Fuzzy PID control algorithm based on PSO and application in BLDC motor
NASA Astrophysics Data System (ADS)
Lin, Sen; Wang, Guanglong
2017-06-01
A fuzzy PID control algorithm is studied based on improved particle swarm optimization (PSO) to perform Brushless DC (BLDC) motor control which has high accuracy, good anti-jamming capability and steady state accuracy compared with traditional PID control. The mathematical and simulation model is established for BLDC motor by simulink software, and the speed loop of the fuzzy PID controller is designed. The simulation results show that the fuzzy PID control algorithm based on PSO has higher stability, high control precision and faster dynamic response speed.
Improved fuzzy PID controller design using predictive functional control structure.
Wang, Yuzhong; Jin, Qibing; Zhang, Ridong
2017-11-01
In conventional PID scheme, the ensemble control performance may be unsatisfactory due to limited degrees of freedom under various kinds of uncertainty. To overcome this disadvantage, a novel PID control method that inherits the advantages of fuzzy PID control and the predictive functional control (PFC) is presented and further verified on the temperature model of a coke furnace. Based on the framework of PFC, the prediction of the future process behavior is first obtained using the current process input signal. Then, the fuzzy PID control based on the multi-step prediction is introduced to acquire the optimal control law. Finally, the case study on a temperature model of a coke furnace shows the effectiveness of the fuzzy PID control scheme when compared with conventional PID control and fuzzy self-adaptive PID control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mukherjee, Bijoy K.; Metia, Santanu
2009-10-01
The paper is divided into three parts. The first part gives a brief introduction to the overall paper, to fractional order PID (PIλDμ) controllers and to Genetic Algorithm (GA). In the second part, first it has been studied how the performance of an integer order PID controller deteriorates when implemented with lossy capacitors in its analog realization. Thereafter it has been shown that the lossy capacitors can be effectively modeled by fractional order terms. Then, a novel GA based method has been proposed to tune the controller parameters such that the original performance is retained even though realized with the same lossy capacitors. Simulation results have been presented to validate the usefulness of the method. Some Ziegler-Nichols type tuning rules for design of fractional order PID controllers have been proposed in the literature [11]. In the third part, a novel GA based method has been proposed which shows how equivalent integer order PID controllers can be obtained which will give performance level similar to those of the fractional order PID controllers thereby removing the complexity involved in the implementation of the latter. It has been shown with extensive simulation results that the equivalent integer order PID controllers more or less retain the robustness and iso-damping properties of the original fractional order PID controllers. Simulation results also show that the equivalent integer order PID controllers are more robust than the normal Ziegler-Nichols tuned PID controllers.
Research on Environmental Adjustment of Cloud Ranch Based on BP Neural Network PID Control
NASA Astrophysics Data System (ADS)
Ren, Jinzhi; Xiang, Wei; Zhao, Lin; Wu, Jianbo; Huang, Lianzhen; Tu, Qinggang; Zhao, Heming
2018-01-01
In order to make the intelligent ranch management mode replace the traditional artificial one gradually, this paper proposes a pasture environment control system based on cloud server, and puts forward the PID control algorithm based on BP neural network to control temperature and humidity better in the pasture environment. First, to model the temperature and humidity (controlled object) of the pasture, we can get the transfer function. Then the traditional PID control algorithm and the PID one based on BP neural network are applied to the transfer function. The obtained step tracking curves can be seen that the PID controller based on BP neural network has obvious superiority in adjusting time and error, etc. This algorithm, calculating reasonable control parameters of the temperature and humidity to control environment, can be better used in the cloud service platform.
Longitudinal control of aircraft dynamics based on optimization of PID parameters
NASA Astrophysics Data System (ADS)
Deepa, S. N.; Sudha, G.
2016-03-01
Recent years many flight control systems and industries are employing PID controllers to improve the dynamic behavior of the characteristics. In this paper, PID controller is developed to improve the stability and performance of general aviation aircraft system. Designing the optimum PID controller parameters for a pitch control aircraft is important in expanding the flight safety envelope. Mathematical model is developed to describe the longitudinal pitch control of an aircraft. The PID controller is designed based on the dynamic modeling of an aircraft system. Different tuning methods namely Zeigler-Nichols method (ZN), Modified Zeigler-Nichols method, Tyreus-Luyben tuning, Astrom-Hagglund tuning methods are employed. The time domain specifications of different tuning methods are compared to obtain the optimum parameters value. The results prove that PID controller tuned by Zeigler-Nichols for aircraft pitch control dynamics is better in stability and performance in all conditions. Future research work of obtaining optimum PID controller parameters using artificial intelligence techniques should be carried out.
PSO-based PID Speed Control of Traveling Wave Ultrasonic Motor under Temperature Disturbance
NASA Astrophysics Data System (ADS)
Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Azmi, Nur Iffah Mohamed; Romlay, Fadhlur Rahman Mohd
2018-03-01
Traveling wave ultrasonic motors (TWUSMs) have a time varying dynamics characteristics. Temperature rise in TWUSMs remains a problem particularly in sustaining optimum speed performance. In this study, a PID controller is used to control the speed of TWUSM under temperature disturbance. Prior to developing the controller, a linear approximation model which relates the speed to the temperature is developed based on the experimental data. Two tuning methods are used to determine PID parameters: conventional Ziegler-Nichols(ZN) and particle swarm optimization (PSO). The comparison of speed control performance between PSO-PID and ZN-PID is presented. Modelling, simulation and experimental work is carried out utilizing Fukoku-Shinsei USR60 as the chosen TWUSM. The results of the analyses and experimental work reveal that PID tuning using PSO-based optimization has the advantage over the conventional Ziegler-Nichols method.
Zhang, Shu; Taft, Cyrus W; Bentsman, Joseph; Hussey, Aaron; Petrus, Bryan
2012-09-01
Tuning a complex multi-loop PID based control system requires considerable experience. In today's power industry the number of available qualified tuners is dwindling and there is a great need for better tuning tools to maintain and improve the performance of complex multivariable processes. Multi-loop PID tuning is the procedure for the online tuning of a cluster of PID controllers operating in a closed loop with a multivariable process. This paper presents the first application of the simultaneous tuning technique to the multi-input-multi-output (MIMO) PID based nonlinear controller in the power plant control context, with the closed-loop system consisting of a MIMO nonlinear boiler/turbine model and a nonlinear cluster of six PID-type controllers. Although simplified, the dynamics and cross-coupling of the process and the PID cluster are similar to those used in a real power plant. The particular technique selected, iterative feedback tuning (IFT), utilizes the linearized version of the PID cluster for signal conditioning, but the data collection and tuning is carried out on the full nonlinear closed-loop system. Based on the figure of merit for the control system performance, the IFT is shown to deliver performance favorably comparable to that attained through the empirical tuning carried out by an experienced control engineer. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
The application of neural network PID controller to control the light gasoline etherification
NASA Astrophysics Data System (ADS)
Cheng, Huanxin; Zhang, Yimin; Kong, Lingling; Meng, Xiangyong
2017-06-01
Light gasoline etherification technology can effectively improve the quality of gasoline, which is environmental- friendly and economical. By combining BP neural network and PID control and using BP neural network self-learning ability for online parameter tuning, this method optimizes the parameters of PID controller and applies this to the Fcc gas flow control to achieve the control of the final product- heavy oil concentration. Finally, through MATLAB simulation, it is found that the PID control based on BP neural network has better controlling effect than traditional PID control.
Beeler, Remo; Schoenenberger, Andreas W; Bauer, Peter; Kobza, Richard; Bergner, Michael; Mueller, Xavier; Schlaepfer, Reinhard; Zuber, Michel; Erne, Susanne; Erne, Paul
2014-03-01
Device-based pacing-induced diaphragmatic stimulation (PIDS) may have therapeutic potential for chronic heart failure (HF) patients. We studied the effects of PIDS on cardiac function and functional outcomes. In 24 chronic HF patients with CRT, an additional electrode was attached to the left diaphragm. Randomized into two groups, patients received the following PIDS modes for 3 weeks in a different sequence: (i) PIDS off (control group); (ii) PIDS 0 ms mode (PIDS simultaneously with ventricular CRT pulse); or (iii) PIDS optimized mode (PIDS with optimized delay to ventricular CRT pulse). For PIDS optimization, acoustic cardiography was used. Effects of each PIDS mode on dyspnoea, power during exercise testing, and LVEF were assessed. Dyspnoea improved with the PIDS 0 ms mode (P = 0.057) and the PIDS optimized mode (P = 0.034) as compared with the control group. Maximal power increased from median 100.5 W in the control group to 104.0 W in the PIDS 0 ms mode (P = 0.092) and 109.5 W in the PIDS optimized mode (P = 0.022). Median LVEF was 33.5% in the control group, 33.0% in the PIDS 0 ms mode, and 37.0% in the PIDS optimized mode (P = 0.763 and P = 0.009 as compared with the control group, respectively). PIDS was asymptomatic in all patients. PIDS improves dyspnoea, working capacity, and LVEF in chronic HF patients over a 3 week period in addition to CRT. This pilot study demonstrates proof of principle of an innovative technology which should be confirmed in a larger sample. NCT00769678. © 2013 The Authors. European Journal of Heart Failure © 2013 European Society of Cardiology.
Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P
2016-05-01
Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Robotic excavator trajectory control using an improved GA based PID controller
NASA Astrophysics Data System (ADS)
Feng, Hao; Yin, Chen-Bo; Weng, Wen-wen; Ma, Wei; Zhou, Jun-jing; Jia, Wen-hua; Zhang, Zi-li
2018-05-01
In order to achieve excellent trajectory tracking performances, an improved genetic algorithm (IGA) is presented to search for the optimal proportional-integral-derivative (PID) controller parameters for the robotic excavator. Firstly, the mathematical model of kinematic and electro-hydraulic proportional control system of the excavator are analyzed based on the mechanism modeling method. On this basis, the actual model of the electro-hydraulic proportional system are established by the identification experiment. Furthermore, the population, the fitness function, the crossover probability and mutation probability of the SGA are improved: the initial PID parameters are calculated by the Ziegler-Nichols (Z-N) tuning method and the initial population is generated near it; the fitness function is transformed to maintain the diversity of the population; the probability of crossover and mutation are adjusted automatically to avoid premature convergence. Moreover, a simulation study is carried out to evaluate the time response performance of the proposed controller, i.e., IGA based PID against the SGA and Z-N based PID controllers with a step signal. It was shown from the simulation study that the proposed controller provides the least rise time and settling time of 1.23 s and 1.81 s, respectively against the other tested controllers. Finally, two types of trajectories are designed to validate the performances of the control algorithms, and experiments are performed on the excavator trajectory control experimental platform. It was demonstrated from the experimental work that the proposed IGA based PID controller improves the trajectory accuracy of the horizontal line and slope line trajectories by 23.98% and 23.64%, respectively in comparison to the SGA tuned PID controller. The results further indicate that the proposed IGA tuning based PID controller is effective for improving the tracking accuracy, which may be employed in the trajectory control of an actual excavator.
Fault tolerant control of multivariable processes using auto-tuning PID controller.
Yu, Ding-Li; Chang, T K; Yu, Ding-Wen
2005-02-01
Fault tolerant control of dynamic processes is investigated in this paper using an auto-tuning PID controller. A fault tolerant control scheme is proposed composing an auto-tuning PID controller based on an adaptive neural network model. The model is trained online using the extended Kalman filter (EKF) algorithm to learn system post-fault dynamics. Based on this model, the PID controller adjusts its parameters to compensate the effects of the faults, so that the control performance is recovered from degradation. The auto-tuning algorithm for the PID controller is derived with the Lyapunov method and therefore, the model predicted tracking error is guaranteed to converge asymptotically. The method is applied to a simulated two-input two-output continuous stirred tank reactor (CSTR) with various faults, which demonstrate the applicability of the developed scheme to industrial processes.
Non-fragile multivariable PID controller design via system augmentation
NASA Astrophysics Data System (ADS)
Liu, Jinrong; Lam, James; Shen, Mouquan; Shu, Zhan
2017-07-01
In this paper, the issue of designing non-fragile H∞ multivariable proportional-integral-derivative (PID) controllers with derivative filters is investigated. In order to obtain the controller gains, the original system is associated with an extended system such that the PID controller design can be formulated as a static output-feedback control problem. By taking the system augmentation approach, the conditions with slack matrices for solving the non-fragile H∞ multivariable PID controller gains are established. Based on the results, linear matrix inequality -based iterative algorithms are provided to compute the controller gains. Simulations are conducted to verify the effectiveness of the proposed approaches.
NASA Astrophysics Data System (ADS)
Saha, Suman; Das, Saptarshi; Das, Shantanu; Gupta, Amitava
2012-09-01
A novel conformal mapping based fractional order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PIλDμ) controller have been approximated in this paper vis-à-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PIλDμ controller pushes the open loop zeros of the equivalent PID controller towards greater damping regions which gives a trajectory of the controller zeros and dominant closed loop poles. This trajectory is termed as "M-curve". This phenomena is used to design a two-stage tuning algorithm which reduces the existing PID controller's effort in a significant manner compared to that with a single stage LQR based pole placement method at a desired closed loop damping and frequency.
A novel auto-tuning PID control mechanism for nonlinear systems.
Cetin, Meric; Iplikci, Serdar
2015-09-01
In this paper, a novel Runge-Kutta (RK) discretization-based model-predictive auto-tuning proportional-integral-derivative controller (RK-PID) is introduced for the control of continuous-time nonlinear systems. The parameters of the PID controller are tuned using RK model of the system through prediction error-square minimization where the predicted information of tracking error provides an enhanced tuning of the parameters. Based on the model-predictive control (MPC) approach, the proposed mechanism provides necessary PID parameter adaptations while generating additive correction terms to assist the initially inadequate PID controller. Efficiency of the proposed mechanism has been tested on two experimental real-time systems: an unstable single-input single-output (SISO) nonlinear magnetic-levitation system and a nonlinear multi-input multi-output (MIMO) liquid-level system. RK-PID has been compared to standard PID, standard nonlinear MPC (NMPC), RK-MPC and conventional sliding-mode control (SMC) methods in terms of control performance, robustness, computational complexity and design issue. The proposed mechanism exhibits acceptable tuning and control performance with very small steady-state tracking errors, and provides very short settling time for parameter convergence. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Mutation particle swarm optimization of the BP-PID controller for piezoelectric ceramics
NASA Astrophysics Data System (ADS)
Zheng, Huaqing; Jiang, Minlan
2016-01-01
PID control is the most common used method in industrial control because its structure is simple and it is easy to implement. PID controller has good control effect, now it has been widely used. However, PID method has a few limitations. The overshoot of the PID controller is very big. The adjustment time is long. When the parameters of controlled plant are changing over time, the parameters of controller could hardly change automatically to adjust to changing environment. Thus, it can't meet the demand of control quality in the process of controlling piezoelectric ceramic. In order to effectively control the piezoelectric ceramic and improve the control accuracy, this paper replaced the learning algorithm of the BP with the mutation particle swarm optimization algorithm(MPSO) on the process of the parameters setting of BP-PID. That designed a better self-adaptive controller which is combing the BP neural network based on mutation particle swarm optimization with the conventional PID control theory. This combination is called the MPSO-BP-PID. In the mechanism of the MPSO, the mutation operation is carried out with the fitness variance and the global best fitness value as the standard. That can overcome the precocious of the PSO and strengthen its global search ability. As a result, the MPSO-BP-PID can complete controlling the controlled plant with higher speed and accuracy. Therefore, the MPSO-BP-PID is applied to the piezoelectric ceramic. It can effectively overcome the hysteresis, nonlinearity of the piezoelectric ceramic. In the experiment, compared with BP-PID and PSO-BP-PID, it proved that MPSO is effective and the MPSO-BP-PID has stronger adaptability and robustness.
Liu, Hui; Li, Yingzi; Zhang, Yingxu; Chen, Yifu; Song, Zihang; Wang, Zhenyu; Zhang, Suoxin; Qian, Jianqiang
2018-01-01
Proportional-integral-derivative (PID) parameters play a vital role in the imaging process of an atomic force microscope (AFM). Traditional parameter tuning methods require a lot of manpower and it is difficult to set PID parameters in unattended working environments. In this manuscript, an intelligent tuning method of PID parameters based on iterative learning control is proposed to self-adjust PID parameters of the AFM according to the sample topography. This method gets enough information about the output signals of PID controller and tracking error, which will be used to calculate the proper PID parameters, by repeated line scanning until convergence before normal scanning to learn the topography. Subsequently, the appropriate PID parameters are obtained by fitting method and then applied to the normal scanning process. The feasibility of the method is demonstrated by the convergence analysis. Simulations and experimental results indicate that the proposed method can intelligently tune PID parameters of the AFM for imaging different topographies and thus achieve good tracking performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
PID Tuning Using Extremum Seeking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Killingsworth, N; Krstic, M
2005-11-15
Although proportional-integral-derivative (PID) controllers are widely used in the process industry, their effectiveness is often limited due to poor tuning. Manual tuning of PID controllers, which requires optimization of three parameters, is a time-consuming task. To remedy this difficulty, much effort has been invested in developing systematic tuning methods. Many of these methods rely on knowledge of the plant model or require special experiments to identify a suitable plant model. Reviews of these methods are given in [1] and the survey paper [2]. However, in many situations a plant model is not known, and it is not desirable to openmore » the process loop for system identification. Thus a method for tuning PID parameters within a closed-loop setting is advantageous. In relay feedback tuning [3]-[5], the feedback controller is temporarily replaced by a relay. Relay feedback causes most systems to oscillate, thus determining one point on the Nyquist diagram. Based on the location of this point, PID parameters can be chosen to give the closed-loop system a desired phase and gain margin. An alternative tuning method, which does not require either a modification of the system or a system model, is unfalsified control [6], [7]. This method uses input-output data to determine whether a set of PID parameters meets performance specifications. An adaptive algorithm is used to update the PID controller based on whether or not the controller falsifies a given criterion. The method requires a finite set of candidate PID controllers that must be initially specified [6]. Unfalsified control for an infinite set of PID controllers has been developed in [7]; this approach requires a carefully chosen input signal [8]. Yet another model-free PID tuning method that does not require opening of the loop is iterative feedback tuning (IFT). IFT iteratively optimizes the controller parameters with respect to a cost function derived from the output signal of the closed-loop system, see [9]. This method is based on the performance of the closed-loop system during a step response experiment [10], [11]. In this article we present a method for optimizing the step response of a closed-loop system consisting of a PID controller and an unknown plant with a discrete version of extremum seeking (ES). Specifically, ES is used to minimize a cost function similar to that used in [10], [11], which quantifies the performance of the PID controller. ES, a non-model-based method, iteratively modifies the arguments (in this application the PID parameters) of a cost function so that the output of the cost function reaches a local minimum or local maximum. In the next section we apply ES to PID controller tuning. We illustrate this technique through simulations comparing the effectiveness of ES to other PID tuning methods. Next, we address the importance of the choice of cost function and consider the effect of controller saturation. Furthermore, we discuss the choice of ES tuning parameters. Finally, we offer some conclusions.« less
Design And Implementation Of PID Controller Using Relay Feedback On TRMS (Twin Rotor MIMO System)
NASA Astrophysics Data System (ADS)
Shah, Dipesh H.
2011-12-01
Today, many process control problems can be adequately and routinely solved by conventional PID control strategies. The overriding reason that the PID controller is so widely accepted is its simple structure which has proved to be very robust with regard to many commonly met process control problems as for instance disturbances and nonlinearities. Relay feedback methods have been widely used in tuning proportional-integral-derivative controllers due to its closed loop nature. In this work, Relay based PID controller is designed and successfully implemented on TRMS (Twin Rotor MIMO System) in SISO and MIMO configurations. The performance of a Relay based PID controller for control of TRMS is investigated and performed satisfactorily. The system shares some features with a helicopter, such as important interactions between the vertical and horizontal motions. The RTWT toolbox in the MATLAB environment is used to perform real-time experiments.
NASA Astrophysics Data System (ADS)
Nemirsky, Kristofer Kevin
In this thesis, the history and evolution of rotor aircraft with simulated annealing-based PID application were reviewed and quadcopter dynamics are presented. The dynamics of a quadcopter were then modeled, analyzed, and linearized. A cascaded loop architecture with PID controllers was used to stabilize the plant dynamics, which was improved upon through the application of simulated annealing (SA). A Simulink model was developed to test the controllers and verify the functionality of the proposed control system design. In addition, the data that the Simulink model provided were compared with flight data to present the validity of derived dynamics as a proper mathematical model representing the true dynamics of the quadcopter system. Then, the SA-based global optimization procedure was applied to obtain optimized PID parameters. It was observed that the tuned gains through the SA algorithm produced a better performing PID controller than the original manually tuned one. Next, we investigated the uncertain dynamics of the quadcopter setup. After adding uncertainty to the gyroscopic effects associated with pitch-and-roll rate dynamics, the controllers were shown to be robust against the added uncertainty. A discussion follows to summarize SA-based algorithm PID controller design and performance outcomes. Lastly, future work on SA application on multi-input-multi-output (MIMO) systems is briefly discussed.
Design of sewage treatment system by applying fuzzy adaptive PID controller
NASA Astrophysics Data System (ADS)
Jin, Liang-Ping; Li, Hong-Chan
2013-03-01
In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.
Tahoun, A H
2017-01-01
In this paper, the stabilization problem of actuators saturation in uncertain chaotic systems is investigated via an adaptive PID control method. The PID control parameters are auto-tuned adaptively via adaptive control laws. A multi-level augmented error is designed to account for the extra terms appearing due to the use of PID and saturation. The proposed control technique uses both the state-feedback and the output-feedback methodologies. Based on Lyapunov׳s stability theory, new anti-windup adaptive controllers are proposed. Demonstrative examples with MATLAB simulations are studied. The simulation results show the efficiency of the proposed adaptive PID controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Comparative study of a learning fuzzy PID controller and a self-tuning controller.
Kazemian, H B
2001-01-01
The self-organising fuzzy controller is an extension of the rule-based fuzzy controller with an additional learning capability. The self-organising fuzzy (SOF) is used as a master controller to readjust conventional PID gains at the actuator level during the system operation, copying the experience of a human operator. The application of the self-organising fuzzy PID (SOF-PID) controller to a 2-link non-linear revolute-joint robot-arm is studied using path tracking trajectories at the setpoint. For the purpose of comparison, the same experiments are repeated by using the self-tuning controller subject to the same data supplied at the setpoint. For the path tracking experiments, the output trajectories of the SOF-PID controller followed the specified path closer and smoother than the self-tuning controller.
Hou, Yi-You
2017-09-01
This article addresses an evolutionary programming (EP) algorithm technique-based and proportional-integral-derivative (PID) control methods are established to guarantee synchronization of the master and slave Rikitake chaotic systems. For PID synchronous control, the evolutionary programming (EP) algorithm is used to find the optimal PID controller parameters k p , k i , k d by integrated absolute error (IAE) method for the convergence conditions. In order to verify the system performance, the basic electronic components containing operational amplifiers (OPAs), resistors, and capacitors are used to implement the proposed chaotic Rikitake systems. Finally, the experimental results validate the proposed Rikitake chaotic synchronization approach. Copyright © 2017. Published by Elsevier Ltd.
The application of immune genetic algorithm in main steam temperature of PID control of BP network
NASA Astrophysics Data System (ADS)
Li, Han; Zhen-yu, Zhang
In order to overcome the uncertainties, large delay, large inertia and nonlinear property of the main steam temperature controlled object in the power plant, a neural network intelligent PID control system based on immune genetic algorithm and BP neural network is designed. Using the immune genetic algorithm global search optimization ability and good convergence, optimize the weights of the neural network, meanwhile adjusting PID parameters using BP network. The simulation result shows that the system is superior to conventional PID control system in the control of quality and robustness.
Design of a self-adaptive fuzzy PID controller for piezoelectric ceramics micro-displacement system
NASA Astrophysics Data System (ADS)
Zhang, Shuang; Zhong, Yuning; Xu, Zhongbao
2008-12-01
In order to improve control precision of the piezoelectric ceramics (PZT) micro-displacement system, a self-adaptive fuzzy Proportional Integration Differential (PID) controller is designed based on the traditional digital PID controller combining with fuzzy control. The arithmetic gives a fuzzy control rule table with the fuzzy control rule and fuzzy reasoning, through this table, the PID parameters can be adjusted online in real time control. Furthermore, the automatic selective control is achieved according to the change of the error. The controller combines the good dynamic capability of the fuzzy control and the high stable precision of the PID control, adopts the method of using fuzzy control and PID control in different segments of time. In the initial and middle stage of the transition process of system, that is, when the error is larger than the value, fuzzy control is used to adjust control variable. It makes full use of the fast response of the fuzzy control. And when the error is smaller than the value, the system is about to be in the steady state, PID control is adopted to eliminate static error. The problems of PZT existing in the field of precise positioning are overcome. The results of the experiments prove that the project is correct and practicable.
Monitoring System and Temperature Controlling on PID Based Poultry Hatching Incubator
NASA Astrophysics Data System (ADS)
Shafiudin, S.; Kholis, N.
2018-04-01
Poultry hatching cultivation is essential to be observed in terms of temperature stability by using artificial penetration incubator which applies On/Off control. The On/Off control produces relatively long response time to reach steady-state conditions. Moreover, how the system works makes the component worn out because the lamp is on-off periodically. Besides, the cultivation in the market is less suitable to be used in an environment which has fluctuating temperature because it may influence plant’s temperature stability. The study aims to design automatic poultry hatching cultivation that can repair the temperature’s response of plant incubator to keep stable and in line with the intended set-point temperature value by using PID controller. The method used in PID controlling is designed to identify plant using ARX (Auto Regressive eXogenous) MATLAB which is dynamic/non-linear to obtain mathematical model and PID constants value that is appropriate to system. The hardware design for PID-based egg incubator uses Arduino Uno R3, as the main controller that includes PID source, and PWM, to keep plant temperature stability, which is integrated with incandescent light actuators and sensors where DHTI 1 sensor as the reader as temperature condition and plant humidity. The result of the study showed that PID constants value of each plant is different. For parallel 15 Watt plant, Kp = 3.9956, Ki = 0.361, Kd = 0, while for parallel 25 Watt plant, the value of Kp = 5.714, Ki = 0.351, Kd = 0. The PID constants value were capable to produce stable system response which is based on set-point with steady state error’s value is around 5%, that is 2.7%. With hatching percentage of 70-80%, the hatching process is successful in air-conditioned environment (changeable).
Research on fuzzy PID control to electronic speed regulator
NASA Astrophysics Data System (ADS)
Xu, Xiao-gang; Chen, Xue-hui; Zheng, Sheng-guo
2007-12-01
As an important part of diesel engine, the speed regulator plays an important role in stabilizing speed and improving engine's performance. Because there are so many model parameters of diesel-engine considered in traditional PID control and these parameters present non-linear characteristic.The method to adjust engine speed using traditional PID is not considered as a best way. Especially for the diesel-engine generator set. In this paper, the Fuzzy PID control strategy is proposed. Some problems about its utilization in electronic speed regulator are discussed. A mathematical model of electric control system for diesel-engine generator set is established and the way of the PID parameters in the model to affect the function of system is analyzed. And then it is proposed the differential coefficient must be applied in control design for reducing dynamic deviation of system and adjusting time. Based on the control theory, a study combined control with PID calculation together for turning fuzzy PID parameter is implemented. And also a simulation experiment about electronic speed regulator system was conducted using Matlab/Simulink and the Fuzzy-Toolbox. Compared with the traditional PID Algorithm, the simulated results presented obvious improvements in the instantaneous speed governing rate and steady state speed governing rate of diesel-engine generator set when the fuzzy logic control strategy used.
Singh, Jay; Chattterjee, Kalyan; Vishwakarma, C B
2018-01-01
Load frequency controller has been designed for reduced order model of single area and two-area reheat hydro-thermal power system through internal model control - proportional integral derivative (IMC-PID) control techniques. The controller design method is based on two degree of freedom (2DOF) internal model control which combines with model order reduction technique. Here, in spite of taking full order system model a reduced order model has been considered for 2DOF-IMC-PID design and the designed controller is directly applied to full order system model. The Logarithmic based model order reduction technique is proposed to reduce the single and two-area high order power systems for the application of controller design.The proposed IMC-PID design of reduced order model achieves good dynamic response and robustness against load disturbance with the original high order system. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Novel bio-inspired smart control for hazard mitigation of civil structures
NASA Astrophysics Data System (ADS)
Kim, Yeesock; Kim, Changwon; Langari, Reza
2010-11-01
In this paper, a new bio-inspired controller is proposed for vibration mitigation of smart structures subjected to ground disturbances (i.e. earthquakes). The control system is developed through the integration of a brain emotional learning (BEL) algorithm with a proportional-integral-derivative (PID) controller and a semiactive inversion (Inv) algorithm. The BEL algorithm is based on the neurologically inspired computational model of the amygdala and the orbitofrontal cortex. To demonstrate the effectiveness of the proposed hybrid BEL-PID-Inv control algorithm, a seismically excited building structure equipped with a magnetorheological (MR) damper is investigated. The performance of the proposed hybrid BEL-PID-Inv control algorithm is compared with that of passive, PID, linear quadratic Gaussian (LQG), and BEL control systems. In the simulation, the robustness of the hybrid BEL-PID-Inv control algorithm in the presence of modeling uncertainties as well as external disturbances is investigated. It is shown that the proposed hybrid BEL-PID-Inv control algorithm is effective in improving the dynamic responses of seismically excited building structure-MR damper systems.
Evaluation of PD/PID controller for insulin control on blood glucose regulation in a Type-I diabetes
NASA Astrophysics Data System (ADS)
Mahmud, Farhanahani; Isse, Nadir Hussien; Daud, Nur Atikah Mohd; Morsin, Marlia
2017-01-01
This project introduces a simulation of Proportional-Derivative (PD) and Proportional-Integral-Derivative (PID) controller based on a virtual Type 1 Diabetes Mellitus (T1DM) patient: Hovorka diabetic model using MATLAB-Simulink software. The results of these simulations are based on three tuning responses for each controller which are fast, slow and oscillation responses. The main purpose of this simulation is to achieve an acceptable stability and fastness response towards the regulation of glucose concentration using PD and PID controller response with insulin infusion rate. Therefore, in order to analyze and compare the responses of both controller performances, one-day simulations of the insulin-glucose dynamic have been conducted using a typical day meal plan that contains five meals of different bolus size. It is found that the PID closed-loop control with a short rise time is required to retrieve a satisfactory glucose regulation.
Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong
2018-01-01
Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm–neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS. PMID:29671822
Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong
2018-04-19
Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm⁻neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS.
PID self tuning control based on Mamdani fuzzy logic control for quadrotor stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priyambodo, Tri Kuntoro, E-mail: mastri@ugm.ac.id; Putra, Agfianto Eko; Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta
Quadrotor as one type of UAV have the ability to perform Vertical Take Off and Landing (VTOL). It allows the Quadrotor to be stationary hovering in the air. PID (Proportional Integral Derivative) control system is one of the control methods that are commonly used. It is usually used to optimize the Quadrotor stabilization at least based on the three Eulerian angles (roll, pitch, and yaw) as input parameters for the control system. The three constants of PID can be obtained in various methods. The simplest method is tuning manually. This method has several weaknesses. For example if the three constantsmore » are not exact, the resulting response will deviate from the desired result. By combining the methods of PID with fuzzy logic systems where human expertise is implemented into the machine language is expected to further optimize the control system.« less
Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit
2013-11-01
The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations. Copyright © 2013 Elsevier B.V. All rights reserved.
Asgharnia, Amirhossein; Shahnazi, Reza; Jamali, Ali
2018-05-11
The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor
NASA Astrophysics Data System (ADS)
Wang, Yannian; Wu, Peizhi; Liu, Chengtao
2017-09-01
To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.
Shen, Cheng-Che; Yang, Albert C; Hung, Jeng-Hsiu; Hu, Li-Yu; Chiang, Yung-Yen; Tsai, Shih-Jen
2016-01-01
Pelvic inflammatory disease (PID) a common infection in women that is associated with significant morbidity and is a major cause of infertility. A clear temporal causal relationship between PID and psychiatric disorders has not been well established. We used a nationwide population-based retrospective cohort study to explore the relationship between PID and the subsequent development of psychiatric disorders. We identified subjects who were newly diagnosed with PID between 1 January 2000 and 31 December 2002 in the Taiwan National Health Insurance Research Database. A comparison cohort was constructed for patients without PID. A total of 21 930 PID and 21 930 matched control patients were observed until diagnosed with psychiatric disorders, or until death, withdrawal from the NHI system, or until 31 December 2009. Adjusted hazard ratio (HR) of bipolar disorder, depressive disorder, anxiety disorder and sleep disorder in subjects with PID were significantly higher (HR: 2.671, 2.173, 2.006 and 2.251, respectively) than that of the controls during the follow-up. PID may increase the risk of subsequent newly diagnosed bipolar disorder, depressive disorder, anxiety disorder and sleep disorder, which will impair life quality. Our findings highlight that clinicians should pay particular attention to psychiatric comorbidities in PID patients.
NASA Astrophysics Data System (ADS)
Aranza, M. F.; Kustija, J.; Trisno, B.; Hakim, D. L.
2016-04-01
PID Controller (Proportional Integral Derivative) was invented since 1910, but till today still is used in industries, even though there are many kind of modern controllers like fuzz controller and neural network controller are being developed. Performance of PID controller is depend on on Proportional Gain (Kp), Integral Gain (Ki) and Derivative Gain (Kd). These gains can be got by using method Ziegler-Nichols (ZN), gain-phase margin, Root Locus, Minimum Variance dan Gain Scheduling however these methods are not optimal to control systems that nonlinear and have high-orde, in addition, some methods relative hard. To solve those obstacles, particle swarm optimization (PSO) algorithm is proposed to get optimal Kp, Ki and Kd. PSO is proposed because PSO has convergent result and not require many iterations. On this research, PID controller is applied on AVR (Automatic Voltage Regulator). Based on result of analyzing transient, stability Root Locus and frequency response, performance of PID controller is better than Ziegler-Nichols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Sourav, E-mail: ssaha09@me.buet.ac.bd; Mojumder, Satyajit, E-mail: satyajit@me.buet.ac.bd; Saha, Sumon, E-mail: sumonsaha@me.buet.ac.bd
P (proportional), PI (proportional-integral), and PID (proportional-integral-derivative) controllers are popular means of controlling industrial processes. Due to superior response, accuracy, and stable performance, PID controllers are mostly used in control systems. This paper presents a mathematical model and subsequent response analysis regarding regulation of flow in mixed convection through a T-shaped open cavity by temperature dependent controllers. The T-shaped cavity has cold top and hot bottom walls, while air is flowing through the inlet at surrounding temperature. The inflow is regulated by a controlled gate which operates according to the signal received from the controller. Values of proportional gain (k{submore » p}), integral gain (k{sub i}), and derivative gain (k{sub d}) are varied to obtain the desired system response and to ensure a stable system with fastest response. At first, only P controller is used and eventually PI and finally PID control scheme is applied for controller tuning. Tuning of different controllers (P, PI, and PID) are carried out systematically based on the reference temperature which is continuously monitored at a certain location inside the cavity. It is found that PID controller performs better than P or PI controller.« less
LMI designmethod for networked-based PID control
NASA Astrophysics Data System (ADS)
Souza, Fernando de Oliveira; Mozelli, Leonardo Amaral; de Oliveira, Maurício Carvalho; Palhares, Reinaldo Martinez
2016-10-01
In this paper, we propose a methodology for the design of networked PID controllers for second-order delayed processes using linear matrix inequalities. The proposed procedure takes into account time-varying delay on the plant, time-varying delays induced by the network and packed dropouts. The design is carried on entirely using a continuous-time model of the closed-loop system where time-varying delays are used to represent sampling and holding occurring in a discrete-time digital PID controller.
PID feedback controller used as a tactical asset allocation technique: The G.A.M. model
NASA Astrophysics Data System (ADS)
Gandolfi, G.; Sabatini, A.; Rossolini, M.
2007-09-01
The objective of this paper is to illustrate a tactical asset allocation technique utilizing the PID controller. The proportional-integral-derivative (PID) controller is widely applied in most industrial processes; it has been successfully used for over 50 years and it is used by more than 95% of the plants processes. It is a robust and easily understood algorithm that can provide excellent control performance in spite of the diverse dynamic characteristics of the process plant. In finance, the process plant, controlled by the PID controller, can be represented by financial market assets forming a portfolio. More specifically, in the present work, the plant is represented by a risk-adjusted return variable. Money and portfolio managers’ main target is to achieve a relevant risk-adjusted return in their managing activities. In literature and in the financial industry business, numerous kinds of return/risk ratios are commonly studied and used. The aim of this work is to perform a tactical asset allocation technique consisting in the optimization of risk adjusted return by means of asset allocation methodologies based on the PID model-free feedback control modeling procedure. The process plant does not need to be mathematically modeled: the PID control action lies in altering the portfolio asset weights, according to the PID algorithm and its parameters, Ziegler-and-Nichols-tuned, in order to approach the desired portfolio risk-adjusted return efficiently.
Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System.
Lee, Chengming; Chen, Rongshun
2015-05-20
Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID) controller, combining a PID neural network (PIDNN) with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server's fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption.
NASA Astrophysics Data System (ADS)
Haq, R.; Prayitno, H.; Dzulkiflih; Sucahyo, I.; Rahmawati, E.
2018-03-01
In this article, the development of a low cost mobile robot based on PID controller and odometer for education is presented. PID controller and odometer is applied for controlling mobile robot position. Two-dimensional position vector in cartesian coordinate system have been inserted to robot controller as an initial and final position. Mobile robot has been made based on differential drive and sensor magnetic rotary encoder which measured robot position from a number of wheel rotation. Odometry methode use data from actuator movements for predicting change of position over time. The mobile robot is examined to get final position with three different heading angle 30°, 45° and 60° by applying various value of KP, KD and KI constant.
Odili, Julius Beneoluchi; Mohmad Kahar, Mohd Nizam; Noraziah, A
2017-01-01
In this paper, an attempt is made to apply the African Buffalo Optimization (ABO) to tune the parameters of a PID controller for an effective Automatic Voltage Regulator (AVR). Existing metaheuristic tuning methods have been proven to be quite successful but there were observable areas that need improvements especially in terms of the system's gain overshoot and steady steady state errors. Using the ABO algorithm where each buffalo location in the herd is a candidate solution to the Proportional-Integral-Derivative parameters was very helpful in addressing these two areas of concern. The encouraging results obtained from the simulation of the PID Controller parameters-tuning using the ABO when compared with the performance of Genetic Algorithm PID (GA-PID), Particle-Swarm Optimization PID (PSO-PID), Ant Colony Optimization PID (ACO-PID), PID, Bacteria-Foraging Optimization PID (BFO-PID) etc makes ABO-PID a good addition to solving PID Controller tuning problems using metaheuristics.
Research on frequency control strategy of interconnected region based on fuzzy PID
NASA Astrophysics Data System (ADS)
Zhang, Yan; Li, Chunlan
2018-05-01
In order to improve the frequency control performance of the interconnected power grid, overcome the problems of poor robustness and slow adjustment of traditional regulation, the paper puts forward a frequency control method based on fuzzy PID. The method takes the frequency deviation and tie-line deviation of each area as the control objective, takes the regional frequency deviation and its deviation as input, and uses fuzzy mathematics theory, adjusts PID control parameters online. By establishing the regional frequency control model of water-fire complementary power generation in MATLAB, the regional frequency control strategy is given, and three control modes (TBC-FTC, FTC-FTC, FFC-FTC) are simulated and analyzed. The simulation and experimental results show that, this method has better control performance compared with the traditional regional frequency regulation.
NASA Astrophysics Data System (ADS)
Luo, Bingyang; Chi, Shangjie; Fang, Man; Li, Mengchao
2017-03-01
Permanent magnet synchronous motor is used widely in industry, the performance requirements wouldn't be met by adopting traditional PID control in some of the occasions with high requirements. In this paper, a hybrid control strategy - nonlinear neural network PID and traditional PID parallel control are adopted. The high stability and reliability of traditional PID was combined with the strong adaptive ability and robustness of neural network. The permanent magnet synchronous motor will get better control performance when switch different working modes according to different controlled object conditions. As the results showed, the speed response adopting the composite control strategy in this paper was faster than the single control strategy. And in the case of sudden disturbance, the recovery time adopting the composite control strategy designed in this paper was shorter, the recovery ability and the robustness were stronger.
Active vibration and noise control of vibro-acoustic system by using PID controller
NASA Astrophysics Data System (ADS)
Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping
2015-07-01
Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.
Research of digital controlled DC/DC converter based on STC12C5410AD
NASA Astrophysics Data System (ADS)
Chen, Dan-Jiang; Jin, Xin; Xiao, Zhi-Hong
2010-02-01
In order to study application of digital control technology on DC/DC converter, principle of increment mode PID control algorithm was analyzed in the paper. Then, a SCM named STC12C5410AD was introduced with its internal resources and characteristics. The PID control algorithm can be implemented easily based on it. The output of PID control was used to change the value of a variable that is 255 times than duty cycle, and this reduced the error of calculation. The valid of the presented algorithm was verified by an experiment for a BUCK DC/DC converter. The experimental results indicated that output voltage of the BUCK converter is stable with low ripple.
Nonlinear Adaptive PID Control for Greenhouse Environment Based on RBF Network
Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui
2012-01-01
This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production. PMID:22778587
NASA Astrophysics Data System (ADS)
Ugon, B.; Nandong, J.; Zang, Z.
2017-06-01
The presence of unstable dead-time systems in process plants often leads to a daunting challenge in the design of standard PID controllers, which are not only intended to provide close-loop stability but also to give good performance-robustness overall. In this paper, we conduct stability analysis on a double-loop control scheme based on the Routh-Hurwitz stability criteria. We propose to use this unstable double-loop control scheme which employs two P/PID controllers to control first-order or second-order unstable dead-time processes typically found in process industries. Based on the Routh-Hurwitz stability necessary and sufficient criteria, we establish several stability regions which enclose within them the P/PID parameter values that guarantee close-loop stability of the double-loop control scheme. A systematic tuning rule is developed for the purpose of obtaining the optimal P/PID parameter values within the established regions. The effectiveness of the proposed tuning rule is demonstrated using several numerical examples and the result are compared with some well-established tuning methods reported in the literature.
Inverse optimal self-tuning PID control design for an autonomous underwater vehicle
NASA Astrophysics Data System (ADS)
Rout, Raja; Subudhi, Bidyadhar
2017-01-01
This paper presents a new approach to path following control design for an autonomous underwater vehicle (AUV). A NARMAX model of the AUV is derived first and then its parameters are adapted online using the recursive extended least square algorithm. An adaptive Propotional-Integral-Derivative (PID) controller is developed using the derived parameters to accomplish the path following task of an AUV. The gain parameters of the PID controller are tuned using an inverse optimal control technique, which alleviates the problem of solving Hamilton-Jacobian equation and also satisfies an error cost function. Simulation studies were pursued to verify the efficacy of the proposed control algorithm. From the obtained results, it is envisaged that the proposed NARMAX model-based self-tuning adaptive PID control provides good path following performance even in the presence of uncertainty arising due to ocean current or hydrodynamic parameter.
Rule-based navigation control design for autonomous flight
NASA Astrophysics Data System (ADS)
Contreras, Hugo; Bassi, Danilo
2008-04-01
This article depicts a navigation control system design that is based on a set of rules in order to follow a desired trajectory. The full control of the aircraft considered here comprises: a low level stability control loop, based on classic PID controller and the higher level navigation whose main job is to exercise lateral control (course) and altitude control, trying to follow a desired trajectory. The rules and PID gains were adjusted systematically according to the result of flight simulation. In spite of its simplicity, the rule-based navigation control proved to be robust, even with big perturbation, like crossing winds.
NASA Astrophysics Data System (ADS)
Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P.; Yang, Chen; Hosseini, Nahid; Fantner, Georg E.
2017-12-01
Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.
Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P; Yang, Chen; Hosseini, Nahid; Fantner, Georg E
2017-12-01
Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.
Neural Network-Based Self-Tuning PID Control for Underwater Vehicles
Hernández-Alvarado, Rodrigo; García-Valdovinos, Luis Govinda; Salgado-Jiménez, Tomás; Gómez-Espinosa, Alfonso; Fonseca-Navarro, Fernando
2016-01-01
For decades, PID (Proportional + Integral + Derivative)-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles) where parameters (weight, buoyancy, added mass, among others) change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN) is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom) underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme. PMID:27608018
Neural Network-Based Self-Tuning PID Control for Underwater Vehicles.
Hernández-Alvarado, Rodrigo; García-Valdovinos, Luis Govinda; Salgado-Jiménez, Tomás; Gómez-Espinosa, Alfonso; Fonseca-Navarro, Fernando
2016-09-05
For decades, PID (Proportional + Integral + Derivative)-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles) where parameters (weight, buoyancy, added mass, among others) change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN) is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom) underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme.
Load Frequency Control of AC Microgrid Interconnected Thermal Power System
NASA Astrophysics Data System (ADS)
Lal, Deepak Kumar; Barisal, Ajit Kumar
2017-08-01
In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.
Wang, Chunfei; Zhang, Guang; Wu, Taihu; Zhan, Ningbo; Wang, Yaling
2016-03-01
High-quality cardiopulmonary resuscitation contributes to cardiac arrest survival. The traditional chest compression (CC) standard, which neglects individual differences, uses unified standards for compression depth and compression rate in practice. In this study, an effective and personalized CC method for automatic mechanical compression devices is provided. We rebuild Charles F. Babbs' human circulation model with a coronary perfusion pressure (CPP) simulation module and propose a closed-loop controller based on a fuzzy control algorithm for CCs, which adjusts the CC depth according to the CPP. Compared with a traditional proportion-integration-differentiation (PID) controller, the performance of the fuzzy controller is evaluated in computer simulation studies. The simulation results demonstrate that the fuzzy closed-loop controller results in shorter regulation time, fewer oscillations and smaller overshoot than traditional PID controllers and outperforms the traditional PID controller for CPP regulation and maintenance.
