoris.

    PubMed

    Zhao, Junqi; Guo, Chao; Tian, Chaoguang; Ma, Yanhe

    2015-09-01

    A novel β-glucosidase of glycoside hydrolase (GH) family 3 from Myceliophthora thermophila (mtbgl3b) was successfully expressed in Pichia pastoris. The full-length gene consists of 2613 bp nucleotides encoding a protein of 870 amino acids. MtBgl3b showed maximum activity at pH 5.0 and remained more than 70 % relative activity at 3.5-6.0. The enzyme displayed the highest activity at 60 °C and kept about 90 % relative activity for 50-65 °C; besides, the enzyme showed psychrophilic trait and remains 51 % relative activity at 40 °C. MtBgl3b exhibited good stability over a wide pH range of 3.0-10.0 and was thermostable at 60 and 65 °C. The enzyme displayed highest activity towards p-nitrophenyl-β-D-glucopyranoside (pNPG), followed by p-nitrophenyl-D-cellobioside (pNPC), cellotetraose, cellotriose, cellobiose, and gentiobiose. When using 10 % cellobiose (w/v) as the substrate, the enzyme showed transglycosylation activity to produce the cellotriose. The kinetic parametric of K m and V max were 2.78 mM and 927.9 μM mg(-1) min(-1), respectively. Finally, the reaction mode of the enzyme and the substrates were analyzed by molecular docking approach.

  1. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris.

    PubMed

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-03-18

    The alcohol oxidase 1 (AOX1) promoter (P AOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of P AOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated P AOX1 in response to methanol, were bound to P AOX1 at different sites and did not interact with each other. However, these factors cooperatively activated P AOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (P MIT1), thus increasingly expressing Mit1 and subsequently activating P AOX1.

  2. Biochemical characterization and in vitro digestibility assay of Eupenicillium parvum (BCC17694) phytase expressed in Pichia pastoris.

    PubMed

    Fugthong, Anusorn; Boonyapakron, Katewadee; Sornlek, Warasirin; Tanapongpipat, Sutipa; Eurwilaichitr, Lily; Pootanakit, Kusol

    2010-03-01

    A mature phytase cDNA, encoding 441 amino acids, from Eupenicillium parvum (BCC17694) was cloned into a Pichia pastoris expression vector, pPICZ alpha A, and was successfully expressed as active extracellular glycosylated protein. The recombinant phytase contained the active site RHGXRXP and HD sequence motifs, a large alpha/beta domain and a small alpha-domain that are typical of histidine acid phosphatase. Glycosylation was found to be important for enzyme activity which is most active at 50 degrees C and pH 5.5. The recombinant phytase displayed broad substrate specificity toward p-nitrophenyl phosphate, sodium-, calcium-, and potassium-phytate. The enzyme lost its activity after incubating at 50 degrees C for 5 min and is 50% inhibited by 5mM Cu(2+). However, the enzyme exhibits broad pH stability from 2.5 to 8.0 and is resistant to pepsin. In vitro digestibility test suggested that BCC17694 phytase is at least as effective as another recombinant phytase (r-A170) which is comparable to Natuphos, a commercial phytase, in releasing phosphate from corn-based animal feed, suggesting that BCC17694 phytase is suitable for use as phytase supplement in the animal diet.

  3. Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica.

    PubMed

    Koch, Barbara; Schmidt, Claudia; Daum, Günther

    2014-09-01

    Biosynthesis and storage of nonpolar lipids, such as triacylglycerols (TG) and steryl esters (SE), have gained much interest during the last decades because defects in these processes are related to severe human diseases. The baker's yeast Saccharomyces cerevisiae has become a valuable tool to study eukaryotic lipid metabolism because this single-cell microorganism harbors many enzymes and pathways with counterparts in mammalian cells. In this article, we will review aspects of TG and SE metabolism and turnover in the yeast that have been known for a long time and combine them with new perceptions of nonpolar lipid research. We will provide a detailed insight into the mechanisms of nonpolar lipid synthesis, storage, mobilization, and degradation in the yeast S. cerevisiae. The central role of lipid droplets (LD) in these processes will be addressed with emphasis on the prevailing view that this compartment is more than only a depot for TG and SE. Dynamic and interactive aspects of LD with other organelles will be discussed. Results obtained with S. cerevisiae will be complemented by recent investigations of nonpolar lipid research with Yarrowia lipolytica and Pichia pastoris. Altogether, this review article provides a comprehensive view of nonpolar lipid research in yeast.

  4. Characterization of recombinant Zea mays transglutaminase expressed in Pichia pastoris and its impact on full and non-fat yoghurts.

    PubMed

    Li, Hongbo; Zhang, Lanwei; Cui, Yanhua; Luo, Xue; Xue, Chaohui; Wang, Shumei; Jiao, Yuehua; Zhang, Shuang; Liu, Wenli; Fan, Rongbo; Du, Ming; Yi, Huaxi; Han, Xue

    2014-04-01

    Transglutaminases catalyze post-translational modification of proteins by ε-(γ-glutamyl) links and covalent amide bonds. Research on properties and applications of plant transglutaminases is less developed than in animals and micro-organisms. In a previous study, optimized Zea mays transglutaminase was purified from recombinant Pichia pastoris strain. The main objective of the present study was to characterize this enzyme and assess its effect on the properties of yoghurt. The purified recombinant transglutaminase presented a Km of 3.98 µmol L(-1) and a Vmax of 2711 min(-1) by the fluorometric method. The enzyme was stable after incubation for 30 min below 50 °C and over a broad pH range of 5-8 at -20 °C for 12 h. The results showed that the crosslinking reaction catalyzed by this enzyme could effectively improve the properties of full and non-fat yoghurts. Also, the properties of non-fat yoghurt could be improved similar to the full-fat product by recombinant transglutaminase. The application of recombinant transglutaminase in yoghurt indicated that this enzyme could be used as a substitute for microbial transglutaminase in the production of yoghurt, thus providing experimental evidence for the future application of plant transglutaminases in the food industry. © 2013 Society of Chemical Industry.

  5. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance[S

    PubMed Central

    Meesapyodsuk, Dauenpen; Chen, Yan; Ng, Siew Hon; Chen, Jianan; Qiu, Xiao

    2015-01-01

    Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a “push” (synthesis) and “pull” (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses. PMID:26323290

  6. Recombinant VP1 protein expressed in Pichia pastoris induces protective immune responses against EV71 in mice.

    PubMed

    Wang, Man; Jiang, Shuai; Wang, Yefu

    2013-01-04

    Human enterovirus 71 (EV71) is one of the major causative agents of hand, foot and mouth disease and is also associated with serious neurological diseases in children. Currently, there are no effective antiviral drugs or vaccines against EV71 infection. VP1, one of the major immunogenic capsid proteins of EV71, is widely considered to be the candidate antigen for an EV71 vaccine. In this study, VP1 of EV71 was expressed as a secretory protein with an N-terminal histidine tag in the methylotrophic yeast Pichia pastoris, and purified by Ni-NTA affinity chromatography. Immunogenicity and vaccine efficacy of the recombinant VP1 were assessed in mouse models. The results showed that the recombinant VP1 could efficiently induce anti-VP1 antibodies in BALB/c mice, which were able to neutralize EV71 viruses in an in vitro neutralization assay. Passive protection of neonatal mice further confirmed the prophylactic efficacy of the antisera from VP1 vaccinated mice. Furthermore, VP1 vaccination induced strong lymphoproliferative and Th1 cytokine responses. Taken together, our study demonstrated that the yeast-expressed VP1 protein retained good immunogenicity and was a potent EV71 vaccine candidate.

