A Method for Precision Closed-Loop Irrigation Using a Modified PID Control Algorithm
NASA Astrophysics Data System (ADS)
Goodchild, Martin; Kühn, Karl; Jenkins, Malcolm; Burek, Kazimierz; Dutton, Andrew
2016-04-01
The benefits of closed-loop irrigation control have been demonstrated in grower trials which show the potential for improved crop yields and resource usage. Managing water use by controlling irrigation in response to soil moisture changes to meet crop water demands is a popular approach but requires knowledge of closed-loop control practice. In theory, to obtain precise closed-loop control of a system it is necessary to characterise every component in the control loop to derive the appropriate controller parameters, i.e. proportional, integral & derivative (PID) parameters in a classic PID controller. In practice this is often difficult to achieve. Empirical methods are employed to estimate the PID parameters by observing how the system performs under open-loop conditions. In this paper we present a modified PID controller, with a constrained integral function, that delivers excellent regulation of soil moisture by supplying the appropriate amount of water to meet the needs of the plant during the diurnal cycle. Furthermore, the modified PID controller responds quickly to changes in environmental conditions, including rainfall events which can result in: controller windup, under-watering and plant stress conditions. The experimental work successfully demonstrates the functionality of a constrained integral PID controller that delivers robust and precise irrigation control. Coir substrate strawberry growing trial data is also presented illustrating soil moisture control and the ability to match water deliver to solar radiation.
Zhang, Shu; Taft, Cyrus W; Bentsman, Joseph; Hussey, Aaron; Petrus, Bryan
2012-09-01
Tuning a complex multi-loop PID based control system requires considerable experience. In today's power industry the number of available qualified tuners is dwindling and there is a great need for better tuning tools to maintain and improve the performance of complex multivariable processes. Multi-loop PID tuning is the procedure for the online tuning of a cluster of PID controllers operating in a closed loop with a multivariable process. This paper presents the first application of the simultaneous tuning technique to the multi-input-multi-output (MIMO) PID based nonlinear controller in the power plant control context, with the closed-loop system consisting of a MIMO nonlinear boiler/turbine model and a nonlinear cluster of six PID-type controllers. Although simplified, the dynamics and cross-coupling of the process and the PID cluster are similar to those used in a real power plant. The particular technique selected, iterative feedback tuning (IFT), utilizes the linearized version of the PID cluster for signal conditioning, but the data collection and tuning is carried out on the full nonlinear closed-loop system. Based on the figure of merit for the control system performance, the IFT is shown to deliver performance favorably comparable to that attained through the empirical tuning carried out by an experienced control engineer. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
PID Tuning Using Extremum Seeking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Killingsworth, N; Krstic, M
2005-11-15
Although proportional-integral-derivative (PID) controllers are widely used in the process industry, their effectiveness is often limited due to poor tuning. Manual tuning of PID controllers, which requires optimization of three parameters, is a time-consuming task. To remedy this difficulty, much effort has been invested in developing systematic tuning methods. Many of these methods rely on knowledge of the plant model or require special experiments to identify a suitable plant model. Reviews of these methods are given in [1] and the survey paper [2]. However, in many situations a plant model is not known, and it is not desirable to openmore » the process loop for system identification. Thus a method for tuning PID parameters within a closed-loop setting is advantageous. In relay feedback tuning [3]-[5], the feedback controller is temporarily replaced by a relay. Relay feedback causes most systems to oscillate, thus determining one point on the Nyquist diagram. Based on the location of this point, PID parameters can be chosen to give the closed-loop system a desired phase and gain margin. An alternative tuning method, which does not require either a modification of the system or a system model, is unfalsified control [6], [7]. This method uses input-output data to determine whether a set of PID parameters meets performance specifications. An adaptive algorithm is used to update the PID controller based on whether or not the controller falsifies a given criterion. The method requires a finite set of candidate PID controllers that must be initially specified [6]. Unfalsified control for an infinite set of PID controllers has been developed in [7]; this approach requires a carefully chosen input signal [8]. Yet another model-free PID tuning method that does not require opening of the loop is iterative feedback tuning (IFT). IFT iteratively optimizes the controller parameters with respect to a cost function derived from the output signal of the closed-loop system, see [9]. This method is based on the performance of the closed-loop system during a step response experiment [10], [11]. In this article we present a method for optimizing the step response of a closed-loop system consisting of a PID controller and an unknown plant with a discrete version of extremum seeking (ES). Specifically, ES is used to minimize a cost function similar to that used in [10], [11], which quantifies the performance of the PID controller. ES, a non-model-based method, iteratively modifies the arguments (in this application the PID parameters) of a cost function so that the output of the cost function reaches a local minimum or local maximum. In the next section we apply ES to PID controller tuning. We illustrate this technique through simulations comparing the effectiveness of ES to other PID tuning methods. Next, we address the importance of the choice of cost function and consider the effect of controller saturation. Furthermore, we discuss the choice of ES tuning parameters. Finally, we offer some conclusions.« less
NASA Astrophysics Data System (ADS)
Saha, Suman; Das, Saptarshi; Das, Shantanu; Gupta, Amitava
2012-09-01
A novel conformal mapping based fractional order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PIλDμ) controller have been approximated in this paper vis-à-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PIλDμ controller pushes the open loop zeros of the equivalent PID controller towards greater damping regions which gives a trajectory of the controller zeros and dominant closed loop poles. This trajectory is termed as "M-curve". This phenomena is used to design a two-stage tuning algorithm which reduces the existing PID controller's effort in a significant manner compared to that with a single stage LQR based pole placement method at a desired closed loop damping and frequency.
NASA Astrophysics Data System (ADS)
Ugon, B.; Nandong, J.; Zang, Z.
2017-06-01
The presence of unstable dead-time systems in process plants often leads to a daunting challenge in the design of standard PID controllers, which are not only intended to provide close-loop stability but also to give good performance-robustness overall. In this paper, we conduct stability analysis on a double-loop control scheme based on the Routh-Hurwitz stability criteria. We propose to use this unstable double-loop control scheme which employs two P/PID controllers to control first-order or second-order unstable dead-time processes typically found in process industries. Based on the Routh-Hurwitz stability necessary and sufficient criteria, we establish several stability regions which enclose within them the P/PID parameter values that guarantee close-loop stability of the double-loop control scheme. A systematic tuning rule is developed for the purpose of obtaining the optimal P/PID parameter values within the established regions. The effectiveness of the proposed tuning rule is demonstrated using several numerical examples and the result are compared with some well-established tuning methods reported in the literature.
Wang, Chunfei; Zhang, Guang; Wu, Taihu; Zhan, Ningbo; Wang, Yaling
2016-03-01
High-quality cardiopulmonary resuscitation contributes to cardiac arrest survival. The traditional chest compression (CC) standard, which neglects individual differences, uses unified standards for compression depth and compression rate in practice. In this study, an effective and personalized CC method for automatic mechanical compression devices is provided. We rebuild Charles F. Babbs' human circulation model with a coronary perfusion pressure (CPP) simulation module and propose a closed-loop controller based on a fuzzy control algorithm for CCs, which adjusts the CC depth according to the CPP. Compared with a traditional proportion-integration-differentiation (PID) controller, the performance of the fuzzy controller is evaluated in computer simulation studies. The simulation results demonstrate that the fuzzy closed-loop controller results in shorter regulation time, fewer oscillations and smaller overshoot than traditional PID controllers and outperforms the traditional PID controller for CPP regulation and maintenance.
Alagoz, Baris Baykant; Deniz, Furkan Nur; Keles, Cemal; Tan, Nusret
2015-03-01
This study investigates disturbance rejection capacity of closed loop control systems by means of reference to disturbance ratio (RDR). The RDR analysis calculates the ratio of reference signal energy to disturbance signal energy at the system output and provides a quantitative evaluation of disturbance rejection performance of control systems on the bases of communication channel limitations. Essentially, RDR provides a straightforward analytical method for the comparison and improvement of implicit disturbance rejection capacity of closed loop control systems. Theoretical analyses demonstrate us that RDR of the negative feedback closed loop control systems are determined by energy spectral density of controller transfer function. In this manner, authors derived design criteria for specifications of disturbance rejection performances of PID and fractional order PID (FOPID) controller structures. RDR spectra are calculated for investigation of frequency dependence of disturbance rejection capacity and spectral RDR analyses are carried out for PID and FOPID controllers. For the validation of theoretical results, simulation examples are presented. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Percival, Matthew W.; Zisser, Howard; Jovanovič, Lois; Doyle, Francis J.
2008-01-01
Background Using currently available technology, it is possible to apply modern control theory to produce a closed-loop artificial β cell. Novel use of established control techniques would improve glycemic control, thereby reducing the complications of diabetes. Two popular controller structures, proportional–integral–derivative (PID) and model predictive control (MPC), are compared first in a theoretical sense and then in two applications. Methods The Bergman model is transformed for use in a PID equivalent model-based controller. The internal model control (IMC) structure, which makes explicit use of the model, is compared with the PID controller structure in the transfer function domain. An MPC controller is then developed as an optimization problem with restrictions on its tuning parameters and is shown to be equivalent to an IMC controller. The controllers are tuned for equivalent performance and evaluated in a simulation study as a closed-loop controller and in an advisory mode scenario on retrospective clinical data. Results Theoretical development shows conditions under which PID and MPC controllers produce equivalent output via IMC. The simulation study showed that the single tuning parameter for the equivalent controllers relates directly to the closed-loop speed of response and robustness, an important result considering system uncertainty. The risk metric allowed easy identification of instances of inadequate control. Results of the advisory mode simulation showed that suitable tuning produces consistently appropriate delivery recommendations. Conclusion The conditions under which PID and MPC are equivalent have been derived. The MPC framework is more suitable given the extensions necessary for a fully closed-loop artificial β cell, such as consideration of controller constraints. Formulation of the control problem in risk space is attractive, as it explicitly addresses the asymmetry of the problem; this is done easily with MPC. PMID:19885240
Digital PI-PD controller design for arbitrary order systems: Dominant pole placement approach.
Dincel, Emre; Söylemez, Mehmet Turan
2018-05-02
In this paper, a digital PI-PD controller design method is proposed for arbitrary order systems with or without time-delay to achieve desired transient response in the closed-loop via dominant pole placement approach. The digital PI-PD controller design problem is solved by converting the original problem to the digital PID controller design problem. Firstly, parametrization of the digital PID controllers which assign dominant poles to desired location is done. After that the subset of digital PID controller parameters in which the remaining poles are located away from the dominant pole pair is found via Chebyshev polynomials. The obtained PID controller parameters are then transformed into the PI-PD controller parameters by considering the closed-loop controller zero and the design is completed. Success of the proposed design method is firstly demonstrated on an example transfer function and compared with the well-known PID controller methods from the literature through simulations. After that the design method is implemented on the fan and plate laboratory system in a real environment. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
A low power flash-FPGA based brain implant micro-system of PID control.
Lijuan Xia; Fattah, Nabeel; Soltan, Ahmed; Jackson, Andrew; Chester, Graeme; Degenaar, Patrick
2017-07-01
In this paper, we demonstrate that a low power flash FPGA based micro-system can provide a low power programmable interface for closed-loop brain implant inter- faces. The proposed micro-system receives recording local field potential (LFP) signals from an implanted probe, performs closed-loop control using a first order control system, then converts the signal into an optogenetic control stimulus pattern. Stimulus can be implemented through optoelectronic probes. The long term target is for both fundamental neuroscience applications and for clinical use in treating epilepsy. Utilizing our device, closed-loop processing consumes only 14nJ of power per PID cycle compared to 1.52μJ per cycle for a micro-controller implementation. Compared to an application specific digital integrated circuit, flash FPGA's are inherently programmable.
Design and Simulation of a PID Controller for Motion Control Systems
NASA Astrophysics Data System (ADS)
Hassan Abdullahi, Zakariyya; Danzomo, Bashir Ahmed; Suleiman Abdullahi, Zainab
2018-04-01
Motion control system plays important role in many industrial applications among which are in robot system, missile launching, positioning systems etc. However, the performance requirement for these applications in terms of high accuracy, high speed, insignificant or no overshoot and robustness have generated continuous challenges in the field of motion control system design and implementation. To compensate this challenge, a PID controller was design using mathematical model of a DC motor based on classical root-locus approach. The reason for adopting root locus design is to remodel the closed-loop response by putting the closed-loop poles of the system at desired points. Adding poles and zeros to the initial open-loop transfer function through the controller provide a way to transform the root locus in order to place the closed-loop poles at the required points. This process can also be used for discrete-time models. The Advantages of root locus over other methods is that, it gives the better way of pinpointing the parameters and can easily predict the fulfilment of the whole system. The controller performance was simulated using MATLAB code and a reasonable degree of accuracy was obtained. Implementation of the proposed model was conducted using-Simulink and the result obtained shows that the PID controller met the transient performance specifications with both settling time and overshoot less than 0.1s and 5% respectively. In terms of steady state error, the PID controller gave good response for both step input and ramp.
? PID output-feedback control under event-triggered protocol
NASA Astrophysics Data System (ADS)
Zhao, Di; Wang, Zidong; Ding, Derui; Wei, Guoliang; Alsaadi, Fuad E.
2018-07-01
This paper is concerned with the ? proportional-integral-derivative (PID) output-feedback control problem for a class of linear discrete-time systems under event-triggered protocols. The controller and the actuators are connected through a communication network of limited bandwidth, and an event-triggered communication mechanism is adopted to decide when a certain control signal should be transmitted to the respective actuator. Furthermore, a novel PID output-feedback controller is designed where the accumulative sum-loop (the counterpart to the integral-loop in the continues-time setting) operates on a limited time-window with hope to mitigate the effect from the past measurement data. The main objective of the problem under consideration is to design a desired PID controller such that the closed-loop system is exponentially stable and the prescribed ? disturbance rejection attenuation level is guaranteed under event-triggered protocols. By means of the Lyapunov stability theory combined with the orthogonal decomposition, sufficient conditions are established under which the addressed PID controller design problem is recast into a linear convex optimization one that can be easily solved via available software packages. Finally, a simulation example is exploited to illustrate the usefulness and effectiveness of the established control scheme.
LMI designmethod for networked-based PID control
NASA Astrophysics Data System (ADS)
Souza, Fernando de Oliveira; Mozelli, Leonardo Amaral; de Oliveira, Maurício Carvalho; Palhares, Reinaldo Martinez
2016-10-01
In this paper, we propose a methodology for the design of networked PID controllers for second-order delayed processes using linear matrix inequalities. The proposed procedure takes into account time-varying delay on the plant, time-varying delays induced by the network and packed dropouts. The design is carried on entirely using a continuous-time model of the closed-loop system where time-varying delays are used to represent sampling and holding occurring in a discrete-time digital PID controller.
Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System.
Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui
2016-01-20
To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input-output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy.
Simulation of process identification and controller tuning for flow control system
NASA Astrophysics Data System (ADS)
Chew, I. M.; Wong, F.; Bono, A.; Wong, K. I.
2017-06-01
PID controller is undeniably the most popular method used in controlling various industrial processes. The feature to tune the three elements in PID has allowed the controller to deal with specific needs of the industrial processes. This paper discusses the three elements of control actions and improving robustness of controllers through combination of these control actions in various forms. A plant model is simulated using the Process Control Simulator in order to evaluate the controller performance. At first, the open loop response of the plant is studied by applying a step input to the plant and collecting the output data from the plant. Then, FOPDT of physical model is formed by using both Matlab-Simulink and PRC method. Then, calculation of controller’s setting is performed to find the values of Kc and τi that will give satisfactory control in closed loop system. Then, the performance analysis of closed loop system is obtained by set point tracking analysis and disturbance rejection performance. To optimize the overall physical system performance, a refined tuning of PID or detuning is further conducted to ensure a consistent resultant output of closed loop system reaction to the set point changes and disturbances to the physical model. As a result, the PB = 100 (%) and τi = 2.0 (s) is preferably chosen for setpoint tracking while PB = 100 (%) and τi = 2.5 (s) is selected for rejecting the imposed disturbance to the model. In a nutshell, selecting correlation tuning values is likewise depended on the required control’s objective for the stability performance of overall physical model.
Active vibration and noise control of vibro-acoustic system by using PID controller
NASA Astrophysics Data System (ADS)
Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping
2015-07-01
Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.
NASA Astrophysics Data System (ADS)
Stefanski, Frederik; Minorowicz, Bartosz; Persson, Johan; Plummer, Andrew; Bowen, Chris
2017-01-01
The potential to actuate proportional flow control valves using piezoelectric ceramics or other smart materials has been investigated for a number of years. Although performance advantages compared to electromagnetic actuation have been demonstrated, a major obstacle has proven to be ferroelectric hysteresis, which is typically 20% for a piezoelectric actuator. In this paper, a detailed study of valve control methods incorporating hysteresis compensation is made for the first time. Experimental results are obtained from a novel spool valve actuated by a multi-layer piezoelectric ring bender. A generalised Prandtl-Ishlinskii model, fitted to experimental training data from the prototype valve, is used to model hysteresis empirically. This form of model is analytically invertible and is used to compensate for hysteresis in the prototype valve both open loop, and in several configurations of closed loop real time control system. The closed loop control configurations use PID (Proportional Integral Derivative) control with either the inverse hysteresis model in the forward path or in a command feedforward path. Performance is compared to both open and closed loop control without hysteresis compensation via step and frequency response results. Results show a significant improvement in accuracy and dynamic performance using hysteresis compensation in open loop, but where valve position feedback is available for closed loop control the improvements are smaller, and so conventional PID control may well be sufficient. It is concluded that the ability to combine state-of-the-art multi-layer piezoelectric bending actuators with either sophisticated hysteresis compensation or closed loop control provides a route for the creation of a new generation of high performance piezoelectric valves.
Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System
Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui
2016-01-01
To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input–output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy. PMID:26805833
PID tuning rules for SOPDT systems: review and some new results.
Panda, Rames C; Yu, Cheng-Ching; Huang, Hsiao-Ping
2004-04-01
PID controllers are widely used in industries and so many tuning rules have been proposed over the past 50 years that users are often lost in the jungle of tuning formulas. Moreover, unlike PI control, different control laws and structures of implementation further complicate the use of the PID controller. In this work, five different tuning rules are taken for study to control second-order plus dead time systems with wide ranges of damping coefficients and dead time to time constant ratios (D/tau). Four of them are based on IMC design with different types of approximations on dead time and the other on desired closed-loop specifications (i.e., specified forward transfer function). The method of handling dead time in the IMC type of design is important especially for systems with large D/tau ratios. A systematic approach was followed to evaluate the performance of controllers. The regions of applicability of suitable tuning rules are highlighted and recommendations are also given. It turns out that IMC designed with the Maclaurin series expansion type PID is a better choice for both set point and load changes for systems with D/tau greater than 1. For systems with D/tau less than 1, the desired closed-loop specification approach is favored.
Design And Implementation Of PID Controller Using Relay Feedback On TRMS (Twin Rotor MIMO System)
NASA Astrophysics Data System (ADS)
Shah, Dipesh H.
2011-12-01
Today, many process control problems can be adequately and routinely solved by conventional PID control strategies. The overriding reason that the PID controller is so widely accepted is its simple structure which has proved to be very robust with regard to many commonly met process control problems as for instance disturbances and nonlinearities. Relay feedback methods have been widely used in tuning proportional-integral-derivative controllers due to its closed loop nature. In this work, Relay based PID controller is designed and successfully implemented on TRMS (Twin Rotor MIMO System) in SISO and MIMO configurations. The performance of a Relay based PID controller for control of TRMS is investigated and performed satisfactorily. The system shares some features with a helicopter, such as important interactions between the vertical and horizontal motions. The RTWT toolbox in the MATLAB environment is used to perform real-time experiments.
Algorithms for a Closed-Loop Artificial Pancreas: The Case for Model Predictive Control
Bequette, B. Wayne
2013-01-01
The relative merits of model predictive control (MPC) and proportional-integral-derivative (PID) control are discussed, with the end goal of a closed-loop artificial pancreas (AP). It is stressed that neither MPC nor PID are single algorithms, but rather are approaches or strategies that may be implemented very differently by different engineers. The primary advantages to MPC are that (i) constraints on the insulin delivery rate (and/or insulin on board) can be explicitly included in the control calculation; (ii) it is a general framework that makes it relatively easy to include the effect of meals, exercise, and other events that are a function of the time of day; and (iii) it is flexible enough to include many different objectives, from set-point tracking (target) to zone (control to range). In the end, however, it is recognized that the control algorithm, while important, represents only a portion of the effort required to develop a closed-loop AP. Thus, any number of algorithms/approaches can be successful—the engineers involved in the design must have experience with the particular technique, including the important experience of implementing the algorithm in human studies and not simply through simulation studies. PMID:24351190
Adaptive PID formation control of nonholonomic robots without leader's velocity information.
Shen, Dongbin; Sun, Weijie; Sun, Zhendong
2014-03-01
This paper proposes an adaptive proportional integral derivative (PID) algorithm to solve a formation control problem in the leader-follower framework where the leader robot's velocities are unknown for the follower robots. The main idea is first to design some proper ideal control law for the formation system to obtain a required performance, and then to propose the adaptive PID methodology to approach the ideal controller. As a result, the formation is achieved with much more enhanced robust formation performance. The stability of the closed-loop system is theoretically proved by Lyapunov method. Both numerical simulations and physical vehicle experiments are presented to verify the effectiveness of the proposed adaptive PID algorithm. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Postural control model interpretation of stabilogram diffusion analysis
NASA Technical Reports Server (NTRS)
Peterka, R. J.
2000-01-01
Collins and De Luca [Collins JJ. De Luca CJ (1993) Exp Brain Res 95: 308-318] introduced a new method known as stabilogram diffusion analysis that provides a quantitative statistical measure of the apparently random variations of center-of-pressure (COP) trajectories recorded during quiet upright stance in humans. This analysis generates a stabilogram diffusion function (SDF) that summarizes the mean square COP displacement as a function of the time interval between COP comparisons. SDFs have a characteristic two-part form that suggests the presence of two different control regimes: a short-term open-loop control behavior and a longer-term closed-loop behavior. This paper demonstrates that a very simple closed-loop control model of upright stance can generate realistic SDFs. The model consists of an inverted pendulum body with torque applied at the ankle joint. This torque includes a random disturbance torque and a control torque. The control torque is a function of the deviation (error signal) between the desired upright body position and the actual body position, and is generated in proportion to the error signal, the derivative of the error signal, and the integral of the error signal [i.e. a proportional, integral and derivative (PID) neural controller]. The control torque is applied with a time delay representing conduction, processing, and muscle activation delays. Variations in the PID parameters and the time delay generate variations in SDFs that mimic real experimental SDFs. This model analysis allows one to interpret experimentally observed changes in SDFs in terms of variations in neural controller and time delay parameters rather than in terms of open-loop versus closed-loop behavior.
Evaluation of PD/PID controller for insulin control on blood glucose regulation in a Type-I diabetes
NASA Astrophysics Data System (ADS)
Mahmud, Farhanahani; Isse, Nadir Hussien; Daud, Nur Atikah Mohd; Morsin, Marlia
2017-01-01
This project introduces a simulation of Proportional-Derivative (PD) and Proportional-Integral-Derivative (PID) controller based on a virtual Type 1 Diabetes Mellitus (T1DM) patient: Hovorka diabetic model using MATLAB-Simulink software. The results of these simulations are based on three tuning responses for each controller which are fast, slow and oscillation responses. The main purpose of this simulation is to achieve an acceptable stability and fastness response towards the regulation of glucose concentration using PD and PID controller response with insulin infusion rate. Therefore, in order to analyze and compare the responses of both controller performances, one-day simulations of the insulin-glucose dynamic have been conducted using a typical day meal plan that contains five meals of different bolus size. It is found that the PID closed-loop control with a short rise time is required to retrieve a satisfactory glucose regulation.
Photoacoustic-Based-Close-Loop Temperature Control for Nanoparticle Hyperthermia.
Xiaohua, Feng; Fei, Gao; Yuanjin, Zheng
2015-07-01
Hyperthermia therapy requires tight temperature control to achieve selective killing of cancerous tissue with minimal damage on surrounding healthy tissues. To this end, accurate temperature monitoring and subsequent heating control are critical. However, an economic, portable, and real-time temperature control solution is currently lacking. To bridge this gap, we present a novel portable close-loop system for hyperthermia temperature control, in which photoacoustic technique is proposed for noninvasive real-time temperature measurement. Exploiting the high sensitivity of photoacoustics, the temperature is monitored with an accuracy of around 0.18 °C and then fed back to a controller implemented on field programmable gate array (FPGA) for temperature control. Dubbed as portable hyperthermia feedback controller (pHFC), it stabilizes the temperature at preset values by regulating the hyperthermia power with a proportional-integral-derivative (PID) algorithm; and to facilitate digital implementation, the pHFC further converts the PID output into switching values (0 and 1) with the pulse width modulation (PWM) algorithm. Proof-of-concept hyperthermia experiments demonstrate that the pHFC system is able to bring the temperature from baseline to predetermined value with an accuracy of 0.3° and a negligible temperature overshoot. The pHFC can potentially be translated to clinical applications with customized hyperthermia system design. This paper can facilitate future efforts in seamless integration of close-loop temperature control solution and various clinical hyperthermia systems.
An improved PID switching control strategy for type 1 diabetes.
Marchetti, Gianni; Barolo, Massimiliano; Jovanovic, Lois; Zisser, Howard; Seborg, Dale E
2006-01-01
In order for an "artificial pancreas" to become a reality for ambulatory use, a practical closed-loop control strategy must be developed and critically evaluated. In this paper, an improved PID control strategy for blood glucose control is proposed and evaluated in silico using a physiologic model of Hovorka et al. The key features of the proposed control strategy are: (i) a switching strategy for initiating PID control after a meal and insulin bolus; (ii) a novel time-varying setpoint trajectory, (iii) noise and derivative filters to reduce sensitivity to sensor noise, and (iv) a systematic controller tuning strategy. Simulation results demonstrate that the proposed control strategy compares favorably to alternatives for realistic conditions that include meal challenges, incorrect carbohydrate meal estimates, changes in insulin sensitivity, and measurement noise.
Das, Saptarshi; Pan, Indranil; Das, Shantanu
2013-07-01
Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
PID controller tuning using metaheuristic optimization algorithms for benchmark problems
NASA Astrophysics Data System (ADS)
Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.
2017-11-01
This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.
Second-order sliding mode control with experimental application.
Eker, Ilyas
2010-07-01
In this article, a second-order sliding mode control (2-SMC) is proposed for second-order uncertain plants using equivalent control approach to improve the performance of control systems. A Proportional + Integral + Derivative (PID) sliding surface is used for the sliding mode. The sliding mode control law is derived using direct Lyapunov stability approach and asymptotic stability is proved theoretically. The performance of the closed-loop system is analysed through an experimental application to an electromechanical plant to show the feasibility and effectiveness of the proposed second-order sliding mode control and factors involved in the design. The second-order plant parameters are experimentally determined using input-output measured data. The results of the experimental application are presented to make a quantitative comparison with the traditional (first-order) sliding mode control (SMC) and PID control. It is demonstrated that the proposed 2-SMC system improves the performance of the closed-loop system with better tracking specifications in the case of external disturbances, better behavior of the output and faster convergence of the sliding surface while maintaining the stability. 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Liu, Xilin; Zhang, Milin; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan
2017-08-01
This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18 μ m CMOS technology, occupying a silicon area of 3.7 mm 2 . The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.
Ly, Trang T; Roy, Anirban; Grosman, Benyamin; Shin, John; Campbell, Alex; Monirabbasi, Salman; Liang, Bradley; von Eyben, Rie; Shanmugham, Satya; Clinton, Paula; Buckingham, Bruce A
2015-07-01
To evaluate the feasibility and efficacy of a fully integrated hybrid closed-loop (HCL) system (Medtronic MiniMed Inc., Northridge, CA), in day and night closed-loop control in subjects with type 1 diabetes, both in an inpatient setting and during 6 days at diabetes camp. The Medtronic MiniMed HCL system consists of a fourth generation (4S) glucose sensor, a sensor transmitter, and an insulin pump using a modified proportional-integral-derivative (PID) insulin feedback algorithm with safety constraints. Eight subjects were studied over 48 h in an inpatient setting. This was followed by a study of 21 subjects for 6 days at diabetes camp, randomized to either the closed-loop control group using the HCL system or to the group using the Medtronic MiniMed 530G with threshold suspend (control group). The overall mean sensor glucose percent time in range 70-180 mg/dL was similar between the groups (73.1% vs. 69.9%, control vs. HCL, respectively) (P = 0.580). Meter glucose values between 70 and 180 mg/dL were also similar between the groups (73.6% vs. 63.2%, control vs. HCL, respectively) (P = 0.086). The mean absolute relative difference of the 4S sensor was 10.8 ± 10.2%, when compared with plasma glucose values in the inpatient setting, and 12.6 ± 11.0% compared with capillary Bayer CONTOUR NEXT LINK glucose meter values during 6 days at camp. In the first clinical study of this fully integrated system using an investigational PID algorithm, the system did not demonstrate improved glucose control compared with sensor-augmented pump therapy alone. The system demonstrated good connectivity and improved sensor performance. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
NASA Astrophysics Data System (ADS)
Yaseen, Mundher H. A.
Magnetic levitation is a technique to suspend an object without any mechanical support. The main objective of this study is to demonstrate stabilized closed loop control of 1-DOF Maglev experimentally using real-time control simulink feature of (SIMLAB) microcontroller. Proportional Integral Derivative (PID) and Linear Quadratic Regulator (LQR) controllers are employed to examine the stability performance of the Maglev control system under effect of unbalanced change of load and wave signal on Maglev plane. The effect of unbalanced change of applied load on single point, line and plane are presented. Furthermore, in order to study the effect of sudden change in input signal, the input of wave signal has been applied on all points of the prototype maglev plate simultaneously. The results of pulse width modulation (PWM) reveal that the control system using LQR controller provides faster response to adjust the levitated plane comparing to PID controller. Moreover, the air gap distance that controlled using PID controller is rather stable with little oscillation. Meanwhile, LQR controller provided more stability and homogeneous response.
Single axis control of ball position in magnetic levitation system using fuzzy logic control
NASA Astrophysics Data System (ADS)
Sahoo, Narayan; Tripathy, Ashis; Sharma, Priyaranjan
2018-03-01
This paper presents the design and real time implementation of Fuzzy logic control(FLC) for the control of the position of a ferromagnetic ball by manipulating the current flowing in an electromagnet that changes the magnetic field acting on the ball. This system is highly nonlinear and open loop unstable. Many un-measurable disturbances are also acting on the system, making the control of it highly complex but interesting for any researcher in control system domain. First the system is modelled using the fundamental laws, which gives a nonlinear equation. The nonlinear model is then linearized at an operating point. Fuzzy logic controller is designed after studying the system in closed loop under PID control action. The controller is then implemented in real time using Simulink real time environment. The controller is tuned manually to get a stable and robust performance. The set point tracking performance of FLC and PID controllers were compared and analyzed.
NASA Astrophysics Data System (ADS)
Dimas Pristovani, R.; Raden Sanggar, D.; Dadet, Pramadihanto.
2018-04-01
Push recovery is one of humanbehaviorwhich is a strategy to defend the body from anexternal force in any environment. This paper describes push recovery strategy which usesMIMO decoupled control system method. The dynamics system uses aquasi-dynamic system based on triple linear inverted pendulum model (TLIPM). The analysis of TLIPMuses zero moment point (ZMP) calculation from ZMP simplification in last research. By using this simplification of dynamics system, the control design can be simplified into 3 serial SISOwith known and uncertain disturbance models in each inverted pendulum. Each pendulum has different plan to damp the external force effect. In this experiment, PID controller (closed- loop)is used to arrange the damp characteristic.The experiment result shows thatwhen using push recovery control strategy (closed-loop control) is about 85.71% whilewithout using push recovery control strategy (open-loop control) it is about 28.57%.
Closed-loop regulation of arterial pressure after acute brain death.
Soltesz, Kristian; Sjöberg, Trygve; Jansson, Tomas; Johansson, Rolf; Robertsson, Anders; Paskevicius, Audrius; Liao, Quiming; Qin, Guangqi; Steen, Stig
2018-06-01
The purpose of this concept study was to investigate the possibility of automatic mean arterial pressure (MAP) regulation in a porcine heart-beating brain death (BD) model. Hemodynamic stability of BD donors is necessary for maintaining acceptable quality of donated organs for transplantation. Manual stabilization is challenging, due to the lack of vasomotor function in BD donors. Closed-loop stabilization therefore has the potential of increasing availability of acceptable donor organs, and serves to indicate feasibility within less demanding patient groups. A dynamic model of nitroglycerine pharmacology, suitable for controller synthesis, was identified from an experiment involving an anesthetized pig, using a gradient-based output error method. The model was used to synthesize a robust PID controller for hypertension prevention, evaluated in a second experiment, on a second, brain dead, pig. Hypotension was simultaneously prevented using closed-loop controlled infusion of noradrenaline, by means of a previously published controller. A linear model of low order, with variable (uncertain) gain, was sufficient to describe the dynamics to be controlled. The robustly tuned PID controller utilized in the second experiment kept the MAP within a user-defined range. The system was able to prevent hypertension, exceeding a reference of 100 mmHg by more than 10%, during 98% of a 12 h experiment. This early work demonstrates feasibility of the investigated modelling and control synthesis approach, for the purpose of maintaining normotension in a porcine BD model. There remains a need to characterize individual variability, in order to ensure robust performance over the expected population.
Soft Real-Time PID Control on a VME Computer
NASA Technical Reports Server (NTRS)
Karayan, Vahag; Sander, Stanley; Cageao, Richard
2007-01-01
microPID (uPID) is a computer program for real-time proportional + integral + derivative (PID) control of a translation stage in a Fourier-transform ultraviolet spectrometer. microPID implements a PID control loop over a position profile at sampling rate of 8 kHz (sampling period 125microseconds). The software runs in a strippeddown Linux operating system on a VersaModule Eurocard (VME) computer operating in real-time priority queue using an embedded controller, a 16-bit digital-to-analog converter (D/A) board, and a laser-positioning board (LPB). microPID consists of three main parts: (1) VME device-driver routines, (2) software that administers a custom protocol for serial communication with a control computer, and (3) a loop section that obtains the current position from an LPB-driver routine, calculates the ideal position from the profile, and calculates a new voltage command by use of an embedded PID routine all within each sampling period. The voltage command is sent to the D/A board to control the stage. microPID uses special kernel headers to obtain microsecond timing resolution. Inasmuch as microPID implements a single-threaded process and all other processes are disabled, the Linux operating system acts as a soft real-time system.
Thermostatic system of sensor in NIR spectrometer based on PID control
NASA Astrophysics Data System (ADS)
Wang, Zhihong; Qiao, Liwei; Ji, Xufei
2016-11-01
Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.
DeJournett, Leon; DeJournett, Jeremy
2016-01-01
Background: Effective glucose control in the intensive care unit (ICU) setting has the potential to decrease morbidity and mortality rates which should in turn lead to decreased health care expenditures. Current ICU-based glucose controllers are mathematically derived, and tend to be based on proportional integral derivative (PID) or model predictive control (MPC). Artificial intelligence (AI)–based closed loop glucose controllers may have the ability to achieve control that improves on the results achieved by either PID or MPC controllers. Method: We conducted an in silico analysis of an AI-based glucose controller designed for use in the ICU setting. This controller was tested using a mathematical model of the ICU patient’s glucose-insulin system. A total of 126 000 unique 5-day simulations were carried out, resulting in 107 million glucose values for analysis. Results: For the 7 control ranges tested, with a sensor error of ±10%, the following average results were achieved: (1) time in control range, 94.2%, (2) time in range 70-140 mg/dl, 97.8%, (3) time in hyperglycemic range (>140 mg/dl), 2.1%, and (4) time in hypoglycemic range (<70 mg/dl), 0.09%. In addition, the average coefficient of variation (CV) was 11.1%. Conclusions: This in silico study of an AI-based closed loop glucose controller shows that it may be able to improve on the results achieved by currently existing ICU-based PID/MPC controllers. If these results are confirmed in clinical testing, this AI-based controller could be used to create an artificial pancreas system for use in the ICU setting. PMID:27301982
DeJournett, Leon; DeJournett, Jeremy
2016-11-01
Effective glucose control in the intensive care unit (ICU) setting has the potential to decrease morbidity and mortality rates which should in turn lead to decreased health care expenditures. Current ICU-based glucose controllers are mathematically derived, and tend to be based on proportional integral derivative (PID) or model predictive control (MPC). Artificial intelligence (AI)-based closed loop glucose controllers may have the ability to achieve control that improves on the results achieved by either PID or MPC controllers. We conducted an in silico analysis of an AI-based glucose controller designed for use in the ICU setting. This controller was tested using a mathematical model of the ICU patient's glucose-insulin system. A total of 126 000 unique 5-day simulations were carried out, resulting in 107 million glucose values for analysis. For the 7 control ranges tested, with a sensor error of ±10%, the following average results were achieved: (1) time in control range, 94.2%, (2) time in range 70-140 mg/dl, 97.8%, (3) time in hyperglycemic range (>140 mg/dl), 2.1%, and (4) time in hypoglycemic range (<70 mg/dl), 0.09%. In addition, the average coefficient of variation (CV) was 11.1%. This in silico study of an AI-based closed loop glucose controller shows that it may be able to improve on the results achieved by currently existing ICU-based PID/MPC controllers. If these results are confirmed in clinical testing, this AI-based controller could be used to create an artificial pancreas system for use in the ICU setting. © 2016 Diabetes Technology Society.
PID Controller Design for FES Applied to Ankle Muscles in Neuroprosthesis for Standing Balance
Rouhani, Hossein; Same, Michael; Masani, Kei; Li, Ya Qi; Popovic, Milos R.
2017-01-01
Closed-loop controlled functional electrical stimulation (FES) applied to the lower limb muscles can be used as a neuroprosthesis for standing balance in neurologically impaired individuals. The objective of this study was to propose a methodology for designing a proportional-integral-derivative (PID) controller for FES applied to the ankle muscles toward maintaining standing balance for several minutes and in the presence of perturbations. First, a model of the physiological control strategy for standing balance was developed. Second, the parameters of a PID controller that mimicked the physiological balance control strategy were determined to stabilize the human body when modeled as an inverted pendulum. Third, this PID controller was implemented using a custom-made Inverted Pendulum Standing Apparatus that eliminated the effect of visual and vestibular sensory information on voluntary balance control. Using this setup, the individual-specific FES controllers were tested in able-bodied individuals and compared with disrupted voluntary control conditions in four experimental paradigms: (i) quiet-standing; (ii) sudden change of targeted pendulum angle (step response); (iii) balance perturbations that simulate arm movements; and (iv) sudden change of targeted angle of a pendulum with individual-specific body-weight (step response). In paradigms (i) to (iii), a standard 39.5-kg pendulum was used, and 12 subjects were involved. In paradigm (iv) 9 subjects were involved. Across the different experimental paradigms and subjects, the FES-controlled and disrupted voluntarily-controlled pendulum angle showed root mean square errors of <1.2 and 2.3 deg, respectively. The root mean square error (all paradigms), rise time, settle time, and overshoot [paradigms (ii) and (iv)] in FES-controlled balance were significantly smaller or tended to be smaller than those observed with voluntarily-controlled balance, implying improved steady-state and transient responses of FES-controlled balance. At the same time, the FES-controlled balance required similar torque levels (no significant difference) as voluntarily-controlled balance. The implemented PID parameters were to some extent consistent among subjects for standard weight conditions and did not require prolonged individual-specific tuning. The proposed methodology can be used to design FES controllers for closed-loop controlled neuroprostheses for standing balance. Further investigation of the clinical implementation of this approach for neurologically impaired individuals is needed. PMID:28676739
A digital intensity stabilization system for HeNe laser
NASA Astrophysics Data System (ADS)
Wei, Zhimeng; Lu, Guangfeng; Yang, Kaiyong; Long, Xingwu; Huang, Yun
2012-02-01
A digital intensity stabilization system for HeNe laser is developed. Based on a switching power IC to design laser power supply and a general purpose microcontroller to realize digital PID control, the system constructs a closed loop to stabilize the laser intensity by regulating its discharge current. The laser tube is made of glass ceramics and its integrated structure is steady enough to eliminate intensity fluctuations at high frequency and attenuates all intensity fluctuations, and this makes it easy to tune the control loop. The control loop between discharge current and photodiode voltage eliminates the long-term drifts. The intensity stability of the HeNe laser with this system is 0.014% over 12 h.
Fuzzy PID control algorithm based on PSO and application in BLDC motor
NASA Astrophysics Data System (ADS)
Lin, Sen; Wang, Guanglong
2017-06-01
A fuzzy PID control algorithm is studied based on improved particle swarm optimization (PSO) to perform Brushless DC (BLDC) motor control which has high accuracy, good anti-jamming capability and steady state accuracy compared with traditional PID control. The mathematical and simulation model is established for BLDC motor by simulink software, and the speed loop of the fuzzy PID controller is designed. The simulation results show that the fuzzy PID control algorithm based on PSO has higher stability, high control precision and faster dynamic response speed.
Ly, Trang T; Weinzimer, Stuart A; Maahs, David M; Sherr, Jennifer L; Roy, Anirban; Grosman, Benyamin; Cantwell, Martin; Kurtz, Natalie; Carria, Lori; Messer, Laurel; von Eyben, Rie; Buckingham, Bruce A
2017-08-01
Automated insulin delivery systems, utilizing a control algorithm to dose insulin based upon subcutaneous continuous glucose sensor values and insulin pump therapy, will soon be available for commercial use. The objective of this study was to determine the preliminary safety and efficacy of initialization parameters with the Medtronic hybrid closed-loop controller by comparing percentage of time in range, 70-180 mg/dL (3.9-10 mmol/L), mean glucose values, as well as percentage of time above and below target range between sensor-augmented pump therapy and hybrid closed-loop, in adults and adolescents with type 1 diabetes. We studied an initial cohort of 9 adults followed by a second cohort of 15 adolescents, using the Medtronic hybrid closed-loop system with the proportional-integral-derivative with insulin feed-back (PID-IFB) algorithm. Hybrid closed-loop was tested in supervised hotel-based studies over 4-5 days. The overall mean percentage of time in range (70-180 mg/dL, 3.9-10 mmol/L) during hybrid closed-loop was 71.8% in the adult cohort and 69.8% in the adolescent cohort. The overall percentage of time spent under 70 mg/dL (3.9 mmol/L) was 2.0% in the adult cohort and 2.5% in the adolescent cohort. Mean glucose values were 152 mg/dL (8.4 mmol/L) in the adult cohort and 153 mg/dL (8.5 mmol/L) in the adolescent cohort. Closed-loop control using the Medtronic hybrid closed-loop system enables adaptive, real-time basal rate modulation. Initializing hybrid closed-loop in clinical practice will involve individualizing initiation parameters to optimize overall glucose control. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, L.; Klebaner, A.; Theilacker, J.
2011-06-01
The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.
Position control of an industrial robot using fractional order controller
NASA Astrophysics Data System (ADS)
Clitan, Iulia; Muresan, Vlad; Abrudean, Mihail; Clitan, Andrei; Miron, Radu
2017-02-01
This paper presents the design of a control structure that ensures no overshoot for the movement of an industrial robot, used for the evacuation of round steel blocks from inside a rotary hearth furnace. First, a mathematical model for the positioning system is derived from a set of experimental data, and further, the paper focuses on obtaining a PID type controller, using the relay method as tuning method in order to obtain a stable closed loop system. The controller parameters are further tuned in order to achieve the imposed set of performances for the positioning of the industrial robot through computer simulation, using trial and error method. Further, a fractional - order PID controller is obtained in order to improve the control signal variation, so as to fit within the range of unified current's variation, 4 to 20 mA.
Loop shaping design for tracking performance in machine axes.
Schinstock, Dale E; Wei, Zhouhong; Yang, Tao
2006-01-01
A modern interpretation of classical loop shaping control design methods is presented in the context of tracking control for linear motor stages. Target applications include noncontacting machines such as laser cutters and markers, water jet cutters, and adhesive applicators. The methods are directly applicable to the common PID controller and are pertinent to many electromechanical servo actuators other than linear motors. In addition to explicit design techniques a PID tuning algorithm stressing the importance of tracking is described. While the theory behind these techniques is not new, the analysis of their application to modern systems is unique in the research literature. The techniques and results should be important to control practitioners optimizing PID controller designs for tracking and in comparing results from classical designs to modern techniques. The methods stress high-gain controller design and interpret what this means for PID. Nothing in the methods presented precludes the addition of feedforward control methods for added improvements in tracking. Laboratory results from a linear motor stage demonstrate that with large open-loop gain very good tracking performance can be achieved. The resultant tracking errors compare very favorably to results from similar motions on similar systems that utilize much more complicated controllers.
Li, Mingjie; Zhou, Ping; Zhao, Zhicheng; Zhang, Jinggang
2016-03-01
Recently, fractional order (FO) processes with dead-time have attracted more and more attention of many researchers in control field, but FO-PID controllers design techniques available for the FO processes with dead-time suffer from lack of direct systematic approaches. In this paper, a simple design and parameters tuning approach of two-degree-of-freedom (2-DOF) FO-PID controller based on internal model control (IMC) is proposed for FO processes with dead-time, conventional one-degree-of-freedom control exhibited the shortcoming of coupling of robustness and dynamic response performance. 2-DOF control can overcome the above weakness which means it realizes decoupling of robustness and dynamic performance from each other. The adjustable parameter η2 of FO-PID controller is directly related to the robustness of closed-loop system, and the analytical expression is given between the maximum sensitivity specification Ms and parameters η2. In addition, according to the dynamic performance requirement of the practical system, the parameters η1 can also be selected easily. By approximating the dead-time term of the process model with the first-order Padé or Taylor series, the expressions for 2-DOF FO-PID controller parameters are derived for three classes of FO processes with dead-time. Moreover, compared with other methods, the proposed method is simple and easy to implement. Finally, the simulation results are given to illustrate the effectiveness of this method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gorzelic, P.; Schiff, S. J.; Sinha, A.
2013-04-01
Objective. To explore the use of classical feedback control methods to achieve an improved deep brain stimulation (DBS) algorithm for application to Parkinson's disease (PD). Approach. A computational model of PD dynamics was employed to develop model-based rational feedback controller design. The restoration of thalamocortical relay capabilities to patients suffering from PD is formulated as a feedback control problem with the DBS waveform serving as the control input. Two high-level control strategies are tested: one that is driven by an online estimate of thalamic reliability, and another that acts to eliminate substantial decreases in the inhibition from the globus pallidus interna (GPi) to the thalamus. Control laws inspired by traditional proportional-integral-derivative (PID) methodology are prescribed for each strategy and simulated on this computational model of the basal ganglia network. Main Results. For control based upon thalamic reliability, a strategy of frequency proportional control with proportional bias delivered the optimal control achieved for a given energy expenditure. In comparison, control based upon synaptic inhibitory output from the GPi performed very well in comparison with those of reliability-based control, with considerable further reduction in energy expenditure relative to that of open-loop DBS. The best controller performance was amplitude proportional with derivative control and integral bias, which is full PID control. We demonstrated how optimizing the three components of PID control is feasible in this setting, although the complexity of these optimization functions argues for adaptive methods in implementation. Significance. Our findings point to the potential value of model-based rational design of feedback controllers for Parkinson's disease.
Gorzelic, P; Schiff, S J; Sinha, A
2013-04-01
To explore the use of classical feedback control methods to achieve an improved deep brain stimulation (DBS) algorithm for application to Parkinson's disease (PD). A computational model of PD dynamics was employed to develop model-based rational feedback controller design. The restoration of thalamocortical relay capabilities to patients suffering from PD is formulated as a feedback control problem with the DBS waveform serving as the control input. Two high-level control strategies are tested: one that is driven by an online estimate of thalamic reliability, and another that acts to eliminate substantial decreases in the inhibition from the globus pallidus interna (GPi) to the thalamus. Control laws inspired by traditional proportional-integral-derivative (PID) methodology are prescribed for each strategy and simulated on this computational model of the basal ganglia network. For control based upon thalamic reliability, a strategy of frequency proportional control with proportional bias delivered the optimal control achieved for a given energy expenditure. In comparison, control based upon synaptic inhibitory output from the GPi performed very well in comparison with those of reliability-based control, with considerable further reduction in energy expenditure relative to that of open-loop DBS. The best controller performance was amplitude proportional with derivative control and integral bias, which is full PID control. We demonstrated how optimizing the three components of PID control is feasible in this setting, although the complexity of these optimization functions argues for adaptive methods in implementation. Our findings point to the potential value of model-based rational design of feedback controllers for Parkinson's disease.
High precision locating control system based on VCM for Talbot lithography
NASA Astrophysics Data System (ADS)
Yao, Jingwei; Zhao, Lixin; Deng, Qian; Hu, Song
2016-10-01
Aiming at the high precision and efficiency requirements of Z-direction locating in Talbot lithography, a control system based on Voice Coil Motor (VCM) was designed. In this paper, we built a math model of VCM and its moving characteristic was analyzed. A double-closed loop control strategy including position loop and current loop were accomplished. The current loop was implemented by driver, in order to achieve the rapid follow of the system current. The position loop was completed by the digital signal processor (DSP) and the position feedback was achieved by high precision linear scales. Feed forward control and position feedback Proportion Integration Differentiation (PID) control were applied in order to compensate for dynamic lag and improve the response speed of the system. And the high precision and efficiency of the system were verified by simulation and experiments. The results demonstrated that the performance of Z-direction gantry was obviously improved, having high precision, quick responses, strong real-time and easily to expend for higher precision.
Pinsker, Jordan E.; Lee, Joon Bok; Dassau, Eyal; Seborg, Dale E.; Bradley, Paige K.; Gondhalekar, Ravi; Bevier, Wendy C.; Huyett, Lauren; Zisser, Howard C.; Doyle, Francis J.
2016-01-01
OBJECTIVE To evaluate two widely used control algorithms for an artificial pancreas (AP) under nonideal but comparable clinical conditions. RESEARCH DESIGN AND METHODS After a pilot safety and feasibility study (n = 10), closed-loop control (CLC) was evaluated in a randomized, crossover trial of 20 additional adults with type 1 diabetes. Personalized model predictive control (MPC) and proportional integral derivative (PID) algorithms were compared in supervised 27.5-h CLC sessions. Challenges included overnight control after a 65-g dinner, response to a 50-g breakfast, and response to an unannounced 65-g lunch. Boluses of announced dinner and breakfast meals were given at mealtime. The primary outcome was time in glucose range 70–180 mg/dL. RESULTS Mean time in range 70–180 mg/dL was greater for MPC than for PID (74.4 vs. 63.7%, P = 0.020). Mean glucose was also lower for MPC than PID during the entire trial duration (138 vs. 160 mg/dL, P = 0.012) and 5 h after the unannounced 65-g meal (181 vs. 220 mg/dL, P = 0.019). There was no significant difference in time with glucose <70 mg/dL throughout the trial period. CONCLUSIONS This first comprehensive study to compare MPC and PID control for the AP indicates that MPC performed particularly well, achieving nearly 75% time in the target range, including the unannounced meal. Although both forms of CLC provided safe and effective glucose management, MPC performed as well or better than PID in all metrics. PMID:27289127
Design of optical axis jitter control system for multi beam lasers based on FPGA
NASA Astrophysics Data System (ADS)
Ou, Long; Li, Guohui; Xie, Chuanlin; Zhou, Zhiqiang
2018-02-01
A design of optical axis closed-loop control system for multi beam lasers coherent combining based on FPGA was introduced. The system uses piezoelectric ceramics Fast Steering Mirrors (FSM) as actuator, the Fairfield spot detection of multi beam lasers by the high speed CMOS camera for optical detecting, a control system based on FPGA for real-time optical axis jitter suppression. The algorithm for optical axis centroid detecting and PID of anti-Integral saturation were realized by FPGA. Optimize the structure of logic circuit by reuse resource and pipeline, as a result of reducing logic resource but reduced the delay time, and the closed-loop bandwidth increases to 100Hz. The jitter of laser less than 40Hz was reduced 40dB. The cost of the system is low but it works stably.
Design and implementation of a 2-DOF PID compensation for magnetic levitation systems.
Ghosh, Arun; Rakesh Krishnan, T; Tejaswy, Pailla; Mandal, Abhisek; Pradhan, Jatin K; Ranasingh, Subhakant
2014-07-01
This paper employs a 2-DOF (degree of freedom) PID controller for compensating a physical magnetic levitation system. It is shown that because of having a feedforward gain in the proposed 2-DOF PID control, the transient performance of the compensated system can be changed in a desired manner unlike the conventional 1-DOF PID control. It is also shown that for a choice of PID parameters, although the theoretical loop robustness is the same for both the compensated systems, in real-time, 2-DOF PID control may provide superior robustness if a suitable choice of the feedforward parameter is made. The results are verified through simulations and experiments. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Merrikh-Bayat, Farshad
2017-05-01
In this paper first the Multi-term Fractional-Order PID (MFOPID) whose transfer function is equal to [Formula: see text] , where k j and α j are unknown and known real parameters respectively, is introduced. Without any loss of generality, a special form of MFOPID with transfer function k p +k i /s+k d1 s+k d2 s μ where k p , k i , k d1 , and k d2 are unknown real and μ is a known positive real parameter, is considered. Similar to PID and TID, MFOPID is also linear in its parameters which makes it possible to study all of them in a same framework. Tuning the parameters of PID, TID, and MFOPID based on loop shaping using Linear Matrix Inequalities (LMIs) is discussed. For this purpose separate LMIs for closed-loop stability (of sufficient type) and adjusting different aspects of the open-loop frequency response are developed. The proposed LMIs for stability are obtained based on the Nyquist stability theorem and can be applied to both integer and fractional-order (not necessarily commensurate) processes which are either stable or have one unstable pole. Numerical simulations show that the performance of the four-variable MFOPID can compete the trivial five-variable FOPID and often excels PID and TID. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Cascade control of superheated steam temperature with neuro-PID controller.
Zhang, Jianhua; Zhang, Fenfang; Ren, Mifeng; Hou, Guolian; Fang, Fang
2012-11-01
In this paper, an improved cascade control methodology for superheated processes is developed, in which the primary PID controller is implemented by neural networks trained by minimizing error entropy criterion. The entropy of the tracking error can be estimated recursively by utilizing receding horizon window technique. The measurable disturbances in superheated processes are input to the neuro-PID controller besides the sequences of tracking error in outer loop control system, hence, feedback control is combined with feedforward control in the proposed neuro-PID controller. The convergent condition of the neural networks is analyzed. The implementation procedures of the proposed cascade control approach are summarized. Compared with the neuro-PID controller using minimizing squared error criterion, the proposed neuro-PID controller using minimizing error entropy criterion may decrease fluctuations of the superheated steam temperature. A simulation example shows the advantages of the proposed method. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Buske, Ivo; Riede, Wolfgang
2006-09-01
We compare active optical elements based on different technologies to accomplish the requirements of a 2-dim. fine tracking control system. A cascaded optically and electrically addressable spatial light modulator (OASLM) based on liquid crystals (LC) is used for refractive beam steering. Spatial light modulators provide a controllable phase wedge to generate a beam deflection. Additionally, a tip/tilt mirror approach operating with piezo-electric actuators is investigated. A digital PID controller is implemented for closed-loop control. Beam tracking with a root-mean-squared accuracy of Δα=30 nrad has been laboratory-confirmed.
NASA Astrophysics Data System (ADS)
Begum, A. Yasmine; Gireesh, N.
2018-04-01
In superheater, steam temperature is controlled in a cascade control loop. The cascade control loop consists of PI and PID controllers. To improve the superheater steam temperature control the controller's gains in a cascade control loop has to be tuned efficiently. The mathematical model of the superheater is derived by sets of nonlinear partial differential equations. The tuning methods taken for study here are designed for delay plus first order transfer function model. Hence from the dynamical model of the superheater, a FOPTD model is derived using frequency response method. Then by using Chien-Hrones-Reswick Tuning Algorithm and Gain-Phase Assignment Algorithm optimum controller gains has been found out based on the least value of integral time weighted absolute error.