The hierarchical expert tuning of PID controllers using tools of soft computing.
Karray, F; Gueaieb, W; Al-Sharhan, S
2002-01-01
We present soft computing-based results pertaining to the hierarchical tuning process of PID controllers located within the control loop of a class of nonlinear systems. The results are compared with PID controllers implemented either in a stand alone scheme or as a part of conventional gain scheduling structure. This work is motivated by the increasing need in the industry to design highly reliable and efficient controllers for dealing with regulation and tracking capabilities of complex processes characterized by nonlinearities and possibly time varying parameters. The soft computing-based controllers proposed are hybrid in nature in that they integrate within a well-defined hierarchical structure the benefits of hard algorithmic controllers with those having supervisory capabilities. The controllers proposed also have the distinct features of learning and auto-tuning without the need for tedious and computationally extensive online systems identification schemes.
Thermostatic system of sensor in NIR spectrometer based on PID control
NASA Astrophysics Data System (ADS)
Wang, Zhihong; Qiao, Liwei; Ji, Xufei
2016-11-01
Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.
Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system.
El-Bardini, Mohammad; El-Nagar, Ahmad M
2014-05-01
In this paper, the interval type-2 fuzzy proportional-integral-derivative controller (IT2F-PID) is proposed for controlling an inverted pendulum on a cart system with an uncertain model. The proposed controller is designed using a new method of type-reduction that we have proposed, which is called the simplified type-reduction method. The proposed IT2F-PID controller is able to handle the effect of structure uncertainties due to the structure of the interval type-2 fuzzy logic system (IT2-FLS). The results of the proposed IT2F-PID controller using a new method of type-reduction are compared with the other proposed IT2F-PID controller using the uncertainty bound method and the type-1 fuzzy PID controller (T1F-PID). The simulation and practical results show that the performance of the proposed controller is significantly improved compared with the T1F-PID controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Multivariable PID controller design tuning using bat algorithm for activated sludge process
NASA Astrophysics Data System (ADS)
Atikah Nor’Azlan, Nur; Asmiza Selamat, Nur; Mat Yahya, Nafrizuan
2018-04-01
The designing of a multivariable PID control for multi input multi output is being concerned with this project by applying four multivariable PID control tuning which is Davison, Penttinen-Koivo, Maciejowski and Proposed Combined method. The determination of this study is to investigate the performance of selected optimization technique to tune the parameter of MPID controller. The selected optimization technique is Bat Algorithm (BA). All the MPID-BA tuning result will be compared and analyzed. Later, the best MPID-BA will be chosen in order to determine which techniques are better based on the system performances in terms of transient response.
Quadrotor trajectory tracking using PID cascade control
NASA Astrophysics Data System (ADS)
Idres, M.; Mustapha, O.; Okasha, M.
2017-12-01
Quadrotors have been applied to collect information for traffic, weather monitoring, surveillance and aerial photography. In order to accomplish their mission, quadrotors have to follow specific trajectories. This paper presents proportional-integral-derivative (PID) cascade control of a quadrotor for path tracking problem when velocity and acceleration are small. It is based on near hover controller for small attitude angles. The integral of time-weighted absolute error (ITAE) criterion is used to determine the PID gains as a function of quadrotor modeling parameters. The controller is evaluated in three-dimensional environment in Simulink. Overall, the tracking performance is found to be excellent for small velocity condition.
Design of distributed PID-type dynamic matrix controller for fractional-order systems
NASA Astrophysics Data System (ADS)
Wang, Dawei; Zhang, Ridong
2018-01-01
With the continuous requirements for product quality and safety operation in industrial production, it is difficult to describe the complex large-scale processes with integer-order differential equations. However, the fractional differential equations may precisely represent the intrinsic characteristics of such systems. In this paper, a distributed PID-type dynamic matrix control method based on fractional-order systems is proposed. First, the high-order approximate model of integer order is obtained by utilising the Oustaloup method. Then, the step response model vectors of the plant is obtained on the basis of the high-order model, and the online optimisation for multivariable processes is transformed into the optimisation of each small-scale subsystem that is regarded as a sub-plant controlled in the distributed framework. Furthermore, the PID operator is introduced into the performance index of each subsystem and the fractional-order PID-type dynamic matrix controller is designed based on Nash optimisation strategy. The information exchange among the subsystems is realised through the distributed control structure so as to complete the optimisation task of the whole large-scale system. Finally, the control performance of the designed controller in this paper is verified by an example.
O'Shaughnessy, P T; Hemenway, D R
2000-10-01
Trials were conducted to determine those factors that affect the accuracy of a direct-reading aerosol photometer when automatically controlling airflow rate within an exposure chamber to regulate airborne dust concentrations. Photometer response was affected by a shift in the aerosol size distribution caused by changes in chamber flow rate. In addition to a dilution effect, flow rate also determined the relative amount of aerosol lost to sedimentation within the chamber. Additional calculations were added to a computer control algorithm to compensate for these effects when attempting to automatically regulate flow based on a proportional-integral-derivative (PID) feedback control algorithm. A comparison between PID-controlled trials and those performed with a constant generator output rate and dilution-air flow rate demonstrated that there was no significant decrease in photometer accuracy despite the many changes in flow rate produced when using PID control. Likewise, the PID-controlled trials produced chamber aerosol concentrations within 1% of a desired level.
Turner, Katy M. E.; Leung, Stella; Yu, B. Nancy; Frølund, Maria; Benfield, Thomas; Blanchard, James; Westh, Henrik; Ward, Helen
2017-01-01
Background The impact of Chlamydia trachomatis (chlamydia) control on the incidence of pelvic inflammatory disease (PID) is theoretically limited by the proportion of PID caused by chlamydia. We estimate the population excess fraction (PEF) of treated chlamydia infection on PID at 12-months in settings with widespread chlamydia control (testing and treatment) and compare this to the estimated PEF of untreated chlamydia. Methods We used two large retrospective population-based cohorts of women of reproductive age from settings with widespread chlamydia control to calculate the PEF of treated chlamydia on PID at 12-months. We undertook a systematic review to identify further studies that reported the risk of PID in women who were tested for chlamydia (infected and uninfected). We used the same method to calculate the PEF in eligible studies then compared all estimates of PEF. Results The systematic review identified a single study, a randomised controlled trial of chlamydia screening (POPI-RCT). In the presence of testing and treatment <10% of PID at 12-months was attributable to treated (baseline) chlamydia infections (Manitoba: 8.86%(95%CI 7.15–10.75); Denmark: 3.84%(3.26–4.45); screened-arm POPI-RCT: 0.99%(0.00–29.06)). In the absence of active chlamydia treatment 26.44%(11.57–46.32) of PID at 12-months was attributable to untreated (baseline) chlamydia infections (deferred-arm POPI-RCT). The PEFs suggest that eradicating baseline chlamydia infections could prevent 484 cases of PID at 12-months per 100,000 women in the untreated setting and 13–184 cases of PID per 100,000 tested women in the presence of testing and treatment. Conclusion Testing and treating chlamydia reduced the PEF of chlamydia on PID by 65% compared to the untreated setting. But in the presence of testing and treatment over 90% of PID could not be attributed to a baseline chlamydia infection. More information is needed about the aetiology of PID to develop effective strategies for improving the reproductive health of women. PMID:28199392
Bidirectional active control of structures with type-2 fuzzy PD and PID
NASA Astrophysics Data System (ADS)
Paul, Satyam; Yu, Wen; Li, Xiaoou
2018-03-01
Proportional-derivative and proportional-integral-derivative (PD/PID) controllers are popular algorithms in structure vibration control. In order to maintain minimum regulation error, the PD/PID control require big proportional and derivative gains. The control performances are not satisfied because of the big uncertainties in the buildings. In this paper, type-2 fuzzy system is applied to compensate the unknown uncertainties, and is combined with the PD/PID control. We prove the stability of these fuzzy PD and PID controllers. The sufficient conditions can be used for choosing the gains of PD/PID. The theory results are verified by a two-storey building prototype. The experimental results validate our analysis.
Ibraheem; Hasan, Naimul; Hussein, Arkan Ahmed
2014-01-01
This Paper presents the design of decentralized automatic generation controller for an interconnected power system using PID, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The designed controllers are tested on identical two-area interconnected power systems consisting of thermal power plants. The area interconnections between two areas are considered as (i) AC tie-line only (ii) Asynchronous tie-line. The dynamic response analysis is carried out for 1% load perturbation. The performance of the intelligent controllers based on GA and PSO has been compared with the conventional PID controller. The investigations of the system dynamic responses reveal that PSO has the better dynamic response result as compared with PID and GA controller for both type of area interconnection.
Continuous Firefly Algorithm for Optimal Tuning of Pid Controller in Avr System
NASA Astrophysics Data System (ADS)
Bendjeghaba, Omar
2014-01-01
This paper presents a tuning approach based on Continuous firefly algorithm (CFA) to obtain the proportional-integral- derivative (PID) controller parameters in Automatic Voltage Regulator system (AVR). In the tuning processes the CFA is iterated to reach the optimal or the near optimal of PID controller parameters when the main goal is to improve the AVR step response characteristics. Conducted simulations show the effectiveness and the efficiency of the proposed approach. Furthermore the proposed approach can improve the dynamic of the AVR system. Compared with particle swarm optimization (PSO), the new CFA tuning method has better control system performance in terms of time domain specifications and set-point tracking.
Dong, Zhekang; Duan, Shukai; Hu, Xiaofang; Wang, Lidan; Li, Hai
2014-01-01
In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.
Dong, Zhekang; Duan, Shukai; Hu, Xiaofang; Wang, Lidan
2014-01-01
In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme. PMID:25202723
Model Free iPID Control for Glycemia Regulation of Type-1 Diabetes.
MohammadRidha, Taghreed; Ait-Ahmed, Mourad; Chaillous, Lucy; Krempf, Michel; Guilhem, Isabelle; Poirier, Jean-Yves; Moog, Claude H
2018-01-01
The objective is to design a fully automated glycemia controller of Type-1 Diabetes (T1D) in both fasting and postprandial phases on a large number of virtual patients. A model-free intelligent proportional-integral-derivative (iPID) is used to infuse insulin. The feasibility of iPID is tested in silico on two simulators with and without measurement noise. The first simulator is derived from a long-term linear time-invariant model. The controller is also validated on the UVa/Padova metabolic simulator on 10 adults under 25 runs/subject for noise robustness test. It was shown that without measurement noise, iPID mimicked the normal pancreatic secretion with a relatively fast reaction to meals as compared to a standard PID. With the UVa/Padova simulator, the robustness against CGM noise was tested. A higher percentage of time in target was obtained with iPID as compared to standard PID with reduced time spent in hyperglycemia. Two different T1D simulators tests showed that iPID detects meals and reacts faster to meal perturbations as compared to a classic PID. The intelligent part turns the controller to be more aggressive immediately after meals without neglecting safety. Further research is suggested to improve the computation of the intelligent part of iPID for such systems under actuator constraints. Any improvement can impact the overall performance of the model-free controller. The simple structure iPID is a step for PID-like controllers since it combines the classic PID nice properties with new adaptive features.
Zhang, Chaowen; Chen, Feifan; Zhao, Ziyao; Hu, Liangliang; Liu, Hanqiang; Cheng, Zhihui; Weng, Yiqun; Chen, Peng; Li, Yuhong
2018-06-01
Two round-leaf mutants, rl-1 and rl-2, were identified from EMS-induced mutagenesis. High throughput sequencing and map-based cloning suggested CsPID encoding a Ser/Thr protein kinase as the most possible candidate for rl-1. Rl-2 was allelic to Rl-1. Leaf shape is an important plant architecture trait that is affected by plant hormones, especially auxin. In Arabidopsis, PINOID (PID), a regulator for the auxin polar transporter PIN (PIN-FORMED) affects leaf shape formation, but this function of PID in crop plants has not been well studied. From an EMS mutagenesis population, we identified two round-leaf (rl) mutants, C356 and C949. Segregation analysis suggested that both mutations were controlled by single recessive genes, rl-1 and rl-2, respectively. With map-based cloning, we show that CsPID as the candidate gene of rl-1; a non-synonymous SNP in the second exon of CsPID resulted in an amino acid substitution and the round leaf phenotype. As compared in the wild type plant, CsPID had significantly lower expression in the root, leaf and female flowers in C356, which may result in the less developed roots, round leaves and abnormal female flowers, respectively in the rl-1 mutant. Among the three copies of PID genes, CsPID, CsPID2 and CSPID2L (CsPID2-like) in the cucumber genome, CsPID was the only one with significantly differential expression in adult leaves between WT and C356 suggesting CsPID plays a main role in leaf shape formation. The rl-2 mutation in C949 was also cloned, which was due to another SNP in a nearby location of rl-1 in the same CsPID gene. The two round leaf mutants and the work presented herein provide a good foundation for understanding the molecular mechanisms of CsPID in cucumber leaf development.
Tuning of PID controllers for boiler-turbine units.
Tan, Wen; Liu, Jizhen; Fang, Fang; Chen, Yanqiao
2004-10-01
A simple two-by-two model for a boiler-turbine unit is demonstrated in this paper. The model can capture the essential dynamics of a unit. The design of a coordinated controller is discussed based on this model. A PID control structure is derived, and a tuning procedure is proposed. The examples show that the method is easy to apply and can achieve acceptable performance.
Real-time performance assessment and adaptive control for a water chiller unit in an HVAC system
NASA Astrophysics Data System (ADS)
Bai, Jianbo; Li, Yang; Chen, Jianhao
2018-02-01
The paper proposes an adaptive control method for a water chiller unit in a HVAC system. Based on the minimum variance evaluation, the adaptive control method was used to realize better control of the water chiller unit. To verify the performance of the adaptive control method, the proposed method was compared with an a conventional PID controller, the simulation results showed that adaptive control method had superior control performance to that of the conventional PID controller.
Chen, Zhongxian; Yu, Haitao; Wen, Cheng
2014-01-01
The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability. PMID:25152913
Chen, Zhongxian; Yu, Haitao; Wen, Cheng
2014-01-01
The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.
Soft Real-Time PID Control on a VME Computer
NASA Technical Reports Server (NTRS)
Karayan, Vahag; Sander, Stanley; Cageao, Richard
2007-01-01
microPID (uPID) is a computer program for real-time proportional + integral + derivative (PID) control of a translation stage in a Fourier-transform ultraviolet spectrometer. microPID implements a PID control loop over a position profile at sampling rate of 8 kHz (sampling period 125microseconds). The software runs in a strippeddown Linux operating system on a VersaModule Eurocard (VME) computer operating in real-time priority queue using an embedded controller, a 16-bit digital-to-analog converter (D/A) board, and a laser-positioning board (LPB). microPID consists of three main parts: (1) VME device-driver routines, (2) software that administers a custom protocol for serial communication with a control computer, and (3) a loop section that obtains the current position from an LPB-driver routine, calculates the ideal position from the profile, and calculates a new voltage command by use of an embedded PID routine all within each sampling period. The voltage command is sent to the D/A board to control the stage. microPID uses special kernel headers to obtain microsecond timing resolution. Inasmuch as microPID implements a single-threaded process and all other processes are disabled, the Linux operating system acts as a soft real-time system.
Cascade control of superheated steam temperature with neuro-PID controller.
Zhang, Jianhua; Zhang, Fenfang; Ren, Mifeng; Hou, Guolian; Fang, Fang
2012-11-01
In this paper, an improved cascade control methodology for superheated processes is developed, in which the primary PID controller is implemented by neural networks trained by minimizing error entropy criterion. The entropy of the tracking error can be estimated recursively by utilizing receding horizon window technique. The measurable disturbances in superheated processes are input to the neuro-PID controller besides the sequences of tracking error in outer loop control system, hence, feedback control is combined with feedforward control in the proposed neuro-PID controller. The convergent condition of the neural networks is analyzed. The implementation procedures of the proposed cascade control approach are summarized. Compared with the neuro-PID controller using minimizing squared error criterion, the proposed neuro-PID controller using minimizing error entropy criterion may decrease fluctuations of the superheated steam temperature. A simulation example shows the advantages of the proposed method. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Data Driven Synthesis of Three Term Digital Controllers
NASA Astrophysics Data System (ADS)
Keel, Lee H.; Mitra, Sandipan; Bhattacharyya, Shankar P.
This paper presents a method for digital PID and first order controller synthesis based on frequency domain data alone. The techniques given here first determine all stabilizing controllers from measurement data. In both PID and first order controller cases, the only information required are frequency domain data (Nyquist-Bode data) and the number of open-loop RHP poles. Specifically no identification of the plant model is required. Examples are given for illustration.
PID controller tuning using metaheuristic optimization algorithms for benchmark problems
NASA Astrophysics Data System (ADS)
Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.
2017-11-01
This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.
Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.
Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar
2006-04-01
This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control system. Performance of the control system is successfully tested by performing several six-degrees-of-freedom nonlinear simulations.
A design of LED adaptive dimming lighting system based on incremental PID controller
NASA Astrophysics Data System (ADS)
He, Xiangyan; Xiao, Zexin; He, Shaojia
2010-11-01
As a new generation energy-saving lighting source, LED is applied widely in various technology and industry fields. The requirement of its adaptive lighting technology is more and more rigorous, especially in the automatic on-line detecting system. In this paper, a closed loop feedback LED adaptive dimming lighting system based on incremental PID controller is designed, which consists of MEGA16 chip as a Micro-controller Unit (MCU), the ambient light sensor BH1750 chip with Inter-Integrated Circuit (I2C), and constant-current driving circuit. A given value of light intensity required for the on-line detecting environment need to be saved to the register of MCU. The optical intensity, detected by BH1750 chip in real time, is converted to digital signal by AD converter of the BH1750 chip, and then transmitted to MEGA16 chip through I2C serial bus. Since the variation law of light intensity in the on-line detecting environment is usually not easy to be established, incremental Proportional-Integral-Differential (PID) algorithm is applied in this system. Control variable obtained by the incremental PID determines duty cycle of Pulse-Width Modulation (PWM). Consequently, LED's forward current is adjusted by PWM, and the luminous intensity of the detection environment is stabilized by self-adaptation. The coefficients of incremental PID are obtained respectively after experiments. Compared with the traditional LED dimming system, it has advantages of anti-interference, simple construction, fast response, and high stability by the use of incremental PID algorithm and BH1750 chip with I2C serial bus. Therefore, it is suitable for the adaptive on-line detecting applications.
PSO-tuned PID controller for coupled tank system via priority-based fitness scheme
NASA Astrophysics Data System (ADS)
Jaafar, Hazriq Izzuan; Hussien, Sharifah Yuslinda Syed; Selamat, Nur Asmiza; Abidin, Amar Faiz Zainal; Aras, Mohd Shahrieel Mohd; Nasir, Mohamad Na'im Mohd; Bohari, Zul Hasrizal
2015-05-01
The industrial applications of Coupled Tank System (CTS) are widely used especially in chemical process industries. The overall process is require liquids to be pumped, stored in the tank and pumped again to another tank. Nevertheless, the level of liquid in tank need to be controlled and flow between two tanks must be regulated. This paper presents development of an optimal PID controller for controlling the desired liquid level of the CTS. Two method of Particle Swarm Optimization (PSO) algorithm will be tested in optimizing the PID controller parameters. These two methods of PSO are standard Particle Swarm Optimization (PSO) and Priority-based Fitness Scheme in Particle Swarm Optimization (PFPSO). Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). It has been demonstrated that implementation of PSO via Priority-based Fitness Scheme (PFPSO) for this system is potential technique to control the desired liquid level and improve the system performances compared with standard PSO.
The design, hysteresis modeling and control of a novel SMA-fishing-line actuator
NASA Astrophysics Data System (ADS)
Xiang, Chaoqun; Yang, Hui; Sun, Zhiyong; Xue, Bangcan; Hao, Lina; Asadur Rahoman, M. D.; Davis, Steve
2017-03-01
Fishing line can be combined with shape memory alloy (SMA) to form novel artificial muscle actuators which have low cost, are lightweight and soft. They can be applied in bionic, wearable and rehabilitation robots, and can reduce system weight and cost, increase power-to-weight ratio and offer safer physical human-robot interaction. However, these actuators possess several disadvantages, for example fishing line based actuators possess low strength and are complex to drive, and SMA possesses a low percentage contraction and has high hysteresis. This paper presents a novel artificial actuator (known as an SMA-fishing-line) made of fishing line and SMA twisted then coiled together, which can be driven directly by an electrical voltage. Its output force can reach 2.65 N at 7.4 V drive voltage, and the percentage contraction at 4 V driven voltage with a 3 N load is 7.53%. An antagonistic bionic joint driven by the novel SMA-fishing-line actuators is presented, and based on an extended unparallel Prandtl-Ishlinskii (EUPI) model, its hysteresis behavior is established, and the error ratio of the EUPI model is determined to be 6.3%. A Joule heat model of the SMA-fishing-line is also presented, and the maximum error of the established model is 0.510 mm. Based on this accurate hysteresis model, a composite PID controller consisting of PID and an integral inverse (I-I) compensator is proposed and its performance is compared with a traditional PID controller through simulations and experimentation. These results show that the composite PID controller possesses higher control precision than basic PID, and is feasible for implementation in an SMA-fishing-line driven antagonistic bionic joint.
Percival, Matthew W.; Zisser, Howard; Jovanovič, Lois; Doyle, Francis J.
2008-01-01
Background Using currently available technology, it is possible to apply modern control theory to produce a closed-loop artificial β cell. Novel use of established control techniques would improve glycemic control, thereby reducing the complications of diabetes. Two popular controller structures, proportional–integral–derivative (PID) and model predictive control (MPC), are compared first in a theoretical sense and then in two applications. Methods The Bergman model is transformed for use in a PID equivalent model-based controller. The internal model control (IMC) structure, which makes explicit use of the model, is compared with the PID controller structure in the transfer function domain. An MPC controller is then developed as an optimization problem with restrictions on its tuning parameters and is shown to be equivalent to an IMC controller. The controllers are tuned for equivalent performance and evaluated in a simulation study as a closed-loop controller and in an advisory mode scenario on retrospective clinical data. Results Theoretical development shows conditions under which PID and MPC controllers produce equivalent output via IMC. The simulation study showed that the single tuning parameter for the equivalent controllers relates directly to the closed-loop speed of response and robustness, an important result considering system uncertainty. The risk metric allowed easy identification of instances of inadequate control. Results of the advisory mode simulation showed that suitable tuning produces consistently appropriate delivery recommendations. Conclusion The conditions under which PID and MPC are equivalent have been derived. The MPC framework is more suitable given the extensions necessary for a fully closed-loop artificial β cell, such as consideration of controller constraints. Formulation of the control problem in risk space is attractive, as it explicitly addresses the asymmetry of the problem; this is done easily with MPC. PMID:19885240
Das, Saptarshi; Pan, Indranil; Das, Shantanu
2013-07-01
Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sasano, Koji; Okajima, Hiroshi; Matsunaga, Nobutomo
Recently, the fractional order PID (FO-PID) control, which is the extension of the PID control, has been focused on. Even though the FO-PID requires the high-order filter, it is difficult to realize the high-order filter due to the memory limitation of digital computer. For implementation of FO-PID, approximation of the fractional integrator and differentiator are required. Short memory principle (SMP) is one of the effective approximation methods. However, there is a disadvantage that the approximated filter with SMP cannot eliminate the steady-state error. For this problem, we introduce the distributed implementation of the integrator and the dynamic quantizer to make the efficient use of permissible memory. The objective of this study is to clarify how to implement the accurate FO-PID with limited memories. In this paper, we propose the implementation method of FO-PID with memory constraint using dynamic quantizer. And the trade off between approximation of fractional elements and quantized data size are examined so as to close to the ideal FO-PID responses. The effectiveness of proposed method is evaluated by numerical example and experiment in the temperature control of heat plate.
Note: Wide-operating-range control for thermoelectric coolers.
Peronio, P; Labanca, I; Ghioni, M; Rech, I
2017-11-01
A new algorithm for controlling the temperature of a thermoelectric cooler is proposed. Unlike a classic proportional-integral-derivative (PID) control, which computes the bias voltage from the temperature error, the proposed algorithm exploits the linear relation that exists between the cold side's temperature and the amount of heat that is removed per unit time. Since this control is based on an existing linear relation, it is insensitive to changes in the operating point that are instead crucial in classic PID control of a non-linear system.
Note: Wide-operating-range control for thermoelectric coolers
NASA Astrophysics Data System (ADS)
Peronio, P.; Labanca, I.; Ghioni, M.; Rech, I.
2017-11-01
A new algorithm for controlling the temperature of a thermoelectric cooler is proposed. Unlike a classic proportional-integral-derivative (PID) control, which computes the bias voltage from the temperature error, the proposed algorithm exploits the linear relation that exists between the cold side's temperature and the amount of heat that is removed per unit time. Since this control is based on an existing linear relation, it is insensitive to changes in the operating point that are instead crucial in classic PID control of a non-linear system.
Development of a GA-Fuzzy-Immune PID Controller with Incomplete Derivation for Robot Dexterous Hand
Liu, Xin-hua; Chen, Xiao-hu; Zheng, Xian-hua; Li, Sheng-peng; Wang, Zhong-bin
2014-01-01
In order to improve the performance of robot dexterous hand, a controller based on GA-fuzzy-immune PID was designed. The control system of a robot dexterous hand and mathematical model of an index finger were presented. Moreover, immune mechanism was applied to the controller design and an improved approach through integration of GA and fuzzy inference was proposed to realize parameters' optimization. Finally, a simulation example was provided and the designed controller was proved ideal. PMID:25097881
Nonlinear Tracking Control of a Conductive Supercoiled Polymer Actuator.
Luong, Tuan Anh; Cho, Kyeong Ho; Song, Min Geun; Koo, Ja Choon; Choi, Hyouk Ryeol; Moon, Hyungpil
2018-04-01
Artificial muscle actuators made from commercial nylon fishing lines have been recently introduced and shown as a new type of actuator with high performance. However, the actuators also exhibit significant nonlinearities, which make them difficult to control, especially in precise trajectory-tracking applications. In this article, we present a nonlinear mathematical model of a conductive supercoiled polymer (SCP) actuator driven by Joule heating for model-based feedback controls. Our efforts include modeling of the hysteresis behavior of the actuator. Based on nonlinear modeling, we design a sliding mode controller for SCP actuator-driven manipulators. The system with proposed control law is proven to be asymptotically stable using the Lyapunov theory. The control performance of the proposed method is evaluated experimentally and compared with that of a proportional-integral-derivative (PID) controller through one-degree-of-freedom SCP actuator-driven manipulators. Experimental results show that the proposed controller's performance is superior to that of a PID controller, such as the tracking errors are nearly 10 times smaller compared with those of a PID controller, and it is more robust to external disturbances such as sensor noise and actuator modeling error.
Research on intelligent algorithm of electro - hydraulic servo control system
NASA Astrophysics Data System (ADS)
Wang, Yannian; Zhao, Yuhui; Liu, Chengtao
2017-09-01
In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.
Zhao, Ximei; Ren, Chengyi; Liu, Hao; Li, Haogyi
2014-12-01
Robotic catheter minimally invasive operation requires that the driver control system has the advantages of quick response, strong anti-jamming and real-time tracking of target trajectory. Since the catheter parameters of itself and movement environment and other factors continuously change, when the driver is controlled using traditional proportional-integral-derivative (PID), the controller gain becomes fixed once the PID parameters are set. It can not change with the change of the parameters of the object and environmental disturbance so that its change affects the position tracking accuracy, and may bring a large overshoot endangering patients' vessel. Therefore, this paper adopts fuzzy PID control method to adjust PID gain parameters in the tracking process in order to improve the system anti-interference ability, dynamic performance and tracking accuracy. The simulation results showed that the fuzzy PID control method had a fast tracking performance and a strong robustness. Compared with those of traditional PID control, the feasibility and practicability of fuzzy PID control are verified in a robotic catheter minimally invasive operation.
Li, Mingjie; Zhou, Ping; Zhao, Zhicheng; Zhang, Jinggang
2016-03-01
Recently, fractional order (FO) processes with dead-time have attracted more and more attention of many researchers in control field, but FO-PID controllers design techniques available for the FO processes with dead-time suffer from lack of direct systematic approaches. In this paper, a simple design and parameters tuning approach of two-degree-of-freedom (2-DOF) FO-PID controller based on internal model control (IMC) is proposed for FO processes with dead-time, conventional one-degree-of-freedom control exhibited the shortcoming of coupling of robustness and dynamic response performance. 2-DOF control can overcome the above weakness which means it realizes decoupling of robustness and dynamic performance from each other. The adjustable parameter η2 of FO-PID controller is directly related to the robustness of closed-loop system, and the analytical expression is given between the maximum sensitivity specification Ms and parameters η2. In addition, according to the dynamic performance requirement of the practical system, the parameters η1 can also be selected easily. By approximating the dead-time term of the process model with the first-order Padé or Taylor series, the expressions for 2-DOF FO-PID controller parameters are derived for three classes of FO processes with dead-time. Moreover, compared with other methods, the proposed method is simple and easy to implement. Finally, the simulation results are given to illustrate the effectiveness of this method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Design and implementation of a 2-DOF PID compensation for magnetic levitation systems.
Ghosh, Arun; Rakesh Krishnan, T; Tejaswy, Pailla; Mandal, Abhisek; Pradhan, Jatin K; Ranasingh, Subhakant
2014-07-01
This paper employs a 2-DOF (degree of freedom) PID controller for compensating a physical magnetic levitation system. It is shown that because of having a feedforward gain in the proposed 2-DOF PID control, the transient performance of the compensated system can be changed in a desired manner unlike the conventional 1-DOF PID control. It is also shown that for a choice of PID parameters, although the theoretical loop robustness is the same for both the compensated systems, in real-time, 2-DOF PID control may provide superior robustness if a suitable choice of the feedforward parameter is made. The results are verified through simulations and experiments. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
High-accuracy resolver-to-digital conversion via phase locked loop based on PID controller
NASA Astrophysics Data System (ADS)
Li, Yaoling; Wu, Zhong
2018-03-01
The problem of resolver-to-digital conversion (RDC) is transformed into the problem of angle tracking control, and a phase locked loop (PLL) method based on PID controller is proposed in this paper. This controller comprises a typical PI controller plus an incomplete differential which can avoid the amplification of higher-frequency noise components by filtering the phase detection error with a low-pass filter. Compared with conventional ones, the proposed PLL method makes the converter a system of type III and thus the conversion accuracy can be improved. Experimental results demonstrate the effectiveness of the proposed method.
Das, Saptarshi; Pan, Indranil; Das, Shantanu; Gupta, Amitava
2012-03-01
Genetic algorithm (GA) has been used in this study for a new approach of suboptimal model reduction in the Nyquist plane and optimal time domain tuning of proportional-integral-derivative (PID) and fractional-order (FO) PI(λ)D(μ) controllers. Simulation studies show that the new Nyquist-based model reduction technique outperforms the conventional H(2)-norm-based reduced parameter modeling technique. With the tuned controller parameters and reduced-order model parameter dataset, optimum tuning rules have been developed with a test-bench of higher-order processes via genetic programming (GP). The GP performs a symbolic regression on the reduced process parameters to evolve a tuning rule which provides the best analytical expression to map the data. The tuning rules are developed for a minimum time domain integral performance index described by a weighted sum of error index and controller effort. From the reported Pareto optimal front of the GP-based optimal rule extraction technique, a trade-off can be made between the complexity of the tuning formulae and the control performance. The efficacy of the single-gene and multi-gene GP-based tuning rules has been compared with the original GA-based control performance for the PID and PI(λ)D(μ) controllers, handling four different classes of representative higher-order processes. These rules are very useful for process control engineers, as they inherit the power of the GA-based tuning methodology, but can be easily calculated without the requirement for running the computationally intensive GA every time. Three-dimensional plots of the required variation in PID/fractional-order PID (FOPID) controller parameters with reduced process parameters have been shown as a guideline for the operator. Parametric robustness of the reported GP-based tuning rules has also been shown with credible simulation examples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pricop, Emil; Zamfir, Florin; Paraschiv, Nicolae
2015-11-01
Process control is a challenging research topic for both academia and industry for a long time. Controllers evolved from the classical SISO approach to modern fuzzy or neuro-fuzzy embedded devices with networking capabilities, however PID algorithms are still used in the most industrial control loops. In this paper, we focus on the implementation of a PID controller using mbed NXP LPC1768 development board. This board integrates a powerful ARM Cortex- M3 core and has networking capabilities. The implemented controller can be remotely operated by using an Internet connection and a standard Web browser. The main advantages of the proposed embedded system are customizability, easy operation and very low power consumption. The experimental results obtained by using a simulated process are analysed and shows that the implementation can be done with success in industrial applications.
Demonstrative fractional order - PID controller based DC motor drive on digital platform.
Khubalkar, Swapnil W; Junghare, Anjali S; Aware, Mohan V; Chopade, Amit S; Das, Shantanu
2017-09-21
In industrial drives applications, fractional order controllers can exhibit phenomenal impact due to realization through digital implementation. Digital fractional order controllers have created wide scope as it possess the inherent advantages like robustness against the plant parameter variation. This paper provides brief design procedure of fractional order proportional-integral-derivative (FO-PID) controller through the indirect approach of approximation using constant phase technique. The new modified dynamic particle swarm optimization (IdPSO) technique is proposed to find controller parameters. The FO-PID controller is implemented using floating point digital signal processor. The building blocks are designed and assembled with all peripheral components for the 1.5kW industrial DC motor drive. The robust operation for parametric variation is ascertained by testing the controller with two separately excited DC motors with the same rating but different parameters. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Correlation Between Bladder Pain Syndrome/Interstitial Cystitis and Pelvic Inflammatory Disease
Chung, Shiu-Dong; Chang, Chao-Hsiang; Hung, Peir-Haur; Chung, Chi-Jung; Muo, Chih-Hsin; Huang, Chao-Yuan
2015-01-01
Abstract Pelvic inflammatory disease (PID) has been investigated in Western countries and identified to be associated with chronic pelvic pain and inflammation. Bladder pain syndrome/interstitial cystitis (BPS/IC) is a complex syndrome that is significantly more prevalent in women than in men. Chronic pelvic pain is a main symptom of BPS/IC, and chronic inflammation is a major etiology of BPS/IC. This study aimed to investigate the correlation between BPS/IC and PID using a population-based dataset. We constructed a case–control study from the Taiwan National Health Insurance program. The case cohort comprised 449 patients with BPS/IC, and 1796 randomly selected subjects (about 1:4 matching) were used as controls. A Multivariate logistic regression model was constructed to estimate the association between BPS/IC and PID. Of the 2245 sampled subjects, a significant difference was observed in the prevalence of PID between BPS/IC cases and controls (41.7% vs 15.4%, P < 0.001). Multivariate logistic regression analysis revealed that the odds ratio (OR) for PID among cases was 3.69 (95% confidence interval [CI]: 2.89–4.71). Furthermore, the ORs for PID among BPS/IC cases were 4.52 (95% CI: 2.55–8.01), 4.31 (95% CI: 2.91–6.38), 3.00 (95% CI: 1.82–4.94), and 5.35 (95% CI: 1.88–15.20) in the <35, 35–49, 50–64, and >65 years age groups, respectively, after adjusting for geographic region, irritable bowel syndrome, and hypertension. Joint effect was also noted, specifically when patients had both PID and irritable bowel disease with OR of 10.5 (95% CI: 4.88–22.50). This study demonstrated a correlation between PID and BPS/IC. Clinicians treating women with PID should be alert to BPS/IC-related symptoms in the population. PMID:26579800
Design of Intelligent Hydraulic Excavator Control System Based on PID Method
NASA Astrophysics Data System (ADS)
Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong
Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and realize power match between pump and engine.
Prakash, J; Srinivasan, K
2009-07-01
In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.
A Method for Precision Closed-Loop Irrigation Using a Modified PID Control Algorithm
NASA Astrophysics Data System (ADS)
Goodchild, Martin; Kühn, Karl; Jenkins, Malcolm; Burek, Kazimierz; Dutton, Andrew
2016-04-01
The benefits of closed-loop irrigation control have been demonstrated in grower trials which show the potential for improved crop yields and resource usage. Managing water use by controlling irrigation in response to soil moisture changes to meet crop water demands is a popular approach but requires knowledge of closed-loop control practice. In theory, to obtain precise closed-loop control of a system it is necessary to characterise every component in the control loop to derive the appropriate controller parameters, i.e. proportional, integral & derivative (PID) parameters in a classic PID controller. In practice this is often difficult to achieve. Empirical methods are employed to estimate the PID parameters by observing how the system performs under open-loop conditions. In this paper we present a modified PID controller, with a constrained integral function, that delivers excellent regulation of soil moisture by supplying the appropriate amount of water to meet the needs of the plant during the diurnal cycle. Furthermore, the modified PID controller responds quickly to changes in environmental conditions, including rainfall events which can result in: controller windup, under-watering and plant stress conditions. The experimental work successfully demonstrates the functionality of a constrained integral PID controller that delivers robust and precise irrigation control. Coir substrate strawberry growing trial data is also presented illustrating soil moisture control and the ability to match water deliver to solar radiation.
Data-Driven Based Asynchronous Motor Control for Printing Servo Systems
NASA Astrophysics Data System (ADS)
Bian, Min; Guo, Qingyun
Modern digital printing equipment aims to the environmental-friendly industry with high dynamic performances and control precision and low vibration and abrasion. High performance motion control system of printing servo systems was required. Control system of asynchronous motor based on data acquisition was proposed. Iterative learning control (ILC) algorithm was studied. PID control was widely used in the motion control. However, it was sensitive to the disturbances and model parameters variation. The ILC applied the history error data and present control signals to approximate the control signal directly in order to fully track the expect trajectory without the system models and structures. The motor control algorithm based on the ILC and PID was constructed and simulation results were given. The results show that data-driven control method is effective dealing with bounded disturbances for the motion control of printing servo systems.
Method study on fuzzy-PID adaptive control of electric-hydraulic hitch system
NASA Astrophysics Data System (ADS)
Li, Mingsheng; Wang, Liubu; Liu, Jian; Ye, Jin
2017-03-01
In this paper, fuzzy-PID adaptive control method is applied to the control of tractor electric-hydraulic hitch system. According to the characteristics of the system, a fuzzy-PID adaptive controller is designed and the electric-hydraulic hitch system model is established. Traction control and position control performance simulation are carried out with the common PID control method. A field test rig was set up to test the electric-hydraulic hitch system. The test results showed that, after the fuzzy-PID adaptive control is adopted, when the tillage depth steps from 0.1m to 0.3m, the system transition process time is 4s, without overshoot, and when the tractive force steps from 3000N to 7000N, the system transition process time is 5s, the system overshoot is 25%.
Gottlieb, Sami L; Xu, Fujie; Brunham, Robert C
2013-02-01
We critically reviewed randomized controlled trials evaluating chlamydia screening to prevent pelvic inflammatory disease (PID) and explored factors affecting interpretation and translation of trial data into public health prevention. Taken together, data from these trials offer evidence that chlamydia screening and treatment is an important and useful intervention to reduce the risk of PID among young women. However, the magnitude of benefit to be expected from screening may have been overestimated based on the earliest trials. It is likely that chlamydia screening programs have contributed to declines in PID incidence through shortening prevalent infections, although the magnitude of their contribution remains unclear. Program factors such as screening coverage as well as natural history factors such as risk of PID after repeat chlamydia infection can be important in determining the impact of chlamydia screening on PID incidence in a population. Uptake of chlamydia screening is currently suboptimal, and expansion of screening among young, sexually active women remains a priority. To reduce transmission and repeat infections, implementation of efficient strategies to treat partners of infected women is also essential. Results of ongoing randomized evaluations of the effect of screening on community-wide chlamydia prevalence and PID will also be valuable.
NASA Astrophysics Data System (ADS)
Gorzelic, P.; Schiff, S. J.; Sinha, A.
2013-04-01
Objective. To explore the use of classical feedback control methods to achieve an improved deep brain stimulation (DBS) algorithm for application to Parkinson's disease (PD). Approach. A computational model of PD dynamics was employed to develop model-based rational feedback controller design. The restoration of thalamocortical relay capabilities to patients suffering from PD is formulated as a feedback control problem with the DBS waveform serving as the control input. Two high-level control strategies are tested: one that is driven by an online estimate of thalamic reliability, and another that acts to eliminate substantial decreases in the inhibition from the globus pallidus interna (GPi) to the thalamus. Control laws inspired by traditional proportional-integral-derivative (PID) methodology are prescribed for each strategy and simulated on this computational model of the basal ganglia network. Main Results. For control based upon thalamic reliability, a strategy of frequency proportional control with proportional bias delivered the optimal control achieved for a given energy expenditure. In comparison, control based upon synaptic inhibitory output from the GPi performed very well in comparison with those of reliability-based control, with considerable further reduction in energy expenditure relative to that of open-loop DBS. The best controller performance was amplitude proportional with derivative control and integral bias, which is full PID control. We demonstrated how optimizing the three components of PID control is feasible in this setting, although the complexity of these optimization functions argues for adaptive methods in implementation. Significance. Our findings point to the potential value of model-based rational design of feedback controllers for Parkinson's disease.
Gorzelic, P; Schiff, S J; Sinha, A
2013-04-01
To explore the use of classical feedback control methods to achieve an improved deep brain stimulation (DBS) algorithm for application to Parkinson's disease (PD). A computational model of PD dynamics was employed to develop model-based rational feedback controller design. The restoration of thalamocortical relay capabilities to patients suffering from PD is formulated as a feedback control problem with the DBS waveform serving as the control input. Two high-level control strategies are tested: one that is driven by an online estimate of thalamic reliability, and another that acts to eliminate substantial decreases in the inhibition from the globus pallidus interna (GPi) to the thalamus. Control laws inspired by traditional proportional-integral-derivative (PID) methodology are prescribed for each strategy and simulated on this computational model of the basal ganglia network. For control based upon thalamic reliability, a strategy of frequency proportional control with proportional bias delivered the optimal control achieved for a given energy expenditure. In comparison, control based upon synaptic inhibitory output from the GPi performed very well in comparison with those of reliability-based control, with considerable further reduction in energy expenditure relative to that of open-loop DBS. The best controller performance was amplitude proportional with derivative control and integral bias, which is full PID control. We demonstrated how optimizing the three components of PID control is feasible in this setting, although the complexity of these optimization functions argues for adaptive methods in implementation. Our findings point to the potential value of model-based rational design of feedback controllers for Parkinson's disease.
Bilateral control of master-slave manipulators with constant time delay.
Forouzantabar, A; Talebi, H A; Sedigh, A K
2012-01-01
This paper presents a novel teleoperation controller for a nonlinear master-slave robotic system with constant time delay in communication channel. The proposed controller enables the teleoperation system to compensate human and environmental disturbances, while achieving master and slave position coordination in both free motion and contact situation. The current work basically extends the passivity based architecture upon the earlier work of Lee and Spong (2006) [14] to improve position tracking and consequently transparency in the face of disturbances and environmental contacts. The proposed controller employs a PID controller in each side to overcome some limitations of a PD controller and guarantee an improved performance. Moreover, by using Fourier transform and Parseval's identity in the frequency domain, we demonstrate that this new PID controller preserves the passivity of the system. Simulation and semi-experimental results show that the PID controller tracking performance is superior to that of the PD controller tracking performance in slave/environmental contacts. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Fractional order PID controller for improvement of PMSM speed control in aerospace applications
NASA Astrophysics Data System (ADS)
Saraji, Ali Motalebi; Ghanbari, Mahmood
2014-12-01
Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.
Status of adolescent pelvic inflammatory disease management in the United States.
Trent, Maria
2013-10-01
Pelvic inflammatory disease (PID) is a common and serious reproductive health disorder and disease rates remain unacceptably high among adolescent girls and young adult women in the United States. Despite data demonstrating that women experience major adverse health outcomes after PID, national recommendations for management of adolescents have become increasingly less cautious in an era of cost-containment. In this review, we take an alternative look at published data on adolescents with PID to frame the next steps for optimizing management for this vulnerable population. Several findings emerge from review of the literature. First, there is limited evidence to guide the best practice strategies for adolescents with PID due to low enrolment of early and middle adolescents in national trials. Second, adolescents and adult women in the United States receive suboptimal treatment regimens per Centers for Disease Control and Prevention (CDC) standards. Third, available evidence suggests that adolescents are at an increased risk for poor adherence to CDC recommendations for self-care, reacquisition of sexually transmitted infections (STIs) and PID, and subsequent adverse reproductive health outcomes. Efforts to develop and integrate adolescent-focused, evidence-based strategies for PID management and prevention of subsequent STIs and recurrent PID are warranted.
Servo Platform Circuit Design of Pendulous Gyroscope Based on DSP
NASA Astrophysics Data System (ADS)
Tan, Lilong; Wang, Pengcheng; Zhong, Qiyuan; Zhang, Cui; Liu, Yunfei
2018-03-01
In order to solve the problem when a certain type of pendulous gyroscope in the initial installation deviation more than 40 degrees, that the servo platform can not be up to the speed of the gyroscope in the rough north seeking phase. This paper takes the digital signal processor TMS320F28027 as the core, uses incremental digital PID algorithm, carries out the circuit design of the servo platform. Firstly, the hardware circuit is divided into three parts: DSP minimum system, motor driving circuit and signal processing circuit, then the mathematical model of incremental digital PID algorithm is established, based on the model, writes the PID control program in CCS3.3, finally, the servo motor tracking control experiment is carried out, it shows that the design can significantly improve the tracking ability of the servo platform, and the design has good engineering practice.