  7. Recombinant VP1 protein of duck hepatitis virus 1 expressed in Pichia pastoris and its immunogenicity in ducks.

    PubMed

    Wang, C; Li, X K; Wu, T C; Wang, Y; Zhang, C J; Cheng, X C; Chen, P Y

    2014-01-01

    The VP1 gene of duck hepatitis virus type 1 (DHV-1) strain VJ09 was amplified by reverse transcription PCR from the liver of a duckling with clinical symptoms of viral hepatitis. The resulting VP1 cDNA was 720 bp in length and encoded a 240-amino-acid protein. In VP1 gene-based phylogenetic analysis, the VJ09 strain grouped with DHV-1 genotype C. The VP1 gene was inserted into the expression vector pPICZαA and expressed in Pichia pastoris. The expressed VP1 protein was purified and identified by western blot analysis. To evaluate the recombinant VP1's immunogenic potential in ducklings, the antibodies raised in the immunized ducklings were titrated by ELISA, and lymphocyte proliferation and virus neutralization assays were performed. The results show that the recombinant VP1 protein induced a significant immune response in ducklings and this could be a candidate for the development of a subunit vaccine against DHV-1 genotype C.

  8. Characterization of deamidation at Asn138 in L-chain of recombinant humanized Fab expressed from Pichia pastoris.

    PubMed

    Ohkuri, Takatoshi; Murase, Eri; Sun, Shu-Lan; Sugitani, Jun; Ueda, Tadashi

    2013-10-01

    A method was previously established for evaluating Asn deamidation by matrix-assisted laser desorption/ionization time of flight-mass spectrometry using endoproteinase Asp-N. In this study, we demonstrated that this method could be applied to the identification of the deamidation site of the humanized fragment antigen-binding (Fab). First, a system for expressing humanized Fab from methylotrophic yeast Pichia pastoris was constructed, resulting in the preparation of ∼30 mg of the purified humanized Fab from 1 l culture. Analysis of the L-chain derived from recombinant humanized Fab that was heated at pH 7 and 100°C for 1 h showed the deamidation at Asn138 in the constant region. Then, we prepared L-N138D Fab and L-N138A Fab and examined their properties. The circular dichroism (CD) spectrum of the L-N138D Fab was partially different from that of the wild-type Fab. The measurement of the thermostability showed that L-N138D caused a significant decrease in the thermostability of Fab. On the other hand, the CD spectrum and thermostability of L-N138A Fab showed the same behaviour as the wild-type Fab. Thus, it was suggested that the introduction of a negative charge at position 138 in the L-chain by the deamidation significantly affected the stability of humanized Fab.

  9. N-Glycosylation enhances functional and structural stability of recombinant β-glucuronidase expressed in Pichia pastoris.

    PubMed

    Zou, Shuping; Huang, Shen; Kaleem, Imdad; Li, Chun

    2013-03-10

    Recombinant β-glucuronidase (GUS) expressed in Pichia pastoris GS115 is an important glycoprotein, encoded by a gene with four potential N-glycosylation sites. To investigate the impact of N-linked carbohydrate moieties on the stability of recombinant GUS, it was deglycosylated by peptide-N-glycosidase F (PNGase-F) under native conditions. The enzymatic activities of the glycosylated and deglycosylated GUS were compared under various conditions such as temperature, pH, organic solvents, detergents and chaotropic agent. The results demonstrated that the glycosylated GUS retained greater fraction of maximum enzymatic activity against various types of denaturants compared with the deglycosylated. The conformational stabilities of both GUS were analyzed by monitoring the unfolding equilibrium by using the denaturant guanidinium chloride (dn-HCl). The glycosylated GUS displayed a significant increase in its conformational stability than the deglycosylated counterpart. These results affirmed the key role of N-glycosylation on the structural and functional stability of β-glucuronidase and could have potential applications in the functional enhancement of industrial enzymes. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris*

    PubMed Central

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-01-01

    The alcohol oxidase 1 (AOX1) promoter (PAOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of PAOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated PAOX1 in response to methanol, were bound to PAOX1 at different sites and did not interact with each other. However, these factors cooperatively activated PAOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (PMIT1), thus increasingly expressing Mit1 and subsequently activating PAOX1. PMID:26828066

  11. Recombinant Expression of a Modified Shrimp Anti-Lipopolysaccharide Factor Gene in Pichia pastoris GS115 and Its Characteristic Analysis

    PubMed Central

    Yang, Hui; Li, Shihao; Li, Fuhua; Yu, Kuijie; Yang, Fusheng; Xiang, Jianhai

    2016-01-01

    Anti-lipopolysaccharide factors (ALFs) with a LPS-binding domain (LBD) are considered to have broad spectrum antimicrobial activities and certain antiviral properties in crustaceans. FcALF2 was one isoform of ALFs isolated from the Chinese shrimp Fenneropenaeus chinensis. Our previous study showed that a modified LBD domain (named LBDv) of FcALF2 exhibited a highly enhanced antimicrobial activity. In the present study, a modified FcALF2 gene (mFcALF2), in which the LBD was substituted by LBDv, was designed and synthesized. This gene was successfully expressed in yeast Pichia pastoris GS115 eukaryotic expression system, and the characteristics of the recombinant protein mFcALF2 were analyzed. mFcALF2 exhibited apparent antibacterial activities against Gram-negative bacteria, including Escherichia coli, Vibrio alginolyticus, Vibrio harveyi, and Vibrio parahaemolyticus, and Gram-positive bacteria, including Bacillus licheniformis and Staphylococcus epidermidis. In addition, mFcALF2 could reduce the propagation of white spot syndrome virus (WSSV) in vivo by pre-incubation with virus. The present study paves the way for developing antimicrobial drugs in aquaculture. PMID:27517939

  12. Protective immunity induced by the vaccination of recombinant Proteus mirabilis OmpA expressed in Pichia pastoris.

    PubMed

    Zhang, Yongbing; Yang, Shifa; Dai, Xiumei; Liu, Liping; Jiang, Xiaodong; Shao, Mingxu; Chi, Shanshan; Wang, Chuanwen; Yu, Cuilian; Wei, Kai; Zhu, Ruiliang

    2015-01-01

    Proteus mirabilis (P. mirabilis) is a zoonotic pathogen that has recently presented a rising infection rate in the poultry industry. To develop an effective vaccine to protect chickens against P. mirabilis infection, OmpA, one of the major outer membrane proteins of P. mirabilis, was expressed in Pichia pastoris. The concentration of the expressed recombinant OmpA protein reached 8.0μg/mL after induction for 96h with 1.0% methanol in the culture. In addition, OmpA protein was confirmed by SDS-PAGE and Western blot analysis using the antibody against Escherichia coli-expressed OmpA protein. Taishan Pinus massoniana pollen polysaccharide, a known plant-derived adjuvant, was mixed into the recombinant OmpA protein to prepare the OmpA subunit vaccine. We then subcutaneously inoculated this vaccine into chickens to examine the immunoprotective effects. ELISA analysis indicated that an excellent antibody response against OmpA was elicited in the vaccinated chickens. Moreover, a high protection rate of 80.0% was observed in the vaccinated group, which was subsequently challenged with P. mirabilis. The results suggest that the eukaryotic P. mirabilis OmpA was an ideal candidate protein for developing an effective subunit vaccine against P. mirabilis infection.