Ferrante, Simona; Pedrocchi, Alessandra; Iannò, Marco; De Momi, Elena; Ferrarin, Maurizio; Ferrigno, Giancarlo
2004-01-01
This study falls within the ambit of research on functional electrical stimulation for the design of rehabilitation training for spinal cord injured patients. In this context, a crucial issue is the control of the stimulation parameters in order to optimize the patterns of muscle activation and to increase the duration of the exercises. An adaptive control system (NEURADAPT) based on artificial neural networks (ANNs) was developed to control the knee joint in accordance with desired trajectories by stimulating quadriceps muscles. This strategy includes an inverse neural model of the stimulated limb in the feedforward line and a neural network trained on-line in the feedback loop. NEURADAPT was compared with a linear closed-loop proportional integrative derivative (PID) controller and with a model-based neural controller (NEUROPID). Experiments on two subjects (one healthy and one paraplegic) show the good performance of NEURADAPT, which is able to reduce the time lag introduced by the PID controller. In addition, control systems based on ANN techniques do not require complicated calibration procedures at the beginning of each experimental session. After the initial learning phase, the ANN, thanks to its generalization capacity, is able to cope with a certain range of variability of skeletal muscle properties.
Robust control for a biaxial servo with time delay system based on adaptive tuning technique.
Chen, Tien-Chi; Yu, Chih-Hsien
2009-07-01
A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.
Methodologies for Root Locus and Loop Shaping Control Design with Comparisons
NASA Technical Reports Server (NTRS)
Kopasakis, George
2017-01-01
This paper describes some basics for the root locus controls design method as well as for loop shaping, and establishes approaches to expedite the application of these two design methodologies to easily obtain control designs that meet requirements with superior performance. The two design approaches are compared for their ability to meet control design specifications and for ease of application using control design examples. These approaches are also compared with traditional Proportional Integral Derivative (PID) control in order to demonstrate the limitations of PID control. Robustness of these designs is covered as it pertains to these control methodologies and for the example problems.
A robust fractional-order PID controller design based on active queue management for TCP network
NASA Astrophysics Data System (ADS)
Hamidian, Hamideh; Beheshti, Mohammad T. H.
2018-01-01
In this paper, a robust fractional-order controller is designed to control the congestion in transmission control protocol (TCP) networks with time-varying parameters. Fractional controllers can increase the stability and robustness. Regardless of advantages of fractional controllers, they are still not common in congestion control in TCP networks. The network parameters are time-varying, so the robust stability is important in congestion controller design. Therefore, we focused on the robust controller design. The fractional PID controller is developed based on active queue management (AQM). D-partition technique is used. The most important property of designed controller is the robustness to the time-varying parameters of the TCP network. The vertex quasi-polynomials of the closed-loop characteristic equation are obtained, and the stability boundaries are calculated for each vertex quasi-polynomial. The intersection of all stability regions is insensitive to network parameter variations, and results in robust stability of TCP/AQM system. NS-2 simulations show that the proposed algorithm provides a stable queue length. Moreover, simulations show smaller oscillations of the queue length and less packet drop probability for FPID compared to PI and PID controllers. We can conclude from NS-2 simulations that the average packet loss probability variations are negligible when the network parameters change.
A design of LED adaptive dimming lighting system based on incremental PID controller
NASA Astrophysics Data System (ADS)
He, Xiangyan; Xiao, Zexin; He, Shaojia
2010-11-01
As a new generation energy-saving lighting source, LED is applied widely in various technology and industry fields. The requirement of its adaptive lighting technology is more and more rigorous, especially in the automatic on-line detecting system. In this paper, a closed loop feedback LED adaptive dimming lighting system based on incremental PID controller is designed, which consists of MEGA16 chip as a Micro-controller Unit (MCU), the ambient light sensor BH1750 chip with Inter-Integrated Circuit (I2C), and constant-current driving circuit. A given value of light intensity required for the on-line detecting environment need to be saved to the register of MCU. The optical intensity, detected by BH1750 chip in real time, is converted to digital signal by AD converter of the BH1750 chip, and then transmitted to MEGA16 chip through I2C serial bus. Since the variation law of light intensity in the on-line detecting environment is usually not easy to be established, incremental Proportional-Integral-Differential (PID) algorithm is applied in this system. Control variable obtained by the incremental PID determines duty cycle of Pulse-Width Modulation (PWM). Consequently, LED's forward current is adjusted by PWM, and the luminous intensity of the detection environment is stabilized by self-adaptation. The coefficients of incremental PID are obtained respectively after experiments. Compared with the traditional LED dimming system, it has advantages of anti-interference, simple construction, fast response, and high stability by the use of incremental PID algorithm and BH1750 chip with I2C serial bus. Therefore, it is suitable for the adaptive on-line detecting applications.
Design and Evaluation of a Robust PID Controller for a Fully Implantable Artificial Pancreas
2015-01-01
Treatment of type 1 diabetes mellitus could be greatly improved by applying a closed-loop control strategy to insulin delivery, also known as an artificial pancreas (AP). In this work, we outline the design of a fully implantable AP using intraperitoneal (IP) insulin delivery and glucose sensing. The design process utilizes the rapid glucose sensing and insulin action offered by the IP space to tune a PID controller with insulin feedback to provide safe and effective insulin delivery. The controller was tuned to meet robust performance and stability specifications. An anti-reset windup strategy was introduced to prevent dangerous undershoot toward hypoglycemia after a large meal disturbance. The final controller design achieved 78% of time within the tight glycemic range of 80–140 mg/dL, with no time spent in hypoglycemia. The next step is to test this controller design in an animal model to evaluate the in vivo performance. PMID:26538805
High-accuracy resolver-to-digital conversion via phase locked loop based on PID controller
NASA Astrophysics Data System (ADS)
Li, Yaoling; Wu, Zhong
2018-03-01
The problem of resolver-to-digital conversion (RDC) is transformed into the problem of angle tracking control, and a phase locked loop (PLL) method based on PID controller is proposed in this paper. This controller comprises a typical PI controller plus an incomplete differential which can avoid the amplification of higher-frequency noise components by filtering the phase detection error with a low-pass filter. Compared with conventional ones, the proposed PLL method makes the converter a system of type III and thus the conversion accuracy can be improved. Experimental results demonstrate the effectiveness of the proposed method.
A digital optical phase-locked loop for diode lasers based on field programmable gate array.
Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui
2012-09-01
We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382∕MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad(2) and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.
A digital optical phase-locked loop for diode lasers based on field programmable gate array
NASA Astrophysics Data System (ADS)
Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui
2012-09-01
We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad2 and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.
A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.
Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J; Paz-Vicente, Rafael; Civit-Balcells, Anton
2012-01-01
In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.
A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs
Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J.; Paz-Vicente, Rafael; Civit-Balcells, Anton
2012-01-01
In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control. PMID:22666004
Fractional order PID controller for improvement of PMSM speed control in aerospace applications
NASA Astrophysics Data System (ADS)
Saraji, Ali Motalebi; Ghanbari, Mahmood
2014-12-01
Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.
2009-01-01
Current care guidelines recommend glucose control (GC) in critically ill patients. To achieve GC, many ICUs have implemented a (nurse-based) protocol on paper. However, such protocols are often complex, time-consuming, and can cause iatrogenic hypoglycemia. Computerized glucose regulation protocols may improve patient safety, efficiency, and nurse compliance. Such computerized clinical decision support systems (Cuss) use more complex logic to provide an insulin infusion rate based on previous blood glucose levels and other parameters. A computerized CDSS for glucose control has the potential to reduce overall workload, reduce the chance of human cognitive failure, and improve glucose control. Several computer-assisted glucose regulation programs have been published recently. In order of increasing complexity, the three main types of algorithms used are computerized flowcharts, Proportional-Integral-Derivative (PID), and Model Predictive Control (MPC). PID is essentially a closed-loop feedback system, whereas MPC models the behavior of glucose and insulin in ICU patients. Although the best approach has not yet been determined, it should be noted that PID controllers are generally thought to be more robust than MPC systems. The computerized Cuss that are most likely to emerge are those that are fully a part of the routine workflow, use patient-specific characteristics and apply variable sampling intervals. PMID:19849827
NASA Astrophysics Data System (ADS)
Powell, Keith B.; Vaitheeswaran, Vidhya
2010-07-01
The MMT observatory has recently implemented and tested an optimal wavefront controller for the NGS adaptive optics system. Open loop atmospheric data collected at the telescope is used as the input to a MATLAB based analytical model. The model uses nonlinear constrained minimization to determine controller gains and optimize the system performance. The real-time controller performing the adaptive optics close loop operation is implemented on a dedicated high performance PC based quad core server. The controller algorithm is written in C and uses the GNU scientific library for linear algebra. Tests at the MMT confirmed the optimal controller significantly reduced the residual RMS wavefront compared with the previous controller. Significant reductions in image FWHM and increased peak intensities were obtained in J, H and K-bands. The optimal PID controller is now operating as the baseline wavefront controller for the MMT NGS-AO system.
NASA Astrophysics Data System (ADS)
Parada, M.; Sbarbaro, D.; Borges, R. A.; Peres, P. L. D.
2017-01-01
The use of robust design techniques such as the one based on ? and ? for tuning proportional integral (PI) and proportional integral derivative (PID) controllers have been limited to address a small set of processes. This work addresses the problem by considering a wide set of possible plants, both first- and second-order continuous-time systems with time delays and zeros, leading to PI and PID controllers. The use of structured uncertainties to handle neglected dynamics allows to expand the range of processes to be considered. The proposed approach takes into account the robustness of the controller with respect to these structured uncertainties by using the small-gain theorem. In addition, improved performance is sought through the minimisation of an upper bound to the closed-loop system ? norm. A Lyapunov-Krasovskii-type functional is used to obtain delay-dependent design conditions. The controller design is accomplished by means of a convex optimisation procedure formulated using linear matrix inequalities. In order to illustrate the flexibility of the approach, several examples considering recycle compensation, reduced-order controller design and a practical implementation are addressed. Numerical experiments are provided in each case to highlight the main characteristics of the proposed design method.
Hammad, Mohanad M; Elshenawy, Ahmed K; El Singaby, M I
2017-01-01
In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment.
Elshenawy, Ahmed K.; El Singaby, M.I.
2017-01-01
In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment. PMID:28683071
A digital optical phase-locked loop for diode lasers based on field programmable gate array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Zhouxiang; Zhang Xian; Huang Kaikai
2012-09-15
We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat notemore » line width below 1 Hz, residual mean-square phase error of 0.14 rad{sup 2} and transition time of 100 {mu}s under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.« less
Data Driven Synthesis of Three Term Digital Controllers
NASA Astrophysics Data System (ADS)
Keel, Lee H.; Mitra, Sandipan; Bhattacharyya, Shankar P.
This paper presents a method for digital PID and first order controller synthesis based on frequency domain data alone. The techniques given here first determine all stabilizing controllers from measurement data. In both PID and first order controller cases, the only information required are frequency domain data (Nyquist-Bode data) and the number of open-loop RHP poles. Specifically no identification of the plant model is required. Examples are given for illustration.
Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks.
Pedrocchi, Alessandra; Ferrante, Simona; De Momi, Elena; Ferrigno, Giancarlo
2006-10-09
The design of an optimal neuroprostheses controller and its clinical use presents several challenges. First, the physiological system is characterized by highly inter-subjects varying properties and also by non stationary behaviour with time, due to conditioning level and fatigue. Secondly, the easiness to use in routine clinical practice requires experienced operators. Therefore, feedback controllers, avoiding long setting procedures, are required. The error mapping controller (EMC) here proposed uses artificial neural networks (ANNs) both for the design of an inverse model and of a feedback controller. A neuromuscular model is used to validate the performance of the controllers in simulations. The EMC performance is compared to a Proportional Integral Derivative (PID) included in an anti wind-up scheme (called PIDAW) and to a controller with an ANN as inverse model and a PID in the feedback loop (NEUROPID). In addition tests on the EMC robustness in response to variations of the Plant parameters and to mechanical disturbances are carried out. The EMC shows improvements with respect to the other controllers in tracking accuracy, capability to prolong exercise managing fatigue, robustness to parameter variations and resistance to mechanical disturbances. Different from the other controllers, the EMC is capable of balancing between tracking accuracy and mapping of fatigue during the exercise. In this way, it avoids overstressing muscles and allows a considerable prolongation of the movement. The collection of the training sets does not require any particular experimental setting and can be introduced in routine clinical practice.
Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks
Pedrocchi, Alessandra; Ferrante, Simona; De Momi, Elena; Ferrigno, Giancarlo
2006-01-01
Background The design of an optimal neuroprostheses controller and its clinical use presents several challenges. First, the physiological system is characterized by highly inter-subjects varying properties and also by non stationary behaviour with time, due to conditioning level and fatigue. Secondly, the easiness to use in routine clinical practice requires experienced operators. Therefore, feedback controllers, avoiding long setting procedures, are required. Methods The error mapping controller (EMC) here proposed uses artificial neural networks (ANNs) both for the design of an inverse model and of a feedback controller. A neuromuscular model is used to validate the performance of the controllers in simulations. The EMC performance is compared to a Proportional Integral Derivative (PID) included in an anti wind-up scheme (called PIDAW) and to a controller with an ANN as inverse model and a PID in the feedback loop (NEUROPID). In addition tests on the EMC robustness in response to variations of the Plant parameters and to mechanical disturbances are carried out. Results The EMC shows improvements with respect to the other controllers in tracking accuracy, capability to prolong exercise managing fatigue, robustness to parameter variations and resistance to mechanical disturbances. Conclusion Different from the other controllers, the EMC is capable of balancing between tracking accuracy and mapping of fatigue during the exercise. In this way, it avoids overstressing muscles and allows a considerable prolongation of the movement. The collection of the training sets does not require any particular experimental setting and can be introduced in routine clinical practice. PMID:17029636
A dual closed-loop control system for mechanical ventilation.
Tehrani, Fleur; Rogers, Mark; Lo, Takkin; Malinowski, Thomas; Afuwape, Samuel; Lum, Michael; Grundl, Brett; Terry, Michael
2004-04-01
Closed-loop mechanical ventilation has the potential to provide more effective ventilatory support to patients with less complexity than conventional ventilation. The purpose of this study was to investigate the effectiveness of an automatic technique for mechanical ventilation. Two closed-loop control systems for mechanical ventilation are combined in this study. In one of the control systems several physiological data are used to automatically adjust the frequency and tidal volume of breaths of a patient. This method, which is patented under US Patent number 4986268, uses the criterion of minimal respiratory work rate to provide the patient with a natural pattern of breathing. The inputs to the system include data representing CO2 and O2 levels of the patient as well as respiratory compliance and airway resistance. The I:E ratio is adjusted on the basis of the respiratory time constant to allow for effective emptying of the lungs in expiration and to avoid intrinsic positive end expiratory pressure (PEEP). This system is combined with another closed-loop control system for automatic adjustment of the inspired fraction of oxygen of the patient. This controller uses the feedback of arterial oxygen saturation of the patient and combines a rapid stepwise control procedure with a proportional-integral-derivative (PID) control algorithm to automatically adjust the oxygen concentration in the patient's inspired gas. The dual closed-loop control system has been examined by using mechanical lung studies, computer simulations and animal experiments. In the mechanical lung studies, the ventilation controller adjusted the breathing frequency and tidal volume in a clinically appropriate manner in response to changes in respiratory mechanics. The results of computer simulations and animal studies under induced disturbances showed that blood gases were returned to the normal physiologic range in less than 25 s by the control system. In the animal experiments understeady-state conditions, the maximum standard deviations of arterial oxygen saturation and the end-tidal partial pressure of CO2 were +/- 1.76% and +/- 1.78 mmHg, respectively. The controller maintained the arterial blood gases within normal limits under steady-state conditions and the transient response of the system was robust under various disturbances. The results of the study have showed that the proposed dual closed-loop technique has effectively controlled mechanical ventilation under different test conditions.
A real-time sub-μrad laser beam tracking system
NASA Astrophysics Data System (ADS)
Buske, Ivo; Schragner, Ralph; Riede, Wolfgang
2007-10-01
We present a rugged and reliable real-time laser beam tracking system operating with a high speed, high resolution piezo-electric tip/tilt mirror. Characteristics of the piezo mirror and position sensor are investigated. An industrial programmable automation controller is used to develop a real-time digital PID controller. The controller provides a one million field programmable gate array (FPGA) to realize a high closed-loop frequency of 50 kHz. Beam tracking with a root-mean-squared accuracy better than 0.15 μrad has been laboratory confirmed. The system is intended as an add-on module for established mechanical mrad tracking systems.
Standing-up exerciser based on functional electrical stimulation and body weight relief.
Ferrarin, M; Pavan, E E; Spadone, R; Cardini, R; Frigo, C
2002-05-01
The goal of the present work was to develop and test an innovative system for the training of paraplegic patients when they are standing up. The system consisted of a computer-controlled stimulator, surface electrodes for quadricep muscle stimulation, two knee angle sensors, a digital proportional-integrative-derivative (PID) controller and a mechanical device to support, partially, the body weight (weight reliever (WR)). A biomechanical model of the combined WR and patient was developed to find an optimum reference trajectory for the PID controller. The system was tested on three paraplegic patients and was shown to be reliable and safe. One patient completed a 30-session training period. Initially he was able to stand up only with 62% body weight relief, whereas, after the training period, he performed a series of 30 standing-up/sitting-down cycles with 45% body weight relief. The closed-loop controller was able to keep the patient standing upright with minimum stimulation current, to compensate automatically for muscle fatigue and to smooth the sitting-down movement. The limitations of the controller in connection with a highly non-linear system are considered.
Mina, Petros; Tsaneva-Atanasova, Krasimira; Bernardo, Mario di
2016-07-15
We extend a spatially explicit agent based model (ABM) developed previously to investigate entrainment and control of the emergent behavior of a population of synchronized oscillating cells in a microfluidic chamber. Unlike most of the work in models of control of cellular systems which focus on temporal changes, we model individual cells with spatial dependencies which may contribute to certain behavioral responses. We use the model to investigate the response of both open loop and closed loop strategies, such as proportional control (P-control), proportional-integral control (PI-control) and proportional-integral-derivative control (PID-control), to heterogeinities and growth in the cell population, variations of the control parameters and spatial effects such as diffusion in the spatially explicit setting of a microfluidic chamber setup. We show that, as expected from the theory of phase locking in dynamical systems, open loop control can only entrain the cell population in a subset of forcing periods, with a wide variety of dynamical behaviors obtained outside these regions of entrainment. Closed-loop control is shown instead to guarantee entrainment in a much wider region of control parameter space although presenting limitations when the population size increases over a certain threshold. In silico tracking experiments are also performed to validate the ability of classical control approaches to achieve other reference behaviors such as a desired constant output or a linearly varying one. All simulations are carried out in BSim, an advanced agent-based simulator of microbial population which is here extended ad hoc to include the effects of control strategies acting onto the population.
Design of an iterative auto-tuning algorithm for a fuzzy PID controller
NASA Astrophysics Data System (ADS)
Saeed, Bakhtiar I.; Mehrdadi, B.
2012-05-01
Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.
GPS Auto-Navigation Design for Unmanned Air Vehicles
NASA Technical Reports Server (NTRS)
Nilsson, Caroline C. A.; Heinzen, Stearns N.; Hall, Charles E., Jr.; Chokani, Ndaona
2003-01-01
A GPS auto-navigation system is designed for Unmanned Air Vehicles. The objective is to enable the air vehicle to be used as a test-bed for novel flow control concepts. The navigation system uses pre-programmed GPS waypoints. The actual GPS position, heading, and velocity are collected by the flight computer, a PC104 system running in Real-Time Linux, and compared with the desired waypoint. The navigator then determines the necessity of a heading correction and outputs the correction in the form of a commanded bank angle, for a level coordinated turn, to the controller system. This controller system consists of 5 controller! (pitch rate PID, yaw damper, bank angle PID, velocity hold, and altitude hold) designed for a closed loop non-linear aircraft model with linear aerodynamic coefficients. The ability and accuracy of using GPS data, is validated by a GPS flight. The autopilots are also validated in flight. The autopilot unit flight validations show that the designed autopilots function as designed. The aircraft model, generated on Matlab SIMULINK is also enhanced by the flight data to accurately represent the actual aircraft.
Event-Based control of depth of hypnosis in anesthesia.
Merigo, Luca; Beschi, Manuel; Padula, Fabrizio; Latronico, Nicola; Paltenghi, Massimiliano; Visioli, Antonio
2017-08-01
In this paper, we propose the use of an event-based control strategy for the closed-loop control of the depth of hypnosis in anesthesia by using propofol administration and the bispectral index as a controlled variable. A new event generator with high noise-filtering properties is employed in addition to a PIDPlus controller. The tuning of the parameters is performed off-line by using genetic algorithms by considering a given data set of patients. The effectiveness and robustness of the method is verified in simulation by implementing a Monte Carlo method to address the intra-patient and inter-patient variability. A comparison with a standard PID control structure shows that the event-based control system achieves a reduction of the total variation of the manipulated variable of 93% in the induction phase and of 95% in the maintenance phase. The use of event based automatic control in anesthesia yields a fast induction phase with bounded overshoot and an acceptable disturbance rejection. A comparison with a standard PID control structure shows that the technique effectively mimics the behavior of the anesthesiologist by providing a significant decrement of the total variation of the manipulated variable. Copyright © 2017 Elsevier B.V. All rights reserved.
Optimizing the feedback control of Galvo scanners for laser manufacturing systems
NASA Astrophysics Data System (ADS)
Mirtchev, Theodore; Weeks, Robert; Minko, Sergey
2010-06-01
This paper summarizes the factors that limit the performance of moving-magnet galvo scanners driven by closed-loop digital servo amplifiers: torsional resonances, drifts, nonlinearities, feedback noise and friction. Then it describes a detailed Simulink® simulator that takes into account these factors and can be used to automatically tune the controller for best results with given galvo type and trajectory patterns. It allows for rapid testing of different control schemes, for instance combined position/velocity PID loops and displays the corresponding output in terms of torque, angular position and feedback sensor signal. The tool is configurable and can either use a dynamical state-space model of galvo's open-loop response, or can import the experimentally measured frequency domain transfer function. Next a drive signal digital pre-filtering technique is discussed. By performing a real-time Fourier analysis of the raw command signal it can be pre-warped to minimize all harmonics around the torsional resonances while boosting other non-resonant high frequencies. The optimized waveform results in much smaller overshoot and better settling time. Similar performance gain cannot be extracted from the servo controller alone.
Explicit analytical tuning rules for digital PID controllers via the magnitude optimum criterion.
Papadopoulos, Konstantinos G; Yadav, Praveen K; Margaris, Nikolaos I
2017-09-01
Analytical tuning rules for digital PID type-I controllers are presented regardless of the process complexity. This explicit solution allows control engineers 1) to make an accurate examination of the effect of the controller's sampling time to the control loop's performance both in the time and frequency domain 2) to decide when the control has to be I, PI and when the derivative, D, term has to be added or omitted 3) apply this control action to a series of stable benchmark processes regardless of their complexity. The former advantages are considered critical in industry applications, since 1) most of the times the choice of the digital controller's sampling time is based on heuristics and past criteria, 2) there is little a-priori knowledge of the controlled process making the choice of the type of the controller a trial and error exercise 3) model parameters change often depending on the control loop's operating point making in this way, the problem of retuning the controller's parameter a much challenging issue. Basis of the proposed control law is the principle of the PID tuning via the Magnitude Optimum criterion. The final control law involves the controller's sampling time T s within the explicit solution of the controller's parameters. Finally, the potential of the proposed method is justified by comparing its performance with the conventional PID tuning when controlling the same process. Further investigation regarding the choice of the controller's sampling time T s is also presented and useful conclusions for control engineers are derived. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Automatic PID Control Loops Design for Performance Improvement of Cryogenic Turboexpander
NASA Astrophysics Data System (ADS)
Joshi, D. M.; Patel, H. K.; Shah, D. K.
2015-04-01
Cryogenics field involves temperature below 123 K which is much less than ambient temperature. In addition, many industrially important physical processes—from fulfilling the needs of National Thermonuclear Fusion programs, superconducting magnets to treatment of cutting tools and preservation of blood cells, require extreme low temperature. The low temperature required for liquefaction of common gases can be obtained by several processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Helium liquefier is used for the liquefaction process of helium gas. In general, the Helium Refrigerator/Liquefier (HRL) needs turboexpander as expansion machine to produce cooling effect which is further used for the production of liquid helium. Turboexpanders, a high speed device that is supported on gas bearings, are the most critical component in many helium refrigeration systems. A very minor fault in the operation and manufacturing or impurities in the helium gas can destroy the turboexpander. However, since the performance of expanders is dependent on a number of operating parameters and the relations between them are quite complex, the instrumentation and control system design for turboexpander needs special attention. The inefficiency of manual control leads to the need of designing automatic control loops for turboexpander. Proper design and implementation of the control loops plays an important role in the successful operation of the cryogenic turboexpander. The PID control loops has to be implemented with accurate interlocks and logic to enhance the performance of the cryogenic turboexpander. For different normal and off-normal operations, speeds will be different and hence a proper control method for critical rotational speed avoidance is must. This paper presents the design of PID control loops needed for the efficient performance of cryogenic turboexpander (Radial Inflow type) to ensure that the control systems meet the technical conditions and constraints more accurately and ensure the equipment safety.
CFAVC scheme for high frequency series resonant inverter-fed domestic induction heating system
NASA Astrophysics Data System (ADS)
Nagarajan, Booma; Reddy Sathi, Rama
2016-01-01
This article presents the investigations on the constant frequency asymmetric voltage cancellation control in the AC-AC resonant converter-fed domestic induction heating system. Conventional fixed frequency control techniques used in the high frequency converters lead to non-zero voltage switching operation and reduced output power. The proposed control technique produces higher output power than the conventional fixed-frequency control strategies. In this control technique, zero-voltage-switching operation is maintained during different duty cycle operation for reduction in the switching losses. Complete analysis of the induction heating power supply system with asymmetric voltage cancellation control is discussed in this article. Simulation and experimental study on constant frequency asymmetric voltage cancellation (CFAVC)-controlled full bridge series resonant inverter is performed. Time domain simulation results for the open and closed loop of the system are obtained using MATLAB simulation tool. The simulation results prove the control of voltage and power in a wide range. PID controller-based closed loop control system achieves the voltage regulation of the proposed system for the step change in load. Hardware implementation of the system under CFAVC control is done using the embedded controller. The simulation and experimental results validate the performance of the CFAVC control technique for series resonant-based induction cooking system.
NASA Astrophysics Data System (ADS)
Nemirsky, Kristofer Kevin
In this thesis, the history and evolution of rotor aircraft with simulated annealing-based PID application were reviewed and quadcopter dynamics are presented. The dynamics of a quadcopter were then modeled, analyzed, and linearized. A cascaded loop architecture with PID controllers was used to stabilize the plant dynamics, which was improved upon through the application of simulated annealing (SA). A Simulink model was developed to test the controllers and verify the functionality of the proposed control system design. In addition, the data that the Simulink model provided were compared with flight data to present the validity of derived dynamics as a proper mathematical model representing the true dynamics of the quadcopter system. Then, the SA-based global optimization procedure was applied to obtain optimized PID parameters. It was observed that the tuned gains through the SA algorithm produced a better performing PID controller than the original manually tuned one. Next, we investigated the uncertain dynamics of the quadcopter setup. After adding uncertainty to the gyroscopic effects associated with pitch-and-roll rate dynamics, the controllers were shown to be robust against the added uncertainty. A discussion follows to summarize SA-based algorithm PID controller design and performance outcomes. Lastly, future work on SA application on multi-input-multi-output (MIMO) systems is briefly discussed.
Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in LiDAR applications
NASA Astrophysics Data System (ADS)
Milanović, Veljko; Kasturi, Abhishek; Yang, James; Hu, Frank
2017-05-01
In 2016, we presented a low SWaP wirelessly controlled MEMS mirror-based LiDAR prototype which utilized an OEM laser rangefinder for distance measurement [1]. The MEMS mirror was run in open loop based on its exceptionally fast design and high repeatability performance. However, to further extend the bandwidth and incorporate necessary eyesafety features, we recently focused on providing mirror position feedback and running the system in closed loop control. Multiple configurations of optical position sensors, mounted on both the front- and the back-side of the MEMS mirror, have been developed and will be presented. In all cases, they include a light source (LED or laser) and a 2D photosensor. The most compact version is mounted on the backside of the MEMS mirror ceramic package and can "view" the mirror's backside through openings in the mirror's PCB and its ceramic carrier. This version increases the overall size of the MEMS mirror submodule from 12mm x 12mm x 4mm to 15mm x 15mm x 7mm. The sensors also include optical and electronic filtering to reduce effects of any interference from the application laser illumination. With relatively simple FPGA-based PID control running at the sample rate of 100 kHz, we could configure the overall response of the system to fully utilize the MEMS mirror's native bandwidth which extends well beyond its first resonance. When compared to the simple open loop method of suppressing overshoot and ringing which significantly limits bandwidth utilization, running the mirrors in closed loop control increased the bandwidth to nearly 3.7 times. A 2.0mm diameter integrated MEMS mirror with a resonant frequency of 1300 Hz was limited to 500Hz bandwidth in open loop driving but was increased to 3kHz bandwidth with the closed loop controller. With that bandwidth it is capable of very sharply defined uniform-velocity scans (sawtooth or triangle waveforms) which are highly desired in scanned mirror LiDAR systems. A 2.4mm diameter mirror with +/-12° of scan angle achieves over 1.3kHz of flat response, allowing sharp triangle waveforms even at 300Hz (600 uniform velocity lines per second). The same methodology is demonstrated with larger, bonded mirrors. Here closed loop control is more challenging due to the additional resonance and a more complex system dynamic. Nevertheless, results are similar - a 5mm diameter mirror bandwidth was increased from 150Hz to 500Hz.
Rule-based navigation control design for autonomous flight
NASA Astrophysics Data System (ADS)
Contreras, Hugo; Bassi, Danilo
2008-04-01
This article depicts a navigation control system design that is based on a set of rules in order to follow a desired trajectory. The full control of the aircraft considered here comprises: a low level stability control loop, based on classic PID controller and the higher level navigation whose main job is to exercise lateral control (course) and altitude control, trying to follow a desired trajectory. The rules and PID gains were adjusted systematically according to the result of flight simulation. In spite of its simplicity, the rule-based navigation control proved to be robust, even with big perturbation, like crossing winds.
Closed Loop Control Compact Exercise Device for Use on MPCV
NASA Technical Reports Server (NTRS)
Sheehan, Chris; Funk, Justin; Funk, Nathan; Kutnick, Gilead; Humphreys, Brad; Bruinsma, Douwe; Perusek, Gail
2016-01-01
Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. To combat spaceflight physiological deconditioning, astronauts will use resistive and aerobic exercise regimens for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the mass and volume available for an exercise device in the next generation of spacecraft is limited. Therefore, compact exercise device prototypes are being developed for human in the loop evaluations. The NASA Human Research Program (HRP) is managing Advanced Exercise Concepts (AEC) requirements development and candidate technology maturation for all exploration mission profiles from Multi-Purpose Crew Vehicle (MPCV) exploration missions (e.g., EM-2, up to 21 day) to Mars Transit (up to 1000 day) missions. Numerous technologies have been considered and evaluated against HRP-approved functional requirements and include flywheel, pneumatic and closed-loop microprocessor-controlled motor driven power plants. Motor driven technologies offer excellent torque density and load accuracy characteristics as well as the ability to create custom mechanical impedance (the dynamic relationship between force and velocity) and custom load versus position exercise algorithms. Further, closed-loop motor-driven technologies offer the ability to monitor exercise dose parameters and adapt to the needs of the crewmember for real time optimization of exercise prescriptions. A simple proportional-integral-derivative (PID) controller is demonstrated in a prototype motor driven exercise device with comparison to resistive static and dynamic load set points and aerobic work rate targets. The resistive load term in the algorithm includes a constant force component (Fcmg) as well as inertial component (Fima) and a discussion of system tuning is presented in terms of addressing key functional requirements and human interfaces. The device aerobic modality is modelled as a rowing exercise using ground data sets obtained from Concept 2 rowers as well as competitive rowing1. A discussion of software and electronic implementations are presented which demonstrate unique approaches to meeting the constrained mass, volume and power requirements of the MPCV. . In addition to utilizing traditional PID control, controllers utilizing state feedback with gains solved using a Linear Quadratic Regulator will be developed. Controllability and observability will be utilized to investigate the need for state measurement in the design. As the control system directly interacts with human test subjects, robust methods such as H-infinity are also being investigated.1. Kleshnev V. Biomechanics. In: Rowing, Handbook of Sports Medicine and Science. ed. by Secher N., Voliantis S. IOC Medical Commission, Blackwell Pub. pp. 22-34, 2007
The hierarchical expert tuning of PID controllers using tools of soft computing.
Karray, F; Gueaieb, W; Al-Sharhan, S
2002-01-01
We present soft computing-based results pertaining to the hierarchical tuning process of PID controllers located within the control loop of a class of nonlinear systems. The results are compared with PID controllers implemented either in a stand alone scheme or as a part of conventional gain scheduling structure. This work is motivated by the increasing need in the industry to design highly reliable and efficient controllers for dealing with regulation and tracking capabilities of complex processes characterized by nonlinearities and possibly time varying parameters. The soft computing-based controllers proposed are hybrid in nature in that they integrate within a well-defined hierarchical structure the benefits of hard algorithmic controllers with those having supervisory capabilities. The controllers proposed also have the distinct features of learning and auto-tuning without the need for tedious and computationally extensive online systems identification schemes.
NASA Astrophysics Data System (ADS)
Pricop, Emil; Zamfir, Florin; Paraschiv, Nicolae
2015-11-01
Process control is a challenging research topic for both academia and industry for a long time. Controllers evolved from the classical SISO approach to modern fuzzy or neuro-fuzzy embedded devices with networking capabilities, however PID algorithms are still used in the most industrial control loops. In this paper, we focus on the implementation of a PID controller using mbed NXP LPC1768 development board. This board integrates a powerful ARM Cortex- M3 core and has networking capabilities. The implemented controller can be remotely operated by using an Internet connection and a standard Web browser. The main advantages of the proposed embedded system are customizability, easy operation and very low power consumption. The experimental results obtained by using a simulated process are analysed and shows that the implementation can be done with success in industrial applications.
Programmable Digital Controller
NASA Technical Reports Server (NTRS)
Wassick, Gregory J.
2012-01-01
An existing three-channel analog servo loop controller has been redesigned for piezoelectric-transducer-based (PZT-based) etalon control applications to a digital servo loop controller. This change offers several improvements over the previous analog controller, including software control over proportional-integral-derivative (PID) parameters, inclusion of other data of interest such as temperature and pressure in the control laws, improved ability to compensate for PZT hysteresis and mechanical mount fluctuations, ability to provide pre-programmed scanning and stepping routines, improved user interface, expanded data acquisition, and reduced size, weight, and power.
NASA Astrophysics Data System (ADS)
Hoyos Velasco, Fredy Edimer; García, Nicolás Toro; Garcés Gómez, Yeison Alberto
In this paper, the output voltage of a buck power converter is controlled by means of a quasi-sliding scheme. The Fixed Point Inducting Control (FPIC) technique is used for the control design, based on the Zero Average Dynamics (ZAD) strategy, including load estimation by means of the Least Mean Squares (LMS) method. The control scheme is tested in a Rapid Control Prototyping (RCP) system based on Digital Signal Processing (DSP) for dSPACE platform. The closed loop system shows adequate performance. The experimental and simulation results match. The main contribution of this paper is to introduce the load estimator by means of LMS, to make ZAD and FPIC control feasible in load variation conditions. In addition, comparison results for controlled buck converter with SMC, PID and ZAD-FPIC control techniques are shown.
NASA Astrophysics Data System (ADS)
Sasano, Koji; Okajima, Hiroshi; Matsunaga, Nobutomo
Recently, the fractional order PID (FO-PID) control, which is the extension of the PID control, has been focused on. Even though the FO-PID requires the high-order filter, it is difficult to realize the high-order filter due to the memory limitation of digital computer. For implementation of FO-PID, approximation of the fractional integrator and differentiator are required. Short memory principle (SMP) is one of the effective approximation methods. However, there is a disadvantage that the approximated filter with SMP cannot eliminate the steady-state error. For this problem, we introduce the distributed implementation of the integrator and the dynamic quantizer to make the efficient use of permissible memory. The objective of this study is to clarify how to implement the accurate FO-PID with limited memories. In this paper, we propose the implementation method of FO-PID with memory constraint using dynamic quantizer. And the trade off between approximation of fractional elements and quantized data size are examined so as to close to the ideal FO-PID responses. The effectiveness of proposed method is evaluated by numerical example and experiment in the temperature control of heat plate.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching this goal.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm approaches. Radiation tolerant FPGA's are a feasible option for reaching this goal.
Closed Brayton cycle power conversion systems for nuclear reactors :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.
2006-04-01
This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors,more » reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at the manufacturers site (Barber-Nichols Inc.) and installed and operated at Sandia. A sufficiently detailed description of the loop is provided in this report along with the design characteristics of the turbo-alternator-compressor set to allow other researchers to compare their results with those measured in the Sandia test-loop. The third task consisted of a validation effort. In this task the test loop was operated and compared with the modeled results to develop a more complete understanding of this electrically heated closed power generation system and to validate the model. The measured and predicted system temperatures and pressures are in good agreement, indicating that the model is a reasonable representation of the test loop. Typical deviations between the model and the hardware results are less than 10%. Additional tests were performed to assess the capability of the Brayton engine to continue to remove decay heat after the reactor/heater is shutdown, to develop safe and effective control strategies, and to access the effectiveness of gas inventory control as an alternative means to provide load following. In one test the heater power was turned off to simulate a rapid reactor shutdown, and the turbomachinery was driven solely by the sensible heat stored in the heater for over 71 minutes without external power input. This is an important safety feature for CBC systems as it means that the closed Brayton loop will keep cooling the reactor without the need for auxiliary power (other than that needed to circulate the waste heat rejection coolant) provided the heat sink is available.« less
Simulation Exercises for an Undergraduate Digital Process Control Course.
ERIC Educational Resources Information Center
Reeves, Deborah E.; Schork, F. Joseph
1988-01-01
Presents six problems from an alternative approach to homework traditionally given to follow-up lectures. Stresses the advantage of longer term exercises which allow for creativity and independence on the part of the student. Problems include: "System Model,""Open-Loop Simulation,""PID Control,""Dahlin…
Chen, Huipeng; Li, Mengyuan; Zhang, Yi; Xie, Huikai; Chen, Chang; Peng, Zhangming; Su, Shaohui
2018-02-08
Incorporating linear-scanning micro-electro-mechanical systems (MEMS) micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS) possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan is a major problem in this application. In this work, an FTS system has been constructed based on a biaxial MEMS micromirror with a large-piston displacement of 180 μm, and a biaxial H∞ robust controller is designed. Compared with open-loop control and proportional-integral-derivative (PID) closed-loop control, H∞ robust control has good stability and robustness. The experimental results show that the stable scanning displacement reaches 110.9 μm under the H∞ robust control, and the tilting angle of the MEMS mirror plate in that full scanning range falls within ±0.0014°. Without control, the FTS system cannot generate meaningful spectra. In contrast, the FTS yields a clean spectrum with a full width at half maximum (FWHM) spectral linewidth of 96 cm -1 under the H∞ robust control. Moreover, the FTS system can maintain good stability and robustness under various driving conditions.
Li, Mengyuan; Zhang, Yi; Chen, Chang; Peng, Zhangming; Su, Shaohui
2018-01-01
Incorporating linear-scanning micro-electro-mechanical systems (MEMS) micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS) possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan is a major problem in this application. In this work, an FTS system has been constructed based on a biaxial MEMS micromirror with a large-piston displacement of 180 μm, and a biaxial H∞ robust controller is designed. Compared with open-loop control and proportional-integral-derivative (PID) closed-loop control, H∞ robust control has good stability and robustness. The experimental results show that the stable scanning displacement reaches 110.9 μm under the H∞ robust control, and the tilting angle of the MEMS mirror plate in that full scanning range falls within ±0.0014°. Without control, the FTS system cannot generate meaningful spectra. In contrast, the FTS yields a clean spectrum with a full width at half maximum (FWHM) spectral linewidth of 96 cm−1 under the H∞ robust control. Moreover, the FTS system can maintain good stability and robustness under various driving conditions. PMID:29419765
PID Controller Settings Based on a Transient Response Experiment
ERIC Educational Resources Information Center
Silva, Carlos M.; Lito, Patricia F.; Neves, Patricia S.; Da Silva, Francisco A.
2008-01-01
An experimental work on controller tuning for chemical engineering undergraduate students is proposed using a small heat exchange unit. Based upon process reaction curves in open-loop configuration, system gain and time constant are determined for first order model with time delay with excellent accuracy. Afterwards students calculate PID…
NASA Astrophysics Data System (ADS)
Rolley, Matthew H.; Sweet, Tracy K. N.; Min, Gao
2017-09-01
This work demonstrates a new technique that capitalizes on the inherent flexibility of the thermoelectric module to provide a multifunctional platform, and exhibits a unique advantage only available within CPV-TE hybrid architectures. This system is the first to use the thermoelectric itself for hot-side temperature feedback to a PID control system, needing no additional thermocouple or thermistor to be attached to the cell - eliminating shading, and complex mechanical designs for mounting. Temperature measurement accuracy and thermoelectric active cooling functionality is preserved. Dynamic "per-cell" condition monitoring and protection is feasible using this technique, with direct cell-specific temperature measurement accurate to 1°C demonstrated over the entire experimental range. The extrapolation accuracy potential of the technique was also evaluated.
NASA Technical Reports Server (NTRS)
Jansen, Mark; Montague, Gerald; Provenza, Andrew; Palazzolo, Alan
2004-01-01
Closed loop operation of a single, high temperature magnetic radial bearing to 30,000 RPM (2.25 million DN) and 540 C (1000 F) is discussed. Also, high temperature, fault tolerant operation for the three axis system is examined. A novel, hydrostatic backup bearing system was employed to attain high speed, high temperature, lubrication free support of the entire rotor system. The hydrostatic bearings were made of a high lubricity material and acted as journal-type backup bearings. New, high temperature displacement sensors were successfully employed to monitor shaft position throughout the entire temperature range and are described in this paper. Control of the system was accomplished through a stand alone, high speed computer controller and it was used to run both the fault-tolerant PID and active vibration control algorithms.
Morozoff, Edmund P; Smyth, John A
2009-01-01
Neonates with under developed lungs often require oxygen therapy. During the course of oxygen therapy, elevated levels of blood oxygenation, hyperoxemia, must be avoided or the risk of chronic lung disease or retinal damage is increased. Low levels of blood oxygen, hypoxemia, may lead to permanent brain tissue damage and, in some cases, mortality. A closed loop controller that automatically administers oxygen therapy using 3 algorithms - state machine, adaptive model, and proportional integral derivative (PID) - is applied to 7 ventilated low birth weight neonates and compared to manual oxygen therapy. All 3 automatic control algorithms demonstrated their ability to improve manual oxygen therapy by increasing periods of normoxemia and reducing the need for manual FiO(2) adjustments. Of the three control algorithms, the adaptive model showed the best performance with 0.25 manual adjustments per hour and 73% time spent within target +/- 3% SpO(2).
Tran, Chung Duc; Ibrahim, Rosdiazli; Asirvadam, Vijanth Sagayan; Saad, Nordin; Sabo Miya, Hassan
2018-04-01
The emergence of wireless technologies such as WirelessHART and ISA100 Wireless for deployment at industrial process plants has urged the need for research and development in wireless control. This is in view of the fact that the recent application is mainly in monitoring domain due to lack of confidence in control aspect. WirelessHART has an edge over its counterpart as it is based on the successful Wired HART protocol with over 30 million devices as of 2009. Recent works on control have primarily focused on maintaining the traditional PID control structure which is proven not adequate for the wireless environment. In contrast, Internal Model Control (IMC), a promising technique for delay compensation, disturbance rejection and setpoint tracking has not been investigated in the context of WirelessHART. Therefore, this paper discusses the control design using IMC approach with a focus on wireless processes. The simulation and experimental results using real-time WirelessHART hardware-in-the-loop simulator (WH-HILS) indicate that the proposed approach is more robust to delay variation of the network than the PID. Copyright © 2017. Published by Elsevier Ltd.
A hybrid intelligent controller for a twin rotor MIMO system and its hardware implementation.
Juang, Jih-Gau; Liu, Wen-Kai; Lin, Ren-Wei
2011-10-01
This paper presents a fuzzy PID control scheme with a real-valued genetic algorithm (RGA) to a setpoint control problem. The objective of this paper is to control a twin rotor MIMO system (TRMS) to move quickly and accurately to the desired attitudes, both the pitch angle and the azimuth angle in a cross-coupled condition. A fuzzy compensator is applied to the PID controller. The proposed control structure includes four PID controllers with independent inputs in 2-DOF. In order to reduce total error and control energy, all parameters of the controller are obtained by a RGA with the system performance index as a fitness function. The system performance index utilized the integral of time multiplied by the square error criterion (ITSE) to build a suitable fitness function in the RGA. A new method for RGA to solve more than 10 parameters in the control scheme is investigated. For real-time control, Xilinx Spartan II SP200 FPGA (Field Programmable Gate Array) is employed to construct a hardware-in-the-loop system through writing VHDL on this FPGA. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Development of Plant Control Diagnosis Technology and Increasing Its Applications
NASA Astrophysics Data System (ADS)
Kugemoto, Hidekazu; Yoshimura, Satoshi; Hashizume, Satoru; Kageyama, Takashi; Yamamoto, Toru
A plant control diagnosis technology was developed to improve the performance of plant-wide control and maintain high productivity of plants. The control performance diagnosis system containing this technology picks out the poor performance loop, analyzes the cause, and outputs the result on the Web page. Meanwhile, the PID tuning tool is used to tune extracted loops from the control performance diagnosis system. It has an advantage of tuning safely without process changes. These systems are powerful tools to do Kaizen (continuous improvement efforts) step by step, coordinating with the operator. This paper describes a practical technique regarding the diagnosis system and its industrial applications.
Photoelectric radar servo control system based on ARM+FPGA
NASA Astrophysics Data System (ADS)
Wu, Kaixuan; Zhang, Yue; Li, Yeqiu; Dai, Qin; Yao, Jun
2016-01-01
In order to get smaller, faster, and more responsive requirements of the photoelectric radar servo control system. We propose a set of core ARM + FPGA architecture servo controller. Parallel processing capability of FPGA to be used for the encoder feedback data, PWM carrier modulation, A, B code decoding processing and so on; Utilizing the advantage of imaging design in ARM Embedded systems achieves high-speed implementation of the PID algorithm. After the actual experiment, the closed-loop speed of response of the system cycles up to 2000 times/s, in the case of excellent precision turntable shaft, using a PID algorithm to achieve the servo position control with the accuracy of + -1 encoder input code. Firstly, This article carry on in-depth study of the embedded servo control system hardware to determine the ARM and FPGA chip as the main chip with systems based on a pre-measured target required to achieve performance requirements, this article based on ARM chip used Samsung S3C2440 chip of ARM7 architecture , the FPGA chip is chosen xilinx's XC3S400 . ARM and FPGA communicate by using SPI bus, the advantage of using SPI bus is saving a lot of pins for easy system upgrades required thereafter. The system gets the speed datas through the photoelectric-encoder that transports the datas to the FPGA, Then the system transmits the datas through the FPGA to ARM, transforms speed datas into the corresponding position and velocity data in a timely manner, prepares the corresponding PWM wave to control motor rotation by making comparison between the position data and the velocity data setted in advance . According to the system requirements to draw the schematics of the photoelectric radar servo control system and PCB board to produce specially. Secondly, using PID algorithm to control the servo system, the datas of speed obtained from photoelectric-encoder is calculated position data and speed data via high-speed digital PID algorithm and coordinate models. Finally, a large number of experiments verify the reliability of embedded servo control system's functions, the stability of the program and the stability of the hardware circuit. Meanwhile, the system can also achieve the satisfactory of user experience, to achieve a multi-mode motion, real-time motion status monitoring, online system parameter changes and other convenient features.
Hysteresis Analysis and Positioning Control for a Magnetic Shape Memory Actuator
Lin, Jhih-Hong; Chiang, Mao-Hsiung
2015-01-01
Magnetic shape memory alloys (MSM alloys), a new kind of smart materials, have become a potential candidate in many engineering fields. MSMs have the advantage of bearing a huge strain, much larger than other materials. In addition, they also have fast response. These characteristics make MSM a good choice in micro engineering. However, MSMs display the obvious hysteresis phenomenon of nonlinear behavior. Thus the difficulty in using the MSM element as a positioning actuator is increased due to the hysteresis. In this paper, the hysteresis phenomenon of the MSM actuator is analyzed, and the closed-loop positioning control is also implemented experimentally. For that, a modified fuzzy sliding mode control (MFSMC) is proposed. The MFSMC and the PID control are used to design the controllers for realizing the positioning control. The experimental results are compared under different experimental conditions, such as different frequency, amplitude, and loading. The experimental results show that the precise positioning control of MFSMC can be achieved satisfactorily. PMID:25853405
An optimal open/closed-loop control method with application to a pre-stressed thin duralumin plate
NASA Astrophysics Data System (ADS)
Nadimpalli, Sruthi Raju
The excessive vibrations of a pre-stressed duralumin plate, suppressed by a combination of open-loop and closed-loop controls, also known as open/closed-loop control, is studied in this thesis. The two primary steps involved in this process are: Step (I) with an assumption that the closed-loop control law is proportional, obtain the optimal open-loop control by direct minimization of the performance measure consisting of energy at terminal time and a penalty on open-loop control force via calculus of variations. If the performance measure also involves a penalty on closed-loop control effort then a Fourier based method is utilized. Step (II) the energy at terminal time is minimized numerically to obtain optimal values of feedback gains. The optimal closed-loop control gains obtained are used to describe the displacement and the velocity of open-loop, closed-loop and open/closed-loop controlled duralumin plate.
Papetti, Michael; Kozlowski, Piotr
2018-04-01
Many aspects of cell physiology, including migration, membrane function, and cell division, are best understood by observing live cell dynamics over time using video microscopy. To probe these phenomena in colon epithelial cells using simple components with a limited budget, we have constructed an inexpensive (<$410) self-contained apparatus, consisting of a closed-loop, feedback-controlled system regulated by a PID (proportional-integrative-derivative) controller contained within a 0.077 m 3 insulated acrylic box. Temperature, humidity, pH, and proliferative capacity of colon epithelial cells in this system mimic those in a standard tissue culture incubator for over four days. Our system offers significant advantages over existing cost-prohibitive commercially available and custom-made devices because of its very low cost, use of PID temperature control, lack of reliance on constant infusion of external humidified, heated air or carbon dioxide, ability to directly measure cell culture medium temperature, and combination of exquisite cellular detail with minimal focus drift under physiological conditions for extended periods of time. Using this apparatus, coupled with an inverted microscope equipped with phase contrast optics and a programmable digital camera, we have observed many events in colon epithelial cells not visible by static imaging, including kinetics of normal and abnormal mitoses, dynamic membrane structures, intracellular vesicle movements, and cell migration. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.
Dong, Zhekang; Duan, Shukai; Hu, Xiaofang; Wang, Lidan; Li, Hai
2014-01-01
In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.
Dong, Zhekang; Duan, Shukai; Hu, Xiaofang; Wang, Lidan
2014-01-01
In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme. PMID:25202723
Neural net controller for inlet pressure control of rocket engine testing
NASA Technical Reports Server (NTRS)
Trevino, Luis C.
1994-01-01
Many dynamic systems operate in select operating regions, each exhibiting characteristic modes of behavior. It is traditional to employ standard adjustable gain proportional-integral-derivative (PID) loops in such systems where no apriori model information is available. However, for controlling inlet pressure for rocket engine testing, problems in fine tuning, disturbance accommodation, and control gains for new profile operating regions (for research and development) are typically encountered. Because of the capability of capturing I/O peculiarities, using NETS, a back propagation trained neural network is specified. For select operating regions, the neural network controller is simulated to be as robust as the PID controller. For a comparative analysis, the higher order moment neural array (HOMNA) method is used to specify a second neural controller by extracting critical exemplars from the I/O data set. Furthermore, using the critical exemplars from the HOMNA method, a third neural controller is developed using NETS back propagation algorithm. All controllers are benchmarked against each other.
An Inverse Neural Controller Based on the Applicability Domain of RBF Network Models
Alexandridis, Alex; Stogiannos, Marios; Papaioannou, Nikolaos; Zois, Elias; Sarimveis, Haralambos
2018-01-01
This paper presents a novel methodology of generic nature for controlling nonlinear systems, using inverse radial basis function neural network models, which may combine diverse data originating from various sources. The algorithm starts by applying the particle swarm optimization-based non-symmetric variant of the fuzzy means (PSO-NSFM) algorithm so that an approximation of the inverse system dynamics is obtained. PSO-NSFM offers models of high accuracy combined with small network structures. Next, the applicability domain concept is suitably tailored and embedded into the proposed control structure in order to ensure that extrapolation is avoided in the controller predictions. Finally, an error correction term, estimating the error produced by the unmodeled dynamics and/or unmeasured external disturbances, is included to the control scheme to increase robustness. The resulting controller guarantees bounded input-bounded state (BIBS) stability for the closed loop system when the open loop system is BIBS stable. The proposed methodology is evaluated on two different control problems, namely, the control of an experimental armature-controlled direct current (DC) motor and the stabilization of a highly nonlinear simulated inverted pendulum. For each one of these problems, appropriate case studies are tested, in which a conventional neural controller employing inverse models and a PID controller are also applied. The results reveal the ability of the proposed control scheme to handle and manipulate diverse data through a data fusion approach and illustrate the superiority of the method in terms of faster and less oscillatory responses. PMID:29361781
NASA Astrophysics Data System (ADS)
Mirzaei, Mahmood; Tibaldi, Carlo; Hansen, Morten H.
2016-09-01
PI/PID controllers are the most common wind turbine controllers. Normally a first tuning is obtained using methods such as pole-placement or Ziegler-Nichols and then extensive aeroelastic simulations are used to obtain the best tuning in terms of regulation of the outputs and reduction of the loads. In the traditional tuning approaches, the properties of different open loop and closed loop transfer functions of the system are not normally considered. In this paper, an assessment of the pole-placement tuning method is presented based on robustness measures. Then a constrained optimization setup is suggested to automatically tune the wind turbine controller subject to robustness constraints. The properties of the system such as the maximum sensitivity and complementary sensitivity functions (Ms and Mt ), along with some of the responses of the system, are used to investigate the controller performance and formulate the optimization problem. The cost function is the integral absolute error (IAE) of the rotational speed from a disturbance modeled as a step in wind speed. Linearized model of the DTU 10-MW reference wind turbine is obtained using HAWCStab2. Thereafter, the model is reduced with model order reduction. The trade-off curves are given to assess the tunings of the poles- placement method and a constrained optimization problem is solved to find the best tuning.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Ormsby, John (Technical Monitor)
2002-01-01
Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing (DSP) functions. Such capability also makes and FPGA a suitable platform for the digital implementation of closed loop controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance in a compact form-factor. Other researchers have presented the notion that a second order digital filter with proportional-integral-derivative (PID) control functionality can be implemented in an FPGA. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSF) devices. Our goal is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. Meeting our goals requires alternative compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching these goals.