Inverse heat transfer problem in digital temperature control in plate fin and tube heat exchangers
NASA Astrophysics Data System (ADS)
Taler, Dawid; Sury, Adam
2011-12-01
The aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.
PID tuning rules for SOPDT systems: review and some new results.
Panda, Rames C; Yu, Cheng-Ching; Huang, Hsiao-Ping
2004-04-01
PID controllers are widely used in industries and so many tuning rules have been proposed over the past 50 years that users are often lost in the jungle of tuning formulas. Moreover, unlike PI control, different control laws and structures of implementation further complicate the use of the PID controller. In this work, five different tuning rules are taken for study to control second-order plus dead time systems with wide ranges of damping coefficients and dead time to time constant ratios (D/tau). Four of them are based on IMC design with different types of approximations on dead time and the other on desired closed-loop specifications (i.e., specified forward transfer function). The method of handling dead time in the IMC type of design is important especially for systems with large D/tau ratios. A systematic approach was followed to evaluate the performance of controllers. The regions of applicability of suitable tuning rules are highlighted and recommendations are also given. It turns out that IMC designed with the Maclaurin series expansion type PID is a better choice for both set point and load changes for systems with D/tau greater than 1. For systems with D/tau less than 1, the desired closed-loop specification approach is favored.
A robust fractional-order PID controller design based on active queue management for TCP network
NASA Astrophysics Data System (ADS)
Hamidian, Hamideh; Beheshti, Mohammad T. H.
2018-01-01
In this paper, a robust fractional-order controller is designed to control the congestion in transmission control protocol (TCP) networks with time-varying parameters. Fractional controllers can increase the stability and robustness. Regardless of advantages of fractional controllers, they are still not common in congestion control in TCP networks. The network parameters are time-varying, so the robust stability is important in congestion controller design. Therefore, we focused on the robust controller design. The fractional PID controller is developed based on active queue management (AQM). D-partition technique is used. The most important property of designed controller is the robustness to the time-varying parameters of the TCP network. The vertex quasi-polynomials of the closed-loop characteristic equation are obtained, and the stability boundaries are calculated for each vertex quasi-polynomial. The intersection of all stability regions is insensitive to network parameter variations, and results in robust stability of TCP/AQM system. NS-2 simulations show that the proposed algorithm provides a stable queue length. Moreover, simulations show smaller oscillations of the queue length and less packet drop probability for FPID compared to PI and PID controllers. We can conclude from NS-2 simulations that the average packet loss probability variations are negligible when the network parameters change.
NASA Astrophysics Data System (ADS)
Pohjoranta, Antti; Halinen, Matias; Pennanen, Jari; Kiviaho, Jari
2015-03-01
Generalized predictive control (GPC) is applied to control the maximum temperature in a solid oxide fuel cell (SOFC) stack and the temperature difference over the stack. GPC is a model predictive control method and the models utilized in this work are ARX-type (autoregressive with extra input), multiple input-multiple output, polynomial models that were identified from experimental data obtained from experiments with a complete SOFC system. The proposed control is evaluated by simulation with various input-output combinations, with and without constraints. A comparison with conventional proportional-integral-derivative (PID) control is also made. It is shown that if only the stack maximum temperature is controlled, a standard PID controller can be used to obtain output performance comparable to that obtained with the significantly more complex model predictive controller. However, in order to control the temperature difference over the stack, both the stack minimum and the maximum temperature need to be controlled and this cannot be done with a single PID controller. In such a case the model predictive controller provides a feasible and effective solution.
DeJournett, Leon; DeJournett, Jeremy
2016-01-01
Background: Effective glucose control in the intensive care unit (ICU) setting has the potential to decrease morbidity and mortality rates which should in turn lead to decreased health care expenditures. Current ICU-based glucose controllers are mathematically derived, and tend to be based on proportional integral derivative (PID) or model predictive control (MPC). Artificial intelligence (AI)–based closed loop glucose controllers may have the ability to achieve control that improves on the results achieved by either PID or MPC controllers. Method: We conducted an in silico analysis of an AI-based glucose controller designed for use in the ICU setting. This controller was tested using a mathematical model of the ICU patient’s glucose-insulin system. A total of 126 000 unique 5-day simulations were carried out, resulting in 107 million glucose values for analysis. Results: For the 7 control ranges tested, with a sensor error of ±10%, the following average results were achieved: (1) time in control range, 94.2%, (2) time in range 70-140 mg/dl, 97.8%, (3) time in hyperglycemic range (>140 mg/dl), 2.1%, and (4) time in hypoglycemic range (<70 mg/dl), 0.09%. In addition, the average coefficient of variation (CV) was 11.1%. Conclusions: This in silico study of an AI-based closed loop glucose controller shows that it may be able to improve on the results achieved by currently existing ICU-based PID/MPC controllers. If these results are confirmed in clinical testing, this AI-based controller could be used to create an artificial pancreas system for use in the ICU setting. PMID:27301982
DeJournett, Leon; DeJournett, Jeremy
2016-11-01
Effective glucose control in the intensive care unit (ICU) setting has the potential to decrease morbidity and mortality rates which should in turn lead to decreased health care expenditures. Current ICU-based glucose controllers are mathematically derived, and tend to be based on proportional integral derivative (PID) or model predictive control (MPC). Artificial intelligence (AI)-based closed loop glucose controllers may have the ability to achieve control that improves on the results achieved by either PID or MPC controllers. We conducted an in silico analysis of an AI-based glucose controller designed for use in the ICU setting. This controller was tested using a mathematical model of the ICU patient's glucose-insulin system. A total of 126 000 unique 5-day simulations were carried out, resulting in 107 million glucose values for analysis. For the 7 control ranges tested, with a sensor error of ±10%, the following average results were achieved: (1) time in control range, 94.2%, (2) time in range 70-140 mg/dl, 97.8%, (3) time in hyperglycemic range (>140 mg/dl), 2.1%, and (4) time in hypoglycemic range (<70 mg/dl), 0.09%. In addition, the average coefficient of variation (CV) was 11.1%. This in silico study of an AI-based closed loop glucose controller shows that it may be able to improve on the results achieved by currently existing ICU-based PID/MPC controllers. If these results are confirmed in clinical testing, this AI-based controller could be used to create an artificial pancreas system for use in the ICU setting. © 2016 Diabetes Technology Society.
Coordinating IMC-PID and adaptive SMC controllers for a PEMFC.
Wang, Guo-Liang; Wang, Yong; Shi, Jun-Hai; Shao, Hui-He
2010-01-01
For a Proton Exchange Membrane Fuel Cell (PEMFC) power plant with a methanol reformer, the process parameters and power output are considered simultaneously to avoid violation of the constraints and to keep the fuel cell power plant safe and effective. In this paper, a novel coordinating scheme is proposed by combining an Internal Model Control (IMC) based PID Control and adaptive Sliding Mode Control (SMC). The IMC-PID controller is designed for the reformer of the fuel flow rate according to the expected first-order dynamic properties. The adaptive SMC controller of the fuel cell current has been designed using the constant plus proportional rate reaching law. The parameters of the SMC controller are adaptively tuned according to the response of the fuel flow rate control system. When the power output controller feeds back the current references to these two controllers, the coordinating controllers system works in a system-wide way. The simulation results of the PEMFC power plant demonstrate the effectiveness of the proposed method. 2009 ISA. Published by Elsevier Ltd. All rights reserved.
Design and experimental validation of linear and nonlinear vehicle steering control strategies
NASA Astrophysics Data System (ADS)
Menhour, Lghani; Lechner, Daniel; Charara, Ali
2012-06-01
This paper proposes the design of three control laws dedicated to vehicle steering control, two based on robust linear control strategies and one based on nonlinear control strategies, and presents a comparison between them. The two robust linear control laws (indirect and direct methods) are built around M linear bicycle models, each of these control laws is composed of two M proportional integral derivative (PID) controllers: one M PID controller to control the lateral deviation and the other M PID controller to control the vehicle yaw angle. The indirect control law method is designed using an oscillation method and a nonlinear optimisation subject to H ∞ constraint. The direct control law method is designed using a linear matrix inequality optimisation in order to achieve H ∞ performances. The nonlinear control method used for the correction of the lateral deviation is based on a continuous first-order sliding-mode controller. The different methods are designed using a linear bicycle vehicle model with variant parameters, but the aim is to simulate the nonlinear vehicle behaviour under high dynamic demands with a four-wheel vehicle model. These steering vehicle controls are validated experimentally using the data acquired using a laboratory vehicle, Peugeot 307, developed by National Institute for Transport and Safety Research - Department of Accident Mechanism Analysis Laboratory's (INRETS-MA) and their performance results are compared. Moreover, an unknown input sliding-mode observer is introduced to estimate the road bank angle.
Information fusion based optimal control for large civil aircraft system.
Zhen, Ziyang; Jiang, Ju; Wang, Xinhua; Gao, Chen
2015-03-01
Wind disturbance has a great influence on landing security of Large Civil Aircraft. Through simulation research and engineering experience, it can be found that PID control is not good enough to solve the problem of restraining the wind disturbance. This paper focuses on anti-wind attitude control for Large Civil Aircraft in landing phase. In order to improve the riding comfort and the flight security, an information fusion based optimal control strategy is presented to restrain the wind in landing phase for maintaining attitudes and airspeed. Data of Boeing707 is used to establish a nonlinear mode with total variables of Large Civil Aircraft, and then two linear models are obtained which are divided into longitudinal and lateral equations. Based on engineering experience, the longitudinal channel adopts PID control and C inner control to keep longitudinal attitude constant, and applies autothrottle system for keeping airspeed constant, while an information fusion based optimal regulator in the lateral control channel is designed to achieve lateral attitude holding. According to information fusion estimation, by fusing hard constraint information of system dynamic equations and the soft constraint information of performance index function, optimal estimation of the control sequence is derived. Based on this, an information fusion state regulator is deduced for discrete time linear system with disturbance. The simulation results of nonlinear model of aircraft indicate that the information fusion optimal control is better than traditional PID control, LQR control and LQR control with integral action, in anti-wind disturbance performance in the landing phase. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Design of high precision temperature control system for TO packaged LD
NASA Astrophysics Data System (ADS)
Liang, Enji; Luo, Baoke; Zhuang, Bin; He, Zhengquan
2017-10-01
Temperature is an important factor affecting the performance of TO package LD. In order to ensure the safe and stable operation of LD, a temperature control circuit for LD based on PID technology is designed. The MAX1978 and an external PID circuit are used to form a control circuit that drives the thermoelectric cooler (TEC) to achieve control of temperature and the external load can be changed. The system circuit has low power consumption, high integration and high precision,and the circuit can achieve precise control of the LD temperature. Experiment results show that the circuit can achieve effective and stable control of the laser temperature.
NASA Technical Reports Server (NTRS)
Phatak, A. V.; Kessler, K. M.
1975-01-01
The selection of the structure of optimal control type models for the human gunner in an anti aircraft artillery system is considered. Several structures within the LQG framework may be formulated. Two basic types are considered: (1) kth derivative controllers; and (2) proportional integral derivative (P-I-D) controllers. It is shown that a suitable criterion for model structure determination can be based on the ensemble statistics of the tracking error. In the case when the ensemble tracking steady state error is zero, it is suggested that a P-I-D controller formulation be used in preference to the kth derivative controller.
Fractional order PID controller for improvement of PMSM speed control in aerospace applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saraji, Ali Motalebi; Ghanbari, Mahmood
Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loopmore » of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.« less
Enhanced pid vs model predictive control applied to bldc motor
NASA Astrophysics Data System (ADS)
Gaya, M. S.; Muhammad, Auwal; Aliyu Abdulkadir, Rabiu; Salim, S. N. S.; Madugu, I. S.; Tijjani, Aminu; Aminu Yusuf, Lukman; Dauda Umar, Ibrahim; Khairi, M. T. M.
2018-01-01
BrushLess Direct Current (BLDC) motor is a multivariable and highly complex nonlinear system. Variation of internal parameter values with environment or reference signal increases the difficulty in controlling the BLDC effectively. Advanced control strategies (like model predictive control) often have to be integrated to satisfy the control desires. Enhancing or proper tuning of a conventional algorithm results in achieving the desired performance. This paper presents a performance comparison of Enhanced PID and Model Predictive Control (MPC) applied to brushless direct current motor. The simulation results demonstrated that the PSO-PID is slightly better than the PID and MPC in tracking the trajectory of the reference signal. The proposed scheme could be useful algorithms for the system.
Variable Structure PID Control to Prevent Integrator Windup
NASA Technical Reports Server (NTRS)
Hall, C. E.; Hodel, A. S.; Hung, J. Y.
1999-01-01
PID controllers are frequently used to control systems requiring zero steady-state error while maintaining requirements for settling time and robustness (gain/phase margins). PID controllers suffer significant loss of performance due to short-term integrator wind-up when used in systems with actuator saturation. We examine several existing and proposed methods for the prevention of integrator wind-up in both continuous and discrete time implementations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manière, Charles; Lee, Geuntak; Olevsky, Eugene A.
The stability of the proportional–integral–derivative (PID) control of temperature in the spark plasma sintering (SPS) process is investigated. The PID regulations of this process are tested for different SPS tooling dimensions, physical parameters conditions, and areas of temperature control. It is shown that the PID regulation quality strongly depends on the heating time lag between the area of heat generation and the area of the temperature control. Tooling temperature rate maps are studied to reveal potential areas for highly efficient PID control. The convergence of the model and experiment indicates that even with non-optimal initial PID coefficients, it is possiblemore » to reduce the temperature regulation inaccuracy to less than 4 K by positioning the temperature control location in highly responsive areas revealed by the finite-element calculations of the temperature spatial distribution.« less
Manière, Charles; Lee, Geuntak; Olevsky, Eugene A.
2017-04-21
The stability of the proportional–integral–derivative (PID) control of temperature in the spark plasma sintering (SPS) process is investigated. The PID regulations of this process are tested for different SPS tooling dimensions, physical parameters conditions, and areas of temperature control. It is shown that the PID regulation quality strongly depends on the heating time lag between the area of heat generation and the area of the temperature control. Tooling temperature rate maps are studied to reveal potential areas for highly efficient PID control. The convergence of the model and experiment indicates that even with non-optimal initial PID coefficients, it is possiblemore » to reduce the temperature regulation inaccuracy to less than 4 K by positioning the temperature control location in highly responsive areas revealed by the finite-element calculations of the temperature spatial distribution.« less
PID temperature controller in pig nursery: spatial characterization of thermal environment
NASA Astrophysics Data System (ADS)
de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar
2018-05-01
The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.
PID temperature controller in pig nursery: spatial characterization of thermal environment
NASA Astrophysics Data System (ADS)
de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar
2017-11-01
The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.
NASA Astrophysics Data System (ADS)
Faisal, A.; Hasan, S.; Suherman
2018-03-01
AC-DC converter is widely used in the commercial industry even for daily purposes. The AC-DC converter is used to convert AC voltage into DC. In order to obtain the desired output voltage, the converter usually has a controllable regulator. This paper discusses buck boost regulator with a power MOSFET as switching component which is adjusted based on the duty cycle of pulse width modulation (PWM). The main problems of the buck boost converter at start up are the high overshoot, the long peak time and rise time. This paper compares the effectiveness of two control techniques: proportional integral derivative (PID) and fuzzy logic control in controlling the buck boost converter through simulations. The results show that the PID is more sensitive to voltage change than fuzzy logic. However, PID generates higher overshoot, long peak time and rise time. On the other hand, fuzzy logic generates no overshoot and shorter rise time.
NASA Astrophysics Data System (ADS)
Azmi, Nur Iffah Mohamed; Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Romlay, Fadhlur Rahman Mohd
2018-03-01
Controller that uses PID parameters requires a good tuning method in order to improve the control system performance. Tuning PID control method is divided into two namely the classical methods and the methods of artificial intelligence. Particle swarm optimization algorithm (PSO) is one of the artificial intelligence methods. Previously, researchers had integrated PSO algorithms in the PID parameter tuning process. This research aims to improve the PSO-PID tuning algorithms by integrating the tuning process with the Variable Weight Grey- Taguchi Design of Experiment (DOE) method. This is done by conducting the DOE on the two PSO optimizing parameters: the particle velocity limit and the weight distribution factor. Computer simulations and physical experiments were conducted by using the proposed PSO- PID with the Variable Weight Grey-Taguchi DOE and the classical Ziegler-Nichols methods. They are implemented on the hydraulic positioning system. Simulation results show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE has reduced the rise time by 48.13% and settling time by 48.57% compared to the Ziegler-Nichols method. Furthermore, the physical experiment results also show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE tuning method responds better than Ziegler-Nichols tuning. In conclusion, this research has improved the PSO-PID parameter by applying the PSO-PID algorithm together with the Variable Weight Grey-Taguchi DOE method as a tuning method in the hydraulic positioning system.
Modelling and study of active vibration control for off-road vehicle
NASA Astrophysics Data System (ADS)
Zhang, Junwei; Chen, Sizhong
2014-05-01
In view of special working characteristics and structure, engineering machineries do not have conventional suspension system typically. Consequently, operators have to endure severe vibrations which are detrimental both to their health and to the productivity of the loader. Based on displacement control, a kind of active damping method is developed for a skid-steer loader. In this paper, the whole hydraulic system for active damping method is modelled which include swash plate dynamics model, proportional valve model, piston accumulator model, pilot-operated check valve model, relief valve model, pump loss model, and cylinder model. A new road excitation model is developed for the skid-steer loader specially. The response of chassis vibration acceleration to road excitation is verified through simulation. The simulation result of passive accumulator damping is compared with measurements and the comparison shows that they are close. Based on this, parallel PID controller and track PID controller with acceleration feedback are brought into the simulation model, and the simulation results are compared with passive accumulator damping. It shows that the active damping methods with PID controllers are better in reducing chassis vibration acceleration and pitch movement. In the end, the test work for active damping method is proposed for the future work.
The research on visual industrial robot which adopts fuzzy PID control algorithm
NASA Astrophysics Data System (ADS)
Feng, Yifei; Lu, Guoping; Yue, Lulin; Jiang, Weifeng; Zhang, Ye
2017-03-01
The control system of six degrees of freedom visual industrial robot based on the control mode of multi-axis motion control cards and PC was researched. For the variable, non-linear characteristics of industrial robot`s servo system, adaptive fuzzy PID controller was adopted. It achieved better control effort. In the vision system, a CCD camera was used to acquire signals and send them to video processing card. After processing, PC controls the six joints` motion by motion control cards. By experiment, manipulator can operate with machine tool and vision system to realize the function of grasp, process and verify. It has influence on the manufacturing of the industrial robot.
Explicit analytical tuning rules for digital PID controllers via the magnitude optimum criterion.
Papadopoulos, Konstantinos G; Yadav, Praveen K; Margaris, Nikolaos I
2017-09-01
Analytical tuning rules for digital PID type-I controllers are presented regardless of the process complexity. This explicit solution allows control engineers 1) to make an accurate examination of the effect of the controller's sampling time to the control loop's performance both in the time and frequency domain 2) to decide when the control has to be I, PI and when the derivative, D, term has to be added or omitted 3) apply this control action to a series of stable benchmark processes regardless of their complexity. The former advantages are considered critical in industry applications, since 1) most of the times the choice of the digital controller's sampling time is based on heuristics and past criteria, 2) there is little a-priori knowledge of the controlled process making the choice of the type of the controller a trial and error exercise 3) model parameters change often depending on the control loop's operating point making in this way, the problem of retuning the controller's parameter a much challenging issue. Basis of the proposed control law is the principle of the PID tuning via the Magnitude Optimum criterion. The final control law involves the controller's sampling time T s within the explicit solution of the controller's parameters. Finally, the potential of the proposed method is justified by comparing its performance with the conventional PID tuning when controlling the same process. Further investigation regarding the choice of the controller's sampling time T s is also presented and useful conclusions for control engineers are derived. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Alagoz, Baris Baykant; Deniz, Furkan Nur; Keles, Cemal; Tan, Nusret
2015-03-01
This study investigates disturbance rejection capacity of closed loop control systems by means of reference to disturbance ratio (RDR). The RDR analysis calculates the ratio of reference signal energy to disturbance signal energy at the system output and provides a quantitative evaluation of disturbance rejection performance of control systems on the bases of communication channel limitations. Essentially, RDR provides a straightforward analytical method for the comparison and improvement of implicit disturbance rejection capacity of closed loop control systems. Theoretical analyses demonstrate us that RDR of the negative feedback closed loop control systems are determined by energy spectral density of controller transfer function. In this manner, authors derived design criteria for specifications of disturbance rejection performances of PID and fractional order PID (FOPID) controller structures. RDR spectra are calculated for investigation of frequency dependence of disturbance rejection capacity and spectral RDR analyses are carried out for PID and FOPID controllers. For the validation of theoretical results, simulation examples are presented. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Digital PI-PD controller design for arbitrary order systems: Dominant pole placement approach.
Dincel, Emre; Söylemez, Mehmet Turan
2018-05-02
In this paper, a digital PI-PD controller design method is proposed for arbitrary order systems with or without time-delay to achieve desired transient response in the closed-loop via dominant pole placement approach. The digital PI-PD controller design problem is solved by converting the original problem to the digital PID controller design problem. Firstly, parametrization of the digital PID controllers which assign dominant poles to desired location is done. After that the subset of digital PID controller parameters in which the remaining poles are located away from the dominant pole pair is found via Chebyshev polynomials. The obtained PID controller parameters are then transformed into the PI-PD controller parameters by considering the closed-loop controller zero and the design is completed. Success of the proposed design method is firstly demonstrated on an example transfer function and compared with the well-known PID controller methods from the literature through simulations. After that the design method is implemented on the fan and plate laboratory system in a real environment. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Kumar, Anupam; Kumar, Vijay
2017-05-01
In this paper, a novel concept of an interval type-2 fractional order fuzzy PID (IT2FO-FPID) controller, which requires fractional order integrator and fractional order differentiator, is proposed. The incorporation of Takagi-Sugeno-Kang (TSK) type interval type-2 fuzzy logic controller (IT2FLC) with fractional controller of PID-type is investigated for time response measure due to both unit step response and unit load disturbance. The resulting IT2FO-FPID controller is examined on different delayed linear and nonlinear benchmark plants followed by robustness analysis. In order to design this controller, fractional order integrator-differentiator operators are considered as design variables including input-output scaling factors. A new hybridized algorithm named as artificial bee colony-genetic algorithm (ABC-GA) is used to optimize the parameters of the controller while minimizing weighted sum of integral of time absolute error (ITAE) and integral of square of control output (ISCO). To assess the comparative performance of the IT2FO-FPID, authors compared it against existing controllers, i.e., interval type-2 fuzzy PID (IT2-FPID), type-1 fractional order fuzzy PID (T1FO-FPID), type-1 fuzzy PID (T1-FPID), and conventional PID controllers. Furthermore, to show the effectiveness of the proposed controller, the perturbed processes along with the larger dead time are tested. Moreover, the proposed controllers are also implemented on multi input multi output (MIMO), coupled, and highly complex nonlinear two-link robot manipulator system in presence of un-modeled dynamics. Finally, the simulation results explicitly indicate that the performance of the proposed IT2FO-FPID controller is superior to its conventional counterparts in most of the cases. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A low power flash-FPGA based brain implant micro-system of PID control.
Lijuan Xia; Fattah, Nabeel; Soltan, Ahmed; Jackson, Andrew; Chester, Graeme; Degenaar, Patrick
2017-07-01
In this paper, we demonstrate that a low power flash FPGA based micro-system can provide a low power programmable interface for closed-loop brain implant inter- faces. The proposed micro-system receives recording local field potential (LFP) signals from an implanted probe, performs closed-loop control using a first order control system, then converts the signal into an optogenetic control stimulus pattern. Stimulus can be implemented through optoelectronic probes. The long term target is for both fundamental neuroscience applications and for clinical use in treating epilepsy. Utilizing our device, closed-loop processing consumes only 14nJ of power per PID cycle compared to 1.52μJ per cycle for a micro-controller implementation. Compared to an application specific digital integrated circuit, flash FPGA's are inherently programmable.
Smith predictor based-sliding mode controller for integrating processes with elevated deadtime.
Camacho, Oscar; De la Cruz, Francisco
2004-04-01
An approach to control integrating processes with elevated deadtime using a Smith predictor sliding mode controller is presented. A PID sliding surface and an integrating first-order plus deadtime model have been used to synthesize the controller. Since the performance of existing controllers with a Smith predictor decrease in the presence of modeling errors, this paper presents a simple approach to combining the Smith predictor with the sliding mode concept, which is a proven, simple, and robust procedure. The proposed scheme has a set of tuning equations as a function of the characteristic parameters of the model. For implementation of our proposed approach, computer based industrial controllers that execute PID algorithms can be used. The performance and robustness of the proposed controller are compared with the Matausek-Micić scheme for linear systems using simulations.
Design and Simulation of a PID Controller for Motion Control Systems
NASA Astrophysics Data System (ADS)
Hassan Abdullahi, Zakariyya; Danzomo, Bashir Ahmed; Suleiman Abdullahi, Zainab
2018-04-01
Motion control system plays important role in many industrial applications among which are in robot system, missile launching, positioning systems etc. However, the performance requirement for these applications in terms of high accuracy, high speed, insignificant or no overshoot and robustness have generated continuous challenges in the field of motion control system design and implementation. To compensate this challenge, a PID controller was design using mathematical model of a DC motor based on classical root-locus approach. The reason for adopting root locus design is to remodel the closed-loop response by putting the closed-loop poles of the system at desired points. Adding poles and zeros to the initial open-loop transfer function through the controller provide a way to transform the root locus in order to place the closed-loop poles at the required points. This process can also be used for discrete-time models. The Advantages of root locus over other methods is that, it gives the better way of pinpointing the parameters and can easily predict the fulfilment of the whole system. The controller performance was simulated using MATLAB code and a reasonable degree of accuracy was obtained. Implementation of the proposed model was conducted using-Simulink and the result obtained shows that the PID controller met the transient performance specifications with both settling time and overshoot less than 0.1s and 5% respectively. In terms of steady state error, the PID controller gave good response for both step input and ramp.
Yau, Her-Terng; Hung, Tzu-Hsiang; Hsieh, Chia-Chun
2012-01-01
This study used the complex dynamic characteristics of chaotic systems and Bluetooth to explore the topic of wireless chaotic communication secrecy and develop a communication security system. The PID controller for chaos synchronization control was applied, and the optimum parameters of this PID controller were obtained using a Particle Swarm Optimization (PSO) algorithm. Bluetooth was used to realize wireless transmissions, and a chaotic wireless communication security system was developed in the design concept of a chaotic communication security system. The experimental results show that this scheme can be used successfully in image encryption.
Dideriksen, Jakob Lund; Feeney, Daniel F; Almuklass, Awad M; Enoka, Roger M
2017-08-01
Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions.
Modeling of inter-neuronal coupling medium and its impact on neuronal synchronization
Iqbal, Muhammad; Hong, Keum-Shik
2017-01-01
In this paper, modeling of the coupling medium between two neurons, the effects of the model parameters on the synchronization of those neurons, and compensation of coupling strength deficiency in synchronization are studied. Our study exploits the inter-neuronal coupling medium and investigates its intrinsic properties in order to get insight into neuronal-information transmittance and, there from, brain-information processing. A novel electrical model of the coupling medium that represents a well-known RLC circuit attributable to the coupling medium’s intrinsic resistive, inductive, and capacitive properties is derived. Surprisingly, the integration of such properties reveals the existence of a natural three-term control strategy, referred to in the literature as the proportional integral derivative (PID) controller, which can be responsible for synchronization between two neurons. Consequently, brain-information processing can rely on a large number of PID controllers based on the coupling medium properties responsible for the coherent behavior of neurons in a neural network. Herein, the effects of the coupling model (or natural PID controller) parameters are studied and, further, a supervisory mechanism is proposed that follows a learning and adaptation policy based on the particle swarm optimization algorithm for compensation of the coupling strength deficiency. PMID:28486505
2009-01-01
Current care guidelines recommend glucose control (GC) in critically ill patients. To achieve GC, many ICUs have implemented a (nurse-based) protocol on paper. However, such protocols are often complex, time-consuming, and can cause iatrogenic hypoglycemia. Computerized glucose regulation protocols may improve patient safety, efficiency, and nurse compliance. Such computerized clinical decision support systems (Cuss) use more complex logic to provide an insulin infusion rate based on previous blood glucose levels and other parameters. A computerized CDSS for glucose control has the potential to reduce overall workload, reduce the chance of human cognitive failure, and improve glucose control. Several computer-assisted glucose regulation programs have been published recently. In order of increasing complexity, the three main types of algorithms used are computerized flowcharts, Proportional-Integral-Derivative (PID), and Model Predictive Control (MPC). PID is essentially a closed-loop feedback system, whereas MPC models the behavior of glucose and insulin in ICU patients. Although the best approach has not yet been determined, it should be noted that PID controllers are generally thought to be more robust than MPC systems. The computerized Cuss that are most likely to emerge are those that are fully a part of the routine workflow, use patient-specific characteristics and apply variable sampling intervals. PMID:19849827
Linear control of the flywheel inverted pendulum.
Olivares, Manuel; Albertos, Pedro
2014-09-01
The flywheel inverted pendulum is an underactuated mechanical system with a nonlinear model but admitting a linear approximation around the unstable equilibrium point in the upper position. Although underactuated systems usually require nonlinear controllers, the easy tuning and understanding of linear controllers make them more attractive for designers and final users. In a recent paper, a simple PID controller was proposed by the authors, leading to an internally unstable controlled plant. To achieve global stability, two options are developed here: first by introducing an internal stabilizing controller and second by replacing the PID controller by an observer-based state feedback control. Simulation and experimental results show the effectiveness of the design. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Design of PID temperature control system based on STM32
NASA Astrophysics Data System (ADS)
Zhang, Jianxin; Li, Hailin; Ma, Kai; Xue, Liang; Han, Bianhua; Dong, Yuemeng; Tan, Yue; Gu, Chengru
2018-03-01
A rapid and high-accuracy temperature control system was designed using proportional-integral-derivative (PID) control algorithm with STM32 as micro-controller unit (MCU). The temperature control system can be applied in the fields which have high requirements on the response speed and accuracy of temperature control. The temperature acquisition circuit in system adopted Pt1000 resistance thermometer as temperature sensor. Through this acquisition circuit, the monitoring actual temperature signal could be converted into voltage signal and transmitted into MCU. A TLP521-1 photoelectric coupler was matched with BD237 power transistor to drive the thermoelectric cooler (TEC) in FTA951 module. The effective electric power of TEC was controlled by the pulse width modulation (PWM) signals which generated by MCU. The PWM signal parameters could be adjusted timely by PID algorithm according to the difference between monitoring actual temperature and set temperature. The upper computer was used to input the set temperature and monitor the system running state via serial port. The application experiment results show that the temperature control system is featured by simple structure, rapid response speed, good stability and high temperature control accuracy with the error less than ±0.5°C.
Adaptive PID formation control of nonholonomic robots without leader's velocity information.
Shen, Dongbin; Sun, Weijie; Sun, Zhendong
2014-03-01
This paper proposes an adaptive proportional integral derivative (PID) algorithm to solve a formation control problem in the leader-follower framework where the leader robot's velocities are unknown for the follower robots. The main idea is first to design some proper ideal control law for the formation system to obtain a required performance, and then to propose the adaptive PID methodology to approach the ideal controller. As a result, the formation is achieved with much more enhanced robust formation performance. The stability of the closed-loop system is theoretically proved by Lyapunov method. Both numerical simulations and physical vehicle experiments are presented to verify the effectiveness of the proposed adaptive PID algorithm. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Somma, Antonella; Fossati, Andrea; Terrinoni, Arianna; Williams, Riccardo; Ardizzone, Ignazio; Fantini, Fiorella; Borroni, Serena; Krueger, Robert F; Markon, Kristian E; Ferrara, Mauro
2016-10-01
The DSM-5 Alternative Model of Personality Disorders (AMPD) provides the opportunity to integrate the needed developmental perspective in the assessment of personality pathology. Based on this model, Krueger and colleagues (2012) developed the Personality Inventory for DSM-5 (PID-5), which operationalizes the proposed DSM-5 traits. Eighty-five consecutively admitted Italian adolescent inpatients were administered the Italian translation of the PID-5, in order to obtain preliminary data on PID-5 reliability and clinical usefulness in clinically referred adolescents. With the possible exception of the PID-5 Suspiciousness scale, all other PID-5 scales evidenced adequate internal consistency reliability (i.e., Cronbach's α values of at least .70, most being greater than .80). Our data seemed to yield at least partial support for the construct validity of the PID-5 scales also in clinical adolescents, at least in terms of patterns of associations with dimensionally assessed DSM-5 Section II PDs that were also included in the DSM-5 AMPD (excluding Antisocial PD because of the participants' minor age). Finally, our data suggested that the clinical usefulness of the PID-5 in adolescent inpatients may extend beyond PDs to profiling adolescents at risk for life-threatening suicide attempts. In particular, PID-5 Depressivity, Anhedonia, and Submissiveness trait scales were significantly associated with adolescents' history of life-threatening suicide attempts, even after controlling for a number of other variables, including mood disorder diagnosis. As a whole, our study may provide interesting, albeit preliminary data as to the clinical usefulness of PID-5 in the assessment of adolescent inpatients. Copyright © 2016 Elsevier Inc. All rights reserved.
Gomaa Haroun, A H; Li, Yin-Ya
2017-11-01
In the fast developing world nowadays, load frequency control (LFC) is considered to be a most significant role for providing the power supply with good quality in the power system. To deliver a reliable power, LFC system requires highly competent and intelligent control technique. Hence, in this article, a novel hybrid fuzzy logic intelligent proportional-integral-derivative (FLiPID) controller has been proposed for LFC of interconnected multi-area power systems. A four-area interconnected thermal power system incorporated with physical constraints and boiler dynamics is considered and the adjustable parameters of the FLiPID controller are optimized using particle swarm optimization (PSO) scheme employing an integral square error (ISE) criterion. The proposed method has been established to enhance the power system performances as well as to reduce the oscillations of uncertainties due to variations in the system parameters and load perturbations. The supremacy of the suggested method is demonstrated by comparing the simulation results with some recently reported heuristic methods such as fuzzy logic proportional-integral (FLPI) and intelligent proportional-integral-derivative (PID) controllers for the same electrical power system. the investigations showed that the FLiPID controller provides a better dynamic performance and outperform compared to the other approaches in terms of the settling time, and minimum undershoots of the frequency as well as tie-line power flow deviations following a perturbation, in addition to perform appropriate settlement of integral absolute error (IAE). Finally, the sensitivity analysis of the plant is inspected by varying the system parameters and operating load conditions from their nominal values. It is observed that the suggested controller based optimization algorithm is robust and perform satisfactorily with the variations in operating load condition, system parameters and load pattern. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
? PID output-feedback control under event-triggered protocol
NASA Astrophysics Data System (ADS)
Zhao, Di; Wang, Zidong; Ding, Derui; Wei, Guoliang; Alsaadi, Fuad E.
2018-07-01
This paper is concerned with the ? proportional-integral-derivative (PID) output-feedback control problem for a class of linear discrete-time systems under event-triggered protocols. The controller and the actuators are connected through a communication network of limited bandwidth, and an event-triggered communication mechanism is adopted to decide when a certain control signal should be transmitted to the respective actuator. Furthermore, a novel PID output-feedback controller is designed where the accumulative sum-loop (the counterpart to the integral-loop in the continues-time setting) operates on a limited time-window with hope to mitigate the effect from the past measurement data. The main objective of the problem under consideration is to design a desired PID controller such that the closed-loop system is exponentially stable and the prescribed ? disturbance rejection attenuation level is guaranteed under event-triggered protocols. By means of the Lyapunov stability theory combined with the orthogonal decomposition, sufficient conditions are established under which the addressed PID controller design problem is recast into a linear convex optimization one that can be easily solved via available software packages. Finally, a simulation example is exploited to illustrate the usefulness and effectiveness of the established control scheme.
NASA Astrophysics Data System (ADS)
Begum, A. Yasmine; Gireesh, N.
2018-04-01
In superheater, steam temperature is controlled in a cascade control loop. The cascade control loop consists of PI and PID controllers. To improve the superheater steam temperature control the controller's gains in a cascade control loop has to be tuned efficiently. The mathematical model of the superheater is derived by sets of nonlinear partial differential equations. The tuning methods taken for study here are designed for delay plus first order transfer function model. Hence from the dynamical model of the superheater, a FOPTD model is derived using frequency response method. Then by using Chien-Hrones-Reswick Tuning Algorithm and Gain-Phase Assignment Algorithm optimum controller gains has been found out based on the least value of integral time weighted absolute error.
SU-F-J-10: Sliding Mode Control of a SMA Actuated Active Flexible Needle for Medical Procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podder, T
Purpose: In medical interventional procedures such as brachytherapy, ablative therapies and biopsy precise steering and accurate placement of needles are very important for anatomical obstacle avoidance and accurate targeting. This study presents the efficacy of a sliding mode controller for Shape Memory Alloy (SMA) actuated flexible needle for medical procedures. Methods: Second order system dynamics of the SMA actuated active flexible needle was used for deriving the sliding mode control equations. Both proportional-integral-derivative (PID) and adaptive PID sliding mode control (APIDSMC) algorithms were developed and implemented. The flexible needle was attached at the end of a 6 DOF robotic system.more » Through LabView programming environment, the control commands were generated using the PID and APIDSMC algorithms. Experiments with artificial tissue mimicking phantom were performed to evaluate the performance of the controller. The actual needle tip position was obtained using an electromagnetic (EM) tracking sensor (Aurora, NDI, waterloo, Canada) at a sampling period of 1ms. During experiment, external disturbances were created applying force and thermal shock to investigate the robustness of the controllers. Results: The root mean square error (RMSE) values for APIDSMC and PID controllers were 0.75 mm and 0.92 mm, respectively, for sinusoidal reference input. In the presence of external disturbances, the APIDSMC controller showed much smoother and less overshooting response compared to that of the PID controller. Conclusion: Performance of the APIDSMC was superior to the PID controller. The APIDSMC was proved to be more effective controller in compensating the SMA uncertainties and external disturbances with clinically acceptable thresholds.« less
Rasmussen, Christina B.; Kjaer, Susanne K.; Albieri, Vanna; Bandera, Elisa V.; Doherty, Jennifer A.; Høgdall, Estrid; Webb, Penelope M.; Jordan, Susan J.; Rossing, Mary Anne; Wicklund, Kristine G.; Goodman, Marc T.; Modugno, Francesmary; Moysich, Kirsten B.; Ness, Roberta B.; Edwards, Robert P.; Schildkraut, Joellen M.; Berchuck, Andrew; Olson, Sara H.; Kiemeney, Lambertus A.; Massuger, Leon F. A. G.; Narod, Steven A.; Phelan, Catherine M.; Anton-Culver, Hoda; Ziogas, Argyrios; Wu, Anna H.; Pearce, Celeste L.; Risch, Harvey A.; Jensen, Allan
2017-01-01
Inflammation has been implicated in ovarian carcinogenesis. However, studies investigating the association between pelvic inflammatory disease (PID) and ovarian cancer risk are few and inconsistent. We investigated the association between PID and the risk of epithelial ovarian cancer according to tumor behavior and histotype. We pooled data from 13 case-control studies, conducted between 1989 and 2009, from the Ovarian Cancer Association Consortium (OCAC), including 9,162 women with ovarian cancers, 2,354 women with borderline tumors, and 14,736 control participants. Study-specific odds ratios were estimated and subsequently combined into a pooled odds ratio using a random-effects model. A history of PID was associated with an increased risk of borderline tumors (pooled odds ratio (pOR) = 1.32, 95% confidence interval (CI): 1.10, 1.58). Women with at least 2 episodes of PID had a 2-fold increased risk of borderline tumors (pOR = 2.14, 95% CI: 1.08, 4.24). No association was observed between PID and ovarian cancer risk overall (pOR = 0.99, 95% CI: 0.83, 1.19); however, a statistically nonsignificantly increased risk of low-grade serous tumors (pOR = 1.48, 95% CI: 0.92, 2.38) was noted. In conclusion, PID was associated with an increased risk of borderline ovarian tumors, particularly among women who had had multiple episodes of PID. Although our results indicated a histotype-specific association with PID, the association of PID with ovarian cancer risk is still somewhat uncertain and requires further investigation. PMID:27941069
A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV
NASA Astrophysics Data System (ADS)
Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.
2015-11-01
In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.
NASA Astrophysics Data System (ADS)
Prakash, S.; Sinha, S. K.
2015-09-01
In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.
Robust control for a biaxial servo with time delay system based on adaptive tuning technique.
Chen, Tien-Chi; Yu, Chih-Hsien
2009-07-01
A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.
Hajare, V D; Patre, B M
2015-11-01
This paper presents a decentralized PID controller design method for two input two output (TITO) systems with time delay using characteristic ratio assignment (CRA) method. The ability of CRA method to design controller for desired transient response has been explored for TITO systems. The design methodology uses an ideal decoupler to reduce the interaction. Each decoupled subsystem is reduced to first order plus dead time (FOPDT) model to design independent diagonal controllers. Based on specified overshoot and settling time, the controller parameters are computed using CRA method. To verify performance of the proposed controller, two benchmark simulation examples are presented. To demonstrate applicability of the proposed controller, experimentation is performed on real life interacting coupled tank level system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Web Services and Handle Infrastructure - WDCC's Contributions to International Projects
NASA Astrophysics Data System (ADS)
Föll, G.; Weigelt, T.; Kindermann, S.; Lautenschlager, M.; Toussaint, F.
2012-04-01
Climate science demands on data management are growing rapidly as climate models grow in the precision with which they depict spatial structures and in the completeness with which they describe a vast range of physical processes. The ExArch project is exploring the challenges of developing a software management infrastructure which will scale to the multi-exabyte archives of climate data which are likely to be crucial to major policy decisions in by the end of the decade. The ExArch approach to future integration of exascale climate archives is based on one hand on a distributed web service architecture providing data analysis and quality control functionality across archvies. On the other hand a consistent persistent identifier infrastructure is deployed to support distributed data management and data replication. Distributed data analysis functionality is based on the CDO climate data operators' package. The CDO-Tool is used for processing of the archived data and metadata. CDO is a collection of command line Operators to manipulate and analyse Climate and forecast model Data. A range of formats is supported and over 500 operators are provided. CDO presently is designed to work in a scripting environment with local files. ExArch will extend the tool to support efficient usage in an exascale archive with distributed data and computational resources by providing flexible scheduling capabilities. Quality control will become increasingly important in an exascale computing context. Researchers will be dealing with millions of data files from multiple sources and will need to know whether the files satisfy a range of basic quality criterea. Hence ExArch will provide a flexible and extensible quality control system. The data will be held at more than 30 computing centres and data archives around the world, but for users it will appear as a single archive due to a standardized ExArch Web Processing Service. Data infrastructures such as the one built by ExArch can greatly benefit from assigning persistent identifiers (PIDs) to the main entities, such as data and metadata records. A PID should then not only consist of a globally unique identifier, but also support built-in facilities to relate PIDs to each other, to build multi-hierarchical virtual collections and to enable attaching basic metadata directly to PIDs. With such a toolset, PIDs can support crucial data management tasks. For example, data replication performed in ExArch can be supported through PIDs as they can help to establish durable links between identical copies. By linking derivative data objects together, their provenance can be traced with a level of detail and reliability currently unavailable in the Earth system modelling domain. Regarding data transfers, virtual collections of PIDs may be used to package data prior to transmission. If the PID of such a collection is used as the primary key in data transfers, safety of transfer and traceability of data objects across repositories increases. End-users can benefit from PIDs as well since they make data discovery independent from particular storage sites and enable user-friendly communication about primary research objects. A generic PID system can in fact be a fundamental building block for scientific e-infrastructures across projects and domains.
Rasmussen, Christina B; Kjaer, Susanne K; Albieri, Vanna; Bandera, Elisa V; Doherty, Jennifer A; Høgdall, Estrid; Webb, Penelope M; Jordan, Susan J; Rossing, Mary Anne; Wicklund, Kristine G; Goodman, Marc T; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Edwards, Robert P; Schildkraut, Joellen M; Berchuck, Andrew; Olson, Sara H; Kiemeney, Lambertus A; Massuger, Leon F A G; Narod, Steven A; Phelan, Catherine M; Anton-Culver, Hoda; Ziogas, Argyrios; Wu, Anna H; Pearce, Celeste L; Risch, Harvey A; Jensen, Allan
2017-01-01
Inflammation has been implicated in ovarian carcinogenesis. However, studies investigating the association between pelvic inflammatory disease (PID) and ovarian cancer risk are few and inconsistent. We investigated the association between PID and the risk of epithelial ovarian cancer according to tumor behavior and histotype. We pooled data from 13 case-control studies, conducted between 1989 and 2009, from the Ovarian Cancer Association Consortium (OCAC), including 9,162 women with ovarian cancers, 2,354 women with borderline tumors, and 14,736 control participants. Study-specific odds ratios were estimated and subsequently combined into a pooled odds ratio using a random-effects model. A history of PID was associated with an increased risk of borderline tumors (pooled odds ratio (pOR) = 1.32, 95% confidence interval (CI): 1.10, 1.58). Women with at least 2 episodes of PID had a 2-fold increased risk of borderline tumors (pOR = 2.14, 95% CI: 1.08, 4.24). No association was observed between PID and ovarian cancer risk overall (pOR = 0.99, 95% CI: 0.83, 1.19); however, a statistically nonsignificantly increased risk of low-grade serous tumors (pOR = 1.48, 95% CI: 0.92, 2.38) was noted. In conclusion, PID was associated with an increased risk of borderline ovarian tumors, particularly among women who had had multiple episodes of PID. Although our results indicated a histotype-specific association with PID, the association of PID with ovarian cancer risk is still somewhat uncertain and requires further investigation. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Chen, Zhihuan; Yuan, Yanbin; Yuan, Xiaohui; Huang, Yuehua; Li, Xianshan; Li, Wenwu
2015-05-01
A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Handling Qualities Specifications for U.S. Military Helicopters
NASA Technical Reports Server (NTRS)
Key, David L.