  13. Peroxisome-targeted and tandem repeat multimer expressions of human antimicrobial peptide LL37 in Pichia pastoris.

    PubMed

    Xiao, Siwei; Gao, Yanyun; Wang, Xiaolong; Shen, Wei; Wang, Jinjia; Zhou, Xiangshan; Cai, Menghao; Zhang, Yuanxing

    2017-03-16

    Although the human antimicrobial peptide LL37 has a broad spectrum of antimicrobial activities, it easily damages host cells following heterologous expressions. This study attempted two strategies to alleviate its damage to host cells when expressed in Pichia pastoris using the AOX1 promoter. Tandem repeat multimers of LL37 were first designed, and secretion expression strains GS115-9K-(DPLL37DP)n (n = 2, 4, 6 and 8) containing different copies of the LL37 gene were constructed. However, LL37 tandems still killed the cells after 96 hr of induction. Subsequently, peroxisome-targeted expression was performed by adding a peroxisomal targeting signal 1 (SKL) at the C-terminus of LL37. The LL37 expression strain GS115-3.5K-LL37-SKL showed no significant inhibition in the cells after induction. Antibacterial activity assays showed that the recombinant LL37 expressed in peroxisomes had good antimicrobial activities. Then, a strain GS115-3.5K-LL37-GFP-SKL producing LL37, green fluorescent protein, and SKL fusion proteins was constructed, and the fusion protein was confirmed to be targeting the peroxisomes. However, protein extraction analysis indicated that most of the fusion proteins were still located in the cell debris after cell disruption, and further studies are required to extract more proteins from the peroxisome membrane.

  14. Cloning of the thaumatin I cDNA and characterization of recombinant thaumatin I secreted by Pichia pastoris.

    PubMed

    Ide, Nobuyuki; Kaneko, Ryosuke; Wada, Ritsuko; Mehta, Alka; Tamaki, Shinobu; Tsuruta, Tomoko; Fujita, Yuki; Masuda, Tetsuya; Kitabatake, Naofumi

    2007-01-01

    Thaumatin is a sweet-tasting protein comprising a mixture of some variants. The major variants are thaumatins I and II. Although the amino acid sequence of thaumatin I was known and the nucleotide sequence of cDNA of thaumatin II was elucidated, the nucleotide sequence of thaumatin I has been controversial. We have cloned two thaumatin cDNAs from the fruit of Thaumatococcus daniellii Benth. One is the same nucleotide sequence as that of thaumatin II already reported, and the other is a novel nucleotide sequence. The amino acid sequence deduced from the novel cDNA was the same amino acid sequence as that of thaumatin I, the only exception being the residue at position 113 (Asp instead of Asn), indicating that the novel thaumatin cDNA is that for thaumatin I. This thaumatin I cDNA was transformed into Pichia pastoris X-33, and the recombinant thaumatin I expressed was purified and characterized. The threshold value of sweetness of the recombinant thaumatin I was the same as that of the plant thaumatin I, although several unexpected amino acid residues were attached to the N-terminal of the recombinant thaumatin I. These indicate that the N-terminal portion of thaumatin is not critical for the elicitation of sweetness.

  15. Phase analysis in single-chain variable fragment production by recombinant Pichia pastoris based on proteomics combined with multivariate statistics.

    PubMed

    Fujiki, Yuya; Kumada, Yoichi; Kishimoto, Michimasa

    2015-08-01

    The proteomics technique, which consists of two-dimensional gel electrophoresis (2-DE), peptide mass fingerprinting (PMF), gel image analysis, and multivariate statistics, was applied to the phase analysis of a fed-batch culture for the production of a single-chain variable fragment (scFv) of an anti-C-reactive protein (CRP) antibody by Pichia pastoris. The time courses of the fed-batch culture were separated into three distinct phases: the growth phase of the batch process, the growth phase of the fed-batch process, and the production phase of the fed-batch process. Multivariate statistical analysis using 2-DE gel image analysis data clearly showed the change in the culture phase and provided information concerning the protein expression, which suggested a metabolic change related to cell growth and production during the fed-batch culture. Furthermore, specific proteins, such as alcohol oxidase, which is strongly related to scFv expression, and proteinase A, which could biodegrade scFv in the latter phases of production, were identified via the PMF method. The proteomics technique provided valuable information about the effect of the methanol concentration on scFv production.

  16. Whole recombinant Pichia pastoris expressing HPV16 L1 antigen is superior in inducing protection against tumor growth as compared to killed transgenic Leishmania

    PubMed Central

    Bolhassani, Azam; Muller, Martin; Roohvand, Farzin; Motevalli, Fatemeh; Agi, Elnaz; Shokri, Mehdi; Rad, Mahdieh Motamedi; Hosseinzadeh, Sahar

    2015-01-01

    The development of an efficient vaccine against high-risk HPV types can reduce the incidence rates of cervical cancer by generating anti-tumor protective responses. Traditionally, the majority of prophylactic viral vaccines are composed of live, attenuated or inactivated viruses. Among them, the design of an effective and low-cost vaccine is critical. Inactivated vaccines especially heat-killed yeast cells have emerged as a promising approach for generating antigen-specific immunotherapy. Recent studies have indicated that yeast cell wall components possess adjuvant activities. Moreover, a non-pathogenic protozoan, Leishmania tarentolae (L.tar) has attracted a great attention as a live candidate vaccine. In current study, immunological and protective efficacy of whole recombinant killed Pichia pastoris and Leishmania tarentolae expressing HPV16 L1 capsid protein was evaluated in tumor mice model. We found that Pichia-L1, L.tar-L1 and Gardasil groups increase the IgG2a/IgG1 ratio, indicating a relative preference for the induction of Th1 immune responses. Furthermore, subcutaneous injection of killed Pichia-L1 generated the significant L1-specific IFN-γ immune response as well as the best protective effects in vaccinated mice as compared to killed L.tar-L1, killed Pichia pastoris, killed L.tar and PBS groups. Indeed, whole recombinant Leishmania tarentolae could not protect mice against C3 tumor mice model. These data suggest that Pichia-L1 may be a candidate for the control of HPV infections. PMID:25668661

  17. Cloning and high-level expression of β-xylosidase from Selenomonas ruminantium in Pichia pastoris by optimizing of pH, methanol concentration and temperature conditions.

    PubMed

    Dehnavi, Ehsan; Ranaei Siadat, Seyed Omid; Fathi Roudsari, Mehrnoosh; Khajeh, Khosro

    2016-08-01

    β-xylosidase and several other glycoside hydrolase family members, including xylanase, cooperate together to degrade hemicelluloses, a commonly found xylan polymer of plant-cell wall. β-d-xylosidase/α-l-arabinofuranosidase from the ruminal anaerobic bacterium Selenomonas ruminantium (SXA) has potential utility in industrial processes such as production of fuel ethanol and other bioproducts. The optimized synthetic SXA gene was overexpressed in methylotrophic Pichia pastoris under the control of alcohol oxidase I (AOX1) promoter and secreted into the medium. Recombinant protein showed an optimum pH 4.8 and optimum temperature 50 °C. Furthermore, optimization of growth and induction conditions in shake flask was carried out. Using the optimum expression condition (pH 6, temperature 20 °C and 1% methanol induction), protein production was increased by about three times in comparison to the control. The recombinant SXA we have expressed here showed higher turnover frequency using ρ-nitrophenyl β-xylopyranoside (PNPX) substrate, in contrast to most xylosidase experiments reported previously. This is the first report on the cloning and expression of a β-xylosidase gene from glycoside hydrolase (GH) family 43 in Pichia pastoris. Our results confirm that P. pastoris is an appropriate host for high level expression and production of SXA for industrial applications.