Zhang, Xuena; Wu, Anshi; Yao, Shanglong; Xue, Zhanggang; Yue, Yun
2015-01-01
Background The CONCERT-CL closed-loop infusion system designed by VERYARK Technology Co., Ltd. (Guangxi, China) is an innovation using TCI combined with closed-loop controlled intravenous anesthesia under the guide of BIS. In this study we performed a randomized, controlled, multicenter study to compare closed-loop control and open-loop control of propofol by using the CONCERT-CL closed-loop infusion system. Methods 180 surgical patients from three medical centers undergone TCI intravenous anesthesia with propofol and remifentanil were randomly assigned to propofol closed-loop group and propofol opened-loop groups. Primary outcome was global score (GS, GS = (MDAPE+Wobble)/% of time of bispectral index (BIS) 40-60). Secondary outcomes were doses of the anesthetics and emergence time from anesthesia, such as, time to tracheal extubation. Results There were 89 and 86 patients in the closed-loop and opened-loop groups, respectively. GS in the closed-loop groups (22.21±8.50) were lower than that in the opened-loop group (27.19±15.26) (p=0.009). The higher proportion of time of BIS between 40 and 60 was also observed in the closed-loop group (84.11±9.50%), while that was 79.92±13.17% in the opened-loop group, (p=0.016). No significant differences in propofol dose and time of tracheal extubation were observed. The frequency of propofol regulation in the closed-loop group (31.55±9.46 times/hr) was obverse higher than that in the opened-loop group (6.84±6.21 times/hr) (p=0.000). Conclusion The CONCERT-CL closed-loop infusion system can automatically regulate the TCI of propofol, maintain the BIS value in an adequate range and reduce the workload of anesthesiologists better than open-loop system. Trial Registration ChiCTR ChiCTR-OOR-14005551 PMID:25886041
System identification from closed-loop data with known output feedback dynamics
NASA Technical Reports Server (NTRS)
Phan, Minh; Juang, Jer-Nan; Horta, Lucas G.; Longman, Richard W.
1992-01-01
This paper presents a procedure to identify the open loop systems when it is operating under closed loop conditions. First, closed loop excitation data are used to compute the system open loop and closed loop Markov parameters. The Markov parameters, which are the pulse response samples, are then used to compute a state space representation of the open loop system. Two closed loop configurations are considered in this paper. The closed loop system can have either a linear output feedback controller or a dynamic output feedback controller. Numerical examples are provided to illustrate the proposed closed loop identification method.
Slip control design of electric vehicle using indirect Dahlin Adaptive Pid
NASA Astrophysics Data System (ADS)
Fauzi, I. R.; Koko, F.; Kirom, M. R.
2016-11-01
In this paper the problem to be solved is to build a slip control on a wheel that may occur in an electric car wheel. Slip is the difference in vehicle velocity and wheel tangential velocity and to be enlarged when the torque given growing. Slip can be reduced by controlling the torque of the wheel so that the wheel tangential speed does not exceed the vehicle speed. The experiment in this paper is a simulation using MATLAB Simulink and using Adaptive control. The response adaptive PID control more quickly 1.5 s than PID control and can controlled wheel tangential speed close to the vehicle velocity on a dry asphalt, wet asphalt, snow and ice surface sequent at time 2s, 4s, 10s, and 50s. The maximum acceleration of the vehicle (V) on the surface of the dry asphalt, wet asphalt, snow, and ice surface sequent at 8.9 m/s2, 6.2 m/s2, 2.75 m/s2, and 0.34 m/s2.
Inverse heat transfer problem in digital temperature control in plate fin and tube heat exchangers
NASA Astrophysics Data System (ADS)
Taler, Dawid; Sury, Adam
2011-12-01
The aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.
Abdelkarim, Noha; Mohamed, Amr E; El-Garhy, Ahmed M; Dorrah, Hassen T
2016-01-01
The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller.
Mohamed, Amr E.; Dorrah, Hassen T.
2016-01-01
The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller. PMID:27807444
Learning the Art of Electronics
NASA Astrophysics Data System (ADS)
Hayes, Thomas C.; Horowitz, Paul
2016-03-01
1. DC circuits; 2. RC circuits; 3. Diode circuits; 4. Transistors I; 5. Transistors II; 6. Operational amplifiers I; 7. Operational amplifiers II: nice positive feedback; 8. Operational amplifiers III; 9. Operational amplifiers IV: nasty positive feedback; 10. Operational amplifiers V: PID motor control loop; 11. Voltage regulators; 12. MOSFET switches; 13. Group audio project; 14. Logic gates; 15. Logic compilers, sequential circuits, flip-flops; 16. Counters; 17. Memory: state machines; 18. Analog to digital: phase-locked loop; 19. Microcontrollers and microprocessors I: processor/controller; 20. I/O, first assembly language; 21. Bit operations; 22. Interrupt: ADC and DAC; 23. Moving pointers, serial buses; 24. Dallas Standalone Micro, SiLabs SPI RAM; 25. Toys in the attic; Appendices; Index.
Salomir, Rares; Rata, Mihaela; Cadis, Daniela; Petrusca, Lorena; Auboiroux, Vincent; Cotton, François
2009-10-01
Endocavitary high intensity contact ultrasound (HICU) may offer interesting therapeutic potential for fighting localized cancer in esophageal or rectal wall. On-line MR guidance of the thermotherapy permits both excellent targeting of the pathological volume and accurate preoperatory monitoring of the temperature elevation. In this article, the authors address the issue of the automatic temperature control for endocavitary phased-array HICU and propose a tailor-made thermal model for this specific application. The convergence and stability of the feedback loop were investigated against tuning errors in the controller's parameters and against input noise, through ex vivo experimental studies and through numerical simulations in which nonlinear response of tissue was considered as expected in vivo. An MR-compatible, 64-element, cooled-tip, endorectal cylindrical phased-array applicator of contact ultrasound was integrated with fast MR thermometry to provide automatic feedback control of the temperature evolution. An appropriate phase law was applied per set of eight adjacent transducers to generate a quasiplanar wave, or a slightly convergent one (over the circular dimension). A 2D physical model, compatible with on-line numerical implementation, took into account (1) the ultrasound-mediated energy deposition, (2) the heat diffusion in tissue, and (3) the heat sink effect in the tissue adjacent to the tip-cooling balloon. This linear model was coupled to a PID compensation algorithm to obtain a multi-input single-output static-tuning temperature controller. Either the temperature at one static point in space (situated on the symmetry axis of the beam) or the maximum temperature in a user-defined ROI was tracked according to a predefined target curve. The convergence domain in the space of controller's parameters was experimentally explored ex vivo. The behavior of the static-tuning PID controller was numerically simulated based on a discrete-time iterative solution of the bioheat transfer equation in 3D and considering temperature-dependent ultrasound absorption and blood perfusion. The intrinsic accuracy of the implemented controller was approximately 1% in ex vivo trials when providing correct estimates for energy deposition and heat diffusivity. Moreover, the feedback loop demonstrated excellent convergence and stability over a wide range of the controller's parameters, deliberately set to erroneous values. In the extreme case of strong underestimation of the ultrasound energy deposition in tissue, the temperature tracking curve alone, at the initial stage of the MR-controlled HICU treatment, was not a sufficient indicator for a globally stable behavior of the feedback loop. Our simulations predicted that the controller would be able to compensate for tissue perfusion and for temperature-dependent ultrasound absorption, although these effects were not included in the controller's equation. The explicit pattern of acoustic field was not required as input information for the controller, avoiding time-consuming numerical operations. The study demonstrated the potential advantages of PID-based automatic temperature control adapted to phased-array MR-guided HICU therapy. Further studies will address the integration of this ultrasound device with a miniature RF coil for high resolution MRI and, subsequently, the experimental behavior of the controller in vivo.
Quantifying commuter exposures to volatile organic compounds
NASA Astrophysics Data System (ADS)
Kayne, Ashleigh
Motor-vehicles can be a predominant source of air pollution in cities. Traffic-related air pollution is often unavoidable for people who live in populous areas. Commuters may have high exposures to traffic-related air pollution as they are close to vehicle tailpipes. Volatile organic compounds (VOCs) are one class of air pollutants of concern because exposure to VOCs carries risk for adverse health effects. Specific VOCs of interest for this work include benzene, toluene, ethylbenzene, and xylenes (BTEX), which are often found in gasoline and combustion products. Although methods exist to measure time-integrated personal exposures to BTEX, there are few practical methods to measure a commuter's time-resolved BTEX exposure which could identify peak exposures that could be concealed with a time-integrated measurement. This study evaluated the ability of a photoionization detector (PID) to measure commuters' exposure to BTEX using Tenax TA samples as a reference and quantified the difference in BTEX exposure between cyclists and drivers with windows open and closed. To determine the suitability of two measurement methods (PID and Tenax TA) for use in this study, the precision, linearity, and limits of detection (LODs) for both the PID and Tenax TA measurement methods were determined in the laboratory with standard BTEX calibration gases. Volunteers commuted from their homes to their work places by cycling or driving while wearing a personal exposure backpack containing a collocated PID and Tenax TA sampler. Volunteers completed a survey and indicated if the windows in their vehicle were open or closed. Comparing pairs of exposure data from the Tenax TA and PID sampling methods determined the suitability of the PID to measure the BTEX exposures of commuters. The difference between BTEX exposures of cyclists and drivers with windows open and closed in Fort Collins was determined. Both the PID and Tenax TA measurement methods were precise and linear when evaluated in the laboratory using standard BTEX gases. The LODs for the Tenax TA sampling tubes (determined with a sample volume of 1,000 standard cubic centimeters which is close to the approximate commuter sample volumes collected) were orders of magnitude lower (0.04 to 0.7 parts per billion (ppb) for individual compounds of BTEX) compared to the PIDs' LODs (9.3 to 15 ppb of a BTEX mixture), which makes the Tenax TA sampling method more suitable to measure BTEX concentrations in the sub-parts per billion (ppb) range. PID and Tenax TA data for commuter exposures were inversely related. The concentrations of VOCs measured by the PID were substantially higher than BTEX concentrations measured by collocated Tenax TA samplers. The inverse trend and the large difference in magnitude between PID responses and Tenax TA BTEX measurements indicates the two methods may have been measuring different air pollutants that are negatively correlated. Drivers in Fort Collins, Colorado with closed windows experienced greater time-weighted average BTEX exposures than cyclists (p: 0.04). Commuter BTEX exposures measured in Fort Collins were lower than commuter exposures measured in prior studies that occurred in larger cities (Boston and Copenhagen). Although route and intake may affect a commuter's BTEX dose, these variables are outside of the scope of this study. Within the limitations of this study (including: small sample size, small representative area of Fort Collins, and respiration rates not taken into account), it appears health risks associated with traffic-induced BTEX exposures may be reduced by commuting via cycling instead of driving with windows closed and living in a less populous area that has less vehicle traffic. Although the PID did not reliably measure low-level commuter BTEX exposures, the Tenax TA sampling method did. The PID measured BTEX concentrations reliably in a controlled environment, at high concentrations (300-800 ppb), and in the absence of other air pollutants. In environments where there could be multiple chemicals present that may produce a PID signal (such as nitrogen dioxide), Tenax TA samplers may be a better choice for measuring BTEX. Tenax TA measurements were the only suitable method within this study to measure commuter's BTEX exposure in Fort Collins, Colorado.
Zaher, Ashraf A
2008-03-01
The dynamic behavior of a permanent magnet synchronous machine (PMSM) is analyzed. Nominal and special operating conditions are explored to show that the PMSM can experience chaos. A nonlinear controller is introduced to control these unwanted chaotic oscillations and to bring the PMSM to a stable steady state. The designed controller uses a pole-placement approach to force the closed-loop system to follow the performance of a simple first-order linear system with zero steady-state error to a desired set point. The similarity between the mathematical model of the PMSM and the famous chaotic Lorenz system is utilized to design a synchronization-based state observer using only the angular speed for feedback. Simulation results verify the effectiveness of the proposed controller in eliminating the chaotic oscillations while using a single feedback signal. The superiority of the proposed controller is further demonstrated by comparing it with a conventional PID controller. Finally, a laboratory-based experiment was conducted using the MCK2812 C Pro-MS(BL) motion control kit to confirm the theoretical results and to verify both the causality and versatility of the proposed controller.
Improving piezo actuators for nanopositioning tasks
NASA Astrophysics Data System (ADS)
Seeliger, Martin; Gramov, Vassil; Götz, Bernt
2018-02-01
In recent years, numerous applications emerged on the market with seemingly contradicting demands. On one side, the structure size decreased while on the other side, the overall sample size and speed of operation increased. Although the principle usage of piezoelectric positioning solutions has become a standard in the field of micro- and nanopositioning, surface inspection and manipulation, piezosystem jena now enhanced the performance beyond simple control loop tuning and actuator design. In automated manufacturing machines, a given signal has to be tracked fast and precise. However, control systems naturally decrease the ability to follow this signal in real time. piezosystem jena developed a new signal feed forward system bypassing the PID control. This way, we could reduce signal tracking errors by a factor of three compared to a conventionally optimized PID control. Of course, PID-values still have to be adjusted to specific conditions, e.g. changing additional mass, to optimize the performance. This can now be done with a new automatic tuning tool designed to analyze the current setup, find the best fitting configuration, and also gather and display theoretical as well as experimental performance data. Thus, the control quality of a mechanical setup can be improved within a few minutes without the need of external calibration equipment. Furthermore, new mechanical optimization techniques that focus not only on the positioning device, but also take the whole setup into account, prevent parasitic motion down to a few nanometers.
NASA Astrophysics Data System (ADS)
Deshmukh, Prasanna Gajanan; Mandal, Amaresh; Parihar, Padmakar S.; Nayak, Dayananda; Mishra, Deepta Sundar
2018-01-01
Segmented mirror telescopes (SMT) are built using several small hexagonal mirrors positioned and aligned by the three actuators and six edge sensors per segment to maintain the shape of the primary mirror. The actuators are responsible for maintaining and tracking the mirror segments to the desired position, in the presence of external disturbances introduced by wind, vibration, gravity, and temperature. The present paper describes our effort to develop a soft actuator and the actuator controller for prototype SMT at Indian Institute of Astrophysics, Bangalore. The actuator designed, developed, and validated is a soft actuator based on the voice coil motor and flexural elements. It is designed for the range of travel of ±1.5 mm and the force range of 25 N along with an offloading mechanism to reduce the power consumption. A precision controller using a programmable system on chip (PSoC 5Lp) and a customized drive board has also been developed for this actuator. The close loop proportional-integral-derivative (PID) controller implemented in the PSoC gets position feedback from a high-resolution linear optical encoder. The optimum PID gains are derived using relay tuning method. In the laboratory, we have conducted several experiments to test the performance of the prototype soft actuator as well as the controller. We could achieve 5.73- and 10.15-nm RMS position errors in the steady state as well as tracking with a constant speed of 350 nm/s, respectively. We also present the outcome of various performance tests carried out when off-loader is in action as well as the actuator is subjected to dynamic wind loading.
Yu, Zhenpeng; Wang, Jiandong
2016-09-01
This paper assesses the performance of feedforward controllers for disturbance rejection in univariate feedback plus feedforward control loops. The structures of feedback and feedforward controllers are confined to proportional-integral-derivative and static-lead-lag forms, respectively, and the effects of feedback controllers are not considered. The integral squared error (ISE) and total squared variation (TSV) are used as performance metrics. A performance index is formulated by comparing the current ISE and TSV metrics to their own lower bounds as performance benchmarks. A controller performance assessment (CPA) method is proposed to calculate the performance index from measurements. The proposed CPA method resolves two critical limitations in the existing CPA methods, in order to be consistent with industrial scenarios. Numerical and experimental examples illustrate the effectiveness of the obtained results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Y Zhang, S.; Pan, W.; Wei, C. B.; Wu, J. H.
2017-12-01
Helium centrifugal cold compressors are utilized to pump gaseous helium from saturated liquid helium tank to obtain super-fluid helium in cryogenic refrigeration system, which is now being developed at TIPC, CAS. Active magnetic bearing (AMB) is replacing traditional oil-fed bearing as the optimal supporting assembly for cold compressor because of its many advantages: free of contact, high rotation speed, no lubrication and so on. In this paper, five degrees of freedom for AMB are developed for the helium centrifugal cold compressor application. The structure parameters of the axial and radial magnetic bearings as well as hardware and software of the electronic control system is discussed in detail. Based on modal analysis and critical speeds calculation, a control strategy combining PID arithmetic with other phase compensators is proposed. Simulation results demonstrate that the control method not only stables AMB system but also guarantees good performance of closed-loop behaviour. The prior research work offers important base and experience for test and application of AMB experimental platform for system centrifugal cold compressor.
Strain actuated aeroelastic control
NASA Technical Reports Server (NTRS)
Lazarus, Kenneth B.
1992-01-01
Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.
Han, Songshan; Jiao, Zongxia; Yao, Jianyong; Shang, Yaoxing
2014-09-01
An electro-hydraulic load simulator (EHLS) is a typical case of torque systems with strong external disturbances from hydraulic motion systems. A new velocity synchronizing compensation strategy is proposed in this paper to eliminate motion disturbances, based on theoretical and experimental analysis of a structure invariance method and traditional velocity synchronizing compensation controller (TVSM). This strategy only uses the servo-valve's control signal of motion system and torque feedback of torque system, which could avoid the requirement on the velocity and acceleration signal in the structure invariance method, and effectively achieve a more accurate velocity synchronizing compensation in large loading conditions than a TVSM. In order to facilitate the implementation of this strategy in engineering cases, the selection rules for compensation parameters are proposed. It does not rely on any accurate information of structure parameters. This paper presents the comparison data of an EHLS with various typical operating conditions using three controllers, i.e., closed loop proportional integral derivative (PID) controller, TVSM, and the proposed improved velocity synchronizing controller. Experiments are conducted to confirm that the new strategy performs well against motion disturbances. It is more effective to improve the tracking accuracy and is a more appropriate choice for engineering applications.
Low order H∞ optimal control for ACFA blended wing body aircraft
NASA Astrophysics Data System (ADS)
Haniš, T.; Kucera, V.; Hromčík, M.
2013-12-01
Advanced nonconvex nonsmooth optimization techniques for fixed-order H∞ robust control are proposed in this paper for design of flight control systems (FCS) with prescribed structure. Compared to classical techniques - tuning of and successive closures of particular single-input single-output (SISO) loops like dampers, attitude stabilizers, etc. - all loops are designed simultaneously by means of quite intuitive weighting filters selection. In contrast to standard optimization techniques, though (H2, H∞ optimization), the resulting controller respects the prescribed structure in terms of engaged channels and orders (e. g., proportional (P), proportional-integral (PI), and proportional-integralderivative (PID) controllers). In addition, robustness with regard to multimodel uncertainty is also addressed which is of most importance for aerospace applications as well. Such a way, robust controllers for various Mach numbers, altitudes, or mass cases can be obtained directly, based only on particular mathematical models for respective combinations of the §ight parameters.
Iterative LQG Controller Design Through Closed-Loop Identification
NASA Technical Reports Server (NTRS)
Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.
1996-01-01
This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.
Bandwidth controller for phase-locked-loop
NASA Technical Reports Server (NTRS)
Brockman, Milton H. (Inventor)
1992-01-01
A phase locked loop utilizing digital techniques to control the closed loop bandwidth of the RF carrier phase locked loop in a receiver provides high sensitivity and a wide dynamic range for signal reception. After analog to digital conversion, a digital phase locked loop bandwidth controller provides phase error detection with automatic RF carrier closed loop tracking bandwidth control to accommodate several modes of transmission.
Odili, Julius Beneoluchi; Mohmad Kahar, Mohd Nizam; Noraziah, A
2017-01-01
In this paper, an attempt is made to apply the African Buffalo Optimization (ABO) to tune the parameters of a PID controller for an effective Automatic Voltage Regulator (AVR). Existing metaheuristic tuning methods have been proven to be quite successful but there were observable areas that need improvements especially in terms of the system's gain overshoot and steady steady state errors. Using the ABO algorithm where each buffalo location in the herd is a candidate solution to the Proportional-Integral-Derivative parameters was very helpful in addressing these two areas of concern. The encouraging results obtained from the simulation of the PID Controller parameters-tuning using the ABO when compared with the performance of Genetic Algorithm PID (GA-PID), Particle-Swarm Optimization PID (PSO-PID), Ant Colony Optimization PID (ACO-PID), PID, Bacteria-Foraging Optimization PID (BFO-PID) etc makes ABO-PID a good addition to solving PID Controller tuning problems using metaheuristics.
Attitude control compensator for flexible spacecraft
NASA Technical Reports Server (NTRS)
Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)
1991-01-01
An attitude control loop for a spacecraft uses a proportional-integral-derivative (PID) controller for control about an axis. The spacecraft body has at least a primary mechanical resonance. The attitude sensors are collocated, or both on the rigid portion of the spacecraft. The flexure attributable to the resonance may result in instability of the system. A compensator for the control loop has an amplitude response which includes a component which rolls off beginning at frequencies below the resonance, and which also includes a component having a notch at a notch frequency somewhat below the resonant frequency. The phase response of the compensator tends toward zero at low frequencies, and tends toward -180.degree. as frequency increases toward the notch frequency. At frequencies above the notch frequency, the phase decreases from +180.degree., becoming more negative, and tending toward -90.degree. at frequencies far above the resonance frequency. Near the resonance frequency, the compensator phase is near zero.
Tang, Tao; Tian, Jing; Zhong, Daijun; Fu, Chengyu
2016-06-25
A rate feed forward control-based sensor fusion is proposed to improve the closed-loop performance for a charge couple device (CCD) tracking loop. The target trajectory is recovered by combining line of sight (LOS) errors from the CCD and the angular rate from a fiber-optic gyroscope (FOG). A Kalman filter based on the Singer acceleration model utilizes the reconstructive target trajectory to estimate the target velocity. Different from classical feed forward control, additive feedback loops are inevitably added to the original control loops due to the fact some closed-loop information is used. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability. The bandwidth of the Kalman filter is the major factor affecting the control stability and close-loop performance. Both simulations and experiments are provided to demonstrate the benefits of the proposed algorithm.
Closed-Loop Control of Complex Networks: A Trade-Off between Time and Energy
NASA Astrophysics Data System (ADS)
Sun, Yong-Zheng; Leng, Si-Yang; Lai, Ying-Cheng; Grebogi, Celso; Lin, Wei
2017-11-01
Controlling complex nonlinear networks is largely an unsolved problem at the present. Existing works focus either on open-loop control strategies and their energy consumptions or on closed-loop control schemes with an infinite-time duration. We articulate a finite-time, closed-loop controller with an eye toward the physical and mathematical underpinnings of the trade-off between the control time and energy as well as their dependence on the network parameters and structure. The closed-loop controller is tested on a large number of real systems including stem cell differentiation, food webs, random ecosystems, and spiking neuronal networks. Our results represent a step forward in developing a rigorous and general framework to control nonlinear dynamical networks with a complex topology.
Virtual grasping: closed-loop force control using electrotactile feedback.
Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario
2014-01-01
Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.
Low-cost feedback-controlled syringe pressure pumps for microfluidics applications.
Lake, John R; Heyde, Keith C; Ruder, Warren C
2017-01-01
Microfluidics are widely used in research ranging from bioengineering and biomedical disciplines to chemistry and nanotechnology. As such, there are a large number of options for the devices used to drive and control flow through microfluidic channels. Commercially available syringe pumps are probably the most commonly used instruments for this purpose, but are relatively high-cost and have inherent limitations due to their flow profiles when they are run open-loop. Here, we present a low-cost ($110) syringe pressure pump that uses feedback control to regulate the pressure into microfluidic chips. Using an open-source microcontroller board (Arduino), we demonstrate an easily operated and programmable syringe pump that can be run using either a PID or bang-bang control method. Through feedback control of the pressure at the inlets of two microfluidic geometries, we have shown stability of our device to within ±1% of the set point using a PID control method and within ±5% of the set point using a bang-bang control method with response times of less than 1 second. This device offers a low-cost option to drive and control well-regulated pressure-driven flow through microfluidic chips.
Low-cost feedback-controlled syringe pressure pumps for microfluidics applications
Lake, John R.; Heyde, Keith C.
2017-01-01
Microfluidics are widely used in research ranging from bioengineering and biomedical disciplines to chemistry and nanotechnology. As such, there are a large number of options for the devices used to drive and control flow through microfluidic channels. Commercially available syringe pumps are probably the most commonly used instruments for this purpose, but are relatively high-cost and have inherent limitations due to their flow profiles when they are run open-loop. Here, we present a low-cost ($110) syringe pressure pump that uses feedback control to regulate the pressure into microfluidic chips. Using an open-source microcontroller board (Arduino), we demonstrate an easily operated and programmable syringe pump that can be run using either a PID or bang-bang control method. Through feedback control of the pressure at the inlets of two microfluidic geometries, we have shown stability of our device to within ±1% of the set point using a PID control method and within ±5% of the set point using a bang-bang control method with response times of less than 1 second. This device offers a low-cost option to drive and control well-regulated pressure-driven flow through microfluidic chips. PMID:28369134
Rinehart, Joseph; Liu, Ngai; Alexander, Brenton; Cannesson, Maxime
2012-01-01
Closed-loop (automated) controllers are encountered in all aspects of modern life in applications ranging from air-conditioning to spaceflight. Although these systems are virtually ubiquitous, they are infrequently used in anesthesiology because of the complexity of physiologic systems and the difficulty in obtaining reliable and valid feedback data from the patient. Despite these challenges, closed-loop systems are being increasingly studied and improved for medical use. Two recent developments have made fluid administration a candidate for closed-loop control. First, the further description and development of dynamic predictors of fluid responsiveness provides a strong parameter for use as a control variable to guide fluid administration. Second, rapid advances in noninvasive monitoring of cardiac output and other hemodynamic variables make goal-directed therapy applicable for a wide range of patients in a variety of clinical care settings. In this article, we review the history of closed-loop controllers in clinical care, discuss the current understanding and limitations of the dynamic predictors of fluid responsiveness, and examine how these variables might be incorporated into a closed-loop fluid administration system.
Mutation particle swarm optimization of the BP-PID controller for piezoelectric ceramics
NASA Astrophysics Data System (ADS)
Zheng, Huaqing; Jiang, Minlan
2016-01-01
PID control is the most common used method in industrial control because its structure is simple and it is easy to implement. PID controller has good control effect, now it has been widely used. However, PID method has a few limitations. The overshoot of the PID controller is very big. The adjustment time is long. When the parameters of controlled plant are changing over time, the parameters of controller could hardly change automatically to adjust to changing environment. Thus, it can't meet the demand of control quality in the process of controlling piezoelectric ceramic. In order to effectively control the piezoelectric ceramic and improve the control accuracy, this paper replaced the learning algorithm of the BP with the mutation particle swarm optimization algorithm(MPSO) on the process of the parameters setting of BP-PID. That designed a better self-adaptive controller which is combing the BP neural network based on mutation particle swarm optimization with the conventional PID control theory. This combination is called the MPSO-BP-PID. In the mechanism of the MPSO, the mutation operation is carried out with the fitness variance and the global best fitness value as the standard. That can overcome the precocious of the PSO and strengthen its global search ability. As a result, the MPSO-BP-PID can complete controlling the controlled plant with higher speed and accuracy. Therefore, the MPSO-BP-PID is applied to the piezoelectric ceramic. It can effectively overcome the hysteresis, nonlinearity of the piezoelectric ceramic. In the experiment, compared with BP-PID and PSO-BP-PID, it proved that MPSO is effective and the MPSO-BP-PID has stronger adaptability and robustness.
Improved fuzzy PID controller design using predictive functional control structure.
Wang, Yuzhong; Jin, Qibing; Zhang, Ridong
2017-11-01
In conventional PID scheme, the ensemble control performance may be unsatisfactory due to limited degrees of freedom under various kinds of uncertainty. To overcome this disadvantage, a novel PID control method that inherits the advantages of fuzzy PID control and the predictive functional control (PFC) is presented and further verified on the temperature model of a coke furnace. Based on the framework of PFC, the prediction of the future process behavior is first obtained using the current process input signal. Then, the fuzzy PID control based on the multi-step prediction is introduced to acquire the optimal control law. Finally, the case study on a temperature model of a coke furnace shows the effectiveness of the fuzzy PID control scheme when compared with conventional PID control and fuzzy self-adaptive PID control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.
Zhu, Yanhe; Zheng, Tianjiao; Jin, Hongzhe; Yang, Jixing; Zhao, Jie
2015-01-01
Unlike traditional rigid actuators, the significant features of Series Elastic Actuator (SEA) are stable torque control, lower output impedance, impact resistance and energy storage. Recently, SEA has been applied in many exoskeletons. In such applications, a key issue is how to realize the human-exoskeleton movement coordination. In this paper, double closed-loop cascade control for lower limb exoskeleton with SEA is proposed. This control method consists of inner SEA torque loop and outer contact force loop. Utilizing the SEA torque control with a motor velocity loop, actuation performances of SEA are analyzed. An integrated exoskeleton control system is designed, in which joint angles are calculated by internal encoders and resolvers and contact forces are gathered by external pressure sensors. The double closed-loop cascade control model is established based on the feedback signals of internal and external sensor. Movement experiments are accomplished in our prototype of lower limb exoskeleton. Preliminary results indicate the exoskeleton movements with pilot can be realized stably by utilizing this double closed-loop cascade control method. Feasibility of the SEA in our exoskeleton robot and effectiveness of the control method are verified.
Closed-loop analysis and control of a non-inverting buck-boost converter
NASA Astrophysics Data System (ADS)
Chen, Zengshi; Hu, Jiangang; Gao, Wenzhong
2010-11-01
In this article, a cascade controller is designed and analysed for a non-inverting buck-boost converter. The fast inner current loop uses sliding mode control. The slow outer voltage loop uses the proportional-integral (PI) control. Stability analysis and selection of PI gains are based on the nonlinear closed-loop error dynamics incorporating both the inner and outer loop controllers. The closed-loop system is proven to have a nonminimum phase structure. The voltage transient due to step changes of input voltage or resistance is predictable. The operating range of the reference voltage is discussed. The controller is validated by a simulation circuit. The simulation results show that the reference output voltage is well-tracked under system uncertainties or disturbances, confirming the validity of the proposed controller.
Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagome, Sho; Contreras-Vidal, Jose L.
2016-01-01
The control of human bipedal locomotion is of great interest to the field of lower-body brain computer interfaces (BCIs) for rehabilitation of gait. While the feasibility of a closed-loop BCI system for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a virtual reality (BCI-VR) environment has yet to be demonstrated. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control the walking movements of a virtual avatar. Moreover, virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. These findings have implications for the development of BCI-VR systems for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI system. PMID:27713915
Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system.
El-Bardini, Mohammad; El-Nagar, Ahmad M
2014-05-01
In this paper, the interval type-2 fuzzy proportional-integral-derivative controller (IT2F-PID) is proposed for controlling an inverted pendulum on a cart system with an uncertain model. The proposed controller is designed using a new method of type-reduction that we have proposed, which is called the simplified type-reduction method. The proposed IT2F-PID controller is able to handle the effect of structure uncertainties due to the structure of the interval type-2 fuzzy logic system (IT2-FLS). The results of the proposed IT2F-PID controller using a new method of type-reduction are compared with the other proposed IT2F-PID controller using the uncertainty bound method and the type-1 fuzzy PID controller (T1F-PID). The simulation and practical results show that the performance of the proposed controller is significantly improved compared with the T1F-PID controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mukherjee, Bijoy K.; Metia, Santanu
2009-10-01
The paper is divided into three parts. The first part gives a brief introduction to the overall paper, to fractional order PID (PIλDμ) controllers and to Genetic Algorithm (GA). In the second part, first it has been studied how the performance of an integer order PID controller deteriorates when implemented with lossy capacitors in its analog realization. Thereafter it has been shown that the lossy capacitors can be effectively modeled by fractional order terms. Then, a novel GA based method has been proposed to tune the controller parameters such that the original performance is retained even though realized with the same lossy capacitors. Simulation results have been presented to validate the usefulness of the method. Some Ziegler-Nichols type tuning rules for design of fractional order PID controllers have been proposed in the literature [11]. In the third part, a novel GA based method has been proposed which shows how equivalent integer order PID controllers can be obtained which will give performance level similar to those of the fractional order PID controllers thereby removing the complexity involved in the implementation of the latter. It has been shown with extensive simulation results that the equivalent integer order PID controllers more or less retain the robustness and iso-damping properties of the original fractional order PID controllers. Simulation results also show that the equivalent integer order PID controllers are more robust than the normal Ziegler-Nichols tuned PID controllers.
Research of optical coherence tomography microscope based on CCD detector
NASA Astrophysics Data System (ADS)
Zhang, Hua; Xu, Zhongbao; Zhang, Shuomo
2008-12-01
The reference wave phase was modulated with a sinusoidal vibrating mirror attached to a Piezoelectric Transducer (PZT), the integration was performed by a CCD, and the charge storage period of the CCD image sensor was one-quarter period of the sinusoidal phase modulation. With the frequency- synchronous detection technique, four images (four frames of interference pattern) were recorded during one period of the phase modulation. In order to obtain the optimum modulation parameter, the values of amplitude and phase of the sinusoidal phase modulation were determined by considering the measurement error caused by the additive noise contained in the detected values. The PZT oscillation was controlled by a closed loop control system based on PID controller. An ideal discrete digital sine function at 50Hz with adjustable amplitude was used to adjust the vibrating of PZT, and a digital phase shift techniques was used to adjust vibrating phase of PZT so that the phase of the modulation could reach their optimum values. The CCD detector was triggered with software at 200Hz. Based on work above a small coherent signal masked by the preponderant incoherent background with a CCD detector was obtained.
Modelling and study of active vibration control for off-road vehicle
NASA Astrophysics Data System (ADS)
Zhang, Junwei; Chen, Sizhong
2014-05-01
In view of special working characteristics and structure, engineering machineries do not have conventional suspension system typically. Consequently, operators have to endure severe vibrations which are detrimental both to their health and to the productivity of the loader. Based on displacement control, a kind of active damping method is developed for a skid-steer loader. In this paper, the whole hydraulic system for active damping method is modelled which include swash plate dynamics model, proportional valve model, piston accumulator model, pilot-operated check valve model, relief valve model, pump loss model, and cylinder model. A new road excitation model is developed for the skid-steer loader specially. The response of chassis vibration acceleration to road excitation is verified through simulation. The simulation result of passive accumulator damping is compared with measurements and the comparison shows that they are close. Based on this, parallel PID controller and track PID controller with acceleration feedback are brought into the simulation model, and the simulation results are compared with passive accumulator damping. It shows that the active damping methods with PID controllers are better in reducing chassis vibration acceleration and pitch movement. In the end, the test work for active damping method is proposed for the future work.
A control system design approach for flexible spacecraft
NASA Technical Reports Server (NTRS)
Silverberg, L. M.
1985-01-01
A control system design approach for flexible spacecraft is presented. The control system design is carried out in two steps. The first step consists of determining the ideal control system in terms of a desirable dynamic performance. The second step consists of designing a control system using a limited number of actuators that possess a dynamic performance that is close to the ideal dynamic performance. The effects of using a limited number of actuators is that the actual closed-loop eigenvalues differ from the ideal closed-loop eigenvalues. A method is presented to approximate the actual closed-loop eigenvalues so that the calculation of the actual closed-loop eigenvalues can be avoided. Depending on the application, it also may be desirable to apply the control forces as impulses. The effect of digitizing the control to produce the appropriate impulses is also examined.
Control system for 5 MW neutral beam ion source for SST1
NASA Astrophysics Data System (ADS)
Patel, G. B.; Onali, Raja; Sharma, Vivek; Suresh, S.; Tripathi, V.; Bandyopadhyay, M.; Singh, N. P.; Thakkar, Dipal; Gupta, L. N.; Singh, M. J.; Patel, P. J.; Chakraborty, A. K.; Baruah, U. K.; Mattoo, S. K.
2006-01-01
This article describes the control system for a 5MW ion source of the NBI (neutral beam injector) for steady-state superconducting tokamak-1 (SST-1). The system uses both hardware and software solutions. It comprises a DAS (data acquisition system) and a control system. The DAS is used to read the voltage and current signals from eight filament heater power supplies and 24 discharge power supplies. The control system is used to adjust the filament heater current in order to achieve an effective control on the discharge current in the plasma box. The system consists of a VME (Verse Module Eurocard) system and C application program running on a VxWorks™ real-time operating system. A PID (proportional, integral, and differential) algorithm is used to control the filament heater current. Experiments using this system have shown that the discharge current can be controlled within 1% accuracy for a PID loop time of 20ms. Response of the control system to the pressure variation of the gas in the chamber has also been studied and compared with the results obtained from those of an uncontrolled system. The present approach increases the flexibility of the control system. It not only eases the control of the plasma but also allows an easy changeover to various operation scenarios.
Research on Potential Induced Degradation (PID) of PV Modules in Different Typical Climate Regions
NASA Astrophysics Data System (ADS)
Daoren, Gong; Yingnan, Chen; Gang, Sun; Wenjing, Wang; Zhenshuang, Ji
2018-03-01
Potential Induced Degradation (PID) is one of the most important factors effecting the performances of Photovoltaic (PV) modules and PV systems in recent years. In this paper the PID phenomena of the PV power plant in different typical climate regions were studied and some experimental PID simulations were carried out in order to find out the factors effecting the performance by PID. The results show that the typical PID phenomena are easy to occur in cells close to the border of the PV module. PID phenomena can appear in PV power plants under different climate conditions, but the effecting degrees on module performance are different depending on temperature, humidity and other parameters. We also find the maximum power would recover in some degree after positive-bias voltage duration.
The application of neural network PID controller to control the light gasoline etherification
NASA Astrophysics Data System (ADS)
Cheng, Huanxin; Zhang, Yimin; Kong, Lingling; Meng, Xiangyong
2017-06-01
Light gasoline etherification technology can effectively improve the quality of gasoline, which is environmental- friendly and economical. By combining BP neural network and PID control and using BP neural network self-learning ability for online parameter tuning, this method optimizes the parameters of PID controller and applies this to the Fcc gas flow control to achieve the control of the final product- heavy oil concentration. Finally, through MATLAB simulation, it is found that the PID control based on BP neural network has better controlling effect than traditional PID control.
NASA Astrophysics Data System (ADS)
Widge, Alik S.; Moritz, Chet T.
2014-04-01
Objective. There is great interest in closed-loop neurostimulators that sense and respond to a patient's brain state. Such systems may have value for neurological and psychiatric illnesses where symptoms have high intraday variability. Animal models of closed-loop stimulators would aid preclinical testing. We therefore sought to demonstrate that rodents can directly control a closed-loop limbic neurostimulator via a brain-computer interface (BCI). Approach. We trained rats to use an auditory BCI controlled by single units in prefrontal cortex (PFC). The BCI controlled electrical stimulation in the medial forebrain bundle, a limbic structure involved in reward-seeking. Rigorous offline analyses were performed to confirm volitional control of the neurostimulator. Main results. All animals successfully learned to use the BCI and neurostimulator, with closed-loop control of this challenging task demonstrated at 80% of PFC recording locations. Analysis across sessions and animals confirmed statistically robust BCI control and specific, rapid modulation of PFC activity. Significance. Our results provide a preliminary demonstration of a method for emotion-regulating closed-loop neurostimulation. They further suggest that activity in PFC can be used to control a BCI without pre-training on a predicate task. This offers the potential for BCI-based treatments in refractory neurological and mental illness.
Antenna Linear-Quadratic-Gaussian (LQG) Ccontrollers: Properties, Limits of Performance, and Tuning
NASA Technical Reports Server (NTRS)
Gawronski, Wodek K.
2004-01-01
The LQG controllers significantly improve antenna tracking precision, but their tuning is a trial-and-error process. A control engineer has two tools to tune an LQG controller: the choice of coordinate system of the controller, and the selection of weights of the LQG performance index. The paper selects the coordinates of the open-loop model that simplify the shaping of the closed-loop performance. and analyzes the impact of thc weights on the antenna closed-loop bandwidth, disturbance rejection properties, and antenna acceleration. Finally, it presents the LQG controller tuning procedure that rationally shapes the closed-loop performance.
Zhang, Bitao; Pi, YouGuo
2013-07-01
The traditional integer order proportional-integral-differential (IO-PID) controller is sensitive to the parameter variation or/and external load disturbance of permanent magnet synchronous motor (PMSM). And the fractional order proportional-integral-differential (FO-PID) control scheme based on robustness tuning method is proposed to enhance the robustness. But the robustness focuses on the open-loop gain variation of controlled plant. In this paper, an enhanced robust fractional order proportional-plus-integral (ERFOPI) controller based on neural network is proposed. The control law of the ERFOPI controller is acted on a fractional order implement function (FOIF) of tracking error but not tracking error directly, which, according to theory analysis, can enhance the robust performance of system. Tuning rules and approaches, based on phase margin, crossover frequency specification and robustness rejecting gain variation, are introduced to obtain the parameters of ERFOPI controller. And the neural network algorithm is used to adjust the parameter of FOIF. Simulation and experimental results show that the method proposed in this paper not only achieve favorable tracking performance, but also is robust with regard to external load disturbance and parameter variation. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Sensory feedback in prosthetics: a standardized test bench for closed-loop control.
Dosen, Strahinja; Markovic, Marko; Hartmann, Cornelia; Farina, Dario
2015-03-01
Closing the control loop by providing sensory feedback to the user of a prosthesis is an important challenge, with major impact on the future of prosthetics. Developing and comparing closed-loop systems is a difficult task, since there are many different methods and technologies that can be used to implement each component of the system. Here, we present a test bench developed in Matlab Simulink for configuring and testing the closed-loop human control system in standardized settings. The framework comprises a set of connected generic blocks with normalized inputs and outputs, which can be customized by selecting specific implementations from a library of predefined components. The framework is modular and extensible and it can be used to configure, compare and test different closed-loop system prototypes, thereby guiding the development towards an optimal system configuration. The use of the test bench was demonstrated by investigating two important aspects of closed-loop control: performance of different electrotactile feedback interfaces (spatial versus intensity coding) during a pendulum stabilization task and feedforward methods (joystick versus myocontrol) for force control. The first experiment demonstrated that in the case of trained subjects the intensity coding might be superior to spatial coding. In the second experiment, the control of force was rather poor even with a stable and precise control interface (joystick), demonstrating that inherent characteristics of the prosthesis can be an important limiting factor when considering the overall effectiveness of the closed-loop control. The presented test bench is an important instrument for investigating different aspects of human manual control with sensory feedback.
Primary Immunodeficiencies: “New” Disease in an Old Country
Lee, Pamela P W; Lau, Yu-Lung
2009-01-01
Primary immunodeficiency disorders (PIDs) are rare inborn errors of the immune system. Patients with PIDs are unique models that exemplify the functional and phenotypic consequences of various immune defects underlying infections, autoimmunity, lymphoproliferation, allergy and cancer. Over 150 PID syndromes were characterized in the past 60 years, with an ever growing list of new entities being discovered. Because of their rarity, multi-center collaboration for pooled data analysis and molecular studies is important to gain meaningful insights into the phenotypic and genetic diversities of PIDs. In this article, we summarize our research findings on PIDs in Chinese population in the past 20 years. Close collaboration among various immunology centers, cross-referrals and systematic data analysis constitute the foundation for research on PIDs. Future directions include establishment of a national PID registry, raising awareness of PIDs and securing sufficient resources for patient care and scientific research. PMID:20003815
Bidirectional active control of structures with type-2 fuzzy PD and PID
NASA Astrophysics Data System (ADS)
Paul, Satyam; Yu, Wen; Li, Xiaoou
2018-03-01
Proportional-derivative and proportional-integral-derivative (PD/PID) controllers are popular algorithms in structure vibration control. In order to maintain minimum regulation error, the PD/PID control require big proportional and derivative gains. The control performances are not satisfied because of the big uncertainties in the buildings. In this paper, type-2 fuzzy system is applied to compensate the unknown uncertainties, and is combined with the PD/PID control. We prove the stability of these fuzzy PD and PID controllers. The sufficient conditions can be used for choosing the gains of PD/PID. The theory results are verified by a two-storey building prototype. The experimental results validate our analysis.
NASA Astrophysics Data System (ADS)
Qiang, Jiang; Meng-wei, Liao; Ming-jie, Luo
2018-03-01
Abstract.The control performance of Permanent Magnet Synchronous Motor will be affected by the fluctuation or changes of mechanical parameters when PMSM is applied as driving motor in actual electric vehicle,and external disturbance would influence control robustness.To improve control dynamic quality and robustness of PMSM speed control system, a new second order integral sliding mode control algorithm is introduced into PMSM vector control.The simulation results show that, compared with the traditional PID control,the modified control scheme optimized has better control precision and dynamic response ability and perform better with a stronger robustness facing external disturbance,it can effectively solve the traditional sliding mode variable structure control chattering problems as well.
NASA Astrophysics Data System (ADS)
Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo
2011-11-01
The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.
Performance constraints and compensation for teleoperation with delay
NASA Technical Reports Server (NTRS)
Mclaughlin, J. S.; Staunton, B. D.
1989-01-01
A classical control perspective is used to characterize performance constraints and evaluate compensation techniques for teleoperation with delay. Use of control concepts such as open and closed loop performance, stability, and bandwidth yield insight to the delay problem. Teleoperator performance constraints are viewed as an open loop time delay lag and as a delay-induced closed loop bandwidth constraint. These constraints are illustrated with a simple analytical tracking example which is corroborated by a real time, 'man-in-the-loop' tracking experiment. The experiment also provides insight to those controller characteristics which are unique to a human operator. Predictive displays and feedforward commands are shown to provide open loop compensation for delay lag. Low pass filtering of telemetry or feedback signals is interpreted as closed loop compensation used to maintain a sufficiently low bandwidth for stability. A new closed loop compensation approach is proposed that uses a reactive (or force feedback) hand controller to restrict system bandwidth by impeding operator inputs.
Closed Loop Control of Oxygen Delivery and Oxygen Generation
2017-08-01
AFRL-SA-WP-SR-2017-0024 Closed Loop Control of Oxygen Delivery and Oxygen Generation Dr. Jay Johannigman1, Richard Branson1...for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO...TITLE AND SUBTITLE Closed Loop Control of Oxygen Delivery and Oxygen Generation 5a. CONTRACT NUMBER FA8650-10-2-6140 5b. GRANT NUMBER
Beeler, Remo; Schoenenberger, Andreas W; Bauer, Peter; Kobza, Richard; Bergner, Michael; Mueller, Xavier; Schlaepfer, Reinhard; Zuber, Michel; Erne, Susanne; Erne, Paul
2014-03-01
Device-based pacing-induced diaphragmatic stimulation (PIDS) may have therapeutic potential for chronic heart failure (HF) patients. We studied the effects of PIDS on cardiac function and functional outcomes. In 24 chronic HF patients with CRT, an additional electrode was attached to the left diaphragm. Randomized into two groups, patients received the following PIDS modes for 3 weeks in a different sequence: (i) PIDS off (control group); (ii) PIDS 0 ms mode (PIDS simultaneously with ventricular CRT pulse); or (iii) PIDS optimized mode (PIDS with optimized delay to ventricular CRT pulse). For PIDS optimization, acoustic cardiography was used. Effects of each PIDS mode on dyspnoea, power during exercise testing, and LVEF were assessed. Dyspnoea improved with the PIDS 0 ms mode (P = 0.057) and the PIDS optimized mode (P = 0.034) as compared with the control group. Maximal power increased from median 100.5 W in the control group to 104.0 W in the PIDS 0 ms mode (P = 0.092) and 109.5 W in the PIDS optimized mode (P = 0.022). Median LVEF was 33.5% in the control group, 33.0% in the PIDS 0 ms mode, and 37.0% in the PIDS optimized mode (P = 0.763 and P = 0.009 as compared with the control group, respectively). PIDS was asymptomatic in all patients. PIDS improves dyspnoea, working capacity, and LVEF in chronic HF patients over a 3 week period in addition to CRT. This pilot study demonstrates proof of principle of an innovative technology which should be confirmed in a larger sample. NCT00769678. © 2013 The Authors. European Journal of Heart Failure © 2013 European Society of Cardiology.
Longitudinal control of aircraft dynamics based on optimization of PID parameters
NASA Astrophysics Data System (ADS)
Deepa, S. N.; Sudha, G.
2016-03-01
Recent years many flight control systems and industries are employing PID controllers to improve the dynamic behavior of the characteristics. In this paper, PID controller is developed to improve the stability and performance of general aviation aircraft system. Designing the optimum PID controller parameters for a pitch control aircraft is important in expanding the flight safety envelope. Mathematical model is developed to describe the longitudinal pitch control of an aircraft. The PID controller is designed based on the dynamic modeling of an aircraft system. Different tuning methods namely Zeigler-Nichols method (ZN), Modified Zeigler-Nichols method, Tyreus-Luyben tuning, Astrom-Hagglund tuning methods are employed. The time domain specifications of different tuning methods are compared to obtain the optimum parameters value. The results prove that PID controller tuned by Zeigler-Nichols for aircraft pitch control dynamics is better in stability and performance in all conditions. Future research work of obtaining optimum PID controller parameters using artificial intelligence techniques should be carried out.
Model Free iPID Control for Glycemia Regulation of Type-1 Diabetes.
MohammadRidha, Taghreed; Ait-Ahmed, Mourad; Chaillous, Lucy; Krempf, Michel; Guilhem, Isabelle; Poirier, Jean-Yves; Moog, Claude H
2018-01-01
The objective is to design a fully automated glycemia controller of Type-1 Diabetes (T1D) in both fasting and postprandial phases on a large number of virtual patients. A model-free intelligent proportional-integral-derivative (iPID) is used to infuse insulin. The feasibility of iPID is tested in silico on two simulators with and without measurement noise. The first simulator is derived from a long-term linear time-invariant model. The controller is also validated on the UVa/Padova metabolic simulator on 10 adults under 25 runs/subject for noise robustness test. It was shown that without measurement noise, iPID mimicked the normal pancreatic secretion with a relatively fast reaction to meals as compared to a standard PID. With the UVa/Padova simulator, the robustness against CGM noise was tested. A higher percentage of time in target was obtained with iPID as compared to standard PID with reduced time spent in hyperglycemia. Two different T1D simulators tests showed that iPID detects meals and reacts faster to meal perturbations as compared to a classic PID. The intelligent part turns the controller to be more aggressive immediately after meals without neglecting safety. Further research is suggested to improve the computation of the intelligent part of iPID for such systems under actuator constraints. Any improvement can impact the overall performance of the model-free controller. The simple structure iPID is a step for PID-like controllers since it combines the classic PID nice properties with new adaptive features.
Preliminary demonstration of a robust controller design method
NASA Technical Reports Server (NTRS)
Anderson, L. R.
1980-01-01
Alternative computational procedures for obtaining a feedback control law which yields a control signal based on measurable quantitites are evaluated. The three methods evaluated are: (1) the standard linear quadratic regulator design model; (2) minimization of the norm of the feedback matrix, k via nonlinear programming subject to the constraint that the closed loop eigenvalues be in a specified domain in the complex plane; and (3) maximize the angles between the closed loop eigenvectors in combination with minimizing the norm of K also via the constrained nonlinear programming. The third or robust design method was chosen to yield a closed loop system whose eigenvalues are insensitive to small changes in the A and B matrices. The relationship between orthogonality of closed loop eigenvectors and the sensitivity of closed loop eigenvalues is described. Computer programs are described.
Development of an Effective System Identification and Control Capability for Quad-copter UAVs
NASA Astrophysics Data System (ADS)
Wei, Wei
In recent years, with the promise of extensive commercial applications, the popularity of Unmanned Aerial Vehicles (UAVs) has dramatically increased as witnessed by publications and mushrooming research and educational programs. Over the years, multi-copter aircraft have been chosen as a viable configuration for small-scale VTOL UAVs in the form of quad-copters, hexa-copters and octo-copters. Compared to the single main rotor configuration such as the conventional helicopter, multi-copter airframes require a simpler feedback control system and fewer mechanical parts. These characteristics make these UAV platforms, such as quad-copter which is the main emphasis in this dissertation, a rugged and competitive candidate for many applications in both military and civil areas. Because of its configuration and relative size, the small-scale quad-copter UAV system is inherently very unstable. In order to develop an effective control system through simulation techniques, obtaining an accurate dynamic model of a given quad-copter is imperative. Moreover, given the anticipated stringent safety requirements, fault tolerance will be a crucial component of UAV certification. Accurate dynamic modeling and control of this class of UAV is an enabling technology and is imperative for future commercial applications. In this work, the dynamic model of a quad-copter system in hover flight was identified using frequency-domain system identification techniques. A new and unique experimental system, data acquisition and processing procedure was developed catering specifically to the class of electric powered multi-copter UAV systems. The Comprehensive Identification from FrEquency Responses (CIFER RTM) software package, developed by US Army Aviation Development Directorate -- AFDD, was utilized along with flight tests to develop dynamic models of the quad-copter system. A new set of flight tests were conducted and the predictive capability of the dynamic models were successfully validated. A PID controller and two fuzzy logic controllers were developed based on the validated dynamic models. The controller performances were evaluated and compared in both simulation environment and flight testing. Flight controllers were optimized to comply with US Aeronautical Design Standard Performance Specification Handling Quality Requirements for Military Rotorcraft (ADS-33E-PRF). Results showed a substantial improvement for developed controllers when compared to the nominal controllers based on hand tuning. The scope of this research involves experimental system hardware and software development, flight instrumentation, flight testing, dynamics modeling, system identification, dynamic model validation, control system modeling using PID and fuzzy logic, analysis of handling qualities, flight control optimization and validation. Both closed-loop and open-loop dynamics of the quad-copter system were analyzed. A cost-effective and high quality system identification procedure was applied and results proved in simulations as well as in flight tests.
Ruan, Yue; Bally, Lia; Thabit, Hood; Leelarathna, Lalantha; Hartnell, Sara; Tauschmann, Martin; Wilinska, Malgorzata E; Evans, Mark L; Mader, Julia K; Kojzar, Harald; Dellweg, Sibylle; Benesch, Carsten; Arnolds, Sabine; Pieber, Thomas R; Hovorka, Roman
2018-03-25
Glucose excursion was assessed prior to and post hypoglycaemia to increase understanding of hypoglycaemia incidence and recovery during hybrid closed-loop insulin delivery. We retrospectively analysed data from 60 adults with type 1 diabetes who received, in a crossover randomized design, day-and-night hybrid closed-loop insulin delivery and insulin pump therapy, the latter with or without real-time continuous glucose monitoring. Over 4-week study periods, we identified hypoglycaemic episodes, defined as sensor glucose <3.0 mmol/L, and analysed sensor glucose relative to the onset of hypoglycaemia. We identified 377 hypoglycaemic episodes during hybrid closed-loop intervention vs 662 during control intervention (P < .001), with a predominant reduction of nocturnal hypoglycaemia. The slope of sensor glucose prior to hypoglycaemia was steeper during closed-loop intervention than during control intervention (P < .01), while insulin delivery was reduced (P < .01). During both day and night, participants recovered from hypoglycaemia faster when treated by closed-loop intervention. At 120 minutes post hypoglycaemia, sensor glucose levels were higher during closed-loop intervention compared to the control period (P < .05). In conclusion, closed-loop intervention reduces the risk of hypoglycaemia, particularly overnight, with swift recovery from hypoglycaemia leading to higher 2-hour post-hypoglycaemia glucose levels. © 2018 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Collins, J. J.; De Luca, C. J.; Pavlik, A. E.; Roy, S. H.; Emley, M. S.; Young, L. R. (Principal Investigator)
1995-01-01
Stabilogram-diffusion analysis was used to examine how prolonged periods in microgravity affect the open-loop and closed-loop postural control mechanisms. It was hypothesized that following spaceflight: (1) the effective stochastic activity of the open-loop postural control schemes in astronauts is increased; (2) the effective stochastic activity and uncorrelated behavior, respectively, of the closed-loop postural control mechanisms in astronauts are increased; and (3) astronauts utilized open-loop postural controls schemes for shorter time intervals and smaller displacements. Four crew members and two alternates from the 14-day Spacelab Life Sciences 2 Mission were included in the study. Each subject was tested under eyes-open, quiet-standing conditions on multiple preflight and postflight days. The subjects' center-of-pressure trajectories were measured with a force platform and analyzed according to stabilogram-diffusion analysis. It was found that the effective stochastic activity of the open-loop postural control schemes in three of the four crew members was increased following spaceflight. This result is interpreted as an indication that there may be in-flight adaptations to higher-level descending postural control pathways, e.g., a postflight increase in the tonic activation of postural muscles. This change may also be the consequence of a compensatory (e.g., "stiffening") postural control strategy that is adopted by astronauts to account for general feeling of postflight unsteadiness. The crew members, as a group, did not exhibit any consistent preflight/postflight differences in the steady-state behavior of their closed-loop postural control mechanisms or in the functional interaction of their open-loop and closed-loop postural control mechanisms. These results are interpreted as indications that although there may be in-flight adaptations to the vestibular system and/or proprioceptive system, input from the visual system can compensate for such changes during undisturbed stance.