1982-01-01
Inadequacies in the military specification for helicopter handling qualities, MIL-H-8501A, have long been recognized, and the latest procurements by the U.S. Army used special Prime Item Development Specifications (PIDS). This paper assesses the efficacy of these PIDS and suggests that changes should be made. In particular, the structure developed in MIL-F-8785B (ASG) (the specification for flying qualities of piloted airplanes) should be incorporated. Improved requirements must be based on a systematic data base and concentrated on topics most important in preliminary design: static and dynamic stability, control power and sensitivity, and interaction with controllers and displays. Emphasis should be on current military helicopter missions and helicopter idiosyncrasies such as cross-coupling, nonlinearities, and higher-order dynamics.
Davies, Bethan; Ward, Helen; Leung, Stella; Turner, Katy M. E.; Garnett, Geoff P.; Blanchard, James F.; Yu, B. Nancy
2014-01-01
Background. The association between chlamydia infection and pelvic inflammatory disease (PID) is a key parameter for models evaluating the impact of chlamydia control programs. We quantified this association using a retrospective population-based cohort. Methods. We used administrative health data sets to construct a retrospective population-based cohort of women and girls aged 12–24 years who were resident in Manitoba, Canada, between 1992 and 1996. We performed survival analysis on a subcohort of individuals who were tested for chlamydia to estimate the risk of PID diagnosed in a primary care, outpatient, or inpatient setting after ≥1 positive chlamydia test. Results. A total of 73 883 individuals contributed 625 621 person years of follow-up. Those with a diagnosis of chlamydia had an increased risk of PID over their reproductive lifetime compared with those who tested negative (adjusted hazard ratio [AHR], 1.55; 95% confidence interval [CI], 1.43–1.70). This risk increased with each subsequent infection: the AHR was 1.17 for first reinfection (95% CI, 1.06–1.30) and 1.35 for the second (95% CI, 1.04–1.75). The increased risk of PID from reinfection was highest in younger individuals (AHR, 4.55 (95% CI, 3.59–5.78) in individuals aged 12–15 years at the time of their second reinfection, compared with individuals older than 30 years). Conclusions. There is heterogeneity in the risk of PID after a chlamydia infection. Describing the progression to PID in mathematical models as an average rate may be an oversimplification; more accurate estimates of the cost-effectiveness of screening may be obtained by using an individual-based measure of risk. Health inequalities may be reduced by targeting health promotion interventions at sexually active girls younger than 16 years and those with a history of chlamydia. PMID:25381374
Davies, Bethan; Ward, Helen; Leung, Stella; Turner, Katy M E; Garnett, Geoff P; Blanchard, James F; Yu, B Nancy
2014-12-01
The association between chlamydia infection and pelvic inflammatory disease (PID) is a key parameter for models evaluating the impact of chlamydia control programs. We quantified this association using a retrospective population-based cohort. We used administrative health data sets to construct a retrospective population-based cohort of women and girls aged 12-24 years who were resident in Manitoba, Canada, between 1992 and 1996. We performed survival analysis on a subcohort of individuals who were tested for chlamydia to estimate the risk of PID diagnosed in a primary care, outpatient, or inpatient setting after ≥ 1 positive chlamydia test. A total of 73 883 individuals contributed 625 621 person years of follow-up. Those with a diagnosis of chlamydia had an increased risk of PID over their reproductive lifetime compared with those who tested negative (adjusted hazard ratio [AHR], 1.55; 95% confidence interval [CI], 1.43-1.70). This risk increased with each subsequent infection: the AHR was 1.17 for first reinfection (95% CI, 1.06-1.30) and 1.35 for the second (95% CI, 1.04-1.75). The increased risk of PID from reinfection was highest in younger individuals (AHR, 4.55 (95% CI, 3.59-5.78) in individuals aged 12-15 years at the time of their second reinfection, compared with individuals older than 30 years). There is heterogeneity in the risk of PID after a chlamydia infection. Describing the progression to PID in mathematical models as an average rate may be an oversimplification; more accurate estimates of the cost-effectiveness of screening may be obtained by using an individual-based measure of risk. Health inequalities may be reduced by targeting health promotion interventions at sexually active girls younger than 16 years and those with a history of chlamydia. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
Designing of new structure PID controller of boost converter for solar photovoltaic stability
NASA Astrophysics Data System (ADS)
Shabrina, Hanifati Nur; Setiawan, Eko Adhi; Sabirin, Chip Rinaldi
2017-03-01
Nowadays, the utilization of renewable energy as the source on distributed generation system is increasing. It aims to reduce reliance and power losses from utility grid and improve power stability in near loads. One example of renewable energy technology that have been highly proven on the market is solar photovoltaic (PV). This technology converts photon from sunlight into electricity. However, the fluctuation of solar radiation that often occurs become the main problem for this system. Due to this condition, the power conversion is needed to convert the change frequently in photovoltaic panel into a stable voltage to the system. Developing control of boost converter has important role to keep ability of system stabilization. A conventional PID (Proportional, Integral, Derivative) control is mostly used to achieve this goal. In this research, a design of new structure PID controller of boost converter is offered to better optimize system stability comparing to the conventional PID. Parameters obtained from this PID structure have been successfully yield a stable boost converter output at 200 V with 10% overshoot, 1.5 seconds of settling time, and 1.5% of steady-state error.
Fuzzy control of power converters based on quasilinear modelling
NASA Astrophysics Data System (ADS)
Li, C. K.; Lee, W. L.; Chou, Y. W.
1995-03-01
Unlike feedback control by the fuzzy PID method, a new fuzzy control algorithm based on quasilinear modelling of the DC-DC converter is proposed. Investigation is carried out using a buck-boost converter. Simulation results demonstrated that the converter can be regulated with improved performance even when subjected to input disturbance and load variation.
NASA Astrophysics Data System (ADS)
Yaseen, Mundher H. A.
Magnetic levitation is a technique to suspend an object without any mechanical support. The main objective of this study is to demonstrate stabilized closed loop control of 1-DOF Maglev experimentally using real-time control simulink feature of (SIMLAB) microcontroller. Proportional Integral Derivative (PID) and Linear Quadratic Regulator (LQR) controllers are employed to examine the stability performance of the Maglev control system under effect of unbalanced change of load and wave signal on Maglev plane. The effect of unbalanced change of applied load on single point, line and plane are presented. Furthermore, in order to study the effect of sudden change in input signal, the input of wave signal has been applied on all points of the prototype maglev plate simultaneously. The results of pulse width modulation (PWM) reveal that the control system using LQR controller provides faster response to adjust the levitated plane comparing to PID controller. Moreover, the air gap distance that controlled using PID controller is rather stable with little oscillation. Meanwhile, LQR controller provided more stability and homogeneous response.
Greenhouse irrigation control system design based on ZigBee and fuzzy PID technology
NASA Astrophysics Data System (ADS)
Zhou, Bing; Yang, Qiliang; Liu, Kenan; Li, Peiqing; Zhang, Jing; Wang, Qijian
In order to achieve the water demand information accurately detect of the greenhouse crop and its precision irrigation automatic control, this article has designed a set of the irrigated control system based on ZigBee and fuzzy PID technology, which composed by the soil water potential sensor, CC2530F256 wireless microprocessor, IAR Embedded Workbench software development platform. And the time of Irrigation as the output .while the amount of soil water potential and crop growth cycle as the input. The article depended on Greenhouse-grown Jatropha to verify the object, the results show that the system can irrigate timely and appropriately according to the soil water potential and water demend of the different stages of Jatropha growth , which basically meet the design requirements. Therefore, the system has broad application prospects in the amount of greenhouse crop of fine control irrigation.
Lee, Ji Min; Park, Sung Hwan; Kim, Jong Shik
2013-01-01
A robust control scheme is proposed for the position control of the electrohydrostatic actuator (EHA) when considering hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. To reduce overshoot due to a saturation of electric motor and to realize robustness against load disturbance and lumped system uncertainties such as varying parameters and modeling error, this paper proposes an adaptive antiwindup PID sliding mode scheme as a robust position controller for the EHA system. An optimal PID controller and an optimal anti-windup PID controller are also designed to compare control performance. An EHA prototype is developed, carrying out system modeling and parameter identification in designing the position controller. The simply identified linear model serves as the basis for the design of the position controllers, while the robustness of the control systems is compared by experiments. The adaptive anti-windup PID sliding mode controller has been found to have the desired performance and become robust against hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. PMID:23983640
Design of a PID Controller for a PCR Micro Reactor
ERIC Educational Resources Information Center
Dinca, M. P.; Gheorghe, M.; Galvin, P.
2009-01-01
Proportional-integral-derivative (PID) controllers are widely used in process control, and consequently they are described in most of the textbooks on automatic control. However, rather than presenting the overall design process, the examples given in such textbooks are intended to illuminate specific focused aspects of selection, tuning and…
Research on pressure control of pressurizer in pressurized water reactor nuclear power plant
NASA Astrophysics Data System (ADS)
Dai, Ling; Yang, Xuhong; Liu, Gang; Ye, Jianhua; Qian, Hong; Xue, Yang
2010-07-01
Pressurizer is one of the most important components in the nuclear reactor system. Its function is to keep the pressure of the primary circuit. It can prevent shutdown of the system from the reactor accident under the normal transient state while keeping the setting value in the normal run-time. This paper is mainly research on the pressure system which is running in the Daya Bay Nuclear Power Plant. A conventional PID controller and a fuzzy controller are designed through analyzing the dynamic characteristics and calculating the transfer function. Then a fuzzy PID controller is designed by analyzing the results of two controllers. The fuzzy PID controller achieves the optimal control system finally.
Fuzzy attitude control of solar sail via linear matrix inequalities
NASA Astrophysics Data System (ADS)
Baculi, Joshua; Ayoubi, Mohammad A.
2017-09-01
This study presents a fuzzy tracking controller based on the Takagi-Sugeno (T-S) fuzzy model of the solar sail. First, the T-S fuzzy model is constructed by linearizing the existing nonlinear equations of motion of the solar sail. Then, the T-S fuzzy model is used to derive the state feedback controller gains for the Twin Parallel Distributed Compensation (TPDC) technique. The TPDC tracks and stabilizes the attitude of the solar sail to any desired state in the presence of parameter uncertainties and external disturbances while satisfying actuator constraints. The performance of the TPDC is compared to a PID controller that is tuned using the Ziegler-Nichols method. Numerical simulation shows the TPDC outperforms the PID controller when stabilizing the solar sail to a desired state.
NASA Astrophysics Data System (ADS)
Pechousek, J.; Prochazka, R.; Mashlan, M.; Jancik, D.; Frydrych, J.
2009-01-01
The digital proportional-integral-derivative (PID) velocity controller used in the Mössbauer spectrometer implemented in field programmable gate array (FPGA) is based on the National Instruments CompactRIO embedded system and LabVIEW graphical programming tools. The system works as a remote system accessible via the Ethernet. The digital controller operates in real-time conditions, and the maximum sampling frequency is approximately 227 kS s-1. The system was tested with standard sample measurements of α-Fe and α-57Fe2O3 on two different electromechanical velocity transducers. The nonlinearities of the velocity scales in the relative form are better than 0.2%. The replacement of the standard analog PID controller by the new system brings the possibility of optimizing the control process more precisely.
Microprocessor Based Temperature Control of Liquid Delivery with Flow Disturbances.
ERIC Educational Resources Information Center
Kaya, Azmi
1982-01-01
Discusses analytical design and experimental verification of a PID control value for a temperature controlled liquid delivery system, demonstrating that the analytical design techniques can be experimentally verified by using digital controls as a tool. Digital control instrumentation and implementation are also demonstrated and documented for…
PID Controller Settings Based on a Transient Response Experiment
ERIC Educational Resources Information Center
Silva, Carlos M.; Lito, Patricia F.; Neves, Patricia S.; Da Silva, Francisco A.
2008-01-01
An experimental work on controller tuning for chemical engineering undergraduate students is proposed using a small heat exchange unit. Based upon process reaction curves in open-loop configuration, system gain and time constant are determined for first order model with time delay with excellent accuracy. Afterwards students calculate PID…
Event-Based control of depth of hypnosis in anesthesia.
Merigo, Luca; Beschi, Manuel; Padula, Fabrizio; Latronico, Nicola; Paltenghi, Massimiliano; Visioli, Antonio
2017-08-01
In this paper, we propose the use of an event-based control strategy for the closed-loop control of the depth of hypnosis in anesthesia by using propofol administration and the bispectral index as a controlled variable. A new event generator with high noise-filtering properties is employed in addition to a PIDPlus controller. The tuning of the parameters is performed off-line by using genetic algorithms by considering a given data set of patients. The effectiveness and robustness of the method is verified in simulation by implementing a Monte Carlo method to address the intra-patient and inter-patient variability. A comparison with a standard PID control structure shows that the event-based control system achieves a reduction of the total variation of the manipulated variable of 93% in the induction phase and of 95% in the maintenance phase. The use of event based automatic control in anesthesia yields a fast induction phase with bounded overshoot and an acceptable disturbance rejection. A comparison with a standard PID control structure shows that the technique effectively mimics the behavior of the anesthesiologist by providing a significant decrement of the total variation of the manipulated variable. Copyright © 2017 Elsevier B.V. All rights reserved.
Station Keeping of Small Outboard-Powered Boats
NASA Technical Reports Server (NTRS)
Fisher, A. D.; VanZwieten, J. H., Jr.; VanZwieten, T. S.
2010-01-01
Three station keeping controllers have been developed which work to minimize displacement of a small outboard-powered vessel from a desired location. Each of these three controllers has a common initial layer that uses fixed-gain feedback control to calculate the desired heading of the vessel. A second control layer uses a common fixed-gain feedback controller to calculate the net forward thrust, one of two algorithms for controlling engine angle (Fixed-Gain Proportional-integral-derivative (PID) or PID with Adaptively Augmented Gains), and one of two algorithms for differential throttle control (Fixed-Gain PID and PID with Adaptive Differential Throttle gains), which work together to eliminate heading error. The three selected controllers are evaluated using a numerical simulation of a 33-foot center console vessel with twin outboards that is subject to wave, wind, and current disturbances. Each controller is tested for its ability to maintain position in the presence of three sets of environmental disturbances. These algorithms were tested with current velocity of 1.5 m/s, significant wave height of 0.5 m, and wind speeds of 2, 5, and 10 m/s. These values were chosen to model conditions a small vessel may experience in the Gulf Stream off of Fort Lauderdale. The Fixed-gain PID controller progressively got worse as wind speeds increased, while the controllers using adaptive methodologies showed consistent performance over all weather conditions and decreased heading error by as much as 20%. Thus, enhanced robustness to environmental changes has been gained by using an adaptive algorithm.
Pinsker, Jordan E.; Lee, Joon Bok; Dassau, Eyal; Seborg, Dale E.; Bradley, Paige K.; Gondhalekar, Ravi; Bevier, Wendy C.; Huyett, Lauren; Zisser, Howard C.; Doyle, Francis J.
2016-01-01
OBJECTIVE To evaluate two widely used control algorithms for an artificial pancreas (AP) under nonideal but comparable clinical conditions. RESEARCH DESIGN AND METHODS After a pilot safety and feasibility study (n = 10), closed-loop control (CLC) was evaluated in a randomized, crossover trial of 20 additional adults with type 1 diabetes. Personalized model predictive control (MPC) and proportional integral derivative (PID) algorithms were compared in supervised 27.5-h CLC sessions. Challenges included overnight control after a 65-g dinner, response to a 50-g breakfast, and response to an unannounced 65-g lunch. Boluses of announced dinner and breakfast meals were given at mealtime. The primary outcome was time in glucose range 70–180 mg/dL. RESULTS Mean time in range 70–180 mg/dL was greater for MPC than for PID (74.4 vs. 63.7%, P = 0.020). Mean glucose was also lower for MPC than PID during the entire trial duration (138 vs. 160 mg/dL, P = 0.012) and 5 h after the unannounced 65-g meal (181 vs. 220 mg/dL, P = 0.019). There was no significant difference in time with glucose <70 mg/dL throughout the trial period. CONCLUSIONS This first comprehensive study to compare MPC and PID control for the AP indicates that MPC performed particularly well, achieving nearly 75% time in the target range, including the unannounced meal. Although both forms of CLC provided safe and effective glucose management, MPC performed as well or better than PID in all metrics. PMID:27289127
The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network.
Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng
2017-05-30
The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control.
The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network
Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng
2017-01-01
The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control. PMID:28556817
Simulation Analysis of Computer-Controlled pressurization for Mixture Ratio Control
NASA Technical Reports Server (NTRS)
Alexander, Leslie A.; Bishop-Behel, Karen; Benfield, Michael P. J.; Kelley, Anthony; Woodcock, Gordon R.
2005-01-01
A procedural code (C++) simulation was developed to investigate potentials for mixture ratio control of pressure-fed spacecraft rocket propulsion systems by measuring propellant flows, tank liquid quantities, or both, and using feedback from these measurements to adjust propellant tank pressures to set the correct operating mixture ratio for minimum propellant residuals. The pressurization system eliminated mechanical regulators in favor of a computer-controlled, servo- driven throttling valve. We found that a quasi-steady state simulation (pressure and flow transients in the pressurization systems resulting from changes in flow control valve position are ignored) is adequate for this purpose. Monte-Carlo methods are used to obtain simulated statistics on propellant depletion. Mixture ratio control algorithms based on proportional-integral-differential (PID) controller methods were developed. These algorithms actually set target tank pressures; the tank pressures are controlled by another PID controller. Simulation indicates this approach can provide reductions in residual propellants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, L.; Klebaner, A.; Theilacker, J.
2011-06-01
The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcu, Loredana G., E-mail: loredana@marcunet.com; Faculty of Science, University of Oradea; School of Chemistry and Physics, University of Adelaide, South Australia
2013-10-01
Postimplant dosimetry (PID) after Iodine-125 ({sup 125}I) implant of the prostate should offer a reliable qualitative assessment. So far, there is no consensus regarding the optimum PID method, though the latest literature is in favor of magnetic resonance imaging (MRI). This study aims to simultaneously compare 3 PID techniques: (1) MRI-computed tomography (CT) fusion; (2) ultrasound (US)-CT fusion; and (3) manual target delineation on CT. The study comprised 10 patients with prostate cancer. CT/MR scans with urinary catheters in place for PID were done either on day 0 or day 1 postimplantation. The main parameter evaluated and compared among methodsmore » was target D90. The results show that CT-based D90s are lower than US-CT D90s (median difference,−6.85%), whereas MR-CT PID gives higher D90 than US-CT PID (median difference, 4.25%). Manual contouring on CT images tends to overestimate the prostate volume compared with transrectal ultrasound (TRUS) (median difference, 23.33%), whereas on US images the target is overestimated compared with MR-based contouring (median difference, 13.25%). Although there are certain differences among the results given by various PID techniques, the differences are statistically insignificant for this small group of patients. Any dosimetric comparison between 2 PID techniques should also account for the limitations of each technique, to allow for an accurate quantification of data. Given that PID after permanent radioactive seed implant is mandatory for quality assurance, any imaging method–based PID (MR-CT, US-CT, and CT) available in a radiotherapy department can be indicative of the quality of the procedure.« less
Chicken barn climate and hazardous volatile compounds control using simple linear regression and PID
NASA Astrophysics Data System (ADS)
Abdullah, A. H.; Bakar, M. A. A.; Shukor, S. A. A.; Saad, F. S. A.; Kamis, M. S.; Mustafa, M. H.; Khalid, N. S.
2016-07-01
The hazardous volatile compounds from chicken manure in chicken barn are potentially to be a health threat to the farm animals and workers. Ammonia (NH3) and hydrogen sulphide (H2S) produced in chicken barn are influenced by climate changes. The Electronic Nose (e-nose) is used for the barn's air, temperature and humidity data sampling. Simple Linear Regression is used to identify the correlation between temperature-humidity, humidity-ammonia and ammonia-hydrogen sulphide. MATLAB Simulink software was used for the sample data analysis using PID controller. Results shows that the performance of PID controller using the Ziegler-Nichols technique can improve the system controller to control climate in chicken barn.
Systematic methods for the design of a class of fuzzy logic controllers
NASA Astrophysics Data System (ADS)
Yasin, Saad Yaser
2002-09-01
Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental data, and a conversion algorithm, to develop a fuzzy-based control algorithm. Results were similar to those obtained by recently published conventional control based studies. The influence of the fuzzy inference operators and parameters on performance and stability of the fuzzy logic controller was studied Results indicated that, the selections of certain parameters or combinations of parameters, affect greatly the performance and stability of the fuzzy controller. Diagnostic guidelines used to tune or change certain factors or parameters to improve controller performance were developed based on knowledge gained from conventional control methods and knowledge gained from the experimental and the simulation results of this study.
NASA Astrophysics Data System (ADS)
Azwar; Hussain, M. A.; Abdul-Wahab, A. K.; Zanil, M. F.; Mukhlishien
2018-03-01
One of major challenge in bio-hydrogen production process by using MEC process is nonlinear and highly complex system. This is mainly due to the presence of microbial interactions and highly complex phenomena in the system. Its complexity makes MEC system difficult to operate and control under optimal conditions. Thus, precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. In this work, two schemes for controlling the current and voltage of MEC were evaluated. The controllers evaluated are PID and Inverse neural network (NN) controller. The comparative study has been carried out under optimal condition for the production of bio-hydrogen gas wherein the controller output is based on the correlation of optimal current and voltage to the MEC. Various simulation tests involving multiple set-point changes and disturbances rejection have been evaluated and the performances of both controllers are discussed. The neural network-based controller results in fast response time and less overshoots while the offset effects are minimal. In conclusion, the Inverse neural network (NN)-based controllers provide better control performance for the MEC system compared to the PID controller.
MIMO H∞ control of three-axis ship-mounted mobile antenna systems
NASA Astrophysics Data System (ADS)
Kuseyri, İ. Sina
2018-02-01
The need for on-line information in any environment has led to the development of mobile satellite communication terminals. These high data-rate terminals require inertial antenna pointing error tolerance within fractions of a degree. However, the base motion of the antenna platform in mobile applications complicates this pointing problem and must be accounted for. Gimbaled motorised pedestals are used to eliminate the effect of disturbance and maintain uninterrupted communication. In this paper, a three-axis ship-mounted antenna on a pedestal gimbal system is studied. Based on the derived dynamic model of the antenna pedestal multi input-multi output PID and H∞ linear controllers are designed to stabilise the antenna to keep its orientation unaltered towards the satellite while the sea waves disturb the antenna. Simulation results are presented to show the stabilisation performance of the system with the synthesised controllers. It is shown through performance comparison and analysis that the proposed H∞ control structure is preferable over PID controlled system in terms of system stability and the disturbance rejection.
Haga, Ken; Hayashi, Ken-ichiro; Sakai, Tatsuya
2014-11-01
Several members of the AGCVIII kinase subfamily, which includes PINOID (PID), PID2, and WAVY ROOT GROWTH (WAG) proteins, have previously been shown to phosphorylate PIN-FORMED (PIN) auxin transporters and control the auxin flow in plants. PID has been proposed as a key component of the phototropin signaling pathway that induces phototropic responses, although the responses were not significantly impaired in the pid single and pid wag1 wag2 triple mutants. This raises questions about the functional roles of the PID family in phototropic responses. Here, we investigated hypocotyl phototropism in the pid pid2 wag1 wag2 quadruple mutant in detail to clarify the roles of the PID family in Arabidopsis (Arabidopsis thaliana). The pid quadruple mutants exhibited moderate responses in continuous light-induced phototropism with a decrease in growth rates of hypocotyls and normal responses in pulse-induced phototropism. However, they showed serious defects in enhancements of pulse-induced phototropic curvatures and lateral fluorescent auxin transport by red light pretreatment. Red light pretreatment significantly reduced the expression level of PID, and the constitutive expression of PID prevented pulse-induced phototropism, irrespective of red light pretreatment. This suggests that the PID family plays a significant role in phytochrome-mediated phototropic enhancement but not the phototropin signaling pathway. Red light treatment enhanced the intracellular accumulation of PIN proteins in response to the vesicle-trafficking inhibitor brefeldin A in addition to increasing their expression levels. Taken together, these results suggest that red light preirradiation enhances phototropic curvatures by up-regulation of PIN proteins, which are not being phosphorylated by the PID family. © 2014 American Society of Plant Biologists. All Rights Reserved.
Haga, Ken; Hayashi, Ken-ichiro; Sakai, Tatsuya
2014-01-01
Several members of the AGCVIII kinase subfamily, which includes PINOID (PID), PID2, and WAVY ROOT GROWTH (WAG) proteins, have previously been shown to phosphorylate PIN-FORMED (PIN) auxin transporters and control the auxin flow in plants. PID has been proposed as a key component of the phototropin signaling pathway that induces phototropic responses, although the responses were not significantly impaired in the pid single and pid wag1 wag2 triple mutants. This raises questions about the functional roles of the PID family in phototropic responses. Here, we investigated hypocotyl phototropism in the pid pid2 wag1 wag2 quadruple mutant in detail to clarify the roles of the PID family in Arabidopsis (Arabidopsis thaliana). The pid quadruple mutants exhibited moderate responses in continuous light-induced phototropism with a decrease in growth rates of hypocotyls and normal responses in pulse-induced phototropism. However, they showed serious defects in enhancements of pulse-induced phototropic curvatures and lateral fluorescent auxin transport by red light pretreatment. Red light pretreatment significantly reduced the expression level of PID, and the constitutive expression of PID prevented pulse-induced phototropism, irrespective of red light pretreatment. This suggests that the PID family plays a significant role in phytochrome-mediated phototropic enhancement but not the phototropin signaling pathway. Red light treatment enhanced the intracellular accumulation of PIN proteins in response to the vesicle-trafficking inhibitor brefeldin A in addition to increasing their expression levels. Taken together, these results suggest that red light preirradiation enhances phototropic curvatures by up-regulation of PIN proteins, which are not being phosphorylated by the PID family. PMID:25281709
Photoelectric radar servo control system based on ARM+FPGA
NASA Astrophysics Data System (ADS)
Wu, Kaixuan; Zhang, Yue; Li, Yeqiu; Dai, Qin; Yao, Jun
2016-01-01
In order to get smaller, faster, and more responsive requirements of the photoelectric radar servo control system. We propose a set of core ARM + FPGA architecture servo controller. Parallel processing capability of FPGA to be used for the encoder feedback data, PWM carrier modulation, A, B code decoding processing and so on; Utilizing the advantage of imaging design in ARM Embedded systems achieves high-speed implementation of the PID algorithm. After the actual experiment, the closed-loop speed of response of the system cycles up to 2000 times/s, in the case of excellent precision turntable shaft, using a PID algorithm to achieve the servo position control with the accuracy of + -1 encoder input code. Firstly, This article carry on in-depth study of the embedded servo control system hardware to determine the ARM and FPGA chip as the main chip with systems based on a pre-measured target required to achieve performance requirements, this article based on ARM chip used Samsung S3C2440 chip of ARM7 architecture , the FPGA chip is chosen xilinx's XC3S400 . ARM and FPGA communicate by using SPI bus, the advantage of using SPI bus is saving a lot of pins for easy system upgrades required thereafter. The system gets the speed datas through the photoelectric-encoder that transports the datas to the FPGA, Then the system transmits the datas through the FPGA to ARM, transforms speed datas into the corresponding position and velocity data in a timely manner, prepares the corresponding PWM wave to control motor rotation by making comparison between the position data and the velocity data setted in advance . According to the system requirements to draw the schematics of the photoelectric radar servo control system and PCB board to produce specially. Secondly, using PID algorithm to control the servo system, the datas of speed obtained from photoelectric-encoder is calculated position data and speed data via high-speed digital PID algorithm and coordinate models. Finally, a large number of experiments verify the reliability of embedded servo control system's functions, the stability of the program and the stability of the hardware circuit. Meanwhile, the system can also achieve the satisfactory of user experience, to achieve a multi-mode motion, real-time motion status monitoring, online system parameter changes and other convenient features.
Sharma, Richa; Gaur, Prerna; Mittal, A P
2015-09-01
The robotic manipulators are multi-input multi-output (MIMO), coupled and highly nonlinear systems. The presence of external disturbances and time-varying parameters adversely affects the performance of these systems. Therefore, the controller designed for these systems should effectively deal with such complexities, and it is an intriguing task for control engineers. This paper presents two-degree of freedom fractional order proportional-integral-derivative (2-DOF FOPID) controller scheme for a two-link planar rigid robotic manipulator with payload for trajectory tracking task. The tuning of all controller parameters is done using cuckoo search algorithm (CSA). The performance of proposed 2-DOF FOPID controllers is compared with those of their integer order designs, i.e., 2-DOF PID controllers, and with the traditional PID controllers. In order to show effectiveness of proposed scheme, the robustness testing is carried out for model uncertainties, payload variations with time, external disturbance and random noise. Numerical simulation results indicate that the 2-DOF FOPID controllers are superior to their integer order counterparts and the traditional PID controllers. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
An improved PID switching control strategy for type 1 diabetes.
Marchetti, Gianni; Barolo, Massimiliano; Jovanovic, Lois; Zisser, Howard; Seborg, Dale E
2006-01-01
In order for an "artificial pancreas" to become a reality for ambulatory use, a practical closed-loop control strategy must be developed and critically evaluated. In this paper, an improved PID control strategy for blood glucose control is proposed and evaluated in silico using a physiologic model of Hovorka et al. The key features of the proposed control strategy are: (i) a switching strategy for initiating PID control after a meal and insulin bolus; (ii) a novel time-varying setpoint trajectory, (iii) noise and derivative filters to reduce sensitivity to sensor noise, and (iv) a systematic controller tuning strategy. Simulation results demonstrate that the proposed control strategy compares favorably to alternatives for realistic conditions that include meal challenges, incorrect carbohydrate meal estimates, changes in insulin sensitivity, and measurement noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Jaewon; Dauksher, Bill; Bowden, Stuart
We present the impacts of silicon nitride (SiNx) antireflection coating refractive index and emitter sheet resistance on potential-induced degradation of the shunting type (PID-s). Previously, it has been shown that the cell becomes more PID-s-susceptible as the refractive index decreases or the emitter sheet resistance increases. To verify the effect of refractive index on PID-s, we fabricated cells with varying SiN x refractive index (1.87, 1.94, 2.05) on typical p-type base solar cells with ~60 Ω/sq emitters. However, none of these cells showed output power degradation, regardless of the refractive index. Further investigation of the emitter showed that the PID-smore » was suppressed at ~60 Ω/sq due to the extremely high surface phosphorus concentration (6 x 10 21 cm -3), as measured by secondary ion mass spectrometry. Furthermore, PID-s was observed on cells possessing a high emitter sheet resistance (~80 Ω/sq). In conclusion, the emitter surface phosphorus concentration plays an important role in determining PID-s susceptibility.« less
Oh, Jaewon; Dauksher, Bill; Bowden, Stuart; ...
2017-01-11
We present the impacts of silicon nitride (SiNx) antireflection coating refractive index and emitter sheet resistance on potential-induced degradation of the shunting type (PID-s). Previously, it has been shown that the cell becomes more PID-s-susceptible as the refractive index decreases or the emitter sheet resistance increases. To verify the effect of refractive index on PID-s, we fabricated cells with varying SiN x refractive index (1.87, 1.94, 2.05) on typical p-type base solar cells with ~60 Ω/sq emitters. However, none of these cells showed output power degradation, regardless of the refractive index. Further investigation of the emitter showed that the PID-smore » was suppressed at ~60 Ω/sq due to the extremely high surface phosphorus concentration (6 x 10 21 cm -3), as measured by secondary ion mass spectrometry. Furthermore, PID-s was observed on cells possessing a high emitter sheet resistance (~80 Ω/sq). In conclusion, the emitter surface phosphorus concentration plays an important role in determining PID-s susceptibility.« less
Investigating the Personality Inventory for DSM-5 using self and spouse reports.
Jopp, Andrew M; South, Susan C
2015-04-01
Two new clinical tools, the Personality Inventory for DSM-5 (PID-5) and its informant report version, the PID-5-IRF, were developed to assess personality pathology as described by the new trait-based model within Section III of DSM-5. The current study used both self and spousal reports to evaluate agreement between the PID-5 and the PID-5-IRF and to determine the extent to which these measures capture personality pathology as conceptualized in Section II of DSM-5. A nonclinical sample (N = 96 individuals) of recently married couples completed the self-report PID-5, the PID-5-IRF, and the SNAP-2 to assess self-reported DSM-IV PD criteria. Analyses found good to excellent agreement between spousal reports on the PID-5 and the PID-5-IRF for facets in the negative affectivity, detachment, and antagonism domains. In addition, both the PID-5 and the PID-5-IRF each individually accounted for a significant proportion of variance in self-reported DSM-IV PD criteria. Implications for the present findings are discussed.
Educational Tool for Optimal Controller Tuning Using Evolutionary Strategies
ERIC Educational Resources Information Center
Carmona Morales, D.; Jimenez-Hornero, J. E.; Vazquez, F.; Morilla, F.
2012-01-01
In this paper, an optimal tuning tool is presented for control structures based on multivariable proportional-integral-derivative (PID) control, using genetic algorithms as an alternative to traditional optimization algorithms. From an educational point of view, this tool provides students with the necessary means to consolidate their knowledge on…
NASA Astrophysics Data System (ADS)
Parada, M.; Sbarbaro, D.; Borges, R. A.; Peres, P. L. D.
2017-01-01
The use of robust design techniques such as the one based on ? and ? for tuning proportional integral (PI) and proportional integral derivative (PID) controllers have been limited to address a small set of processes. This work addresses the problem by considering a wide set of possible plants, both first- and second-order continuous-time systems with time delays and zeros, leading to PI and PID controllers. The use of structured uncertainties to handle neglected dynamics allows to expand the range of processes to be considered. The proposed approach takes into account the robustness of the controller with respect to these structured uncertainties by using the small-gain theorem. In addition, improved performance is sought through the minimisation of an upper bound to the closed-loop system ? norm. A Lyapunov-Krasovskii-type functional is used to obtain delay-dependent design conditions. The controller design is accomplished by means of a convex optimisation procedure formulated using linear matrix inequalities. In order to illustrate the flexibility of the approach, several examples considering recycle compensation, reduced-order controller design and a practical implementation are addressed. Numerical experiments are provided in each case to highlight the main characteristics of the proposed design method.
Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System.
Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui
2016-01-20
To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input-output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy.
Loop shaping design for tracking performance in machine axes.
Schinstock, Dale E; Wei, Zhouhong; Yang, Tao
2006-01-01
A modern interpretation of classical loop shaping control design methods is presented in the context of tracking control for linear motor stages. Target applications include noncontacting machines such as laser cutters and markers, water jet cutters, and adhesive applicators. The methods are directly applicable to the common PID controller and are pertinent to many electromechanical servo actuators other than linear motors. In addition to explicit design techniques a PID tuning algorithm stressing the importance of tracking is described. While the theory behind these techniques is not new, the analysis of their application to modern systems is unique in the research literature. The techniques and results should be important to control practitioners optimizing PID controller designs for tracking and in comparing results from classical designs to modern techniques. The methods stress high-gain controller design and interpret what this means for PID. Nothing in the methods presented precludes the addition of feedforward control methods for added improvements in tracking. Laboratory results from a linear motor stage demonstrate that with large open-loop gain very good tracking performance can be achieved. The resultant tracking errors compare very favorably to results from similar motions on similar systems that utilize much more complicated controllers.
Zhang, Bitao; Pi, YouGuo
2013-07-01
The traditional integer order proportional-integral-differential (IO-PID) controller is sensitive to the parameter variation or/and external load disturbance of permanent magnet synchronous motor (PMSM). And the fractional order proportional-integral-differential (FO-PID) control scheme based on robustness tuning method is proposed to enhance the robustness. But the robustness focuses on the open-loop gain variation of controlled plant. In this paper, an enhanced robust fractional order proportional-plus-integral (ERFOPI) controller based on neural network is proposed. The control law of the ERFOPI controller is acted on a fractional order implement function (FOIF) of tracking error but not tracking error directly, which, according to theory analysis, can enhance the robust performance of system. Tuning rules and approaches, based on phase margin, crossover frequency specification and robustness rejecting gain variation, are introduced to obtain the parameters of ERFOPI controller. And the neural network algorithm is used to adjust the parameter of FOIF. Simulation and experimental results show that the method proposed in this paper not only achieve favorable tracking performance, but also is robust with regard to external load disturbance and parameter variation. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
He, ZeFang; Zhao, Long
2014-01-01
An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement.
Shen, J Y; Ma, Q; Yang, Z B; Gong, J J; Wu, Y S
2017-09-20
Objective: To observe the effects of arnebia root oil on wound healing of rats with full-thickness skin defect, and to explore the related mechanism. Methods: Eighty SD rats were divided into arnebia root oil group and control group according to the random number table, with 40 rats in each group, then full-thickness skin wounds with area of 3 cm×3 cm were inflicted on the back of each rat. Wounds of rats in arnebia root oil group and control group were treated with sterile medical gauze and bandage package infiltrated with arnebia root oil gauze or Vaseline gauze, respectively, with dressing change of once every two days. On post injury day (PID) 3, 7, 14, and 21, 10 rats in each group were sacrificed respectively for general observation and calculation of wound healing rate. The tissue samples of unhealed wound were collected for observation of histomorphological change with HE staining, observation of expressions of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) with immunohistochemical staining, and determination of mRNA expressions of VEGF and bFGF with real time fluorescent quantitive reverse transcription polymerase chain reaction. Data were processed with analysis of variance of factorial design, t test, and Bonferroni correction. Results: (1) On PID 3, there were a few secretions in wounds of rats in the two groups. On PID 7, there were fewer secretions and more granulation tissue in wounds of rats in arnebia root oil group, while there were more secretions and less granulation tissue in wounds of rats in control group. On PID 14, most of the wounds of rats in arnebia root oil group were healed and there was much red granulation tissue in unhealed wounds, while part of wounds of rats in control group was healed and there were a few secretions and less granulation tissue in unhealed wounds. On PID 21, wounds of rats in arnebia root oil group were basically healed, while there were still some unhealed wounds of rats in control group. (2) On PID 3 and 7, the wound healing rates of rats in arnebia root oil group were (39±5)% and (46±4)% respectively, which were close to (34±3)% and (44±4)% of rats in control group (with t values respectively 0.807 and 0.481, P values above 0.05). On PID 14 and 21, the wound healing rates of rats in arnebia root oil group were (76±4)% and (90±3)% respectively, which were significantly higher than (60±6)% and (73±5)% of rats in control group (with t values respectively 2.308 and 3.072, P <0.05 or P <0.01). (3) On PID 3, 7, and 14, granulation tissue, fibroblasts, and nascent capillaries in unhealed wound tissue of rats in the two groups both gradually increased, and more ranulation tissue, fibroblasts, and nascent capillaries were seen in unhealed wound tissue of rats in arnebia root oil group. On PID 21, granulation tissue, fibroblasts, and nascent capillaries in unhealed wound tissue of rats in the two groups both gradually decreased. (4) On PID 3, 7, and 14, the numbers of VEGF positive cells and bFGF positive cells in unhealed wound tissue of rats in the two groups both gradually increased; there were more VEGF positive cells and bFGF positive cells in unhealed wound tissue of rats in arnebia root oil group than those in control group. On PID 21, positive expressions of VEGF and bFGF both decreased in unhealed wound tissue of rats in the two groups. (5) On PID 3, 7, and 14, mRNA expressions of VEGF in unhealed wound tissue of rats in arnebia root oil group were higher than those of control group (with t values from 2.967 to 4.173, P values below 0.01). On PID 21, mRNA expression of VEGF in unhealed wound tissue of rats in arnebia root oil group was lower than that of control group ( t =-4.786, P <0.001). From PID 3 to 21, mRNA expressions of bFGF in unhealed wound tissue of rats in arnebia root oil group were higher than those of control group (with t values from 2.326 to 4.702, P <0.05 or P <0.01). Conclusions: Arnebia root oil can promote wound healing of rats with full-thickness skin defect, which may relate to increasing expressions of VEGF and bFGF.
Effects of computing time delay on real-time control systems
NASA Technical Reports Server (NTRS)
Shin, Kang G.; Cui, Xianzhong
1988-01-01
The reliability of a real-time digital control system depends not only on the reliability of the hardware and software used, but also on the speed in executing control algorithms. The latter is due to the negative effects of computing time delay on control system performance. For a given sampling interval, the effects of computing time delay are classified into the delay problem and the loss problem. Analysis of these two problems is presented as a means of evaluating real-time control systems. As an example, both the self-tuning predicted (STP) control and Proportional-Integral-Derivative (PID) control are applied to the problem of tracking robot trajectories, and their respective effects of computing time delay on control performance are comparatively evaluated. For this example, the STP (PID) controller is shown to outperform the PID (STP) controller in coping with the delay (loss) problem.
Design of an iterative auto-tuning algorithm for a fuzzy PID controller
NASA Astrophysics Data System (ADS)
Saeed, Bakhtiar I.; Mehrdadi, B.
2012-05-01
Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.
PID-based error signal modeling
NASA Astrophysics Data System (ADS)
Yohannes, Tesfay
1997-10-01
This paper introduces a PID based signal error modeling. The error modeling is based on the betterment process. The resulting iterative learning algorithm is introduced and a detailed proof is provided for both linear and nonlinear systems.
On parameters identification of computational models of vibrations during quiet standing of humans
NASA Astrophysics Data System (ADS)
Barauskas, R.; Krušinskienė, R.
2007-12-01
Vibration of the center of pressure (COP) of human body on the base of support during quiet standing is a very popular clinical research, which provides useful information about the physical and health condition of an individual. In this work, vibrations of COP of a human body in forward-backward direction during still standing are generated using controlled inverted pendulum (CIP) model with a single degree of freedom (dof) supplied with proportional, integral and differential (PID) controller, which represents the behavior of the central neural system of a human body and excited by cumulative disturbance vibration, generated within the body due to breathing or any other physical condition. The identification of the model and disturbance parameters is an important stage while creating a close-to-reality computational model able to evaluate features of disturbance. The aim of this study is to present the CIP model parameters identification approach based on the information captured by time series of the COP signal. The identification procedure is based on an error function minimization. Error function is formulated in terms of time laws of computed and experimentally measured COP vibrations. As an alternative, error function is formulated in terms of the stabilogram diffusion function (SDF). The minimization of error functions is carried out by employing methods based on sensitivity functions of the error with respect to model and excitation parameters. The sensitivity functions are obtained by using the variational techniques. The inverse dynamic problem approach has been employed in order to establish the properties of the disturbance time laws ensuring the satisfactory coincidence of measured and computed COP vibration laws. The main difficulty of the investigated problem is encountered during the model validation stage. Generally, neither the PID controller parameter set nor the disturbance time law are known in advance. In this work, an error function formulated in terms of time derivative of disturbance torque has been proposed in order to obtain PID controller parameters, as well as the reference time law of the disturbance. The disturbance torque is calculated from experimental data using the inverse dynamic approach. Experiments presented in this study revealed that vibrations of disturbance torque and PID controller parameters identified by the method may be qualified as feasible in humans. Presented approach may be easily extended to structural models with any number of dof or higher structural complexity.
Parametric synthesis of a robust controller on a base of mathematical programming method
NASA Astrophysics Data System (ADS)
Khozhaev, I. V.; Gayvoronskiy, S. A.; Ezangina, T. A.
2018-05-01
Considered paper is dedicated to deriving sufficient conditions, linking root indices of robust control quality with coefficients of interval characteristic polynomial, on the base of mathematical programming method. On the base of these conditions, a method of PI- and PID-controllers, providing aperiodic transient process with acceptable stability degree and, subsequently, acceptable setting time, synthesis was developed. The method was applied to a problem of synthesizing a controller for a depth control system of an unmanned underwater vehicle.
Optimization of hydraulic turbine governor parameters based on WPA
NASA Astrophysics Data System (ADS)
Gao, Chunyang; Yu, Xiangyang; Zhu, Yong; Feng, Baohao
2018-01-01
The parameters of hydraulic turbine governor directly affect the dynamic characteristics of the hydraulic unit, thus affecting the regulation capacity and the power quality of power grid. The governor of conventional hydropower unit is mainly PID governor with three adjustable parameters, which are difficult to set up. In order to optimize the hydraulic turbine governor, this paper proposes wolf pack algorithm (WPA) for intelligent tuning since the good global optimization capability of WPA. Compared with the traditional optimization method and PSO algorithm, the results show that the PID controller designed by WPA achieves a dynamic quality of hydraulic system and inhibits overshoot.
ADCS controllers comparison for small satellitess in Low Earth Orbit
NASA Astrophysics Data System (ADS)
Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria
2016-07-01
Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In a previous work, a tailored Fuzzy controller was designed for a nanosatellite. Its performance and efficiency were compared with a traditional Proportional Integrative Derivative (PID) controller within the same specific mission. The orbit height varied along the mission from injection at around 380 km down to 200 km height, and the mission required pointing accuracy over the whole time. Due to both, the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, an efficient ADCS is required. Both methodologies, fuzzy and PID, were fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. The simulations showed that the Fuzzy controller is much more efficient (up to 65% less power required) in single manoeuvres, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the Fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. However, the controllers are meant to be used in a vast range of situations and configurations which exceed those used in the calibration process carried out in the previous work. To assess the suitability and performance of both controllers in a wider framework, parametric and statistical methods have been applied using the Monte Carlo technique. Several parameters have been modified randomly at the beginning of each simulation: the moments of inertia of the whole satellite and of the momentum wheel, the residual magnetic dipole and the initial conditions of the test. These parameters have been chosen because they are the main source of uncertainty during the design phase. The variables used for the analysis are the error (critical for science) and the operation cost (which impacts the mission lifetime and outcome). The analysis of the simulations has shown that, in overall, the PID error is over twice the Fuzzy error and the PID cost is over 40% bigger than the Fuzzy cost. This suggests that a Fuzzy controller may be a better solution in a wider range of configurations than other classical solutions like the PID.