  18. Beauveria bassiana Lipase A expressed in Komagataella (Pichia) pastoris with potential for biodiesel catalysis.

    PubMed

    Vici, Ana C; da Cruz, Andrezza F; Facchini, Fernanda D A; de Carvalho, Caio C; Pereira, Marita G; Fonseca-Maldonado, Raquel; Ward, Richard J; Pessela, Benevides C; Fernandez-Lorente, Gloria; Torres, Fernando A G; Jorge, João A; Polizeli, Maria L T M

    2015-01-01

    Lipases (EC 3.1.1.3) comprise a biotechnologically important group of enzymes because they are able to catalyze both hydrolysis and synthesis reactions, depending on the amount of water in the system. One of the most interesting applications of lipase is in the biofuel industry for biodiesel production by oil and ethanol (or methanol) transesterification. Entomopathogenic fungi, which are potential source of lipases, are still poorly explored in biotechnological processes. The present work reports the heterologous expression and biochemical characterization of a novel Beauveria bassiana lipase with potential for biodiesel production. The His-tagged B. bassiana lipase A (BbLA) was produced in Komagataella pastoris in buffered methanol medium (BMM) induced with 1% methanol at 30°C. Purified BbLA was activated with 0.05% Triton X-100 and presented optimum activity at pH 6.0 and 50°C. N-glycosylation of the recombinant BbLA accounts for 31.5% of its molecular weight. Circular dichroism and molecular modeling confirmed a structure composed of α-helix and β-sheet, similar to α/β hydrolases. Immobilized BbLA was able to promote transesterification reactions in fish oil, demonstrating potential for biodiesel production. BbLA was successfully produced in K. pastoris and shows potential use for biodiesel production by the ethanolysis reaction.

  19. Beauveria bassiana Lipase A expressed in Komagataella (Pichia) pastoris with potential for biodiesel catalysis

    PubMed Central

    Vici, Ana C.; da Cruz, Andrezza F.; Facchini, Fernanda D. A.; de Carvalho, Caio C.; Pereira, Marita G.; Fonseca-Maldonado, Raquel; Ward, Richard J.; Pessela, Benevides C.; Fernandez-Lorente, Gloria; Torres, Fernando A. G.; Jorge, João A.; Polizeli, Maria L. T. M.

    2015-01-01

    Lipases (EC 3.1.1.3) comprise a biotechnologically important group of enzymes because they are able to catalyze both hydrolysis and synthesis reactions, depending on the amount of water in the system. One of the most interesting applications of lipase is in the biofuel industry for biodiesel production by oil and ethanol (or methanol) transesterification. Entomopathogenic fungi, which are potential source of lipases, are still poorly explored in biotechnological processes. The present work reports the heterologous expression and biochemical characterization of a novel Beauveria bassiana lipase with potential for biodiesel production. The His-tagged B. bassiana lipase A (BbLA) was produced in Komagataella pastoris in buffered methanol medium (BMM) induced with 1% methanol at 30°C. Purified BbLA was activated with 0.05% Triton X-100 and presented optimum activity at pH 6.0 and 50°C. N-glycosylation of the recombinant BbLA accounts for 31.5% of its molecular weight. Circular dichroism and molecular modeling confirmed a structure composed of α-helix and β-sheet, similar to α/β hydrolases. Immobilized BbLA was able to promote transesterification reactions in fish oil, demonstrating potential for biodiesel production. BbLA was successfully produced in K. pastoris and shows potential use for biodiesel production by the ethanolysis reaction. PMID:26500628

  20. Displaying Lipase B from Candida antarctica in Pichia pastoris Using the Yeast Surface Display Approach: Prospection of a New Anchor and Characterization of the Whole Cell Biocatalyst

    PubMed Central

    Moura, Marcelo Victor Holanda; da Silva, Giulia Pontes; Machado, Antônio Carlos de Oliveira; Torres, Fernando Araripe Gonçalves; Freire, Denise Maria Guimarães; Almeida, Rodrigo Volcan

    2015-01-01

    Yeast Surface Display (YSD) is a strategy to anchor proteins on the yeast cell wall which has been employed to increase enzyme stability thus decreasing production costs. Lipase B from Candida antarctica (LipB) is one of the most studied enzymes in the context of industrial biotechnology. This study aimed to assess the biochemical features of this important biocatalyst when immobilized on the cell surface of the methylotrophic yeast Pichia pastoris using the YSD approach. For that purpose, two anchors were tested. The first (Flo9) was identified after a prospection of the P. pastoris genome being related to the family of flocculins similar to Flo1 but significantly smaller. The second is the Protein with Internal Repeats (Pir1) from P. pastoris. An immunolocalization assay showed that both anchor proteins were able to display the reporter protein EGFP in the yeast outer cell wall. LipB was expressed in P. pastoris fused either to Flo9 (FLOLIPB) or Pir1 (PIRLIPB). Both constructions showed hydrolytic activity towards tributyrin (>100 U/mgdcw and >80 U/mgdcw, respectively), optimal hydrolytic activity around 45°C and pH 7.0, higher thermostability at 45°C and stability in organic solvents when compared to a free lipase. PMID:26510006

  1. Optimization of five environmental factors to increase beta-propeller phytase production in Pichia pastoris and impact on the physiological response of the host.

    PubMed

    Viader-Salvadó, José M; Castillo-Galván, Miguel; Fuentes-Garibay, José A; Iracheta-Cárdenas, María M; Guerrero-Olazarán, Martha

    2013-01-01

    Recently, we engineered Pichia pastoris Mut(s) strains to produce several beta-propeller phytases, one from Bacillus subtilis and the others designed by a structure-guided consensus approach. Furthermore, we demonstrated the ability of P. pastoris to produce and secrete these phytases in an active form in shake-flask cultures. In the present work, we used a design of experiments strategy (Simplex optimization method) to optimize five environmental factors that define the culture conditions in the induction step to increase beta-propeller phytase production in P. pastoris bioreactor cultures. With the optimization process, up to 347,682 U (82,814 U/L or 6.4 g/L culture medium) of phytase at 68 h of induction was achieved. In addition, the impact of the optimization process on the physiological response of the host was evaluated. The results indicate that the increase in extracellular phytase production through the optimization process was correlated with an increase in metabolic activity of P. pastoris, shown by an increase in oxygen demand and methanol consumption, that increase the specific growth rate. The increase in extracellular phytase production also occurred with a decrease in extracellular protease activity. Moreover, the optimized culture conditions increased the recombinant protein secretion by up to 88%, along with the extracellular phytase production efficiency per cell.

  2. Increased dosage of AOX1 promoter-regulated expression cassettes leads to transcription attenuation of the methanol metabolism in Pichia pastoris.

    PubMed

    Cámara, Elena; Landes, Nils; Albiol, Joan; Gasser, Brigitte; Mattanovich, Diethard; Ferrer, Pau

    2017-03-15

    The methanol-regulated alcohol oxidase promoter (PAOX1) of Pichia pastoris is one of the strongest promoters for heterologous gene expression in this methylotrophic yeast. Although increasing gene dosage is one of the most common strategies to increase recombinant protein productivities, the increase of gene dosage of Rhizopus oryzae lipase (ROL) in P. pastoris has been previously shown to reduce cell growth, lipase production and substrate consumption in high-copy strains. To better assess that physiological response, transcriptomics analysis was performed of a subset of strains with 1 to 15 ROL copies. The macroscopic physiological parameters confirm that growth yield and carbon uptake rate are gene dosage dependent, and were supported by the transcriptomic data, showing the impact of increased dosage of AOX1 promoter-regulated expression cassettes on P. pastoris physiology under steady methanolic growth conditions. Remarkably, increased number of cassettes led to transcription attenuation of the methanol metabolism and peroxisome biogenesis in P. pastoris, concomitant with reduced secretion levels of the heterologous product. Moreover, our data also point to a block in ROL mRNA translation in the higher ROL-copies constructs, while the low productivities of multi-copy strains under steady growth conditions do not appear to be directly related to UPR and ERAD induction.