A practical iterative PID tuning method for mechanical systems using parameter chart
NASA Astrophysics Data System (ADS)
Kang, M.; Cheong, J.; Do, H. M.; Son, Y.; Niculescu, S.-I.
2017-10-01
In this paper, we propose a method of iterative proportional-integral-derivative parameter tuning for mechanical systems that possibly possess hidden mechanical resonances, using a parameter chart which visualises the closed-loop characteristics in a 2D parameter space. We employ a hypothetical assumption that the considered mechanical systems have their upper limit of the derivative feedback gain, from which the feasible region in the parameter chart becomes fairly reduced and thus the gain selection can be extremely simplified. Then, a two-directional parameter search is carried out within the feasible region in order to find the best set of parameters. Experimental results show the validity of the assumption used and the proposed parameter tuning method.
Insulin delivery and nocturnal glucose control in children and adolescents with type 1 diabetes.
Tauschmann, Martin; Hovorka, Roman
2017-12-01
Nocturnal glucose control remains challenging in children and adolescents with type 1 diabetes due to highly variable overnight insulin requirements. The issue may be addressed by glucose responsive insulin delivery based on real-time continuous glucose measurements. Areas covered: This review outlines recent developments of glucose responsive insulin delivery systems from a paediatric perspective. We cover threshold-based suspend application, predictive low glucose suspend, and more advanced single hormone and dual-hormone closed-loop systems. Approaches are evaluated in relation to nocturnal glucose control particularly during outpatient randomised controlled trials. Expert opinion: Significant progress translating research from controlled clinical centre settings to free-living unsupervised home studies have been achieved over the past decade. Nocturnal glycaemic control can be improved whilst reducing the risk of hypoglycaemia with closed-loop systems. Following the US regulatory approval of the first hybrid closed-loop system in non-paediatric population, large multinational closed-loop clinical trials and pivotal studies including paediatric populations are underway or in preparation to facilitate the use of closed-loop systems in clinical practice.
Closed-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.
1997-01-01
ABSTRACT Closed-loop HIRF experiments were performed on a fault tolerant flight control computer (FCC) at the NASA Langley Research Center. The FCC used in the experiments was a quad-redundant flight control computer executing B737 Autoland control laws. The FCC was placed in one of the mode-stirred reverberation chambers in the HIRF Laboratory and interfaced to a computer simulation of the B737 flight dynamics, engines, sensors, actuators, and atmosphere in the Closed-Loop Systems Laboratory. Disturbances to the aircraft associated with wind gusts and turbulence were simulated during tests. Electrical isolation between the FCC under test and the simulation computer was achieved via a fiber optic interface for the analog and discrete signals. Closed-loop operation of the FCC enabled flight dynamics and atmospheric disturbances affecting the aircraft to be represented during tests. Upset was induced in the FCC as a result of exposure to HIRF, and the effect of upset on the simulated flight of the aircraft was observed and recorded. This paper presents a description of these closed- loop HIRF experiments, upset data obtained from the FCC during these experiments, and closed-loop effects on the simulated flight of the aircraft.
Closed-loop model identification of cooperative manipulators holding deformable objects
NASA Astrophysics Data System (ADS)
Alkathiri, A. A.; Akmeliawati, R.; Azlan, N. Z.
2017-11-01
This paper presents system identification to obtain the closed-loop models of a couple of cooperative manipulators in a system, which function to hold deformable objects. The system works using the master-slave principle. In other words, one of the manipulators is position-controlled through encoder feedback, while a force sensor gives feedback to the other force-controlled manipulator. Using the closed-loop input and output data, the closed-loop models, which are useful for model-based control design, are estimated. The criteria for model validation are a 95% fit between the measured and simulated output of the estimated models and residual analysis. The results show that for both position and force control respectively, the fits are 95.73% and 95.88%.
An Environmental for Hardware-in-the-Loop Formation Navigation and Control
NASA Technical Reports Server (NTRS)
Burns, Rich; Naasz, Bo; Gaylor, Dave; Higinbotham, John
2004-01-01
Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Test Bed (FFTB) at NASA Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the inclusion of GPS receiver hardware in the simulation loop. Support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented.
2010-02-16
field. Techniques utilizing this design use an open- loop control and no flow monitoring sensors are required. Conversely, reactive (or closed - loop ...and closed (dashed line) configuration. 38 closed configuration described above, the ambiguity in the critical limits of the transition...flow; a new vortex is then shed from the cavity leading edge, closing the feedback loop .[31] Open cavities with an L/D approximately greater than
Kuntanapreeda, S; Fullmer, R R
1996-01-01
A training method for a class of neural network controllers is presented which guarantees closed-loop system stability. The controllers are assumed to be nonlinear, feedforward, sampled-data, full-state regulators implemented as single hidden-layer neural networks. The controlled systems must be locally hermitian and observable. Stability of the closed-loop system is demonstrated by determining a Lyapunov function, which can be used to identify a finite stability region about the regulator point.
Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test
Kopman, Vladislav; Laut, Jeffrey; Polverino, Giovanni; Porfiri, Maurizio
2013-01-01
In this paper, we study the response of zebrafish to a robotic-fish whose morphology and colour pattern are inspired by zebrafish. Experiments are conducted in a three-chambered instrumented water tank where a robotic-fish is juxtaposed with an empty compartment, and the preference of live subjects is scored as the mean time spent in the vicinity of the tank's two lateral sides. The tail-beating of the robotic-fish is controlled in real-time based on feedback from fish motion to explore a spectrum of closed-loop systems, including proportional and integral controllers. Closed-loop control systems are complemented by open-loop strategies, wherein the tail-beat of the robotic-fish is independent of the fish motion. The preference space and the locomotory patterns of fish for each experimental condition are analysed and compared to understand the influence of real-time closed-loop control on zebrafish response. The results of this study show that zebrafish respond differently to the pattern of tail-beating motion executed by the robotic-fish. Specifically, the preference and behaviour of zebrafish depend on whether the robotic-fish tail-beating frequency is controlled as a function of fish motion and how such closed-loop control is implemented. PMID:23152102
NASA Technical Reports Server (NTRS)
Gawronski, W.
2004-01-01
Wind gusts are the main disturbances that depreciate tracking precision of microwave antennas and radiotelescopes. The linear-quadratic-Gaussian (LQG) controllers - as compared with the proportional-and-integral (PI) controllers significantly improve the tracking precision in wind disturbances. However, their properties have not been satisfactorily understood; consequently, their tuning is a trial-and-error process. A control engineer has two tools to tune an LQG controller: the choice of coordinate system of the controller model and the selection of weights of the LQG performance index. This article analyzes properties of an open- and closed-loop antenna. It shows that the proper choice of coordinates of the open-loop model simplifies the shaping of the closed-loop performance. The closed-loop properties are influenced by the LQG weights. The article shows the impact of the weights on the antenna closed-loop bandwidth, disturbance rejection properties, and antenna acceleration. The bandwidth and the disturbance rejection characterize the antenna performance, while the acceleration represents the performance limit set by the antenna hardware (motors). The article presents the controller tuning procedure, based on the coordinate selection and the weight properties. The procedure rationally shapes the closed-loop performance, as an alternative to the trial-and-error approach.
Novel imaging closed loop control strategy for heliostats
NASA Astrophysics Data System (ADS)
Bern, Gregor; Schöttl, Peter; Heimsath, Anna; Nitz, Peter
2017-06-01
Central Receiver Systems use up to thousands of heliostats to concentrate solar radiation. The precise control of heliostat aiming points is crucial not only for efficiency but also for reliable plant operation. Besides the calibration of open loop control systems, closed loop tracking strategies are developed to address a precise and efficient aiming strategy. The need for cost reductions in the heliostat field intensifies the motivation for economic closed loop control systems. This work introduces an approach for a closed loop heliostat tracking strategy using image analysis and signal modulation. The approach aims at the extraction of heliostat focal spot position within the receiver domain by means of a centralized remote vision system decoupled from the rough conditions close to the focal area. Taking an image sequence of the receiver while modulating a signal on different heliostats, their aiming points are retrieved. The work describes the methodology and shows first results from simulations and practical tests performed in small scale, motivating further investigation and deployment.
Robust fast controller design via nonlinear fractional differential equations.
Zhou, Xi; Wei, Yiheng; Liang, Shu; Wang, Yong
2017-07-01
A new method for linear system controller design is proposed whereby the closed-loop system achieves both robustness and fast response. The robustness performance considered here means the damping ratio of closed-loop system can keep its desired value under system parameter perturbation, while the fast response, represented by rise time of system output, can be improved by tuning the controller parameter. We exploit techniques from both the nonlinear systems control and the fractional order systems control to derive a novel nonlinear fractional order controller. For theoretical analysis of the closed-loop system performance, two comparison theorems are developed for a class of fractional differential equations. Moreover, the rise time of the closed-loop system can be estimated, which facilitates our controller design to satisfy the fast response performance and maintain the robustness. Finally, numerical examples are given to illustrate the effectiveness of our methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Development of a smart type motor operated valve for nuclear power plants
NASA Astrophysics Data System (ADS)
Kim, Chang-Hwoi; Park, Joo-Hyun; Lee, Dong-young; Koo, In-Soo
2005-12-01
In this paper, the design concept of the smart type motor operator valve for nuclear power plant was described. The development objective of the smart valve is to achieve superior accuracy, long-term reliability, and ease of use. In this reasons, developed smart valve has fieldbus communication such as deviceNet and Profibus-DP, auto-tuning PID controller, self-diagnostics, and on-line calibration capabilities. And also, to achieve pressure, temperature, and flow control with internal PID controller, the pressure sensor and transmitter were included in this valve. And, temperature and flow signal acquisition port was prepared. The developed smart valve will be performed equipment qualification test such as environment, EMI/EMC, and vibration in Korea Test Lab. And, the valve performance is tested in a test loop which is located in Seoul National University Lab. To apply nuclear power plant, the software is being developed according to software life cycle. The developed software is verified by independent software V and V team. It is expected that the smart valve can be applied to an existing NPPs for replacing or to a new nuclear power plants. The design and fabrication of smart valve is now being processed.
Prediction of Trace Element based Energizing Sensor Control System using PWM
NASA Astrophysics Data System (ADS)
Zukri, Mohammad Nizar Bin Mohamed; Abu Bakar, Elmi Bin; Uchiyama, Naoki; Abdullah, Mohamad Nazir Bin
2018-05-01
A real-time system for field-work monitoring wastewater laden with heavy metal in industrial discharge through wireless communication network was developed. The monitoring system poses an interesting challenge in order to determine existing metal ion in the solution whereas the previous result only consider total dissolve ion. This paper aims to distinguish the metal ion based on reaction determination in solution. The control algorithm was implemented as generating voltage input for energize conductivity sensor since the voltage corresponding to oxidation and reaction based on standard reduction potential. Implementation of ATmega2560 microcontroller for control voltage fed on sensor equivalent to controlling the PWM duty cycle. PID controller was designed uses a microcontroller (Arduino) platform with manual tuning for identify reaction process and sufficient voltage input. From the experimental result, is found that the proposed PI controller has excellent tracking and measurement performance. Low-pass filter was applied in programming to make the system understand that signal has achieved stable. The development of hardware and software of the closed loop system has an enhancement of measurement performance and high feasibility for SME’s company in economic point of view. The desired objective is to achieve a system with the stable measurement and sufficient voltage supply. This system will provide an accurate and precise control efficiently without using costly component and complicated circuit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuyang; Zhang, Qichun; Wang, Hong
To enhance the performance of the tracking property , this paper presents a novel control algorithm for a class of linear dynamic stochastic systems with unmeasurable states, where the performance enhancement loop is established based on Kalman filter. Without changing the existing closed loop with the PI controller, the compensative controller is designed to minimize the variances of the tracking errors using the estimated states and the propagation of state variances. Moreover, the stability of the closed-loop systems has been analyzed in the mean-square sense. A simulated example is included to show the effectiveness of the presented control algorithm, wheremore » encouraging results have been obtained.« less
Research on intelligent algorithm of electro - hydraulic servo control system
NASA Astrophysics Data System (ADS)
Wang, Yannian; Zhao, Yuhui; Liu, Chengtao
2017-09-01
In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.
Shoemaker, Adam; Grange, Robert W.; Abaid, Nicole; Leonessa, Alexander
2017-01-01
Functional Electrical Stimulation is a promising approach to treat patients by stimulating the peripheral nerves and their corresponding motor neurons using electrical current. This technique helps maintain muscle mass and promote blood flow in the absence of a functioning nervous system. The goal of this work is to control muscle contractions from FES via three different algorithms and assess the most appropriate controller providing effective stimulation of the muscle. An open-loop system and a closed-loop system with three types of model-free feedback controllers were assessed for tracking control of skeletal muscle contractions: a Proportional-Integral (PI) controller, a Model Reference Adaptive Control algorithm, and an Adaptive Augmented PI system. Furthermore, a mathematical model of a muscle-mass-spring system was implemented in simulation to test the open-loop case and closed-loop controllers. These simulations were carried out and then validated through experiments ex vivo. The experiments included muscle contractions following four distinct trajectories: a step, sine, ramp, and square wave. Overall, the closed-loop controllers followed the stimulation trajectories set for all the simulated and tested muscles. When comparing the experimental outcomes of each controller, we concluded that the Adaptive Augmented PI algorithm provided the best closed-loop performance for speed of convergence and disturbance rejection. PMID:28273101
Closed Loop System Identification with Genetic Algorithms
NASA Technical Reports Server (NTRS)
Whorton, Mark S.
2004-01-01
High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.
Zhao, Ximei; Ren, Chengyi; Liu, Hao; Li, Haogyi
2014-12-01
Robotic catheter minimally invasive operation requires that the driver control system has the advantages of quick response, strong anti-jamming and real-time tracking of target trajectory. Since the catheter parameters of itself and movement environment and other factors continuously change, when the driver is controlled using traditional proportional-integral-derivative (PID), the controller gain becomes fixed once the PID parameters are set. It can not change with the change of the parameters of the object and environmental disturbance so that its change affects the position tracking accuracy, and may bring a large overshoot endangering patients' vessel. Therefore, this paper adopts fuzzy PID control method to adjust PID gain parameters in the tracking process in order to improve the system anti-interference ability, dynamic performance and tracking accuracy. The simulation results showed that the fuzzy PID control method had a fast tracking performance and a strong robustness. Compared with those of traditional PID control, the feasibility and practicability of fuzzy PID control are verified in a robotic catheter minimally invasive operation.
Design of a self-adaptive fuzzy PID controller for piezoelectric ceramics micro-displacement system
NASA Astrophysics Data System (ADS)
Zhang, Shuang; Zhong, Yuning; Xu, Zhongbao
2008-12-01
In order to improve control precision of the piezoelectric ceramics (PZT) micro-displacement system, a self-adaptive fuzzy Proportional Integration Differential (PID) controller is designed based on the traditional digital PID controller combining with fuzzy control. The arithmetic gives a fuzzy control rule table with the fuzzy control rule and fuzzy reasoning, through this table, the PID parameters can be adjusted online in real time control. Furthermore, the automatic selective control is achieved according to the change of the error. The controller combines the good dynamic capability of the fuzzy control and the high stable precision of the PID control, adopts the method of using fuzzy control and PID control in different segments of time. In the initial and middle stage of the transition process of system, that is, when the error is larger than the value, fuzzy control is used to adjust control variable. It makes full use of the fast response of the fuzzy control. And when the error is smaller than the value, the system is about to be in the steady state, PID control is adopted to eliminate static error. The problems of PZT existing in the field of precise positioning are overcome. The results of the experiments prove that the project is correct and practicable.
NASA Astrophysics Data System (ADS)
Peterson, Zachary W.
Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The inherent safety of hybrid rocket motors offers the potential to greatly reduce overall operating costs. Another key advantage of hybrid rocket motors is the potential for in-flight shutdown, restart, and throttle by controlling the pressure drop between the oxidizer tank and the injector. This research designed, developed, and ground tested a closed-loop throttle controller for a hybrid rocket motor using nitrous oxide and hydroxyl-terminated polybutadiene as propellants. The research simultaneously developed closed-loop throttle algorithms and lab scale motor hardware to evaluate the fidelity of the throttle simulations and algorithms. Initial open-loop motor tests were performed to better classify system parameters and to validate motor performance values. Deep-throttle open-loop tests evaluated limits of stable thrust that can be achieved on the test hardware. Open-loop tests demonstrated the ability to throttle the motor to less than 10% of maximum thrust with little reduction in effective specific impulse and acoustical stability. Following the open-loop development, closed-loop, hardware-in-the-loop tests were performed. The closed-loop controller successfully tracked prescribed step and ramp command profiles with a high degree of fidelity. Steady-state accuracy was greatly improved over uncontrolled thrust.
Lilot, Marc; Bellon, Amandine; Gueugnon, Marine; Laplace, Marie-Christine; Baffeleuf, Bruno; Hacquard, Pauline; Barthomeuf, Felicie; Parent, Camille; Tran, Thomas; Soubirou, Jean-Luc; Robinson, Philip; Bouvet, Lionel; Vassal, Olivia; Lehot, Jean-Jacques; Piriou, Vincent
2018-01-27
An intraoperative automated closed-loop system for goal-directed fluid therapy has been successfully tested in silico, in vivo and in a clinical case-control matching. This trial compared intraoperative cardiac output (CO) in patients managed with this closed-loop system versus usual practice in an academic medical center. The closed-loop system was connected to a CO monitoring system and delivered automated colloid fluid boluses. Moderate to high-risk abdominal surgical patients were randomized either to the closed-loop or the manual group. Intraoperative final CO was the primary endpoint. Secondary endpoints were intraoperative overall mean cardiac index (CI), increase from initial to final CI, intraoperative fluid volume and postoperative outcomes. From January 2014 to November 2015, 46 patients were randomized. There was a lower initial CI (2.06 vs. 2.51 l min -1 m -2 , p = 0.042) in the closed-loop compared to the control group. No difference in final CO and in overall mean intraoperative CI was observed between groups. A significant relative increase from initial to final CI values was observed in the closed-loop but not the control group (+ 28.6%, p = 0.006 vs. + 1.2%, p = 0.843). No difference was found for intraoperative fluid management and postoperative outcomes between groups. There was no significant impact on the primary study endpoint, but this was found in a context of unexpected lower initial CI in the closed-loop group.Trial registry number ID-RCB/EudraCT: 2013-A00770-45. ClinicalTrials.gov Identifier NCT01950845, date of registration: 17 September 2013.
NASA Astrophysics Data System (ADS)
Sun, Yun-Ping; Ju, Jiun-Yan; Liang, Yen-Chu
2008-12-01
Since the unmanned aerial vehicles (UAVs) bring forth many innovative applications in scientific, civilian, and military fields, the development of UAVs is rapidly growing every year. The on-board autopilot that reliably performs attitude and guidance control is a vital part for out-of-sight flights. However, the control law in autopilot is designed according to a simplified plant model in which the dynamics of real hardware are usually not taken into consideration. It is a necessity to develop a test-bed including real servos to make real-time control experiments for prototype autopilots, so called hardware-in-the-loop (HIL) simulation. In this paper on the basis of the graphical application software LabVIEW, the real-time HIL simulation system is realized efficiently by the virtual instrumentation approach. The proportional-integral-derivative (PID) controller in autopilot for the pitch angle control loop is experimentally determined by the classical Ziegler-Nichols tuning rule and exhibits good transient and steady-state response in real-time HIL simulation. From the results the differences between numerical simulation and real-time HIL simulation are also clearly presented. The effectiveness of HIL simulation for UAV autopilot design is definitely confirmed
High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model.
Gu, Guoying; Zhu, Limin
2010-08-01
In this paper, an ellipse-based mathematic model is developed to characterize the rate-dependent hysteresis in piezoelectric actuators. Based on the proposed model, an expanded input space is constructed to describe the multivalued hysteresis function H[u](t) by a multiple input single output (MISO) mapping Gamma:R(2)-->R. Subsequently, the inverse MISO mapping Gamma(-1)(H[u](t),H[u](t);u(t)) is proposed for real-time hysteresis compensation. In controller design, a hybrid control strategy combining a model-based feedforward controller and a proportional integral differential (PID) feedback loop is used for high-accuracy and high-speed tracking control of piezoelectric actuators. The real-time feedforward controller is developed to cancel the rate-dependent hysteresis based on the inverse hysteresis model, while the PID controller is used to compensate for the creep, modeling errors, and parameter uncertainties. Finally, experiments with and without hysteresis compensation are conducted and the experimental results are compared. The experimental results show that the hysteresis compensation in the feedforward path can reduce the hysteresis-caused error by up to 88% and the tracking performance of the hybrid controller is greatly improved in high-speed tracking control applications, e.g., the root-mean-square tracking error is reduced to only 0.34% of the displacement range under the input frequency of 100 Hz.
Method for spinning up a three-axis controlled spacecraft
NASA Technical Reports Server (NTRS)
Vorlicek, Preston L. (Inventor)
1988-01-01
A three-axis controlled spacecraft (1), typically a satellite, is spun up about its roll axis (20) prior to firing a motor (2), i.e., a perigee kick motor, to achieve the requisite degree of angular momentum stiffness. Thrusters (21) for imparting rotation about the roll axis (20) are activated in open-loop fashion, typically at less than full duty cycle. Cross-axis torques induced by this rotational motion are compensated for by means of closed control loops for each of the pitch and yaw axes (30, 40, respectively). Each closed control loop combines a prebias torque (72) with torques (75, 74) representative of position and rate feedback information, respectively. A deadband (52) within each closed control loop can be widened during the spinup, to conserve fuel. Position feedback information (75) in each of the control loops is disabled upon saturation of the gyroscope associated with the roll axis (20).
Telerobotic control of a mobile coordinated robotic server. M.S. Thesis Annual Technical Report
NASA Technical Reports Server (NTRS)
Lee, Gordon
1993-01-01
The annual report on telerobotic control of a mobile coordinated robotic server is presented. The goal of this effort is to develop advanced control methods for flexible space manipulator systems. As such, an adaptive fuzzy logic controller was developed in which model structure as well as parameter constraints are not required for compensation. The work builds upon previous work on fuzzy logic controllers. Fuzzy logic controllers have been growing in importance in the field of automatic feedback control. Hardware controllers using fuzzy logic have become available as an alternative to the traditional PID controllers. Software has also been introduced to aid in the development of fuzzy logic rule-bases. The advantages of using fuzzy logic controllers include the ability to merge the experience and intuition of expert operators into the rule-base and that a model of the system is not required to construct the controller. A drawback of the classical fuzzy logic controller, however, is the many parameters needed to be turned off-line prior to application in the closed-loop. In this report, an adaptive fuzzy logic controller is developed requiring no system model or model structure. The rule-base is defined to approximate a state-feedback controller while a second fuzzy logic algorithm varies, on-line, parameters of the defining controller. Results indicate the approach is viable for on-line adaptive control of systems when the model is too complex or uncertain for application of other more classical control techniques.
Research on fuzzy PID control to electronic speed regulator
NASA Astrophysics Data System (ADS)
Xu, Xiao-gang; Chen, Xue-hui; Zheng, Sheng-guo
2007-12-01
As an important part of diesel engine, the speed regulator plays an important role in stabilizing speed and improving engine's performance. Because there are so many model parameters of diesel-engine considered in traditional PID control and these parameters present non-linear characteristic.The method to adjust engine speed using traditional PID is not considered as a best way. Especially for the diesel-engine generator set. In this paper, the Fuzzy PID control strategy is proposed. Some problems about its utilization in electronic speed regulator are discussed. A mathematical model of electric control system for diesel-engine generator set is established and the way of the PID parameters in the model to affect the function of system is analyzed. And then it is proposed the differential coefficient must be applied in control design for reducing dynamic deviation of system and adjusting time. Based on the control theory, a study combined control with PID calculation together for turning fuzzy PID parameter is implemented. And also a simulation experiment about electronic speed regulator system was conducted using Matlab/Simulink and the Fuzzy-Toolbox. Compared with the traditional PID Algorithm, the simulated results presented obvious improvements in the instantaneous speed governing rate and steady state speed governing rate of diesel-engine generator set when the fuzzy logic control strategy used.
An Environment for Hardware-in-the-Loop Formation Navigation and Control Simulation
NASA Technical Reports Server (NTRS)
Burns, Rich
2004-01-01
Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Testbed (FFTB) at NASA's Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the injection of GPS receiver hardware into the simulation loop, and support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described in detail. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described in detail. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented and results are analyzed.
Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics
NASA Technical Reports Server (NTRS)
Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.
1996-01-01
An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.
DC servomechanism parameter identification: a Closed Loop Input Error approach.
Garrido, Ruben; Miranda, Roger
2012-01-01
This paper presents a Closed Loop Input Error (CLIE) approach for on-line parametric estimation of a continuous-time model of a DC servomechanism functioning in closed loop. A standard Proportional Derivative (PD) position controller stabilizes the loop without requiring knowledge on the servomechanism parameters. The analysis of the identification algorithm takes into account the control law employed for closing the loop. The model contains four parameters that depend on the servo inertia, viscous, and Coulomb friction as well as on a constant disturbance. Lyapunov stability theory permits assessing boundedness of the signals associated to the identification algorithm. Experiments on a laboratory prototype allows evaluating the performance of the approach. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Analysis and design of a 3rd order velocity-controlled closed-loop for MEMS vibratory gyroscopes.
Wu, Huan-ming; Yang, Hai-gang; Yin, Tao; Jiao, Ji-wei
2013-09-18
The time-average method currently available is limited to analyzing the specific performance of the automatic gain control-proportional and integral (AGC-PI) based velocity-controlled closed-loop in a micro-electro-mechanical systems (MEMS) vibratory gyroscope, since it is hard to solve nonlinear functions in the time domain when the control loop reaches to 3rd order. In this paper, we propose a linearization design approach to overcome this limitation by establishing a 3rd order linear model of the control loop and transferring the analysis to the frequency domain. Order reduction is applied on the built linear model's transfer function by constructing a zero-pole doublet, and therefore mathematical expression of each control loop's performance specification is obtained. Then an optimization methodology is summarized, which reveals that a robust, stable and swift control loop can be achieved by carefully selecting the system parameters following a priority order. Closed-loop drive circuits are designed and implemented using 0.35 μm complementary metal oxide semiconductor (CMOS) process, and experiments carried out on a gyroscope prototype verify the optimization methodology that an optimized stability of the control loop can be achieved by constructing the zero-pole doublet, and disturbance rejection capability (D.R.C) of the control loop can be improved by increasing the integral term.
NASA Astrophysics Data System (ADS)
Ma, Zhichao; Hu, Leilei; Zhao, Hongwei; Wu, Boda; Peng, Zhenxing; Zhou, Xiaoqin; Zhang, Hongguo; Zhu, Shuai; Xing, Lifeng; Hu, Huang
2010-08-01
The theories and techniques for improving machining accuracy via position control of diamond tool's tip and raising resolution of cutting depth on precise CNC lathes have been extremely focused on. A new piezo-driven ultra-precision machine tool servo system is designed and tested to improve manufacturing accuracy of workpiece. The mathematical model of machine tool servo system is established and the finite element analysis is carried out on parallel plate flexure hinges. The output position of diamond tool's tip driven by the machine tool servo system is tested via a contact capacitive displacement sensor. Proportional, integral, derivative (PID) feedback is also implemented to accommodate and compensate dynamical change owing cutting forces as well as the inherent non-linearity factors of the piezoelectric stack during cutting process. By closed loop feedback controlling strategy, the tracking error is limited to 0.8 μm. Experimental results have shown the proposed machine tool servo system could provide a tool positioning resolution of 12 nm, which is much accurate than the inherent CNC resolution magnitude. The stepped shaft of aluminum specimen with a step increment of cutting depth of 1 μm is tested, and the obtained contour illustrates the displacement command output from controller is accurately and real-time reflected on the machined part.
Practical Loop-Shaping Design of Feedback Control Systems
NASA Technical Reports Server (NTRS)
Kopasakis, George
2010-01-01
An improved methodology for designing feedback control systems has been developed based on systematically shaping the loop gain of the system to meet performance requirements such as stability margins, disturbance attenuation, and transient response, while taking into account the actuation system limitations such as actuation rates and range. Loop-shaping for controls design is not new, but past techniques do not directly address how to systematically design the controller to maximize its performance. As a result, classical feedback control systems are designed predominantly using ad hoc control design approaches such as proportional integral derivative (PID), normally satisfied when a workable solution is achieved, without a good understanding of how to maximize the effectiveness of the control design in terms of competing performance requirements, in relation to the limitations of the plant design. The conception of this improved methodology was motivated by challenges in designing control systems of the types needed for supersonic propulsion. But the methodology is generally applicable to any classical control-system design where the transfer function of the plant is known or can be evaluated. In the case of a supersonic aerospace vehicle, a major challenge is to design the system to attenuate anticipated external and internal disturbances, using such actuators as fuel injectors and valves, bypass doors, and ramps, all of which are subject to limitations in actuator response, rates, and ranges. Also, for supersonic vehicles, with long slim type of structures, coupling between the engine and the structural dynamics can produce undesirable effects that could adversely affect vehicle stability and ride quality. In order to design distributed controls that can suppress these potential adverse effects, within the full capabilities of the actuation system, it is important to employ a systematic control design methodology such as this that can maximize the effectiveness of the control design in a methodical and quantifiable way. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs. Unlike conventional ad hoc methodologies of feedback control design, in this approach actuator rates are incorporated into the design right from the start: The relation between actuator speeds and the desired control bandwidth of the system is established explicitly. The technique developed is demonstrated via design examples in a step-by-step tutorial way. Given the actuation system rates and range limits together with design specifications in terms of stability margins, disturbance rejection, and transient response, the procedure involves designing the feedback loop gain to meet the requirements and maximizing the control system effectiveness, without exceeding the actuation system limits and saturating the controller. Then knowing the plant transfer function, the procedure involves designing the controller so that the controller transfer function together with the plant transfer function equate to the designed loop gain. The technique also shows what the limitations of the controller design are and how to trade competing design requirements such as stability margins and disturbance rejection. Finally, the technique is contrasted against other more familiar control design techniques, like PID control, to show its advantages.
A novel auto-tuning PID control mechanism for nonlinear systems.
Cetin, Meric; Iplikci, Serdar
2015-09-01
In this paper, a novel Runge-Kutta (RK) discretization-based model-predictive auto-tuning proportional-integral-derivative controller (RK-PID) is introduced for the control of continuous-time nonlinear systems. The parameters of the PID controller are tuned using RK model of the system through prediction error-square minimization where the predicted information of tracking error provides an enhanced tuning of the parameters. Based on the model-predictive control (MPC) approach, the proposed mechanism provides necessary PID parameter adaptations while generating additive correction terms to assist the initially inadequate PID controller. Efficiency of the proposed mechanism has been tested on two experimental real-time systems: an unstable single-input single-output (SISO) nonlinear magnetic-levitation system and a nonlinear multi-input multi-output (MIMO) liquid-level system. RK-PID has been compared to standard PID, standard nonlinear MPC (NMPC), RK-MPC and conventional sliding-mode control (SMC) methods in terms of control performance, robustness, computational complexity and design issue. The proposed mechanism exhibits acceptable tuning and control performance with very small steady-state tracking errors, and provides very short settling time for parameter convergence. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
PSO-based PID Speed Control of Traveling Wave Ultrasonic Motor under Temperature Disturbance
NASA Astrophysics Data System (ADS)
Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Azmi, Nur Iffah Mohamed; Romlay, Fadhlur Rahman Mohd
2018-03-01
Traveling wave ultrasonic motors (TWUSMs) have a time varying dynamics characteristics. Temperature rise in TWUSMs remains a problem particularly in sustaining optimum speed performance. In this study, a PID controller is used to control the speed of TWUSM under temperature disturbance. Prior to developing the controller, a linear approximation model which relates the speed to the temperature is developed based on the experimental data. Two tuning methods are used to determine PID parameters: conventional Ziegler-Nichols(ZN) and particle swarm optimization (PSO). The comparison of speed control performance between PSO-PID and ZN-PID is presented. Modelling, simulation and experimental work is carried out utilizing Fukoku-Shinsei USR60 as the chosen TWUSM. The results of the analyses and experimental work reveal that PID tuning using PSO-based optimization has the advantage over the conventional Ziegler-Nichols method.
Shen, J Y; Ma, Q; Yang, Z B; Gong, J J; Wu, Y S
2017-09-20
Objective: To observe the effects of arnebia root oil on wound healing of rats with full-thickness skin defect, and to explore the related mechanism. Methods: Eighty SD rats were divided into arnebia root oil group and control group according to the random number table, with 40 rats in each group, then full-thickness skin wounds with area of 3 cm×3 cm were inflicted on the back of each rat. Wounds of rats in arnebia root oil group and control group were treated with sterile medical gauze and bandage package infiltrated with arnebia root oil gauze or Vaseline gauze, respectively, with dressing change of once every two days. On post injury day (PID) 3, 7, 14, and 21, 10 rats in each group were sacrificed respectively for general observation and calculation of wound healing rate. The tissue samples of unhealed wound were collected for observation of histomorphological change with HE staining, observation of expressions of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) with immunohistochemical staining, and determination of mRNA expressions of VEGF and bFGF with real time fluorescent quantitive reverse transcription polymerase chain reaction. Data were processed with analysis of variance of factorial design, t test, and Bonferroni correction. Results: (1) On PID 3, there were a few secretions in wounds of rats in the two groups. On PID 7, there were fewer secretions and more granulation tissue in wounds of rats in arnebia root oil group, while there were more secretions and less granulation tissue in wounds of rats in control group. On PID 14, most of the wounds of rats in arnebia root oil group were healed and there was much red granulation tissue in unhealed wounds, while part of wounds of rats in control group was healed and there were a few secretions and less granulation tissue in unhealed wounds. On PID 21, wounds of rats in arnebia root oil group were basically healed, while there were still some unhealed wounds of rats in control group. (2) On PID 3 and 7, the wound healing rates of rats in arnebia root oil group were (39±5)% and (46±4)% respectively, which were close to (34±3)% and (44±4)% of rats in control group (with t values respectively 0.807 and 0.481, P values above 0.05). On PID 14 and 21, the wound healing rates of rats in arnebia root oil group were (76±4)% and (90±3)% respectively, which were significantly higher than (60±6)% and (73±5)% of rats in control group (with t values respectively 2.308 and 3.072, P <0.05 or P <0.01). (3) On PID 3, 7, and 14, granulation tissue, fibroblasts, and nascent capillaries in unhealed wound tissue of rats in the two groups both gradually increased, and more ranulation tissue, fibroblasts, and nascent capillaries were seen in unhealed wound tissue of rats in arnebia root oil group. On PID 21, granulation tissue, fibroblasts, and nascent capillaries in unhealed wound tissue of rats in the two groups both gradually decreased. (4) On PID 3, 7, and 14, the numbers of VEGF positive cells and bFGF positive cells in unhealed wound tissue of rats in the two groups both gradually increased; there were more VEGF positive cells and bFGF positive cells in unhealed wound tissue of rats in arnebia root oil group than those in control group. On PID 21, positive expressions of VEGF and bFGF both decreased in unhealed wound tissue of rats in the two groups. (5) On PID 3, 7, and 14, mRNA expressions of VEGF in unhealed wound tissue of rats in arnebia root oil group were higher than those of control group (with t values from 2.967 to 4.173, P values below 0.01). On PID 21, mRNA expression of VEGF in unhealed wound tissue of rats in arnebia root oil group was lower than that of control group ( t =-4.786, P <0.001). From PID 3 to 21, mRNA expressions of bFGF in unhealed wound tissue of rats in arnebia root oil group were higher than those of control group (with t values from 2.326 to 4.702, P <0.05 or P <0.01). Conclusions: Arnebia root oil can promote wound healing of rats with full-thickness skin defect, which may relate to increasing expressions of VEGF and bFGF.
Design of sewage treatment system by applying fuzzy adaptive PID controller
NASA Astrophysics Data System (ADS)
Jin, Liang-Ping; Li, Hong-Chan
2013-03-01
In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.
Tahoun, A H
2017-01-01
In this paper, the stabilization problem of actuators saturation in uncertain chaotic systems is investigated via an adaptive PID control method. The PID control parameters are auto-tuned adaptively via adaptive control laws. A multi-level augmented error is designed to account for the extra terms appearing due to the use of PID and saturation. The proposed control technique uses both the state-feedback and the output-feedback methodologies. Based on Lyapunov׳s stability theory, new anti-windup adaptive controllers are proposed. Demonstrative examples with MATLAB simulations are studied. The simulation results show the efficiency of the proposed adaptive PID controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Comparative study of a learning fuzzy PID controller and a self-tuning controller.
Kazemian, H B
2001-01-01
The self-organising fuzzy controller is an extension of the rule-based fuzzy controller with an additional learning capability. The self-organising fuzzy (SOF) is used as a master controller to readjust conventional PID gains at the actuator level during the system operation, copying the experience of a human operator. The application of the self-organising fuzzy PID (SOF-PID) controller to a 2-link non-linear revolute-joint robot-arm is studied using path tracking trajectories at the setpoint. For the purpose of comparison, the same experiments are repeated by using the self-tuning controller subject to the same data supplied at the setpoint. For the path tracking experiments, the output trajectories of the SOF-PID controller followed the specified path closer and smoother than the self-tuning controller.
Closed Loop Vibrational Control: Theory and Applications
1993-10-01
the open loop system dynamics will be close to that of Bit. However, in general, in a closed loop system with a specified feedback co-’ - oller , for...Juang, and G. Rodriguez , "Formulations and Applications of Large Structure Actuator and Sensor Placements," Second VPI & SU/AIAA Symposium on Dynamics
Application of digital control techniques for satellite medium power DC-DC converters
NASA Astrophysics Data System (ADS)
Skup, Konrad R.; Grudzinski, Pawel; Nowosielski, Witold; Orleanski, Piotr; Wawrzaszek, Roman
2010-09-01
The objective of this paper is to present a work concerning a digital control loop system for satellite medium power DC-DC converters that is done in Space Research Centre. The whole control process of a described power converter bases on a high speed digital signal processing. The paper presents a development of a FPGA digital controller for voltage mode stabilization that was implemented using VHDL. The described controllers are a classical digital PID controller and a bang-bang controller. The used converter for testing is a simple model of 5-20 W, 200 kHz buck power converter. A high resolution digital PWM approach is presented. Additionally a simple and effective solution of filtering of an analog-to-digital converter output is presented.
Similarity Metrics for Closed Loop Dynamic Systems
NASA Technical Reports Server (NTRS)
Whorton, Mark S.; Yang, Lee C.; Bedrossian, Naz; Hall, Robert A.
2008-01-01
To what extent and in what ways can two closed-loop dynamic systems be said to be "similar?" This question arises in a wide range of dynamic systems modeling and control system design applications. For example, bounds on error models are fundamental to the controller optimization with modern control design methods. Metrics such as the structured singular value are direct measures of the degree to which properties such as stability or performance are maintained in the presence of specified uncertainties or variations in the plant model. Similarly, controls-related areas such as system identification, model reduction, and experimental model validation employ measures of similarity between multiple realizations of a dynamic system. Each area has its tools and approaches, with each tool more or less suited for one application or the other. Similarity in the context of closed-loop model validation via flight test is subtly different from error measures in the typical controls oriented application. Whereas similarity in a robust control context relates to plant variation and the attendant affect on stability and performance, in this context similarity metrics are sought that assess the relevance of a dynamic system test for the purpose of validating the stability and performance of a "similar" dynamic system. Similarity in the context of system identification is much more relevant than are robust control analogies in that errors between one dynamic system (the test article) and another (the nominal "design" model) are sought for the purpose of bounding the validity of a model for control design and analysis. Yet system identification typically involves open-loop plant models which are independent of the control system (with the exception of limited developments in closed-loop system identification which is nonetheless focused on obtaining open-loop plant models from closed-loop data). Moreover the objectives of system identification are not the same as a flight test and hence system identification error metrics are not directly relevant. In applications such as launch vehicles where the open loop plant is unstable it is similarity of the closed-loop system dynamics of a flight test that are relevant.
Instrumentation, control, and automation for submerged anaerobic membrane bioreactors.
Robles, Ángel; Durán, Freddy; Ruano, María Victoria; Ribes, Josep; Rosado, Alfredo; Seco, Aurora; Ferrer, José
2015-01-01
A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on-off and PID algorithms were implemented to control the following operating variables: flow-rates (influent, permeate, sludge recycling and wasting, and recycled biogas through both reactor and membrane tanks), sludge wasting volume, temperature, transmembrane pressure, and gas sparging. The proposed ICA for AnMBRs for urban wastewater treatment enables the optimization of this new technology to be achieved with a high level of process robustness towards disturbances.
Development of closed loop roll control for magnetic balance systems
NASA Technical Reports Server (NTRS)
Covert, E. E.; Haldeman, C. W.; Ramohalli, G.; Way, P.
1982-01-01
This research was undertaken with the goal of demonstrating closed loop control of the roll degree of freedom on the NASA prototype magnetic suspension and balance system at the MIT Aerophysics Laboratory, thus, showing feasibility for a roll control system for any large magnetic balance system which might be built in the future. During the research under this grant, study was directed toward the several areas of torque generation, position sensing, model construction and control system design. These effects were then integrated to produce successful closed loop operation of the analogue roll control system. This experience indicated the desirability of microprocessor control for the angular degrees of freedom.
On the feasibility of closed-loop control of intra-aortic balloon pumping
NASA Technical Reports Server (NTRS)
Clark, J. W., Jr.; Bourland, H. M.; Kane, G. R.
1973-01-01
A closed-loop control scheme for the control of intra-aortic balloon pumping has been developed and tested in dog experiments. A performance index reflecting the general objectives of balloon-assist pumping is developed and a modified steepest ascent control algorithm is utilized for the selection of a proper operating point for the balloon during its pumping cycle. This paper attempts to indicate the feasibility of closed-loop control of balloon pumping, and particularly its flexibility in achieving both diastolic augmentation of mean aortic pressure and control of the level of end-diastolic pressure (EDP) an important factor in reducing heart work.
Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes
NASA Technical Reports Server (NTRS)
Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Martin, Richard E. (Inventor); Hafley, Robert A. (Inventor)
2013-01-01
A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.
Optimal fault-tolerant control strategy of a solid oxide fuel cell system
NASA Astrophysics Data System (ADS)
Wu, Xiaojuan; Gao, Danhui
2017-10-01
For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.
Liu, Hui; Li, Yingzi; Zhang, Yingxu; Chen, Yifu; Song, Zihang; Wang, Zhenyu; Zhang, Suoxin; Qian, Jianqiang
2018-01-01
Proportional-integral-derivative (PID) parameters play a vital role in the imaging process of an atomic force microscope (AFM). Traditional parameter tuning methods require a lot of manpower and it is difficult to set PID parameters in unattended working environments. In this manuscript, an intelligent tuning method of PID parameters based on iterative learning control is proposed to self-adjust PID parameters of the AFM according to the sample topography. This method gets enough information about the output signals of PID controller and tracking error, which will be used to calculate the proper PID parameters, by repeated line scanning until convergence before normal scanning to learn the topography. Subsequently, the appropriate PID parameters are obtained by fitting method and then applied to the normal scanning process. The feasibility of the method is demonstrated by the convergence analysis. Simulations and experimental results indicate that the proposed method can intelligently tune PID parameters of the AFM for imaging different topographies and thus achieve good tracking performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Closed-Loop and Activity-Guided Optogenetic Control
Grosenick, Logan; Marshel, James H.; Deisseroth, Karl
2016-01-01
Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals. PMID:25856490
Automatic control of finite element models for temperature-controlled radiofrequency ablation.
Haemmerich, Dieter; Webster, John G
2005-07-14
The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100 degrees C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input.
Prakash, J; Srinivasan, K
2009-07-01
In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.
Adaptive hybrid control of manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
Simple methods for the design of adaptive force and position controllers for robot manipulators within the hybrid control architecuture is presented. The force controller is composed of an adaptive PID feedback controller, an auxiliary signal and a force feedforward term, and it achieves tracking of desired force setpoints in the constraint directions. The position controller consists of adaptive feedback and feedforward controllers and an auxiliary signal, and it accomplishes tracking of desired position trajectories in the free directions. The controllers are capable of compensating for dynamic cross-couplings that exist between the position and force control loops in the hybrid control architecture. The adaptive controllers do not require knowledge of the complex dynamic model or parameter values of the manipulator or the environment. The proposed control schemes are computationally fast and suitable for implementation in on-line control with high sampling rates.
Fault tolerant control of multivariable processes using auto-tuning PID controller.
Yu, Ding-Li; Chang, T K; Yu, Ding-Wen
2005-02-01
Fault tolerant control of dynamic processes is investigated in this paper using an auto-tuning PID controller. A fault tolerant control scheme is proposed composing an auto-tuning PID controller based on an adaptive neural network model. The model is trained online using the extended Kalman filter (EKF) algorithm to learn system post-fault dynamics. Based on this model, the PID controller adjusts its parameters to compensate the effects of the faults, so that the control performance is recovered from degradation. The auto-tuning algorithm for the PID controller is derived with the Lyapunov method and therefore, the model predicted tracking error is guaranteed to converge asymptotically. The method is applied to a simulated two-input two-output continuous stirred tank reactor (CSTR) with various faults, which demonstrate the applicability of the developed scheme to industrial processes.
Research on Environmental Adjustment of Cloud Ranch Based on BP Neural Network PID Control
NASA Astrophysics Data System (ADS)
Ren, Jinzhi; Xiang, Wei; Zhao, Lin; Wu, Jianbo; Huang, Lianzhen; Tu, Qinggang; Zhao, Heming
2018-01-01
In order to make the intelligent ranch management mode replace the traditional artificial one gradually, this paper proposes a pasture environment control system based on cloud server, and puts forward the PID control algorithm based on BP neural network to control temperature and humidity better in the pasture environment. First, to model the temperature and humidity (controlled object) of the pasture, we can get the transfer function. Then the traditional PID control algorithm and the PID one based on BP neural network are applied to the transfer function. The obtained step tracking curves can be seen that the PID controller based on BP neural network has obvious superiority in adjusting time and error, etc. This algorithm, calculating reasonable control parameters of the temperature and humidity to control environment, can be better used in the cloud service platform.
Open-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer
NASA Technical Reports Server (NTRS)
Koppen, Daniel M.
1997-01-01
During the third quarter of 1996, the Closed-Loop Systems Laboratory was established at the NASA Langley Research Center (LaRC) to study the effects of High Intensity Radiated Fields on complex avionic systems and control system components. This new facility provided a link and expanded upon the existing capabilities of the High Intensity Radiated Fields Laboratory at LaRC that were constructed and certified during 1995-96. The scope of the Closed-Loop Systems Laboratory is to place highly integrated avionics instrumentation into a high intensity radiated field environment, interface the avionics to a real-time flight simulation that incorporates aircraft dynamics, engines, sensors, actuators and atmospheric turbulence, and collect, analyze, and model aircraft performance. This paper describes the layout and functionality of the Closed-Loop Systems Laboratory, and the open-loop calibration experiments that led up to the commencement of closed-loop real-time flight experiments.
Asgharnia, Amirhossein; Shahnazi, Reza; Jamali, Ali
2018-05-11
The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P
2016-05-01
Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems.
Felt, Wyatt; Chin, Khai Yi; Remy, C David
2017-09-01
This article experimentally investigates the potential of using flexible, inductance-based contraction sensors in the closed-loop motion control of soft robots. Accurate motion control remains a highly challenging task for soft robotic systems. Precise models of the actuation dynamics and environmental interactions are often unavailable. This renders open-loop control impossible, while closed-loop control suffers from a lack of suitable feedback. Conventional motion sensors, such as linear or rotary encoders, are difficult to adapt to robots that lack discrete mechanical joints. The rigid nature of these sensors runs contrary to the aspirational benefits of soft systems. As truly soft sensor solutions are still in their infancy, motion control of soft robots has so far relied on laboratory-based sensing systems such as motion capture, electromagnetic (EM) tracking, or Fiber Bragg Gratings. In this article, we used embedded flexible sensors known as Smart Braids to sense the contraction of McKibben muscles through changes in inductance. We evaluated closed-loop control on two systems: a revolute joint and a planar, one degree of freedom continuum manipulator. In the revolute joint, our proposed controller compensated for elasticity in the actuator connections. The Smart Braid feedback allowed motion control with a steady-state root-mean-square (RMS) error of [1.5]°. In the continuum manipulator, Smart Braid feedback enabled tracking of the desired tip angle with a steady-state RMS error of [1.25]°. This work demonstrates that Smart Braid sensors can provide accurate position feedback in closed-loop motion control suitable for field applications of soft robotic systems.
Moore, J H
1995-06-01
A genetic algorithm for instrumentation control and optimization was developed using the LabVIEW graphical programming environment. The usefulness of this methodology for the optimization of a closed loop control instrument is demonstrated with minimal complexity and the programming is presented in detail to facilitate its adaptation to other LabVIEW applications. Closed loop control instruments have variety of applications in the biomedical sciences including the regulation of physiological processes such as blood pressure. The program presented here should provide a useful starting point for those wishing to incorporate genetic algorithm approaches to LabVIEW mediated optimization of closed loop control instruments.
NASA Astrophysics Data System (ADS)
Chuthai, T.; Cole, M. O. T.; Wongratanaphisan, T.; Puangmali, P.
2018-01-01
This paper describes a high-precision motion control implementation for a flexure-jointed micromanipulator. A desktop experimental motion platform has been created based on a 3RUU parallel kinematic mechanism, driven by rotary voice coil actuators. The three arms supporting the platform have rigid links with compact flexure joints as integrated parts and are made by single-process 3D printing. The mechanism overall size is approximately 250x250x100 mm. The workspace is relatively large for a flexure-jointed mechanism, being approximately 20x20x6 mm. A servo-control implementation based on pseudo-rigid-body models (PRBM) of kinematic behavior combined with nonlinear-PID control has been developed. This is shown to achieve fast response with good noise-rejection and platform stability. However, large errors in absolute positioning occur due to deficiencies in the PRBM kinematics, which cannot accurately capture flexure compliance behavior. To overcome this problem, visual servoing is employed, where a digital microscopy system is used to directly measure the platform position by image processing. By adopting nonlinear PID feedback of measured angles for the actuated joints as inner control loops, combined with auxiliary feedback of vision-based measurements, the absolute positioning error can be eliminated. With controller gain tuning, fast dynamic response and low residual vibration of the end platform can be achieved with absolute positioning accuracy within ±1 micron.
Structural robustness with suboptimal responses for linear state space model
NASA Technical Reports Server (NTRS)
Keel, L. H.; Lim, Kyong B.; Juang, Jer-Nan
1989-01-01
A relationship between the closed-loop eigenvalues and the amount of perturbations in the open-loop matrix is addressed in the context of performance robustness. If the allowable perturbation ranges of elements of the open-loop matrix A and the desired tolerance of the closed-loop eigenvalues are given such that max(j) of the absolute value of Delta-lambda(j) (A+BF) should be less than some prescribed value, what is a state feedback controller F which satisfies the closed-loop eigenvalue perturbation-tolerance requirement for a class of given perturbation in A? The paper gives an algorithm to design such a controller. Numerical examples are included for illustration.
Han, Fengtian; Wang, Wei; Zhang, Xiaoyang; Xie, Huikai
2016-10-03
A large piston-displacement electrothermal micromirror with closed-loop control of both piston scan and tilting of the mirror plate is demonstrated for use in a miniature Fourier transform spectrometer. Constant scan velocity in an ultra large piston scan range has been demonstrated by the proposed closed-loop piston control scheme which can be easily implemented without considerably increasing system complexity. The experimental results show that the usable linear scan range generated by the micromirror has been extended up to 505 μm. The measured spectral resolution in a compact spectrometer reaches 20 cm-1, or 0.57 nm at 532 nm wavelength. Compared to other presented systems, this microspectrometer will benefit from the closed-loop thermal actuator approach utilizing both the piston servo and tilt control to provide more consistent spectral response, improved spectral resolution and enhanced robustness to disturbances.
Method study on fuzzy-PID adaptive control of electric-hydraulic hitch system
NASA Astrophysics Data System (ADS)
Li, Mingsheng; Wang, Liubu; Liu, Jian; Ye, Jin
2017-03-01
In this paper, fuzzy-PID adaptive control method is applied to the control of tractor electric-hydraulic hitch system. According to the characteristics of the system, a fuzzy-PID adaptive controller is designed and the electric-hydraulic hitch system model is established. Traction control and position control performance simulation are carried out with the common PID control method. A field test rig was set up to test the electric-hydraulic hitch system. The test results showed that, after the fuzzy-PID adaptive control is adopted, when the tillage depth steps from 0.1m to 0.3m, the system transition process time is 4s, without overshoot, and when the tractive force steps from 3000N to 7000N, the system transition process time is 5s, the system overshoot is 25%.
Closed-loop and robust control of quantum systems.
Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong
2013-01-01
For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(∞) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.
Novel bio-inspired smart control for hazard mitigation of civil structures
NASA Astrophysics Data System (ADS)
Kim, Yeesock; Kim, Changwon; Langari, Reza
2010-11-01
In this paper, a new bio-inspired controller is proposed for vibration mitigation of smart structures subjected to ground disturbances (i.e. earthquakes). The control system is developed through the integration of a brain emotional learning (BEL) algorithm with a proportional-integral-derivative (PID) controller and a semiactive inversion (Inv) algorithm. The BEL algorithm is based on the neurologically inspired computational model of the amygdala and the orbitofrontal cortex. To demonstrate the effectiveness of the proposed hybrid BEL-PID-Inv control algorithm, a seismically excited building structure equipped with a magnetorheological (MR) damper is investigated. The performance of the proposed hybrid BEL-PID-Inv control algorithm is compared with that of passive, PID, linear quadratic Gaussian (LQG), and BEL control systems. In the simulation, the robustness of the hybrid BEL-PID-Inv control algorithm in the presence of modeling uncertainties as well as external disturbances is investigated. It is shown that the proposed hybrid BEL-PID-Inv control algorithm is effective in improving the dynamic responses of seismically excited building structure-MR damper systems.
Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.
Davidson, Paul R; Jones, Richard D; Andreae, John H; Sirisena, Harsha R
2002-11-01
In many recent human motor control models, including feedback-error learning and adaptive model theory (AMT), feedback control is used to correct errors while an inverse model is simultaneously tuned to provide accurate feedforward control. This popular and appealing hypothesis, based on a combination of psychophysical observations and engineering considerations, predicts that once the tuning of the inverse model is complete the role of feedback control is limited to the correction of disturbances. This hypothesis was tested by looking at the open-loop behavior of the human motor system during adaptation. An experiment was carried out involving 20 normal adult subjects who learned a novel visuomotor relationship on a pursuit tracking task with a steering wheel for input. During learning, the response cursor was periodically blanked, removing all feedback about the external system (i.e., about the relationship between hand motion and response cursor motion). Open-loop behavior was not consistent with a progressive transfer from closed- to open-loop control. Our recently developed computational model of the brain--a novel nonlinear implementation of AMT--was able to reproduce the observed closed- and open-loop results. In contrast, other control-systems models exhibited only minimal feedback control following adaptation, leading to incorrect open-loop behavior. This is because our model continues to use feedback to control slow movements after adaptation is complete. This behavior enhances the internal stability of the inverse model. In summary, our computational model is currently the only motor control model able to accurately simulate the closed- and open-loop characteristics of the experimental response trajectories.
Time delay compensation for closed-loop insulin delivery systems: a simulation study.