High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model.
Gu, Guoying; Zhu, Limin
2010-08-01
In this paper, an ellipse-based mathematic model is developed to characterize the rate-dependent hysteresis in piezoelectric actuators. Based on the proposed model, an expanded input space is constructed to describe the multivalued hysteresis function H[u](t) by a multiple input single output (MISO) mapping Gamma:R(2)-->R. Subsequently, the inverse MISO mapping Gamma(-1)(H[u](t),H[u](t);u(t)) is proposed for real-time hysteresis compensation. In controller design, a hybrid control strategy combining a model-based feedforward controller and a proportional integral differential (PID) feedback loop is used for high-accuracy and high-speed tracking control of piezoelectric actuators. The real-time feedforward controller is developed to cancel the rate-dependent hysteresis based on the inverse hysteresis model, while the PID controller is used to compensate for the creep, modeling errors, and parameter uncertainties. Finally, experiments with and without hysteresis compensation are conducted and the experimental results are compared. The experimental results show that the hysteresis compensation in the feedforward path can reduce the hysteresis-caused error by up to 88% and the tracking performance of the hybrid controller is greatly improved in high-speed tracking control applications, e.g., the root-mean-square tracking error is reduced to only 0.34% of the displacement range under the input frequency of 100 Hz.
de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Sartor, Karina
2016-08-01
The use of smarter temperature control technologies in heating systems can optimize the use of electric power and performance of piglets. Two control technologies of a resistive heating system were assessed in a pig nursery: a PID (proportional, integral, and derivative) controller and a thermostat. The systems were evaluated regarding thermal environment, piglet performance, and use of electric power for 99 days. The heating system with PID controller improved the thermal environment conditions and was significantly (P < 0.001) more efficient in terms of electricity use to produce 1 kg of body weight (2.88 kWh kg(-1)), specific cost (0.75 R$ kg(-1)), weight gain (7.3 kg), daily weight gain (0.21 kg day(-1)), and feed conversion (1.71) than the system with thermostat (3.98 kWh kg(-1); 1.03 R$ kg(-1); 5.2 kg; 0.15 kg day(-1), and 2.62, respectively). The results indicate that the PID-controlled heating system is more efficient in electricity use and provides better conditions for thermal comfort and animal performance than heating with thermostat.
Intelligent control of non-linear dynamical system based on the adaptive neurocontroller
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Kobezhicov, V.
2015-10-01
This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.
Walter, Jolan E; Farmer, Jocelyn R; Foldvari, Zsofia; Torgerson, Troy R; Cooper, Megan A
2016-01-01
A broad spectrum of autoimmunity is now well described in patients with primary immunodeficiencies (PIDs). Management of autoimmune disease in the background of PID is particularly challenging given the seemingly discordant goals of immune support and immune suppression. Our growing ability to define the molecular underpinnings of immune dysregulation has facilitated novel targeted therapeutics. This review focuses on mechanism-based treatment strategies for the most common autoimmune and inflammatory complications of PID including autoimmune cytopenias, rheumatologic disease, and gastrointestinal disease. We aim to provide guidance regarding the rational use of these agents in the complex PID patient population. PMID:27836058
Memory feedback PID control for exponential synchronisation of chaotic Lur'e systems
NASA Astrophysics Data System (ADS)
Zhang, Ruimei; Zeng, Deqiang; Zhong, Shouming; Shi, Kaibo
2017-09-01
This paper studies the problem of exponential synchronisation of chaotic Lur'e systems (CLSs) via memory feedback proportional-integral-derivative (PID) control scheme. First, a novel augmented Lyapunov-Krasovskii functional (LKF) is constructed, which can make full use of the information on time delay and activation function. Second, improved synchronisation criteria are obtained by using new integral inequalities, which can provide much tighter bounds than what the existing integral inequalities can produce. In comparison with existing results, in which only proportional control or proportional derivative (PD) control is used, less conservative results are derived for CLSs by PID control. Third, the desired memory feedback controllers are designed in terms of the solution to linear matrix inequalities. Finally, numerical simulations of Chua's circuit and neural network are provided to show the effectiveness and advantages of the proposed results.
Design issues for a reinforcement-based self-learning fuzzy controller
NASA Technical Reports Server (NTRS)
Yen, John; Wang, Haojin; Dauherity, Walter
1993-01-01
Fuzzy logic controllers have some often cited advantages over conventional techniques such as PID control: easy implementation, its accommodation to natural language, the ability to cover wider range of operating conditions and others. One major obstacle that hinders its broader application is the lack of a systematic way to develop and modify its rules and as result the creation and modification of fuzzy rules often depends on try-error or pure experimentation. One of the proposed approaches to address this issue is self-learning fuzzy logic controllers (SFLC) that use reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of self-learning fuzzy controller is highly contingent on the design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for the application to chemical process are discussed and its performance is compared with that of PID and self-tuning fuzzy logic controller.
Optimal fractional order PID design via Tabu Search based algorithm.
Ateş, Abdullah; Yeroglu, Celaleddin
2016-01-01
This paper presents an optimization method based on the Tabu Search Algorithm (TSA) to design a Fractional-Order Proportional-Integral-Derivative (FOPID) controller. All parameter computations of the FOPID employ random initial conditions, using the proposed optimization method. Illustrative examples demonstrate the performance of the proposed FOPID controller design method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System
Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui
2016-01-01
To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input–output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy. PMID:26805833
A digital optical phase-locked loop for diode lasers based on field programmable gate array.
Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui
2012-09-01
We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382∕MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad(2) and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.
A digital optical phase-locked loop for diode lasers based on field programmable gate array
NASA Astrophysics Data System (ADS)
Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui
2012-09-01
We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad2 and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.
Programmable Digital Controller
NASA Technical Reports Server (NTRS)
Wassick, Gregory J.
2012-01-01
An existing three-channel analog servo loop controller has been redesigned for piezoelectric-transducer-based (PZT-based) etalon control applications to a digital servo loop controller. This change offers several improvements over the previous analog controller, including software control over proportional-integral-derivative (PID) parameters, inclusion of other data of interest such as temperature and pressure in the control laws, improved ability to compensate for PZT hysteresis and mechanical mount fluctuations, ability to provide pre-programmed scanning and stepping routines, improved user interface, expanded data acquisition, and reduced size, weight, and power.
A fast elitism Gaussian estimation of distribution algorithm and application for PID optimization.
Xu, Qingyang; Zhang, Chengjin; Zhang, Li
2014-01-01
Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA.
A Fast Elitism Gaussian Estimation of Distribution Algorithm and Application for PID Optimization
Xu, Qingyang; Zhang, Chengjin; Zhang, Li
2014-01-01
Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA. PMID:24892059
Rasmussen, Christina B; Jensen, Allan; Albieri, Vanna; Andersen, Klaus K; Kjaer, Susanne K
2016-11-01
Some studies suggest that pelvic inflammatory disease (PID) is a potential risk factor for ovarian cancer. However, only few studies have investigated the association between PID and risk of borderline ovarian tumors. We conducted a population-based cohort study to investigate the association between PID and risk of borderline ovarian tumors. Using various nationwide Danish registries we identified all women in Denmark during 1978-2012, who were born during 1940-1970 (n=1,318,925). Of these, 81,263 women were diagnosed with PID in the study period, and 2736 women had a borderline ovarian tumor (1290 serous and 1344 mucinous). Hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between PID and risk of borderline tumors were estimated using Cox regression models with adjustment for potential confounders. A history of PID was associated with an increased risk of borderline ovarian tumors (HR=1.39; 95% CI: 1.19-1.61). However, histotype-specific analyses revealed significant variation in risk as PID was only associated with an increased risk of serous borderline tumors (HR=1.85; 95% CI: 1.52-2.24), but not with mucinous borderline tumors (HR=1.06; 95% CI: 0.83-1.35). PID is associated with an increased risk of serous borderline tumors. Further research on the potential underlying biological mechanisms and on the identification of the subset of women with PID who are at increased risk of serous borderline tumors is warranted. Copyright © 2016 Elsevier Inc. All rights reserved.
Generalized internal model robust control for active front steering intervention
NASA Astrophysics Data System (ADS)
Wu, Jian; Zhao, Youqun; Ji, Xuewu; Liu, Yahui; Zhang, Lipeng
2015-03-01
Because of the tire nonlinearity and vehicle's parameters' uncertainties, robust control methods based on the worst cases, such as H ∞, µ synthesis, have been widely used in active front steering control, however, in order to guarantee the stability of active front steering system (AFS) controller, the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control. In this paper, a generalized internal model robust control (GIMC) that can overcome the contradiction between performance and stability is used in the AFS control. In GIMC, the Youla parameterization is used in an improved way. And GIMC controller includes two sections: a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters' uncertainties and some external disturbances. Simulations of double lane change (DLC) maneuver and that of braking on split- µ road are conducted to compare the performance and stability of the GIMC control, the nominal performance PID controller and the H ∞ controller. Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations, H ∞ controller is conservative so that the performance is a little low, and only the GIMC controller overcomes the contradiction between performance and robustness, which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller. Therefore, the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system, that is, can solve the instability of PID or LQP control methods and the low performance of the standard H ∞ controller.
Ferrante, Simona; Pedrocchi, Alessandra; Iannò, Marco; De Momi, Elena; Ferrarin, Maurizio; Ferrigno, Giancarlo
2004-01-01
This study falls within the ambit of research on functional electrical stimulation for the design of rehabilitation training for spinal cord injured patients. In this context, a crucial issue is the control of the stimulation parameters in order to optimize the patterns of muscle activation and to increase the duration of the exercises. An adaptive control system (NEURADAPT) based on artificial neural networks (ANNs) was developed to control the knee joint in accordance with desired trajectories by stimulating quadriceps muscles. This strategy includes an inverse neural model of the stimulated limb in the feedforward line and a neural network trained on-line in the feedback loop. NEURADAPT was compared with a linear closed-loop proportional integrative derivative (PID) controller and with a model-based neural controller (NEUROPID). Experiments on two subjects (one healthy and one paraplegic) show the good performance of NEURADAPT, which is able to reduce the time lag introduced by the PID controller. In addition, control systems based on ANN techniques do not require complicated calibration procedures at the beginning of each experimental session. After the initial learning phase, the ANN, thanks to its generalization capacity, is able to cope with a certain range of variability of skeletal muscle properties.
Yadav, Jyoti; Rani, Asha; Singh, Vijander
2016-12-01
This paper presents Fuzzy-PID (FPID) control scheme for a blood glucose control of type 1 diabetic subjects. A new metaheuristic Cuckoo Search Algorithm (CSA) is utilized to optimize the gains of FPID controller. CSA provides fast convergence and is capable of handling global optimization of continuous nonlinear systems. The proposed controller is an amalgamation of fuzzy logic and optimization which may provide an efficient solution for complex problems like blood glucose control. The task is to maintain normal glucose levels in the shortest possible time with minimum insulin dose. The glucose control is achieved by tuning the PID (Proportional Integral Derivative) and FPID controller with the help of Genetic Algorithm and CSA for comparative analysis. The designed controllers are tested on Bergman minimal model to control the blood glucose level in the facets of parameter uncertainties, meal disturbances and sensor noise. The results reveal that the performance of CSA-FPID controller is superior as compared to other designed controllers.
NASA Astrophysics Data System (ADS)
Liu, Zecheng; Ishikawa, Kenji; Imamura, Masato; Tsutsumi, Takayoshi; Kondo, Hiroki; Oda, Osamu; Sekine, Makoto; Hori, Masaru
2018-06-01
Plasma-induced damage (PID) on GaN was optimally reduced by high-temperature chlorine plasma etching. Energetic ion bombardments primarily induced PID involving stoichiometry, surface roughness, and photoluminescence (PL) degradation. Chemical reactions under ultraviolet (UV) irradiation and chlorine radical exposure at temperatures higher than 400 °C can be controlled by taking into account the synergism of simultaneous photon and radical irradiations to effectively reduce PID.
De Caluwé, Elien; Verbeke, Lize; van Aken, Marcel; van der Heijden, Paul T; De Clercq, Barbara
2018-02-22
The inclusion of a dimensional trait model of personality pathology in DSM-5 creates new opportunities for research on developmental antecedents of personality pathology. The traits of this model can be measured with the Personality Inventory for DSM-5 (PID-5), initially developed for adults, but also demonstrating validity in adolescents. The present study adds to the growing body of literature on the psychometrics of the PID-5, by examining its structure, validity, and reliability in 187 psychiatric-referred late adolescents and emerging adults. PID-5, Big Five Inventory, and Kidscreen self-reports were provided, and 88 non-clinical matched controls completed the PID-5. Results confirm the PID-5's five-factor structure, indicate adequate psychometric properties, and underscore the construct and criterion validity, showing meaningful associations with adaptive traits and quality of life. Results are discussed in terms of the PID-5's applicability in vulnerable populations who are going through important developmental transition phases, such as the step towards early adulthood.
Pelvic inflammatory disease and sepsis.
Dulin, Judy D; Akers, Mary C
2003-03-01
Pelvic inflammatory disease affects approximately 1 million women per year in the United States alone and has a variety of causative organisms. Because the diagnosis of PID is based on clinical judgment, health care providers need to be guided by the CDC recommendations for diagnosing and treating PID. Because presenting symptoms are often vague, the health care provider should assess female patients for risky behaviors that may lead to PID and should use screening data when making clinical judgments and differential diagnoses. Whenever possible, female patients with PID should be treated as outpatients. If diagnosis and treatment are not performed in a timely manner, PID may cause sepsis, septic shock, and even death. Even if they survive, as many as 15% to 20% of these women experience long-term sequelae of PID, such as ectopic pregnancy, tubo-ovarian abscess, infertility, dyspareunia, and chronic pelvic pain. The best treatments for PID are interventions that lead to prevention and early detection. The critical care nurse has an important role in recognizing the variables that may lead to PID-related sepsis and in encouraging health-seeking and health-maintenance behaviors among women with these diagnoses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hacke, Peter; Spataru, Sergiu; Johnston, Steve
A progression of potential-induced degradation (PID) mechanisms are observed in CdTe modules, including shunting/junction degradation and two different manifestations of series resistance depending on the stress level and water ingress. The dark I-V method for in-situ characterization of Pmax based on superposition was adapted for the thin-film modules undergoing PID in view of the degradation mechanisms observed. An exponential model based on module temperature and relative humidity was fit to the PID rate for multiple stress levels in chamber tests and validated by predicting the observed degradation of the module type in the field.
2017-09-01
in the vertical (z) directions. There are several instruments controls like proportional, integral , and derivative (PID) gain as well as tip force...the PID control, where P stands for proportional gain, I stands for integral gain, and D stands for derivative gain. An additional parameter that...contributes to the scanned image quality is set point. Proportional gain is multiplied by the error to adjust controller output and integral gain sums
Nonlinear power flow feedback control for improved stability and performance of airfoil sections
Wilson, David G.; Robinett, III, Rush D.
2013-09-03
A computer-implemented method of determining the pitch stability of an airfoil system, comprising using a computer to numerically integrate a differential equation of motion that includes terms describing PID controller action. In one model, the differential equation characterizes the time-dependent response of the airfoil's pitch angle, .alpha.. The computer model calculates limit-cycles of the model, which represent the stability boundaries of the airfoil system. Once the stability boundary is known, feedback control can be implemented, by using, for example, a PID controller to control a feedback actuator. The method allows the PID controller gain constants, K.sub.I, K.sub.p, and K.sub.d, to be optimized. This permits operation closer to the stability boundaries, while preventing the physical apparatus from unintentionally crossing the stability boundaries. Operating closer to the stability boundaries permits greater power efficiencies to be extracted from the airfoil system.
Synchronous Control Method and Realization of Automated Pharmacy Elevator
NASA Astrophysics Data System (ADS)
Liu, Xiang-Quan
Firstly, the control method of elevator's synchronous motion is provided, the synchronous control structure of double servo motor based on PMAC is accomplished. Secondly, synchronous control program of elevator is implemented by using PMAC linear interpolation motion model and position error compensation method. Finally, the PID parameters of servo motor were adjusted. The experiment proves the control method has high stability and reliability.
NASA Astrophysics Data System (ADS)
Bakri, F. A.; Mashor, M. Y.; Sharun, S. M.; Bibi Sarpinah, S. N.; Abu Bakar, Z.
2016-10-01
This study proposes an adaptive fuzzy controller for attitude control system (ACS) of Innovative Satellite (InnoSAT) based on direct action type structure. In order to study new methods used in satellite attitude control, this paper presents three structures of controllers: Fuzzy PI, Fuzzy PD and conventional Fuzzy PID. The objective of this work is to compare the time response and tracking performance among the three different structures of controllers. The parameters of controller were tuned on-line by adjustment mechanism, which was an approach similar to a PID error that could minimize errors between actual and model reference output. This paper also presents a Model References Adaptive Control (MRAC) as a control scheme to control time varying systems where the performance specifications were given in terms of the reference model. All the controllers were tested using InnoSAT system under some operating conditions such as disturbance, varying gain, measurement noise and time delay. In conclusion, among all considered DA-type structures, AFPID controller was observed as the best structure since it outperformed other controllers in most conditions.
Arslan, Sevket; Ucar, Ramazan; Caliskaner, Ahmet Zafer; Reisli, Ismail; Guner, Sukru Nail; Sayar, Esra Hazar; Baloglu, Ismail
2016-02-01
The European Society of Immunodeficiency (ESID) developed 6 warning signs to promote the awareness of adult primary immunodeficiency disease (PID). To screen adult patients for the presence of PID using these 6 warning signs to determine the effectiveness of this protocol. Questions related to the ESID warning signs for adult PID were added to the standard outpatient clinic file system and asked of 3,510 patients who were admitted to our clinic for any reason. Patients with signs and/or suspicion of PID based on their medical history underwent immunologic investigation. In total, 24 patients were diagnosed as having a PID. The most common reason that patients with PID were admitted was frequent infection (n=18 [75%]), and the most common PID subgroup was common variable immunodeficiency (n=12 [50%]). Twenty patients with PID had at least one positive finding according to the ESID warning signs. Two patients with gastrointestinal concerns and 2 with dermatologic symptoms were also diagnosed as having a PID, although they did not have any of the ESID warning signs. The ESID warning signs do not specify the need for symptoms to diagnose a PIDs and do not include a comprehensive list of all signs and symptoms of PIDs. As a result, more than infection-centric questions are needed to identify adult patients with immunodeficiencies. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
He, ZeFang
2014-01-01
An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement. PMID:25614879
Davies, Bethan; Turner, Katy; Ward, Helen
2013-03-01
There is uncertainty in the risk of pelvic inflammatory disease (PID) after chlamydia infection. We analyzed a prospective cohort of sex workers recruited in London between 1985 and 1993 to estimate the risk of PID after a diagnosed case of chlamydia. Chlamydia and gonorrhea were defined as "recent" if they occurred during the most recent 6 months of follow-up or "previous" if they were more than 6 months ago, were the second infection during follow-up, or occurred before the study. Pelvic inflammatory disease was diagnosed using clinical criteria. We used Cox proportional hazards regression to estimate the association between chlamydia and PID controlled for gonorrhea. Three hundred seven women contributed 401.2 person-years of follow-up. The rate of PID in women with recent chlamydia was 27.4 per 100 person-years compared with 11.2 in those without recent chlamydia. Recent and previous chlamydia significantly increased the risk of PID; this association persisted but was no longer significant after controlling for age and history of gonorrhea: recent chlamydia (adjusted hazard ratio [aHR], 2.0; 95% confidence interval [CI], 0.7-5.5), previous chlamydia (aHR, 1.8; 95% CI, 1.0-3.5), previous gonorrhea (aHR, 2.3; 95% CI, 1.1-4.6), and age (HR, 0.9; 95% CI, 0.9-1.0). Women with recent or previous chlamydia are at increased risk for PID. However, this association may be explained by previous exposure to gonorrhea, which was found to increase the risk of PID after a future chlamydia infection.
Thimm, Jens C; Jordan, Stian; Bach, Bo
2016-12-07
With the publication of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), an alternative model for personality disorders based on personality dysfunction and pathological personality traits was introduced. The Personality Inventory for DSM-5 (PID-5) is a 220-item self-report inventory designed to assess the personality traits of this model. Recently, a short 100-item version of the PID-5 (PID-5-SF) has been developed. The aim of this study was to investigate the score reliability and structure of the Norwegian PID-5-SF. Further, criterion validity with the five factor model of personality (FFM) and pathological personality beliefs was examined. A derivation sample of university students (N = 503) completed the PID-5, the Big Five Inventory (BFI), and the Personality Beliefs Questionnaire - Short Form (PBQ-SF), whereas a replication sample of 127 students completed the PID-5-SF along with the aforementioned measures. The short PID-5 showed overall good score reliability and structural validity. The associations with FFM traits and pathological personality beliefs were conceptually coherent and similar for the two forms of the PID-5. The results suggest that the Norwegian PID-5 short form is a reliable and efficient measure of the trait criterion of the alternative model for personality disorders in DSM-5.
Treatment of Acute Pelvic Inflammatory Disease
Sweet, Richard L.
2011-01-01
Pelvic inflammatory disease (PID), one of the most common infections in nonpregnant women of reproductive age, remains an important public health problem. It is associated with major long-term sequelae, including tubal factor infertility, ectopic pregnancy, and chronic pelvic pain. In addition, treatment of acute PID and its complications incurs substantial health care costs. Prevention of these long-term sequelae is dependent upon development of treatment strategies based on knowledge of the microbiologic etiology of acute PID. It is well accepted that acute PID is a polymicrobic infection. The sexually transmitted organisms, Neisseria gonorrhoeae and Chlamydia trachomatis, are present in many cases, and microorganisms comprising the endogenous vaginal and cervical flora are frequently associated with PID. This includes anaerobic and facultative bacteria, similar to those associated with bacterial vaginosis. Genital tract mycoplasmas, most importantly Mycoplasma genitalium, have recently also been implicated as a cause of acute PID. As a consequence, treatment regimens for acute PID should provide broad spectrum coverage that is effective against these microorganisms. PMID:22228985
von Bornstädt, Daniel; Houben, Thijs; Seidel, Jessica L; Zheng, Yi; Dilekoz, Ergin; Qin, Tao; Sandow, Nora; Kura, Sreekanth; Eikermann-Haerter, Katharina; Endres, Matthias; Boas, David A; Moskowitz, Michael A; Lo, Eng H; Dreier, Jens P; Woitzik, Johannes; Sakadžić, Sava; Ayata, Cenk
2015-03-04
Peri-infarct depolarizations (PIDs) are seemingly spontaneous spreading depression-like waves that negatively impact tissue outcome in both experimental and human stroke. Factors triggering PIDs are unknown. Here, we show that somatosensory activation of peri-infarct cortex triggers PIDs when the activated cortex is within a critical range of ischemia. We show that the mechanism involves increased oxygen utilization within the activated cortex, worsening the supply-demand mismatch. We support the concept by clinical data showing that mismatch predisposes stroke patients to PIDs as well. Conversely, transient worsening of mismatch by episodic hypoxemia or hypotension also reproducibly triggers PIDs. Therefore, PIDs are triggered upon supply-demand mismatch transients in metastable peri-infarct hot zones due to increased demand or reduced supply. Based on the data, we propose that minimizing sensory stimulation and hypoxic or hypotensive transients in stroke and brain injury would reduce PID incidence and their adverse impact on outcome. Copyright © 2015 Elsevier Inc. All rights reserved.
von Bornstädt, Daniel; Houben, Thijs; Seidel, Jessica; Zheng, Yi; Dilekoz, Ergin; Qin, Tao; Sandow, Nora; Kura, Sreekanth; Eikermann-Haerter, Katharina; Endres, Matthias; Boas, David A.; Moskowitz, Michael A.; Lo, Eng H.; Dreier, Jens P.; Woitzik, Johannes; Sakadžić, Sava; Ayata, Cenk
2015-01-01
SUMMARY Peri-infarct depolarizations (PIDs) are seemingly spontaneous spreading depression-like waves that negatively impact tissue outcome in both experimental and human stroke. Factors triggering PIDs are unknown. Here, we show that somatosensory activation of peri-infarct cortex triggers PIDs when the activated cortex is within a critical range of ischemia. We show that the mechanism involves increased oxygen utilization within the activated cortex, worsening the supply-demand mismatch. We support the concept by clinical data showing that mismatch predisposes to PIDs in human stroke as well. Conversely, transient worsening of mismatch by episodic hypoxemia or hypotension also reproducibly triggers PIDs. Therefore, PIDs are triggered upon supply-demand mismatch transients in metastable peri-infarct hot zones due to increased demand or reduced supply. Based on the data, we propose that minimizing sensory stimulation and hypoxic or hypotensive transients in stroke and brain injury would reduce PID incidence and their adverse impact on outcome. PMID:25741731
NASA Astrophysics Data System (ADS)
Wibowo, Lambang, Lullus; Erick Chandra, N.; Muhayat, Nurul; Jaka S., B.
2017-08-01
The purpose of this research is to obtain a mathematical model (Full Vehicle Model) and compare the performance of passive and active suspension systems of a Three-Wheels Reverse Trike vehicle. Vehicle suspension system should able to provide good steering handling and passenger comfort. Vehicle suspension system generally only uses passive suspension components with fix spring and damper coefficients. An active suspension developed from the traditional (passive) suspension design can directly control the actuator force in the suspension system. In this paper, modeling and simulation of passive and active suspension system for a Full Vehicle Model is performed using Simulink-MATLAB software. Ziegler & Nichols tuning method is used to obtain controller parameters of Proportional Integral Derivative (PID) controller. Comparison between passive and active suspension with PID controller is conducted for disturbances input of single bump road surface profile 0.1 meters. The results are the displacement and acceleration of the vehicle body in the vertical direction of active suspension system with PID control is better in providing handling capabilities and comfort for the driver than of passive suspension system. The acceleration of 1,8G with the down time of 2.5 seconds is smaller than the acceleration of 2.5G with down time of 5.5 seconds.
Computational properties of mitochondria in T cell activation and fate
Dupont, Geneviève
2016-01-01
In this article, we review how mitochondrial Ca2+ transport (mitochondrial Ca2+ uptake and Na+/Ca2+ exchange) is involved in T cell biology, including activation and differentiation through shaping cellular Ca2+ signals. Based on recent observations, we propose that the Ca2+ crosstalk between mitochondria, endoplasmic reticulum and cytoplasm may form a proportional–integral–derivative (PID) controller. This PID mechanism (which is well known in engineering) could be responsible for computing cellular decisions. In addition, we point out the importance of analogue and digital signal processing in T cell life and implication of mitochondrial Ca2+ transport in this process. PMID:27852805
Computational properties of mitochondria in T cell activation and fate.
Uzhachenko, Roman; Shanker, Anil; Dupont, Geneviève
2016-11-01
In this article, we review how mitochondrial Ca 2+ transport (mitochondrial Ca 2+ uptake and Na + /Ca 2+ exchange) is involved in T cell biology, including activation and differentiation through shaping cellular Ca 2+ signals. Based on recent observations, we propose that the Ca 2+ crosstalk between mitochondria, endoplasmic reticulum and cytoplasm may form a proportional-integral-derivative (PID) controller. This PID mechanism (which is well known in engineering) could be responsible for computing cellular decisions. In addition, we point out the importance of analogue and digital signal processing in T cell life and implication of mitochondrial Ca 2+ transport in this process. © 2016 The Authors.
Persistent Identifiers in Earth science data management environments
NASA Astrophysics Data System (ADS)
Weigel, Tobias; Stockhause, Martina; Lautenschlager, Michael
2014-05-01
Globally resolvable Persistent Identifiers (PIDs) that carry additional context information (which can be any form of metadata) are increasingly used by data management infrastructures for fundamental tasks. The notion of a Persistent Identifier is originally an abstract concept that aims to provide identifiers that are quality-controlled and maintained beyond the life time of the original issuer, for example through the use of redirection mechanisms. Popular implementations of the PID concept are for example the Handle System and the DOI System based on it. These systems also move beyond the simple identification concept by providing facilities that can hold additional context information. Not only in the Earth sciences, data managers are increasingly attracted to PIDs because of the opportunities these facilities provide; however, long-term viable principles and mechanisms for efficient organization of PIDs and context information are not yet available or well established. In this respect, promising techniques are to type the information that is associated with PIDs and to construct actionable collections of PIDs. There are two main drivers for extended PID usage: Earth science data management middleware use cases and applications geared towards scientific end-users. Motivating scenarios from data management include hierarchical data and metadata management, consistent data tracking and improvements in the accountability of processes. If PIDs are consistently assigned to data objects, context information can be carried over to subsequent data life cycle stages much easier. This can also ease data migration from one major curation domain to another, e.g. from early dissemination within research communities to formal publication and long-term archival stages, and it can help to document processes across technical and organizational boundaries. For scientific end users, application scenarios include for example more personalized data citation and improvements in the amount of context available for unfamiliar datasets. We can see how Earth system model data is spatially and temporally transformed to better fit the differing scenarios relevant in consecutive life cycle stages. At the end, users often want to cite and use distinct subsets of data which are disseminated through e-science infrastructures. If actionable collections of fine-granular PIDs are available, much more precise citation and use can be supported. This can also help to establish interoperable input and output references for processing tasks during intermediate life cycle stages. The current working draft API of the Research Data Alliance's working group on PID Information Types combined with more elaborate collection mechanisms can provide the necessary foundations and tools to enable wide-spread use of PIDs for data life cycle management and user applications. This contribution will highlight some of the available mechanisms and existing efforts with particular focus on applications for institutional data management and e-science infrastructures such as the Earth System Grid Federation.
NASA Technical Reports Server (NTRS)
Yen, John; Wang, Haojin; Daugherity, Walter C.
1992-01-01
Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.
Flexible Modes Control Using Sliding Mode Observers: Application to Ares I
NASA Technical Reports Server (NTRS)
Shtessel, Yuri B.; Hall, Charles E.; Baev, Simon; Orr, Jeb S.
2010-01-01
The launch vehicle dynamics affected by bending and sloshing modes are considered. Attitude measurement data that are corrupted by flexible modes could yield instability of the vehicle dynamics. Flexible body and sloshing modes are reconstructed by sliding mode observers. The resultant estimates are used to remove the undesirable dynamics from the measurements, and the direct effects of sloshing and bending modes on the launch vehicle are compensated by means of a controller that is designed without taking the bending and sloshing modes into account. A linearized mathematical model of Ares I launch vehicle was derived based on FRACTAL, a linear model developed by NASA/MSFC. The compensated vehicle dynamics with a simple PID controller were studied for the launch vehicle model that included two bending modes, two slosh modes and actuator dynamics. A simulation study demonstrated stable and accurate performance of the flight control system with the augmented simple PID controller without the use of traditional linear bending filters.
Ashton, Michael C; de Vries, Reinout E; Lee, Kibeom
2017-01-01
Using self- and observer reports on the Personality Inventory for DSM-5 (PID-5) and the HEXACO Personality Inventory-Revised (HEXACO-PI-R), we identified for each inventory several trait dimensions (each defined by both self- and observer reports on the facet-level scales belonging to the same domain) and 2 source dimensions (each defined by self-reports or by observer reports, respectively, on all facet-level scales). Results (N = 217) showed that the source dimensions of the PID-5 were very large (much larger than those of the HEXACO-PI-R), and suggest that self-report (or observer report) response styles substantially inflate the intercorrelations and the alpha reliabilities of the PID-5 scales. We discuss the meaning and the implications of the large PID-5 source components, and we suggest some methods of controlling their influence.
Defect generation in electronic devices under plasma exposure: Plasma-induced damage
NASA Astrophysics Data System (ADS)
Eriguchi, Koji
2017-06-01
The increasing demand for higher performance of ULSI circuits requires aggressive shrinkage of device feature sizes in accordance with Moore’s law. Plasma processing plays an important role in achieving fine patterns with anisotropic features in metal-oxide-semiconductor field-effect transistors (MOSFETs). This article comprehensively addresses the negative aspect of plasma processing — plasma-induced damage (PID). PID naturally not only modifies the surface morphology of materials but also degrades the performance and reliability of MOSFETs as a result of defect generation in the materials. Three key mechanisms of PID, i.e., physical, electrical, and photon-irradiation interactions, are overviewed in terms of modeling, characterization techniques, and experimental evidence reported so far. In addition, some of the emerging topics — control of parameter variability in ULSI circuits caused by PID and recovery of PID — are discussed as future perspectives.
Sliding-mode control of single input multiple output DC-DC converter
NASA Astrophysics Data System (ADS)
Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang
2016-10-01
Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.
Sliding-mode control of single input multiple output DC-DC converter.
Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang
2016-10-01
Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.
Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter
NASA Astrophysics Data System (ADS)
Jafri, M. H.; Mansor, H.; Gunawan, T. S.
2017-11-01
Bench-top helicopter is a laboratory scale helicopter that usually used as a testing bench of the real helicopter behavior. This helicopter is a 3 Degree of Freedom (DOF) helicopter which works by three different axes wshich are elevation, pitch and travel. Thus, fuzzy logic controller has been proposed to be implemented into Quanser bench-top helicopter because of its ability to work with non-linear system. The objective for this project is to design and apply fuzzy logic controller for Quanser bench-top helicopter. Other than that, fuzzy logic controller performance system has been simulated to analyze and verify its behavior over existing PID controller by using Matlab & Simulink software. In this research, fuzzy logic controller has been designed to control the elevation angle. After simulation has been performed, it can be seen that simulation result shows that fuzzy logic elevation control is working for 4°, 5° and 6°. These three angles produce zero steady state error and has a fast response. Other than that, performance comparisons have been performed between fuzzy logic controller and PID controller. Fuzzy logic elevation control has a better performance compared to PID controller where lower percentage overshoot and faster settling time have been achieved in 4°, 5° and 6° step response test. Both controller are have zero steady state error but fuzzy logic controller is managed to produce a better performance in term of settling time and percentage overshoot which make the proposed controller is reliable compared to the existing PID controller.
Slip control design of electric vehicle using indirect Dahlin Adaptive Pid
NASA Astrophysics Data System (ADS)
Fauzi, I. R.; Koko, F.; Kirom, M. R.
2016-11-01
In this paper the problem to be solved is to build a slip control on a wheel that may occur in an electric car wheel. Slip is the difference in vehicle velocity and wheel tangential velocity and to be enlarged when the torque given growing. Slip can be reduced by controlling the torque of the wheel so that the wheel tangential speed does not exceed the vehicle speed. The experiment in this paper is a simulation using MATLAB Simulink and using Adaptive control. The response adaptive PID control more quickly 1.5 s than PID control and can controlled wheel tangential speed close to the vehicle velocity on a dry asphalt, wet asphalt, snow and ice surface sequent at time 2s, 4s, 10s, and 50s. The maximum acceleration of the vehicle (V) on the surface of the dry asphalt, wet asphalt, snow, and ice surface sequent at 8.9 m/s2, 6.2 m/s2, 2.75 m/s2, and 0.34 m/s2.
Integration of an Autopilot for a Micro Air Vehicle
NASA Technical Reports Server (NTRS)
Platanitis, George; Shkarayev, Sergey
2005-01-01
Two autopilots providing autonomous flight capabilities are presented herein. The first is the Pico-Pilot, demonstrated for the 12-inch size class of micro air vehicles. The second is the MicroPilot MP2028(sup g), where its integration into a 36-inch Zagi airframe (tailless, elevons only configuration) is investigated and is the main focus of the report. Analytical methods, which include the use of the Advanced Aircraft Analysis software from DARCorp, were used to determine the stability and control derivatives, which were then validated through wind tunnel experiments. From the aerodynamic data, the linear, perturbed equations of motion from steady-state flight conditions may be cast in terms of these derivatives. Using these linear equations, transfer functions for the control and navigation systems were developed and feedback control laws based on Proportional, Integral, and Derivative (PID) control design were developed to control the aircraft. The PID gains may then be programmed into the autopilot software and uploaded to the microprocessor of the autopilot. The Pico-Pilot system was flight tested and shown to be successful in navigating a 12-inch MAV through a course defined by a number of waypoints with a high degree of accuracy, and in 20 mph winds. The system, though, showed problems with control authority in the roll and pitch motion of the aircraft: causing oscillations in these directions, but the aircraft maintained its heading while following the prescribed course. Flight tests were performed in remote control mode to evaluate handling, adjust trim, and test data logging for the Zagi with integrated MP2028(sup g). Ground testing was performed to test GPS acquisition, data logging, and control response in autonomous mode. Technical difficulties and integration limitations with the autopilot prevented fully autonomous flight from taking place, but the integration methodologies developed for this autopilot are, in general, applicable for unmanned air vehicles within the 36-inch size class or larger that use a PID control based autopilot.
New design deforming controlling system of the active stressed lap
NASA Astrophysics Data System (ADS)
Ying, Li; Wang, Daxing
2008-07-01
A 450mm diameter active stressed lap has been developed in NIAOT by 2003. We design a new lap in 2007. This paper puts on emphases on introducing the new deforming control system of the lap. Aiming at the control characteristic of the lap, a new kind of digital deforming controller is designed. The controller consists of 3 parts: computer signal disposing, motor driving and force sensor signal disposing. Intelligent numeral PID method is applied in the controller instead of traditional PID. In the end, the result of new deformation are given.
Breitschwerdt, E B; Geoly, F J; Meuten, D J; Levine, J F; Howard, P; Hegarty, B C; Stafford, L C
1996-04-01
To characterize the pathogenic potential of a unique Borrelia isolate obtained from a dog from Florida (FCB isolate). Prospective experimental infection. 32 preweanling Swiss Webster mice and 12 adult male Hartley guinea pigs were injected intraperitoneally with 10(5) spirochetes. Mice were used as controls and blood recipients, and at 3- to 4-day intervals, 1 control mouse and 2 infected mice were necropsied, tissues were cultured, and a recipient mouse was inoculated with blood. Guinea pigs were randomized to 4 groups and inoculated intradermally with 10(0), 10(2), 10(3), or 10(4) spirochetes. For 48 days, clinical, hematologic, serologic, and microbiologic tests were performed on them, after which they were necropsied. In mice, spirochetemia was detectable between postinoculation days (PID) 3 and 13, and seroreactivity to homologous antigen was detectable during PID 10 through 31. Compared with control mice, infected mouse spleens were 2 to 3 times larger. Histologic lesions included lymphoid hyperplasia, neutrophilic panniculitis, epicarditis, and myocarditis, with intralesional spirochetes detected from PID 3 through 6. During PID 10 through 31, nonsuppurative epicarditis developed. Signs of illness and hematologic abnormalities were not observed in guinea pigs, despite isolating spirochetes from blood during PID 7 to 27. When necropsied on PID 48, histologic lesions included lymphoid hyperplasia and lymphocytic plasmacytic epicarditis. The FCB isolate causes spirochetemia, lymphoid hyperplasia, dermatitis, and myocardial injury in Swiss Webster mice and can be transmitted by blood inoculation. In Hartley guinea pigs, the isolate causes spirochetemia, lymphoid hyperplasia, and epicarditis. Documentation of disease in mice, guinea pigs, and, presumably, dogs raises the level of concern that the FCB isolate might be pathogenic for man and other animal species.
Palmer, Keith T; Griffin, Michael; Ntani, Georgia; Shambrook, James; McNee, Philip; Sampson, Madeleine; Harris, E Clare; Coggon, David
2012-01-01
Objectives The aim of this study was to investigate whether whole-body vibration (WBV) is associated with prolapsed lumbar intervertebral disc (PID) and nerve root entrapment among patients with low-back pain (LBP) undergoing magnetic resonance imaging (MRI). Methods A consecutive series of patients referred for lumbar MRI because of LBP were compared with controls X-rayed for other reasons. Subjects were questioned about occupational activities loading the spine, psychosocial factors, driving, personal characteristics, mental health, and certain beliefs about LBP. Exposure to WBV was assessed by six measures, including weekly duration of professional driving, hours driven at a spell, and current 8-hour daily equivalent root-mean-square acceleration A(8). Cases were sub-classified according to whether or not PID/nerve root entrapment was present. Associations with WBV were examined separately for cases with and without these MRI findings, with adjustment for age, sex, and other potential confounders. Results Altogether, 237 cases and 820 controls were studied, including 183 professional drivers and 176 cases with PID and/or nerve root entrapment. Risks associated with WBV tended to be lower for LBP with PID/nerve root entrapment but somewhat higher for risks of LBP without these abnormalities. However, associations with the six metrics of exposure were all weak and not statistically significant. Neither exposure–response relationships nor increased risk of PID/nerve root entrapment from professional driving or exposure at an A(8) above the European Union daily exposure action level were found. Conclusions WBV may be a cause of LBP but it was not associated with PID or nerve root entrapment in this study. PMID:22249859
NASA Astrophysics Data System (ADS)
Chuthai, T.; Cole, M. O. T.; Wongratanaphisan, T.; Puangmali, P.
2018-01-01
This paper describes a high-precision motion control implementation for a flexure-jointed micromanipulator. A desktop experimental motion platform has been created based on a 3RUU parallel kinematic mechanism, driven by rotary voice coil actuators. The three arms supporting the platform have rigid links with compact flexure joints as integrated parts and are made by single-process 3D printing. The mechanism overall size is approximately 250x250x100 mm. The workspace is relatively large for a flexure-jointed mechanism, being approximately 20x20x6 mm. A servo-control implementation based on pseudo-rigid-body models (PRBM) of kinematic behavior combined with nonlinear-PID control has been developed. This is shown to achieve fast response with good noise-rejection and platform stability. However, large errors in absolute positioning occur due to deficiencies in the PRBM kinematics, which cannot accurately capture flexure compliance behavior. To overcome this problem, visual servoing is employed, where a digital microscopy system is used to directly measure the platform position by image processing. By adopting nonlinear PID feedback of measured angles for the actuated joints as inner control loops, combined with auxiliary feedback of vision-based measurements, the absolute positioning error can be eliminated. With controller gain tuning, fast dynamic response and low residual vibration of the end platform can be achieved with absolute positioning accuracy within ±1 micron.
A digital optical phase-locked loop for diode lasers based on field programmable gate array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Zhouxiang; Zhang Xian; Huang Kaikai
2012-09-15
We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat notemore » line width below 1 Hz, residual mean-square phase error of 0.14 rad{sup 2} and transition time of 100 {mu}s under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.« less
NASA Astrophysics Data System (ADS)
Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting
2010-11-01
An image spectrometer of a spatial remote sensing satellite requires shortwave band range from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper studies the model of noise for focal plane array (FPA) system, investigated the relationship with temperature and dark current noise, and adopts Incremental PID algorithm to generate PWM wave in order to control the temperature of the sensor. There are four modules compose of the FPGA module design. All of the modules are coded by VHDL and implemented in FPGA device APA300. Experiment shows the intelligent temperature control system succeeds in controlling the temperature of the sensor.
Women's sexual and reproductive health in post-socialist Georgia: does internal displacement matter?
Doliashvili, Khatuna; Buckley, Cynthia J
2008-03-01
Persons displaced by armed conflicts, natural disasters or other events are at increased risk for health problems. The Republic of Georgia has a substantial population of internally displaced women who may face elevated risks of STIs and pelvic inflammatory disease (PID). The 1999 Georgia Reproductive Health Survey was used to examine the prevalence of self-reported STI and PID diagnoses among displaced and nondisplaced sexually experienced women. Multivariate analyses were conducted to determine whether displacement is associated with STI and PID risk, and whether the behavioral and socioeconomic factors associated with these diagnoses differ between internally displaced women and the general population. In models that controlled for behavioral factors only, displacement was associated with elevated odds of PID diagnosis (odds ratio, 1.3), but the relationship was only marginally significant when socioeconomic factors were added (1.3). Displacement was not associated with STI diagnosis. The factors associated with STI and PID diagnoses among displaced women generally differed from those in the general population, but access to medical care and previous STI diagnosis were associated with PID diagnosis in both groups. Among nondisplaced women, residing in the capital city was associated with increased odds of STI diagnosis (2.2) but reduced odds of PID diagnosis (0.8). These findings highlight the importance of displacement status in determining a woman's reproductive health risks, and underscore the complex relationships between behavioral and socioeconomic variables and the elevation of STI and PID risk.
NASA Astrophysics Data System (ADS)
Isnur Haryudo, Subuh; Imam Agung, Achmad; Firmansyah, Rifqi
2018-04-01
The purpose of this research is to develop learning media of control technique using Matrix Laboratory software with industry requirement approach. Learning media serves as a tool for creating a better and effective teaching and learning situation because it can accelerate the learning process in order to enhance the quality of learning. Control Techniques using Matrix Laboratory software can enlarge the interest and attention of students, with real experience and can grow independent attitude. This research design refers to the use of research and development (R & D) methods that have been modified by multi-disciplinary team-based researchers. This research used Computer based learning method consisting of computer and Matrix Laboratory software which was integrated with props. Matrix Laboratory has the ability to visualize the theory and analysis of the Control System which is an integration of computing, visualization and programming which is easy to use. The result of this instructional media development is to use mathematical equations using Matrix Laboratory software on control system application with DC motor plant and PID (Proportional-Integral-Derivative). Considering that manufacturing in the field of Distributed Control systems (DCSs), Programmable Controllers (PLCs), and Microcontrollers (MCUs) use PID systems in production processes are widely used in industry.
Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller.