  3. Increased dosage of AOX1 promoter-regulated expression cassettes leads to transcription attenuation of the methanol metabolism in Pichia pastoris

    PubMed Central

    Cámara, Elena; Landes, Nils; Albiol, Joan; Gasser, Brigitte; Mattanovich, Diethard; Ferrer, Pau

    2017-01-01

    The methanol-regulated alcohol oxidase promoter (PAOX1) of Pichia pastoris is one of the strongest promoters for heterologous gene expression in this methylotrophic yeast. Although increasing gene dosage is one of the most common strategies to increase recombinant protein productivities, the increase of gene dosage of Rhizopus oryzae lipase (ROL) in P. pastoris has been previously shown to reduce cell growth, lipase production and substrate consumption in high-copy strains. To better assess that physiological response, transcriptomics analysis was performed of a subset of strains with 1 to 15 ROL copies. The macroscopic physiological parameters confirm that growth yield and carbon uptake rate are gene dosage dependent, and were supported by the transcriptomic data, showing the impact of increased dosage of AOX1 promoter-regulated expression cassettes on P. pastoris physiology under steady methanolic growth conditions. Remarkably, increased number of cassettes led to transcription attenuation of the methanol metabolism and peroxisome biogenesis in P. pastoris, concomitant with reduced secretion levels of the heterologous product. Moreover, our data also point to a block in ROL mRNA translation in the higher ROL-copies constructs, while the low productivities of multi-copy strains under steady growth conditions do not appear to be directly related to UPR and ERAD induction. PMID:28295011

  4. Identification of Mxr1p-binding sites in the promoters of genes encoding dihydroxyacetone synthase and peroxin 8 of the methylotrophic yeast Pichia pastoris.

    PubMed

    Kranthi, Balla Venkata; Kumar, Hunsur Rajendra Vinod; Rangarajan, Pundi N

    2010-09-01

    Expression of genes involved in methanol metabolism of Pichia pastoris is regulated by Mxr1p, a zinc finger transcription factor. In this study, we studied the target gene specificity of Mxr1p by examining its ability to bind to promoters of genes encoding dihydroxyacetone synthase (DHAS) and peroxin 8 (PEX8), since methanol-inducible expression of these genes is abrogated in mxr1-null mutant strains of P. pastoris. Different regions of DHAS and PEX8 promoter were isolated from P. pastoris genomic DNA and their ability to bind to a recombinant Mxr1p protein containing the N-terminal 150 amino acids, including the zinc finger DNA-binding domain, was examined. These studies reveal that Mxr1p specifically binds to promoter regions containing multiple 5'-CYCC-3' sequences, although all DNA sequences containing the 5'-CYCC-3' motif do not qualify as Mxr1p-binding sites. Key DNA-binding determinants are present outside 5'-CYCC-3' motif and Mxr1p preferably binds to DNA sequences containing 5'-CYCCNY-3' than those containing 5'-CYCCNR-3' sequences. This study provides new insights into the molecular determinants of target gene specificity of Mxr1p, and the methodology described here can be used for mapping Mxr1p-binding sites in other methanol-inducible promoters of P. pastoris. Copyright 2010 John Wiley & Sons, Ltd.

  5. Cloning and expression of synthetic genes encoding the broad antimicrobial spectrum bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by recombinant Pichia pastoris.

    PubMed

    Arbulu, Sara; Jiménez, Juan J; Gútiez, Loreto; Cintas, Luis M; Herranz, Carmen; Hernández, Pablo E

    2015-01-01

    We have evaluated the cloning and functional expression of previously described broad antimicrobial spectrum bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by recombinant Pichia pastoris. Synthetic genes, matching the codon usage of P. pastoris, were designed from the known mature amino acid sequence of these bacteriocins and cloned into the protein expression vector pPICZαA. The recombinant derived plasmids were linearized and transformed into competent P. pastoris X-33, and the presence of integrated plasmids into the transformed cells was confirmed by PCR and sequencing of the inserts. The antimicrobial activity, expected in supernatants of the recombinant P. pastoris producers, was purified using a multistep chromatographic procedure including ammonium sulfate precipitation, desalting by gel filtration, cation exchange-, hydrophobic interaction-, and reverse phase-chromatography (RP-FPLC). However, a measurable antimicrobial activity was only detected after the hydrophobic interaction and RP-FPLC steps of the purified supernatants. MALDI-TOF MS analysis of the antimicrobial fractions eluted from RP-FPLC revealed the existence of peptide fragments of lower and higher molecular mass than expected. MALDI-TOF/TOF MS analysis of selected peptides from eluted RP-FPLC samples with antimicrobial activity indicated the presence of peptide fragments not related to the amino acid sequence of the cloned bacteriocins.

  6. Purification and characterization of keratinase from recombinant Pichia and Bacillus strains.

    PubMed

    Radha, Selvaraj; Gunasekaran, Paramasamy

    2009-03-01

    The keratinase gene from Bacillus licheniformis MKU3 was cloned and successfully expressed in Bacillus megaterium MS941 as well as in Pichia pastoris X33. Compared with parent strain, the recombinant B. megaterium produced 3-fold increased level of keratinase while the recombinant P. pastoris strain had produced 2.9-fold increased level of keratinase. The keratinases from recombinant P. pastoris (pPZK3) and B. megaterium MS941 (pWAK3) were purified to 67.7- and 85.1-folds, respectively, through affinity chromatography. The purified keratinases had the specific activity of 365.7 and 1277.7 U/mg, respectively. Recombinant keratinase from B. megaterium was a monomeric protein with an apparent molecular mass of 30 kDa which was appropriately glycosylated in P. pastoris to have a molecular mass of 39 kDa. The keratinases from both recombinant strains had similar properties such as temperature and pH optimum for activity, and sensitivity to various metal ions, additives and inhibitors. There was considerable enzyme stability due to its glycosylation in yeast system. At pH 11 the glycosylated keratinase retained 95% of activity and 75% of its activity at 80 degrees C. The purified keratinase hydrolyzed a broad range of substrates and displayed effective degradation of keratin substrates. The K(m) and V(max) of the keratinase for the substrate N-succinyl-Ala-Ala-Pro-Phe-pNA was found to be 0.201 mM and 61.09 U/s, respectively. Stability in the presence of detergents, surfactants, metal ions and solvents make this keratinase suitable for industrial processes.

  7. Expression of recombinant chinese bovine enterokinase catalytic subunit in P. pastoris and its purification and characterization.

    PubMed

    Fang, Lei; Sun, Qi-Ming; Hua, Zi-Chun

    2004-07-01

    Enterokinase is a tool protease widely utilized in the cleavage of recombinant fusion proteins. cDNA encoding the catalytic subunit of Chinese bovine enterokinase (EKL) was amplified by PCR and then fused to the 3' end of prepro secretion signal peptide gene of alpha-mating factor from Saccharomyces cerevisiae to get the alpha-MF signal-EKL-His6 encoding gene by PCR. Then the whole coding sequence was cloned into the integrative plasmid pAO815 under the control of a methanol-inducible promoter and transformed GS115 methylotrophic strain of Pichia pastoris. Secreted expression of recombinant EKL-His6 was attained by methanol induction and its molecular weight is 43 kD. Because of the existence of His6-tag, EKL-His6 was easily purified from P. pastoris fermentation supernatant by using Ni2+ affinity chromatography and the yield is 5.4 mg per liter of fermentation culture. This purified EKL-His6 demonstrates excellent cleavage activity towards fusion protein containing EK cleavage site.