Reboldi, G P; Home, P D; Calabrese, G; Fabietti, P G; Brunetti, P; Massi Benedetti, M
1991-06-01
Closed loop insulin therapy certainly represents the best possible approach to insulin replacement. However, present limitations preclude wider application of the so-called artificial pancreas. Therefore, a thorough understanding of these limitations is needed to design better systems for future long-term use. The present simulation study was design: to obtain better information on the impact of the measurement delay of currently available closed-loop devices both during closed-loop insulin delivery and blood glucose clamp studies, and to design and test a time delay compensator based on the method originally described by O.J. Smith. Simulations were performed on a Compaq Deskpro 486/25 personal computer under MS-DOS operating system using Simnon rel. 3.00 software. There was a direct relationship between measurement delay and amount of insulin delivered, i.e., the longer the delay the higher the insulin dose needed to control a rise in blood glucose; the closed-loop response in presence of a time delay was qualitatively impaired both during insulin delivery and blood glucose clamp studies; time delay compensation was effective in reducing the insulin dose and improving controller stability during the early phase of clamp studies. However, the robustness of a Smith's predictor-based controller should be carefully evaluated before implementation in closed-loop systems can be considered.
Scholten, Kee; Meng, Ellis
2018-06-15
Closed-loop drug delivery promises autonomous control of pharmacotherapy through the continuous monitoring of biomarker levels. For decades, researchers have strived for portable closed-loop systems capable of treating ambulatory patients with chronic conditions such as diabetes mellitus. After years of development, the first of these systems have left the laboratory and entered commercial use. This long-awaited advance reflects recent development of chronically stable implantable biosensors able to accurately measure biomarker levels in vivo. This review discusses the role of implantable biosensors in closed-loop drug delivery applications, with the intent to provide a resource for engineers and researchers studying such systems. We provide an overview of common biosensor designs and review the principle challenges in implementing long indwelling sensors: namely device sensitivity, selectivity, and lifetime. This review examines novel advances in transducer design, biological interface, and material biocompatibility, with a focus on recent academic and commercial work which provide successful strategies to overcome perennial challenges. This review focuses primarily on the topics of closed-loop glucose control and continuous glucose monitoring biosensors, which make up the overwhelming majority of published research in this area. We conclude with an overview of recent advances in closed-loop systems targeting applications outside blood glucose management. Copyright © 2018 Elsevier B.V. All rights reserved.
Tan, John F; Masani, Kei; Vette, Albert H; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R
2014-01-01
The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing.
Tan, John F.; Masani, Kei; Vette, Albert H.; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R.
2014-01-01
The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing. PMID:27350992
NASA Astrophysics Data System (ADS)
Phat Luu, Trieu; He, Yongtian; Brown, Samuel; Nakagome, Sho; Contreras-Vidal, Jose L.
2016-06-01
Objective. The control of human bipedal locomotion is of great interest to the field of lower-body brain-computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. Approach. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1-3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Main results. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson’s r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31 Knee: 0.23 ± 0.33 Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24 Knee: 0.55 ± 0.20 Ankle: 0.29 ± 0.22) on Day 8. Significance. These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system.
Digital force-feedback for protein unfolding experiments using atomic force microscopy
NASA Astrophysics Data System (ADS)
Bippes, Christian A.; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J.
2007-01-01
Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA.
Closed-loop motor control using high-speed fiber optics
NASA Technical Reports Server (NTRS)
Dawson, Reginald (Inventor); Rodriquiz, Dagobert (Inventor)
1991-01-01
A closed-loop control system for controlling the operation of one or more servo motors or other controllable devices is described. The system employs a fiber optics link immune to electromagnetic interference, for transmission of control signals from a controller or controllers at a remote station to the power electronics located in proximity to the motors or other devices at the local station. At the remote station the electrical control signals are time-multiplexed, converted to a formatted serial bit stream, and converted to light signals for transmission over a single fiber of the fiber optics link. At the local station, the received optical signals are reconstructed as electrical control signals for the controlled motors or other devices. At the local station, an encoder sensor linked to the driven device generates encoded feedback signals which provide information as to a condition of the controlled device. The encoded signals are placed in a formatted serial bit stream, multiplexed, and transmitted as optical signals over a second fiber of the fiber optic link which closes the control loop of the closed-loop motor controller. The encoded optical signals received at the remote station are demultiplexed, reconstructed and coupled to the controller(s) as electrical feedback signals.
Force modeling for incision surgery into tissue with haptic application
NASA Astrophysics Data System (ADS)
Kim, Pyunghwa; Kim, Soomin; Choi, Seung-Hyun; Oh, Jong-Seok; Choi, Seung-Bok
2015-04-01
This paper presents a novel force modeling for an incision surgery into tissue and its haptic application for a surgeon. During the robot-assisted incision surgery, it is highly urgent to develop the haptic system for realizing sense of touch in the surgical area because surgeons cannot sense sensations. To achieve this goal, the force modeling related to reaction force of biological tissue is proposed in the perspective on energy. The force model describes reaction force focused on the elastic feature of tissue during the incision surgery. Furthermore, the force is realized using calculated information from the model by haptic device using magnetorheological fluid (MRF). The performance of realized force that is controlled by PID controller with open loop control is evaluated.
NASA Astrophysics Data System (ADS)
Bonne, F.; Alamir, M.; Bonnay, P.
2017-02-01
This paper deals with multivariable constrained model predictive control for Warm Compression Stations (WCS). WCSs are subject to numerous constraints (limits on pressures, actuators) that need to be satisfied using appropriate algorithms. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to achieve precise control of pressures in normal operation or to avoid reaching stopping criteria (such as excessive pressures) under high disturbances (such as a pulsed heat load expected to take place in future fusion reactors, expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details the simulator used to validate this new control scheme and the associated simulation results on the SBTs WCS. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.
Fiber-optic projected-fringe digital interferometry
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Beheim, Glenn
1990-01-01
A phase-stepped projected-fringe interferometer was developed which uses a closed-loop fiber-optic phase-control system to make very accurate surface profile measurements. The closed-loop phase-control system greatly reduces phase-stepping error, which is frequently the dominant source of error in digital interferometers. Two beams emitted from a fiber-optic coupler are combined to form an interference fringe pattern on a diffusely reflecting object. Reflections off of the fibers' output faces are used to create a phase-indicating signal for the closed-loop optical phase controller. The controller steps the phase difference between the two beams by pi/2 radians in order to determine the object's surface profile using a solid-state camera and a computer. The system combines the ease of alignment and automated data reduction of phase-stepping projected-fringe interferometry with the greatly improved phase-stepping accuracy of our closed-loop phase-controller. The system is demonstrated by measuring the profile of a plate containing several convex surfaces whose heights range from 15 to 25 micron high.
Applying Computer Models to Realize Closed-Loop Neonatal Oxygen Therapy.
Morozoff, Edmund; Smyth, John A; Saif, Mehrdad
2017-01-01
Within the context of automating neonatal oxygen therapy, this article describes the transformation of an idea verified by a computer model into a device actuated by a computer model. Computer modeling of an entire neonatal oxygen therapy system can facilitate the development of closed-loop control algorithms by providing a verification platform and speeding up algorithm development. In this article, we present a method of mathematically modeling the system's components: the oxygen transport within the patient, the oxygen blender, the controller, and the pulse oximeter. Furthermore, within the constraints of engineering a product, an idealized model of the neonatal oxygen transport component may be integrated effectively into the control algorithm of a device, referred to as the adaptive model. Manual and closed-loop oxygen therapy performance were defined in this article by 3 criteria in the following order of importance: percent duration of SpO2 spent in normoxemia (target SpO2 ± 2.5%), hypoxemia (less than normoxemia), and hyperoxemia (more than normoxemia); number of 60-second periods <85% SpO2 and >95% SpO2; and number of manual adjustments. Results from a clinical evaluation that compared the performance of 3 closed-loop control algorithms (state machine, proportional-integral-differential, and adaptive model) with manual oxygen therapy on 7 low-birth-weight ventilated preterm babies, are presented. Compared with manual therapy, all closed-loop control algorithms significantly increased the patients' duration in normoxemia and reduced hyperoxemia (P < 0.05). The number of manual adjustments was also significantly reduced by all of the closed-loop control algorithms (P < 0.05). Although the performance of the 3 control algorithms was equivalent, it is suggested that the adaptive model, with its ease of use, may have the best utility.
A Review of Control Strategies in Closed-Loop Neuroprosthetic Systems
Wright, James; Macefield, Vaughan G.; van Schaik, André; Tapson, Jonathan C.
2016-01-01
It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improved performance of tasks, better usability, and greater embodiment have all been reported in systems utilizing some form of feedback. However, the interdisciplinary work on neuroprosthetic systems can lead to miscommunication due to similarities in well-established nomenclature in different fields. Here we present a review of control strategies in existing experimental, investigational and clinical neuroprosthetic systems in order to establish a baseline and promote a common understanding of different feedback modes and closed-loop controllers. The first section provides a brief discussion of feedback control and control theory. The second section reviews the control strategies of recent Brain Machine Interfaces, neuromodulatory implants, neuroprosthetic systems, and assistive neurorobotic devices. The final section examines the different approaches to feedback in current neuroprosthetic and neurorobotic systems. PMID:27462202
Ashton, Michael C; Lee, Kibeom; de Vries, Reinout E; Hendrickse, Joshua; Born, Marise Ph
2012-10-01
The Personality Inventory for DSM-5 (PID-5), a new measure of maladaptive personality traits, has recently been developed by the DSM-5 Personality and Personality Disorders Workgroup. The PID-5 variables were examined within the seven-factor space defined by the six HEXACO factors and the Schizotypy/Dissociation factor (Ashton & Lee, 2012) using participant samples from Canada (N = 378) and the Netherlands (N = 476). Extension analyses showed that several PID-5 facet-level scales represented each of the Honesty-Humility, Emotionality, Extraversion, Conscientiousness, and Schizotypy/Dissociation factors. In contrast, only one PID-5 scale loaded strongly on HEXACO Agreeableness, and no PID-5 scales loaded strongly on Openness to Experience. In addition, a joint factor analysis involving the PID-5 variables and facets of the Five-Factor Model was conducted in the Canadian sample and recovered a set of seven factors corresponding rather closely to the HEXACO factors plus Schizotypy/Dissociation. The authors discuss implications for the assessment and structure of normal and abnormal personality.
Non-fragile multivariable PID controller design via system augmentation
NASA Astrophysics Data System (ADS)
Liu, Jinrong; Lam, James; Shen, Mouquan; Shu, Zhan
2017-07-01
In this paper, the issue of designing non-fragile H∞ multivariable proportional-integral-derivative (PID) controllers with derivative filters is investigated. In order to obtain the controller gains, the original system is associated with an extended system such that the PID controller design can be formulated as a static output-feedback control problem. By taking the system augmentation approach, the conditions with slack matrices for solving the non-fragile H∞ multivariable PID controller gains are established. Based on the results, linear matrix inequality -based iterative algorithms are provided to compute the controller gains. Simulations are conducted to verify the effectiveness of the proposed approaches.
Camera Based Closed Loop Control for Partial Penetration Welding of Overlap Joints
NASA Astrophysics Data System (ADS)
Abt, F.; Heider, A.; Weber, R.; Graf, T.; Blug, A.; Carl, D.; Höfler, H.; Nicolosi, L.; Tetzlaff, R.
Welding of overlap joints with partial penetration in automotive applications is a challenging process, since the laser power must be set very precisely to achieve a proper connection between the two joining partners without damaging the backside of the sheet stack. Even minor changes in welding conditions can lead to bad results. To overcome this problem a camera based closed loop control for partial penetration welding of overlap joints was developed. With this closed loop control it is possible to weld such configurations with a stable process result even under changing welding conditions.
NASA Technical Reports Server (NTRS)
Baron, S.; Muralidharan, R.; Kleinman, D. L.
1978-01-01
The optimal control model of the human operator is used to develop closed loop models for analyzing the effects of (digital) simulator characteristics on predicted performance and/or workload. Two approaches are considered: the first utilizes a continuous approximation to the discrete simulation in conjunction with the standard optimal control model; the second involves a more exact discrete description of the simulator in a closed loop multirate simulation in which the optimal control model simulates the pilot. Both models predict that simulator characteristics can have significant effects on performance and workload.
Automatic control of finite element models for temperature-controlled radiofrequency ablation
Haemmerich, Dieter; Webster, John G
2005-01-01
Background The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. Methods We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. Results We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100°C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. Discussion The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input. PMID:16018811
The application of immune genetic algorithm in main steam temperature of PID control of BP network
NASA Astrophysics Data System (ADS)
Li, Han; Zhen-yu, Zhang
In order to overcome the uncertainties, large delay, large inertia and nonlinear property of the main steam temperature controlled object in the power plant, a neural network intelligent PID control system based on immune genetic algorithm and BP neural network is designed. Using the immune genetic algorithm global search optimization ability and good convergence, optimize the weights of the neural network, meanwhile adjusting PID parameters using BP network. The simulation result shows that the system is superior to conventional PID control system in the control of quality and robustness.
Tauschmann, Martin; Allen, Janet M; Wilinska, Malgorzata E; Thabit, Hood; Acerini, Carlo L; Dunger, David B; Hovorka, Roman
2016-11-01
This study evaluated the feasibility, safety, and efficacy of day-and-night hybrid closed-loop insulin delivery in adolescents with type 1 diabetes under free-living conditions. In an open-label randomized crossover study, 12 suboptimally controlled adolescents on insulin pump therapy (mean ± SD age 14.6 ± 3.1 years; HbA 1c 69 ± 8 mmol/mol [8.5 ± 0.7%]; duration of diabetes 7.8 ± 3.5 years) underwent two 21-day periods in which hybrid closed-loop insulin delivery was compared with sensor-augmented insulin pump therapy in random order. During the closed-loop intervention, a model predictive algorithm automatically directed insulin delivery between meals and overnight. Participants used a bolus calculator to administer prandial boluses. The proportion of time that sensor glucose was in the target range (3.9-10 mmol/L; primary end point) was increased during the closed-loop intervention compared with sensor-augmented insulin pump therapy by 18.8 ± 9.8 percentage points (mean ± SD; P < 0.001), the mean sensor glucose level was reduced by 1.8 ± 1.3 mmol/L (P = 0.001), and the time spent above target was reduced by 19.3 ± 11.3 percentage points (P < 0.001). The time spent with sensor glucose levels below 3.9 mmol/L was low and comparable between interventions (median difference 0.4 [interquartile range -2.2 to 1.3] percentage points; P = 0.33). Improved glucose control during closed-loop was associated with increased variability of basal insulin delivery (P < 0.001) and an increase in the total daily insulin dose (53.5 [39.5-72.1] vs. 51.5 [37.6-64.3] units/day; P = 0.006). Participants expressed positive attitudes and experience with the closed-loop system. Free-living home use of day-and-night closed-loop in suboptimally controlled adolescents with type 1 diabetes is safe, feasible, and improves glucose control without increasing the risk of hypoglycemia. Larger and longer studies are warranted. © 2016 by the American Diabetes Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Sourav, E-mail: ssaha09@me.buet.ac.bd; Mojumder, Satyajit, E-mail: satyajit@me.buet.ac.bd; Saha, Sumon, E-mail: sumonsaha@me.buet.ac.bd
P (proportional), PI (proportional-integral), and PID (proportional-integral-derivative) controllers are popular means of controlling industrial processes. Due to superior response, accuracy, and stable performance, PID controllers are mostly used in control systems. This paper presents a mathematical model and subsequent response analysis regarding regulation of flow in mixed convection through a T-shaped open cavity by temperature dependent controllers. The T-shaped cavity has cold top and hot bottom walls, while air is flowing through the inlet at surrounding temperature. The inflow is regulated by a controlled gate which operates according to the signal received from the controller. Values of proportional gain (k{submore » p}), integral gain (k{sub i}), and derivative gain (k{sub d}) are varied to obtain the desired system response and to ensure a stable system with fastest response. At first, only P controller is used and eventually PI and finally PID control scheme is applied for controller tuning. Tuning of different controllers (P, PI, and PID) are carried out systematically based on the reference temperature which is continuously monitored at a certain location inside the cavity. It is found that PID controller performs better than P or PI controller.« less
Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat.
Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart
2015-04-21
Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation.
Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat
Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart
2015-01-01
Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation. PMID:25897892
NASA Astrophysics Data System (ADS)
Bruns, Tim M.; Wagenaar, Joost B.; Bauman, Matthew J.; Gaunt, Robert A.; Weber, Douglas J.
2013-04-01
Objective. Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach. We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results. Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance. This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability.
Bruns, Tim M; Wagenaar, Joost B; Bauman, Matthew J; Gaunt, Robert A; Weber, Douglas J
2013-01-01
Objective Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability. PMID:23503062
PID feedback controller used as a tactical asset allocation technique: The G.A.M. model
NASA Astrophysics Data System (ADS)
Gandolfi, G.; Sabatini, A.; Rossolini, M.
2007-09-01
The objective of this paper is to illustrate a tactical asset allocation technique utilizing the PID controller. The proportional-integral-derivative (PID) controller is widely applied in most industrial processes; it has been successfully used for over 50 years and it is used by more than 95% of the plants processes. It is a robust and easily understood algorithm that can provide excellent control performance in spite of the diverse dynamic characteristics of the process plant. In finance, the process plant, controlled by the PID controller, can be represented by financial market assets forming a portfolio. More specifically, in the present work, the plant is represented by a risk-adjusted return variable. Money and portfolio managers’ main target is to achieve a relevant risk-adjusted return in their managing activities. In literature and in the financial industry business, numerous kinds of return/risk ratios are commonly studied and used. The aim of this work is to perform a tactical asset allocation technique consisting in the optimization of risk adjusted return by means of asset allocation methodologies based on the PID model-free feedback control modeling procedure. The process plant does not need to be mathematically modeled: the PID control action lies in altering the portfolio asset weights, according to the PID algorithm and its parameters, Ziegler-and-Nichols-tuned, in order to approach the desired portfolio risk-adjusted return efficiently.
Closed-Loop and Robust Control of Quantum Systems
Wang, Lin-Cheng
2013-01-01
For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H ∞ control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention. PMID:23997680
NASA Astrophysics Data System (ADS)
Del Vescovo, D.; D'Ambrogio, W.
1995-01-01
A frequency domain method is presented to design a closed-loop control for vibration reduction flexible mechanisms. The procedure is developed on a single-link flexible arm, driven by one rotary degree of freedom servomotor, although the same technique may be applied to similar systems such as supports for aerospace antennae or solar panels. The method uses the structural frequency response functions (FRFs), thus avoiding system identification, that produces modeling uncertainties. Two closed-loops are implemented: the inner loop uses acceleration feedback with the aim of making the FRF similar to that of an equivalent rigid link; the outer loop feeds back displacements to achieve a fast positioning response and null steady state error. In both cases, the controller type is established a priori, while actual characteristics are defined by an optimisation procedure in which the relevant FRF is constrained into prescribed bounds and stability is taken into account.
Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.
Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert
2015-01-01
Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing.
A closed-loop photon beam control study for the Advanced Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Portmann, G.; Bengtsson, J.
1993-05-01
The third generation Advanced Light Source (ALS) will produce extremely bright photon beams using undulators and wigglers. In order to position the photon beams accurate to the micron level, a closed-loop feedback system is being developed. Using photon position monitors and dipole corrector magnets, a closed-loop system can automatically compensate for modeling uncertainties and exogenous disturbances. The following paper will present a dynamics model for the perturbations of the closed orbit of the electron beam in the ALS storage ring including the vacuum chamber magnetic field penetration effects. Using this reference model, two closed-loop feedback algorithms will be compared --more » a classical PI controller and a two degree-of-freedom approach. The two degree-of-freedom method provides superior disturbance rejection while maintaining the desired performance goals. Both methods will address the need to gain schedule the controller due to the time varying dynamics introduced by changing field strengths when scanning the insertion devices.« less
Fully probabilistic control design in an adaptive critic framework.
Herzallah, Randa; Kárný, Miroslav
2011-12-01
Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem; in particular, very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic control algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this paper. Copyright © 2011 Elsevier Ltd. All rights reserved.
REAL-TIME MODEL-BASED ELECTRICAL POWERED WHEELCHAIR CONTROL
Wang, Hongwu; Salatin, Benjamin; Grindle, Garrett G.; Ding, Dan; Cooper, Rory A.
2009-01-01
The purpose of this study was to evaluate the effects of three different control methods on driving speed variation and wheel-slip of an electric-powered wheelchair (EPW). A kinematic model as well as 3-D dynamic model was developed to control the velocity and traction of the wheelchair. A smart wheelchair platform was designed and built with a computerized controller and encoders to record wheel speeds and to detect the slip. A model based, a proportional-integral-derivative (PID) and an open-loop controller were applied with the EPW driving on four different surfaces at three specified speeds. The speed errors, variation, rise time, settling time and slip coefficient were calculated and compared for a speed step-response input. Experimental results showed that model based control performed best on all surfaces across the speeds. PMID:19733494
NASA Astrophysics Data System (ADS)
Wang, Jun-Song; Wang, Mei-Li; Li, Xiao-Li; Ernst, Niebur
2015-03-01
Epilepsy is believed to be caused by a lack of balance between excitation and inhibitation in the brain. A promising strategy for the control of the disease is closed-loop brain stimulation. How to determine the stimulation control parameters for effective and safe treatment protocols remains, however, an unsolved question. To constrain the complex dynamics of the biological brain, we use a neural population model (NPM). We propose that a proportional-derivative (PD) type closed-loop control can successfully suppress epileptiform activities. First, we determine the stability of root loci, which reveals that the dynamical mechanism underlying epilepsy in the NPM is the loss of homeostatic control caused by the lack of balance between excitation and inhibition. Then, we design a PD type closed-loop controller to stabilize the unstable NPM such that the homeostatic equilibriums are maintained; we show that epileptiform activities are successfully suppressed. A graphical approach is employed to determine the stabilizing region of the PD controller in the parameter space, providing a theoretical guideline for the selection of the PD control parameters. Furthermore, we establish the relationship between the control parameters and the model parameters in the form of stabilizing regions to help understand the mechanism of suppressing epileptiform activities in the NPM. Simulations show that the PD-type closed-loop control strategy can effectively suppress epileptiform activities in the NPM. Project supported by the National Natural Science Foundation of China (Grant Nos. 61473208, 61025019, and 91132722), ONR MURI N000141010278, and NIH grant R01EY016281.
NASA Astrophysics Data System (ADS)
Aranza, M. F.; Kustija, J.; Trisno, B.; Hakim, D. L.
2016-04-01
PID Controller (Proportional Integral Derivative) was invented since 1910, but till today still is used in industries, even though there are many kind of modern controllers like fuzz controller and neural network controller are being developed. Performance of PID controller is depend on on Proportional Gain (Kp), Integral Gain (Ki) and Derivative Gain (Kd). These gains can be got by using method Ziegler-Nichols (ZN), gain-phase margin, Root Locus, Minimum Variance dan Gain Scheduling however these methods are not optimal to control systems that nonlinear and have high-orde, in addition, some methods relative hard. To solve those obstacles, particle swarm optimization (PSO) algorithm is proposed to get optimal Kp, Ki and Kd. PSO is proposed because PSO has convergent result and not require many iterations. On this research, PID controller is applied on AVR (Automatic Voltage Regulator). Based on result of analyzing transient, stability Root Locus and frequency response, performance of PID controller is better than Ziegler-Nichols.
Study on VCSEL laser heating chip in nuclear magnetic resonance gyroscope
NASA Astrophysics Data System (ADS)
Liang, Xiaoyang; Zhou, Binquan; Wu, Wenfeng; Jia, Yuchen; Wang, Jing
2017-10-01
In recent years, atomic gyroscope has become an important direction of inertial navigation. Nuclear magnetic resonance gyroscope has a stronger advantage in the miniaturization of the size. In atomic gyroscope, the lasers are indispensable devices which has an important effect on the improvement of the gyroscope performance. The frequency stability of the VCSEL lasers requires high precision control of temperature. However, the heating current of the laser will definitely bring in the magnetic field, and the sensitive device, alkali vapor cell, is very sensitive to the magnetic field, so that the metal pattern of the heating chip should be designed ingeniously to eliminate the magnetic field introduced by the heating current. In this paper, a heating chip was fabricated by MEMS process, i.e. depositing platinum on semiconductor substrates. Platinum has long been considered as a good resistance material used for measuring temperature The VCSEL laser chip is fixed in the center of the heating chip. The thermometer resistor measures the temperature of the heating chip, which can be considered as the same temperature of the VCSEL laser chip, by turning the temperature signal into voltage signal. The FPGA chip is used as a micro controller, and combined with PID control algorithm constitute a closed loop control circuit. The voltage applied to the heating resistor wire is modified to achieve the temperature control of the VCSEL laser. In this way, the laser frequency can be controlled stably and easily. Ultimately, the temperature stability can be achieved better than 100mK.
Design of motion adjusting system for space camera based on ultrasonic motor
NASA Astrophysics Data System (ADS)
Xu, Kai; Jin, Guang; Gu, Song; Yan, Yong; Sun, Zhiyuan
2011-08-01
Drift angle is a transverse intersection angle of vector of image motion of the space camera. Adjusting the angle could reduce the influence on image quality. Ultrasonic motor (USM) is a new type of actuator using ultrasonic wave stimulated by piezoelectric ceramics. They have many advantages in comparison with conventional electromagnetic motors. In this paper, some improvement was designed for control system of drift adjusting mechanism. Based on ultrasonic motor T-60 was designed the drift adjusting system, which is composed of the drift adjusting mechanical frame, the ultrasonic motor, the driver of Ultrasonic Motor, the photoelectric encoder and the drift adjusting controller. The TMS320F28335 DSP was adopted as the calculation and control processor, photoelectric encoder was used as sensor of position closed loop system and the voltage driving circuit designed as generator of ultrasonic wave. It was built the mathematic model of drive circuit of the ultrasonic motor T-60 using matlab modules. In order to verify the validity of the drift adjusting system, was introduced the source of the disturbance, and made simulation analysis. It designed the control systems of motor drive for drift adjusting system with the improved PID control. The drift angle adjusting system has such advantages as the small space, simple configuration, high position control precision, fine repeatability, self locking property and low powers. It showed that the system could accomplish the mission of drift angle adjusting excellent.
Application of frequency domain handling qualities criteria to the longitudinal landing task
NASA Technical Reports Server (NTRS)
Sarrafian, S. K.; Powers, B. G.
1985-01-01
Three frequency-domain handling qualities criteria have been applied to the observed data to correlate the actual pilot ratings assigned to generic transport configurations with stability augmentation during the longitudinal landing task. The criteria are based on closed-loop techniques using pitch attitude, altitude rate at the pilot station, and altitude at the pilot station as dominating control parameters during this task. It is found that most promising results are obtained with altitude control performed by closing an inner loop on pitch attitude and closing an outer loop on altitude.
Inadequate interaction between open- and closed-loop postural control in phobic postural vertigo.
Wuehr, M; Pradhan, C; Novozhilov, S; Krafczyk, S; Brandt, T; Jahn, K; Schniepp, R
2013-05-01
Phobic postural vertigo (PPV) is characterized by a subjective dizziness and postural imbalance. Changes in postural control strategy may cause the disturbed postural performance in PPV. A better understanding of the mechanisms behind this change in strategy is required to improve the diagnostic tools and therapeutic options for this prevalent disorder. Here we apply stabilogram diffusion analysis (SDA) to examine the characteristics and modes of interaction of open- and closed-loop processes that make up the postural control scheme in PPV. Twenty patients with PPV and 20 age-matched healthy controls were recorded on a stabilometer platform with eyes open and with eyes closed. Spatio-temporal changes of the center of pressure (CoP) displacement were analyzed by means of SDA and complementary CoP amplitude measures. (1) Open-loop control mechanisms in PPV were disturbed because of a higher diffusion activity (p < 0.001). (2) The interaction of open- and closed-loop processes was altered in that the sensory feedback threshold of the system was lowered (p = 0.010). These two changes were comparable to those observed in healthy subjects during more demanding balance conditions such as standing with eyes closed. These data indicate that subjective imbalance in PPV is associated with characteristic changes in the coordination of open- and closed-loop mechanisms of postural control. Patients with PPV use sensory feedback inadequately during undisturbed stance, and this impairs postural performance. These changes are compatible with higher levels of anti-gravity muscle activity and co-contraction during the conscious concentration on control of postural stability.
Closed loop control of penetration depth during CO₂ laser lap welding processes.
Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis In 't; Ancona, Antonio
2012-01-01
In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth.
Closed Loop Control of Penetration Depth during CO2 Laser Lap Welding Processes
Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P.; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis in 't; Ancona, Antonio
2012-01-01
In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth. PMID:23112646
Software feedback for monochromator tuning at UNICAT (abstract)
NASA Astrophysics Data System (ADS)
Jemian, Pete R.
2002-03-01
Automatic tuning of double-crystal monochromators presents an interesting challenge in software. The goal is to either maximize, or hold constant, the throughput of the monochromator. An additional goal of the software feedback is to disable itself when there is no beam and then, at the user's discretion, re-enable itself when the beam returns. These and other routine goals, such as adherence to limits of travel for positioners, are maintained by software controls. Many solutions exist to lock in and maintain a fixed throughput. Among these include a hardware solution involving a wave form generator, and a lock-in amplifier to autocorrelate the movement of a piezoelectric transducer (PZT) providing fine adjustment of the second crystal Bragg angle. This solution does not work when the positioner is a slow acting device such as a stepping motor. Proportional integral differential (PID) loops have been used to provide feedback through software but additional controls must be provided to maximize the monochromator throughput. Presented here is a software variation of the PID loop which meets the above goals. By using two floating point variables as inputs, representing the intensity of x rays measured before and after the monochromator, it attempts to maximize (or hold constant) the ratio of these two inputs by adjusting an output floating point variable. These floating point variables are connected to hardware channels corresponding to detectors and positioners. When the inputs go out of range, the software will stop making adjustments to the control output. Not limited to monochromator feedback, the software could be used, with beam steering positioners, to maintain a measure of beam position. Advantages of this software feedback are the flexibility of its various components. It has been used with stepping motors and PZTs as positioners. Various devices such as ion chambers, scintillation counters, photodiodes, and photoelectron collectors have been used as detectors. The software provides significant cost savings over hardware feedback methods. Presently implemented in EPICS, the software is sufficiently general to any automated instrument control system.
Lidar-based wake tracking for closed-loop wind farm control
NASA Astrophysics Data System (ADS)
Raach, Steffen; Schlipf, David; Cheng, Po Wen
2016-09-01
This work presents two advancements towards closed-loop wake redirecting of a wind turbine. First, a model-based estimation approach is presented which uses a nacelle-based lidar system facing downwind to obtain information about the wake. A reduced order wake model is described which is then used in the estimation to track the wake. The tracking is demonstrated with lidar measurement data from an offshore campaign and with simulated lidar data from a SOWFA simulation. Second, a controller for closed-loop wake steering is presented. It uses the wake tracking information to set the yaw actuator of the wind turbine to redirect the wake to a desired position. Altogether, this paper aims to present the concept of closed-loop wake redirecting and gives a possible solution to it.
A Digital Phase Lock Loop for an External Cavity Diode Laser
NASA Astrophysics Data System (ADS)
Wang, Xiao-Long; Tao, Tian-Jiong; Cheng, Bing; Wu, Bin; Xu, Yun-Fei; Wang, Zhao-Ying; Lin, Qiang
2011-08-01
A digital optical phase lock loop (OPLL) is implemented to synchronize the frequency and phase between two external cavity diode lasers (ECDL), generating Raman pulses for atom interferometry. The setup involves all-digital phase detection and a programmable digital proportional-integral-derivative (PID) loop in locking. The lock generates a narrow beat-note linewidth below 1 Hz and low phase-noise of 0.03rad2 between the master and slave ECDLs. The lock proves to be stable and robust, and all the locking parameters can be set and optimized on a computer interface with convenience, making the lock adaptable to various setups of laser systems.
Zhang, Guang; Wu, Taihu; Song, Zhenxing; Wang, Haitao; Lu, Hengzhi; Wang, Yalin; Wang, Dan; Chen, Feng
2015-06-01
Chest compression (CC) is a significant emergency medical procedure for maintaining circulation during cardiac arrest. Although CC produces the necessary blood flow for patients with heart arrest, improperly deep CC will contribute significantly to the risk of chest injury. In this paper, an optimal CC closed-loop controller for a mechanical chest compressor (OCC-MCC) was developed to provide an effective trade-off between the benefit of improved blood perfusion and the risk of ribs fracture. The trade-off performance of the OCC-MCC during real automatic mechanical CCs was evaluated by comparing the OCC-MCC and the traditional mechanical CC method (TMCM) with a human circulation hardware model based on hardware simulations. A benefit factor (BF), risk factor (RF) and benefit versus risk index (BRI) were introduced in this paper for the comprehensive evaluation of risk and benefit. The OCC-MCC was developed using the LabVIEW control platform and the mechanical chest compressor (MCC) controller. PID control is also employed by MCC for effective compression depth regulation. In addition, the physiological parameters model for MCC was built based on a digital signal processor for hardware simulations. A comparison between the OCC-MCC and TMCM was then performed based on the simulation test platform which is composed of the MCC, LabVIEW control platform, physiological parameters model for MCC and the manikin. Compared with the TMCM, the OCC-MCC obtained a better trade-off and a higher BRI in seven out of a total of nine cases. With a higher mean value of cardiac output (1.35 L/min) and partial pressure of end-tidal CO2 (15.7 mmHg), the OCC-MCC obtained a larger blood flow and higher BF than TMCM (5.19 vs. 3.41) in six out of a total of nine cases. Although it is relatively difficult to maintain a stable CC depth when the chest is stiff, the OCC-MCC is still superior to the TMCM for performing safe and effective CC during CPR. The OCC-MCC is superior to the TMCM in performing safe and effective CC during CPR and can be incorporated into the current version of mechanical CC devices for high quality CPR, in both in-hospital and out-of-hospital CPR settings.
Robotic excavator trajectory control using an improved GA based PID controller
NASA Astrophysics Data System (ADS)
Feng, Hao; Yin, Chen-Bo; Weng, Wen-wen; Ma, Wei; Zhou, Jun-jing; Jia, Wen-hua; Zhang, Zi-li
2018-05-01
In order to achieve excellent trajectory tracking performances, an improved genetic algorithm (IGA) is presented to search for the optimal proportional-integral-derivative (PID) controller parameters for the robotic excavator. Firstly, the mathematical model of kinematic and electro-hydraulic proportional control system of the excavator are analyzed based on the mechanism modeling method. On this basis, the actual model of the electro-hydraulic proportional system are established by the identification experiment. Furthermore, the population, the fitness function, the crossover probability and mutation probability of the SGA are improved: the initial PID parameters are calculated by the Ziegler-Nichols (Z-N) tuning method and the initial population is generated near it; the fitness function is transformed to maintain the diversity of the population; the probability of crossover and mutation are adjusted automatically to avoid premature convergence. Moreover, a simulation study is carried out to evaluate the time response performance of the proposed controller, i.e., IGA based PID against the SGA and Z-N based PID controllers with a step signal. It was shown from the simulation study that the proposed controller provides the least rise time and settling time of 1.23 s and 1.81 s, respectively against the other tested controllers. Finally, two types of trajectories are designed to validate the performances of the control algorithms, and experiments are performed on the excavator trajectory control experimental platform. It was demonstrated from the experimental work that the proposed IGA based PID controller improves the trajectory accuracy of the horizontal line and slope line trajectories by 23.98% and 23.64%, respectively in comparison to the SGA tuned PID controller. The results further indicate that the proposed IGA tuning based PID controller is effective for improving the tracking accuracy, which may be employed in the trajectory control of an actual excavator.
Fractional order PID controller for improvement of PMSM speed control in aerospace applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saraji, Ali Motalebi; Ghanbari, Mahmood
Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loopmore » of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.« less
Enhanced pid vs model predictive control applied to bldc motor
NASA Astrophysics Data System (ADS)
Gaya, M. S.; Muhammad, Auwal; Aliyu Abdulkadir, Rabiu; Salim, S. N. S.; Madugu, I. S.; Tijjani, Aminu; Aminu Yusuf, Lukman; Dauda Umar, Ibrahim; Khairi, M. T. M.
2018-01-01
BrushLess Direct Current (BLDC) motor is a multivariable and highly complex nonlinear system. Variation of internal parameter values with environment or reference signal increases the difficulty in controlling the BLDC effectively. Advanced control strategies (like model predictive control) often have to be integrated to satisfy the control desires. Enhancing or proper tuning of a conventional algorithm results in achieving the desired performance. This paper presents a performance comparison of Enhanced PID and Model Predictive Control (MPC) applied to brushless direct current motor. The simulation results demonstrated that the PSO-PID is slightly better than the PID and MPC in tracking the trajectory of the reference signal. The proposed scheme could be useful algorithms for the system.
Variable Structure PID Control to Prevent Integrator Windup
NASA Technical Reports Server (NTRS)
Hall, C. E.; Hodel, A. S.; Hung, J. Y.
1999-01-01
PID controllers are frequently used to control systems requiring zero steady-state error while maintaining requirements for settling time and robustness (gain/phase margins). PID controllers suffer significant loss of performance due to short-term integrator wind-up when used in systems with actuator saturation. We examine several existing and proposed methods for the prevention of integrator wind-up in both continuous and discrete time implementations.
Kovatchev, Boris P; Renard, Eric; Cobelli, Claudio; Zisser, Howard C; Keith-Hynes, Patrick; Anderson, Stacey M; Brown, Sue A; Chernavvsky, Daniel R; Breton, Marc D; Farret, Anne; Pelletier, Marie-Josée; Place, Jérôme; Bruttomesso, Daniela; Del Favero, Simone; Visentin, Roberto; Filippi, Alessio; Scotton, Rachele; Avogaro, Angelo; Doyle, Francis J
2013-07-01
To evaluate the feasibility of a wearable artificial pancreas system, the Diabetes Assistant (DiAs), which uses a smart phone as a closed-loop control platform. Twenty patients with type 1 diabetes were enrolled at the Universities of Padova, Montpellier, and Virginia and at Sansum Diabetes Research Institute. Each trial continued for 42 h. The United States studies were conducted entirely in outpatient setting (e.g., hotel or guest house); studies in Italy and France were hybrid hospital-hotel admissions. A continuous glucose monitoring/pump system (Dexcom Seven Plus/Omnipod) was placed on the subject and was connected to DiAs. The patient operated the system via the DiAs user interface in open-loop mode (first 14 h of study), switching to closed-loop for the remaining 28 h. Study personnel monitored remotely via 3G or WiFi connection to DiAs and were available on site for assistance. The total duration of proper system communication functioning was 807.5 h (274 h in open-loop and 533.5 h in closed-loop), which represented 97.7% of the total possible time from admission to discharge. This exceeded the predetermined primary end point of 80% system functionality. This study demonstrated that a contemporary smart phone is capable of running outpatient closed-loop control and introduced a prototype system (DiAs) for further investigation. Following this proof of concept, future steps should include equipping insulin pumps and sensors with wireless capabilities, as well as studies focusing on control efficacy and patient-oriented clinical outcomes.
The Digital Motion Control System for the Submillimeter Array Antennas
NASA Astrophysics Data System (ADS)
Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.; Patel, N. A.; Blundell, R.; Christensen, R. D.; Diven, A. R.; Maute, J.; Plante, R. J.; Riddle, P.; Young, K. H.
2013-09-01
We describe the design and performance of the digital servo and motion control system for the 6-meter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error function. Calibration factors and software filters are applied to the tachometer feedback prior to the application of the servo gains in the torque computations. All of these parameters are remotely adjustable in the software. The three layers of the control system monitor each other and are capable of shutting down the system safely if a failure or anomaly occurs. The Unix system continuously relays the antenna status to the central observatory computer via reflective memory. In each antenna, a Palm Vx hand controller displays the complete system status and allows full local control of the drives in an intuitive touchscreen user interface. The hand controller can also be connected outside the cabin, a major convenience during the frequent reconfigurations of the interferometer. Excellent tracking performance ( 0.3‧‧ rms) is achieved with this system. It has been in reliable operation on 8 antennas for over 10 years and has required minimal maintenance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manière, Charles; Lee, Geuntak; Olevsky, Eugene A.
The stability of the proportional–integral–derivative (PID) control of temperature in the spark plasma sintering (SPS) process is investigated. The PID regulations of this process are tested for different SPS tooling dimensions, physical parameters conditions, and areas of temperature control. It is shown that the PID regulation quality strongly depends on the heating time lag between the area of heat generation and the area of the temperature control. Tooling temperature rate maps are studied to reveal potential areas for highly efficient PID control. The convergence of the model and experiment indicates that even with non-optimal initial PID coefficients, it is possiblemore » to reduce the temperature regulation inaccuracy to less than 4 K by positioning the temperature control location in highly responsive areas revealed by the finite-element calculations of the temperature spatial distribution.« less
Manière, Charles; Lee, Geuntak; Olevsky, Eugene A.
2017-04-21
The stability of the proportional–integral–derivative (PID) control of temperature in the spark plasma sintering (SPS) process is investigated. The PID regulations of this process are tested for different SPS tooling dimensions, physical parameters conditions, and areas of temperature control. It is shown that the PID regulation quality strongly depends on the heating time lag between the area of heat generation and the area of the temperature control. Tooling temperature rate maps are studied to reveal potential areas for highly efficient PID control. The convergence of the model and experiment indicates that even with non-optimal initial PID coefficients, it is possiblemore » to reduce the temperature regulation inaccuracy to less than 4 K by positioning the temperature control location in highly responsive areas revealed by the finite-element calculations of the temperature spatial distribution.« less
Feasibility of overnight closed-loop control based on hourly blood glucose measurements.
Patte, Caroline; Pleus, Stefan; Galley, Paul; Weinert, Stefan; Haug, Cornelia; Freckmann, Guido
2012-07-01
Safe and effective closed-loop control (artificial pancreas) is the ultimate goal of insulin delivery. In this study, we examined the performance of a closed-loop control algorithm used for the overnight time period to safely achieve a narrow target range of blood glucose (BG) concentrations prior to breakfast. The primary goal was to compare the quality of algorithm control during repeated overnight experiments. Twenty-three subjects with type 1 diabetes performed 2 overnight experiments on each of three visits at the study site, resulting in 138 overnight experiments. On the first evening, the subject's insulin therapy was applied; on the second, the insulin was delivered by an algorithm based on subcutaneous continuous glucose measurements (including meal control) until midnight. Overnight closed-loop control was applied between midnight and 6 a.m. based on hourly venous BG measurements during the first and second nights. The number of BG values within the target range (90-150 mg/dl) increased from 52.9% (219 out of 414 measurements) during the first nights to 72.2% (299 out of 414 measurements) during the second nights (p < .001, χ²-test). The occurrence of hypoglycemia interventions was reduced from 14 oral glucose interventions, the latest occurring at 2:36 a.m. during the first nights, to 1 intervention occurring at 1:02 a.m. during the second nights (p < .001, χ²-test). Overnight controller performance improved when optimized initial control was given; this was suggested by the better metabolic control during the second night. Adequate controller run-in time seems to be important for achieving good overnight control. In addition, the findings demonstrate that hourly BG data are sufficient for the closed-loop control algorithm tested to achieve appropriate glycemic control. © 2012 Diabetes Technology Society.
NASA Astrophysics Data System (ADS)
Azmi, Nur Iffah Mohamed; Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Romlay, Fadhlur Rahman Mohd
2018-03-01
Controller that uses PID parameters requires a good tuning method in order to improve the control system performance. Tuning PID control method is divided into two namely the classical methods and the methods of artificial intelligence. Particle swarm optimization algorithm (PSO) is one of the artificial intelligence methods. Previously, researchers had integrated PSO algorithms in the PID parameter tuning process. This research aims to improve the PSO-PID tuning algorithms by integrating the tuning process with the Variable Weight Grey- Taguchi Design of Experiment (DOE) method. This is done by conducting the DOE on the two PSO optimizing parameters: the particle velocity limit and the weight distribution factor. Computer simulations and physical experiments were conducted by using the proposed PSO- PID with the Variable Weight Grey-Taguchi DOE and the classical Ziegler-Nichols methods. They are implemented on the hydraulic positioning system. Simulation results show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE has reduced the rise time by 48.13% and settling time by 48.57% compared to the Ziegler-Nichols method. Furthermore, the physical experiment results also show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE tuning method responds better than Ziegler-Nichols tuning. In conclusion, this research has improved the PSO-PID parameter by applying the PSO-PID algorithm together with the Variable Weight Grey-Taguchi DOE method as a tuning method in the hydraulic positioning system.
Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagame, Sho; Contreras-Vidal, Jose L.
2017-01-01
Objective The control of human bipedal locomotion is of great interest to the field of lower-body brain computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. Approach In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1 – 3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated (AM) potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Main results Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson’s r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31; Knee: 0.23 ± 0.33; Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24; Knee: 0.55 ± 0.20; Ankle: 0.29 ± 0.22) on Day 8. Significance These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system. PMID:27064824
Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagame, Sho; Contreras-Vidal, Jose L
2016-06-01
The control of human bipedal locomotion is of great interest to the field of lower-body brain-computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1-3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson's r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31; Knee: 0.23 ± 0.33; Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24; Knee: 0.55 ± 0.20; Ankle: 0.29 ± 0.22) on Day 8. These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system.
Design and simulation of a sensor for heliostat field closed loop control
NASA Astrophysics Data System (ADS)
Collins, Mike; Potter, Daniel; Burton, Alex
2017-06-01
Significant research has been completed in pursuit of capital cost reductions for heliostats [1],[2]. The camera array closed loop control concept has potential to radically alter the way heliostats are controlled and installed by replacing high quality open loop targeting systems with low quality targeting devices that rely on measurement of image position to remove tracking errors during operation. Although the system could be used for any heliostat size, the system significantly benefits small heliostats by reducing actuation costs, enabling large numbers of heliostats to be calibrated simultaneously, and enabling calibration of heliostats that produce low irradiance (similar or less than ambient light images) on Lambertian calibration targets, such as small heliostats that are far from the tower. A simulation method for the camera array has been designed and verified experimentally. The simulation tool demonstrates that closed loop calibration or control is possible using this device.
Valencia-Palomo, G; Rossiter, J A
2011-01-01
This paper makes two key contributions. First, it tackles the issue of the availability of constrained predictive control for low-level control loops. Hence, it describes how the constrained control algorithm is embedded in an industrial programmable logic controller (PLC) using the IEC 61131-3 programming standard. Second, there is a definition and implementation of a novel auto-tuned predictive controller; the key novelty is that the modelling is based on relatively crude but pragmatic plant information. Laboratory experiment tests were carried out in two bench-scale laboratory systems to prove the effectiveness of the combined algorithm and hardware solution. For completeness, the results are compared with a commercial proportional-integral-derivative (PID) controller (also embedded in the PLC) using the most up to date auto-tuning rules. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.
Blana, Dimitra; Kirsch, Robert F; Chadwick, Edward K
2009-05-01
A functional electrical stimulation controller is presented that uses a combination of feedforward and feedback for arm control in high-level injury. The feedforward controller generates the muscle activations nominally required for desired movements, and the feedback controller corrects for errors caused by muscle fatigue and external disturbances. The feedforward controller is an artificial neural network (ANN) which approximates the inverse dynamics of the arm. The feedback loop includes a PID controller in series with a second ANN representing the nonlinear properties and biomechanical interactions of muscles and joints. The controller was designed and tested using a two-joint musculoskeletal model of the arm that includes four mono-articular and two bi-articular muscles. Its performance during goal-oriented movements of varying amplitudes and durations showed a tracking error of less than 4 degrees in ideal conditions, and less than 10 degrees even in the case of considerable fatigue and external disturbances.
Kumar, Anupam; Kumar, Vijay
2017-05-01
In this paper, a novel concept of an interval type-2 fractional order fuzzy PID (IT2FO-FPID) controller, which requires fractional order integrator and fractional order differentiator, is proposed. The incorporation of Takagi-Sugeno-Kang (TSK) type interval type-2 fuzzy logic controller (IT2FLC) with fractional controller of PID-type is investigated for time response measure due to both unit step response and unit load disturbance. The resulting IT2FO-FPID controller is examined on different delayed linear and nonlinear benchmark plants followed by robustness analysis. In order to design this controller, fractional order integrator-differentiator operators are considered as design variables including input-output scaling factors. A new hybridized algorithm named as artificial bee colony-genetic algorithm (ABC-GA) is used to optimize the parameters of the controller while minimizing weighted sum of integral of time absolute error (ITAE) and integral of square of control output (ISCO). To assess the comparative performance of the IT2FO-FPID, authors compared it against existing controllers, i.e., interval type-2 fuzzy PID (IT2-FPID), type-1 fractional order fuzzy PID (T1FO-FPID), type-1 fuzzy PID (T1-FPID), and conventional PID controllers. Furthermore, to show the effectiveness of the proposed controller, the perturbed processes along with the larger dead time are tested. Moreover, the proposed controllers are also implemented on multi input multi output (MIMO), coupled, and highly complex nonlinear two-link robot manipulator system in presence of un-modeled dynamics. Finally, the simulation results explicitly indicate that the performance of the proposed IT2FO-FPID controller is superior to its conventional counterparts in most of the cases. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A comparative approach to closed-loop computation.
Roth, E; Sponberg, S; Cowan, N J
2014-04-01
Neural computation is inescapably closed-loop: the nervous system processes sensory signals to shape motor output, and motor output consequently shapes sensory input. Technological advances have enabled neuroscientists to close, open, and alter feedback loops in a wide range of experimental preparations. The experimental capability of manipulating the topology-that is, how information can flow between subsystems-provides new opportunities to understand the mechanisms and computations underlying behavior. These experiments encompass a spectrum of approaches from fully open-loop, restrained preparations to the fully closed-loop character of free behavior. Control theory and system identification provide a clear computational framework for relating these experimental approaches. We describe recent progress and new directions for translating experiments at one level in this spectrum to predictions at another level. Operating across this spectrum can reveal new understanding of how low-level neural mechanisms relate to high-level function during closed-loop behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hovorka, Roman; Nodale, Marianna; Haidar, Ahmad; Wilinska, Malgorzata E
2013-01-01
We investigated whether continuous glucose monitoring (CGM) levels can accurately assess glycemic control while directing closed-loop insulin delivery. Data were analyzed retrospectively from 33 subjects with type 1 diabetes who underwent closed-loop and conventional pump therapy on two separate nights. Glycemic control was evaluated by reference plasma glucose and contrasted against three methods based on Navigator (Abbott Diabetes Care, Alameda, CA) CGM levels. Glucose mean and variability were estimated by unmodified CGM levels with acceptable clinical accuracy. Time when glucose was in target range was overestimated by CGM during closed-loop nights (CGM vs. plasma glucose median [interquartile range], 86% [65-97%] vs. 75% [59-91%]; P=0.04) but not during conventional pump therapy (57% [32-72%] vs. 51% [29-68%]; P=0.82) providing comparable treatment effect (mean [SD], 28% [29%] vs. 23% [21%]; P=0.11). Using the CGM measurement error of 15% derived from plasma glucose-CGM pairs (n=4,254), stochastic interpretation of CGM gave unbiased estimate of time in target during both closed-loop (79% [62-86%] vs. 75% [59-91%]; P=0.24) and conventional pump therapy (54% [33-66%] vs. 51% [29-68%]; P=0.44). Treatment effect (23% [24%] vs. 23% [21%]; P=0.96) and time below target were accurately estimated by stochastic CGM. Recalibrating CGM using reference plasma glucose values taken at the start and end of overnight closed-loop was not superior to stochastic CGM. CGM is acceptable to estimate glucose mean and variability, but without adjustment it may overestimate benefit of closed-loop. Stochastic CGM provided unbiased estimate of time when glucose is in target and below target and may be acceptable for assessment of closed-loop in the outpatient setting.
A platform for dynamic simulation and control of movement based on OpenSim and MATLAB.
Mansouri, Misagh; Reinbolt, Jeffrey A
2012-05-11
Numerical simulations play an important role in solving complex engineering problems and have the potential to revolutionize medical decision making and treatment strategies. In this paper, we combine the rapid model-based design, control systems and powerful numerical method strengths of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim by developing a new interface between the two software tools. OpenSim is integrated with Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the unique feature of feedback control to OpenSim, which is necessary for most human movement simulations. An arm model example was successfully used in both open-loop and closed-loop cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle and 0.06° for the elbow flexion angle. MATLAB's variable step-size integrator reduced the time required to generate the forward dynamic simulation from 7.1s (OpenSim) to 2.9s (MATLAB). For the closed-loop case, a proportional-integral-derivative controller was used to successfully balance a pole on model's hand despite random force disturbances on the pole. The new interface presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and generate new solutions as treatments for musculoskeletal conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
A platform for dynamic simulation and control of movement based on OpenSim and MATLAB
Mansouri, Misagh; Reinbolt, Jeffrey A.
2013-01-01
Numerical simulations play an important role in solving complex engineering problems and have the potential to revolutionize medical decision making and treatment strategies. In this paper, we combine the rapid model-based design, control systems and powerful numerical method strengths of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim by developing a new interface between the two software tools. OpenSim is integrated with Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the unique feature of feedback control to OpenSim, which is necessary for most human movement simulations. An arm model example was successfully used in both open-loop and closed-loop cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle and 0.06° for the elbow flexion angle. MATLAB’s variable step-size integrator reduced the time required to generate the forward dynamic simulation from 7.1 s (OpenSim) to 2.9 s (MATLAB). For the closed-loop case, a proportional–integral–derivative controller was used to successfully balance a pole on model’s hand despite random force disturbances on the pole. The new interface presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and generate new solutions as treatments for musculoskeletal conditions. PMID:22464351
Does Mckuer's Law Hold for Heart Rate Control via Biofeedback Display?
NASA Technical Reports Server (NTRS)
Courter, B. J.; Jex, H. R.
1984-01-01
Some persons can control their pulse rate with the aid of a biofeedback display. If the biofeedback display is modified to show the error between a command pulse-rate and the measured rate, a compensatory (error correcting) heart rate tracking control loop can be created. The dynamic response characteristics of this control loop when subjected to step and quasi-random disturbances were measured. The control loop includes a beat-to-beat cardiotachmeter differenced with a forcing function from a quasi-random input generator; the resulting error pulse-rate is displayed as feedback. The subject acts to null the displayed pulse-rate error, thereby closing a compensatory control loop. McRuer's Law should hold for this case. A few subjects already skilled in voluntary pulse-rate control were tested for heart-rate control response. Control-law properties are derived, such as: crossover frequency, stability margins, and closed-loop bandwidth. These are evaluated for a range of forcing functions and for step as well as random disturbances.
Pressure intelligent control strategy of Waste heat recovery system of converter vapors
NASA Astrophysics Data System (ADS)
Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong
2013-01-01
The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.
Impedance Control of the Rehabilitation Robot Based on Sliding Mode Control
NASA Astrophysics Data System (ADS)
Zhou, Jiawang; Zhou, Zude; Ai, Qingsong
As an auxiliary treatment, the 6-DOF parallel robot plays an important role in lower limb rehabilitation. In order to improve the efficiency and flexibility of the lower limb rehabilitation training, this paper studies the impedance controller based on the position control. A nonsingular terminal sliding mode control is developed to ensure the trajectory tracking precision and in contrast to traditional PID control strategy in the inner position loop, the system will be more stable. The stability of the system is proved by Lyapunov function to guarantee the convergence of the control errors. Simulation results validate the effectiveness of the target impedance model and show that the parallel robot can adjust gait trajectory online according to the human-machine interaction force to meet the gait request of patients, and changing the impedance parameters can meet the demands of different stages of rehabilitation training.