Lopez-Franco, Carlos; Gomez-Avila, Javier; Alanis, Alma Y; Arana-Daniel, Nancy; Villaseñor, Carlos
2017-08-12
In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results.
Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller
Lopez-Franco, Carlos; Alanis, Alma Y.; Arana-Daniel, Nancy; Villaseñor, Carlos
2017-01-01
In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results. PMID:28805689
A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System.
Cuenca, A; Alcaina, J; Salt, J; Casanova, V; Pizá, R
2018-05-01
This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Ming-fu; Hu, Xin-Yu; Shao, Yun; Luo, Bin-bin; Wang, Xin
2008-10-01
This article analyses nowadays in common use of football robots in China, intended to improve the football robots' hardware platform system's capability, and designed a football robot which based on DSP core controller, and combined Fuzzy-PID control algorithm. The experiment showed, because of the advantages of DSP, such as quickly operation, various of interfaces, low power dissipation etc. It has great improvement on the football robot's performance of movement, controlling precision, real-time performance.
Updated French guidelines for diagnosis and management of pelvic inflammatory disease.
Brun, Jean-Luc; Graesslin, Olivier; Fauconnier, Arnaud; Verdon, Renaud; Agostini, Aubert; Bourret, Antoine; Derniaux, Emilie; Garbin, Olivier; Huchon, Cyrille; Lamy, Catherine; Quentin, Roland; Judlin, Philippe
2016-08-01
Pelvic inflammatory disease (PID) is commonly encountered in clinical practice. To provide up-to-date guidelines on management of PID. An initial search of the Cochrane database, PubMed, and Embase was performed using keywords related to PID to identify reports in any language published between January 1990 and January 2012, with an update in May 2015. All identified reports relevant to the areas of focus were included. A level of evidence based on the quality of the data available was applied for each area of focus and used for the guidelines. PID must be suspected when spontaneous pelvic pain is associated with induced adnexal or uterine pain (grade C). Pelvic ultrasonography is necessary to exclude tubo-ovarian abscess (grade B). Microbiological diagnosis requires vaginal and endocervical sampling for molecular and bacteriological analysis (grade B). First-line treatment for uncomplicated PID combines ofloxacin and metronidazole for 14days (grade B). Treatment of tubo-ovarian abscess is based on drainage if the collection measures more than 3cm (grade B), with combined ceftriaxone, metronidazole, and doxycycline for 14-21days. Current management of PID requires easily reproducible investigations and treatment, and thus can be applied worldwide. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.
Improving maximum power point tracking of partially shaded photovoltaic system by using IPSO-BELBIC
NASA Astrophysics Data System (ADS)
Al-Alim El-Garhy, M. Abd; Mubarak, R. I.; El-Bably, M.
2017-08-01
Solar photovoltaic (PV) arrays in remote applications are often related to the rapid changes in the partial shading pattern. Rapid changes of the partial shading pattern make the tracking of maximum power point (MPP) of the global peak through the local ones too difficult. An essential need to make a fast and efficient algorithm to detect the peaks values which always vary as the sun irradiance changes. This paper presents two algorithms based on the improved particle swarm optimization technique one of them with PID controller (IPSO-PID), and the other one with Brain Emotional Learning Based Intelligent Controller (IPSO-BELBIC). These techniques improve the maximum power point (MPP) tracking capabilities for photovoltaic (PV) system under partial shading circumstances. The main aim of these improved algorithms is to accelerate the velocity of IPSO to reach to (MPP) and increase its efficiency. These algorithms also improve the tracking time under complex irradiance conditions. Based on these conditions, the tracking time of these presented techniques improves to 2 msec, with an efficiency of 100%.
Optimized linear motor and digital PID controller setup used in Mössbauer spectrometer
NASA Astrophysics Data System (ADS)
Kohout, Pavel; Kouřil, Lukáš; Navařík, Jakub; Novák, Petr; Pechoušek, Jiří
2014-10-01
Optimization of a linear motor and digital PID controller setup used in a Mössbauer spectrometer is presented. Velocity driving system with a digital PID feedback subsystem was developed in the LabVIEW graphical environment and deployed on the sbRIO real-time hardware device (National Instruments). The most important data acquisition processes are performed as real-time deterministic tasks on an FPGA chip. Velocity transducer of a double loudspeaker type with a power amplifier circuit is driven by the system. Series of calibration measurements were proceeded to find the optimal setup of the P, I, D parameters together with velocity error signal analysis. The shape and given signal characteristics of the velocity error signal are analyzed in details. Remote applications for controlling and monitoring the PID system from computer or smart phone, respectively, were also developed. The best setup and P, I, D parameters were set and calibration spectrum of α-Fe sample with an average nonlinearity of the velocity scale below 0.08% was collected. Furthermore, the width of the spectral line below 0.30 mm/s was observed. Powerful and complex velocity driving system was designed.
Vector control of wind turbine on the basis of the fuzzy selective neural net*
NASA Astrophysics Data System (ADS)
Engel, E. A.; Kovalev, I. V.; Engel, N. E.
2016-04-01
An article describes vector control of wind turbine based on fuzzy selective neural net. Based on the wind turbine system’s state, the fuzzy selective neural net tracks an maximum power point under random perturbations. Numerical simulations are accomplished to clarify the applicability and advantages of the proposed vector wind turbine’s control on the basis of the fuzzy selective neuronet. The simulation results show that the proposed intelligent control of wind turbine achieves real-time control speed and competitive performance, as compared to a classical control model with PID controllers based on traditional maximum torque control strategy.
Effects of a PID Control System on Electromagnetic Fields in an nEDM Experiment
NASA Astrophysics Data System (ADS)
Molina, Daniel
2017-09-01
The Kellogg Radiation Laboratory is currently testing a prototype for an experiment that hopes to identify the electric dipole moment of the neutron. As part of this testing, we have developed a PID (proportional, integral, derivative) feedback system that uses large coils to fix the value of local external magnetic fields, up to linear gradients. PID algorithms compare the current value to a set-point and use the integral and derivative of the field with respect to the set-point to maintain constant fields. We have also developed a method for zeroing linear gradients within the experimental apparatus. In order to determine the performance of the PID algorithm, measurements of both the internal and external fields were obtained with and without the algorithm running, and these results were compared for noise and time stability. We have seen that the PID algorithm can reduce the effect of disturbance to the field by a factor of 10.
Robust PD Sway Control of a Lifted Load for a Crane Using a Genetic Algorithm
NASA Astrophysics Data System (ADS)
Kawada, Kazuo; Sogo, Hiroyuki; Yamamoto, Toru; Mada, Yasuhiro
PID control schemes still continue to be widely used for most industrial control systems. This is mainly because PID controllers have simple control structures, and are simple to maintain and tune. However, it is difficult to find a set of suitable control parameters in the case of time-varying and/or nonlinear systems. For such a problem, the robust controller has been proposed.Although it is important to choose the suitable nominal model in designing the robust controller, it is not usually easy.In this paper, a new robust PD controller design scheme is proposed, which utilizes a genetic algorithm.
NASA Astrophysics Data System (ADS)
Stockhause, M.; Höck, H.; Toussaint, F.; Weigel, T.; Lautenschlager, M.
2012-12-01
We present the publication process for the CMIP5 (Coupled Model Intercomparison Project Phase 5) data with special emphasis on the current role of identifiers and the potential future role of PIDs in such distributed technical infrastructures. The DataCite data publication with DOI assignment finalizes the 3 levels quality control procedure for CMIP5 data (Stockhause et al., 2012). WDCC utilizes the Assistant System Atarrabi to support the publication process. Atarrabi is a web-based workflow system for metadata reviews of data creators and Publication Agents (PAs). Within the quality checks for level 3 all available information in the different infrastructure components is cross-checked for consistency by the DataCite PA. This information includes: metadata on data, metadata in the long-term archive of the Publication Agency, quality information, and external metadata on model and simulation (CIM). For these consistency checks metadata related to the data publication has to be identified. The Data Reference Syntax (DRS) convention functions as global identifier for data. Since the DRS structures the data, hierarchically, it can be used to identify data collections like DataCite publication units, i.e. all data belonging to a CMIP5 simulation. Every technical component of the infrastructure uses DRS or maps to it, but there is no central repository storing DRS_ids. Thus they have to be mapped, occasionally. Additional local identifiers are used within the different technical infrastructure components. Identification of related pieces of information in their repositories is cumbersome and tricky for the PA. How could PIDs improve the situation? To establish a reliable distributed data and metadata infrastructure, PIDs for all objects are needed as well as relations between them. An ideal data publication scenario for federated community projects within Earth System Sciences, e.g. CMIP, would be: 1. Data creators at the modeling centers define their simulation, related metadata, and software, which are assigned PIDs. 2. During ESGF data publication the data entities are assigned PIDs with references to the PIDs of 1. Since we deal with different hierarchical levels, the definition of collections on these levels is advantageous. A possible implementation concept using Handles is described by Weigel et al. (2012). 3. Quality results are assigned PID(s) and a reference to the data. A quality PID is added as a reference to the data collection PID. 4. The PA accesses the PID on the data collection to get the data and all related information for cross-checking. The presented example of the technical infrastructure for the CMIP5 data distribution shows the importance of PIDs, especially as the data is distributed over multiple repositories world-wide and additional separate pieces of data related information are independently collected from the data. References: Stockhause, M., Höck, H., Toussaint, F., Lautenschlager, M. (2012): 'Quality assessment concept of the World Data Center for Climate and its application to CMIP5 data', Geosci. Model Dev. Discuss., 5, 781-802, doi:10.5194/gmdd-5-781-2012. Weigel, T., et al. (2012): 'Structural Elements in a Persistent Identifier Infrastructure and Resulting Benefits for the Earth Science Community', submitted to AGU 2012 Session IN009.
NASA Astrophysics Data System (ADS)
Bonne, F.; Bonnay, P.; Hoa, C.; Mahoudeau, G.; Rousset, B.
2017-02-01
This papers deals with the Japan Torus-60 Super Advanced fusion experiment JT-60SA cryogenic system. A presentation of the JT-60SA cryogenic system model, from 300K to 4.4K -using the Matlab/Simulink/Simscape Simcryogenics library- will be given. As a first validation of our modelling strategy, the obtained operating point will be compared with the one obtained from HYSYS simulations. In the JT60-SA tokamak, pulsed heat loads are expected to be coming from the plasma and must be handled properly, using both appropriate refrigerator architecture and appropriate control model, to smooth the heat load. This paper presents model-based designed PID control schemes to control the helium mass inside the phase separator. The helium mass inside the phase separator as been chosen to be the variable of interest in the phase separator since it is independent of the pressure which can vary from 1 bar to 1.8 bar during load smoothing. Dynamics simulations will be shown to assess the legitimacy of the proposed strategy. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.
Soper, David E
2010-08-01
Pelvic inflammatory disease (PID) is an infection-caused inflammatory continuum from the cervix to the peritoneal cavity. Most importantly, it is associated with fallopian tube inflammation, which can lead to infertility, ectopic pregnancy, and chronic pelvic pain. The microbial etiology is linked to sexually transmitted microorganisms, including Chlamydia trachomatis, Neisseria gonorrheae, Mycoplasma genitalium, and bacterial vaginosis-associated microorganisms, predominantly anaerobes. Pelvic pain and fever are commonly absent in women with confirmed PID. Clinicians should consider milder symptoms such as abnormal vaginal discharge, metrorrhagia, postcoital bleeding, and urinary frequency as potential symptoms associated with the disease, particularly in women at risk of sexually transmitted infection. The diagnosis of PID is based on the findings of lower genital tract inflammation associated with pelvic organ tenderness. The outpatient treatment of mild-to-moderate PID should include tolerated antibiotic regimens with activity against the commonly isolated microorganisms associated with PID and usually consists of an extended spectrum cephalosporin in conjunction with either doxycycline or azithromycin. Clinically severe PID should prompt hospitalization and imaging to rule out a tuboovarian abscess. Parenteral broad-spectrum antibiotic therapy with activity against a polymicrobial flora, particularly gram-negative aerobes and anaerobes, should be implemented. Screening for and treatment of Chlamydia infection can prevent PID.
Skin signs of primary immunodeficiencies: how to find the genes to check.
Ettinger, M; Schreml, J; Wirsching, K; Berneburg, M; Schreml, S
2018-02-01
Primary immunodeficiencies (PIDs) are a heterogeneous group of rare diseases that result from defects in immune system development and/or function. The clinical manifestations of PIDs are highly variable, but most disorders involve at least an increased susceptibility to infection. Furthermore, cutaneous manifestations are very common in PIDs. As an easily accessible organ, the skin can be crucial for early diagnosis and treatment. This is relevant for preventing significant disease-associated morbidity and mortality. We provide a table that enables the reader to find the possible diseases and corresponding gene defects based on the skin manifestations of the suspected PIDs. To our knowledge, this is the first review that allows the reader to find relevant PIDs and the respective gene defects through solitary or combined skin signs. © 2017 British Association of Dermatologists.
Methodologies for Root Locus and Loop Shaping Control Design with Comparisons
NASA Technical Reports Server (NTRS)
Kopasakis, George
2017-01-01
This paper describes some basics for the root locus controls design method as well as for loop shaping, and establishes approaches to expedite the application of these two design methodologies to easily obtain control designs that meet requirements with superior performance. The two design approaches are compared for their ability to meet control design specifications and for ease of application using control design examples. These approaches are also compared with traditional Proportional Integral Derivative (PID) control in order to demonstrate the limitations of PID control. Robustness of these designs is covered as it pertains to these control methodologies and for the example problems.
NASA Astrophysics Data System (ADS)
Buske, Ivo; Riede, Wolfgang
2006-09-01
We compare active optical elements based on different technologies to accomplish the requirements of a 2-dim. fine tracking control system. A cascaded optically and electrically addressable spatial light modulator (OASLM) based on liquid crystals (LC) is used for refractive beam steering. Spatial light modulators provide a controllable phase wedge to generate a beam deflection. Additionally, a tip/tilt mirror approach operating with piezo-electric actuators is investigated. A digital PID controller is implemented for closed-loop control. Beam tracking with a root-mean-squared accuracy of Δα=30 nrad has been laboratory-confirmed.
Profile of the Pediatric Infectious Disease Workforce in 2015.
Yeh, Sylvia H; Vijayan, Vini; Hahn, Andrea; Ruch-Ross, Holly; Kirkwood, Suzanne; Phillips, Terri Christene; Harrison, Christopher J
2017-12-22
Almost 20 years have elapsed since the last workforce survey of pediatric infectious disease (PID) subspecialists was conducted in 1997-1998. The American Academy of Pediatrics Section on Infectious Diseases in collaboration with the Pediatric Infectious Diseases Society sought to assess the status of the current PID workforce. A Web-based survey conducted in 2015 collected data on demographics, practice patterns, and job satisfaction among the PID workforce, and identified factors related to job placement among recent fellowship graduates. Of 946 respondents (48% response rate), 50% were female. The average age was 51 years (range, 29-88 years); 63% were employed by an academic center/hospital, and 85% provided direct patient care; and 18% were not current PID practitioners. Of the 138 (21%) respondents who had completed a PID fellowship within the previous 5 years, 83% applied for <5 PID positions; 43% reported that their first position was created specifically for them; 47% had 1 job offer, and 41% had 2 or 3 job offers; 82% were employed within 6 months; and 74% remained at the institution of their first job. Respondents who were practicing PID full-time or part-time (n = 778) indicated desiring more focused training in immunodeficiencies (31%), transplant-related care (31%), and travel/tropical medicine (28%). Overall, 70% of the respondents would "definitely" or "probably" choose PID again. Most respondents were satisfied with their career choice in PID. Most of the recent fellowship graduates were employed within 6 months after training. We identified potential areas in which the PID community can focus efforts to maintain the pipeline and improve satisfaction among its physicians. © The Author 2017. Published by Oxford University Press on behalf of The Journal of the Pediatric Infectious Diseases Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
PID Controller Design for FES Applied to Ankle Muscles in Neuroprosthesis for Standing Balance
Rouhani, Hossein; Same, Michael; Masani, Kei; Li, Ya Qi; Popovic, Milos R.
2017-01-01
Closed-loop controlled functional electrical stimulation (FES) applied to the lower limb muscles can be used as a neuroprosthesis for standing balance in neurologically impaired individuals. The objective of this study was to propose a methodology for designing a proportional-integral-derivative (PID) controller for FES applied to the ankle muscles toward maintaining standing balance for several minutes and in the presence of perturbations. First, a model of the physiological control strategy for standing balance was developed. Second, the parameters of a PID controller that mimicked the physiological balance control strategy were determined to stabilize the human body when modeled as an inverted pendulum. Third, this PID controller was implemented using a custom-made Inverted Pendulum Standing Apparatus that eliminated the effect of visual and vestibular sensory information on voluntary balance control. Using this setup, the individual-specific FES controllers were tested in able-bodied individuals and compared with disrupted voluntary control conditions in four experimental paradigms: (i) quiet-standing; (ii) sudden change of targeted pendulum angle (step response); (iii) balance perturbations that simulate arm movements; and (iv) sudden change of targeted angle of a pendulum with individual-specific body-weight (step response). In paradigms (i) to (iii), a standard 39.5-kg pendulum was used, and 12 subjects were involved. In paradigm (iv) 9 subjects were involved. Across the different experimental paradigms and subjects, the FES-controlled and disrupted voluntarily-controlled pendulum angle showed root mean square errors of <1.2 and 2.3 deg, respectively. The root mean square error (all paradigms), rise time, settle time, and overshoot [paradigms (ii) and (iv)] in FES-controlled balance were significantly smaller or tended to be smaller than those observed with voluntarily-controlled balance, implying improved steady-state and transient responses of FES-controlled balance. At the same time, the FES-controlled balance required similar torque levels (no significant difference) as voluntarily-controlled balance. The implemented PID parameters were to some extent consistent among subjects for standard weight conditions and did not require prolonged individual-specific tuning. The proposed methodology can be used to design FES controllers for closed-loop controlled neuroprostheses for standing balance. Further investigation of the clinical implementation of this approach for neurologically impaired individuals is needed. PMID:28676739
PID position regulation in one-degree-of-freedom Euler-Lagrange systems actuated by a PMSM
NASA Astrophysics Data System (ADS)
Verastegui-Galván, J.; Hernández-Guzmán, V. M.; Orrante-Sakanassi, J.
2018-02-01
This paper is concerned with position regulation in one-degree-of-freedom Euler-Lagrange Systems. We consider that the mechanical subsystem is actuated by a permanent magnet synchronous motor (PMSM). Our proposal consists of a Proportional-Integral-Derivative (PID) controller for the mechanical subsystem and a slight variation of field oriented control for the PMSM. We take into account the motor electric dynamics during the stability analysis. We present, for the first time, a global asymptotic stability proof for such a control scheme without requiring the mechanical subsystem to naturally possess viscous friction. Finally, as a corollary of our main result we prove global asymptotic stability for output feedback PID regulation of one-degree-of-freedom Euler-Lagrange systems when generated torque is considered as the system input, i.e. when the electric dynamics of PMSM's is not taken into account.
A hybrid intelligent controller for a twin rotor MIMO system and its hardware implementation.
Juang, Jih-Gau; Liu, Wen-Kai; Lin, Ren-Wei
2011-10-01
This paper presents a fuzzy PID control scheme with a real-valued genetic algorithm (RGA) to a setpoint control problem. The objective of this paper is to control a twin rotor MIMO system (TRMS) to move quickly and accurately to the desired attitudes, both the pitch angle and the azimuth angle in a cross-coupled condition. A fuzzy compensator is applied to the PID controller. The proposed control structure includes four PID controllers with independent inputs in 2-DOF. In order to reduce total error and control energy, all parameters of the controller are obtained by a RGA with the system performance index as a fitness function. The system performance index utilized the integral of time multiplied by the square error criterion (ITSE) to build a suitable fitness function in the RGA. A new method for RGA to solve more than 10 parameters in the control scheme is investigated. For real-time control, Xilinx Spartan II SP200 FPGA (Field Programmable Gate Array) is employed to construct a hardware-in-the-loop system through writing VHDL on this FPGA. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Hybrid adaptive ascent flight control for a flexible launch vehicle
NASA Astrophysics Data System (ADS)
Lefevre, Brian D.
For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the hybrid adaptive flight controller, development of a Newton's method based online parameter update that is modified to include a step size which regulates the rate of change in the parameter estimates, comparison of the modified Newton's method and recursive least squares online parameter update algorithms, modification of the neural network's input structure to accommodate for the nature of the nonlinearities present in a launch vehicle's ascent flight, examination of both tracking error based and modeling error based neural network weight update laws, and integration of feedback filters for the purpose of preventing harmful interaction between the flight control system and flexible structural modes. To validate the hybrid adaptive controller, a high-fidelity Ares I ascent flight simulator and a classical gain-scheduled proportional-integral-derivative (PID) ascent flight controller were obtained from the NASA Marshall Space Flight Center. The classical PID flight controller is used as a benchmark when analyzing the performance of the hybrid adaptive flight controller. Simulations are conducted which model both nominal and off-nominal flight conditions with structural flexibility of the vehicle either enabled or disabled. First, rigid body ascent simulations are performed with the hybrid adaptive controller under nominal flight conditions for the purpose of selecting the update laws which drive the indirect and direct adaptive components. With the neural network disabled, the results revealed that the recursive least squares online parameter update caused high frequency oscillations to appear in the engine gimbal commands. This is highly undesirable for long and slender launch vehicles, such as the Ares I, because such oscillation of the rocket nozzle could excite unstable structural flex modes. In contrast, the modified Newton's method online parameter update produced smooth control signals and was thus selected for use in the hybrid adaptive launch vehicle flight controller. In the simulations where the online parameter identification algorithm was disabled, the tracking error based neural network weight update law forced the network's output to diverge despite repeated reductions of the adaptive learning rate. As a result, the modeling error based neural network weight update law (which generated bounded signals) is utilized by the hybrid adaptive controller in all subsequent simulations. Comparing the PID and hybrid adaptive flight controllers under nominal flight conditions in rigid body ascent simulations showed that their tracking error magnitudes are similar for a period of time during the middle of the ascent phase. Though the PID controller performs better for a short interval around the 20 second mark, the hybrid adaptive controller performs far better from roughly 70 to 120 seconds. Elevating the aerodynamic loads by increasing the force and moment coefficients produced results very similar to the nominal case. However, applying a 5% or 10% thrust reduction to the first stage rocket motor causes the tracking error magnitude observed by the PID controller to be significantly elevated and diverge rapidly as the simulation concludes. In contrast, the hybrid adaptive controller steadily maintains smaller errors (often less than 50% of the corresponding PID value). Under the same sets of flight conditions with flexibility enabled, the results exhibit similar trends with the hybrid adaptive controller performing even better in each case. Again, the reduction of the first stage rocket motor's thrust clearly illustrated the superior robustness of the hybrid adaptive flight controller.
Standing-up exerciser based on functional electrical stimulation and body weight relief.
Ferrarin, M; Pavan, E E; Spadone, R; Cardini, R; Frigo, C
2002-05-01
The goal of the present work was to develop and test an innovative system for the training of paraplegic patients when they are standing up. The system consisted of a computer-controlled stimulator, surface electrodes for quadricep muscle stimulation, two knee angle sensors, a digital proportional-integrative-derivative (PID) controller and a mechanical device to support, partially, the body weight (weight reliever (WR)). A biomechanical model of the combined WR and patient was developed to find an optimum reference trajectory for the PID controller. The system was tested on three paraplegic patients and was shown to be reliable and safe. One patient completed a 30-session training period. Initially he was able to stand up only with 62% body weight relief, whereas, after the training period, he performed a series of 30 standing-up/sitting-down cycles with 45% body weight relief. The closed-loop controller was able to keep the patient standing upright with minimum stimulation current, to compensate automatically for muscle fatigue and to smooth the sitting-down movement. The limitations of the controller in connection with a highly non-linear system are considered.
Pressure intelligent control strategy of Waste heat recovery system of converter vapors
NASA Astrophysics Data System (ADS)
Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong
2013-01-01
The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.
Design and development of the Macpherson Proton Preve Magneto rheological damper with PID controller
NASA Astrophysics Data System (ADS)
Amiruddin, I. M.; Pauziah, M.; Aminudin, A.; Unuh, M. H.
2017-10-01
Since the creation of the first petrol-fuelled vehicle by Karl Benz in the late nineteenth century, car industry has grown considerably to meet the industrial demands. Luxurious looks and agreeable rides are the primary needs of drivers. The Magneto-rheological damper balanced their damping trademark progressively by applying the damping coefficient depending on the control system. In this research, the control calculations are assessed by utilizing the MR damper. The capacity and reliably of the target force for the damper speed is investigated from control algorithm. This is imperative to defeat the damper limitation. In this study, the simulation results of the semi-dynamic MR damper with the PID controller shows better performance in sprung mass acceleration, unsprung mass acceleration and suspension dislodging with permitting over the top tyre acceleration. The altered model of the MR damper is specially designed for Proton Preve specifications and semi-active PID control. The procedure for the advancement incorporates the numerical model to graphically recreate and break down the dynamic framework by utilizing Matlab.
Real-Time Stability and Control Derivative Extraction From F-15 Flight Data
NASA Technical Reports Server (NTRS)
Smith, Mark S.; Moes, Timothy R.; Morelli, Eugene A.
2003-01-01
A real-time, frequency-domain, equation-error parameter identification (PID) technique was used to estimate stability and control derivatives from flight data. This technique is being studied to support adaptive control system concepts currently being developed by NASA (National Aeronautics and Space Administration), academia, and industry. This report describes the basic real-time algorithm used for this study and implementation issues for onboard usage as part of an indirect-adaptive control system. A confidence measures system for automated evaluation of PID results is discussed. Results calculated using flight data from a modified F-15 aircraft are presented. Test maneuvers included pilot input doublets and automated inputs at several flight conditions. Estimated derivatives are compared to aerodynamic model predictions. Data indicate that the real-time PID used for this study performs well enough to be used for onboard parameter estimation. For suitable test inputs, the parameter estimates converged rapidly to sufficient levels of accuracy. The devised confidence measures used were moderately successful.
de Vries, E
2012-01-01
Members of the European Society for Immunodeficiencies (ESID) and other colleagues have updated the multi-stage expert-opinion-based diagnostic protocol for non-immunologists incorporating newly defined primary immunodeficiency diseases (PIDs). The protocol presented here aims to increase the awareness of PIDs among doctors working in different fields. Prompt identification of PID is important for prognosis, but this may not be an easy task. The protocol therefore starts from the clinical presentation of the patient. Because PIDs may present at all ages, this protocol is aimed at both adult and paediatric physicians. The multi-stage design allows cost-effective screening for PID of the large number of potential cases in the early phases, with more expensive tests reserved for definitive classification in collaboration with a specialist in the field of immunodeficiency at a later stage. PMID:22132890
A Practical Approach to the Diagnosis of Pelvic Inflammatory Disease
Jaiyeoba, Oluwatosin; Soper, David E.
2011-01-01
The diagnosis of acute pelvic inflammatory disease (PID) is usually based on clinical criteria and can be challenging for even the most astute clinicians. Although diagnostic accuracy is advocated, antibiotic treatment should be instituted if there is a diagnosis of cervicitis or suspicion of acute PID. Currently, no single test or combination of diagnostic indicators have been found to reliably predict PID, and laparoscopy cannot be recommended as a first line tool for PID diagnosis. For this reason, the clinician is left with maintaining a high index of suspicion for the diagnosis as he/she evaluates the lower genital tract for inflammation and the pelvic organs for tenderness in women with genital tract symptoms and a risk for sexually transmitted infection. This approach should minimize treating women without PID with antibiotics and optimize the diagnosis in a practical and cost-effective way. PMID:21822367
Adaptive Control of Small Outboard-Powered Boats for Survey Applications
NASA Technical Reports Server (NTRS)
VanZwieten, T.S.; VanZwieten, J.H.; Fisher, A.D.
2009-01-01
Four autopilot controllers have been developed in this work that can both hold a desired heading and follow a straight line. These PID, adaptive PID, neuro-adaptive, and adaptive augmenting control algorithms have all been implemented into a numerical simulation of a 33-foot center console vessel with wind, waves, and current disturbances acting in the perpendicular (across-track) direction of the boat s desired trajectory. Each controller is tested for its ability to follow a desired heading in the presence of these disturbances and then to follow a straight line at two different throttle settings for the same disturbances. These controllers were tuned for an input thrust of 2000 N and all four controllers showed good performance with none of the controllers significantly outperforming the others when holding a constant heading and following a straight line at this engine thrust. Each controller was then tested for a reduced engine thrust of 1200 N per engine where each of the three adaptive controllers reduced heading error and across-track error by approximately 50% after a 300 second tuning period when compared to the fixed gain PID, showing that significant robustness to changes in throttle setting was gained by using an adaptive algorithm.
Contract-Based Integration of Cyber-Physical Analyses
2014-10-14
for cyber-physical systems , 2013 [3] Torngren et al. Integrating viewpoints in the development of mechatronic products, 2013 [4] Rajhans et al...Conference on Embedded Software Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is...failures 5 Analytic aspect of integration Sensor Sampling PID Controller Actuator Controller Communication bus Sensor board CPU Actuator board System Bin
Saini, Kumud; AbdElgawad, Hamada; Markakis, Marios N.; Schoenaers, Sébastjen; Asard, Han; Prinsen, Els; Beemster, Gerrit T. S.; Vissenberg, Kris
2017-01-01
Under normal and stress conditions plant growth require a complex interplay between phytohormones and reactive oxygen species (ROS). However, details of the nature of this crosstalk remain elusive. Here, we demonstrate that PINOID (PID), a serine threonine kinase of the AGC kinase family, perturbs auxin homeostasis, which in turn modulates rosette growth and induces stress responses in Arabidopsis plants. Arabidopsis mutants and transgenic plants with altered PID expression were used to study the effect on auxin levels and stress-related responses. In the leaves of plants with ectopic PID expression an accumulation of auxin, oxidative burst and disruption of hormonal balance was apparent. Furthermore, PID overexpression led to the accumulation of antioxidant metabolites, while pid knockout mutants showed only moderate changes in stress-related metabolites. These physiological changes in the plants overexpressing PID modulated their response toward external drought and osmotic stress treatments when compared to the wild type. Based on the morphological, transcriptome, and metabolite results, we propose that perturbations in the auxin hormone levels caused by PID overexpression, along with other hormones and ROS downstream, cause antioxidant accumulation and modify growth and stress responses in Arabidopsis. Our data provide further proof for a strong correlation between auxin and stress biology. PMID:28824662
NASA Astrophysics Data System (ADS)
Abramov, G. V.; Emeljanov, A. E.; Ivashin, A. L.
Theoretical bases for modeling a digital control system with information transfer via the channel of plural access and a regular quantization cycle are submitted. The theory of dynamic systems with random changes of the structure including elements of the Markov random processes theory is used for a mathematical description of a network control system. The characteristics of similar control systems are received. Experimental research of the given control systems is carried out.
Mechanism of Inducible Nitric-oxide Synthase Dimerization Inhibition by Novel Pyrimidine Imidazoles*
Nagpal, Latika; Haque, Mohammad M.; Saha, Amit; Mukherjee, Nirmalya; Ghosh, Arnab; Ranu, Brindaban C.; Stuehr, Dennis J.; Panda, Koustubh
2013-01-01
Overproduction of nitric oxide (NO) by inducible nitric-oxide synthase (iNOS) has been etiologically linked to several inflammatory, immunological, and neurodegenerative diseases. As dimerization of NOS is required for its activity, several dimerization inhibitors, including pyrimidine imidazoles, are being evaluated for therapeutic inhibition of iNOS. However, the precise mechanism of their action is still unclear. Here, we examined the mechanism of iNOS inhibition by a pyrimidine imidazole core compound and its derivative (PID), having low cellular toxicity and high affinity for iNOS, using rapid stopped-flow kinetic, gel filtration, and spectrophotometric analysis. PID bound to iNOS heme to generate an irreversible PID-iNOS monomer complex that could not be converted to active dimers by tetrahydrobiopterin (H4B) and l-arginine (Arg). We utilized the iNOS oxygenase domain (iNOSoxy) and two monomeric mutants whose dimerization could be induced (K82AiNOSoxy) or not induced (D92AiNOSoxy) with H4B to elucidate the kinetics of PID binding to the iNOS monomer and dimer. We observed that the apparent PID affinity for the monomer was 11 times higher than the dimer. PID binding rate was also sensitive to H4B and Arg site occupancy. PID could also interact with nascent iNOS monomers in iNOS-synthesizing RAW cells, to prevent their post-translational dimerization, and it also caused irreversible monomerization of active iNOS dimers thereby accomplishing complete physiological inhibition of iNOS. Thus, our study establishes PID as a versatile iNOS inhibitor and therefore a potential in vivo tool for examining the causal role of iNOS in diseases associated with its overexpression as well as therapeutic control of such diseases. PMID:23696643
Tran, Chung Duc; Ibrahim, Rosdiazli; Asirvadam, Vijanth Sagayan; Saad, Nordin; Sabo Miya, Hassan
2018-04-01
The emergence of wireless technologies such as WirelessHART and ISA100 Wireless for deployment at industrial process plants has urged the need for research and development in wireless control. This is in view of the fact that the recent application is mainly in monitoring domain due to lack of confidence in control aspect. WirelessHART has an edge over its counterpart as it is based on the successful Wired HART protocol with over 30 million devices as of 2009. Recent works on control have primarily focused on maintaining the traditional PID control structure which is proven not adequate for the wireless environment. In contrast, Internal Model Control (IMC), a promising technique for delay compensation, disturbance rejection and setpoint tracking has not been investigated in the context of WirelessHART. Therefore, this paper discusses the control design using IMC approach with a focus on wireless processes. The simulation and experimental results using real-time WirelessHART hardware-in-the-loop simulator (WH-HILS) indicate that the proposed approach is more robust to delay variation of the network than the PID. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Asyraf, S. M.; Heerwan, P. M.; Izhar, I. M.
2018-04-01
During descending on a slope, the speed of Electric Powered Wheelchair (EPW) tends to changed rapidly. Normally, most EPW is provided with mechanical braking system which transfers human pulling force of the lever creating friction at the tire. However, the task is difficult for the users are elderly or paralyses. However, even for normal user with good strength, in fear condition they tend to give sudden braking which leads to tire locking up and skidding, eventually EPW unstable. These problems will cause accident and injuries to the users if speed does not properly control. In this paper, the automated braking torque control method was proposed in EPW as alternative to solve this problem and increase the mobility and stability especially during descending on slope in other to help the user of the EPW as their daily transportation. In this research, Proportional-Integral-Derivative and Sliding Mode Control controller are compared to determine the best response for torque braking control. The rapid change of speed can be controlled by the braking torque using proposed controllers based on the desired constant speed set by the control designer. Moreover, the sudden braking that caused tire to lock up and skid can be avoided. Furthermore, result from SMC shows this controller have good time respond to maintain the speed based on desired value when descending at slope condition by controlling the braking torque compared to the PID controller.
Enhancing the stabilization of aircraft pitch motion control via intelligent and classical method
NASA Astrophysics Data System (ADS)
Lukman, H.; Munawwarah, S.; Azizan, A.; Yakub, F.; Zaki, S. A.; Rasid, Z. A.
2017-12-01
The pitching movement of an aircraft is very important to ensure passengers are intrinsically safe and the aircraft achieve its maximum stability. The equations governing the motion of an aircraft are a complex set of six nonlinear coupled differential equations. Under certain assumptions, it can be decoupled and linearized into longitudinal and lateral equations. Pitch control is a longitudinal problem and thus, only the longitudinal dynamics equations are involved in this system. It is a third order nonlinear system, which is linearized about the operating point. The system is also inherently unstable due to the presence of a free integrator. Because of this, a feedback controller is added in order to solve this problem and enhance the system performance. This study uses two approaches in designing controller: a conventional controller and an intelligent controller. The pitch control scheme consists of proportional, integral and derivatives (PID) for conventional controller and fuzzy logic control (FLC) for intelligent controller. Throughout the paper, the performance of the presented controllers are investigated and compared based on the common criteria of step response. Simulation results have been obtained and analysed by using Matlab and Simulink software. The study shows that FLC controller has higher ability to control and stabilize the aircraft's pitch angle as compared to PID controller.
Risser, William L; Risser, Jan M; Risser, Amanda L
2017-01-01
In this review, the epidemiology, diagnosis, and treatment of pelvic inflammatory disease (PID) are discussed from a USA perspective and the difficulties that USA adolescents face in recognizing and seeking care for PID and other sexually transmitted infections (STIs) are emphasized. Females aged 15-24 years have the highest incidence of cervical infection with Chlamydia trachomatis and Neisseria gonorrheae , the principal causes of PID. PID is common in this age group. However, the incidence of PID in the USA is not known, because it is not a reportable disease, and because clinicians vary in the criteria used for the diagnosis. The Centers for Disease Control and Prevention (CDC) recommended the following diagnostic criteria that include lower abdominal or pelvic pain and at least one of the following: adnexal tenderness or cervical motion tenderness or uterine tenderness. Because PID can have serious sequelae, the criteria emphasize sensitivity (few false-negatives) at the expense of specificity (some false-positives). Patients who have PID are usually treated in the outpatient setting, following the CDC's Guidelines for the Treatment of Sexually Transmitted Diseases 2015. They receive one dose of an intramuscular cephalosporin, together with 2 weeks of oral doxy cycline, and sometimes oral metronidazole. Improvement should usually be evident in 3 days. The USA does not offer comprehensive sex education for adolescents in public or private schools. Adolescents are unlikely to recognize the symptoms of PID and seek medical treatment. Confidentiality is important to adolescents, and low cost or free sources of confidential care are uncommon, making it unlikely that an adolescent would seek care even if she suspected an STI. The CDC has concluded that screening programs for chlamydia and gonorrhea infection help prevent PID; however, the lack of appropriate sources of care makes adolescents' participation in screening programs unlikely.
Schober, Michelle E; Requena, Daniela F; Abdullah, Osama M; Casper, T Charles; Beachy, Joanna; Malleske, Daniel; Pauly, James R
2016-02-15
Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimental TBI are unknown. We hypothesized that DHA would decrease early inflammatory markers and oxidative stress, and improve cognitive, imaging and histologic outcomes in rat pups after controlled cortical impact (CCI). CCI or sham surgery was delivered to 17 d old male rat pups exposed to DHA or standard diet for the duration of the experiments. DHA was introduced into the dam diet the day before CCI to allow timely DHA delivery to the pre-weanling pups. Inflammatory cytokines and nitrates/nitrites were measured in the injured brains at post-injury Day (PID) 1 and PID2. Morris water maze (MWM) testing was performed at PID41-PID47. T2-weighted and diffusion tensor imaging studies were obtained at PID12 and PID28. Tissue sparing was calculated histologically at PID3 and PID50. DHA did not adversely affect rat survival or weight gain. DHA acutely decreased oxidative stress and increased anti-inflammatory interleukin 10 in CCI brains. DHA improved MWM performance and lesion volume late after injury. At PID12, DHA decreased T2-imaging measures of cerebral edema and decreased radial diffusivity, an index of white matter injury. DHA improved short- and long-term neurologic outcomes after CCI in the rat pup. Given its favorable safety profile, DHA is a promising candidate therapy for pediatric TBI. Further studies are needed to explore neuroprotective mechanisms of DHA after developmental TBI.
Requena, Daniela F.; Abdullah, Osama M.; Casper, T. Charles; Beachy, Joanna; Malleske, Daniel; Pauly, James R.
2016-01-01
Abstract Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimental TBI are unknown. We hypothesized that DHA would decrease early inflammatory markers and oxidative stress, and improve cognitive, imaging and histologic outcomes in rat pups after controlled cortical impact (CCI). CCI or sham surgery was delivered to 17 d old male rat pups exposed to DHA or standard diet for the duration of the experiments. DHA was introduced into the dam diet the day before CCI to allow timely DHA delivery to the pre-weanling pups. Inflammatory cytokines and nitrates/nitrites were measured in the injured brains at post-injury Day (PID) 1 and PID2. Morris water maze (MWM) testing was performed at PID41-PID47. T2-weighted and diffusion tensor imaging studies were obtained at PID12 and PID28. Tissue sparing was calculated histologically at PID3 and PID50. DHA did not adversely affect rat survival or weight gain. DHA acutely decreased oxidative stress and increased anti-inflammatory interleukin 10 in CCI brains. DHA improved MWM performance and lesion volume late after injury. At PID12, DHA decreased T2-imaging measures of cerebral edema and decreased radial diffusivity, an index of white matter injury. DHA improved short- and long-term neurologic outcomes after CCI in the rat pup. Given its favorable safety profile, DHA is a promising candidate therapy for pediatric TBI. Further studies are needed to explore neuroprotective mechanisms of DHA after developmental TBI. PMID:26247583
NASA Astrophysics Data System (ADS)
Bagheri Tolabi, Hajar; Hosseini, Rahil; Shakarami, Mahmoud Reza
2016-06-01
This article presents a novel hybrid optimization approach for a nonlinear controller of a distribution static compensator (DSTATCOM). The DSTATCOM is connected to a distribution system with the distributed generation units. The nonlinear control is based on partial feedback linearization. Two proportional-integral-derivative (PID) controllers regulate the voltage and track the output in this control system. In the conventional scheme, the trial-and-error method is used to determine the PID controller coefficients. This article uses a combination of a fuzzy system, simulated annealing (SA) and intelligent water drops (IWD) algorithms to optimize the parameters of the controllers. The obtained results reveal that the response of the optimized controlled system is effectively improved by finding a high-quality solution. The results confirm that using the tuning method based on the fuzzy-SA-IWD can significantly decrease the settling and rising times, the maximum overshoot and the steady-state error of the voltage step response of the DSTATCOM. The proposed hybrid tuning method for the partial feedback linearizing (PFL) controller achieved better regulation of the direct current voltage for the capacitor within the DSTATCOM. Furthermore, in the event of a fault the proposed controller tuned by the fuzzy-SA-IWD method showed better performance than the conventional controller or the PFL controller without optimization by the fuzzy-SA-IWD method with regard to both fault duration and clearing times.
NASA Astrophysics Data System (ADS)
Lei, Meizhen; Wang, Liqiang
2018-01-01
The halbach-type linear oscillatory motor (HT-LOM) is multi-variable, highly coupled, nonlinear and uncertain, and difficult to get a satisfied result by conventional PID control. An incremental adaptive fuzzy controller (IAFC) for stroke tracking was presented, which combined the merits of PID control, the fuzzy inference mechanism and the adaptive algorithm. The integral-operation is added to the conventional fuzzy control algorithm. The fuzzy scale factor can be online tuned according to the load force and stroke command. The simulation results indicate that the proposed control scheme can achieve satisfied stroke tracking performance and is robust with respect to parameter variations and external disturbance.
Robust high-performance control for robotic manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1991-01-01
Model-based and performance-based control techniques are combined for an electrical robotic control system. Thus, two distinct and separate design philosophies have been merged into a single control system having a control law formulation including two distinct and separate components, each of which yields a respective signal component that is combined into a total command signal for the system. Those two separate system components include a feedforward controller and a feedback controller. The feedforward controller is model-based and contains any known part of the manipulator dynamics that can be used for on-line control to produce a nominal feedforward component of the system's control signal. The feedback controller is performance-based and consists of a simple adaptive PID controller which generates an adaptive control signal to complement the nominal feedforward signal.
Robust high-performance control for robotic manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1989-01-01
Model-based and performance-based control techniques are combined for an electrical robotic control system. Thus, two distinct and separate design philosophies were merged into a single control system having a control law formulation including two distinct and separate components, each of which yields a respective signal componet that is combined into a total command signal for the system. Those two separate system components include a feedforward controller and feedback controller. The feedforward controller is model-based and contains any known part of the manipulator dynamics that can be used for on-line control to produce a nominal feedforward component of the system's control signal. The feedback controller is performance-based and consists of a simple adaptive PID controller which generates an adaptive control signal to complement the nomical feedforward signal.
Merrikh-Bayat, Farshad
2017-05-01
In this paper first the Multi-term Fractional-Order PID (MFOPID) whose transfer function is equal to [Formula: see text] , where k j and α j are unknown and known real parameters respectively, is introduced. Without any loss of generality, a special form of MFOPID with transfer function k p +k i /s+k d1 s+k d2 s μ where k p , k i , k d1 , and k d2 are unknown real and μ is a known positive real parameter, is considered. Similar to PID and TID, MFOPID is also linear in its parameters which makes it possible to study all of them in a same framework. Tuning the parameters of PID, TID, and MFOPID based on loop shaping using Linear Matrix Inequalities (LMIs) is discussed. For this purpose separate LMIs for closed-loop stability (of sufficient type) and adjusting different aspects of the open-loop frequency response are developed. The proposed LMIs for stability are obtained based on the Nyquist stability theorem and can be applied to both integer and fractional-order (not necessarily commensurate) processes which are either stable or have one unstable pole. Numerical simulations show that the performance of the four-variable MFOPID can compete the trivial five-variable FOPID and often excels PID and TID. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Type-2 fuzzy logic control of a 2-DOF helicopter (TRMS system)
NASA Astrophysics Data System (ADS)
Zeghlache, Samir; Kara, Kamel; Saigaa, Djamel
2014-09-01
The helicopter dynamic includes nonlinearities, parametric uncertainties and is subject to unknown external disturbances. Such complicated dynamics involve designing sophisticated control algorithms that can deal with these difficulties. In this paper, a type 2 fuzzy logic PID controller is proposed for TRMS (twin rotor mimo system) control problem. Using triangular membership functions and based on a human operator experience, two controllers are designed to control the position of the yaw and the pitch angles of the TRMS. Simulation results are given to illustrate the effectiveness of the proposed control scheme.