  8. Cloning and expression of recombinant shrimp PmRab7 (a virus-binding protein) in Pichia pastoris.

    PubMed

    Jupatanakul, Natapong; Wannapapho, Wanphen; Eurwilaichitr, Lily; Flegel, Timothy W; Sritunyalucksana, Kallaya

    2011-03-01

    White spot syndrome virus (WSSV) is one of the most serious pathogens in shrimp aquaculture. A shrimp WSSV-binding protein called PmRab7 has been isolated and characterized. Since injection of bacterial expressed-rPmRab7 could reduce shrimp mortality caused by WSSV from approximately 95% to 15% mortality, there was potential for its use in protection against WSSV in shrimp aquaculture. To test the feasibility of this, the Pichia pastoris yeast expression system was used for production of rPmRab7 since its expression system has eukaryote post-translational modification capability and since P. pastoris is widely accepted for use in human food or animal feed. Moreover, β-1,3-glucan, a major cell wall component of yeast, has been reported to act as an immunostimulant in shrimp. The recombinant protein was produced intracellularly and the resulting whole yeast cells were lyophilized and stored for supplementation in shrimp feed. The yield of rPmRab7 was 20-30 mg/l of culture medium or 2.67 mg/g yeast dry weight, which was 2-3 times higher than the yield obtained from an Escherichia coli expression system. A two-copy gene expression system was developed to enhance rPmRab7 expression using expression vector pAO815 containing a two-copy PmRab7 expression cassette constructed by site-directed mutagenesis of the PmRab7 gene and two-step overlap, extension PCR. This improved the yield of rPmRab7 2-3 times (40-60 mg/l of culture medium). ELISA was developed to show that the expressed rPmRab7 had WSSV-binding activity. Although some loss of rPmRab7 was found after lyophilization of the yeast cells, projected cost calculations indicated that this production level would make it feasible to use rPmRab7 in shrimp feed for protection against WSSV.

  9. Sterol glycosides and cerebrosides accumulate in Pichia pastoris, Rhynchosporium secalis and other fungi under normal conditions or under heat shock and ethanol stress.

    PubMed

    Sakaki, T; Zähringer, U; Warnecke, D C; Fahl, A; Knogge, W; Heinz, E

    2001-06-01

    The occurrence of glycolipids such as sterol glycosides, acylated sterol glycosides, cerebrosides and glycosyldiacylglycerols was examined in the three yeast species Candida albicans, Pichia pastoris and Pichia anomala, as well as in the six fungal species Sordaria macrospora, Pyrenophora teres, Ustilago maydis, Acremonium chrysogenum, Penicillium olsonii and Rhynchosporium secalis. Cerebroside was found in all organisms tested, whereas acylated sterol glycosides and glycosyldiacylglycerols were not found in any organism. Sterol glycosides were detected in P. pastoris strain GS115, U. maydis, S. macrospora and R. secalis. This glycolipid occurred in both yeast and filamentous forms of U. maydis but in neither form of C. albicans. This suggests that sterol glycoside is not correlated with the separately grown dimorphic forms of these organisms. Cerebrosides and sterol glycosides from P. pastoris and R. secalis were purified and characterized by mass spectrometry and nuclear magnetic resonance spectroscopy. The cerebrosides are beta-glucosyl ceramides consisting of a saturated alpha-hydroxy or non-hydroxy fatty acid and a Delta4,8-diunsaturated, C9-methyl-branched sphingobase. Sterol glycoside from P. pastoris was identified as ergosterol-beta-D-glucopyranoside, whereas the sterol glucosides from R. secalis contain two derivatives of ergosterol. The biosynthesis of sterol glucoside in P. pastoris CBS7435 and GS115 depended on the culture conditions. The amount of sterol glucoside in cells grown in complete medium was much lower than in cells from minimal medium and a strong increase in the content of sterol glucoside was observed when cells were subjected to stress conditions such as heat shock or increased ethanol concentrations. From these data we suggest that, in addition to Saccharomyces cerevisiae, new yeast and fungal model organisms should be used to study the physiological functions of glycolipids in eukaryotic cells. This suggestion is based on the

  10. Recombinant Candida rugosa lipase 2 from Pichia pastoris: immobilization and use as biocatalyst in a stereoselective reaction.

    PubMed

    Benaiges, M Dolors; Alarcón, Manuel; Fuciños, Pablo; Ferrer, Pau; Rua, Marisa; Valero, Francisco

    2010-01-01

    The characterization of the recombinant Candida rugosa Lip2 (r-Lip2) isoenzyme obtained from fed-batch cultures of Pichia pastoris under PAOX promoter was carried out, determining the optimal pH and temperature as well as their catalytic performance in both hydrolysis and synthesis reactions comparing with purified native Lip2 (n-Lip2) previously determined. The substrate specificity of r-Lip2 in hydrolysis reactions was determined with a series of triacylglycerols and p-nitrophenyl esters of variable acyl chain length. r-Lip2 showed the maximum specificity for both substrates towards medium-chain esters (C-8), similar behavior was observed with n-Lip2. However, significant differences were observed towards unsaturated substrates (triolein) or short-chain esters. A statistical design applied to study the effect of pH and temperature on lipase stability shown that r-Lip2, like n-Lip2, was more sensitive to pH than temperature changes. Nevertheless, the overall stability of soluble r-Lip2 was lower than soluble n-Lip2. The stability of r-lip2 was significantly improved by immobilization onto EP100, an excellent support for lipases with yields around 95% for offered lipolytic activity lower than 600 AU/mL. Finally, immobilized r-Lip2 was tested in the resolution of ibuprofen in isooctane by means of enantioselective esterification using 1-butanol as esterifying agent. r-Lip2 showed a better performance in terms of enantiomeric excess (74%) and enatiomeric factor (96%) than n-Lip2 (56 and 80%, respectively) for the same conversion (40%). Thus, r-Lip2 should be considered a good and pure biocatalyst, easy to produce and with a remaining activity of ca. 90% after one reaction cycle when immobilized on EP100.

  11. Expression of CotA laccase in Pichia pastoris and its electrocatalytic sensing application for hydrogen peroxide.

    PubMed

    Fan, Lili; Zhao, Min; Wang, Yan

    2015-11-01

    The CotA laccase from Bacillus subtilis WD23 was successfully overexpressed in Pichia pastoris, and the production level reached 891.2 U/L. The recombinant CotA laccase was purified to homogeneity. The optimal enzymatic activity was found at pH 4.6, 6.6, and 6.8 for 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS), 4-hydroxy-3, 5-dimethoxybenzaldehyde azine (SGZ), and 2, 6-dimethoxyphenol (2, 6-DMP) oxidation, respectively. The maximal enzyme activity was observed at 80 °C with SGZ as a substrate. The kinetic constant K m values for ABTS, SGZ, and 2, 6-DMP were 162 ± 20, 24 ± 2, and 166 ± 18 μM, respectively, with corresponding k cat values of 15 ± 1.0, 7.6 ± 1.5, and 0.87 ± 0.1 s(-1). Remarkably, the laccase activity increased to 561.9 % of its initial activity at pH 9.0 after 7 days of incubation and the half-life of laccase inactivation was approximately 3 h at 80 °C, which indicated that the recombinant CotA was a highly thermo-alkali-stable laccase. Bioelectrocatalytic reduction of H2O2 by the CotA laccase was detected when the recombinant CotA was adsorbed on pyrogenation graphite electrodes. Based on the bioelectrocatalytic reduction, a mediator-free amperometric biosensor for hydrogen peroxide was designed. The linear range of the H2O2 biosensor was from 0.05 to 4.75 mM, with a detection limit of 3.1 μM. The amperometric biosensor for H2O2 by CotA-modified electrode is a novel application for CotA laccase.