Wilinska, Malgorzata E; Budiman, Erwin S; Taub, Marc B; Elleri, Daniela; Allen, Janet M; Acerini, Carlo L; Dunger, David B; Hovorka, Roman
2009-09-01
Hypoglycemia and hyperglycemia during closed-loop insulin delivery based on subcutaneous (SC) glucose sensing may arise due to (1) overdosing and underdosing of insulin by control algorithm and (2) difference between plasma glucose (PG) and sensor glucose, which may be transient (kinetics origin and sensor artifacts) or persistent (calibration error [CE]). Using in silico testing, we assessed hypoglycemia and hyperglycemia incidence during over-night closed loop. Additionally, a comparison was made against incidence observed experimentally during open-loop single-night in-clinic studies in young people with type 1 diabetes mellitus (T1DM) treated by continuous SC insulin infusion. Simulation environment comprising 18 virtual subjects with T1DM was used to simulate overnight closed-loop study with a model predictive control (MPC) algorithm. A 15 h experiment started at 17:00 and ended at 08:00 the next day. Closed loop commenced at 21:00 and continued for 11 h. At 18:00, protocol included meal (50 g carbohydrates) accompanied by prandial insulin. The MPC algorithm advised on insulin infusion every 15 min. Sensor glucose was obtained by combining model-calculated noise-free interstitial glucose with experimentally derived transient and persistent sensor artifacts associated with FreeStyle Navigator (FSN). Transient artifacts were obtained from FSN sensor pairs worn by 58 subjects with T1DM over 194 nighttime periods. Persistent difference due to FSN CE was quantified from 585 FSN sensor insertions, yielding 1421 calibration sessions from 248 subjects with diabetes. Episodes of severe (PG < or = 36 mg/dl) and significant (PG < or = 45 mg/dl) hypoglycemia and significant hyperglycemia (PG > or = 300 mg/dl) were extracted from 18,000 simulated closed-loop nights. Severe hypoglycemia was not observed when FSN CE was less than 45%. Hypoglycemia and hyperglycemia incidence during open loop was assessed from 21 overnight studies in 17 young subjects with T1DM (8 males; 13.5 +/- 3.6 years of age; body mass index 21.0 +/- 4.0 kg/m2; duration diabetes 6.4 +/- 4.1 years; hemoglobin A1c 8.5% +/- 1.8%; mean +/- standard deviation) participating in the Artificial Pancreas Project at Cambridge. Severe and significant hypoglycemia during simulated closed loop occurred 0.75 and 17.11 times per 100 person years compared to 1739 and 3479 times per 100 person years during experimental open loop, respectively. Significant hyperglycemia during closed loop and open loop occurred 75 and 15,654 times per 100 person years, respectively. The incidence of severe and significant hypoglycemia reduced 2300- and 200-fold, respectively, during stimulated overnight closed loop with MPC compared to that observed during open-loop overnight clinical studies in young subjects with T1DM. Hyperglycemia was 200 times less likely. Overnight closed loop with the FSN and the MPC algorithm is expected to reduce substantially the risk of hypoglycemia and hyperglycemia. 2009 Diabetes Technology Society.
Closed-Loop Control System for Friction Stir Welding Retractable Pin Tool
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey; Romine, Peter L.; Munafo, Paul M. (Technical Monitor)
2001-01-01
NASA invention disclosure, NASA Case No. MFS-31413, entitled "System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus", (Patent Pending) authored by Jeff Ding, Dr Peter Romine and Pete Oelgoetz, addresses the precision control of the friction stir welding process. The closed-loop control system automatically adjusts the spinning welding pin, real-time, to maintain a precise penetration ligament (i.e., distance between pin-tip and weld panel backside surface). A specific pin length can be maintained while welding constant thickness or tapered material thickness weld panels. The closed-loop control system provides operator data and information relative to the exact position of the welding pin inside the weld joint. This paper presents the closed-loop RPT control system that operates using the auto-feedback of force signals sensed by the tip and shoulder of the welding pin. Significance: The FSW process can be successfully used in a production environment only if there is a method or technique that informs the FSW operator the precise location of the welding pin inside the weld joint. This is essential for applications in aerospace, automotive, pressure vessel, commercial aircraft and other industries.
First Results from a Hardware-in-the-Loop Demonstration of Closed-Loop Autonomous Formation Flying
NASA Technical Reports Server (NTRS)
Gill, E.; Naasz, Bo; Ebinuma, T.
2003-01-01
A closed-loop system for the demonstration of formation flying technologies has been developed at NASA s Goddard Space Flight Center. Making use of a GPS signal simulator with a dual radio frequency outlet, the system includes two GPS space receivers as well as a powerful onboard navigation processor dedicated to the GPS-based guidance, navigation, and control of a satellite formation in real-time. The closed-loop system allows realistic simulations of autonomous formation flying scenarios, enabling research in the fields of tracking and orbit control strategies for a wide range of applications. A sample scenario has been set up where the autonomous transition of a satellite formation from an initial along-track separation of 800 m to a final distance of 100 m has been demonstrated. As a result, a typical control accuracy of about 5 m has been achieved which proves the applicability of autonomous formation flying techniques to formations of satellites as close as 50 m.
Gust alleviation - Criteria and control laws
NASA Technical Reports Server (NTRS)
Rynaski, E. G.
1979-01-01
The relationships between criteria specified for aircraft gust alleviation and the form of the control laws that result from the criteria are considered. Open-loop gust alleviation based on the linearized, small perturbation equations of aircraft motion is discussed, and an approximate solution of the open-loop control law is presented for the case in which the number of degrees of freedom of the aircraft exceeds the rank of the control effectiveness matrix. Excessive actuator lag is compensated for by taking into account actuator dynamics in the equations of motion, resulting in the specification of a general load network. Criteria for gust alleviation when output motions are gust alleviated and the closed-loop control law derived from them are examined and linear optimal control law is derived. Comparisons of the control laws reveal that the effectiveness of an open-loop control law is greatest at low aircraft frequencies but deteriorates as the natural frequency of the actuators is approached, while closed-loop methods are found to be more effective at higher frequencies.
Turner, Katy M. E.; Leung, Stella; Yu, B. Nancy; Frølund, Maria; Benfield, Thomas; Blanchard, James; Westh, Henrik; Ward, Helen
2017-01-01
Background The impact of Chlamydia trachomatis (chlamydia) control on the incidence of pelvic inflammatory disease (PID) is theoretically limited by the proportion of PID caused by chlamydia. We estimate the population excess fraction (PEF) of treated chlamydia infection on PID at 12-months in settings with widespread chlamydia control (testing and treatment) and compare this to the estimated PEF of untreated chlamydia. Methods We used two large retrospective population-based cohorts of women of reproductive age from settings with widespread chlamydia control to calculate the PEF of treated chlamydia on PID at 12-months. We undertook a systematic review to identify further studies that reported the risk of PID in women who were tested for chlamydia (infected and uninfected). We used the same method to calculate the PEF in eligible studies then compared all estimates of PEF. Results The systematic review identified a single study, a randomised controlled trial of chlamydia screening (POPI-RCT). In the presence of testing and treatment <10% of PID at 12-months was attributable to treated (baseline) chlamydia infections (Manitoba: 8.86%(95%CI 7.15–10.75); Denmark: 3.84%(3.26–4.45); screened-arm POPI-RCT: 0.99%(0.00–29.06)). In the absence of active chlamydia treatment 26.44%(11.57–46.32) of PID at 12-months was attributable to untreated (baseline) chlamydia infections (deferred-arm POPI-RCT). The PEFs suggest that eradicating baseline chlamydia infections could prevent 484 cases of PID at 12-months per 100,000 women in the untreated setting and 13–184 cases of PID per 100,000 tested women in the presence of testing and treatment. Conclusion Testing and treating chlamydia reduced the PEF of chlamydia on PID by 65% compared to the untreated setting. But in the presence of testing and treatment over 90% of PID could not be attributed to a baseline chlamydia infection. More information is needed about the aetiology of PID to develop effective strategies for improving the reproductive health of women. PMID:28199392
Zhao, Bo; Li, Chenghao; Liu, Derong; Li, Yuanchun
2015-01-01
This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations.
Zhao, Bo; Li, Yuanchun
2015-01-01
This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations. PMID:26181826
Learning from ISS-modular adaptive NN control of nonlinear strict-feedback systems.
Wang, Cong; Wang, Min; Liu, Tengfei; Hill, David J
2012-10-01
This paper studies learning from adaptive neural control (ANC) for a class of nonlinear strict-feedback systems with unknown affine terms. To achieve the purpose of learning, a simple input-to-state stability (ISS) modular ANC method is first presented to ensure the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in finite time. Subsequently, it is proven that learning with the proposed stable ISS-modular ANC can be achieved. The cascade structure and unknown affine terms of the considered systems make it very difficult to achieve learning using existing methods. To overcome these difficulties, the stable closed-loop system in the control process is decomposed into a series of linear time-varying (LTV) perturbed subsystems with the appropriate state transformation. Using a recursive design, the partial persistent excitation condition for the radial basis function neural network (NN) is established, which guarantees exponential stability of LTV perturbed subsystems. Consequently, accurate approximation of the closed-loop system dynamics is achieved in a local region along recurrent orbits of closed-loop signals, and learning is implemented during a closed-loop feedback control process. The learned knowledge is reused to achieve stability and an improved performance, thereby avoiding the tremendous repeated training process of NNs. Simulation studies are given to demonstrate the effectiveness of the proposed method.
Demonstration of a vectorial optical field generator with adaptive close loop control.
Chen, Jian; Kong, Lingjiang; Zhan, Qiwen
2017-12-01
We experimentally demonstrate a vectorial optical field generator (VOF-Gen) with an adaptive close loop control. The close loop control capability is illustrated with the calibration of polarization modulation of the system. To calibrate the polarization ratio modulation, we generate 45° linearly polarized beam and make it propagate through a linear analyzer whose transmission axis is orthogonal to the incident beam. For the retardation calibration, circularly polarized beam is employed and a circular polarization analyzer with the opposite chirality is placed in front of the CCD as the detector. In both cases, the close loop control automatically changes the value of the corresponding calibration parameters in the pre-set ranges to generate the phase patterns applied to the spatial light modulators and records the intensity distribution of the output beam by the CCD camera. The optimized calibration parameters are determined corresponding to the minimum total intensity in each case. Several typical kinds of vectorial optical beams are created with and without the obtained calibration parameters, and the full Stokes parameter measurements are carried out to quantitatively analyze the polarization distribution of the generated beams. The comparisons among these results clearly show that the obtained calibration parameters could remarkably improve the accuracy of the polarization modulation of the VOF-Gen, especially for generating elliptically polarized beam with large ellipticity, indicating the significance of the presented close loop in enhancing the performance of the VOF-Gen.
Das, Saptarshi; Pan, Indranil; Das, Shantanu
2015-09-01
An optimal trade-off design for fractional order (FO)-PID controller is proposed with a Linear Quadratic Regulator (LQR) based technique using two conflicting time domain objectives. A class of delayed FO systems with single non-integer order element, exhibiting both sluggish and oscillatory open loop responses, have been controlled here. The FO time delay processes are handled within a multi-objective optimization (MOO) formalism of LQR based FOPID design. A comparison is made between two contemporary approaches of stabilizing time-delay systems withinLQR. The MOO control design methodology yields the Pareto optimal trade-off solutions between the tracking performance and total variation (TV) of the control signal. Tuning rules are formed for the optimal LQR-FOPID controller parameters, using median of the non-dominated Pareto solutions to handle delayed FO processes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Fuzzy logic controllers for electrotechnical devices - On-site tuning approach
NASA Astrophysics Data System (ADS)
Hissel, D.; Maussion, P.; Faucher, J.
2001-12-01
Fuzzy logic offers nowadays an interesting alternative to the designers of non linear control laws for electrical or electromechanical systems. However, due to the huge number of tuning parameters, this kind of control is only used in a few industrial applications. This paper proposes a new, very simple, on-site tuning strategy for a PID-like fuzzy logic controller. Thanks to the experimental designs methodology, we will propose sets of optimized pre-established settings for this kind of fuzzy controllers. The proposed parameters are only depending on one on-site open-loop identification test. In this way, this on-site tuning methodology has to be compared to the Ziegler-Nichols one's for conventional controllers. Experimental results (on a permanent magnets synchronous motor and on a DC/DC converter) will underline all the efficiency of this tuning methodology. Finally, the field of validity of the proposed pre-established settings will be given.
Monitoring System and Temperature Controlling on PID Based Poultry Hatching Incubator
NASA Astrophysics Data System (ADS)
Shafiudin, S.; Kholis, N.
2018-04-01
Poultry hatching cultivation is essential to be observed in terms of temperature stability by using artificial penetration incubator which applies On/Off control. The On/Off control produces relatively long response time to reach steady-state conditions. Moreover, how the system works makes the component worn out because the lamp is on-off periodically. Besides, the cultivation in the market is less suitable to be used in an environment which has fluctuating temperature because it may influence plant’s temperature stability. The study aims to design automatic poultry hatching cultivation that can repair the temperature’s response of plant incubator to keep stable and in line with the intended set-point temperature value by using PID controller. The method used in PID controlling is designed to identify plant using ARX (Auto Regressive eXogenous) MATLAB which is dynamic/non-linear to obtain mathematical model and PID constants value that is appropriate to system. The hardware design for PID-based egg incubator uses Arduino Uno R3, as the main controller that includes PID source, and PWM, to keep plant temperature stability, which is integrated with incandescent light actuators and sensors where DHTI 1 sensor as the reader as temperature condition and plant humidity. The result of the study showed that PID constants value of each plant is different. For parallel 15 Watt plant, Kp = 3.9956, Ki = 0.361, Kd = 0, while for parallel 25 Watt plant, the value of Kp = 5.714, Ki = 0.351, Kd = 0. The PID constants value were capable to produce stable system response which is based on set-point with steady state error’s value is around 5%, that is 2.7%. With hatching percentage of 70-80%, the hatching process is successful in air-conditioned environment (changeable).
POSTMAN: Point of Sail Tacking for Maritime Autonomous Navigation
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L.; Reinhart, Felix
2012-01-01
Waves apply significant forces to small boats, in particular when such vessels are moving at a high speed in severe sea conditions. In addition, small high-speed boats run the risk of diving with the bow into the next wave crest during operations in the wavelengths and wave speeds that are typical for shallow water. In order to mitigate the issues of autonomous navigation in rough water, a hybrid controller called POSTMAN combines the concept of POS (point of sail) tack planning from the sailing domain with a standard PID (proportional-integral-derivative) controller that implements reliable target reaching for the motorized small boat control task. This is an embedded, adaptive software controller that uses look-ahead sensing in a closed loop method to perform path planning for safer navigation in rough waters. State-of-the-art controllers for small boats are based on complex models of the vessel's kinematics and dynamics. They enable the vessel to follow preplanned paths accurately and can theoretically control all of the small boat s six degrees of freedom. However, the problems of bow diving and other undesirable incidents are not addressed, and it is questionable if a six-DOF controller with basically a single actuator is possible at all. POSTMAN builds an adaptive capability into the controller based on sensed wave characteristics. This software will bring a muchneeded capability to unmanned small boats moving at high speeds. Previously, this class of boat was limited to wave heights of less than one meter in the sea states in which it could operate. POSTMAN is a major advance in autonomous safety for small maritime craft.
Wang, Ching-Fu; Yang, Shih-Hung; Lin, Sheng-Huang; Chen, Po-Chuan; Lo, Yu-Chun; Pan, Han-Chi; Lai, Hsin-Yi; Liao, Lun-De; Lin, Hui-Ching; Chen, Hsu-Yan; Huang, Wei-Chen; Huang, Wun-Jhu; Chen, You-Yin
Deep brain stimulation (DBS) has been applied as an effective therapy for treating Parkinson's disease or essential tremor. Several open-loop DBS control strategies have been developed for clinical experiments, but they are limited by short battery life and inefficient therapy. Therefore, many closed-loop DBS control systems have been designed to tackle these problems by automatically adjusting the stimulation parameters via feedback from neural signals, which has been reported to reduce the power consumption. However, when the association between the biomarkers of the model and stimulation is unclear, it is difficult to develop an optimal control scheme for other DBS applications, i.e., DBS-enhanced instrumental learning. Furthermore, few studies have investigated the effect of closed-loop DBS control for cognition function, such as instrumental skill learning, and have been implemented in simulation environments. In this paper, we proposed a proof-of-principle design for a closed-loop DBS system, cognitive-enhancing DBS (ceDBS), which enhanced skill learning based on in vivo experimental data. The ceDBS acquired local field potential (LFP) signal from the thalamic central lateral (CL) nuclei of animals through a neural signal processing system. A strong coupling of the theta oscillation (4-7 Hz) and the learning period was found in the water reward-related lever-pressing learning task. Therefore, the theta-band power ratio, which was the averaged theta band to averaged total band (1-55 Hz) power ratio, could be used as a physiological marker for enhancement of instrumental skill learning. The on-line extraction of the theta-band power ratio was implemented on a field-programmable gate array (FPGA). An autoregressive with exogenous inputs (ARX)-based predictor was designed to construct a CL-thalamic DBS model and forecast the future physiological marker according to the past physiological marker and applied DBS. The prediction could further assist the design of a closed-loop DBS controller. A DBS controller based on a fuzzy expert system was devised to automatically control DBS according to the predicted physiological marker via a set of rules. The simulated experimental results demonstrate that the ceDBS based on the closed-loop control architecture not only reduced power consumption using the predictive physiological marker, but also achieved a desired level of physiological marker through the DBS controller. Copyright © 2017 Elsevier Inc. All rights reserved.
Enabling Medical Device Interoperability for the Integrated Clinical Environment
2016-02-01
Pajic M, Mangharam R, Sokolsky O, Arney D, Goldman JM, Lee I. Model-Driven Safety Analysis of Closed - Loop Medical Systems. IEEE Transactions on...Manigel J, Osborn D, Roellike T, Weininger S, Westenskow D, “Development of a Standard for Physiologic Closed Loop Controllers in Medical Devices...3 2010. 27. Arney D, Pajic M, Goldman JM, Lee I, Mangharam R, Sokolsky O, “Toward Patient Safety in Closed - Loop Medical Device Systems,” In
Dideriksen, Jakob Lund; Feeney, Daniel F; Almuklass, Awad M; Enoka, Roger M
2017-08-01
Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions.
Hou, Yi-You
2017-09-01
This article addresses an evolutionary programming (EP) algorithm technique-based and proportional-integral-derivative (PID) control methods are established to guarantee synchronization of the master and slave Rikitake chaotic systems. For PID synchronous control, the evolutionary programming (EP) algorithm is used to find the optimal PID controller parameters k p , k i , k d by integrated absolute error (IAE) method for the convergence conditions. In order to verify the system performance, the basic electronic components containing operational amplifiers (OPAs), resistors, and capacitors are used to implement the proposed chaotic Rikitake systems. Finally, the experimental results validate the proposed Rikitake chaotic synchronization approach. Copyright © 2017. Published by Elsevier Ltd.
Automated Droplet Manipulation Using Closed-Loop Axisymmetric Drop Shape Analysis.
Yu, Kyle; Yang, Jinlong; Zuo, Yi Y
2016-05-17
Droplet manipulation plays an important role in a wide range of scientific and industrial applications, such as synthesis of thin-film materials, control of interfacial reactions, and operation of digital microfluidics. Compared to micron-sized droplets, which are commonly considered as spherical beads, millimeter-sized droplets are generally deformable by gravity, thus introducing nonlinearity into control of droplet properties. Such a nonlinear drop shape effect is especially crucial for droplet manipulation, even for small droplets, at the presence of surfactants. In this paper, we have developed a novel closed-loop axisymmetric drop shape analysis (ADSA), integrated into a constrained drop surfactometer (CDS), for manipulating millimeter-sized droplets. The closed-loop ADSA generalizes applications of the traditional drop shape analysis from a surface tension measurement methodology to a sophisticated tool for manipulating droplets in real time. We have demonstrated the feasibility and advantages of the closed-loop ADSA in three applications, including control of drop volume by automatically compensating natural evaporation, precise control of surface area variations for high-fidelity biophysical simulations of natural pulmonary surfactant, and steady control of surface pressure for in situ Langmuir-Blodgett transfer from droplets. All these applications have demonstrated the accuracy, versatility, applicability, and automation of this new ADSA-based droplet manipulation technique. Combining with CDS, the closed-loop ADSA holds great promise for advancing droplet manipulation in a variety of material and surface science applications, such as thin-film fabrication, self-assembly, and biophysical study of pulmonary surfactant.
Closed-Loop Neuromorphic Benchmarks
Stewart, Terrence C.; DeWolf, Travis; Kleinhans, Ashley; Eliasmith, Chris
2015-01-01
Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even more difficult when the task of interest is a closed-loop task; that is, a task where the output from the neuromorphic hardware affects some environment, which then in turn affects the hardware's future input. However, closed-loop situations are one of the primary potential uses of neuromorphic hardware. To address this, we present a methodology for generating closed-loop benchmarks that makes use of a hybrid of real physical embodiment and a type of “minimal” simulation. Minimal simulation has been shown to lead to robust real-world performance, while still maintaining the practical advantages of simulation, such as making it easy for the same benchmark to be used by many researchers. This method is flexible enough to allow researchers to explicitly modify the benchmarks to identify specific task domains where particular hardware excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor control for an arbitrary system with unknown external forces. Using these benchmarks, we show that an error-driven learning rule can consistently improve motor control performance across a randomly generated family of closed-loop simulations, even when there are up to 15 interacting joints to be controlled. PMID:26696820
Analytical solutions to optimal underactuated spacecraft formation reconfiguration
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2015-11-01
Underactuated systems can generally be defined as systems with fewer number of control inputs than that of the degrees of freedom to be controlled. In this paper, analytical solutions to optimal underactuated spacecraft formation reconfiguration without either the radial or the in-track control are derived. By using a linear dynamical model of underactuated spacecraft formation in circular orbits, controllability analysis is conducted for either underactuated case. Indirect optimization methods based on the minimum principle are then introduced to generate analytical solutions to optimal open-loop underactuated reconfiguration problems. Both fixed and free final conditions constraints are considered for either underactuated case and comparisons between these two final conditions indicate that the optimal control strategies with free final conditions require less control efforts than those with the fixed ones. Meanwhile, closed-loop adaptive sliding mode controllers for both underactuated cases are designed to guarantee optimal trajectory tracking in the presence of unmatched external perturbations, linearization errors, and system uncertainties. The adaptation laws are designed via a Lyapunov-based method to ensure the overall stability of the closed-loop system. The explicit expressions of the terminal convergent regions of each system states have also been obtained. Numerical simulations demonstrate the validity and feasibility of the proposed open-loop and closed-loop control schemes for optimal underactuated spacecraft formation reconfiguration in circular orbits.
Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor
NASA Astrophysics Data System (ADS)
Wang, Yannian; Wu, Peizhi; Liu, Chengtao
2017-09-01
To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.
Temperature-controlled radiofrequency ablation of different tissues using two-compartment models.
Singh, Sundeep; Repaka, Ramjee
2016-08-30
This study aims to analyse the efficacy of temperature-controlled radiofrequency ablation (RFA) in different tissues. A three-dimensional, 12 cm cubical model representing the healthy tissue has been studied in which spherical tumour of 2.5 cm has been embedded. Different body sites considered in the study are liver, kidney, lung and breast. The thermo-electric analysis has been performed to estimate the temperature distribution and ablation volume. A programmable temperature-controlled RFA has been employed by incorporating the closed-loop feedback PID controller. The model fidelity and integrity have been evaluated by comparing the numerical results with the experimental in vitro results obtained during RFA of polyacrylamide tissue-mimicking phantom gel. The results revealed that significant variations persist among the input voltage requirements and the temperature distributions within different tissues of interest. The highest ablation volume has been produced in hypovascular lungs whereas least ablation volume has been produced in kidney being a highly perfused tissue. The variation in optimal treatment time for complete necrosis of tumour along with quantification of damage to the surrounding healthy tissue has also been reported. The results show that the surrounding tissue environment significantly affects the ablation volume produced during RFA. The optimal treatment time for complete tumour ablation can play a critical role in minimising the damage to the surrounding healthy tissue and ensuring safe and risk free application of RFA. The obtained results emphasise the need for developing organ-specific clinical protocols and systems during RFA of tumour.
Smart reconfigurable parabolic space antenna for variable electromagnetic patterns
NASA Astrophysics Data System (ADS)
Kalra, Sahil; Datta, Rituparna; Munjal, B. S.; Bhattacharya, Bishakh
2018-02-01
An application of reconfigurable parabolic space antenna for satellite is discussed in this paper. The present study focuses on shape morphing of flexible parabolic antenna actuated with Shape Memory Alloy (SMA) wires. The antenna is able to transmit the signals to the desired footprint on earth with a desired gain value. SMA wire based actuation with a locking device is developed for a precise control of Antenna shape. The locking device is efficient to hold the structure in deformed configuration during power cutoff from the system. The maximum controllable deflection at any point using such actuation system is about 25mm with a precision of ±100 m. In order to control the shape of the antenna in a closed feedback loop, a Proportional, Integral and Derivative (PID) based controller is developed using LabVIEW (NI) and experiments are performed. Numerical modeling and analysis of the structure is carried out using finite element software ABAQUS. For data reduction and fast computation, stiffness matrix generated by ABAQUS is condensed by Guyan Reduction technique and shape optimization is performed using Non-dominated Sorting Genetic Algorithm (NSGA-II). The matching in comparative study between numerical and experimental set-up shows efficacy of our method. Thereafter, Electro-Magnetic (EM) simulations of the deformed shape is carried out using electromagnetic field simulation, High Frequency Structure Simulator (HFSS). The proposed design is envisaged to be very effective for multipurpose application of satellite system in the future missions of Indian Space Research Organization (ISRO).
Wu, Jun; Hu, Xie-he; Chen, Sheng; Chu, Jian
2003-01-01
The closed-loop stability issue of finite-precision realizations was investigated for digital controllers implemented in block-floating-point format. The controller coefficient perturbation was analyzed resulting from using finite word length (FWL) block-floating-point representation scheme. A block-floating-point FWL closed-loop stability measure was derived which considers both the dynamic range and precision. To facilitate the design of optimal finite-precision controller realizations, a computationally tractable block-floating-point FWL closed-loop stability measure was then introduced and the method of computing the value of this measure for a given controller realization was developed. The optimal controller realization is defined as the solution that maximizes the corresponding measure, and a numerical optimization approach was adopted to solve the resulting optimal realization problem. A numerical example was used to illustrate the design procedure and to compare the optimal controller realization with the initial realization.
Advanced rotorcraft control using parameter optimization
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1991-01-01
A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.
NASA Astrophysics Data System (ADS)
Ekanayake, D. B.; Iyer, R. V.
2015-02-01
We prove the closed loop stability of a PD controller for certain systems with saturating, non-monotone hysteresis and frequency dependent power losses. Most controllers use inverse compensators to cancel out actuator hysteresis nonlinearity. We show that we can achieve stability of the closed-loop system without an explicit inverse computation (using least squares minimization or otherwise).
In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes.
Kovatchev, Boris P; Breton, Marc; Man, Chiara Dalla; Cobelli, Claudio
2009-01-01
Arguably, a minimally invasive system using subcutaneous (s.c.) continuous glucose monitoring (CGM) and s.c. insulin delivery via insulin pump would be a most feasible step to closed-loop control in type 1 diabetes mellitus (T1DM). Consequently, diabetes technology is focusing on developing an artificial pancreas using control algorithms to link CGM with s.c. insulin delivery. The future development of the artificial pancreas will be greatly accelerated by employing mathematical modeling and computer simulation. Realistic computer simulation is capable of providing invaluable information about the safety and the limitations of closed-loop control algorithms, guiding clinical studies, and out-ruling ineffective control scenarios in a cost-effective manner. Thus computer simulation testing of closed-loop control algorithms is regarded as a prerequisite to clinical trials of the artificial pancreas. In this paper, we present a system for in silico testing of control algorithms that has three principal components: (1) a large cohort of n=300 simulated "subjects" (n=100 adults, 100 adolescents, and 100 children) based on real individuals' data and spanning the observed variability of key metabolic parameters in the general population of people with T1DM; (2) a simulator of CGM sensor errors representative of Freestyle Navigator™, Guardian RT, or Dexcom™ STS™, 7-day sensor; and (3) a simulator of discrete s.c. insulin delivery via OmniPod Insulin Management System or Deltec Cozmo(®) insulin pump. The system has been shown to represent adequate glucose fluctuations in T1DM observed during meal challenges, and has been accepted by the Food and Drug Administration as a substitute to animal trials in the preclinical testing of closed-loop control strategies. © Diabetes Technology Society
Adams, Scott D; Kouzani, Abbas Z; Tye, Susannah J; Bennet, Kevin E; Berk, Michael
2018-02-13
Dynamic feedback based closed-loop medical devices offer a number of advantages for treatment of heterogeneous neurological conditions. Closed-loop devices integrate a level of neurobiological feedback, which allows for real-time adjustments to be made with the overarching aim of improving treatment efficacy and minimizing risks for adverse events. One target which has not been extensively explored as a potential feedback component in closed-loop therapies is mitochondrial function. Several neurodegenerative and psychiatric disorders including Parkinson's disease, Major Depressive disorder and Bipolar disorder have been linked to perturbations in the mitochondrial respiratory chain. This paper investigates the potential to monitor this mitochondrial function as a method of feedback for closed-loop neuromodulation treatments. A generic model of the closed-loop treatment is developed to describe the high-level functions of any system designed to control neural function based on mitochondrial response to stimulation, simplifying comparison and future meta-analysis. This model has four key functional components including: a sensor, signal manipulator, controller and effector. Each of these components are described and several potential technologies for each are investigated. While some of these candidate technologies are quite mature, there are still technological gaps remaining. The field of closed-loop medical devices is rapidly evolving, and whilst there is a lot of interest in this area, widespread adoption has not yet been achieved due to several remaining technological hurdles. However, the significant therapeutic benefits offered by this technology mean that this will be an active area for research for years to come.
Robust Control Design via Linear Programming
NASA Technical Reports Server (NTRS)
Keel, L. H.; Bhattacharyya, S. P.
1998-01-01
This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.
Moore, Brett L; Pyeatt, Larry D; Doufas, Anthony G
2009-01-01
Research has demonstrated the efficacy of closed-loop control of anesthesia using bispectral index (BIS) as the controlled variable, and the recent development of model-based, patient-adaptive systems has considerably improved anesthetic control. To further explore the use of model-based control in anesthesia, we investigated the application of fuzzy control in the delivery of patient-specific propofol-induced hypnosis. In simulated intraoperative patients, the fuzzy controller demonstrated clinically acceptable performance, suggesting that further study is warranted.
Evolution of the Generic Lock System at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brian Bevins; Yves Roblin
2003-10-13
The Generic Lock system is a software framework that allows highly flexible feedback control of large distributed systems. It allows system operators to implement new feedback loops between arbitrary process variables quickly and with no disturbance to the underlying control system. Several different types of feedback loops are provided and more are being added. This paper describes the further evolution of the system since it was first presented at ICALEPCS 2001 and reports on two years of successful use in accelerator operations. The framework has been enhanced in several key ways. Multiple-input, multiple-output (MIMO) lock types have been added formore » accelerator orbit and energy stabilization. The general purpose Proportional-Integral-Derivative (PID) locks can now be tuned automatically. The generic lock server now makes use of the Proxy IOC (PIOC) developed at Jefferson Lab to allow the locks to be monitored from any EPICS Channel Access aware client. (Previously clients had to be Cdev aware.) The dependency on the Qt XML parser has been replaced with the freely available Xerces DOM parser from the Apache project.« less
Passivity-based control of linear time-invariant systems modelled by bond graph
NASA Astrophysics Data System (ADS)
Galindo, R.; Ngwompo, R. F.
2018-02-01
Closed-loop control systems are designed for linear time-invariant (LTI) controllable and observable systems modelled by bond graph (BG). Cascade and feedback interconnections of BG models are realised through active bonds with no loading effect. The use of active bonds may lead to non-conservation of energy and the overall system is modelled by proposed pseudo-junction structures. These structures are build by adding parasitic elements to the BG models and the overall system may become singularly perturbed. The structures for these interconnections can be seen as consisting of inner structures that satisfy energy conservation properties and outer structures including multiport-coupled dissipative fields. These fields highlight energy properties like passivity that are useful for control design. In both interconnections, junction structures and dissipative fields for the controllers are proposed, and passivity is guaranteed for the closed-loop systems assuring robust stability. The cascade interconnection is applied to the structural representation of closed-loop transfer functions, when a stabilising controller is applied to a given nominal plant. Applications are given when the plant and the controller are described by state-space realisations. The feedback interconnection is used getting necessary and sufficient stability conditions based on the closed-loop characteristic polynomial, solving a pole-placement problem and achieving zero-stationary state error.
NASA Astrophysics Data System (ADS)
Luo, Bingyang; Chi, Shangjie; Fang, Man; Li, Mengchao
2017-03-01
Permanent magnet synchronous motor is used widely in industry, the performance requirements wouldn't be met by adopting traditional PID control in some of the occasions with high requirements. In this paper, a hybrid control strategy - nonlinear neural network PID and traditional PID parallel control are adopted. The high stability and reliability of traditional PID was combined with the strong adaptive ability and robustness of neural network. The permanent magnet synchronous motor will get better control performance when switch different working modes according to different controlled object conditions. As the results showed, the speed response adopting the composite control strategy in this paper was faster than the single control strategy. And in the case of sudden disturbance, the recovery time adopting the composite control strategy designed in this paper was shorter, the recovery ability and the robustness were stronger.
Modification and testing of an engine and fuel control system for a hydrogen fuelled gas turbine
NASA Astrophysics Data System (ADS)
Funke, H. H.-W.; Börner, S.; Hendrick, P.; Recker, E.
2011-10-01
The control of pollutant emissions has become more and more important by the development of new gas turbines. The use of hydrogen produced by renewable energy sources could be an alternative. Besides the reduction of NOx emissions emerged during the combustion process, another major question is how a hydrogen fuelled gas turbine including the metering unit can be controlled and operated. This paper presents a first insight in modifications on an Auxiliary Power Unit (APU) GTCP 36300 for using gaseous hydrogen as a gas turbine fuel. For safe operation with hydrogen, the metering of hydrogen has to be fast, precise, and secure. So, the quality of the metering unit's control loop has an important influence on this topic. The paper documents the empiric determination of the proportional integral derivative (PID) control parameters for the metering unit.
1979-04-01
tools, simplification of equipment interfaces involved in manual operations to provide simple system preparation, closing flight control inner loops ...alti- tude, and heading rate. The closed loops operate in three primary modes: cruise, dead reckoning, and approach. The aircraft is stabilized by...onboard closed loops , so the operator is not required to maintain hands-on operation to keep it in the air. The operator is able to command airspeed
An error criterion for determining sampling rates in closed-loop control systems
NASA Technical Reports Server (NTRS)
Brecher, S. M.
1972-01-01
The determination of an error criterion which will give a sampling rate for adequate performance of linear, time-invariant closed-loop, discrete-data control systems was studied. The proper modelling of the closed-loop control system for characterization of the error behavior, and the determination of an absolute error definition for performance of the two commonly used holding devices are discussed. The definition of an adequate relative error criterion as a function of the sampling rate and the parameters characterizing the system is established along with the determination of sampling rates. The validity of the expressions for the sampling interval was confirmed by computer simulations. Their application solves the problem of making a first choice in the selection of sampling rates.
Design of dissipative low-authority controllers using an eigensystem assignment technique
NASA Technical Reports Server (NTRS)
Maghami, P. G.; Gupta, S.; Joshi, S. M.
1992-01-01
A novel method for the design of dissipative, low-authority controllers has been developed. The method uses a sequential approach along with eigensystem assignment to compute rate and position gain matrices that assign a number of closed-loop poles of the system to desired locations. Because the feedback gain matrices are symmetric and nonnegative definite, the closed-loop stability is always guaranteed regardless of the model order or parameter inaccuracies. The resulting (nominal) closed-loop system can have specified damping ratios for m modes, which makes the plant amenable to high-authority controller design, using methods such as LQG/LTR or H-infinity. A numerical example is worked out for a flexible structure in order to demonstrate the proposed technique.
Shen, Cheng-Che; Yang, Albert C; Hung, Jeng-Hsiu; Hu, Li-Yu; Chiang, Yung-Yen; Tsai, Shih-Jen
2016-01-01
Pelvic inflammatory disease (PID) a common infection in women that is associated with significant morbidity and is a major cause of infertility. A clear temporal causal relationship between PID and psychiatric disorders has not been well established. We used a nationwide population-based retrospective cohort study to explore the relationship between PID and the subsequent development of psychiatric disorders. We identified subjects who were newly diagnosed with PID between 1 January 2000 and 31 December 2002 in the Taiwan National Health Insurance Research Database. A comparison cohort was constructed for patients without PID. A total of 21 930 PID and 21 930 matched control patients were observed until diagnosed with psychiatric disorders, or until death, withdrawal from the NHI system, or until 31 December 2009. Adjusted hazard ratio (HR) of bipolar disorder, depressive disorder, anxiety disorder and sleep disorder in subjects with PID were significantly higher (HR: 2.671, 2.173, 2.006 and 2.251, respectively) than that of the controls during the follow-up. PID may increase the risk of subsequent newly diagnosed bipolar disorder, depressive disorder, anxiety disorder and sleep disorder, which will impair life quality. Our findings highlight that clinicians should pay particular attention to psychiatric comorbidities in PID patients.
NASA Technical Reports Server (NTRS)
Kucuk, Senol
1988-01-01
Importance of the role of human operator in control systems has led to the particular area of manual control theory. Human describing functions were developed to model human behavior for manual control studies to take advantage of the successful and safe human operations. A single variable approach is presented that can be extended for multi-variable tasks where a low order human response model is used together with its rules, to adapt the model on-line, being capable of responding to the changes in the controlled element dynamics. Basic control theory concepts are used to combine the model, constrained with the physical observations, particularly, for the case of aircraft control. Pilot experience is represented as the initial model parameters. An adaptive root-locus method is presented as the adaptation law of the model where the closed loop bandwidth of the system is to be preserved in a stable manner with the adjustments of the pilot handling qualities which relate the latter to the closed loop bandwidth and damping of the closed loop pilot aircraft combination. A Kalman filter parameter estimator is presented as the controlled element identifier of the adaptive model where any discrepancies of the open loop dynamics from the presented one, are sensed to be compensated.
Sliding Mode Control of the X-33 with an Engine Failure
NASA Technical Reports Server (NTRS)
Shtessel, Yuri B.; Hall, Charles E.
2000-01-01
Ascent flight control of the X-3 is performed using two XRS-2200 linear aerospike engines. in addition to aerosurfaces. The baseline control algorithms are PID with gain scheduling. Flight control using an innovative method. Sliding Mode Control. is presented for nominal and engine failed modes of flight. An easy to implement, robust controller. requiring no reconfiguration or gain scheduling is demonstrated through high fidelity flight simulations. The proposed sliding mode controller utilizes a two-loop structure and provides robust. de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of engine failure, bounded external disturbances (wind gusts) and uncertain matrix of inertia. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues. Conditions that restrict engine failures to robustness domain of the sliding mode controller are derived. Overall stability of a two-loop flight control system is assessed. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in the presence of external disturbances and vehicle inertia uncertainties, as well as the single engine failed case. The designed robust controller will significantly reduce the time and cost associated with flying new trajectory profiles or orbits, with new payloads, and with modified vehicles
Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve
Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.
2007-01-30
An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.
Reliable numerical computation in an optimal output-feedback design
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1991-01-01
A reliable algorithm is presented for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters. The algorithm is a part of a design algorithm for optimal linear dynamic output-feedback controller that minimizes a finite-time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control-law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed-loop eigensystem. This approach through the use of an accurate Pade series approximation does not require the closed-loop system matrix to be diagonalizable. The algorithm was included in a control design package for optimal robust low-order controllers. Usefulness of the proposed numerical algorithm was demonstrated using numerous practical design cases where degeneracies occur frequently in the closed-loop system under an arbitrary controller design initialization and during the numerical search.
NASA Astrophysics Data System (ADS)
Zhu, Baolong; Zhang, Zhiping; Zhou, Ding; Ma, Jie; Li, Shunli
2017-08-01
This paper investigates the H∞ control problem of the attitude stabilisation of a rigid spacecraft with external disturbances using prediction-based sampled-data control strategy. Aiming to achieve a 'virtual' closed-loop system, a type of parameterised sampled-data controller is designed by introducing a prediction mechanism. The resultant closed-loop system is equivalent to a hybrid system featured by a continuous-time and an impulsive differential system. By using a time-varying Lyapunov functional, a generalised bounded real lemma (GBRL) is first established for a kind of impulsive differential system. Based on this GBRL and Lyapunov functional approach, a sufficient condition is derived to guarantee the closed-loop system to be asymptotically stable and to achieve a prescribed H∞ performance. In addition, the controller parameter tuning is cast into a convex optimisation problem. Simulation and comparative results are provided to illustrate the effectiveness of the developed control scheme.
Singh, Jay; Chattterjee, Kalyan; Vishwakarma, C B
2018-01-01
Load frequency controller has been designed for reduced order model of single area and two-area reheat hydro-thermal power system through internal model control - proportional integral derivative (IMC-PID) control techniques. The controller design method is based on two degree of freedom (2DOF) internal model control which combines with model order reduction technique. Here, in spite of taking full order system model a reduced order model has been considered for 2DOF-IMC-PID design and the designed controller is directly applied to full order system model. The Logarithmic based model order reduction technique is proposed to reduce the single and two-area high order power systems for the application of controller design.The proposed IMC-PID design of reduced order model achieves good dynamic response and robustness against load disturbance with the original high order system. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Nonlinear Adaptive PID Control for Greenhouse Environment Based on RBF Network
Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui
2012-01-01
This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production. PMID:22778587
Closed-Loop Aeromaneuvering for a Mars Precision Landing
NASA Technical Reports Server (NTRS)
Smith, Roy; Boussalis, Dhemetrios; Hadaegh, Fred Y.
1997-01-01
Controlled aeromaneuvering is considered as a means of achieving a precisely targeted landing on Mars. This paper presents a preliminary study of the control issues. The candidate vehicle is the existing Mars Pathfinder augmented with roll thrusters and a center of mass offset actuator. These allow control of both bank angle and lift force, giving the ability to control the range and cross-track during the aeromaneuvering entry. A preliminary control system structure is proposed and a design simulation illustrates significant targeting improvement under closed-loop control.
Dynamic simulation of perturbation responses in a closed-loop virtual arm model.
Du, Yu-Fan; He, Xin; Lan, Ning
2010-01-01
A closed-loop virtual arm (VA) model has been developed in SIMULINK environment by adding spinal reflex circuits and propriospinal neural networks to the open-loop VA model developed in early study [1]. An improved virtual muscle model (VM4.0) is used to speed up simulation and to generate more precise recruitment of muscle force at low levels of muscle activation. Time delays in the reflex loops are determined by their synaptic connections and afferent transmission back to the spinal cord. Reflex gains are properly selected so that closed-loop responses are stable. With the closed-loop VA model, we are developing an approach to evaluate system behaviors by dynamic simulation of perturbation responses. Joint stiffness is calculated based on simulated perturbation responses by a least-squares algorithm in MATLAB. This method of dynamic simulation will be essential for further evaluation of feedforward and reflex control of arm movement and position.
A novel system for automated propofol sedation: hybrid sedation system (HSS).
Zaouter, Cedrick; Taddei, Riccardo; Wehbe, Mohamad; Arbeid, Erik; Cyr, Shantale; Giunta, Francesco; Hemmerling, Thomas M
2017-04-01
Closed-loop systems for propofol have been demonstrated to be safe and reliable for general anesthesia. However, no study has been conducted using a closed-loop system specifically designed for sedation in patients under spinal anesthesia. We developed an automatic anesthesia sedation system that allows for closed-loop delivery of propofol for sedation integrating a decision support system, called the hybrid sedation system (HSS). The objective of this study is to compare this system with standard practice. One hundred fifty patients were enrolled and randomly assigned to two groups: HSS-Group (N = 75), in which propofol was administered using a closed-loop system; Control Group (N = 75), in which propofol was delivered manually. The clinical performance of the propofol sedation control is defined as efficacy to maintain bispectral index (BIS) near 65. The clinical control was called 'Excellent', 'Good', 'Poor' and 'Inadequate' with BIS values within 10 %, from 11 to 20 %, 21 to 30 %, or greater than 30 % of the BIS target of 65, respectively. The controller performance was evaluated using Varvel's parameters. Data are presented as mean ± standard deviation, groups were compared using t test or Chi square test, P < 0.05. Clinical performance of sedation showed 'Excellent' control in the HSS-group for a significantly longer period of time (49 vs. 26 % in the control group, P < 0.0001). 'Poor' and 'Inadequate' sedation was significantly shorter in the HSS Group compared to the Control Group (11 and 10 % vs. 20 and 18 %, respectively, P < 0.0001). The novel, closed-loop system for propofol sedation showed better maintenance of the target BIS value compared to manual administration.
Probing the closed-loop model of mRNA translation in living cells
Archer, Stuart K; Shirokikh, Nikolay E; Hallwirth, Claus V; Beilharz, Traude H; Preiss, Thomas
2015-01-01
The mRNA closed-loop, formed through interactions between the cap structure, poly(A) tail, eIF4E, eIF4G and PAB, features centrally in models of eukaryotic translation initiation, although direct support for its existence in vivo is not well established. Here, we investigated the closed-loop using a combination of mRNP isolation from rapidly cross-linked cells and high-throughput qPCR. Using the interaction between these factors and the opposing ends of mRNAs as a proxy for the closed-loop, we provide evidence that it is prevalent for eIF4E/4G-bound but unexpectedly sparse for PAB1-bound mRNAs, suggesting it primarily occurs during a distinct phase of polysome assembly. We observed mRNA-specific variation in the extent of closed-loop formation, consistent with a role for polysome topology in the control of gene expression. PMID:25826658
Design strategies for dynamic closed-loop optogenetic neurocontrol in vivo
NASA Astrophysics Data System (ADS)
Bolus, M. F.; Willats, A. A.; Whitmire, C. J.; Rozell, C. J.; Stanley, G. B.
2018-04-01
Objective. Controlling neural activity enables the possibility of manipulating sensory perception, cognitive processes, and body movement, in addition to providing a powerful framework for functionally disentangling the neural circuits that underlie these complex phenomena. Over the last decade, optogenetic stimulation has become an increasingly important and powerful tool for understanding neural circuit function, owing to the ability to target specific cell types and bidirectionally modulate neural activity. To date, most stimulation has been provided in open-loop or in an on/off closed-loop fashion, where previously-determined stimulation is triggered by an event. Here, we describe and demonstrate a design approach for precise optogenetic control of neuronal firing rate modulation using feedback to guide stimulation continuously. Approach. Using the rodent somatosensory thalamus as an experimental testbed for realizing desired time-varying patterns of firing rate modulation, we utilized a moving average exponential filter to estimate firing rate online from single-unit spiking measured extracellularly. This estimate of instantaneous rate served as feedback for a proportional integral (PI) controller, which was designed during the experiment based on a linear-nonlinear Poisson (LNP) model of the neuronal response to light. Main results. The LNP model fit during the experiment enabled robust closed-loop control, resulting in good tracking of sinusoidal and non-sinusoidal targets, and rejection of unmeasured disturbances. Closed-loop control also enabled manipulation of trial-to-trial variability. Significance. Because neuroscientists are faced with the challenge of dissecting the functions of circuit components, the ability to maintain control of a region of interest in spite of changes in ongoing neural activity will be important for disambiguating function within networks. Closed-loop stimulation strategies are ideal for control that is robust to such changes, and the employment of continuous feedback to adjust stimulation in real-time can improve the quality of data collected using optogenetic manipulation.
SU-F-J-10: Sliding Mode Control of a SMA Actuated Active Flexible Needle for Medical Procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podder, T
Purpose: In medical interventional procedures such as brachytherapy, ablative therapies and biopsy precise steering and accurate placement of needles are very important for anatomical obstacle avoidance and accurate targeting. This study presents the efficacy of a sliding mode controller for Shape Memory Alloy (SMA) actuated flexible needle for medical procedures. Methods: Second order system dynamics of the SMA actuated active flexible needle was used for deriving the sliding mode control equations. Both proportional-integral-derivative (PID) and adaptive PID sliding mode control (APIDSMC) algorithms were developed and implemented. The flexible needle was attached at the end of a 6 DOF robotic system.more » Through LabView programming environment, the control commands were generated using the PID and APIDSMC algorithms. Experiments with artificial tissue mimicking phantom were performed to evaluate the performance of the controller. The actual needle tip position was obtained using an electromagnetic (EM) tracking sensor (Aurora, NDI, waterloo, Canada) at a sampling period of 1ms. During experiment, external disturbances were created applying force and thermal shock to investigate the robustness of the controllers. Results: The root mean square error (RMSE) values for APIDSMC and PID controllers were 0.75 mm and 0.92 mm, respectively, for sinusoidal reference input. In the presence of external disturbances, the APIDSMC controller showed much smoother and less overshooting response compared to that of the PID controller. Conclusion: Performance of the APIDSMC was superior to the PID controller. The APIDSMC was proved to be more effective controller in compensating the SMA uncertainties and external disturbances with clinically acceptable thresholds.« less
Griffin, Sarah A; Samuel, Douglas B
2014-10-01
The Personality Inventory for DSM-5 (PID-5) was developed as a measure of the maladaptive personality trait model included within Section III of the DSM-5. Although preliminary findings have suggested the PID-5 has a five-factor structure that overlaps considerably with the Five-Factor Model (FFM) at the higher order level, there has been much less attention on the specific locations of the 25 lower-order traits. Joint exploratory factor analysis of the PID-5 traits and the 30 facets of the NEO-PI-R were used to determine the lower-order structure of the PID-5. Results indicated the PID-5's domain-level structure closely resembled the FFM. We also explored the placement of several lower-order facets that have not loaded consistently in previous studies. Overall, these results indicate that the PID-5 shares a common structure with the FFM and clarify the placement of some interstitial facets. More research investigating the lower-order facets is needed to determine how they fit into the hierarchical structure and explicate their relationships to existing measures of pathological traits. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Design and Control of a Closed-Loop Brushless Torque Activator
1990-05-01
AD-A270 760 Technical Report 1244 Design and Control of a Closed-Loop Brushless Torque Activator Michael Dean Levi MIT Artificial Intelligence... Brushless N00014-86-K-0685 Torque Actuator 6. AUTHOR(S) Michael Dean Levin 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) B. PERFORMING...200 words) This’report explores the design and control issues associated with a brushless actuator capable of achieving extremely high torque
Rasmussen, Christina B.; Kjaer, Susanne K.; Albieri, Vanna; Bandera, Elisa V.; Doherty, Jennifer A.; Høgdall, Estrid; Webb, Penelope M.; Jordan, Susan J.; Rossing, Mary Anne; Wicklund, Kristine G.; Goodman, Marc T.; Modugno, Francesmary; Moysich, Kirsten B.; Ness, Roberta B.; Edwards, Robert P.; Schildkraut, Joellen M.; Berchuck, Andrew; Olson, Sara H.; Kiemeney, Lambertus A.; Massuger, Leon F. A. G.; Narod, Steven A.; Phelan, Catherine M.; Anton-Culver, Hoda; Ziogas, Argyrios; Wu, Anna H.; Pearce, Celeste L.; Risch, Harvey A.; Jensen, Allan
2017-01-01
Inflammation has been implicated in ovarian carcinogenesis. However, studies investigating the association between pelvic inflammatory disease (PID) and ovarian cancer risk are few and inconsistent. We investigated the association between PID and the risk of epithelial ovarian cancer according to tumor behavior and histotype. We pooled data from 13 case-control studies, conducted between 1989 and 2009, from the Ovarian Cancer Association Consortium (OCAC), including 9,162 women with ovarian cancers, 2,354 women with borderline tumors, and 14,736 control participants. Study-specific odds ratios were estimated and subsequently combined into a pooled odds ratio using a random-effects model. A history of PID was associated with an increased risk of borderline tumors (pooled odds ratio (pOR) = 1.32, 95% confidence interval (CI): 1.10, 1.58). Women with at least 2 episodes of PID had a 2-fold increased risk of borderline tumors (pOR = 2.14, 95% CI: 1.08, 4.24). No association was observed between PID and ovarian cancer risk overall (pOR = 0.99, 95% CI: 0.83, 1.19); however, a statistically nonsignificantly increased risk of low-grade serous tumors (pOR = 1.48, 95% CI: 0.92, 2.38) was noted. In conclusion, PID was associated with an increased risk of borderline ovarian tumors, particularly among women who had had multiple episodes of PID. Although our results indicated a histotype-specific association with PID, the association of PID with ovarian cancer risk is still somewhat uncertain and requires further investigation. PMID:27941069
Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation
Zbrzeski, Adeline; Bornat, Yannick; Hillen, Brian; Siu, Ricardo; Abbas, James; Jung, Ranu; Renaud, Sylvie
2016-01-01
Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications. PMID:27378844
Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong
2018-01-01
Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm–neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS. PMID:29671822
Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong
2018-04-19
Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm⁻neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS.
Inverse optimal self-tuning PID control design for an autonomous underwater vehicle
NASA Astrophysics Data System (ADS)
Rout, Raja; Subudhi, Bidyadhar
2017-01-01
This paper presents a new approach to path following control design for an autonomous underwater vehicle (AUV). A NARMAX model of the AUV is derived first and then its parameters are adapted online using the recursive extended least square algorithm. An adaptive Propotional-Integral-Derivative (PID) controller is developed using the derived parameters to accomplish the path following task of an AUV. The gain parameters of the PID controller are tuned using an inverse optimal control technique, which alleviates the problem of solving Hamilton-Jacobian equation and also satisfies an error cost function. Simulation studies were pursued to verify the efficacy of the proposed control algorithm. From the obtained results, it is envisaged that the proposed NARMAX model-based self-tuning adaptive PID control provides good path following performance even in the presence of uncertainty arising due to ocean current or hydrodynamic parameter.
Kellmeyer, Philipp; Cochrane, Thomas; Müller, Oliver; Mitchell, Christine; Ball, Tonio; Fins, Joseph J; Biller-Andorno, Nikola
2016-10-01
Closed-loop medical devices such as brain-computer interfaces are an emerging and rapidly advancing neurotechnology. The target patients for brain-computer interfaces (BCIs) are often severely paralyzed, and thus particularly vulnerable in terms of personal autonomy, decisionmaking capacity, and agency. Here we analyze the effects of closed-loop medical devices on the autonomy and accountability of both persons (as patients or research participants) and neurotechnological closed-loop medical systems. We show that although BCIs can strengthen patient autonomy by preserving or restoring communicative abilities and/or motor control, closed-loop devices may also create challenges for moral and legal accountability. We advocate the development of a comprehensive ethical and legal framework to address the challenges of emerging closed-loop neurotechnologies like BCIs and stress the centrality of informed consent and refusal as a means to foster accountability. We propose the creation of an international neuroethics task force with members from medical neuroscience, neuroengineering, computer science, medical law, and medical ethics, as well as representatives of patient advocacy groups and the public.
Closed loop statistical performance analysis of N-K knock controllers
NASA Astrophysics Data System (ADS)
Peyton Jones, James C.; Shayestehmanesh, Saeed; Frey, Jesse
2017-09-01
The closed loop performance of engine knock controllers cannot be rigorously assessed from single experiments or simulations because knock behaves as a random process and therefore the response belongs to a random distribution also. In this work a new method is proposed for computing the distributions and expected values of the closed loop response, both in steady state and in response to disturbances. The method takes as its input the control law, and the knock propensity characteristic of the engine which is mapped from open loop steady state tests. The method is applicable to the 'n-k' class of knock controllers in which the control action is a function only of the number of cycles n since the last control move, and the number k of knock events that have occurred in this time. A Cumulative Summation (CumSum) based controller falls within this category, and the method is used to investigate the performance of the controller in a deeper and more rigorous way than has previously been possible. The results are validated using onerous Monte Carlo simulations, which confirm both the validity of the method and its high computational efficiency.
Quantitative Feedback Technique (QFT): Bridging the Gap
2003-05-01
with Eq. (2) illustrates: (a) the effect of changes of the uncertainty set P(s) upon the output of the closed -loop control system is reduced by the...Bridging the Gap root-locus technique the dominant closed -loop poles are determined for a ζ= 0.45. Table 3 presents the required value of Kx and...degree of decoupling will have been enhanced. Method 1 is then more readily applicable, with the additional benefit of reduced closed -loop BW. E.R.2
Smart lighting using a liquid crystal modulator
NASA Astrophysics Data System (ADS)
Baril, Alexandre; Thibault, Simon; Galstian, Tigran
2017-08-01
Now that LEDs have massively invaded the illumination market, a clear trend has emerged for more efficient and targeted lighting. The project described here is at the leading edge of the trend and aims at developing an evaluation board to test smart lighting applications. This is made possible thanks to a new liquid crystal light modulator recently developed for broadening LED light beams. The modulator is controlled by electrical signals and is characterized by a linear working zone. This feature allows the implementation of a closed loop control with a sensor feedback. This project shows that the use of computer vision is a promising opportunity for cheap closed loop control. The developed evaluation board integrates the liquid crystal modulator, a webcam, a LED light source and all the required electronics to implement a closed loop control with a computer vision algorithm.