PID-controller with predictor and auto-tuning algorithm: study of efficiency for thermal plants
NASA Astrophysics Data System (ADS)
Kuzishchin, V. F.; Merzlikina, E. I.; Hoang, Van Va
2017-09-01
The problem of efficiency estimation of an automatic control system (ACS) with a Smith predictor and PID-algorithm for thermal plants is considered. In order to use the predictor, it is proposed to include an auto-tuning module (ATC) into the controller; the module calculates parameters for a second-order plant module with a time delay. The study was conducted using programmable logical controllers (PLC), one of which performed control, ATC, and predictor functions. A simulation model was used as a control plant, and there were two variants of the model: one of them was built on the basis of a separate PLC, and the other was a physical model of a thermal plant in the form of an electrical heater. Analysis of the efficiency of the ACS with the predictor was carried out for several variants of the second order plant model with time delay, and the analysis was performed on the basis of the comparison of transient processes in the system when the set point was changed and when a disturbance influenced the control plant. The recommendations are given on correction of the PID-algorithm parameters when the predictor is used by means of using the correcting coefficient k for the PID parameters. It is shown that, when the set point is changed, the use of the predictor is effective taking into account the parameters correction with k = 2. When the disturbances influence the plant, the use of the predictor is doubtful, because the transient process is too long. The reason for this is that, in the neighborhood of the zero frequency, the amplitude-frequency characteristic (AFC) of the system with the predictor has an ascent in comparison with the AFC of the system without the predictor.
Dynamic Analysis Method for Electromagnetic Artificial Muscle Actuator under PID Control
NASA Astrophysics Data System (ADS)
Nakata, Yoshihiro; Ishiguro, Hiroshi; Hirata, Katsuhiro
We have been studying an interior permanent magnet linear actuator for an artificial muscle. This actuator mainly consists of a mover and stator. The mover is composed of permanent magnets, magnetic cores and a non-magnetic shaft. The stator is composed of 3-phase coils and a back yoke. In this paper, the dynamic analysis method under PID control is proposed employing the 3-D finite element method (3-D FEM) to compute the dynamic response and current response when the positioning control is active. As a conclusion, computed results show good agreement with measured ones of a prototype.
NASA Astrophysics Data System (ADS)
Roozegar, M.; Angeles, J.
2018-05-01
In light of the current low energy-storage capacity of electric batteries, multi-speed transmissions (MSTs) are being considered for applications in electric vehicles (EVs), since MSTs decrease the energy consumption of the EV via gear-shifting. Nonetheless, swiftness and seamlessness are the major concerns in gear-shifting. This study focuses on developing a gear-shifting control scheme for a novel MST designed for EVs. The main advantages of the proposed MST are simplicity and modularity. Firstly, the dynamics model of the transmission is formulated. Then, a two-phase algorithm is proposed for shifting between each two gear ratios, which guarantees a smooth and swift shift. In other words, a separate control set is applied for shifting between each gear pair, which includes two independent PID controllers, tuned using trial-and-error and a genetic algorithm (GA), for the two steps of the algorithm and a switch. A supervisory controller is also employed to choose the proper PID gains, called PID gain-scheduling. Simulation results for various controllers and conditions are reported and compared, indicating that the proposed scheme is highly promising for a desired gear-shifting even in the presence of an unknown external disturbance.
Distributed design approach in persistent identifiers systems
NASA Astrophysics Data System (ADS)
Golodoniuc, Pavel; Car, Nicholas; Klump, Jens
2017-04-01
The need to identify both digital and physical objects is ubiquitous in our society. Past and present persistent identifier (PID) systems, of which there is a great variety in terms of technical and social implementations, have evolved with the advent of the Internet, which has allowed for globally unique and globally resolvable identifiers. PID systems have catered for identifier uniqueness, integrity, persistence, and trustworthiness, regardless of the identifier's application domain, the scope of which has expanded significantly in the past two decades. Since many PID systems have been largely conceived and developed by small communities, or even a single organisation, they have faced challenges in gaining widespread adoption and, most importantly, the ability to survive change of technology. This has left a legacy of identifiers that still exist and are being used but which have lost their resolution service. We believe that one of the causes of once successful PID systems fading is their reliance on a centralised technical infrastructure or a governing authority. Golodoniuc et al. (2016) proposed an approach to the development of PID systems that combines the use of (a) the Handle system, as a distributed system for the registration and first-degree resolution of persistent identifiers, and (b) the PID Service (Golodoniuc et al., 2015), to enable fine-grained resolution to different information object representations. The proposed approach solved the problem of guaranteed first-degree resolution of identifiers, but left fine-grained resolution and information delivery under the control of a single authoritative source, posing risk to the long-term availability of information resources. Herein, we develop these approaches further and explore the potential of large-scale decentralisation at all levels: (i) persistent identifiers and information resources registration; (ii) identifier resolution; and (iii) data delivery. To achieve large-scale decentralisation, we propose using Distributed Hash Tables (DHT), Peer Exchange networks (PEX), Magnet Links, and peer-to-peer (P2P) file sharing networks - the technologies that enable applications such as BitTorrent (Wu et al., 2010). The proposed approach introduces reliable information replication and caching mechanisms, eliminating the need for a central PID data store, and increases overall system fault tolerance due to the lack of a single point of failure. The proposed PID system's design aims to ensure trustworthiness of the system and incorporates important aspects of governance, such as the notion of the authoritative source, data integrity, caching, and data replication control.
Fuzzy attitude control for a nanosatellite in leo orbit
NASA Astrophysics Data System (ADS)
Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria; Aviles, Taisir
Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In this work, a tailored fuzzy controller is designed for a nanosatellite and is compared with a traditional Proportional Integrative Derivative (PID) controller. Both control methodologies are compared within the same specific mission. The orbit height varies along the mission from injection at around 380 km down to a 200 km height orbit, and the mission requires pointing accuracy over the whole time. Due to both the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, a robust and efficient ADCS is required. For these reasons a fuzzy logic controller is implemented as the brain of the ADCS and its performance and efficiency are compared to a traditional PID. The fuzzy controller is designed in three separated controllers, each one acting on one of the Euler angles of the satellite in an orbital frame. The fuzzy memberships are constructed taking into account the mission requirements, the physical properties of the satellite and the expected performances. Both methodologies, fuzzy and PID, are fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. Finally both methods are probed in different environments to test their characteristics. The simulations show that the fuzzy controller is much more efficient (up to 65% less power required) in single maneuvers, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. A brief mission description is depicted as well as the design process of both ADCS controllers. Finally the validation process and the results obtained during the simulations are described. Those results show that the fuzzy logic methodology is valid for small satellites' missions benefiting from a well-developed artificial intelligence theory.
Thimm, Jens C; Jordan, Stian; Bach, Bo
2017-01-01
The Personality Inventory for DSM-5 (PID-5) was created to aid a trait-based diagnostic system for personality disorders (PDs) in the Diagnostic and Statistical Manual of Mental Disorders (5th ed. [DSM-5]; American Psychiatric Association, 2013a ). In this study, we aimed to evaluate the Norwegian version of the PID-5 by examining its score reliability, hierarchical structure, congruency with international findings, and cross-cultural measurement invariance with a matched U.S. For this purpose, 503 university students (76% females) were administered the PID-5. The Norwegian PID-5 showed good score reliability and structural validity from 1 to 5 factors. The 5-factor structure was generally congruent with international findings, and support for measurement invariance across the Norwegian and a matched U.S. sample was found. Conclusively, the results indicate that scores on the Norwegian PID-5 have sound psychometric properties, which are substantially comparable with the original U.S. version, supporting its use in a Norwegian population.
Doctors' awareness concerning primary immunodeficiencies in Brazil.
Dantas, E O; Aranda, C S; Rêgo Silva, A M; Tavares, F S; Severo Ferreira, J F; de Quadros Coelho, M A; de Siqueira Kovalhuk, L C; Roxo Júnior, P; Toledo, E C; Porto Neto, A C; de Sousa Vieira, H M C; Takano, O A; Nobre, F A; Sano, F; Nudelman, V; de Farias Sales, V S; Silva Segundo, G R; Villar Guedes, H T; Félix, E; Marques, S M B; Mazzucchelli, J T L; Wandalsen, N F; Pinto, J A; Paes Barreto, I C D; Silva, M R; Rullo, V E V; Franco, J M; Damasceno, E; Fahl, K; de Moraes-Pinto, M I; Del Nero, D L; Moraes, L S L; Condino-Neto, A; Vilela, M M; Góes, H; Schisler, K L; Miranda, E; Goudouris, E S; Costa Carvalho, B T
2015-01-01
PIDs are a heterogeneous group of genetic illnesses, and delay in their diagnosis is thought to be caused by a lack of awareness among physicians concerning PIDs. The latter is what we aimed to evaluate in Brazil. Physicians working at general hospitals all over the country were asked to complete a 14-item questionnaire. One of the questions described 25 clinical situations that could be associated with PIDs and a score was created based on percentages of appropriate answers. A total of 4026 physicians participated in the study: 1628 paediatricians (40.4%), 1436 clinicians (35.7%), and 962 surgeons (23.9%). About 67% of the physicians had learned about PIDs in medical school or residency training, 84.6% evaluated patients who frequently took antibiotics, but only 40.3% of them participated in the immunological evaluation of these patients. Seventy-seven percent of the participating physicians were not familiar with the warning signs for PIDs. The mean score of correct answers for the 25 clinical situations was 48.08% (±16.06). Only 18.3% of the paediatricians, 7.4% of the clinicians, and 5.8% of the surgeons answered at least 2/3 of these situations appropriately. There is a lack of medical awareness concerning PIDs, even among paediatricians, who have been targeted with PID educational programmes in recent years in Brazil. An increase in awareness with regard to these disorders within the medical community is an important step towards improving recognition and treatment of PIDs. Copyright © 2014 SEICAP. Published by Elsevier Espana. All rights reserved.
BROJA-2PID: A Robust Estimator for Bivariate Partial Information Decomposition
NASA Astrophysics Data System (ADS)
Makkeh, Abdullah; Theis, Dirk; Vicente, Raul
2018-04-01
Makkeh, Theis, and Vicente found in [8] that Cone Programming model is the most robust to compute the Bertschinger et al. partial information decompostion (BROJA PID) measure [1]. We developed a production-quality robust software that computes the BROJA PID measure based on the Cone Programming model. In this paper, we prove the important property of strong duality for the Cone Program and prove an equivalence between the Cone Program and the original Convex problem. Then describe in detail our software and how to use it.\
Fractional Order PIλDμ Control for Maglev Guiding System
NASA Astrophysics Data System (ADS)
Hu, Qing; Hu, Yuwei
To effectively suppress the external disturbances and parameter perturbation problem of the maglev guiding system, and improve speed and robustness, the electromagnetic guiding system is exactly linearized using state feedback method, Fractional calculus theory is introduced, the order of integer order PID control was extended to the field of fractional, then fractional order PIλDμ Controller was presented, Due to the extra two adjustable parameters compared with traditional PID controller, fractional order PIλDμ controllers were expected to show better control performance. The results of the computer simulation show that the proposed controller suppresses the external disturbances and parameter perturbation of the system effectively; the system response speed was increased; at the same time, it had flexible structure and stronger robustness.
Hammad, Mohanad M; Elshenawy, Ahmed K; El Singaby, M I
2017-01-01
In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment.
Elshenawy, Ahmed K.; El Singaby, M.I.
2017-01-01
In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment. PMID:28683071
What is the Value Proposition of Persistent Identifiers?
NASA Astrophysics Data System (ADS)
Klump, Jens; Huber, Robert
2017-04-01
Persistent identifiers (PID) are widely used today in scientific communication and documentation. Global unique identification plus persistent resolution of links to referenced digital research objects have been strong selling points for PID Systems as enabling technical infrastructures. Novel applications of PID Systems in research now go beyond the identification of file based objects such as literature or data sets and include the identification of dynamically changing datasets accessed through web services, physical objects, persons and organisations. But not only do we see more use cases but also a proliferation of identifier systems. An analysis of PID Systems used by 1381 repositories listed in the Registry of Research Data Repositories (re3data.org, status of 14 Dec 2015) showed that many disciplinary data repositories make use of PID that are not among the systems promoted by the libraries and publishers (DOI, PURL, ARK). This indicates that a number of communities have developed their own PID Systems. This begs the question, do we need more identifier systems? What makes their value proposition more appealing than those of already existing systems? On the other hand, some of these new use cases deal with entities outside the digital domain, the original scope of application for PIDs. It is therefore necessary to critically appraise the value propositions of available PID Systems and compare these against the requirements of new use cases for PID. Undoubtedly, DOI are the most used persistent identifier in scholarly communication. It was originally designed "to link customers with publishers, facilitate electronic commerce, and enable copyright management systems." Today, the DOI system is described as providing "a technical and social infrastructure for the registration and use of persistent interoperable identifiers for use on digital networks". This example shows how value propositions can change over time. Additional value can be gained by cross-linking between PID Systems, thus allowing new scholarly documentation and evaluation methods such as documenting the track record of researchers in publications and successful funding proposals, apply advanced bibliometric approaches, estimate the output and impact of funding, assess the reuse and subsequent impact of data publications, demonstrate the efficient use of research infrastructures, etc. This recombination of systems raise a series of new expectations and each stakeholder group may have its own vision of the benefits and value proposition of PIDs, which might be in conflict with others. New PID applications will arise with the application of PID Systems to semantic web technologies and to the Internet of Things, which extend PID applications to beyond digital objects to concepts and things, respectively, raising yet again their own expectations and value propositions. What are we trying to identify? What is the purpose served by identifying it? What are the implications for semantic web technologies? How certain can we be about the identity of an object and its state changes over time (Ship of Theseus Paradox)? In this presentation we will discuss a number of PID use cases and match these against the value propositions offered by a selection of PID Systems.
Wasserman, Richard L; Melamed, Isaac R; Stein, Mark R; Jolles, Stephen; Norton, Miranda; Moy, James N
2017-04-01
This phase 3, multicenter, open-label, randomized, two-period, crossover bioequivalence trial evaluated the safety, tolerability, and pharmacokinetics of intravenous immunoglobulins (IVIGs) Gammaplex 5% and Gammaplex 10% in 33 adults and 15 children with primary immunodeficiency diseases (PIDs). Eligible adults received five Gammaplex 5% infusions followed by five Gammaplex 10% infusions, or vice versa, stratified by a 21- or 28-day dosing regimen. Pediatric subjects received five Gammaplex 10% infusions only. The primary objective, to demonstrate the bioequivalence of Gammaplex 10% and Gammaplex 5% at the 28-day dosing interval, was met based on the Gammaplex 10%/Gammaplex 5% ratio of area under the concentration versus time curve (AUC 0-28 ) values. Throughout the study, total immunoglobulin G trough levels were well maintained, with total values generally ≥600 mg/dL (minimum level for study inclusion). At the dosing schedules and infusion rates used in this study, safety and tolerability were comparable and acceptable in adult and pediatric PID subjects treated with Gammaplex 10% and 5%. In this study, the first direct comparison of 5% IVIG and 10% IVIG products in PID subjects, the pharmacokinetic analysis demonstrated bioequivalence of Gammaplex 10% and Gammaplex 5% at the 28-day dosing interval. The Gammaplex 10% formulation was safe and well tolerated in pediatric and adult PID subjects. Based on the results from this bridging study in PID subjects, Gammaplex 10% could be expected to have a therapeutic effect similar to the licensed Gammaplex 5%, which has demonstrated efficacy and tolerability in patients with PID and idiopathic thrombocytopenic purpura.
NASA Technical Reports Server (NTRS)
Moes, Timothy R.; Smith, Mark S.; Morelli, Eugene A.
2003-01-01
Near real-time stability and control derivative extraction is required to support flight demonstration of Intelligent Flight Control System (IFCS) concepts being developed by NASA, academia, and industry. Traditionally, flight maneuvers would be designed and flown to obtain stability and control derivative estimates using a postflight analysis technique. The goal of the IFCS concept is to be able to modify the control laws in real time for an aircraft that has been damaged in flight. In some IFCS implementations, real-time parameter identification (PID) of the stability and control derivatives of the damaged aircraft is necessary for successfully reconfiguring the control system. This report investigates the usefulness of Prescribed Simultaneous Independent Surface Excitations (PreSISE) to provide data for rapidly obtaining estimates of the stability and control derivatives. Flight test data were analyzed using both equation-error and output-error PID techniques. The equation-error PID technique is known as Fourier Transform Regression (FTR) and is a frequency-domain real-time implementation. Selected results were compared with a time-domain output-error technique. The real-time equation-error technique combined with the PreSISE maneuvers provided excellent derivative estimation in the longitudinal axis. However, the PreSISE maneuvers as presently defined were not adequate for accurate estimation of the lateral-directional derivatives.
Attentiveness of pediatricians to primary immunodeficiency disorders
2012-01-01
Background Primary immunodeficiency (PID) is a cluster of serious disorders that requires special alertness on the part of the medical staff for prompt diagnosis and management of the patient. This study explored PID knowledge and experience among pediatricians of wide educational backgrounds, practicing in the United Arab Emirates (UAE). Method A self-administered questionnaire was used to determine the competency of pediatricians in their knowledge of PID disorders. This study questionnaire included questions on PID signs and symptoms, syndromes associated with immunodeficiency, screening tests, interpreting laboratory tests and case management. The participants were 263 pediatricians of diverse education working in the 27 governmental hospitals in all regions of UAE. Results The overall performance of the pediatricians did not differ based on their age, gender, origin of certification, rank, or years of experience. Of the 50 questions, 20% of pediatricians answered correctly <60% of the questions, 76% answered correctly 60 to 79% of the questions, and 4% answered correctly ≥80% of the questions. Seventeen of the 19 PID signs and symptoms were identified by 55 to 97%. Four of 5 syndromes associated with immunodeficiency were identified by 50 to 90%. Appropriate screening tests were chosen by 64 to 96%. Attention to the laboratory reference range values as function of patient age was notably limited. Conclusions There was a noteworthy deficiency in PID work-up. Therefore, implementing effective educational strategies is needed to improve the competency of pediatricians to diagnose and manage PID disorders. PMID:22846098
History of Primary Immunodeficiency Diseases in Iran
Aghamohammadi, Asghar; Moin, Mostafa; Rezaei, Nima
2010-01-01
Pediatric immunology came into sight in the second half of 20th century, when pediatricians and basic immunologists began to give attention to diagnosis and treatment of children with primary immunodeficiency diseases (PIDs). Understanding the genetic and mechanistic basis of PIDs provides unique insight into the functioning of the immune system. By progress in basic and clinical immunology, many infrastructural organizations and academic centers have been established in many countries worldwide to focus on training and research on the immune system and related disorders. Along with progress in basic and clinical immunology in the world, pediatric immunology had a good progress in Iran during the last 33-year period. Now, patients with PIDs can benefit from multidisciplinary comprehensive care, which is provided by clinical immunologists in collaboration with other specialists. Patients with history of recurrent and/or chronic infections suggestive of PIDs are evaluated by standard and research-based testing and receive appropriate treatment. The progress in PIDs can be described in three periods. Development of training program for clinical fellowship in allergy and immunology, multidisciplinary and international collaborative projects, primary immunodeficiency diseases textbooks, meetings on immunodeficiency disorders, improvement in diagnosis and treatment, and construction of Iranian primary immunodeficiency association, Students' research group for immunodeficiencies, Iranian primary immunodeficiency registry, and the immunological societies and centers were the main activities on PIDs during these years. In this article, we review the growth of modern pediatric immunology and PIDs status in Iran. PMID:23056678
Herzog, Sereina A; Low, Nicola; Berghold, Andrea
2015-06-19
The success of an intervention to prevent the complications of an infection is influenced by the natural history of the infection. Assumptions about the temporal relationship between infection and the development of sequelae can affect the predicted effect size of an intervention and the sample size calculation. This study investigates how a mathematical model can be used to inform sample size calculations for a randomised controlled trial (RCT) using the example of Chlamydia trachomatis infection and pelvic inflammatory disease (PID). We used a compartmental model to imitate the structure of a published RCT. We considered three different processes for the timing of PID development, in relation to the initial C. trachomatis infection: immediate, constant throughout, or at the end of the infectious period. For each process we assumed that, of all women infected, the same fraction would develop PID in the absence of an intervention. We examined two sets of assumptions used to calculate the sample size in a published RCT that investigated the effect of chlamydia screening on PID incidence. We also investigated the influence of the natural history parameters of chlamydia on the required sample size. The assumed event rates and effect sizes used for the sample size calculation implicitly determined the temporal relationship between chlamydia infection and PID in the model. Even small changes in the assumed PID incidence and relative risk (RR) led to considerable differences in the hypothesised mechanism of PID development. The RR and the sample size needed per group also depend on the natural history parameters of chlamydia. Mathematical modelling helps to understand the temporal relationship between an infection and its sequelae and can show how uncertainties about natural history parameters affect sample size calculations when planning a RCT.
DeJournett, Jeremy; DeJournett, Leon
2017-11-01
Effective glucose control in the intensive care unit (ICU) setting has the potential to decrease morbidity and mortality rates and thereby decrease health care expenditures. To evaluate what constitutes effective glucose control, typically several metrics are reported, including time in range, time in mild and severe hypoglycemia, coefficient of variation, and others. To date, there is no one metric that combines all of these individual metrics to give a number indicative of overall performance. We proposed a composite metric that combines 5 commonly reported metrics, and we used this composite metric to compare 6 glucose controllers. We evaluated the following controllers: Ideal Medical Technologies (IMT) artificial-intelligence-based controller, Yale protocol, Glucommander, Wintergerst et al PID controller, GRIP, and NICE-SUGAR. We evaluated each controller across 80 simulated patients, 4 clinically relevant exogenous dextrose infusions, and one nonclinical infusion as a test of the controller's ability to handle difficult situations. This gave a total of 2400 5-day simulations, and 585 604 individual glucose values for analysis. We used a random walk sensor error model that gave a 10% MARD. For each controller, we calculated severe hypoglycemia (<40 mg/dL), mild hypoglycemia (40-69 mg/dL), normoglycemia (70-140 mg/dL), hyperglycemia (>140 mg/dL), and coefficient of variation (CV), as well as our novel controller metric. For the controllers tested, we achieved the following median values for our novel controller scoring metric: IMT: 88.1, YALE: 46.7, GLUC: 47.2, PID: 50, GRIP: 48.2, NICE: 46.4. The novel scoring metric employed in this study shows promise as a means for evaluating new and existing ICU-based glucose controllers, and it could be used in the future to compare results of glucose control studies in critical care. The IMT AI-based glucose controller demonstrated the most consistent performance results based on this new metric.
Tamarelle, Jeanne; Thiébaut, Anne C M; Sabin, Bénédicte; Bébéar, Cécile; Judlin, Philippe; Fauconnier, Arnaud; Rahib, Delphine; Méaude-Roufai, Layidé; Ravel, Jacques; Morré, Servaas A; de Barbeyrac, Bertille; Delarocque-Astagneau, Elisabeth
2017-11-13
Genital infection with Chlamydia trachomatis (Ct) is the most common bacterial sexually transmitted infection, especially among young women. Mostly asymptomatic, it can lead, if untreated, to pelvic inflammatory disease (PID), tubal factor infertility and ectopic pregnancy. Recent data suggest that Ct infections are not controlled in France and in Europe. The effectiveness of a systematic strategy for Ct screening in under-25 women remains controversial. The main objective of the i-Predict trial (Prevention of Diseases Induced by Chlamydia trachomatis) is to determine whether early screening and treatment of 18- to-24-year-old women for genital Ct infection reduces the incidence of PID over 24 months. This is a randomised prevention trial including 4000 eighteen- to twenty-four-year-old sexually active female students enrolled at five universities. The participants will provide a self-collected vaginal swab sample and fill in an electronic questionnaire at baseline and at 6, 12 and 18 months after recruitment. Vaginal swabs in the intervention arm will be analysed immediately for Ct positivity, and participants will be referred for treatment if they have a positive test result. Vaginal swabs from the control arm will be analysed at the end of the study. All visits to general practitioners, gynaecologists or gynaecology emergency departments for pelvic pain or other gynaecological symptoms will be recorded to evaluate the incidence of PID, and all participants will attend a final visit in a hospital gynaecology department. The primary endpoint measure will be the incidence of PID over 24 months. The outcome status (confirmed, probable or no PID) will be assessed by two independent experts blinded to group assignment and Ct status. This trial is expected to largely contribute to the development of recommendations for Ct screening in young women in France to prevent PID and related complications. It is part of a comprehensive approach to gathering data to facilitate decision-making regarding optimal strategies for Ct infection control. The control group of this randomised trial, following current recommendations, will allow better documentation of the natural history of Ct infection, a prerequisite to evaluating the impact of Ct screening. Characterisation of host immunogenetics will also allow identification of women at risk for complications. ClinicalTrials.gov, NCT02904811 . Registered on September 14, 2016. World Health Organisation International Clinical Trials Registry, NCT02904811. AOM, 15-0063 and P150950. Registered on September 26, 2016. A completed Standard Protocol Items : Recommendations for International Trials (SPIRIT) Checklist is available in additional file 1.
Salomir, Rares; Rata, Mihaela; Cadis, Daniela; Petrusca, Lorena; Auboiroux, Vincent; Cotton, François
2009-10-01
Endocavitary high intensity contact ultrasound (HICU) may offer interesting therapeutic potential for fighting localized cancer in esophageal or rectal wall. On-line MR guidance of the thermotherapy permits both excellent targeting of the pathological volume and accurate preoperatory monitoring of the temperature elevation. In this article, the authors address the issue of the automatic temperature control for endocavitary phased-array HICU and propose a tailor-made thermal model for this specific application. The convergence and stability of the feedback loop were investigated against tuning errors in the controller's parameters and against input noise, through ex vivo experimental studies and through numerical simulations in which nonlinear response of tissue was considered as expected in vivo. An MR-compatible, 64-element, cooled-tip, endorectal cylindrical phased-array applicator of contact ultrasound was integrated with fast MR thermometry to provide automatic feedback control of the temperature evolution. An appropriate phase law was applied per set of eight adjacent transducers to generate a quasiplanar wave, or a slightly convergent one (over the circular dimension). A 2D physical model, compatible with on-line numerical implementation, took into account (1) the ultrasound-mediated energy deposition, (2) the heat diffusion in tissue, and (3) the heat sink effect in the tissue adjacent to the tip-cooling balloon. This linear model was coupled to a PID compensation algorithm to obtain a multi-input single-output static-tuning temperature controller. Either the temperature at one static point in space (situated on the symmetry axis of the beam) or the maximum temperature in a user-defined ROI was tracked according to a predefined target curve. The convergence domain in the space of controller's parameters was experimentally explored ex vivo. The behavior of the static-tuning PID controller was numerically simulated based on a discrete-time iterative solution of the bioheat transfer equation in 3D and considering temperature-dependent ultrasound absorption and blood perfusion. The intrinsic accuracy of the implemented controller was approximately 1% in ex vivo trials when providing correct estimates for energy deposition and heat diffusivity. Moreover, the feedback loop demonstrated excellent convergence and stability over a wide range of the controller's parameters, deliberately set to erroneous values. In the extreme case of strong underestimation of the ultrasound energy deposition in tissue, the temperature tracking curve alone, at the initial stage of the MR-controlled HICU treatment, was not a sufficient indicator for a globally stable behavior of the feedback loop. Our simulations predicted that the controller would be able to compensate for tissue perfusion and for temperature-dependent ultrasound absorption, although these effects were not included in the controller's equation. The explicit pattern of acoustic field was not required as input information for the controller, avoiding time-consuming numerical operations. The study demonstrated the potential advantages of PID-based automatic temperature control adapted to phased-array MR-guided HICU therapy. Further studies will address the integration of this ultrasound device with a miniature RF coil for high resolution MRI and, subsequently, the experimental behavior of the controller in vivo.
Foiret, Josquin; Ferrara, Katherine W.
2015-01-01
Mild hyperthermia has been successfully employed to induce reversible physiological changes that can directly treat cancer and enhance local drug delivery. In this approach, temperature monitoring is essential to avoid undesirable biological effects that result from thermal damage. For thermal therapies, Magnetic Resonance Imaging (MRI) has been employed to control real-time Focused Ultrasound (FUS) therapies. However, combined ultrasound imaging and therapy systems offer the benefits of simple, low-cost devices that can be broadly applied. To facilitate such technology, ultrasound thermometry has potential to reliably monitor temperature. Control of mild hyperthermia was previously achieved using a proportional-integral-derivative (PID) controller based on thermocouple measurements. Despite accurate temporal control of heating, this method is limited by the single position at which the temperature is measured. Ultrasound thermometry techniques based on exploiting the thermal dependence of acoustic parameters (such as longitudinal velocity) can be extended to create thermal maps and allow an accurate monitoring of temperature with good spatial resolution. However, in vivo applications of this technique have not been fully developed due to the high sensitivity to tissue motion. Here, we propose a motion compensation method based on the acquisition of multiple reference frames prior to treatment. The technique was tested in the presence of 2-D and 3-D physiological-scale motion and was found to provide effective real-time temperature monitoring. PID control of mild hyperthermia in presence of motion was then tested with ultrasound thermometry as feedback and temperature was maintained within 0.3°C of the requested value. PMID:26244783
Newborn screening using TREC/KREC assay for severe T and B cell lymphopenia in Iran.
Nourizadeh, Maryam; Shakerian, Leila; Borte, Stephan; Fazlollahi, Mohammadreza; Badalzadeh, Mohsen; Houshmand, Massoud; Alizadeh, Zahra; Dalili, Hossein; Rashidi-Nezhad, Ali; Kazemnejad, Anoshirvan; Moin, Mostafa; Hammarström, Lennart; Pourpak, Zahra
2018-06-26
T-cell receptor excision circles (TRECs) and κ-deleting recombination excision circles (KRECs) are recently used for detection of T or B cell lymphopenia in neonates based on region-specific cutoff levels. Here, we report cutoffs for TREC and KREC copies useful for newborn screening and/or diagnosis of primary immunodeficiency diseases (PID) in Iran. DNA was extracted from a single 3.2 mm punch of dried blood spots collected from 2160 anonymized newborns referred to two major referral health centers between 2014 and 2016. For refinement of the cutoffs, 51 patients with a definite diagnosis of severe combined immunodeficiency, X-linked agammaglobulinaemia and combined immunodeficiency, including ataxia telangiectasia, human phosphoglucomutase 3 and Janus kinase-3 deficiency, as well as 47 healthy controls were included. Samples from patients with an X-linked hyper-IgM-syndrome, Wiskott-Aldrich syndrome and DNA ligase 4 deficiency were considered as disease controls. Triplex-quantitative real-time PCR was used. Cutoffs were calculated as TRECs < 11 and KRECs < 6 copies with an ACTB > 700 copies with sensitivity of 100% for TREC and 97% for KREC. Among thirty anonymized newborn samples (1.5%) with abnormal results for TREC and/or KREC, only twenty one available cases were retested and shown to be in the normal range except for three samples (0.15%). All of the patients with a definitive diagnosis were correctly identified based on our established TREC/KREC copy numbers. Determining cutoffs for TREC/KREC is essential for correctly identifying children with PID in newborn screening. Early diagnosis of PID patients enables appropriate measures and therapies like stem cell transplantation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Robust feedback zoom tracking for digital video surveillance.
Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong
2012-01-01
Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance.
Fossati, Andrea; Somma, Antonella; Borroni, Serena; Maffei, Cesare; Markon, Kristian E; Krueger, Robert F
2016-02-01
In order to evaluate if measures of DSM-5 Alternative PD Model domains predicted interview-based scores of general personality pathology when compared to self-report measures of DSM-IV Axis II/DSM-5 Section II PD criteria, 300 Italian community adults were administered the Iowa Personality Disorder Screen (IPDS) interview, the Personality Inventory for DSM-5 (PID-5), and the Personality Diagnostic Questionnaire-4+ (PDQ-4+). Multiple regression analyses showed that the five PID-5 domain scales collectively explained an adequate rate of the variance of the IPDS interview total score. This result was slightly lower than the amount of variance in the IPDS total score explained by the 10 PDQ-4+ scales. The PID-5 traits scales performed better than the PDQ-4+, although the difference was marginal. Hierarchical regression analyses revealed that the PID-5 domain and trait scales provided a moderate, but significant increase in the prediction of the general level of personality pathology above and beyond the PDQ-4+ scales.
Herzog, Sereina A; Heijne, Janneke C M; Scott, Pippa; Althaus, Christian L; Low, Nicola
2013-11-01
Pelvic inflammatory disease (PID) results from the ascending spread of microorganisms, including Chlamydia trachomatis, to the upper genital tract. Screening could improve outcomes by identifying and treating chlamydial infections before they progress to PID (direct effect) or by reducing chlamydia transmission (indirect effect). We developed a compartmental model that represents a hypothetical heterosexual population and explicitly incorporates progression from chlamydia to clinical PID. Chlamydia screening was introduced, with coverage increasing each year for 10 years. We estimated the separate contributions of the direct and indirect effects of screening on PID cases prevented per 100,000 women. We explored the influence of varying the time point at which clinical PID could occur and of increasing the risk of PID after repeated chlamydial infections. The probability of PID at baseline was 3.1% by age 25 years. After 5 years, the intervention scenario had prevented 187 PID cases per 100,000 women and after 10 years 956 PID cases per 100,000 women. At the start of screening, most PID cases were prevented by the direct effect. The indirect effect produced a small net increase in PID cases, which was outweighed by the effect of reduced chlamydia transmission after 2.2 years. The later that progression to PID occurs, the greater the contribution of the direct effect. Increasing the risk of PID with repeated chlamydial infection increases the number of PID cases prevented by screening. This study shows the separate roles of direct and indirect PID prevention and potential harms, which cannot be demonstrated in observational studies.
Price, Malcolm J; Ades, A E; Soldan, Kate; Welton, Nicky J; Macleod, John; Simms, Ian; DeAngelis, Daniela; Turner, Katherine Me; Horner, Paddy J
2016-03-01
The evidence base supporting the National Chlamydia Screening Programme, initiated in 2003, has been questioned repeatedly, with little consensus on modelling assumptions, parameter values or evidence sources to be used in cost-effectiveness analyses. The purpose of this project was to assemble all available evidence on the prevalence and incidence of Chlamydia trachomatis (CT) in the UK and its sequelae, pelvic inflammatory disease (PID), ectopic pregnancy (EP) and tubal factor infertility (TFI) to review the evidence base in its entirety, assess its consistency and, if possible, arrive at a coherent set of estimates consistent with all the evidence. Evidence was identified using 'high-yield' strategies. Bayesian Multi-Parameter Evidence Synthesis models were constructed for separate subparts of the clinical and population epidemiology of CT. Where possible, different types of data sources were statistically combined to derive coherent estimates. Where evidence was inconsistent, evidence sources were re-interpreted and new estimates derived on a post-hoc basis. An internally coherent set of estimates was generated, consistent with a multifaceted evidence base, fertility surveys and routine UK statistics on PID and EP. Among the key findings were that the risk of PID (symptomatic or asymptomatic) following an untreated CT infection is 17.1% [95% credible interval (CrI) 6% to 29%] and the risk of salpingitis is 7.3% (95% CrI 2.2% to 14.0%). In women aged 16-24 years, screened at annual intervals, at best, 61% (95% CrI 55% to 67%) of CT-related PID and 22% (95% CrI 7% to 43%) of all PID could be directly prevented. For women aged 16-44 years, the proportions of PID, EP and TFI that are attributable to CT are estimated to be 20% (95% CrI 6% to 38%), 4.9% (95% CrI 1.2% to 12%) and 29% (95% CrI 9% to 56%), respectively. The prevalence of TFI in the UK in women at the end of their reproductive lives is 1.1%: this is consistent with all PID carrying a relatively high risk of reproductive damage, whether diagnosed or not. Every 1000 CT infections in women aged 16-44 years, on average, gives rise to approximately 171 episodes of PID and 73 of salpingitis, 2.0 EPs and 5.1 women with TFI at age 44 years. The study establishes a set of interpretations of the major studies and study designs, under which a coherent set of estimates can be generated. CT is a significant cause of PID and TFI. CT screening is of benefit to the individual, but detection and treatment of incident infection may be more beneficial. Women with lower abdominal pain need better advice on when to seek early medical attention to avoid risk of reproductive damage. The study provides new insights into the reproductive risks of PID and the role of CT. Further research is required on the proportions of PID, EP and TFI attributable to CT to confirm predictions made in this report, and to improve the precision of key estimates. The cost-effectiveness of screening should be re-evaluated using the findings of this report. The Medical Research Council grant G0801947.
Photoacoustic-Based-Close-Loop Temperature Control for Nanoparticle Hyperthermia.
Xiaohua, Feng; Fei, Gao; Yuanjin, Zheng
2015-07-01
Hyperthermia therapy requires tight temperature control to achieve selective killing of cancerous tissue with minimal damage on surrounding healthy tissues. To this end, accurate temperature monitoring and subsequent heating control are critical. However, an economic, portable, and real-time temperature control solution is currently lacking. To bridge this gap, we present a novel portable close-loop system for hyperthermia temperature control, in which photoacoustic technique is proposed for noninvasive real-time temperature measurement. Exploiting the high sensitivity of photoacoustics, the temperature is monitored with an accuracy of around 0.18 °C and then fed back to a controller implemented on field programmable gate array (FPGA) for temperature control. Dubbed as portable hyperthermia feedback controller (pHFC), it stabilizes the temperature at preset values by regulating the hyperthermia power with a proportional-integral-derivative (PID) algorithm; and to facilitate digital implementation, the pHFC further converts the PID output into switching values (0 and 1) with the pulse width modulation (PWM) algorithm. Proof-of-concept hyperthermia experiments demonstrate that the pHFC system is able to bring the temperature from baseline to predetermined value with an accuracy of 0.3° and a negligible temperature overshoot. The pHFC can potentially be translated to clinical applications with customized hyperthermia system design. This paper can facilitate future efforts in seamless integration of close-loop temperature control solution and various clinical hyperthermia systems.
Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot.
Niu, Jie; Yang, Qianqian; Chen, Guangtao; Song, Rong
2017-07-01
This paper introduces a cable-driven robot for upper-limb rehabilitation. Kinematic and dynamic of this rehabilitation robot is analyzed. A sliding mode controller combined with a nonlinear disturbance observer is proposed to control this robot in the presence of disturbances. Simulation is carried out to prove the effectiveness of the proposed control scheme, and the results of the proposed controller is compared with a PID controller and a traditional sliding mode controller. Results show that the proposed controller can effectively improve the tracking performance as compared with the other two controllers and cause lower chattering as compared with a traditional sliding mode controller.
Trustworthy persistent identifier systems of the future
NASA Astrophysics Data System (ADS)
Golodoniuc, Pavel; Klump, Jens; Car, Nicholas
2016-04-01
Over the last two decades, persistent identifier (PID) systems have seen some significant changes in their governance policies, system capabilities, and technology. The development of most systems was driven by two main application areas, namely archives and libraries. Guidelines and criteria for trustworthy PID systems have been clearly devised (Bütikofer, 2009) and many PID system implementations for the identification of static digital objects have been built (e.g., PURL). However systems delivering persistent identifiers for dynamic datasets are not yet mature. There has been a rapid proliferation of different PID systems caused by the specific technical or organisational requirements of various communities that could not be met by existing systems such as DOI, ISBN, and EAN. Many of these different systems were limited by their inability to provide native means of persistent identifier resolution. This has prompted a decoupling of PID-associated data from the resolution service and this is where the Handle system has played a significant role. The Handle allowed to build a distributed system of independently managed resolver services. A trustworthy PID system must be designed to outlive the objects it provides persistent identifiers for, which may cease to exist or otherwise be deprecated, and the technology used to implement it, which will certainly need to change with time. We propose that such a system should rest on four pillars of agreements - (i) definitions, (ii) policies, (iii) services, and (iv) data services, to ensure longevity. While we believe all four pillars are equally important, we intentionally leave regulating aspects of issuing of identifiers and their registration out of the scope of this paper and focus on the agreements that have to be established between PID resolver services and the data sources indicated by the persistent identifiers. We propose an approach to development of PID systems that combines the use of (a) the Handle system as a highly distributed system of independent nodes that provides registration and first-degree resolution facilities for persistent identifiers, and (b) the PID Service tool to enable fine-grained resolution of object representations in dynamic datasets using parameterized requests. The PID Service, deployed in close proximity to data services and managed by individual organisations, gives great flexibility and control over multiple representations and versions of information objects in data stores while allowing basic resolution via the Handle system. Through the assessment proposals and implementation example we give, we highlight a critical aspect of PID system design and implementation that we believe is often neglected - the protocols and procedures required for PID system decommissioning. These protocols and procedures are needed in order for PID systems' core data to be able to be transferred to successor systems when current systems need replacing, as we indicate they inevitably will. Not knowing what successor systems may be, we strongly believe in using open standard formats as this gives future system implementers the best possible chance of being able to work with the data export. Smooth system handover will ensure that identifiers minted today will actually persist into the future.
Kendler, K S; Aggen, S H; Gillespie, Nathan; Neale, M C; Knudsen, G P; Krueger, R F; Czajkowski, Nikolai; Ystrom, Eivind; Reichborn-Kjennerud, T
2017-04-01
Recent work has suggested a high level of congruence between normative personality, most typically represented by the "big five" factors, and abnormal personality traits. In 2,293 Norwegian adult twins ascertained from a population-based registry, the authors evaluated the degree of sharing of genetic and environmental influences on normative personality, assessed by the Big Five Inventory (BFI), and personality disorder traits (PDTs), assessed by the Personality Inventory for DSM-5-Norwegian Brief Form (PID-5-NBF). For four of the five BFI dimensions, the strongest genetic correlation was observed with the expected PID-5-NBF dimension (e.g., neuroticism with negative affectivity [+], conscientiousness with disinhibition [-]). However, neuroticism, conscientiousness, and agreeableness had substantial genetic correlations with other PID-5-NBF dimensions (e.g., neuroticism with compulsivity [+], agreeableness with detachment [-]). Openness had no substantial genetic correlations with any PID-5-NBF dimension. The proportion of genetic risk factors shared in aggregate between the BFI traits and the PID-5-NBF dimensions was quite high for conscientiousness and neuroticism, relatively robust for extraversion and agreeableness, but quite low for openness. Of the six PID-5-NBF dimensions, three (negative affectivity, detachment, and disinhibition) shared, in aggregate, most of their genetic risk factors with normative personality traits. Genetic factors underlying psychoticism, antagonism, and compulsivity were shared to a lesser extent, suggesting that they are influenced by etiological factors not well indexed by the BFI.
Position control of an industrial robot using fractional order controller
NASA Astrophysics Data System (ADS)
Clitan, Iulia; Muresan, Vlad; Abrudean, Mihail; Clitan, Andrei; Miron, Radu
2017-02-01
This paper presents the design of a control structure that ensures no overshoot for the movement of an industrial robot, used for the evacuation of round steel blocks from inside a rotary hearth furnace. First, a mathematical model for the positioning system is derived from a set of experimental data, and further, the paper focuses on obtaining a PID type controller, using the relay method as tuning method in order to obtain a stable closed loop system. The controller parameters are further tuned in order to achieve the imposed set of performances for the positioning of the industrial robot through computer simulation, using trial and error method. Further, a fractional - order PID controller is obtained in order to improve the control signal variation, so as to fit within the range of unified current's variation, 4 to 20 mA.
Pacheco, Misty; Sentell, Tetine; Katz, Alan R
2014-04-01
Hawaii is one of only 19 states for which pelvic inflammatory disease (PID) is a mandated notifiable disease. In order to assess the completeness of PID reporting, we compared the number of hospitalized PID cases in the state of Hawaii with the total number of PID cases reported to the Hawaii State Department of Health surveillance system from 2007 through 2010. While 828 unique PID cases were diagnosed in Hawaii hospitals, only 240 unique PID cases were reported through the state's surveillance system. Severe PID underreporting was seen despite mandatory reporting laws.
Clinical features that identify children with primary immunodeficiency diseases.
Subbarayan, Anbezhil; Colarusso, Gloria; Hughes, Stephen M; Gennery, Andrew R; Slatter, Mary; Cant, Andrew J; Arkwright, Peter D
2011-05-01
The 10 warning signs of primary immunodeficiency diseases (PID) have been promoted by various organizations in Europe and the United States to predict PID. However, the ability of these warning signs to identify children with PID has not been rigorously tested. The main goal of this study was to determine the effectiveness of these 10 warning signs in predicting defined PID among children who presented to 2 tertiary pediatric immunodeficiency centers in the north of England. A retrospective survey of 563 children who presented to 2 pediatric immunodeficiency centers was undertaken. The clinical records of 430 patients with a defined PID and 133 patients for whom detailed investigations failed to establish a specific PID were reviewed. Overall, 96% of the children with PID were referred by hospital clinicians. The strongest identifiers of PID were a family history of immunodeficiency disease in addition to use of intravenous antibiotics for sepsis in children with neutrophil PID and failure to thrive in children with T-lymphocyte PID. With these 3 signs, 96% of patients with neutrophil and complement deficiencies and 89% of children with T-lymphocyte immunodeficiencies could be identified correctly. Family history was the only warning sign that identified children with B-lymphocyte PID. PID awareness initiatives should be targeted at hospital pediatricians and families with a history of PID rather than the general public. Our results provide the general pediatrician with a simple refinement of 10 warning signs for identifying children with underlying immunodeficiency diseases.