  12. Modeling and measuring intracellular fluxes of secreted recombinant protein in Pichia pastoris with a novel 34S labeling procedure

    PubMed Central

    2011-01-01

    Background The budding yeast Pichia pastoris is widely used for protein production. To determine the best suitable strategy for strain improvement, especially for high secretion, quantitative data of intracellular fluxes of recombinant protein are very important. Especially the balance between intracellular protein formation, degradation and secretion defines the major bottleneck of the production system. Because these parameters are different for unlimited growth (shake flask) and carbon-limited growth (bioreactor) conditions, they should be determined under "production like" conditions. Thus labeling procedures must be compatible with minimal production media and the usage of bioreactors. The inorganic and non-radioactive 34S labeled sodium sulfate meets both demands. Results We used a novel labeling method with the stable sulfur isotope 34S, administered as sodium sulfate, which is performed during chemostat culivations. The intra- and extracellular sulfur 32 to 34 ratios of purified recombinant protein, the antibody fragment Fab3H6, are measured by HPLC-ICP-MS. The kinetic model described here is necessary to calculate the kinetic parameters from sulfur ratios of consecutive samples as well as for sensitivity analysis. From the total amount of protein produced intracellularly (143.1 μg g-1 h-1 protein per yeast dry mass and time) about 58% are degraded within the cell, 35% are secreted to the exterior and 7% are inherited to the daughter cells. Conclusions A novel 34S labeling procedure that enables in vivo quantification of intracellular fluxes of recombinant protein under "production like" conditions is described. Subsequent sensitivity analysis of the fluxes by using MATLAB, indicate the most promising approaches for strain improvement towards increased secretion. PMID:21703020

  13. Optimization of human serum albumin production in methylotrophic yeast Pichia pastoris by repeated fed-batch fermentation.

    PubMed

    Ohya, Tomoshi; Ohyama, Masao; Kobayashi, Kaoru

    2005-06-30

    An optimization method for repeated fed-batch fermentation was established with the aim of improving the recombinant human serum albumin (rHSA) production in Pichia pastoris. A simulation model for fed-batch fermentation was formulated and the optimal methanol-feeding policy calculated by dynamic programming method using five different methanol-feeding periods. The necessary state variables were collected from the calculated results and used for further optimization of repeated fed-batch fermentation. The optimal operation policy was investigated using the pre-collected state variables by estimating the overall profit per total methanol-feeding time. The calculated results indicated that the initial cell mass from the 2nd fed-batch fermentation on should be set at 35 or 40 g and methanol-feeding time at 264 h. In repeated fed-batch fermentation using the optimal operation policy, actual culture volume was in good agreement with the values simulated by model equations, but some discrepancy was observed in rHSA production. Minimum experiments were therefore carried out to re-evaluate rHSA production levels, which were then applied in re-calculations to determine the optimal operation policy. The optimal policy for repeated fed-batch fermentation established in the present study (i.e., 4-times-repeated fed-batch fermentation) achieved a 47% increase in annual rHSA production. Optimization of the culture period also brought about a 28% increase in annual rHSA production even in simple (not repeated) fed-batch fermentation.

  14. Regulation of alcohol oxidase 1 (AOX1) promoter and peroxisome biogenesis in different fermentation processes in Pichia pastoris.

    PubMed

    Kim, Sehoon; Warburton, Shannon; Boldogh, Istvan; Svensson, Cecilia; Pon, Liza; d'Anjou, Marc; Stadheim, Terrance A; Choi, Byung-Kwon

    2013-07-20

    Production of recombinant proteins is affected by process conditions, where transcriptional regulation of Pichia pastoris alcohol oxidase 1 (PpAOX1) promoter has been a key factor to influence expression levels of proteins of interest. Here, we demonstrate that the AOX1 promoter and peroxisome biogenesis are regulated based on different process conditions. Two types of GFP-fusion proteins, Ub-R-GFP (short-lived GFP in the cytosol) and GFP-SKL (peroxisomal targeting GFP), were successfully used to characterize the time-course of the AOX1 promoter and peroxisome biogenesis, respectively. The activity of the AOX1 promoter and peroxisome biogenesis was highly subjected to different fermentation process conditions - methanol-limited condition at normoxy (ML), switched feeding of carbon sources (e.g., glucose and methanol) under carbon-limited condition at normoxy (SML), and oxygen-limited (OL) condition. The AOX1 promoter was most active under the ML, but less active under the OL. Peroxisome biogenesis showed a high dependency on methanol consumption. In addition, the proliferation of peroxisomes was inhibited in a medium containing glucose and stimulated in the methanol phase under a carbon-limited fed-batch culture condition. The specific productivity of a monoclonal antibody (qp) under the AOX1 promoter was higher at 86h of induction in the ML than in the OL (0.026 vs 0.020mgg(-1)h(-1)). However, the oxygen-limited condition was a robust process suitable for longer induction (180h) due to high cell fitness. Our study suggests that the maximal production of a recombinant protein is highly dependent on methanol consumption rate that is affected by the availability of methanol and oxygen molecules.

  15. Plackett-Burman Design for rGILCC1 Laccase Activity Enhancement in Pichia pastoris: Concentrated Enzyme Kinetic Characterization

    PubMed Central

    Morales-Álvarez, Edwin D.; Rivera-Hoyos, Claudia M.; Cardozo-Bernal, Ángela M.; Pedroza-Rodríguez, Aura M.; Díaz-Rincón, Dennis J.; Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J.; Cuervo-Patiño, Claudia L.

    2017-01-01

    Laccases are multicopper oxidases that catalyze aromatic and nonaromatic compounds with concomitant reduction of molecular oxygen to water. They are of great interest due to their potential biotechnological applications. In this work we statistically improved culture media for recombinant GILCC1 (rGILCC1) laccase production at low scale from Ganoderma lucidum containing the construct pGAPZαA-GlucPost-Stop in Pichia pastoris. Temperature, pH stability, and kinetic parameter characterizations were determined by monitoring concentrate enzyme oxidation at different ABTS substrate concentrations. Plackett-Burman Design allowed improving enzyme activity from previous work 36.08-fold, with a laccase activity of 4.69 ± 0.39 UL−1 at 168 h of culture in a 500 mL shake-flask. Concentrated rGILCC1 remained stable between 10 and 50°C and retained a residual enzymatic activity greater than 70% at 60°C and 50% at 70°C. In regard to pH stability, concentrated enzyme was more stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity greater than 55% was obtained at pH 10.0 ± 0.2. Furthermore, calculated apparent enzyme kinetic parameters were a Vmax of 6.87 × 10−5 mM s−1, with an apparent Km of 5.36 × 10−2 mM. Collectively, these important stability findings open possibilities for applications involving a wide pH and temperature ranges. PMID:28421142

  16. Plackett-Burman Design for rGILCC1 Laccase Activity Enhancement in Pichia pastoris: Concentrated Enzyme Kinetic Characterization.