Novel sensors to enable closed-loop active clearance control in gas turbine engines
NASA Astrophysics Data System (ADS)
Geisheimer, Jonathan; Holst, Tom
2014-06-01
Active clearance control within the turbine section of gas turbine engines presents and opportunity within aerospace and industrial applications to improve operating efficiencies and the life of downstream components. Open loop clearance control is currently employed during the development of all new large core aerospace engines; however, the ability to measure the gap between the blades and the case and close down the clearance further presents as opportunity to gain even greater efficiencies. The turbine area is one of the harshest environments for long term placement of a sensor in addition to the extreme accuracy requirements required to enable closed loop clearance control. This paper gives an overview of the challenges of clearance measurements within the turbine as well as discusses the latest developments of a microwave sensor designed for this application.
Hardware-in-the-Loop Rendezvous Tests of a Novel Actuators Command Concept
NASA Astrophysics Data System (ADS)
Gomes dos Santos, Willer; Marconi Rocco, Evandro; Boge, Toralf; Benninghoff, Heike; Rems, Florian
2016-12-01
Integration, test and validation results, in a real-time environment, of a novel concept for spacecraft control are presented in this paper. The proposed method commands simultaneously a group of actuators optimizing a given set of objective functions based on a multiobjective optimization technique. Since close proximity maneuvers play an important role in orbital servicing missions, the entire GNC system has been integrated and tested at a hardware-in-the-loop (HIL) rendezvous and docking simulator known as European Proximity Operations Simulator (EPOS). During the test campaign at EPOS facility, a visual camera has been used to provide the necessary measurements for calculating the relative position with respect to the target satellite during closed-loop simulations. In addition, two different configurations of spacecraft control have been considered in this paper: a thruster reaction control system and a mixed actuators mode which includes thrusters, reaction wheels, and magnetic torqrods. At EPOS, results of HIL closed-loop tests have demonstrated that a safe and stable rendezvous approach can be achieved with the proposed GNC loop.
Phase-lock loop frequency control and the dropout problem
NASA Technical Reports Server (NTRS)
Attwood, S.; Kline, A. J.
1968-01-01
Technique automatically sets the frequency of narrow band phase-lock loops within automatic lock-in-range. It presets a phase-lock loop to a desired center frequency with a closed loop electronic frequency discriminator and holds the phase-lock loop to that center frequency until lock is achieved.
Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit
2013-11-01
The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations. Copyright © 2013 Elsevier B.V. All rights reserved.
Bally, Lia; Thabit, Hood; Kojzar, Harald; Mader, Julia K; Qerimi-Hyseni, Jehona; Hartnell, Sara; Tauschmann, Martin; Allen, Janet M; Wilinska, Malgorzata E; Pieber, Thomas R; Evans, Mark L; Hovorka, Roman
2017-04-01
Tight control of blood glucose concentration in people with type 1 diabetes predisposes to hypoglycaemia. We aimed to investigate whether day-and-night hybrid closed-loop insulin delivery can improve glucose control while alleviating the risk of hypoglycaemia in adults with HbA 1c below 7·5% (58 mmol/mol). In this open-label, randomised, crossover study, we recruited adults (aged ≥18 years) with type 1 diabetes and HbA 1c below 7·5% from Addenbrooke's Hospital (Cambridge, UK) and Medical University of Graz (Graz, Austria). After a 2-4 week run-in period, participants were randomly assigned (1:1), using web-based randomly permuted blocks of four, to receive insulin via the day-and-night hybrid closed-loop system or usual pump therapy for 4 weeks, followed by a 2-4 week washout period and then the other intervention for 4 weeks. Treatment interventions were unsupervised and done under free-living conditions. During the closed-loop period, a model-predictive control algorithm directed insulin delivery, and prandial insulin delivery was calculated with a standard bolus wizard. The primary outcome was the proportion of time when sensor glucose concentration was in target range (3·9-10·0 mmol/L) over the 4 week study period. Analyses were by intention to treat. This study is registered with ClinicalTrials.gov, number NCT02727231, and is completed. Between March 21 and June 24, 2016, we recruited 31 participants, of whom 29 were randomised. One participant withdrew during the first closed-loop period because of dissatisfaction with study devices and glucose control. The proportion of time when sensor glucose concentration was in target range was 10·5 percentage points higher (95% CI 7·6-13·4; p<0·0001) during closed-loop delivery compared with usual pump therapy (65·6% [SD 8·1] when participants used usual pump therapy vs 76·2% [6·4] when they used closed-loop). Compared with usual pump therapy, closed-loop delivery also reduced the proportion of time spent in hypoglycaemia: the proportion of time with glucose concentration below 3·5 mmol/L was reduced by 65% (53-74, p<0·0001) and below 2·8 mmol/L by 76% (59-86, p<0·0001). No episodes of serious hypoglycaemia or other serious adverse events occurred. Use of day-and-night hybrid closed-loop insulin delivery under unsupervised, free-living conditions for 4 weeks in adults with type 1 diabetes and HbA 1c below 7·5% is safe and well tolerated, improves glucose control, and reduces hypoglycaemia burden. Larger and longer studies are warranted. Swiss National Science Foundation (P1BEP3_165297), JDRF, UK National Institute for Health Research Cambridge Biomedical Research Centre, and Wellcome Strategic Award (100574/Z/12/Z). Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license. Published by Elsevier Ltd.. All rights reserved.
Trustworthy persistent identifier systems of the future
NASA Astrophysics Data System (ADS)
Golodoniuc, Pavel; Klump, Jens; Car, Nicholas
2016-04-01
Over the last two decades, persistent identifier (PID) systems have seen some significant changes in their governance policies, system capabilities, and technology. The development of most systems was driven by two main application areas, namely archives and libraries. Guidelines and criteria for trustworthy PID systems have been clearly devised (Bütikofer, 2009) and many PID system implementations for the identification of static digital objects have been built (e.g., PURL). However systems delivering persistent identifiers for dynamic datasets are not yet mature. There has been a rapid proliferation of different PID systems caused by the specific technical or organisational requirements of various communities that could not be met by existing systems such as DOI, ISBN, and EAN. Many of these different systems were limited by their inability to provide native means of persistent identifier resolution. This has prompted a decoupling of PID-associated data from the resolution service and this is where the Handle system has played a significant role. The Handle allowed to build a distributed system of independently managed resolver services. A trustworthy PID system must be designed to outlive the objects it provides persistent identifiers for, which may cease to exist or otherwise be deprecated, and the technology used to implement it, which will certainly need to change with time. We propose that such a system should rest on four pillars of agreements - (i) definitions, (ii) policies, (iii) services, and (iv) data services, to ensure longevity. While we believe all four pillars are equally important, we intentionally leave regulating aspects of issuing of identifiers and their registration out of the scope of this paper and focus on the agreements that have to be established between PID resolver services and the data sources indicated by the persistent identifiers. We propose an approach to development of PID systems that combines the use of (a) the Handle system as a highly distributed system of independent nodes that provides registration and first-degree resolution facilities for persistent identifiers, and (b) the PID Service tool to enable fine-grained resolution of object representations in dynamic datasets using parameterized requests. The PID Service, deployed in close proximity to data services and managed by individual organisations, gives great flexibility and control over multiple representations and versions of information objects in data stores while allowing basic resolution via the Handle system. Through the assessment proposals and implementation example we give, we highlight a critical aspect of PID system design and implementation that we believe is often neglected - the protocols and procedures required for PID system decommissioning. These protocols and procedures are needed in order for PID systems' core data to be able to be transferred to successor systems when current systems need replacing, as we indicate they inevitably will. Not knowing what successor systems may be, we strongly believe in using open standard formats as this gives future system implementers the best possible chance of being able to work with the data export. Smooth system handover will ensure that identifiers minted today will actually persist into the future.
Three parameters optimizing closed-loop control in sequential segmental neuromuscular stimulation.
Zonnevijlle, E D; Somia, N N; Perez Abadia, G; Stremel, R W; Maldonado, C J; Werker, P M; Kon, M; Barker, J H
1999-05-01
In conventional dynamic myoplasties, the force generation is poorly controlled. This causes unnecessary fatigue of the transposed/transplanted electrically stimulated muscles and causes damage to the involved tissues. We introduced sequential segmental neuromuscular stimulation (SSNS) to reduce muscle fatigue by allowing part of the muscle to rest periodically while the other parts work. Despite this improvement, we hypothesize that fatigue could be further reduced in some applications of dynamic myoplasty if the muscles were made to contract according to need. The first necessary step is to gain appropriate control over the contractile activity of the dynamic myoplasty. Therefore, closed-loop control was tested on a sequentially stimulated neosphincter to strive for the best possible control over the amount of generated pressure. A selection of parameters was validated for optimizing control. We concluded that the frequency of corrections, the threshold for corrections, and the transition time are meaningful parameters in the controlling algorithm of the closed-loop control in a sequentially stimulated myoplasty.
PDCI Wide-Area Damping Control: PSLF Simulations of the 2016 Open and Closed Loop Test Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilches Bernal, Felipe; Pierre, Brian Joseph; Elliott, Ryan Thomas
To demonstrate and validate the performance of the wide-are a damping control system, the project plans to conduct closed-loop tests on the PDCI in summer/fall 2016. A test plan details the open and closed loop tests to be conducted on the P DCI using the wide-area damping control system. To ensure the appropriate level of preparedness, simulations were performed in order to predict and evaluate any possible unsafe operations before hardware experiments are attempted. This report contains the result s from these simulations using the power system dynamics software PSLF (Power System Load Flow, trademark of GE). The simulations usemore » the WECC (Western Electricity Coordinating Council) 2016 light summer and heavy summer base cases.« less
First Results from a Hardware-in-the-Loop Demonstration of Closed-Loop Autonomous Formation Flying
NASA Technical Reports Server (NTRS)
Gill, E.; Naasz, Bo; Ebinuma, T.
2003-01-01
A closed-loop system for the demonstration of autonomous satellite formation flying technologies using hardware-in-the-loop has been developed. Making use of a GPS signal simulator with a dual radio frequency outlet, the system includes two GPS space receivers as well as a powerful onboard navigation processor dedicated to the GPS-based guidance, navigation, and control of a satellite formation in real-time. The closed-loop system allows realistic simulations of autonomous formation flying scenarios, enabling research in the fields of tracking and orbit control strategies for a wide range of applications. The autonomous closed-loop formation acquisition and keeping strategy is based on Lyapunov's direct control method as applied to the standard set of Keplerian elements. This approach not only assures global and asymptotic stability of the control but also maintains valuable physical insight into the applied control vectors. Furthermore, the approach can account for system uncertainties and effectively avoids a computationally expensive solution of the two point boundary problem, which renders the concept particularly attractive for implementation in onboard processors. A guidance law has been developed which strictly separates the relative from the absolute motion, thus avoiding the numerical integration of a target trajectory in the onboard processor. Moreover, upon using precise kinematic relative GPS solutions, a dynamical modeling or filtering is avoided which provides for an efficient implementation of the process on an onboard processor. A sample formation flying scenario has been created aiming at the autonomous transition of a Low Earth Orbit satellite formation from an initial along-track separation of 800 m to a target distance of 100 m. Assuming a low-thrust actuator which may be accommodated on a small satellite, a typical control accuracy of less than 5 m has been achieved which proves the applicability of autonomous formation flying techniques to formations of satellites as close as 50 m.
PID self tuning control based on Mamdani fuzzy logic control for quadrotor stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priyambodo, Tri Kuntoro, E-mail: mastri@ugm.ac.id; Putra, Agfianto Eko; Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta
Quadrotor as one type of UAV have the ability to perform Vertical Take Off and Landing (VTOL). It allows the Quadrotor to be stationary hovering in the air. PID (Proportional Integral Derivative) control system is one of the control methods that are commonly used. It is usually used to optimize the Quadrotor stabilization at least based on the three Eulerian angles (roll, pitch, and yaw) as input parameters for the control system. The three constants of PID can be obtained in various methods. The simplest method is tuning manually. This method has several weaknesses. For example if the three constantsmore » are not exact, the resulting response will deviate from the desired result. By combining the methods of PID with fuzzy logic systems where human expertise is implemented into the machine language is expected to further optimize the control system.« less
Multi-mode ultrasonic welding control and optimization
Tang, Jason C.H.; Cai, Wayne W
2013-05-28
A system and method for providing multi-mode control of an ultrasonic welding system. In one embodiment, the control modes include the energy of the weld, the time of the welding process and the compression displacement of the parts being welded during the welding process. The method includes providing thresholds for each of the modes, and terminating the welding process after the threshold for each mode has been reached, the threshold for more than one mode has been reached or the threshold for one of the modes has been reached. The welding control can be either open-loop or closed-loop, where the open-loop process provides the mode thresholds and once one or more of those thresholds is reached the welding process is terminated. The closed-loop control provides feedback of the weld energy and/or the compression displacement so that the weld power and/or weld pressure can be increased or decreased accordingly.
NASA Technical Reports Server (NTRS)
Johnson, Eric N.; Davidson, John B.; Murphy, Patrick C.
1994-01-01
When using eigenspace assignment to design an aircraft flight control system, one must first develop a model of the plant. Certain questions arise when creating this model as to which dynamics of the plant need to be included in the model and which dynamics can be left out or approximated. The answers to these questions are important because a poor choice can lead to closed-loop dynamics that are unpredicted by the design model. To alleviate this problem, a method has been developed for predicting the effect of not including certain dynamics in the design model on the final closed-loop eigenspace. This development provides insight as to which characteristics of unmodeled dynamics will ultimately affect the closed-loop rigid-body dynamics. What results from this insight is a guide for eigenstructure control law designers to aid them in determining which dynamics need or do not need to be included and a new way to include these dynamics in the flight control system design model to achieve a required accuracy in the closed-loop rigid-body dynamics. The method is illustrated for a lateral-directional flight control system design using eigenspace assignment for the NASA High Alpha Research Vehicle (HARV).
Zheng, Xuezhe; Chang, Eric; Amberg, Philip; Shubin, Ivan; Lexau, Jon; Liu, Frankie; Thacker, Hiren; Djordjevic, Stevan S; Lin, Shiyun; Luo, Ying; Yao, Jin; Lee, Jin-Hyoung; Raj, Kannan; Ho, Ron; Cunningham, John E; Krishnamoorthy, Ashok V
2014-05-19
We report the first complete 10G silicon photonic ring modulator with integrated ultra-efficient CMOS driver and closed-loop wavelength control. A selective substrate removal technique was used to improve the ring tuning efficiency. Limited by the thermal tuner driver output power, a maximum open-loop tuning range of about 4.5nm was measured with about 14mW of total tuning power including the heater driver circuit power consumption. Stable wavelength locking was achieved with a low-power mixed-signal closed-loop wavelength controller. An active wavelength tracking range of > 500GHz was demonstrated with controller energy cost of only 20fJ/bit.
Su, Fei; Wang, Jiang; Niu, Shuangxia; Li, Huiyan; Deng, Bin; Liu, Chen; Wei, Xile
2018-02-01
The efficacy of deep brain stimulation (DBS) for Parkinson's disease (PD) depends in part on the post-operative programming of stimulation parameters. Closed-loop stimulation is one method to realize the frequent adjustment of stimulation parameters. This paper introduced the nonlinear predictive control method into the online adjustment of DBS amplitude and frequency. This approach was tested in a computational model of basal ganglia-thalamic network. The autoregressive Volterra model was used to identify the process model based on physiological data. Simulation results illustrated the efficiency of closed-loop stimulation methods (amplitude adjustment and frequency adjustment) in improving the relay reliability of thalamic neurons compared with the PD state. Besides, compared with the 130Hz constant DBS the closed-loop stimulation methods can significantly reduce the energy consumption. Through the analysis of inter-spike-intervals (ISIs) distribution of basal ganglia neurons, the evoked network activity by the closed-loop frequency adjustment stimulation was closer to the normal state. Copyright © 2017 Elsevier Ltd. All rights reserved.
Closed loop insulin delivery in diabetes.
Battelino, Tadej; Omladič, Jasna Šuput; Phillip, Moshe
2015-06-01
The primary goal of type 1 diabetes treatment is attaining near-normal glucose values. This currently remains out of reach for most people with type 1 diabetes despite intensified insulin treatment in the form of insulin analogues, educational interventions, continuous glucose monitoring, and sensor augmented insulin pump. The main remaining problem is risk of hypoglycaemia, which cannot be sufficiently reduced in all patient groups. Additionally, patients' burn-out often develops with years of tedious day-to-day diabetes management, rendering available diabetes-related technology less efficient. Over the past 40 years, several attempts have been made towards computer-programmed insulin delivery in the form of closed loop, with faster developments especially in the past decade. Automated insulin delivery has reduced human error in glycaemic control and considerably lessened the burden of routine self-management. In this chapter, data from randomized controlled trials with closed-loop insulin delivery that included type 1 diabetes population are summarized, and an evidence-based vision for possible routine utilization of closed loop is provided. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rasmussen, Christina B; Kjaer, Susanne K; Albieri, Vanna; Bandera, Elisa V; Doherty, Jennifer A; Høgdall, Estrid; Webb, Penelope M; Jordan, Susan J; Rossing, Mary Anne; Wicklund, Kristine G; Goodman, Marc T; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Edwards, Robert P; Schildkraut, Joellen M; Berchuck, Andrew; Olson, Sara H; Kiemeney, Lambertus A; Massuger, Leon F A G; Narod, Steven A; Phelan, Catherine M; Anton-Culver, Hoda; Ziogas, Argyrios; Wu, Anna H; Pearce, Celeste L; Risch, Harvey A; Jensen, Allan
2017-01-01
Inflammation has been implicated in ovarian carcinogenesis. However, studies investigating the association between pelvic inflammatory disease (PID) and ovarian cancer risk are few and inconsistent. We investigated the association between PID and the risk of epithelial ovarian cancer according to tumor behavior and histotype. We pooled data from 13 case-control studies, conducted between 1989 and 2009, from the Ovarian Cancer Association Consortium (OCAC), including 9,162 women with ovarian cancers, 2,354 women with borderline tumors, and 14,736 control participants. Study-specific odds ratios were estimated and subsequently combined into a pooled odds ratio using a random-effects model. A history of PID was associated with an increased risk of borderline tumors (pooled odds ratio (pOR) = 1.32, 95% confidence interval (CI): 1.10, 1.58). Women with at least 2 episodes of PID had a 2-fold increased risk of borderline tumors (pOR = 2.14, 95% CI: 1.08, 4.24). No association was observed between PID and ovarian cancer risk overall (pOR = 0.99, 95% CI: 0.83, 1.19); however, a statistically nonsignificantly increased risk of low-grade serous tumors (pOR = 1.48, 95% CI: 0.92, 2.38) was noted. In conclusion, PID was associated with an increased risk of borderline ovarian tumors, particularly among women who had had multiple episodes of PID. Although our results indicated a histotype-specific association with PID, the association of PID with ovarian cancer risk is still somewhat uncertain and requires further investigation. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
On-off closed-loop control of vagus nerve stimulation for the adaptation of heart rate.
Ugalde, Hector Romero; Le Rolle, Virginie; Bel, Alain; Bonnet, Jean-Luc; Andreu, David; Mabo, Philippe; Carrault, Guy; Hernández, Alfredo I
2014-01-01
Vagus nerve stimulation (VNS) is a potential therapeutic approach in a number of clinical applications. Although VNS is commonly delivered in an open-loop approach, it is now recognized that closed-loop approaches may be necessary to optimize the therapy and minimize side effects of neuro-stimulation devices. In this paper, we describe a prototype system for real-time control of the instantaneous heart rate, working synchronously with the heart period. As a first step, an on-off control method has been integrated. The system is evaluated on one sheep with induced heart failure, showing the interest of the proposed approach.
NASA Technical Reports Server (NTRS)
Joshi, S. M.
1986-01-01
An investigation is conducted for the closed loop stability of linear time-invariant systems controlled by linear quadratic (LQ) regulators, in cases where nonlinearities exist in the control channels lying outside the stability sector in regions away from the origin. The estimate of the region of attraction thus obtained furnishes methods for the selection of performance function weights for more robust LQ designs. Attention is then given to the closed loop stability of linear time-invariant systems controlled by the LQ regulators when the nonlinearities in the loops escape the stability sector in a bounded region containing the origin.
A review of active control approaches in stabilizing combustion systems in aerospace industry
NASA Astrophysics Data System (ADS)
Zhao, Dan; Lu, Zhengli; Zhao, He; Li, X. Y.; Wang, Bing; Liu, Peijin
2018-02-01
Self-sustained combustion instabilities are one of the most plaguing challenges and problems in lean-conditioned propulsion and land-based engine systems, such as rocket motors, gas turbines, industrial furnace and boilers, and turbo-jet thrust augmenters. Either passive or active control in open- or closed-loop configurations can be implemented to mitigate such instabilities. One of the classical disadvantages of passive control is that it is only implementable to a designed combustor over a limited frequency range and can not respond to the changes in operating conditions. Compared with passive control approaches, active control, especially in closed-loop configuration is more adaptive and has inherent capacity to be implemented in practice. The key components in closed-loop active control are 1) sensor, 2) controller (optimization algorithm) and 3) dynamic actuator. The present work is to outline the current status, technical challenges and development progress of the active control approaches (in open- or closed-loop configurations). A brief description of feedback control, adaptive control, model-based control and sliding mode control are provided first by introducing a simplified Rijke-type combustion system. The modelled combustion system provides an invaluable platform to evaluate the performance of these feedback controllers and a transient growth controller. The performance of these controllers are compared and discussed. An outline of theoretical, numerical and experimental investigations are then provided to overview the research and development progress made during the last 4 decades. Finally, potential, challenges and issues involved with the design, application and implementation of active combustion control strategies on a practical engine system are highlighted.
Joint angle sensors for closed-loop control
NASA Astrophysics Data System (ADS)
Ko, Wen H.; Miao, Chih-Lei
In order to substitute braces that have built-in goniometers and to provide feedback signals for closed loop control of lower extremity Functional Neuromuscular System in paraplegics, a stretchable capacitive sensor was developed to accurately detect angular movement in joints. Promising clinical evaluations on the knee joints of a paraplegic and a volunteer were done. The evaluations show great promise for the possibility of implantation applications.
[Research on the Clinical Alarm Management Mechanism Based on Closed-loop Control Theory].
Lin, Zhongkuan; Zheng, Kun; Shen, Yunming; Wu, Yunyun
2018-05-30
This paper proposes a clinical alarm management system based on the theory of the closed loop control. The alarm management mechanism can be divided into the expected standard, improving execution rule, rule execution, medical devices with alarm functions, results analysis strategy and the output link. And, we make relevant application and discussion. Results showed that the mechanism can be operable and effective.
Second International Workshop on Grid Simulator Testing of Wind Turbine
, Clemson University, USA Update on the FSU-CAPS Megawatt Scale Power Hardware in the Loop Laboratory Loop Based Anti-Islanding Testing of PV Converters-Michael Steurer, Florida State University, USA Closed-Loop Control of Modern Test Benches Advanced Control Techniques for Dynamic Testing of Wind
Trajectory tracking control for underactuated stratospheric airship
NASA Astrophysics Data System (ADS)
Zheng, Zewei; Huo, Wei; Wu, Zhe
2012-10-01
Stratospheric airship is a new kind of aerospace system which has attracted worldwide developing interests for its broad application prospects. Based on the trajectory linearization control (TLC) theory, a novel trajectory tracking control method for an underactuated stratospheric airship is presented in this paper. Firstly, the TLC theory is described sketchily, and the dynamic model of the stratospheric airship is introduced with kinematics and dynamics equations. Then, the trajectory tracking control strategy is deduced in detail. The designed control system possesses a cascaded structure which consists of desired attitude calculation, position control loop and attitude control loop. Two sub-loops are designed for the position and attitude control loops, respectively, including the kinematics control loop and dynamics control loop. Stability analysis shows that the controlled closed-loop system is exponentially stable. Finally, simulation results for the stratospheric airship to track typical trajectories are illustrated to verify effectiveness of the proposed approach.
Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System.
Lee, Chengming; Chen, Rongshun
2015-05-20
Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID) controller, combining a PID neural network (PIDNN) with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server's fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption.
Improvements To Progressive Wave Tube Performance Through Closed-Loop Control
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.
2000-01-01
This report documents recent improvements to the acoustic and thermal control systems of the Thermal Acoustic Fatigue Apparatus (TAFA), a progressive wave tube test facility at the NASA Langley Research Center, Hampton, Virginia. A brief summary of past acoustic performance is given first to serve as a basis for comparison with the new performance data using a multiple-input, closed-loop, narrow-band controller. Performance data in the form of test section acoustic power spectral densities and coherence are presented in three of six facility configurations for a variety of input spectra. Tested spectra include uniform, two cases of pink noise, three cases of narrow-band random, a simulated launch payload bay environment for an expendable launch vehicle, and a simulated external acoustic load for the aft section of a reusable launch vehicle. In addition, a new closed-loop temperature controller and thermocouple data acquisition system are described.
Optimal Lorentz-augmented spacecraft formation flying in elliptic orbits
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2015-06-01
An electrostatically charged spacecraft accelerates as it moves through the Earth's magnetic field due to the induced Lorentz force, providing a new means of propellantless electromagnetic propulsion for orbital maneuvers. The feasibility of Lorentz-augmented spacecraft formation flying in elliptic orbits is investigated in this paper. Assuming the Earth's magnetic field as a tilted dipole corotating with Earth, a nonlinear dynamical model that characterizes the orbital motion of Lorentz spacecraft in the vicinity of arbitrary elliptic orbits is developed. To establish a predetermined formation configuration at given terminal time, pseudospectral method is used to solve the optimal open-loop trajectories of hybrid control inputs consisted of Lorentz acceleration and thruster-generated control acceleration. A nontilted dipole model is also introduced to analyze the effect of dipole tilt angle via comparisons with the tilted one. Meanwhile, to guarantee finite-time convergence and system robustness against external perturbations, a continuous fast nonsingular terminal sliding mode controller is designed and the closed-loop system stability is proved by Lyapunov theory. Numerical simulations substantiate the validity of proposed open-loop and closed-loop control schemes, and the results indicate that an almost propellantless formation establishment can be achieved by choosing appropriate objective function in the pseudospectral method. Furthermore, compared to the nonsingular terminal sliding mode controller, the closed-loop controller presents superior convergence rate with only a bit more control effort. And the proposed controller can be applied in other Lorentz-augmented relative orbital control problems.
Hard real-time closed-loop electrophysiology with the Real-Time eXperiment Interface (RTXI)
George, Ansel; Dorval, Alan D.; Christini, David J.
2017-01-01
The ability to experimentally perturb biological systems has traditionally been limited to static pre-programmed or operator-controlled protocols. In contrast, real-time control allows dynamic probing of biological systems with perturbations that are computed on-the-fly during experimentation. Real-time control applications for biological research are available; however, these systems are costly and often restrict the flexibility and customization of experimental protocols. The Real-Time eXperiment Interface (RTXI) is an open source software platform for achieving hard real-time data acquisition and closed-loop control in biological experiments while retaining the flexibility needed for experimental settings. RTXI has enabled users to implement complex custom closed-loop protocols in single cell, cell network, animal, and human electrophysiology studies. RTXI is also used as a free and open source, customizable electrophysiology platform in open-loop studies requiring online data acquisition, processing, and visualization. RTXI is easy to install, can be used with an extensive range of external experimentation and data acquisition hardware, and includes standard modules for implementing common electrophysiology protocols. PMID:28557998
Laine, Christopher M.; Valero-Cuevas, Francisco J.
2018-01-01
Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,‘common drive’), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary ‘isometric’ force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease. PMID:29309405
Nagamori, Akira; Laine, Christopher M; Valero-Cuevas, Francisco J
2018-01-01
Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,'common drive'), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary 'isometric' force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease.
Assisted closed-loop optimization of SSVEP-BCI efficiency
Fernandez-Vargas, Jacobo; Pfaff, Hanns U.; Rodríguez, Francisco B.; Varona, Pablo
2012-01-01
We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research. PMID:23443214
Assisted closed-loop optimization of SSVEP-BCI efficiency.
Fernandez-Vargas, Jacobo; Pfaff, Hanns U; Rodríguez, Francisco B; Varona, Pablo
2013-01-01
We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research.
Zeng, Hong; Wang, Yanxin; Wu, Changcheng; Song, Aiguo; Liu, Jia; Ji, Peng; Xu, Baoguo; Zhu, Lifeng; Li, Huijun; Wen, Pengcheng
2017-01-01
Brain-machine interface (BMI) can be used to control the robotic arm to assist paralysis people for performing activities of daily living. However, it is still a complex task for the BMI users to control the process of objects grasping and lifting with the robotic arm. It is hard to achieve high efficiency and accuracy even after extensive trainings. One important reason is lacking of sufficient feedback information for the user to perform the closed-loop control. In this study, we proposed a method of augmented reality (AR) guiding assistance to provide the enhanced visual feedback to the user for a closed-loop control with a hybrid Gaze-BMI, which combines the electroencephalography (EEG) signals based BMI and the eye tracking for an intuitive and effective control of the robotic arm. Experiments for the objects manipulation tasks while avoiding the obstacle in the workspace are designed to evaluate the performance of our method for controlling the robotic arm. According to the experimental results obtained from eight subjects, the advantages of the proposed closed-loop system (with AR feedback) over the open-loop system (with visual inspection only) have been verified. The number of trigger commands used for controlling the robotic arm to grasp and lift the objects with AR feedback has reduced significantly and the height gaps of the gripper in the lifting process have decreased more than 50% compared to those trials with normal visual inspection only. The results reveal that the hybrid Gaze-BMI user can benefit from the information provided by the AR interface, improving the efficiency and reducing the cognitive load during the grasping and lifting processes. PMID:29163123
Spacecraft momentum management procedures. [large space telescope
NASA Technical Reports Server (NTRS)
Chen, L. C.; Davenport, P. B.; Sturch, C. R.
1980-01-01
Techniques appropriate for implementation onboard the space telescope and other spacecraft to manage the accumulation of momentum in reaction wheel control systems using magnetic torquing coils are described. Generalized analytical equations are derived for momentum control laws that command the magnetic torquers. These control laws naturally fall into two main categories according to the methods used for updating the magnetic dipole command: closed loop, in which the update is based on current measurements to achieve a desired torque instantaneously, and open-loop, in which the update is based on predicted information to achieve a desired momentum at the end of a period of time. Physical interpretations of control laws in general and of the Space Telescope cross product and minimum energy control laws in particular are presented, and their merits and drawbacks are discussed. A technique for retaining the advantages of both the open-loop and the closed-loop control laws is introduced. Simulation results are presented to compare the performance of these control laws in the Space Telescope environment.
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.
1996-01-01
This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.
1999-01-01
This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.
Designing of new structure PID controller of boost converter for solar photovoltaic stability
NASA Astrophysics Data System (ADS)
Shabrina, Hanifati Nur; Setiawan, Eko Adhi; Sabirin, Chip Rinaldi
2017-03-01
Nowadays, the utilization of renewable energy as the source on distributed generation system is increasing. It aims to reduce reliance and power losses from utility grid and improve power stability in near loads. One example of renewable energy technology that have been highly proven on the market is solar photovoltaic (PV). This technology converts photon from sunlight into electricity. However, the fluctuation of solar radiation that often occurs become the main problem for this system. Due to this condition, the power conversion is needed to convert the change frequently in photovoltaic panel into a stable voltage to the system. Developing control of boost converter has important role to keep ability of system stabilization. A conventional PID (Proportional, Integral, Derivative) control is mostly used to achieve this goal. In this research, a design of new structure PID controller of boost converter is offered to better optimize system stability comparing to the conventional PID. Parameters obtained from this PID structure have been successfully yield a stable boost converter output at 200 V with 10% overshoot, 1.5 seconds of settling time, and 1.5% of steady-state error.
Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Bin Aziz, Mohamed Fareez; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M; Sato, Hirotaka
2014-01-01
In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot).
Full-Authority Fault-Tolerant Electronic Engine Control Systems for Variable Cycle Engines.
1981-12-01
Geometry or Fuel Flow Scheduled as a Function of Engine State, i.e. FIGV = f( N1 C2 ) Closed Loop - Geometry or Fuel Flow Modulated To Maintain an Engine...Low Pressure Turbine Inlet Area (A41) Closed Loop (Integral) N2, T22 Core Stream Exhaust Nozzle Area (AJE) Closed Loop (Integral) N1 , T2 Duct Stream...to remain at the breakpoint value while low rotor speed reference ( N1 reference) is scheduled to decrease as a function of power lever angle (PLA), to
Closed-loop systems for drug delivery.
Fields, Aaron M; Fields, Kevin M; Cannon, Jeremy W
2008-08-01
To discuss closed-loop systems, the engineering behind them, and the application of these systems. The literature demonstrates that closed-loop systems can be used for controlling the depth of anesthesia, muscle relaxation, blood pressure, intravascular volume, and blood glucose levels. The future anesthesiologist may devote less time to easily delegated tasks when in the operating room. The ability of computers to maintain variables in a set range allows some tasks to be automated. Although monitoring of these systems will never be completely eliminated, the necessity for minute-to-minute intervention may.
NASA Technical Reports Server (NTRS)
Chin, Jeffrey C.; Csank, Jeffrey T.
2016-01-01
The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.
Rationale for evaluating a closed food chain for space habitats
NASA Technical Reports Server (NTRS)
Modell, M.; Spurlock, J. M.
1980-01-01
Closed food cycles for long duration space flight and space habitation are examined. Wash water for a crew of six is economically recyclable after a week, while a total closed loop water system is effective only if the stay exceeds six months' length. The stoichiometry of net plant growth is calculated and it is shown that the return of urine, feces, and inedible plant parts to the food chain, along with the addition of photosynthesis, closes the food chain loop. Scenarios are presented to explore the technical feasibility of achieving a closed loop system. An optimal choice of plants is followed by processing, waste conversion, equipment specifications, and control requirements, and finally, cost-effectiveness.
Optimal cooperative control synthesis of active displays
NASA Technical Reports Server (NTRS)
Garg, S.; Schmidt, D. K.
1985-01-01
A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/s(2) plant, and then to an F-15 type aircraft in a multi-channel task. Utilizing the closed loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.
NASA Astrophysics Data System (ADS)
Tang, Tao; Cai, Huaxiang; Huang, Yongmei; Ren, Ge
2015-10-01
A feedforward control based on data fusion is proposed to enhance closed-loop performance. The target trajectory as the observed value of a Kalman filter is recovered by synthesizing line-of-sight error and angular position from the encoder. A Kalman filter based on a Singer acceleration model is employed to estimate the target velocity. In this control scheme, the control stability is influenced by the bandwidth of the Kalman filter and time misalignment. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability, which shows that the Kalman filter is the major factor that affects the control stability. The feedforward control proposed here is verified through simulations and experiments.
O'Shaughnessy, P T; Hemenway, D R
2000-10-01
Trials were conducted to determine those factors that affect the accuracy of a direct-reading aerosol photometer when automatically controlling airflow rate within an exposure chamber to regulate airborne dust concentrations. Photometer response was affected by a shift in the aerosol size distribution caused by changes in chamber flow rate. In addition to a dilution effect, flow rate also determined the relative amount of aerosol lost to sedimentation within the chamber. Additional calculations were added to a computer control algorithm to compensate for these effects when attempting to automatically regulate flow based on a proportional-integral-derivative (PID) feedback control algorithm. A comparison between PID-controlled trials and those performed with a constant generator output rate and dilution-air flow rate demonstrated that there was no significant decrease in photometer accuracy despite the many changes in flow rate produced when using PID control. Likewise, the PID-controlled trials produced chamber aerosol concentrations within 1% of a desired level.
Lessons Learned and Flight Results from the F15 Intelligent Flight Control System Project
NASA Technical Reports Server (NTRS)
Bosworth, John
2006-01-01
A viewgraph presentation on the lessons learned and flight results from the F15 Intelligent Flight Control System (IFCS) project is shown. The topics include: 1) F-15 IFCS Project Goals; 2) Motivation; 3) IFCS Approach; 4) NASA F-15 #837 Aircraft Description; 5) Flight Envelope; 6) Limited Authority System; 7) NN Floating Limiter; 8) Flight Experiment; 9) Adaptation Goals; 10) Handling Qualities Performance Metric; 11) Project Phases; 12) Indirect Adaptive Control Architecture; 13) Indirect Adaptive Experience and Lessons Learned; 14) Gen II Direct Adaptive Control Architecture; 15) Current Status; 16) Effect of Canard Multiplier; 17) Simulated Canard Failure Stab Open Loop; 18) Canard Multiplier Effect Closed Loop Freq. Resp.; 19) Simulated Canard Failure Stab Open Loop with Adaptation; 20) Canard Multiplier Effect Closed Loop with Adaptation; 21) Gen 2 NN Wts from Simulation; 22) Direct Adaptive Experience and Lessons Learned; and 23) Conclusions
Lee, Ji Min; Park, Sung Hwan; Kim, Jong Shik
2013-01-01
A robust control scheme is proposed for the position control of the electrohydrostatic actuator (EHA) when considering hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. To reduce overshoot due to a saturation of electric motor and to realize robustness against load disturbance and lumped system uncertainties such as varying parameters and modeling error, this paper proposes an adaptive antiwindup PID sliding mode scheme as a robust position controller for the EHA system. An optimal PID controller and an optimal anti-windup PID controller are also designed to compare control performance. An EHA prototype is developed, carrying out system modeling and parameter identification in designing the position controller. The simply identified linear model serves as the basis for the design of the position controllers, while the robustness of the control systems is compared by experiments. The adaptive anti-windup PID sliding mode controller has been found to have the desired performance and become robust against hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. PMID:23983640
Neural Network-Based Self-Tuning PID Control for Underwater Vehicles
Hernández-Alvarado, Rodrigo; García-Valdovinos, Luis Govinda; Salgado-Jiménez, Tomás; Gómez-Espinosa, Alfonso; Fonseca-Navarro, Fernando
2016-01-01
For decades, PID (Proportional + Integral + Derivative)-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles) where parameters (weight, buoyancy, added mass, among others) change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN) is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom) underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme. PMID:27608018
Neural Network-Based Self-Tuning PID Control for Underwater Vehicles.
Hernández-Alvarado, Rodrigo; García-Valdovinos, Luis Govinda; Salgado-Jiménez, Tomás; Gómez-Espinosa, Alfonso; Fonseca-Navarro, Fernando
2016-09-05
For decades, PID (Proportional + Integral + Derivative)-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles) where parameters (weight, buoyancy, added mass, among others) change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN) is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom) underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme.
Closed-loop, pilot/vehicle analysis of the approach and landing task
NASA Technical Reports Server (NTRS)
Schmidt, D. K.; Anderson, M. R.
1985-01-01
Optimal-control-theoretic modeling and frequency-domain analysis is the methodology proposed to evaluate analytically the handling qualities of higher-order manually controlled dynamic systems. Fundamental to the methodology is evaluating the interplay between pilot workload and closed-loop pilot/vehicle performance and stability robustness. The model-based metric for pilot workload is the required pilot phase compensation. Pilot/vehicle performance and loop stability is then evaluated using frequency-domain techniques. When these techniques were applied to the flight-test data for thirty-two highly-augmented fighter configurations, strong correlation was obtained between the analytical and experimental results.
Artificial Pancreas Device Systems for the Closed-Loop Control of Type 1 Diabetes
Trevitt, Sara; Simpson, Sue; Wood, Annette
2015-01-01
Background: Closed-loop artificial pancreas device (APD) systems are externally worn medical devices that are being developed to enable people with type 1 diabetes to regulate their blood glucose levels in a more automated way. The innovative concept of this emerging technology is that hands-free, continuous, glycemic control can be achieved by using digital communication technology and advanced computer algorithms. Methods: A horizon scanning review of this field was conducted using online sources of intelligence to identify systems in development. The systems were classified into subtypes according to their level of automation, the hormonal and glycemic control approaches used, and their research setting. Results: Eighteen closed-loop APD systems were identified. All were being tested in clinical trials prior to potential commercialization. Six were being studied in the home setting, 5 in outpatient settings, and 7 in inpatient settings. It is estimated that 2 systems may become commercially available in the EU by the end of 2016, 1 during 2017, and 2 more in 2018. Conclusions: There are around 18 closed-loop APD systems progressing through early stages of clinical development. Only a few of these are currently in phase 3 trials and in settings that replicate real life. PMID:26589628
Design of a PID Controller for a PCR Micro Reactor
ERIC Educational Resources Information Center
Dinca, M. P.; Gheorghe, M.; Galvin, P.
2009-01-01
Proportional-integral-derivative (PID) controllers are widely used in process control, and consequently they are described in most of the textbooks on automatic control. However, rather than presenting the overall design process, the examples given in such textbooks are intended to illuminate specific focused aspects of selection, tuning and…
Research on pressure control of pressurizer in pressurized water reactor nuclear power plant
NASA Astrophysics Data System (ADS)
Dai, Ling; Yang, Xuhong; Liu, Gang; Ye, Jianhua; Qian, Hong; Xue, Yang
2010-07-01
Pressurizer is one of the most important components in the nuclear reactor system. Its function is to keep the pressure of the primary circuit. It can prevent shutdown of the system from the reactor accident under the normal transient state while keeping the setting value in the normal run-time. This paper is mainly research on the pressure system which is running in the Daya Bay Nuclear Power Plant. A conventional PID controller and a fuzzy controller are designed through analyzing the dynamic characteristics and calculating the transfer function. Then a fuzzy PID controller is designed by analyzing the results of two controllers. The fuzzy PID controller achieves the optimal control system finally.
Load Frequency Control of AC Microgrid Interconnected Thermal Power System
NASA Astrophysics Data System (ADS)
Lal, Deepak Kumar; Barisal, Ajit Kumar
2017-08-01
In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.
NASA Technical Reports Server (NTRS)
Ostroff, Aaron J.
1998-01-01
This paper contains a study of two methods for use in a generic nonlinear simulation tool that could be used to determine achievable control dynamics and control power requirements while performing perfect tracking maneuvers over the entire flight envelope. The two methods are NDI (nonlinear dynamic inversion) and the SOFFT(Stochastic Optimal Feedforward and Feedback Technology) feedforward control structure. Equivalent discrete and continuous SOFFT feedforward controllers have been developed. These equivalent forms clearly show that the closed-loop plant model loop is a plant inversion and is the same as the NDI formulation. The main difference is that the NDI formulation has a closed-loop controller structure whereas SOFFT uses an open-loop command model. Continuous, discrete, and hybrid controller structures have been developed and integrated into the formulation. Linear simulation results show that seven different configurations all give essentially the same response, with the NDI hybrid being slightly different. The SOFFT controller gave better tracking performance compared to the NDI controller when a nonlinear saturation element was added. Future plans include evaluation using a nonlinear simulation.
Definition of a Robust Supervisory Control Scheme for Sodium-Cooled Fast Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponciroli, R.; Passerini, S.; Vilim, R. B.
In this work, an innovative control approach for metal-fueled Sodium-cooled Fast Reactors is proposed. With respect to the classical approach adopted for base-load Nuclear Power Plants, an alternative control strategy for operating the reactor at different power levels by respecting the system physical constraints is presented. In order to achieve a higher operational flexibility along with ensuring that the implemented control loops do not influence the system inherent passive safety features, a dedicated supervisory control scheme for the dynamic definition of the corresponding set-points to be supplied to the PID controllers is designed. In particular, the traditional approach based onmore » the adoption of tabulated lookup tables for the set-point definition is found not to be robust enough when failures of the implemented SISO (Single Input Single Output) actuators occur. Therefore, a feedback algorithm based on the Reference Governor approach, which allows for the optimization of reference signals according to the system operating conditions, is proposed.« less
Integrated otpical monitoring of MEMS for closed-loop control
NASA Astrophysics Data System (ADS)
Dawson, Jeremy M.; Wang, Limin; McCormick, W. B.; Rittenhouse, S. A.; Famouri, Parviz F.; Hornak, Lawrence A.
2003-01-01
Robust control and failure assessment of MEMS employed in physically demanding, mission critical applications will allow for higher degrees of quality assurance in MEMS operation. Device fault detection and closed-loop control require detailed knowledge of the operational states of MEMS over the lifetime of the device, obtained by a means decoupled from the system. Preliminary through-wafer optical monitoring research efforts have shown that through-wafer optical probing is suitable for characterizing and monitoring the behavior of MEMS, and can be implemented in an integrated optical monitoring package for continuous in-situ device monitoring. This presentation will discuss research undertaken to establish integrated optical device metrology for closed-loop control of a MUMPS fabricated lateral harmonic oscillator. Successful linear closed-loop control results using a through-wafer optical microprobe position feedback signal will be presented. A theoretical optical output field intensity study of grating structures, fabricated on the shuttle of the resonator, was performed to improve the position resolution of the optical microprobe position signal. Through-wafer microprobe signals providing a positional resolution of 2 μm using grating structures will be shown, along with initial binary Fresnel diffractive optical microelement design layout, process development, and testing results. Progress in the design, fabrication, and test of integrated optical elements for multiple microprobe signal delivery and recovery will be discussed, as well as simulation of device system model parameter changes for failure assessment.
Wang, Libing; Mao, Chengxiong; Wang, Dan; Lu, Jiming; Zhang, Junfeng; Chen, Xun
2014-01-01
In order to control the cascaded H-bridges (CHB) converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN) for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC) algorithm is employed to minimize the total harmonic distortion (THD) and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC) sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current's THD (<5%) when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness.
A new RISE-based adaptive control of PKMs: design, stability analysis and experiments
NASA Astrophysics Data System (ADS)
Bennehar, M.; Chemori, A.; Bouri, M.; Jenni, L. F.; Pierrot, F.
2018-03-01
This paper deals with the development of a new adaptive control scheme for parallel kinematic manipulators (PKMs) based on Rrbust integral of the sign of the error (RISE) control theory. Original RISE control law is only based on state feedback and does not take advantage of the modelled dynamics of the manipulator. Consequently, the overall performance of the resulting closed-loop system may be poor compared to modern advanced model-based control strategies. We propose in this work to extend RISE by including the nonlinear dynamics of the PKM in the control loop to improve its overall performance. More precisely, we augment original RISE control scheme with a model-based adaptive control term to account for the inherent nonlinearities in the closed-loop system. To demonstrate the relevance of the proposed controller, real-time experiments are conducted on the Delta robot, a three-degree-of-freedom (3-DOF) PKM.
Jastremski, M; Jastremski, C; Shepherd, M; Friedman, V; Porembka, D; Smith, R; Gonzales, E; Swedlow, D; Belzberg, H; Crass, R
1995-10-01
To test a model for the assessment of critical care technology on closed loop infusion control, a technology that is in its early stages of development and testing on human subjects. A computer-assisted search of the English language literature and reviews of the gathered data by experts in the field of closed loop infusion control systems. Studies relating to closed loop infusion control that addressed one or more of the questions contained in our technology assessment template were analyzed. Study design was not a factor in article selection. However, the lack of well-designed clinical outcome studies was an important factor in determining our conclusions. A focus person summarized the data from the selected studies that related to each of the assessment questions. The preliminary data summary developed by the focus person was further analyzed and refined by the task force. Experts in closed loop systems were then added to the group to review the summary provided by the task force. These experts' comments were considered by the task force and this final consensus report was developed. Closed loop system control is a technological concept that may be applicable to several aspects of critical care practice. This is a technology in the early stages of evolution and much more research and data are needed before its introduction into usual clinical practice. Furthermore, each specific application and each device for each application (e.g., nitroprusside infusion, ventilator adjustment), although based on the same technological concept, are sufficiently different in terms of hardware and computer algorithms to require independent validation studies. Closed loop infusion systems may have a role in critical care practice. However, for most applications, further development is required to move this technology from the innovation phase to the point where it can be evaluated so that its role in critical car practice can be defined. Each application of closed loop infusion systems must be independently validated by appropriately designed research studies. Users should be provided with the clinical parameters driving each closed loop system so that they can ensure that it agrees with their opinion of acceptable medical practice. Clinical researchers and leaders in industry should collaborate to perform the scientifically valid, outcome-based research that is necessary to evaluate the effect of this new technology. The original model we developed for technology assessment required the addition of several more questions to produce a complete analysis of an emerging technology. An emerging technology should be systematically assessed (using a model such as the model developed by the Society of Critical Care Medicine), before its introduction into clinical practice in order to provide a focus for human outcome validation trials and to minimize the possibility of widespread use of an unproven technology.
Wu, Chung-Yu; Cheng, Cheng-Hsiang; Chen, Zhi-Xin
2018-06-01
In this paper, a 16-channel analog front-end (AFE) electrocorticography signal acquisition circuit for a closed-loop seizure control system is presented. It is composed of 16 input protection circuits, 16 auto-reset chopper-stabilized capacitive-coupled instrumentation amplifiers (AR-CSCCIA) with bandpass filters, 16 programmable transconductance gain amplifiers, a multiplexer, a transimpedance amplifier, and a 128-kS/s 10-bit delta-modulated successive-approximation-register analog-to-digital converter (SAR ADC). In closed-loop seizure control system applications, the stimulator shares the same electrode with the AFE amplifier for effective suppression of epileptic seizures. To prevent from overstress in MOS devices caused by high stimulation voltage, an input protection circuit with a high-voltage-tolerant switch is proposed for the AFE amplifier. Moreover, low input-referred noise is achieved by using the chopper modulation technique in the AR-CSCCIA. To reduce the undesired effects of chopper modulation, an improved offset reduction loop is proposed to reduce the output offset generated by input chopper mismatches. The digital ripple reduction loop is also used to reduce the chopper ripple. The fabricated AFE amplifier has 49.1-/59.4-/67.9-dB programmable gain and 2.02-μVrms input referred noise in a bandwidth of 0.59-117 Hz. The measured power consumption of the AFE amplifier is 3.26 μW per channel, and the noise efficiency factor is 3.36. The in vivo animal test has been successfully performed to verify the functions. It is shown that the proposed AFE acquisition circuit is suitable for implantable closed-loop seizure control systems.
Station Keeping of Small Outboard-Powered Boats
NASA Technical Reports Server (NTRS)
Fisher, A. D.; VanZwieten, J. H., Jr.; VanZwieten, T. S.
2010-01-01
Three station keeping controllers have been developed which work to minimize displacement of a small outboard-powered vessel from a desired location. Each of these three controllers has a common initial layer that uses fixed-gain feedback control to calculate the desired heading of the vessel. A second control layer uses a common fixed-gain feedback controller to calculate the net forward thrust, one of two algorithms for controlling engine angle (Fixed-Gain Proportional-integral-derivative (PID) or PID with Adaptively Augmented Gains), and one of two algorithms for differential throttle control (Fixed-Gain PID and PID with Adaptive Differential Throttle gains), which work together to eliminate heading error. The three selected controllers are evaluated using a numerical simulation of a 33-foot center console vessel with twin outboards that is subject to wave, wind, and current disturbances. Each controller is tested for its ability to maintain position in the presence of three sets of environmental disturbances. These algorithms were tested with current velocity of 1.5 m/s, significant wave height of 0.5 m, and wind speeds of 2, 5, and 10 m/s. These values were chosen to model conditions a small vessel may experience in the Gulf Stream off of Fort Lauderdale. The Fixed-gain PID controller progressively got worse as wind speeds increased, while the controllers using adaptive methodologies showed consistent performance over all weather conditions and decreased heading error by as much as 20%. Thus, enhanced robustness to environmental changes has been gained by using an adaptive algorithm.
Motor-sensory confluence in tactile perception.
Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud
2012-10-03
Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.
Adaptive weld control for high-integrity welding applications
NASA Technical Reports Server (NTRS)
Powell, Bradley W.
1993-01-01
An advanced adaptive control weld system for high-integrity welding applications is presented. The system consists of a state-of-the-art weld control subsystem, motion control subsystem, and sensor subsystem which closes the loop on the process. The adaptive control subsystem (ACS), which is required to totally close the loop on weld process control, consists of a multiprocessor system, data acquisition hardware, and three welding sensors which provide measurements from all areas around the torch in real time. The ACS acquires all 'measurables' and feeds offset trims back into the weld control and motion control subsystems to modify the 'controllables' in order to maintain a previously defined weld quality.
Chen, Zhongxian; Yu, Haitao; Wen, Cheng
2014-01-01
The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability. PMID:25152913
Chen, Zhongxian; Yu, Haitao; Wen, Cheng
2014-01-01
The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.
2007-01-01
Combat Critical Care Engineering: Evaluation of Closed Loop Control of Ventilation and Oxygen Flow During Resuscitation in the Compensatory and...Decompensatory Phases of Hemorrhagic Shock: This effort evaluated closed loop control of ventilation and oxygen flow during resuscitation in the...Cerebral Injury Volume, Cerebral Edema, Cerebral Blood Flow and Reactivity, and Histopathology in a Rat Model of Traumatic Brain Injury and Hemorrhagic
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz, Kenneth; Bayard, David S.
1988-01-01
A class of joint-level control laws for all-revolute robot arms is introduced. The analysis is similar to the recently proposed energy Liapunov function approach except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. By using energy Liapunov functions with the modified potential energy, a much simpler analysis can be used to show closed-loop global asymptotic stability and local exponential stability. When Coulomb and viscous friction and model parameter errors are present, a sliding-mode-like modification of the control law is proposed to add a robustness-enhancing outer loop. Adaptive control is also addressed within the same framework. A linear-in-the-parameters formulation is adopted, and globally asymptotically stable adaptive control laws are derived by replacing the model parameters in the nonadaptive control laws by their estimates.
Origin and control of instability in SCR/triac three-phase motor controllers
NASA Technical Reports Server (NTRS)
Dearth, J. J.
1982-01-01
The energy savings and reactive power reduction functions initiated by the power factor controller (PFC) are discussed. A three-phase PFC with soft start is examined analytically and experimentally to determine how well it controls the open loop instability and other possible modes of instability. The detailed mechanism of the open loop instability is determined and shown to impose design constraints on the closed loop system. The design is shown to meet those constraints.
NASA Technical Reports Server (NTRS)
Hawkins, L. A.; Murphy, Brian T.; Lang, K. W.
1991-01-01
The operation of the magnetic bearing used as an excitation source in the Rocketdyne Multifunction Tester is described. The tester is scheduled for operation during the summer of 1990. The magnetic bearing can be used in two control modes: (1) open loop mode, in which the magnetic bearing operates as a force actuator; and (2) closed loop mode, in which the magnetic bearing provides shaft support. Either control mode can be used to excite the shaft; however, response of the shaft in the two control modes is different due to the alteration of the eigenvalues by closed loop mode operation. A rotordynamic model is developed to predict the frequency response of the tester due to excitation in either control mode. Closed loop mode excitation is shown to be similar to the excitation produced by a rotating eccentricity in a conventional bearing. Predicted frequency response of the tester in the two control modes is compared, and the maximum response is shown to be the same for the two control modes when synchronous unbalance loading is not considered. The analysis shows that the response of this tester is adequate for the extraction of rotordynamic stiffness, damping, and inertia coefficients over a wide range of test article stiffnesses.
Tauschmann, Martin; Allen, Janet M; Wilinska, Malgorzata E; Thabit, Hood; Stewart, Zoë; Cheng, Peiyao; Kollman, Craig; Acerini, Carlo L; Dunger, David B; Hovorka, Roman
2016-07-01
To evaluate feasibility, safety, and efficacy of day-and-night hybrid closed-loop insulin delivery in adolescents with type 1 diabetes under free-living conditions without remote monitoring or supervision. In an open-label, randomized, free-living, crossover study design, 12 adolescents receiving insulin pump therapy (mean [±SD] age 15.4 ± 2.6 years; HbA1c 8.3 ± 0.9%; duration of diabetes 8.2 ± 3.4 years) underwent two 7-day periods of sensor-augmented insulin pump therapy or hybrid closed-loop insulin delivery without supervision or remote monitoring. During the closed-loop insulin delivery, a model predictive algorithm automatically directed insulin delivery between meals and overnight; prandial boluses were administered by participants using a bolus calculator. The proportion of time when the sensor glucose level was in the target range (3.9-10 mmol/L) was increased during closed-loop insulin delivery compared with sensor-augmented pump therapy (72 vs. 53%, P < 0.001; primary end point), the mean glucose concentration was lowered (8.7 vs. 10.1 mmol/L, P = 0.028), and the time spent above the target level was reduced (P = 0.005) without changing the total daily insulin amount (P = 0.55). The time spent in the hypoglycemic range was low and comparable between interventions. Unsupervised day-and-night hybrid closed-loop insulin delivery at home is feasible and safe in young people with type 1 diabetes. Compared with sensor-augmented insulin pump therapy, closed-loop insulin delivery may improve glucose control without increasing the risk of hypoglycemia in adolescents with suboptimally controlled type 1 diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
LINC-NIRVANA piston control elements
NASA Astrophysics Data System (ADS)
Brix, Mario; Pott, Jörg-Uwe; Bertram, Thomas; Rost, Steffen; Borelli, Jose Luis; Herbst, Thomas M.; Kuerster, Martin; Rohloff, Ralf-Rainer
2010-07-01
We review the status of hardware developments related to the Linc-Nirvana optical path difference (OPD) control. The status of our telescope vibration measurements is given. We present the design concept of a feed-forward loop to damp the impact of telescope mirror vibrations on the OPD seen by Linc-Nirvana. At the focus of the article is a description of the actuator of the OPD control loop. The weight and vibration optimized construction of this actuator (aka piston mirror) and its mount has a complex dynamical behavior, which prevents classical PI feedback control from delivering fast and precise motion of the mirror surface. Therefore, an H-; optimized control strategy will be applied, custom designed for the piston mirror. The effort of realizing a custom controller on a DSP to drive the piezo is balanced by the outlook of achieving more than 5x faster servo bandwidths. The laboratory set-up to identify the system, and verify the closed loop control performance is presented. Our goal is to achieve 30 Hz closed-loop control bandwidth at a precision of 30 nm.
Mazinan, A H; Pasand, M; Soltani, B
2015-09-01
In the aspect of further development of investigations in the area of spacecraft modeling and analysis of the control scheme, a new hybrid finite-time robust three-axis cascade attitude control approach is proposed via pulse modulation synthesis. The full quaternion based control approach proposed here is organized in association with both the inner and the outer closed loops. It is shown that the inner closed loop, which consists of the sliding mode finite-time control approach, the pulse width pulse frequency modulator, the control allocation and finally the dynamics of the spacecraft is realized to track the three-axis referenced commands of the angular velocities. The pulse width pulse frequency modulators are in fact employed in the inner closed loop to accommodate the control signals to a number of on-off thrusters, while the control allocation algorithm provides the commanded firing times for the reaction control thrusters in the overactuated spacecraft. Hereinafter, the outer closed loop, which consists of the proportional linear control approach and the kinematics of the spacecraft is correspondingly designed to deal with the attitude angles that are presented by quaternion vector. It should be noted that the main motivation of the present research is to realize a hybrid control method by using linear and nonlinear terms and to provide a reliable and robust control structure, which is able to track time varying three-axis referenced commands. Subsequently, a stability analysis is presented to verify the performance of the overall proposed cascade attitude control approach. To prove the effectiveness of the presented approach, a thorough investigation is presented compared to a number of recent corresponding benchmarks. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Correlation Between Bladder Pain Syndrome/Interstitial Cystitis and Pelvic Inflammatory Disease
Chung, Shiu-Dong; Chang, Chao-Hsiang; Hung, Peir-Haur; Chung, Chi-Jung; Muo, Chih-Hsin; Huang, Chao-Yuan
2015-01-01
Abstract Pelvic inflammatory disease (PID) has been investigated in Western countries and identified to be associated with chronic pelvic pain and inflammation. Bladder pain syndrome/interstitial cystitis (BPS/IC) is a complex syndrome that is significantly more prevalent in women than in men. Chronic pelvic pain is a main symptom of BPS/IC, and chronic inflammation is a major etiology of BPS/IC. This study aimed to investigate the correlation between BPS/IC and PID using a population-based dataset. We constructed a case–control study from the Taiwan National Health Insurance program. The case cohort comprised 449 patients with BPS/IC, and 1796 randomly selected subjects (about 1:4 matching) were used as controls. A Multivariate logistic regression model was constructed to estimate the association between BPS/IC and PID. Of the 2245 sampled subjects, a significant difference was observed in the prevalence of PID between BPS/IC cases and controls (41.7% vs 15.4%, P < 0.001). Multivariate logistic regression analysis revealed that the odds ratio (OR) for PID among cases was 3.69 (95% confidence interval [CI]: 2.89–4.71). Furthermore, the ORs for PID among BPS/IC cases were 4.52 (95% CI: 2.55–8.01), 4.31 (95% CI: 2.91–6.38), 3.00 (95% CI: 1.82–4.94), and 5.35 (95% CI: 1.88–15.20) in the <35, 35–49, 50–64, and >65 years age groups, respectively, after adjusting for geographic region, irritable bowel syndrome, and hypertension. Joint effect was also noted, specifically when patients had both PID and irritable bowel disease with OR of 10.5 (95% CI: 4.88–22.50). This study demonstrated a correlation between PID and BPS/IC. Clinicians treating women with PID should be alert to BPS/IC-related symptoms in the population. PMID:26579800
Multivariable PID controller design tuning using bat algorithm for activated sludge process
NASA Astrophysics Data System (ADS)
Atikah Nor’Azlan, Nur; Asmiza Selamat, Nur; Mat Yahya, Nafrizuan
2018-04-01
The designing of a multivariable PID control for multi input multi output is being concerned with this project by applying four multivariable PID control tuning which is Davison, Penttinen-Koivo, Maciejowski and Proposed Combined method. The determination of this study is to investigate the performance of selected optimization technique to tune the parameter of MPID controller. The selected optimization technique is Bat Algorithm (BA). All the MPID-BA tuning result will be compared and analyzed. Later, the best MPID-BA will be chosen in order to determine which techniques are better based on the system performances in terms of transient response.
Quadrotor trajectory tracking using PID cascade control
NASA Astrophysics Data System (ADS)
Idres, M.; Mustapha, O.; Okasha, M.
2017-12-01
Quadrotors have been applied to collect information for traffic, weather monitoring, surveillance and aerial photography. In order to accomplish their mission, quadrotors have to follow specific trajectories. This paper presents proportional-integral-derivative (PID) cascade control of a quadrotor for path tracking problem when velocity and acceleration are small. It is based on near hover controller for small attitude angles. The integral of time-weighted absolute error (ITAE) criterion is used to determine the PID gains as a function of quadrotor modeling parameters. The controller is evaluated in three-dimensional environment in Simulink. Overall, the tracking performance is found to be excellent for small velocity condition.
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2014-12-01
The Lorentz force acting on an electrostatically charged spacecraft as it moves through the planetary magnetic field could be utilized as propellantless electromagnetic propulsion for orbital maneuvering, such as spacecraft formation establishment and formation reconfiguration. By assuming that the Earth's magnetic field could be modeled as a tilted dipole located at the center of Earth that corotates with Earth, a dynamical model that describes the relative orbital motion of Lorentz spacecraft is developed. Based on the proposed dynamical model, the energy-optimal open-loop trajectories of control inputs, namely, the required specific charges of Lorentz spacecraft, for Lorentz-propelled spacecraft formation establishment or reconfiguration problems with both fixed and free final conditions constraints are derived via Gauss pseudospectral method. The effect of the magnetic dipole tilt angle on the optimal control inputs and the relative transfer trajectories for formation establishment or reconfiguration is also investigated by comparisons with the results derived from a nontilted dipole model. Furthermore, a closed-loop integral sliding mode controller is designed to guarantee the trajectory tracking in the presence of external disturbances and modeling errors. The stability of the closed-loop system is proved by a Lyapunov-based approach. Numerical simulations are presented to verify the validity of the proposed open-loop control methods and demonstrate the performance of the closed-loop controller. Also, the results indicate the dipole tilt angle should be considered when designing control strategies for Lorentz-propelled spacecraft formation establishment or reconfiguration.
Feedforward control of a closed-loop piezoelectric translation stage for atomic force microscope.
Li, Yang; Bechhoefer, John
2007-01-01
Simple feedforward ideas are shown to lead to a nearly tenfold increase in the effective bandwidth of a closed-loop piezoelectric positioning stage used in scanning probe microscopy. If the desired control signal is known in advance, the feedforward filter can be acausal: the information about the future can be used to make the output of the stage have almost no phase lag with respect to the input. This keeps in register the images assembled from right and left scans. We discuss the design constraints imposed by the need for the feedforward filter to work robustly under a variety of circumstances. Because the feedforward needs only to modify the input signal, it can be added to any piezoelectric stage, whether closed or open loop.
Ninu, Andrei; Dosen, Strahinja; Muceli, Silvia; Rattay, Frank; Dietl, Hans; Farina, Dario
2014-09-01
In closed-loop control of grasping by hand prostheses, the feedback information sent to the user is usually the actual controlled variable, i.e., the grasp force. Although this choice is intuitive and logical, the force production is only the last step in the process of grasping. Therefore, this study evaluated the performance in controlling grasp strength using a hand prosthesis operated through a complete grasping sequence while varying the feedback variables (e.g., closing velocity, grasping force), which were provided to the user visually or through vibrotactile stimulation. The experiments were conducted on 13 volunteers who controlled the Otto Bock Sensor Hand Speed prosthesis. Results showed that vibrotactile patterns were able to replace the visual feedback. Interestingly, the experiments demonstrated that direct force feedback was not essential for the control of grasping force. The subjects were indeed able to control the grip strength, predictively, by estimating the grasping force from the prosthesis velocity of closing. Therefore, grasping without explicit force feedback is not completely blind, contrary to what is usually assumed. In our study we analyzed grasping with a specific prosthetic device, but the outcomes are also applicable for other devices, with one or more degrees-of-freedom. The necessary condition is that the electromyography (EMG) signal directly and proportionally controls the velocity/grasp force of the hand, which is a common approach among EMG controlled prosthetic devices. The results provide important indications on the design of closed-loop EMG controlled prosthetic systems.
Closed loop cavitation control - A step towards sonomechatronics.
Saalbach, Kai-Alexander; Ohrdes, Hendrik; Twiefel, Jens
2018-06-01
In the field of sonochemistry, many processes are made possible by the generation of cavitation. This article is about closed loop control of ultrasound assisted processes with the aim of controlling the intensity of cavitation-based sonochemical processes. This is the basis for a new research field which the authors call "sonomechatronics". In order to apply closed loop control, a so called self-sensing technique is applied, which uses the ultrasound transducer's electrical signals to gain information about cavitation activity. Experiments are conducted to find out if this self-sensing technique is capable of determining the state and intensity of acoustic cavitation. A distinct frequency component in the transducer's current signal is found to be a good indicator for the onset and termination of transient cavitation. Measurements show that, depending on the boundary conditions, the onset and termination of transient cavitation occur at different thresholds, with the onset occurring at a higher value in most cases. This known hysteresis effect offers the additional possibility of achieving an energetic optimization by controlling cavitation generation. Using the cavitation indicator for the implementation of a double set point closed loop control, the mean driving current was reduced by approximately 15% compared to the value needed to exceed the transient cavitation threshold. The results presented show a great potential for the field of sonomechatronics. Nevertheless, further investigations are necessary in order to design application-specific sonomechatronic processes. Copyright © 2018 Elsevier B.V. All rights reserved.
Shock Position Control for Mode Transition in a Turbine Based Combined Cycle Engine Inlet Model
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Stueber, Thomas J.
2013-01-01
A dual flow-path inlet for a turbine based combined cycle (TBCC) propulsion system is to be tested in order to evaluate methodologies for performing a controlled inlet mode transition. Prior to experimental testing, simulation models are used to test, debug, and validate potential control algorithms which are designed to maintain shock position during inlet disturbances. One simulation package being used for testing is the High Mach Transient Engine Cycle Code simulation, known as HiTECC. This paper discusses the development of a mode transition schedule for the HiTECC simulation that is analogous to the development of inlet performance maps. Inlet performance maps, derived through experimental means, describe the performance and operability of the inlet as the splitter closes, switching power production from the turbine engine to the Dual Mode Scram Jet. With knowledge of the operability and performance tradeoffs, a closed loop system can be designed to optimize the performance of the inlet. This paper demonstrates the design of the closed loop control system and benefit with the implementation of a Proportional-Integral controller, an H-Infinity based controller, and a disturbance observer based controller; all of which avoid inlet unstart during a mode transition with a simulated disturbance that would lead to inlet unstart without closed loop control.
NASA Astrophysics Data System (ADS)
Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P.; Yang, Chen; Hosseini, Nahid; Fantner, Georg E.
2017-12-01
Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.
Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P; Yang, Chen; Hosseini, Nahid; Fantner, Georg E
2017-12-01
Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.
A Robust Inner and Outer Loop Control Method for Trajectory Tracking of a Quadrotor
Xia, Dunzhu; Cheng, Limei; Yao, Yanhong
2017-01-01
In order to achieve the complicated trajectory tracking of quadrotor, a geometric inner and outer loop control scheme is presented. The outer loop generates the desired rotation matrix for the inner loop. To improve the response speed and robustness, a geometric SMC controller is designed for the inner loop. The outer loop is also designed via sliding mode control (SMC). By Lyapunov theory and cascade theory, the closed-loop system stability is guaranteed. Next, the tracking performance is validated by tracking three representative trajectories. Then, the robustness of the proposed control method is illustrated by trajectory tracking in presence of model uncertainty and disturbances. Subsequently, experiments are carried out to verify the method. In the experiment, ultra wideband (UWB) is used for indoor positioning. Extended Kalman Filter (EKF) is used for fusing inertial measurement unit (IMU) and UWB measurements. The experimental results show the feasibility of the designed controller in practice. The comparative experiments with PD and PD loop demonstrate the robustness of the proposed control method. PMID:28925984
An Optimized Control for LLC Resonant Converter with Wide Load Range
NASA Astrophysics Data System (ADS)
Xi, Xia; Qian, Qinsong
2017-05-01
This paper presents an optimized control which makes LLC resonant converters operate with a wider load range and provides good closed-loop performance. The proposed control employs two paralleled digital compensations to guarantee the good closed-loop performance in a wide load range during the steady state, an optimized trajectory control will take over to change the gate-driving signals immediately at the load transients. Finally, the proposed control has been implemented and tested on a 150W 200kHz 400V/24V LLC resonant converter and the result validates the proposed method.
NASA Astrophysics Data System (ADS)
Goodwin, Graham. C.; Medioli, Adrian. M.
2013-08-01
Model predictive control has been a major success story in process control. More recently, the methodology has been used in other contexts, including automotive engine control, power electronics and telecommunications. Most applications focus on set-point tracking and use single-sequence optimisation. Here we consider an alternative class of problems motivated by the scheduling of emergency vehicles. Here disturbances are the dominant feature. We develop a novel closed-loop model predictive control strategy aimed at this class of problems. We motivate, and illustrate, the ideas via the problem of fluid deployment of ambulance resources.
El-Khatib, Firas H.; Jiang, John; Damiano, Edward R.
2009-01-01
Background We sought to test the feasibility and efficacy of bihormonal closed-loop blood glucose (BG) control that utilizes subcutaneous (SC) infusion of insulin and glucagon, a model-predictive control algorithm for determining insulin dosing, and a proportional-derivative control algorithm for determining glucagon dosing. Methods Thirteen closed-loop experiments (∼7–27 h in length) were conducted in six ambulatory diabetic pigs weighing 26–50 kg. In all experiments, venous BG was sampled through a central line in the vena cava. Efficacy was evaluated in terms of the controller's ability to regulate BG in response to large meal disturbances (∼5 g of carbohydrate per kilogram of body mass per meal) based only on regular frequent venous BG sampling and requiring only the subject's weight for initialization. Results Closed-loop results demonstrated successful BG regulation to normoglycemic range, with average insulin-to-carbohydrate ratios between ∼1:20 and 1:40 U/g. The total insulin bolus doses averaged ∼6 U for a meal containing ∼6 g per kilogram body mass. Mean BG values in two 24 h experiments were ∼142 and ∼155 mg/dl, with the total daily dose (TDD) of insulin being ∼0.8–1.0 U per kilogram of body mass and the TDD of glucagon being ∼0.02–0.05 mg. Results also affirmed the efficacy of SC doses of glucagon in staving off episodic hypoglycemia. Conclusions We demonstrate the feasibility of bihormonal closed-loop BG regulation using a control system that employs SC infusion of insulin and glucagon as governed by an algorithm that reacts only to BG without any feed-forward information regarding carbohydrate consumption or physical activity. As such, this study can reasonably be regarded as the first practical implementation of an artificial endocrine pancreas that has a hormonally derived counterregulatory capability. PMID:20144330
RF control at SSCL — an object oriented design approach
NASA Astrophysics Data System (ADS)
Dohan, D. A.; Osberg, E.; Biggs, R.; Bossom, J.; Chillara, K.; Richter, R.; Wade, D.
1994-12-01
The Superconducting Super Collider (SSC) in Texas, the construction of which was stopped in 1994, would have represented a major challenge in accelerator research and development. This paper addresses the issues encountered in the parallel design and construction of the control systems for the RF equipment for the five accelerators comprising the SSC. An extensive analysis of the components of the RF control systems has been undertaken, based upon the Schlaer-Mellor object-oriented analysis and design (OOA/OOD) methodology. The RF subsystem components such as amplifiers, tubes, power supplies, PID loops, etc. were analyzed to produce OOA information, behavior and process models. Using these models, OOD was iteratively applied to develop a generic RF control system design. This paper describes the results of this analysis and the development of 'bridges' between the analysis objects, and the EPICS-based software and underlying VME-based hardware architectures. The application of this approach to several of the SSCL RF control systems is discussed.
Irradiation Testing Vehicles for Fast Reactors from Open Test Assemblies to Closed Loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sienicki, James J.; Grandy, Christopher
A review of irradiation testing vehicle approaches and designs that have been incorporated into past Sodium-Cooled Fast Reactors (SFRs) or envisioned for incorporation has been carried out. The objective is to understand the essential features of the approaches and designs so that they can inform test vehicle designs for a future U.S. Fast Test Reactor. Fast test reactor designs examined include EBR-II, FFTF, JOYO, BOR-60, PHÉNIX, JHR, and MBIR. Previous designers exhibited great ingenuity in overcoming design and operational challenges especially when the original reactor plant’s mission changed to an irradiation testing mission as in the EBRII reactor plant. Themore » various irradiation testing vehicles can be categorized as: Uninstrumented open assemblies that fit into core locations; Instrumented open test assemblies that fit into special core locations; Self-contained closed loops; and External closed loops. A special emphasis is devoted to closed loops as they are regarded as a very desirable feature of a future U.S. Fast Test Reactor. Closed loops are an important technology for irradiation of fuels and materials in separate controlled environments. The impact of closed loops on the design of fast reactors is also discussed in this report.« less
Chicken barn climate and hazardous volatile compounds control using simple linear regression and PID
NASA Astrophysics Data System (ADS)
Abdullah, A. H.; Bakar, M. A. A.; Shukor, S. A. A.; Saad, F. S. A.; Kamis, M. S.; Mustafa, M. H.; Khalid, N. S.
2016-07-01
The hazardous volatile compounds from chicken manure in chicken barn are potentially to be a health threat to the farm animals and workers. Ammonia (NH3) and hydrogen sulphide (H2S) produced in chicken barn are influenced by climate changes. The Electronic Nose (e-nose) is used for the barn's air, temperature and humidity data sampling. Simple Linear Regression is used to identify the correlation between temperature-humidity, humidity-ammonia and ammonia-hydrogen sulphide. MATLAB Simulink software was used for the sample data analysis using PID controller. Results shows that the performance of PID controller using the Ziegler-Nichols technique can improve the system controller to control climate in chicken barn.
Design and experimental evaluation of robust controllers for a two-wheeled robot
NASA Astrophysics Data System (ADS)
Kralev, J.; Slavov, Ts.; Petkov, P.
2016-11-01
The paper presents the design and experimental evaluation of two alternative μ-controllers for robust vertical stabilisation of a two-wheeled self-balancing robot. The controllers design is based on models derived by identification from closed-loop experimental data. In the first design, a signal-based uncertainty representation obtained directly from the identification procedure is used, which leads to a controller of order 29. In the second design the signal uncertainty is approximated by an input multiplicative uncertainty, which leads to a controller of order 50, subsequently reduced to 30. The performance of the two μ-controllers is compared with the performance of a conventional linear quadratic controller with 17th-order Kalman filter. A proportional-integral controller of the rotational motion around the vertical axis is implemented as well. The control code is generated using Simulink® controller models and is embedded in a digital signal processor. Results from the simulation of the closed-loop system as well as experimental results obtained during the real-time implementation of the designed controllers are given. The theoretical investigation and experimental results confirm that the closed-loop system achieves robust performance in respect to the uncertainties related to the identified robot model.
Design and analysis of control system for VCSEL of atomic interference magnetometer
NASA Astrophysics Data System (ADS)
Zhang, Xiao-nan; Sun, Xiao-jie; Kou, Jun; Yang, Feng; Li, Jie; Ren, Zhang; Wei, Zong-kang
2016-11-01
Magnetic field detection is an important means of deep space environment exploration. Benefit from simple structure and low power consumption, atomic interference magnetometer become one of the most potential detector payloads. Vertical Cavity Surface Emitting Laser (VCSEL) is usually used as a light source in atomic interference magnetometer and its frequency stability directly affects the stability and sensitivity of magnetometer. In this paper, closed-loop control strategy of VCSEL was designed and analysis, the controller parameters were selected and the feedback error algorithm was optimized as well. According to the results of experiments that were performed on the hardware-in-the-loop simulation platform, the designed closed-loop control system is reasonable and it is able to effectively improve the laser frequency stability during the actual work of the magnetometer.
Experimental Verification of AUV (Autonomous Underwater Vehicle) Performance.
1988-03-01
7 3 First Order Plant Model 10 4 Closed Loop System Block Diagram 11 5 RLP[Kpz=l,U=0.5] 13 6 RLP[Kpz=I,U=I] 147 RLP[Kpz=0.5,U-0.5] 15 8 RLP[Kpz=0.5,U...circuit. The control circuit would then generate a radio control signal to maneuver the vehicle. 6 *’%4 MUMNT -. %Am -W’ This takes the man out of the loop ...angle, the constant Ky is 0.14i_" IN’ ft-lbf/rad. Estimated values of J and B were determined. The closed loop transfer function Go could then be
Nonlinear gearshifts control of dual-clutch transmissions during inertia phase.
Hu, Yunfeng; Tian, Lu; Gao, Bingzhao; Chen, Hong
2014-07-01
In this paper, a model-based nonlinear gearshift controller is designed by the backstepping method to improve the shift quality of vehicles with a dual-clutch transmission (DCT). Considering easy-implementation, the controller is rearranged into a concise structure which contains a feedforward control and a feedback control. Then, robustness of the closed-loop error system is discussed in the framework of the input to state stability (ISS) theory, where model uncertainties are considered as the additive disturbance inputs. Furthermore, due to the application of the backstepping method, the closed-loop error system is ordered as a linear system. Using the linear system theory, a guideline for selecting the controller parameters is deduced which could reduce the workload of parameters tuning. Finally, simulation results and Hardware in the Loop (HiL) simulation are presented to validate the effectiveness of the designed controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Research on frequency control strategy of interconnected region based on fuzzy PID
NASA Astrophysics Data System (ADS)
Zhang, Yan; Li, Chunlan
2018-05-01
In order to improve the frequency control performance of the interconnected power grid, overcome the problems of poor robustness and slow adjustment of traditional regulation, the paper puts forward a frequency control method based on fuzzy PID. The method takes the frequency deviation and tie-line deviation of each area as the control objective, takes the regional frequency deviation and its deviation as input, and uses fuzzy mathematics theory, adjusts PID control parameters online. By establishing the regional frequency control model of water-fire complementary power generation in MATLAB, the regional frequency control strategy is given, and three control modes (TBC-FTC, FTC-FTC, FFC-FTC) are simulated and analyzed. The simulation and experimental results show that, this method has better control performance compared with the traditional regional frequency regulation.
Closed-loop, pilot/vehicle analysis of the approach and landing task
NASA Technical Reports Server (NTRS)
Anderson, M. R.; Schmidt, D. K.
1986-01-01
In the case of approach and landing, it is universally accepted that the pilot uses more than one vehicle response, or output, to close his control loops. Therefore, to model this task, a multi-loop analysis technique is required. The analysis problem has been in obtaining reasonable analytic estimates of the describing functions representing the pilot's loop compensation. Once these pilot describing functions are obtained, appropriate performance and workload metrics must then be developed for the landing task. The optimal control approach provides a powerful technique for obtaining the necessary describing functions, once the appropriate task objective is defined in terms of a quadratic objective function. An approach is presented through the use of a simple, reasonable objective function and model-based metrics to evaluate loop performance and pilot workload. The results of an analysis of the LAHOS (Landing and Approach of Higher Order Systems) study performed by R.E. Smith is also presented.
Haga, Ken; Hayashi, Ken-ichiro; Sakai, Tatsuya
2014-11-01
Several members of the AGCVIII kinase subfamily, which includes PINOID (PID), PID2, and WAVY ROOT GROWTH (WAG) proteins, have previously been shown to phosphorylate PIN-FORMED (PIN) auxin transporters and control the auxin flow in plants. PID has been proposed as a key component of the phototropin signaling pathway that induces phototropic responses, although the responses were not significantly impaired in the pid single and pid wag1 wag2 triple mutants. This raises questions about the functional roles of the PID family in phototropic responses. Here, we investigated hypocotyl phototropism in the pid pid2 wag1 wag2 quadruple mutant in detail to clarify the roles of the PID family in Arabidopsis (Arabidopsis thaliana). The pid quadruple mutants exhibited moderate responses in continuous light-induced phototropism with a decrease in growth rates of hypocotyls and normal responses in pulse-induced phototropism. However, they showed serious defects in enhancements of pulse-induced phototropic curvatures and lateral fluorescent auxin transport by red light pretreatment. Red light pretreatment significantly reduced the expression level of PID, and the constitutive expression of PID prevented pulse-induced phototropism, irrespective of red light pretreatment. This suggests that the PID family plays a significant role in phytochrome-mediated phototropic enhancement but not the phototropin signaling pathway. Red light treatment enhanced the intracellular accumulation of PIN proteins in response to the vesicle-trafficking inhibitor brefeldin A in addition to increasing their expression levels. Taken together, these results suggest that red light preirradiation enhances phototropic curvatures by up-regulation of PIN proteins, which are not being phosphorylated by the PID family. © 2014 American Society of Plant Biologists. All Rights Reserved.
Haga, Ken; Hayashi, Ken-ichiro; Sakai, Tatsuya
2014-01-01
Several members of the AGCVIII kinase subfamily, which includes PINOID (PID), PID2, and WAVY ROOT GROWTH (WAG) proteins, have previously been shown to phosphorylate PIN-FORMED (PIN) auxin transporters and control the auxin flow in plants. PID has been proposed as a key component of the phototropin signaling pathway that induces phototropic responses, although the responses were not significantly impaired in the pid single and pid wag1 wag2 triple mutants. This raises questions about the functional roles of the PID family in phototropic responses. Here, we investigated hypocotyl phototropism in the pid pid2 wag1 wag2 quadruple mutant in detail to clarify the roles of the PID family in Arabidopsis (Arabidopsis thaliana). The pid quadruple mutants exhibited moderate responses in continuous light-induced phototropism with a decrease in growth rates of hypocotyls and normal responses in pulse-induced phototropism. However, they showed serious defects in enhancements of pulse-induced phototropic curvatures and lateral fluorescent auxin transport by red light pretreatment. Red light pretreatment significantly reduced the expression level of PID, and the constitutive expression of PID prevented pulse-induced phototropism, irrespective of red light pretreatment. This suggests that the PID family plays a significant role in phytochrome-mediated phototropic enhancement but not the phototropin signaling pathway. Red light treatment enhanced the intracellular accumulation of PIN proteins in response to the vesicle-trafficking inhibitor brefeldin A in addition to increasing their expression levels. Taken together, these results suggest that red light preirradiation enhances phototropic curvatures by up-regulation of PIN proteins, which are not being phosphorylated by the PID family. PMID:25281709
Energy Efficient Engine: Control system preliminary definition report
NASA Technical Reports Server (NTRS)
Howe, David C.
1986-01-01
The object of the Control Preliminary Definition Program was to define a preliminary control system concept as a part of the Energy Efficient Engine program. The program was limited to a conceptual definition of a full authority digital electronic control system. System requirements were determined and a control system was conceptually defined to these requirements. Areas requiring technological development were identified and a plan was established for implementing the identified technological features, including a control technology demonstration. A significant element of this program was a study of the potential benefits of closed-loop active clearance control, along with laboratory tests of candidate clearance sensor elements for a closed loop system.
NASA Technical Reports Server (NTRS)
Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Morales, Ray H. (Inventor); Le, Thang D. (Inventor)
2002-01-01
The present invention relates to a fully androgynous, reconfigurable closed loop feedback controlled low impact docking system with load sensing electromagnetic capture ring. The docking system of the present invention preferably comprises two Docking- assemblies, each docking assembly comprising a load sensing ring having an outer face, one of more electromagnets, one or more load cells coupled to said load sensing ring. The docking assembly further comprises a plurality of actuator arms coupled to said load sensing ring and capable of dynamically adjusting the orientation of said load sensing ring and a reconfigurable closed loop control system capable of analyzing signals originating from said plurality of load cells and of outputting real time control for each of the actuators. The docking assembly of the present invention incorporates an active load sensing system to automatically dynamically adjust the load sensing ring during capture instead of requiring significant force to push and realign the ring.
NASA Astrophysics Data System (ADS)
Ionescu, Clara M.; Copot, Cosmin; Verellen, Dirk
2017-03-01
The purpose of this work is to integrate the concept of patient-in-the-closed-loop application with tumour treatment of cancer-diagnosed patients in remote areas. The generic closed loop control objective is effective synchronisation of the radiation focus to the movement of a lung tissue tumour during actual breathing of the patient. This is facilitated by accurate repositioning of a robotic arm manipulator, i.e. we emulate the Cyberknife Robotic Radiosurgery system. Predictive control with disturbance filter is used in this application in a minimalistic model design. Performance of the control structure is validated by means of simulation using real recorded breathing patterns from patients measured in 3D space. Latency in communication protocol is taken into account, given telerobotics involve autonomous operation of a robot interacting with a human being in different location. Our results suggest that the proposed closed loop control structure has practical potential to individualise the treatment and improves accuracy by at least 15%.
Grant, Peadar F; Lowery, Madeleine M
2013-07-01
A new model of deep brain stimulation (DBS) is presented that integrates volume conduction effects with a neural model of pathological beta-band oscillations in the cortico-basal ganglia network. The model is used to test the clinical hypothesis that closed-loop control of the amplitude of DBS may be possible, based on the average rectified value of beta-band oscillations in the local field potential. Simulation of closed-loop high-frequency DBS was shown to yield energy savings, with the magnitude of the energy saved dependent on the strength of coupling between the subthalamic nucleus and the remainder of the cortico-basal ganglia network. When closed-loop DBS was applied to a strongly coupled cortico-basal ganglia network, the stimulation energy delivered over a 480 s period was reduced by up to 42%. Greater energy reductions were observed for weakly coupled networks, as the stimulation amplitude reduced to zero once the initial desynchronization had occurred. The results provide support for the application of closed-loop high-frequency DBS based on electrophysiological biomarkers.
Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro
NASA Astrophysics Data System (ADS)
Jin, Jing; Tian, Hai-Ting; Pan, Xiong; Song, Ning-Fang
2010-03-01
The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed-loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted.
Robustness Analysis and Optimally Robust Control Design via Sum-of-Squares
NASA Technical Reports Server (NTRS)
Dorobantu, Andrei; Crespo, Luis G.; Seiler, Peter J.
2012-01-01
A control analysis and design framework is proposed for systems subject to parametric uncertainty. The underlying strategies are based on sum-of-squares (SOS) polynomial analysis and nonlinear optimization to design an optimally robust controller. The approach determines a maximum uncertainty range for which the closed-loop system satisfies a set of stability and performance requirements. These requirements, de ned as inequality constraints on several metrics, are restricted to polynomial functions of the uncertainty. To quantify robustness, SOS analysis is used to prove that the closed-loop system complies with the requirements for a given uncertainty range. The maximum uncertainty range, calculated by assessing a sequence of increasingly larger ranges, serves as a robustness metric for the closed-loop system. To optimize the control design, nonlinear optimization is used to enlarge the maximum uncertainty range by tuning the controller gains. Hence, the resulting controller is optimally robust to parametric uncertainty. This approach balances the robustness margins corresponding to each requirement in order to maximize the aggregate system robustness. The proposed framework is applied to a simple linear short-period aircraft model with uncertain aerodynamic coefficients.
Approximate analytical relationships for linear optimal aeroelastic flight control laws
NASA Astrophysics Data System (ADS)
Kassem, Ayman Hamdy
1998-09-01
This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.
Behavioural system identification of visual flight speed control in Drosophila melanogaster
Rohrseitz, Nicola; Fry, Steven N.
2011-01-01
Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles. PMID:20525744
NASA Astrophysics Data System (ADS)
Deng, Chao; Ren, Wei; Mao, Yao; Ren, Ge
2017-08-01
A plug-in module acceleration feedback control (Plug-In AFC) strategy based on the disturbance observer (DOB) principle is proposed for charge-coupled device (CCD)-based fast steering mirror (FSM) stabilization systems. In classical FSM tracking systems, dual-loop control (DLC), including velocity feedback and position feedback, is usually utilized to enhance the closed-loop performance. Due to the mechanical resonance of the system and CCD time delay, the closed-loop bandwidth is severely restricted. To solve this problem, cascade acceleration feedback control (AFC), which is a kind of high-precision robust control method, is introduced to strengthen the disturbance rejection property. However, in practical applications, it is difficult to realize an integral algorithm in an acceleration controller to compensate for the quadratic differential contained in the FSM acceleration model, resulting in a challenging controller design and a limited improvement. To optimize the acceleration feedback framework in the FSM system, different from the cascade AFC, the accelerometers are used to construct DOB to compensate for the platform vibrations directly. The acceleration nested loop can be plugged into the velocity loop without changing the system stability, and the controller design is quite simple. A series of comparative experimental results demonstrate that the disturbance rejection property of the CCD-based FSM can be effectively improved by the proposed approach.
Behavioural system identification of visual flight speed control in Drosophila melanogaster.
Rohrseitz, Nicola; Fry, Steven N
2011-02-06
Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles.
Ibraheem; Hasan, Naimul; Hussein, Arkan Ahmed
2014-01-01
This Paper presents the design of decentralized automatic generation controller for an interconnected power system using PID, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The designed controllers are tested on identical two-area interconnected power systems consisting of thermal power plants. The area interconnections between two areas are considered as (i) AC tie-line only (ii) Asynchronous tie-line. The dynamic response analysis is carried out for 1% load perturbation. The performance of the intelligent controllers based on GA and PSO has been compared with the conventional PID controller. The investigations of the system dynamic responses reveal that PSO has the better dynamic response result as compared with PID and GA controller for both type of area interconnection.
Sharma, Richa; Gaur, Prerna; Mittal, A P
2015-09-01
The robotic manipulators are multi-input multi-output (MIMO), coupled and highly nonlinear systems. The presence of external disturbances and time-varying parameters adversely affects the performance of these systems. Therefore, the controller designed for these systems should effectively deal with such complexities, and it is an intriguing task for control engineers. This paper presents two-degree of freedom fractional order proportional-integral-derivative (2-DOF FOPID) controller scheme for a two-link planar rigid robotic manipulator with payload for trajectory tracking task. The tuning of all controller parameters is done using cuckoo search algorithm (CSA). The performance of proposed 2-DOF FOPID controllers is compared with those of their integer order designs, i.e., 2-DOF PID controllers, and with the traditional PID controllers. In order to show effectiveness of proposed scheme, the robustness testing is carried out for model uncertainties, payload variations with time, external disturbance and random noise. Numerical simulation results indicate that the 2-DOF FOPID controllers are superior to their integer order counterparts and the traditional PID controllers. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Shin, Jong-Yeob; Belcastro, Christine; Khong, thuan
2006-01-01
Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. Such systems developed for failure detection, identification, and reconfiguration, as well as upset recovery, need to be evaluated over broad regions of the flight envelope or under extreme flight conditions, and should include various sources of uncertainty. To apply formal robustness analysis, formulation of linear fractional transformation (LFT) models of complex parameter-dependent systems is required, which represent system uncertainty due to parameter uncertainty and actuator faults. This paper describes a detailed LFT model formulation procedure from the nonlinear model of a transport aircraft by using a preliminary LFT modeling software tool developed at the NASA Langley Research Center, which utilizes a matrix-based computational approach. The closed-loop system is evaluated over the entire flight envelope based on the generated LFT model which can cover nonlinear dynamics. The robustness analysis results of the closed-loop fault tolerant control system of a transport aircraft are presented. A reliable flight envelope (safe flight regime) is also calculated from the robust performance analysis results, over which the closed-loop system can achieve the desired performance of command tracking and failure detection.
Trevitt, Sara; Simpson, Sue; Wood, Annette
2016-05-01
Closed-loop artificial pancreas device (APD) systems are externally worn medical devices that are being developed to enable people with type 1 diabetes to regulate their blood glucose levels in a more automated way. The innovative concept of this emerging technology is that hands-free, continuous, glycemic control can be achieved by using digital communication technology and advanced computer algorithms. A horizon scanning review of this field was conducted using online sources of intelligence to identify systems in development. The systems were classified into subtypes according to their level of automation, the hormonal and glycemic control approaches used, and their research setting. Eighteen closed-loop APD systems were identified. All were being tested in clinical trials prior to potential commercialization. Six were being studied in the home setting, 5 in outpatient settings, and 7 in inpatient settings. It is estimated that 2 systems may become commercially available in the EU by the end of 2016, 1 during 2017, and 2 more in 2018. There are around 18 closed-loop APD systems progressing through early stages of clinical development. Only a few of these are currently in phase 3 trials and in settings that replicate real life. © 2015 Diabetes Technology Society.
NASA Technical Reports Server (NTRS)
Christhilf, David M.; Pototzky, Anthony S.; Stevens, William L.
2010-01-01
The Simulink-based Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV) was modified to incorporate linear models representing aeroservoelastic characteristics of the SemiSpan SuperSonic Transport (S4T) wind-tunnel model. The S4T planform is for a Technology Concept Aircraft (TCA) design from the 1990s. The model has three control surfaces and is instrumented with accelerometers and strain gauges. Control laws developed for wind-tunnel testing for Ride Quality Enhancement, Gust Load Alleviation, and Flutter Suppression System functions were implemented in the simulation. The simulation models open- and closed-loop response to turbulence and to control excitation. It provides time histories for closed-loop stable conditions above the open-loop flutter boundary. The simulation is useful for assessing the potential impact of closed-loop control rate and position saturation. It also provides a means to assess fidelity of system identification procedures by providing time histories for a known plant model, with and without unmeasured turbulence as a disturbance. Sets of linear models representing different Mach number and dynamic pressure conditions were implemented as MATLAB Linear Time Invariant (LTI) objects. Configuration changes were implemented by selecting which LTI object to use in a Simulink template block. A limited comparison of simulation versus wind-tunnel results is shown.
1981-05-01
made to provide mounting bosses for the closed loop conveyor chute . Ten small round bosses were welded onto the housing to provide this support...became necessary to depart from previous closed loop feeder designs . The original feed system consisted of a series of conveyor elements in a flexible...The flexible chuting has been replaced with rigid chuting forming a loop around the gun housing. This design affords the maximum stiffness and hence
Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) Users' Guide
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Zinnecker, Alicia M.
2014-01-01
The tool for turbine engine closed-loop transient analysis (TTECTrA) is a semi-automated control design tool for subsonic aircraft engine simulations. At a specific flight condition, TTECTrA produces a basic controller designed to meet user-defined goals and containing only the fundamental limiters that affect the transient performance of the engine. The purpose of this tool is to provide the user a preliminary estimate of the transient performance of an engine model without the need to design a full nonlinear controller.
A technique for sequential segmental neuromuscular stimulation with closed loop feedback control.
Zonnevijlle, Erik D H; Abadia, Gustavo Perez; Somia, Naveen N; Kon, Moshe; Barker, John H; Koenig, Steven; Ewert, D L; Stremel, Richard W
2002-01-01
In dynamic myoplasty, dysfunctional muscle is assisted or replaced with skeletal muscle from a donor site. Electrical stimulation is commonly used to train and animate the skeletal muscle to perform its new task. Due to simultaneous tetanic contractions of the entire myoplasty, muscles are deprived of perfusion and fatigue rapidly, causing long-term problems such as excessive scarring and muscle ischemia. Sequential stimulation contracts part of the muscle while other parts rest, thus significantly improving blood perfusion. However, the muscle still fatigues. In this article, we report a test of the feasibility of using closed-loop control to economize the contractions of the sequentially stimulated myoplasty. A simple stimulation algorithm was developed and tested on a sequentially stimulated neo-sphincter designed from a canine gracilis muscle. Pressure generated in the lumen of the myoplasty neo-sphincter was used as feedback to regulate the stimulation signal via three control parameters, thereby optimizing the performance of the myoplasty. Additionally, we investigated and compared the efficiency of amplitude and frequency modulation techniques. Closed-loop feedback enabled us to maintain target pressures within 10% deviation using amplitude modulation and optimized control parameters (correction frequency = 4 Hz, correction threshold = 4%, and transition time = 0.3 s). The large-scale stimulation/feedback setup was unfit for chronic experimentation, but can be used as a blueprint for a small-scale version to unveil the theoretical benefits of closed-loop control in chronic experimentation.
NASA Astrophysics Data System (ADS)
Sun, Hong; Wu, Qian-zhong
2013-09-01
In order to improve the precision of optical-electric tracking device, proposing a kind of improved optical-electric tracking device based on MEMS, in allusion to the tracking error of gyroscope senor and the random drift, According to the principles of time series analysis of random sequence, establish AR model of gyro random error based on Kalman filter algorithm, then the output signals of gyro are multiple filtered with Kalman filter. And use ARM as micro controller servo motor is controlled by fuzzy PID full closed loop control algorithm, and add advanced correction and feed-forward links to improve response lag of angle input, Free-forward can make output perfectly follow input. The function of lead compensation link is to shorten the response of input signals, so as to reduce errors. Use the wireless video monitor module and remote monitoring software (Visual Basic 6.0) to monitor servo motor state in real time, the video monitor module gathers video signals, and the wireless video module will sent these signals to upper computer, so that show the motor running state in the window of Visual Basic 6.0. At the same time, take a detailed analysis to the main error source. Through the quantitative analysis of the errors from bandwidth and gyro sensor, it makes the proportion of each error in the whole error more intuitive, consequently, decrease the error of the system. Through the simulation and experiment results shows the system has good following characteristic, and it is very valuable for engineering application.
Evaluation of an Outer Loop Retrofit Architecture for Intelligent Turbofan Engine Thrust Control
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Sowers, T. Shane
2006-01-01
The thrust control capability of a retrofit architecture for intelligent turbofan engine control and diagnostics is evaluated. The focus of the study is on the portion of the hierarchical architecture that performs thrust estimation and outer loop thrust control. The inner loop controls fan speed so the outer loop automatically adjusts the engine's fan speed command to maintain thrust at the desired level, based on pilot input, even as the engine deteriorates with use. The thrust estimation accuracy is assessed under nominal and deteriorated conditions at multiple operating points, and the closed loop thrust control performance is studied, all in a complex real-time nonlinear turbofan engine simulation test bed. The estimation capability, thrust response, and robustness to uncertainty in the form of engine degradation are evaluated.
Continuous Firefly Algorithm for Optimal Tuning of Pid Controller in Avr System
NASA Astrophysics Data System (ADS)
Bendjeghaba, Omar
2014-01-01
This paper presents a tuning approach based on Continuous firefly algorithm (CFA) to obtain the proportional-integral- derivative (PID) controller parameters in Automatic Voltage Regulator system (AVR). In the tuning processes the CFA is iterated to reach the optimal or the near optimal of PID controller parameters when the main goal is to improve the AVR step response characteristics. Conducted simulations show the effectiveness and the efficiency of the proposed approach. Furthermore the proposed approach can improve the dynamic of the AVR system. Compared with particle swarm optimization (PSO), the new CFA tuning method has better control system performance in terms of time domain specifications and set-point tracking.
Zhang, Chaowen; Chen, Feifan; Zhao, Ziyao; Hu, Liangliang; Liu, Hanqiang; Cheng, Zhihui; Weng, Yiqun; Chen, Peng; Li, Yuhong
2018-06-01
Two round-leaf mutants, rl-1 and rl-2, were identified from EMS-induced mutagenesis. High throughput sequencing and map-based cloning suggested CsPID encoding a Ser/Thr protein kinase as the most possible candidate for rl-1. Rl-2 was allelic to Rl-1. Leaf shape is an important plant architecture trait that is affected by plant hormones, especially auxin. In Arabidopsis, PINOID (PID), a regulator for the auxin polar transporter PIN (PIN-FORMED) affects leaf shape formation, but this function of PID in crop plants has not been well studied. From an EMS mutagenesis population, we identified two round-leaf (rl) mutants, C356 and C949. Segregation analysis suggested that both mutations were controlled by single recessive genes, rl-1 and rl-2, respectively. With map-based cloning, we show that CsPID as the candidate gene of rl-1; a non-synonymous SNP in the second exon of CsPID resulted in an amino acid substitution and the round leaf phenotype. As compared in the wild type plant, CsPID had significantly lower expression in the root, leaf and female flowers in C356, which may result in the less developed roots, round leaves and abnormal female flowers, respectively in the rl-1 mutant. Among the three copies of PID genes, CsPID, CsPID2 and CSPID2L (CsPID2-like) in the cucumber genome, CsPID was the only one with significantly differential expression in adult leaves between WT and C356 suggesting CsPID plays a main role in leaf shape formation. The rl-2 mutation in C949 was also cloned, which was due to another SNP in a nearby location of rl-1 in the same CsPID gene. The two round leaf mutants and the work presented herein provide a good foundation for understanding the molecular mechanisms of CsPID in cucumber leaf development.
Research of digital controlled DC/DC converter based on STC12C5410AD
NASA Astrophysics Data System (ADS)
Chen, Dan-Jiang; Jin, Xin; Xiao, Zhi-Hong
2010-02-01
In order to study application of digital control technology on DC/DC converter, principle of increment mode PID control algorithm was analyzed in the paper. Then, a SCM named STC12C5410AD was introduced with its internal resources and characteristics. The PID control algorithm can be implemented easily based on it. The output of PID control was used to change the value of a variable that is 255 times than duty cycle, and this reduced the error of calculation. The valid of the presented algorithm was verified by an experiment for a BUCK DC/DC converter. The experimental results indicated that output voltage of the BUCK converter is stable with low ripple.
H∞ output tracking control of discrete-time nonlinear systems via standard neural network models.
Liu, Meiqin; Zhang, Senlin; Chen, Haiyang; Sheng, Weihua
2014-10-01
This brief proposes an output tracking control for a class of discrete-time nonlinear systems with disturbances. A standard neural network model is used to represent discrete-time nonlinear systems whose nonlinearity satisfies the sector conditions. H∞ control performance for the closed-loop system including the standard neural network model, the reference model, and state feedback controller is analyzed using Lyapunov-Krasovskii stability theorem and linear matrix inequality (LMI) approach. The H∞ controller, of which the parameters are obtained by solving LMIs, guarantees that the output of the closed-loop system closely tracks the output of a given reference model well, and reduces the influence of disturbances on the tracking error. Three numerical examples are provided to show the effectiveness of the proposed H∞ output tracking design approach.
The Structure, Design, and Closed-Loop Motion Control of a Differential Drive Soft Robot.
Wu, Pang; Jiangbei, Wang; Yanqiong, Fei
2018-02-01
This article presents the structure, design, and motion control of an inchworm inspired pneumatic soft robot, which can perform differential movement. This robot mainly consists of two columns of pneumatic multi-airbags (actuators), one sensor, one baseboard, front feet, and rear feet. According to the different inflation time of left and right actuators, the robot can perform both linear and turning movements. The actuators of this robot are composed of multiple airbags, and the design of the airbags is analyzed. To deal with the nonlinear performance of the soft robot, we use radial basis function neural networks to train the turning ability of this robot on three different surfaces and create a mathematical model among coefficient of friction, deflection angle, and inflation time. Then, we establish the closed-loop automatic control model using three-axis electronic compass sensor. Finally, the automatic control model is verified by linear and turning movement experiments. According to the experiment, the robot can finish the linear and turning movements under the closed-loop control system.
Optical Closed-Loop Propulsion Control System Development
NASA Technical Reports Server (NTRS)
Poppel, Gary L.
1998-01-01
The overall objective of this program was to design and fabricate the components required for optical closed-loop control of a F404-400 turbofan engine, by building on the experience of the NASA Fiber Optic Control System Integration (FOCSI) program. Evaluating the performance of fiber optic technology at the component and system levels will result in helping to validate its use on aircraft engines. This report includes descriptions of three test plans. The EOI Acceptance Test is designed to demonstrate satisfactory functionality of the EOI, primarily fail-safe throughput of the F404 sensor signals in the normal mode, and validation, switching, and output of the five analog sensor signals as generated from validated optical sensor inputs, in the optical mode. The EOI System Test is designed to demonstrate acceptable F404 ECU functionality as interfaced with the EOI, making use of a production ECU test stand. The Optical Control Engine Test Request describes planned hardware installation, optical signal calibrations, data system coordination, test procedures, and data signal comparisons for an engine test demonstration of the optical closed-loop control.
Microgyroscope with closed loop output
NASA Technical Reports Server (NTRS)
Challoner, A. Dorian (Inventor); Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor); Cargille, Donald R. (Inventor)
2002-01-01
A micro-gyroscope (10) having closed loop operation by a control voltage (V.sub.TY), that is demodulated by an output signal of the sense electrodes (S1, S2), providing Coriolis torque rebalance to prevent displacement of the micro-gyroscope (10) on the output axis (y-axis). The present invention provides wide-band, closed-loop operation for a micro-gyroscope (10) and allows the drive frequency to be closely tuned to a high Q sense axis resonance. A differential sense signal (S1-S2) is compensated and fed back by differentially changing the voltage on the drive electrodes to rebalance Coriolis torque. The feedback signal is demodulated in phase with the drive axis signal (K.sub..omega..crclbar..sub.x) to produce a measure of the Coriolis force.
Closed loop models for analyzing engineering requirements for simulators
NASA Technical Reports Server (NTRS)
Baron, S.; Muralidharan, R.; Kleinman, D.
1980-01-01
A closed loop analytic model, incorporating a model for the human pilot, (namely, the optimal control model) that would allow certain simulation design tradeoffs to be evaluated quantitatively was developed. This model was applied to a realistic flight control problem. The resulting model is used to analyze both overall simulation effects and the effects of individual elements. The results show that, as compared to an ideal continuous simulation, the discrete simulation can result in significant performance and/or workload penalties.
Closing the Loop: Control and Robot Navigation in Wireless Sensor Networks
2006-09-05
University of California at Berkeley Technical Report No. UCB/EECS- 2006 -112 http://www.eecs.berkeley.edu/Pubs/TechRpts/ 2006 /EECS- 2006 -112.html September 5... 2006 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1...DATE 05 SEP 2006 2. REPORT TYPE 3. DATES COVERED 00-00- 2006 to 00-00- 2006 4. TITLE AND SUBTITLE Closing the Loop: Control and Robot Navigation in
Eigenspace techniques for active flutter suppression
NASA Technical Reports Server (NTRS)
Garrard, William L.; Liebst, Bradley S.; Farm, Jerome A.
1987-01-01
The use of eigenspace techniques for the design of an active flutter suppression system for a hypothetical research drone is discussed. One leading edge and two trailing edge aerodynamic control surfaces and four sensors (accelerometers) are available for each wing. Full state control laws are designed by selecting feedback gains which place closed loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing flutter and reduce gust loads at the wing root while yielding accepatable robustness and satisfying constrains on rms control surface activity. These controllers are realized by state estimators designed using an eigenvalue placement/eigenvector shaping technique which results in recovery of the full state loop transfer characteristics. The resulting feedback compensators are shown to perform almost as well as the full state designs. They also exhibit acceptable performance in situations in which the failure of an actuator is simulated.
Lew, Brian; Alavi, Nezam; Randhawa, Bubblepreet K; Menon, Carlo
2016-01-01
Stroke is the leading cause of upper limb impairments resulting in disability. Modern rehabilitation includes training with robotic exoskeletons and functional electrical stimulation (FES). However, there is a gap in knowledge to define the detailed use of FES in stroke rehabilitation. In this paper, we explore applying closed-loop FES to the upper extremities of healthy volunteers and individuals with a hemiparetic arm resulting from stroke. We used a set of gyroscopes to monitor arm movements and used a non-linear controller, namely, the robust integral of the sign of the error (RISE), to assess the viability of controlling FES in closed loop. Further, we explored the application of closed-loop FES in improving functional tasks performed by individuals with stroke. Four healthy individuals of ages 27-32 years old and five individuals with stroke of ages 61-83 years old participated in this study. We used the Rehastim FES unit (Hasomed Ltd.) with real-time modulation of pulse width and amplitude. Both healthy and stroke individuals were tested in RISE-controlled single and multi-joint upper limb motions following first a sinusoidal trajectory. Individuals with stroke were also asked to perform the following functional tasks: picking up a basket, picking and placing an object on a table, cutting a pizza, pulling back a chair, eating with a spoon, as well as using a stapler and grasping a pen. Healthy individuals were instructed to keep their arm relaxed during the experiment. Most individuals with stroke were able to follow the sinusoid trajectories with their arm joints under the sole excitation of the closed-loop-controlled FES. One individual with stroke, who was unable to perform any of the functional tasks independently, succeeded in completing all the tasks when FES was used. Three other individuals with stroke, who were unable to complete a few tasks independently, completed some of them when FES was used. The remaining stroke participant was able to complete all tasks with and without FES. Our results suggest that individuals with a low Fugl-Meyer score or a higher level of disability may benefit the most with the use of closed-loop-controlled FES.
Lew, Brian; Alavi, Nezam; Randhawa, Bubblepreet K.; Menon, Carlo
2016-01-01
Stroke is the leading cause of upper limb impairments resulting in disability. Modern rehabilitation includes training with robotic exoskeletons and functional electrical stimulation (FES). However, there is a gap in knowledge to define the detailed use of FES in stroke rehabilitation. In this paper, we explore applying closed-loop FES to the upper extremities of healthy volunteers and individuals with a hemiparetic arm resulting from stroke. We used a set of gyroscopes to monitor arm movements and used a non-linear controller, namely, the robust integral of the sign of the error (RISE), to assess the viability of controlling FES in closed loop. Further, we explored the application of closed-loop FES in improving functional tasks performed by individuals with stroke. Four healthy individuals of ages 27–32 years old and five individuals with stroke of ages 61–83 years old participated in this study. We used the Rehastim FES unit (Hasomed Ltd.) with real-time modulation of pulse width and amplitude. Both healthy and stroke individuals were tested in RISE-controlled single and multi-joint upper limb motions following first a sinusoidal trajectory. Individuals with stroke were also asked to perform the following functional tasks: picking up a basket, picking and placing an object on a table, cutting a pizza, pulling back a chair, eating with a spoon, as well as using a stapler and grasping a pen. Healthy individuals were instructed to keep their arm relaxed during the experiment. Most individuals with stroke were able to follow the sinusoid trajectories with their arm joints under the sole excitation of the closed-loop-controlled FES. One individual with stroke, who was unable to perform any of the functional tasks independently, succeeded in completing all the tasks when FES was used. Three other individuals with stroke, who were unable to complete a few tasks independently, completed some of them when FES was used. The remaining stroke participant was able to complete all tasks with and without FES. Our results suggest that individuals with a low Fugl–Meyer score or a higher level of disability may benefit the most with the use of closed-loop-controlled FES. PMID:27014683