    PubMed

    Morales-Álvarez, Edwin D; Rivera-Hoyos, Claudia M; Cardozo-Bernal, Ángela M; Poutou-Piñales, Raúl A; Pedroza-Rodríguez, Aura M; Díaz-Rincón, Dennis J; Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J; Cuervo-Patiño, Claudia L

    2017-01-01

    Laccases are multicopper oxidases that catalyze aromatic and nonaromatic compounds with concomitant reduction of molecular oxygen to water. They are of great interest due to their potential biotechnological applications. In this work we statistically improved culture media for recombinant GILCC1 (rGILCC1) laccase production at low scale from Ganoderma lucidum containing the construct pGAPZαA-GlucPost-Stop in Pichia pastoris. Temperature, pH stability, and kinetic parameter characterizations were determined by monitoring concentrate enzyme oxidation at different ABTS substrate concentrations. Plackett-Burman Design allowed improving enzyme activity from previous work 36.08-fold, with a laccase activity of 4.69 ± 0.39 UL(-1) at 168 h of culture in a 500 mL shake-flask. Concentrated rGILCC1 remained stable between 10 and 50°C and retained a residual enzymatic activity greater than 70% at 60°C and 50% at 70°C. In regard to pH stability, concentrated enzyme was more stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity greater than 55% was obtained at pH 10.0 ± 0.2. Furthermore, calculated apparent enzyme kinetic parameters were a Vmax of 6.87 × 10(-5) mM s(-1), with an apparent Km of 5.36 × 10(-2) mM. Collectively, these important stability findings open possibilities for applications involving a wide pH and temperature ranges.

  17. Implications of evolutionary engineering for growth and recombinant protein production in methanol-based growth media in the yeast Pichia pastoris.

    PubMed

    Moser, Josef W; Prielhofer, Roland; Gerner, Samuel M; Graf, Alexandra B; Wilson, Iain B H; Mattanovich, Diethard; Dragosits, Martin

    2017-03-17

    Pichia pastoris is a widely used eukaryotic expression host for recombinant protein production. Adaptive laboratory evolution (ALE) has been applied in a wide range of studies in order to improve strains for biotechnological purposes. In this context, the impact of long-term carbon source adaptation in P. pastoris has not been addressed so far. Thus, we performed a pilot experiment in order to analyze the applicability and potential benefits of ALE towards improved growth and recombinant protein production in P. pastoris. Adaptation towards growth on methanol was performed in replicate cultures in rich and minimal growth medium for 250 generations. Increased growth rates on these growth media were observed at the population and single clone level. Evolved populations showed various degrees of growth advantages and trade-offs in non-evolutionary growth conditions. Genome resequencing revealed a wide variety of potential genetic targets associated with improved growth performance on methanol-based growth media. Alcohol oxidase represented a mutational hotspot since four out of seven evolved P. pastoris clones harbored mutations in this gene, resulting in decreased Aox activity, despite increased growth rates. Selected clones displayed strain-dependent variations for AOX-promoter based recombinant protein expression yield. One particularly interesting clone showed increased product titers ranging from a 2.5-fold increase in shake flask batch culture to a 1.8-fold increase during fed batch cultivation. Our data indicate a complex correlation of carbon source, growth context and recombinant protein production. While similar experiments have already shown their potential in other biotechnological areas where microbes were evolutionary engineered for improved stress resistance and growth, the current dataset encourages the analysis of the potential of ALE for improved protein production in P. pastoris on a broader scale.

  18. Pichia pastoris versus Saccharomyces cerevisiae: a case study on the recombinant production of human granulocyte-macrophage colony-stimulating factor.

    PubMed

    Tran, Anh-Minh; Nguyen, Thanh-Thao; Nguyen, Cong-Thuan; Huynh-Thi, Xuan-Mai; Nguyen, Cao-Tri; Trinh, Minh-Thuong; Tran, Linh-Thuoc; Cartwright, Stephanie P; Bill, Roslyn M; Tran-Van, Hieu

    2017-04-04

    Recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) is a glycoprotein that has been approved by the FDA for the treatment of neutropenia and leukemia in combination with chemotherapies. Recombinant hGM-CSF is produced industrially using the baker's yeast, Saccharomyces cerevisiae, by large-scale fermentation. The methylotrophic yeast, Pichia pastoris, has emerged as an alternative host cell system due to its shorter and less immunogenic glycosylation pattern together with higher cell density growth and higher secreted protein yield than S. cerevisiae. In this study, we compared the pipeline from gene to recombinant protein in these two yeasts. Codon optimization in silico for both yeast species showed no difference in frequent codon usage. However, rhGM-CSF expressed from S. cerevisiae BY4742 showed a significant discrepancy in molecular weight from those of P. pastoris X33. Analysis showed purified rhGM-CSF species with molecular weights ranging from 30 to more than 60 kDa. Fed-batch fermentation over 72 h showed that rhGM-CSF was more highly secreted from P. pastoris than S. cerevisiae (285 and 64 mg total secreted protein/L, respectively). Ion exchange chromatography gave higher purity and recovery than hydrophobic interaction chromatography. Purified rhGM-CSF from P. pastoris was 327 times more potent than rhGM-CSF from S. cerevisiae in terms of proliferative stimulating capacity on the hGM-CSF-dependent cell line, TF-1. Our data support a view that the methylotrophic yeast P. pastoris is an effective recombinant host for heterologous rhGM-CSF production.

  19. Defining process design space for biotech products: case study of Pichia pastoris fermentation.

    PubMed

    Harms, Jean; Wang, Xiangyang; Kim, Tina; Yang, Xiaoming; Rathore, Anurag S

    2008-01-01

    The concept of "design space" has been proposed in the ICH Q8 guideline and is gaining momentum in its application in the biotech industry. It has been defined as "the multidimensional combination and interaction of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality." This paper presents a stepwise approach for defining process design space for a biologic product. A case study, involving P. pastoris fermentation, is presented to facilitate this. First, risk analysis via Failure Modes and Effects Analysis (FMEA) is performed to identify parameters for process characterization. Second, small-scale models are created and qualified prior to their use in these experimental studies. Third, studies are designed using Design of Experiments (DOE) in order for the data to be amenable for use in defining the process design space. Fourth, the studies are executed and the results analyzed for decisions on the criticality of the parameters as well as on establishing process design space. For the application under consideration, it is shown that the fermentation unit operation is very robust with a wide design space and no critical operating parameters. The approach presented here is not specific to the illustrated case study. It can be extended to other biotech unit operations and processes that can be scaled down and characterized at small scale.

  20. Selective Detoxification of Phenols by Pichia pastoris and Arabidopsis thaliana Heterologously Expressing the PtUGT72B1 from Populus trichocarpa

    PubMed Central

    Xu, Zhi-Sheng; Lin, Ya-Qiu; Xu, Jing; Zhu, Bo; Zhao, Wei; Peng, Ri-He; Yao, Quan-Hong

    2013-01-01

    Phenols are present in the environment and commonly in contact with humans and animals because of their wide applications in many industries. In a previous study, we reported that uridine diphosphate-glucose-dependent glucosyltransferase PtUGT72B1 from Populus trichocarpa has high activity in detoxifying trichlorophenol by conjugating glucose. In this study, more experiments were performed to determine the substrate specificity of PtUGT72B1 towards phenolic compounds. Among seven phenols tested, three were glucosylated by PtUGT72B1 including phenol, hydroquinone, and catechol. Transgenic Arabidopsis plants expressing the enzyme PtUGT72B1 showed higher resistance to hydroquinone and catechol but more sensitivity to phenol than wild type plants. Transgenic Pichia pastoris expressing PtUGT72B1 showed enhanced resistance to all three phenols. Compared with wild type Arabidopsis plants, transgenic Arabidopsis plants showed higher removal efficiencies and exported more glucosides of phenol, phenyl β-D-glucopyranoside, to the medium after cultured with the three phenols. Protein extracts from transgenic Arabidopsis plants showed enhanced conjugating activity towards phenol, hydroquinone and catechol. PtUGT72B1 showed much higher expression level in Pichia pastoris than in Arabidopsis plants. Kinetic analysis of the PtUGT72B1 was also performed. PMID:23840543