Alexopoulos, George S; Kiosses, Dimitris N; Sirey, Jo Anne; Kanellopoulos, Dora; Seirup, Joanna K; Novitch, Richard S; Ghosh, Samiran; Banerjee, Samprit; Raue, Patrick J
2014-11-01
We developed a personalized intervention for depressed patients with COPD (PID-C) aimed to mobilize patients to participate in the care of both conditions. We showed that PID-C reduced depressive symptoms and dyspnea-related disability more than usual care over 28 weeks. This study focused on untangling key therapeutic ingredients of PID-C. Randomized controlled trial. Community. 138 patients who received the diagnoses of COPD and major depression after screening 898 consecutive admissions for acute inpatient pulmonary rehabilitation. Nine sessions of PID-C compared with usual care over 28 weeks. Primary outcome measures were the 17-item Hamilton Depression Rating Scale and the Pulmonary Functional Status and Dyspnea Questionnaire-Modified. Other measures were adherence to rehabilitation exercise (≥2 hours per week) and adherence to adequate antidepressant prescriptions. Low severity of dyspnea-related disability and adherence to antidepressants predicted subsequent improvement of depression. Exercise and low depression severity predicted improvement of dyspnea-related disability. PID-C led to an interacting spiral of improvement in both depression and disability in a gravely medically ill population with a 17% mortality rate over 28 weeks and an expected deterioration in disability. The interrelationship of the course of depression and dyspnea-related disability underscores the need to target adherence to both antidepressants and chronic obstructive pulmonary disease rehabilitation. PID-C may serve as a care management model for depressed persons suffering from medical illnesses with a deteriorating course. Copyright © 2014 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
The COMPASS Tokamak Plasma Control Software Performance
NASA Astrophysics Data System (ADS)
Valcarcel, Daniel F.; Neto, André; Carvalho, Ivo S.; Carvalho, Bernardo B.; Fernandes, Horácio; Sousa, Jorge; Janky, Filip; Havlicek, Josef; Beno, Radek; Horacek, Jan; Hron, Martin; Panek, Radomir
2011-08-01
The COMPASS tokamak has began operation at the IPP Prague in December 2008. A new control system has been built using an ATCA-based real-time system developed at IST Lisbon. The control software is implemented on top of the MARTe real-time framework attaining control cycles as short as 50 μs, with a jitter of less than 1 μs. The controlled parameters, important for the plasma performance, are the plasma current, position of the plasma current center, boundary shape and horizontal and vertical velocities. These are divided in two control cycles: slow at 500 μs and fast at 50 μs. The project has two phases. First, the software implements a digital controller, similar to the analog one used during the COMPASS-D operation in Culham. In the slow cycle, the plasma current and position are measured and controlled with PID and feedforward controllers, respectively, the shaping magnetic field is preprogrammed. The vertical instability and horizontal equilibrium are controlled with the faster 50-μs cycle PID controllers. The second phase will implement a plasma-shape reconstruction algorithm and controller, aiming at optimized plasma performance. The system was designed to be as modular as possible by breaking the functional requirements of the control system into several independent and specialized modules. This splitting enabled tuning the execution of each system part and to use the modules in a variety of applications with different time constraints. This paper presents the design and overall performance of the COMPASS control software.
Disturbance observer based pitch control of wind turbines for disturbance rejection
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Chen, Xu; Tang, Jiong
2016-04-01
In this research, a disturbance observer based (DOB) control scheme is illustrated to reject the unknown low frequency disturbances to wind turbines. Specifically, we aim at maintaining the constant output power but achieving better generator speed regulation when the wind turbine is operated at time-varying and turbulent wind field. The disturbance observer combined with a filter is designed to asymptotically reject the persistent unknown time-varying disturbances. The proposed algorithm is tested in both linearized and nonlinear NREL offshore 5-MW baseline wind turbine. The application of this DOB pitch controller achieves improved power and speed regulation in Region 3 compared with a baseline gain scheduling PID collective controller both in linearized and nonlinear plant.
Position control of an electro-pneumatic system based on PWM technique and FLC.
Najjari, Behrouz; Barakati, S Masoud; Mohammadi, Ali; Futohi, Muhammad J; Bostanian, Muhammad
2014-03-01
In this paper, modeling and PWM based control of an electro-pneumatic system, including the four 2-2 valves and a double acting cylinder are studied. Dynamic nonlinear behavior of the system, containing fast switching solenoid valves and a pneumatic cylinder, as well as electrical, magnetic, mechanical, and fluid subsystems are modeled. A DC-DC power converter is employed to improve solenoid valve performance and suppress system delay. Among different position control methods, a proportional integrator derivative (PID) controller and fuzzy logic controller (FLC) are evaluated. An experimental setup, using an AVR microcontroller is implemented. Simulation and experimental results verify the effectiveness of the proposed control strategies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Puppe, B; Schön, P C; Wendland, K
1999-07-01
The paper presents a new system for the automatic monitoring of open field activity and choice behaviour of medium-sized animals. Passive infrared motion detectors (PID) were linked on-line via a digital I/O interface to a personal computer provided with self-developed analysis software based on LabVIEW (PID technique). The set up was used for testing 18 one-week-old piglets (Sus scrofa) for their approach to their mother's nursing vocalization replayed through loudspeakers. The results were validated by comparison with a conventional Observer technique, a computer-aided direct observation. In most of the cases, no differences were seen between the Observer and PID technique regarding the percentage of stay in previously defined open field segments, the locomotor open field activity, and the choice behaviour. The results revealed that piglets are clearly attracted by their mother's nursing vocalization. The monitoring system presented in this study is thus suitable for detailed behavioural investigations of individual acoustic recognition. In general, the PID technique is a useful tool for research into the behaviour of individual animals in a restricted open field which does not rely on subjective analysis by a human observer.
Controllers, observers, and applications thereof
NASA Technical Reports Server (NTRS)
Gao, Zhiqiang (Inventor); Zhou, Wankun (Inventor); Miklosovic, Robert (Inventor); Radke, Aaron (Inventor); Zheng, Qing (Inventor)
2011-01-01
Controller scaling and parameterization are described. Techniques that can be improved by employing the scaling and parameterization include, but are not limited to, controller design, tuning and optimization. The scaling and parameterization methods described here apply to transfer function based controllers, including PID controllers. The parameterization methods also apply to state feedback and state observer based controllers, as well as linear active disturbance rejection (ADRC) controllers. Parameterization simplifies the use of ADRC. A discrete extended state observer (DESO) and a generalized extended state observer (GESO) are described. They improve the performance of the ESO and therefore ADRC. A tracking control algorithm is also described that improves the performance of the ADRC controller. A general algorithm is described for applying ADRC to multi-input multi-output systems. Several specific applications of the control systems and processes are disclosed.
PID1 (NYGGF4), a new growth-inhibitory gene in embryonal brain tumors and gliomas
Erdreich-Epstein, Anat; Robison, Nathan; Ren, Xiuhai; Zhou, Hong; Xu, Jingying; Davidson, Tom B.; Schur, Mathew; Gilles, Floyd H.; Ji, Lingyun; Malvar, Jemily; Shackleford, Gregory M.; Margol, Ashley S.; Krieger, Mark D.; Judkins, Alexander R.; Jones, David T.W.; Pfister, Stefan; Kool, Marcel; Sposto, Richard; Asgharazadeh, Shahab
2014-01-01
Purpose We present here the first report of PID1 (Phosphotyrosine Interaction Domain containing 1; NYGGF4) in cancer. PID1 was identified in 2006 as a gene that modulates insulin signaling and mitochondrial function in adipocytes and muscle cells. Experimental Design and Results Using four independent medulloblastoma datasets, we show that mean PID1 mRNA levels were lower in unfavorable medulloblastomas (Groups 3 and 4, and anaplastic histology) compared with favorable medulloblastomas (SHH and WNT groups, and desmoplastic/nodular histology) and with fetal cerebellum. In two large independent glioma datasets PID1 mRNA was lower in glioblastomas (GBMs), the most malignant gliomas, compared to other astrocytomas, oligodendrogliomas and non-tumor brains. Neural and proneural GBM subtypes had higher PID1 mRNA compared to classical and mesenchymal GBM. Importantly, overall survival and radiation-free progression-free survival were longer in medulloblastoma patients with higher PID1 mRNA (univariate and multivariate analyses). Higher PID1 mRNA also correlated with longer overall survival in glioma and GBM patients. In cell culture, overexpression of PID1 inhibited colony formation in medulloblastoma, atypical teratoid rhabdoid tumor (ATRT) and GBM cell lines. Increasing PID1 also increased cell death and apoptosis, inhibited proliferation, induced mitochondrial depolarization, and decreased serum-mediated phosphorylation of AKT and ERK in medulloblastoma, ATRT and/or GBM cell lines, whereas siRNA to PID1 diminished mitochondrial depolarization. Conclusions These data are the first to link PID1 to cancer and suggest that PID1 may have a tumor inhibitory function in these pediatric and adult brain tumors. PMID:24300787
Quad-rotor flight path energy optimization
NASA Astrophysics Data System (ADS)
Kemper, Edward
Quad-Rotor unmanned areal vehicles (UAVs) have been a popular area of research and development in the last decade, especially with the advent of affordable microcontrollers like the MSP 430 and the Raspberry Pi. Path-Energy Optimization is an area that is well developed for linear systems. In this thesis, this idea of path-energy optimization is extended to the nonlinear model of the Quad-rotor UAV. The classical optimization technique is adapted to the nonlinear model that is derived for the problem at hand, coming up with a set of partial differential equations and boundary value conditions to solve these equations. Then, different techniques to implement energy optimization algorithms are tested using simulations in Python. First, a purely nonlinear approach is used. This method is shown to be computationally intensive, with no practical solution available in a reasonable amount of time. Second, heuristic techniques to minimize the energy of the flight path are tested, using Ziegler-Nichols' proportional integral derivative (PID) controller tuning technique. Finally, a brute force look-up table based PID controller is used. Simulation results of the heuristic method show that both reliable control of the system and path-energy optimization are achieved in a reasonable amount of time.
High pressure common rail injection system modeling and control.
Wang, H P; Zheng, D; Tian, Y
2016-07-01
In this paper modeling and common-rail pressure control of high pressure common rail injection system (HPCRIS) is presented. The proposed mathematical model of high pressure common rail injection system which contains three sub-systems: high pressure pump sub-model, common rail sub-model and injector sub-model is a relative complicated nonlinear system. The mathematical model is validated by the software Matlab and a virtual detailed simulation environment. For the considered HPCRIS, an effective model free controller which is called Extended State Observer - based intelligent Proportional Integral (ESO-based iPI) controller is designed. And this proposed method is composed mainly of the referred ESO observer, and a time delay estimation based iPI controller. Finally, to demonstrate the performances of the proposed controller, the proposed ESO-based iPI controller is compared with a conventional PID controller and ADRC. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
PINOID functions in root phototropism as a negative regulator
Haga, Ken; Sakai, Tatsuya
2015-01-01
The PINOID (PID) family, which belongs to AGCVIII kinases, is known to be involved in the regulation of auxin efflux transporter PIN-FORMED (PIN) proteins through changes in the phosphorylation status. Recently, we demonstrated that the PID family is necessary for phytochrome-mediated phototropic enhancement in Arabidopsis hypocotyls and that the downregulation of PID expression by red-light pretreatment results in the promotion of the PIN-mediated auxin gradient during phototropic responses. However, whether PID participates in root phototropism in Arabidopsis seedlings has not been well studied. Here, we demonstrated that negative root phototropic responses are enhanced in the pid quadruple mutant and are severely impaired in transgenic plants expressing PID constitutively. The results indicate that the PID family functions in a negative root phototropism as a negative regulator. On the other hand, analysis with PID fused to a yellow fluorescent protein, VENUS, showed that unilateral blue-light irradiation causes a lower accumulation of PID proteins on the shaded side than on the irradiated side. This result suggests that the blue-light-mediated asymmetrical distribution of PID proteins may be one of the critical responses in phototropin-mediated signals during a negative root phototropism. Alternatively, such a transverse gradient of PID proteins may result from gravitropic stimulation produced by phototropic bending. PMID:26039488
PINOID functions in root phototropism as a negative regulator.
Haga, Ken; Sakai, Tatsuya
2015-01-01
The PINOID (PID) family, which belongs to AGCVIII kinases, is known to be involved in the regulation of auxin efflux transporter PIN-formed (PIN) proteins through changes in the phosphorylation status. Recently, we demonstrated that the PID family is necessary for phytochrome-mediated phototropic enhancement in Arabidopsis hypocotyls and that the downregulation of PID expression by red-light pretreatment results in the promotion of the PIN-mediated auxin gradient during phototropic responses. However, whether PID participates in root phototropism in Arabidopsis seedlings has not been well studied. Here, we demonstrated that negative root phototropic responses are enhanced in the pid quadruple mutant and are severely impaired in transgenic plants expressing PID constitutively. The results indicate that the PID family functions in a negative root phototropism as a negative regulator. On the other hand, analysis with PID fused to a yellow fluorescent protein, VENUS, showed that unilateral blue-light irradiation causes a lower accumulation of PID proteins on the shaded side than on the irradiated side. This result suggests that the blue-light-mediated asymmetrical distribution of PID proteins may be one of the critical responses in phototropin-mediated signals during a negative root phototropism. Alternatively, such a transverse gradient of PID proteins may result from gravitropic stimulation produced by phototropic bending.
Modeling and comparative study of linear and nonlinear controllers for rotary inverted pendulum
NASA Astrophysics Data System (ADS)
Lima, Byron; Cajo, Ricardo; Huilcapi, Víctor; Agila, Wilton
2017-01-01
The rotary inverted pendulum (RIP) is a problem difficult to control, several studies have been conducted where different control techniques have been applied. Literature reports that, although problem is nonlinear, classical PID controllers presents appropriate performances when applied to the system. In this paper, a comparative study of the performances of linear and nonlinear PID structures is carried out. The control algorithms are evaluated in the RIP system, using indices of performance and power consumption, which allow the categorization of control strategies according to their performance. This article also presents the modeling system, which has been estimated some of the parameters involved in the RIP system, using computer-aided design tools (CAD) and experimental methods or techniques proposed by several authors attended. The results indicate a better performance of the nonlinear controller with an increase in the robustness and faster response than the linear controller.
Conceptions of narcissism and the DSM-5 pathological personality traits.
Wright, Aidan G C; Pincus, Aaron L; Thomas, Katherine M; Hopwood, Christopher J; Markon, Kristian E; Krueger, Robert F
2013-06-01
The Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) features two conceptions of Narcissistic Personality Disorder (NPD), one based on the retained DSM-IV's categorical diagnosis and the other based on a model that blends impairments in personality functioning with a specific trait profile intended to recapture DSM-IV NPD. Nevertheless, the broader literature contains a richer array of potential conceptualizations of narcissism, including distinguishable perspectives from psychiatric nosology, clinical observation and theory, and social/personality psychology. This raises questions about the most advantageous pattern of traits to use to reflect various conceptions of narcissistic pathology via the Personality Inventory for the DSM-5 (PID-5). In this study, we examine the associations of the Personality Disorder Questionnaire-Narcissistic Personality Disorder scale, Narcissistic Personality Inventory-16, and the Pathological Narcissism Inventory and the PID-5 dimensions and facets in a large sample (N = 1,653) of undergraduate student participants. Results point to strong associations with PID-5 Antagonism scales across narcissism measures, consistent with the DSM-5's proposed representation of NPD. However, additional notable associations emerged with PID-5 Negative Affectivity and Psychoticism scales when considering more clinically relevant narcissism measures.
Uijtendaal, Esther V; Zwart-van Rijkom, Jeannette E F; van Solinge, Wouter W; Egberts, Toine C G
2011-09-01
Although, drug-drug interactions (DDIs) between potassium-increasing drugs (PIDs) are known risk factors for developing hyperkalaemia, not much is known about their risk and management strategies during hospitalisation. This study examines the frequency of serum potassium measurements and hyperkalaemia in hospitalised patients, based on the use of one or more PIDs, and the determinants thereof. Adult patients hospitalised in the University Medical Centre Utrecht between 2006 and 2008 were included in this cross-sectional study. The frequency of serum potassium measurements and of hyperkalaemia were compared between patients using only one PID at a time (monotherapy group) and patients using two or more PIDs concomitantly (interaction group). The determinants studied were renal failure, diabetes mellitus, use of diuretics, type of DDI, start of the PIDs within the hospital versus continued home medication and medical speciality. Serum potassium was measured more frequently in the interaction group than in the monotherapy group [67 vs. 56%; relative risk (RR) 1.19, 95% confidence interval (CI) 1.14-1.24] and the risk of hyperkalaemia was also increased in the interaction group (9.9 vs. 5.9%, RR 1.7, 95% CI 1.3-2.1). The combination of potassium-sparing diuretics plus a potassium supplement, start of the PID within the hospital and hospitalisation in non-internal medicine departments was associated with higher relative risk estimates for hyperkalaemia. Among our patient cohort, even when physicians received a direct pop-up to monitor serum potassium levels when prescribing two PIDs concomitantly, serum potassium levels were not measured in 33% of patients, and 10% of patients developed hyperkalaemia. Improved management strategies and/or clinical decision-support systems are needed to decrease the frequency of hyperkalaemia following DDIs.
Research of high power and stable laser in portable Raman spectrometer based on SHINERS technology
NASA Astrophysics Data System (ADS)
Cui, Yongsheng; Yin, Yu; Wu, Yulin; Ni, Xuxiang; Zhang, Xiuda; Yan, Huimin
2013-08-01
The intensity of Raman light is very weak, which is only from 10-12 to 10-6 of the incident light. In order to obtain the required sensitivity, the traditional Raman spectrometer tends to be heavy weight and large volume, so it is often used as indoor test device. Based on the Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) method, Raman optical spectrum signal can be enhanced significantly and the portable Raman spectrometer combined with SHINERS method will be widely used in various fields. The laser source must be stable enough and able to output monochromatic narrow band laser with stable power in the portable Raman spectrometer based on the SHINERS method. When the laser is working, the change of temperature can induce wavelength drift, thus the power stability of excitation light will be affected, so we need to strictly control the working temperature of the laser, In order to ensure the stability of laser power and output current, this paper adopts the WLD3343 laser constant current driver chip of Wavelength Electronics company and MCU P89LPC935 to drive LML - 785.0 BF - XX laser diode(LD). Using this scheme, the Raman spectrometer can be small in size and the drive current can be constant. At the same time, we can achieve functions such as slow start, over-current protection, over-voltage protection, etc. Continuous adjustable output can be realized under control, and the requirement of high power output can be satisfied. Max1968 chip is adopted to realize the accurate control of the laser's temperature. In this way, it can meet the demand of miniaturization. In term of temperature control, integral truncation effect of traditional PID algorithm is big, which is easy to cause static difference. Each output of incremental PID algorithm has nothing to do with the current position, and we can control the output coefficients to avoid full dose output and immoderate adjustment, then the speed of balance will be improved observably. Variable integral incremental digital PID algorithm is used in the TEC temperature control system. The experimental results show that comparing with other schemes, the output power of laser in our scheme is more stable and reliable, moreover the peak value is bigger, and the temperature can be precisely controlled in +/-0.1°C, then the volume of the device is smaller. Using this laser equipment, the ideal Raman spectra of materials can be obtained combined with SHINERS technology and spectrometer equipment.
The Temperature Fuzzy Control System of Barleythe Malt Drying Based on Microcontroller
NASA Astrophysics Data System (ADS)
Gao, Xiaoyang; Bi, Yang; Zhang, Lili; Chen, Jingjing; Yun, Jianmin
The control strategy of temperature and humidity in the beer barley malt drying chamber based on fuzzy logic control was implemented.Expounded in this paper was the selection of parameters for the structure of the regulatory device, as well as the essential design from control rules based on the existing experience. A temperature fuzzy controller was thus constructed using relevantfuzzy logic, and humidity control was achieved by relay, ensured the situation of the humidity to control the temperature. The temperature's fuzzy control and the humidity real-time control were all processed by single chip microcomputer with assembly program. The experimental results showed that the temperature control performance of this fuzzy regulatory system,especially in the ways of working stability and responding speed and so on,was better than normal used PID control. The cost of real-time system was inquite competitive position. It was demonstrated that the system have a promising prospect of extensive application.
NASA Astrophysics Data System (ADS)
Lyu, Mindong; Liu, Tao; Wang, Zixi; Yan, Shaoze; Jia, Xiaohong; Wang, Yuming
2018-05-01
Touchdown can make active magnetic bearings (AMB) unable to work, and bring severe damages to touchdown bearings (TDB). To resolve it, we presents a novel re-levitation method consisting of two operations, i.e., orbit response recognition and rotor re-levitation. In the operation of orbit response recognition, the three orbit responses (pendulum vibration, combined rub and bouncing, and full rub) can be identified by the expectation of radial displacement of rotor and expectation of instantaneous frequency (IF) of rotor motion in the sampling period. In the rotor re-levitation operation, a decentralized PID control algorithm is employed for pendulum vibration and combined rub and bouncing, and the decentralized PID control algorithm and another whirl damping algorithm, in which the weighting factor is determined by the whirl frequency, are jointly executed for the full rub. The method has been demonstrated by the simulation results of an AMB model. The results reveal that the method is effective in actively suppressing the whirl motion and promptly re-levitating the rotor. As the PID control algorithm and the simple operations of signal processing are employed, the algorithm has a low computation intensity, which makes it more easily realized in practical applications.
Design of intelligent vehicle control system based on single chip microcomputer
NASA Astrophysics Data System (ADS)
Zhang, Congwei
2018-06-01
The smart car microprocessor uses the KL25ZV128VLK4 in the Freescale series of single-chip microcomputers. The image sampling sensor uses the CMOS digital camera OV7725. The obtained track data is processed by the corresponding algorithm to obtain track sideline information. At the same time, the pulse width modulation control (PWM) is used to control the motor and servo movements, and based on the digital incremental PID algorithm, the motor speed control and servo steering control are realized. In the project design, IAR Embedded Workbench IDE is used as the software development platform to program and debug the micro-control module, camera image processing module, hardware power distribution module, motor drive and servo control module, and then complete the design of the intelligent car control system.
Angoulvant, F; Dubos, F; Cohen, R; Martinot, A
2015-05-01
Skills in pediatric infectious disease (PID) and antibiotic management are of critical importance in hospitals. This nationwide survey aimed to assess the characteristics, training, and tasks of PID consultants in French hospitals. The management of PID and antibiotic therapy was also analyzed in hospitals lacking PID consultants. An electronic survey linked to a dedicated website was sent to French hospitals with a pediatric department in June 2012. In hospitals where PID consultants were available, they were asked to answer the questionnaire. In hospitals lacking PID consultants, pediatricians were asked to send the questionnaire to their infectious disease consultant, if available. A total of 86 individual responses were received from 76 hospitals (including 26 academic hospitals). The existence of a PID consultant was declared in 53 hospitals. Responses were received from the person claiming to be "the" or "one of the" PID consultants in 46 cases, representing 39 centers. PID consultants had a degree in PID (46%) or antibiotic therapy (37%), or a complementary qualification as a specialist in infectious diseases (13%). The PID consultants worked in departments of general pediatrics (61%) and emergency medicine (15%), or neonatology (15%). They were involved in the Nosocomial Infection Prevention Committee (43%) or the Antimicrobial Therapy Committee (63%) and had teaching activities (65%). There was a specific unit with a PID label in 10% of the 39 centers reporting at least one consultant and consultations of infectious diseases took place in 28%. PID consultants are rare. Their important role in patient care should be recognized. Efforts should focus on recruiting and training such specialists. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Robust Temperature Control of a Thermoelectric Cooler via μ -Synthesis
NASA Astrophysics Data System (ADS)
Kürkçü, Burak; Kasnakoğlu, Coşku
2018-02-01
In this work robust temperature control of a thermoelectric cooler (TEC) via μ -synthesis is studied. An uncertain dynamical model for the TEC that is suitable for robust control methods is derived. The model captures variations in operating point due to current, load and temperature changes. A temperature controller is designed utilizing μ -synthesis, a powerful method guaranteeing robust stability and performance. For comparison two well-known control methods, namely proportional-integral-derivative (PID) and internal model control (IMC), are also realized to benchmark the proposed approach. It is observed that the stability and performance on the nominal model are satisfactory for all cases. On the other hand, under perturbations the responses of PID and IMC deteriorate and even become unstable. In contrast, the μ -synthesis controller succeeds in keeping system stability and achieving good performance under all perturbations within the operating range, while at the same time providing good disturbance rejection.
Quantum Efficiency Loss after PID Stress: Wavelength Dependence on Cell Surface and Cell Edge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Jaewon; Bowden, Stuart; TamizhMani, GovindaSamy
2015-06-14
It is known that the potential induced degradation (PID) stress of conventional p-base solar cells affects power, shunt resistance, junction recombination, and quantum efficiency (QE). One of the primary solutions to address the PID issue is a modification of chemical and physical properties of antireflection coating (ARC) on the cell surface. Depending on the edge isolation method used during cell processing, the ARC layer near the edges may be uniformly or non-uniformly damaged. Therefore, the pathway for sodium migration from glass to the cell junction could be either through all of the ARC surface if surface and edge ARC havemore » low quality or through the cell edge if surface ARC has high quality but edge ARC is defective due to certain edge isolation process. In this study, two PID susceptible cells from two different manufacturers have been investigated. The QE measurements of these cells before and after PID stress were performed at both surface and edge. We observed the wavelength dependent QE loss only in the first manufacturer's cell but not in the second manufacturer's cell. The first manufacturer's cell appeared to have low quality ARC whereas the second manufacturer's cell appeared to have high quality ARC with defective edge. To rapidly screen a large number of cells for PID stress testing, a new but simple test setup that does not require laminated cell coupon has been developed and is used in this investigation.« less
Robust Feedback Zoom Tracking for Digital Video Surveillance
Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong
2012-01-01
Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called “trace curve”, which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance. PMID:22969388
From linear to nonlinear control means: a practical progression.
Gao, Zhiqiang
2002-04-01
With the rapid advance of digital control hardware, it is time to take the simple but effective proportional-integral-derivative (PID) control technology to the next level of performance and robustness. For this purpose, a nonlinear PID and active disturbance rejection framework are introduced in this paper. It complements the existing theory in that (1) it actively and systematically explores the use of nonlinear control mechanisms for better performance, even for linear plants; (2) it represents a control strategy that is rather independent of mathematical models of the plants, thus achieving inherent robustness and reducing design complexity. Stability analysis, as well as software/hardware test results, are presented. It is evident that the proposed framework lends itself well in seeking innovative solutions to practical problems while maintaining the simplicity and the intuitiveness of the existing technology.
Sukumar, Poornima; Edwards, Karin S; Rahman, Abidur; Delong, Alison; Muday, Gloria K
2009-06-01
Reversible protein phosphorylation is a key regulatory mechanism governing polar auxin transport. We characterized the auxin transport and gravitropic phenotypes of the pinoid-9 (pid-9) mutant of Arabidopsis (Arabidopsis thaliana) and tested the hypothesis that phosphorylation mediated by PID kinase and dephosphorylation regulated by the ROOTS CURL IN NAPHTHYLPHTHALAMIC ACID1 (RCN1) protein might antagonistically regulate root auxin transport and gravity response. Basipetal indole-3-acetic acid transport and gravitropism are reduced in pid-9 seedlings, while acropetal transport and lateral root development are unchanged. Treatment of wild-type seedlings with the protein kinase inhibitor staurosporine phenocopies the reduced auxin transport and gravity response of pid-9, while pid-9 is resistant to inhibition by staurosporine. Staurosporine and the phosphatase inhibitor, cantharidin, delay the asymmetric expression of DR5revGFP (green fluorescent protein) at the root tip after gravistimulation. Gravity response defects of rcn1 and pid-9 are partially rescued by treatment with staurosporine and cantharidin, respectively. The pid-9 rcn1 double mutant has a more rapid gravitropic response than rcn1. These data are consistent with a reciprocal regulation of gravitropism by RCN1 and PID. Furthermore, the effect of staurosporine is lost in pinformed2 (pin2). Our data suggest that reduced PID kinase function inhibits gravitropism and basipetal indole-3-acetic acid transport. However, in contrast to PID overexpression studies, we observed wild-type asymmetric membrane distribution of the PIN2 protein in both pid-9 and wild-type root tips, although PIN2 accumulates in endomembrane structures in pid-9 roots. Similarly, staurosporine-treated plants expressing a PIN2GFP fusion exhibit endomembrane accumulation of PIN2GFP, but no changes in membrane asymmetries were detected. Our data suggest that PID plays a limited role in root development; loss of PID activity alters auxin transport and gravitropism without causing an obvious change in cellular polarity.
Simulation of process identification and controller tuning for flow control system
NASA Astrophysics Data System (ADS)
Chew, I. M.; Wong, F.; Bono, A.; Wong, K. I.
2017-06-01
PID controller is undeniably the most popular method used in controlling various industrial processes. The feature to tune the three elements in PID has allowed the controller to deal with specific needs of the industrial processes. This paper discusses the three elements of control actions and improving robustness of controllers through combination of these control actions in various forms. A plant model is simulated using the Process Control Simulator in order to evaluate the controller performance. At first, the open loop response of the plant is studied by applying a step input to the plant and collecting the output data from the plant. Then, FOPDT of physical model is formed by using both Matlab-Simulink and PRC method. Then, calculation of controller’s setting is performed to find the values of Kc and τi that will give satisfactory control in closed loop system. Then, the performance analysis of closed loop system is obtained by set point tracking analysis and disturbance rejection performance. To optimize the overall physical system performance, a refined tuning of PID or detuning is further conducted to ensure a consistent resultant output of closed loop system reaction to the set point changes and disturbances to the physical model. As a result, the PB = 100 (%) and τi = 2.0 (s) is preferably chosen for setpoint tracking while PB = 100 (%) and τi = 2.5 (s) is selected for rejecting the imposed disturbance to the model. In a nutshell, selecting correlation tuning values is likewise depended on the required control’s objective for the stability performance of overall physical model.
Primary Immunodeficiencies: “New” Disease in an Old Country
Lee, Pamela P W; Lau, Yu-Lung
2009-01-01
Primary immunodeficiency disorders (PIDs) are rare inborn errors of the immune system. Patients with PIDs are unique models that exemplify the functional and phenotypic consequences of various immune defects underlying infections, autoimmunity, lymphoproliferation, allergy and cancer. Over 150 PID syndromes were characterized in the past 60 years, with an ever growing list of new entities being discovered. Because of their rarity, multi-center collaboration for pooled data analysis and molecular studies is important to gain meaningful insights into the phenotypic and genetic diversities of PIDs. In this article, we summarize our research findings on PIDs in Chinese population in the past 20 years. Close collaboration among various immunology centers, cross-referrals and systematic data analysis constitute the foundation for research on PIDs. Future directions include establishment of a national PID registry, raising awareness of PIDs and securing sufficient resources for patient care and scientific research. PMID:20003815
Underwater hydraulic shock shovel control system
NASA Astrophysics Data System (ADS)
Liu, He-Ping; Luo, A.-Ni; Xiao, Hai-Yan
2008-06-01
The control system determines the effectiveness of an underwater hydraulic shock shovel. This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems. A new type of control system’s mathematical model was built and analyzed according to those principles. Since the initial control system’s response time could not fulfill the design requirements, a PID controller was added to the control system. System response time was still slower than required, so a neural network was added to nonlinearly regulate the proportional element, integral element and derivative element coefficients of the PID controller. After these improvements to the control system, system parameters fulfilled the design requirements. The working performance of electrically-controlled parts such as the rapidly moving high speed switch valve is largely determined by the control system. Normal control methods generally can’t satisfy a shovel’s requirements, so advanced and normal control methods were combined to improve the control system, bringing good results.
Souza, M.; Azevedo, M. S. P.; Jung, K.; Cheetham, S.; Saif, L. J.
2008-01-01
We previously characterized the pathogenesis of two host-specific bovine enteric caliciviruses (BEC), the GIII.2 norovirus (NoV) strain CV186-OH and the phylogenetically unassigned NB strain, in gnotobiotic (Gn) calves. In this study we evaluated the Gn calf as an alternative animal model to study the pathogenesis and host immune responses to the human norovirus (HuNoV) strain GII.4-HS66. The HuNoV HS66 strain caused diarrhea (five/five calves) and intestinal lesions (one/two calves tested) in the proximal small intestine (duodenum and jejunum) of Gn calves, with lesions similar to, but less severe than, those described for the Newbury agent 2 (NA-2) and NB BEC. Viral capsid antigen was also detected in the jejunum of the proximal small intestine of one of two calves tested by immunohistochemistry. All inoculated calves shed virus in feces (five/five calves), and one/five had viremia. Antibodies and cytokine (proinflammatory, tumor necrosis factor alpha [TNF-α]; Th1, interleukin-12 [IL-12] and gamma interferon [IFN-γ]; Th2, IL-4; Th2/T-regulatory, IL-10) profiles were determined in serum, feces, and intestinal contents (IC) of the HuNoV-HS66-inoculated calves (n = 5) and controls (n = 4) by enzyme-linked immunosorbent assay in the acute (postinoculation day 3 [PID 3]) and convalescent (PID 28) stages of infection. The HuNoV-HS66-specific antibody and cytokine-secreting cells (CSCs) were quantitated by ELISPOT in mononuclear cells of local and systemic tissues at PID 28. Sixty-seven percent of the HuNoV-HS66-inoculated calves seroconverted, and 100% coproconverted with immunoglobulin A (IgA) and/or IgG antibodies to HuNoV-HS66, at low titers. The highest numbers of antibody-secreting cells (ASC), both IgA and IgG, were detected locally in intestine, but systemic IgA and IgG ASC responses also occurred in the HuNoV-HS66-inoculated calves. In serum, HuNoV-HS66 induced higher peaks of TNF-α and IFN-γ at PIDs 2, 7, and 10; of IL-4 and IL-10 at PID 4; and of IL-12 at PIDs 7 and 10, compared to controls. In feces, cytokines increased earlier (PID 1) than in serum and TNF-α and IL-10 were elevated acutely in the IC of the HS66-inoculated calves. Compared to controls, at PID 28 higher numbers of IFN-γ and TNF-α CSCs were detected in mesenteric lymph nodes (MLN) or spleen and Th2 (IL-4) CSCs were elevated in intestine; IL-10 CSCs were highest in spleen. Our study provides new data confirming HuNoV-HS66 replication and enteropathogenicity in Gn calves and reveals important and comprehensive aspects of the host's local (intestine and MLN) and systemic (spleen and blood) immune responses to HuNoV-HS66. PMID:18045944
Souza, M; Azevedo, M S P; Jung, K; Cheetham, S; Saif, L J
2008-02-01
We previously characterized the pathogenesis of two host-specific bovine enteric caliciviruses (BEC), the GIII.2 norovirus (NoV) strain CV186-OH and the phylogenetically unassigned NB strain, in gnotobiotic (Gn) calves. In this study we evaluated the Gn calf as an alternative animal model to study the pathogenesis and host immune responses to the human norovirus (HuNoV) strain GII.4-HS66. The HuNoV HS66 strain caused diarrhea (five/five calves) and intestinal lesions (one/two calves tested) in the proximal small intestine (duodenum and jejunum) of Gn calves, with lesions similar to, but less severe than, those described for the Newbury agent 2 (NA-2) and NB BEC. Viral capsid antigen was also detected in the jejunum of the proximal small intestine of one of two calves tested by immunohistochemistry. All inoculated calves shed virus in feces (five/five calves), and one/five had viremia. Antibodies and cytokine (proinflammatory, tumor necrosis factor alpha [TNF-alpha]; Th1, interleukin-12 [IL-12] and gamma interferon [IFN-gamma]; Th2, IL-4; Th2/T-regulatory, IL-10) profiles were determined in serum, feces, and intestinal contents (IC) of the HuNoV-HS66-inoculated calves (n = 5) and controls (n = 4) by enzyme-linked immunosorbent assay in the acute (postinoculation day 3 [PID 3]) and convalescent (PID 28) stages of infection. The HuNoV-HS66-specific antibody and cytokine-secreting cells (CSCs) were quantitated by ELISPOT in mononuclear cells of local and systemic tissues at PID 28. Sixty-seven percent of the HuNoV-HS66-inoculated calves seroconverted, and 100% coproconverted with immunoglobulin A (IgA) and/or IgG antibodies to HuNoV-HS66, at low titers. The highest numbers of antibody-secreting cells (ASC), both IgA and IgG, were detected locally in intestine, but systemic IgA and IgG ASC responses also occurred in the HuNoV-HS66-inoculated calves. In serum, HuNoV-HS66 induced higher peaks of TNF-alpha and IFN-gamma at PIDs 2, 7, and 10; of IL-4 and IL-10 at PID 4; and of IL-12 at PIDs 7 and 10, compared to controls. In feces, cytokines increased earlier (PID 1) than in serum and TNF-alpha and IL-10 were elevated acutely in the IC of the HS66-inoculated calves. Compared to controls, at PID 28 higher numbers of IFN-gamma and TNF-alpha CSCs were detected in mesenteric lymph nodes (MLN) or spleen and Th2 (IL-4) CSCs were elevated in intestine; IL-10 CSCs were highest in spleen. Our study provides new data confirming HuNoV-HS66 replication and enteropathogenicity in Gn calves and reveals important and comprehensive aspects of the host's local (intestine and MLN) and systemic (spleen and blood) immune responses to HuNoV-HS66.
Requena, Daniela F.; Block, Benjamin; Davis, Lizeth J.; Rodesch, Christopher; Casper, T. Charles; Juul, Sandra E.; Kesner, Raymond P.; Lane, Robert H.
2014-01-01
Abstract Traumatic brain injury (TBI) is a leading cause of acquired neurologic disability in children. Erythropoietin (EPO), an anti-apoptotic cytokine, improved cognitive outcome in adult rats after TBI. To our knowledge, EPO has not been studied in a developmental TBI model. Hypothesis: We hypothesized that EPO would improve cognitive outcome and increase neuron fraction in the hippocampus in 17-day-old (P17) rat pups after controlled cortical impact (CCI). Methods: EPO or vehicle was given at 1, 24, and 48 h after CCI and at post injury day (PID) 7. Cognitive outcome at PID14 was assessed using Novel Object Recognition (NOR). Hippocampal EPO levels, caspase activity, and mRNA levels of the apoptosis factors Bcl2, Bax, Bcl-xL, and Bad were measured during the first 14 days after injury. Neuron fraction and caspase activation in CA1, CA3, and DG were studied at PID2. Results: EPO normalized recognition memory after CCI. EPO blunted the increased hippocampal caspase activity induced by CCI at PID1, but not at PID2. EPO increased neuron fraction in CA3 at PID2. Brain levels of exogenous EPO appeared low relative to endogenous. Timing of EPO administration was associated with temporal changes in hippocampal mRNA levels of EPO and pro-apoptotic factors. Conclusion/Speculation: EPO improved recognition memory, increased regional hippocampal neuron fraction, and decreased caspase activity in P17 rats after CCI. We speculate that EPO improved cognitive outcome in rat pups after CCI as a result of improved neuronal survival via inhibition of caspase-dependent apoptosis early after injury. PMID:23972011
REAL-TIME MODEL-BASED ELECTRICAL POWERED WHEELCHAIR CONTROL
Wang, Hongwu; Salatin, Benjamin; Grindle, Garrett G.; Ding, Dan; Cooper, Rory A.
2009-01-01
The purpose of this study was to evaluate the effects of three different control methods on driving speed variation and wheel-slip of an electric-powered wheelchair (EPW). A kinematic model as well as 3-D dynamic model was developed to control the velocity and traction of the wheelchair. A smart wheelchair platform was designed and built with a computerized controller and encoders to record wheel speeds and to detect the slip. A model based, a proportional-integral-derivative (PID) and an open-loop controller were applied with the EPW driving on four different surfaces at three specified speeds. The speed errors, variation, rise time, settling time and slip coefficient were calculated and compared for a speed step-response input. Experimental results showed that model based control performed best on all surfaces across the speeds. PMID:19733494
Automation of extrusion of porous cable products based on a digital controller
NASA Astrophysics Data System (ADS)
Chostkovskii, B. K.; Mitroshin, V. N.
2017-07-01
This paper presents a new approach to designing an automated system for monitoring and controlling the process of applying porous insulation material on a conductive cable core, which is based on using structurally and parametrically optimized digital controllers of an arbitrary order instead of calculating typical PID controllers using known methods. The digital controller is clocked by signals from the clock length sensor of a measuring wheel, instead of a timer signal, and this provides the robust properties of the system with respect to the changing insulation speed. Digital controller parameters are tuned to provide the operating parameters of the manufactured cable using a simulation model of stochastic extrusion and are minimized by moving a regular simplex in the parameter space of the tuned controller.
de Vries, E
2006-01-01
Efficient early identification of primary immunodeficiency disease (PID) is important for prognosis, but is not an easy task for non-immunologists. The Clinical Working Party of the European Society for Immunodeficiencies (ESID) has composed a multi-stage diagnostic protocol that is based on expert opinion, in order to increase the awareness of PID among doctors working in different fields. The protocol starts from the clinical presentation of the patient; immunological skills are not needed for its use. The multi-stage design allows cost-effective screening for PID within the large pool of potential cases in all hospitals in the early phases, while more expensive tests are reserved for definitive classification in collaboration with an immunologist at a later stage. Although many PIDs present in childhood, others may present at any age. The protocols presented here are therefore aimed at both adult physicians and paediatricians. While designed for use throughout Europe, there will be national differences which may make modification of this generic algorithm necessary. PMID:16879238
Characterizing psychopathy using DSM-5 personality traits.
Strickland, Casey M; Drislane, Laura E; Lucy, Megan; Krueger, Robert F; Patrick, Christopher J
2013-06-01
Despite its importance historically and contemporarily, psychopathy is not recognized in the current Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revised (DSM-IV-TR). Its closest counterpart, antisocial personality disorder, includes strong representation of behavioral deviance symptoms but weak representation of affective-interpersonal features considered central to psychopathy. The current study evaluated the extent to which psychopathy and its distinctive facets, indexed by the Triarchic Psychopathy Measure, can be assessed effectively using traits from the dimensional model of personality pathology developed for DSM-5, operationalized by the Personality Inventory for DSM-5 (PID-5). Results indicate that (a) facets of psychopathy entailing impulsive externalization and callous aggression are well-represented by traits from the PID-5 considered relevant to antisocial personality disorder, and (b) the boldness facet of psychopathy can be effectively captured using additional PID-5 traits. These findings provide evidence that the dimensional model of personality pathology embodied in the PID-5 provides effective trait-based coverage of psychopathy and its facets.
Extending and implementing the Persistent ID pillars
NASA Astrophysics Data System (ADS)
Car, Nicholas; Golodoniuc, Pavel; Klump, Jens
2017-04-01
The recent double decade anniversary of scholarly persistent identifier use has triggered journal special editions such as "20 Years of Persistent Identifiers". For such a publication, it is apt to consider the longevity of some persistent identifier (PID) mechanisms (Digital Object Identifiers) and the partial disappearance of others (Life Sciences IDs). We have previously postulated a set of "PID Pillars" [1] which are design principles aimed at ensuring PIDs can survive technology and social change and thus persist for the long term that we have drawn from our observations of PIDs at work over many years. The principles: describe how to ensure identifiers' system and organisation independence; codify the delivery of essential PID system functions; mandate a separation of PID functions from data delivery mechanisms; and require generation of policies detailing how change is handled. In this presentation, first we extend on our previous work of introducing the pillars by refining their descriptions, giving specific suggestions for each and presenting some work that addresses them. Second, we propose a baseline data model for persistent identifiers that, if used, would assist the separation of PID metadata and PID system functioning. This would allow PID system function specifics to change over time (e.g. resolver services or even resolution protocols) and yet preserve the PIDs themselves. Third, we detail our existing PID system — the PID Service [2] — that partially implements the pillars and describe both its successes and shortcomings. Finally, we describe our planned next-generation system that will aim to use the baseline data model and fully implement the pillars.
Improving piezo actuators for nanopositioning tasks
NASA Astrophysics Data System (ADS)
Seeliger, Martin; Gramov, Vassil; Götz, Bernt
2018-02-01
In recent years, numerous applications emerged on the market with seemingly contradicting demands. On one side, the structure size decreased while on the other side, the overall sample size and speed of operation increased. Although the principle usage of piezoelectric positioning solutions has become a standard in the field of micro- and nanopositioning, surface inspection and manipulation, piezosystem jena now enhanced the performance beyond simple control loop tuning and actuator design. In automated manufacturing machines, a given signal has to be tracked fast and precise. However, control systems naturally decrease the ability to follow this signal in real time. piezosystem jena developed a new signal feed forward system bypassing the PID control. This way, we could reduce signal tracking errors by a factor of three compared to a conventionally optimized PID control. Of course, PID-values still have to be adjusted to specific conditions, e.g. changing additional mass, to optimize the performance. This can now be done with a new automatic tuning tool designed to analyze the current setup, find the best fitting configuration, and also gather and display theoretical as well as experimental performance data. Thus, the control quality of a mechanical setup can be improved within a few minutes without the need of external calibration equipment. Furthermore, new mechanical optimization techniques that focus not only on the positioning device, but also take the whole setup into account, prevent parasitic motion down to a few nanometers.
NASA Astrophysics Data System (ADS)
Kim, Jung Hoon; Hur, Sung-Moon; Oh, Yonghwan
2018-03-01
This paper is concerned with performance analysis of proportional-derivative/proportional-integral-derivative (PD/PID) controller for bounded persistent disturbances in a robotic manipulator. Even though the notion of input-to-state stability (ISS) has been widely used to deal with the effect of disturbances in control of a robotic manipulator, the corresponding studies cannot be directly applied to the treatment of persistent disturbances occurred in robotic manipulators. This is because the conventional studies relevant to ISS consider the H∞ performance for robotic systems, which is confined to the treatment of decaying disturbances, i.e. the disturbances those in the L2 space. To deal with the effect of persistent disturbances in robotic systems, we first provide a new treatment of ISS in the L∞ sense because bounded persistent disturbances should be intrinsically regarded as elements of the L∞ space. We next derive state-space representations of trajectory tracking control in the robotic systems which allow us to define the problem formulations more clearly. We then propose a novel control law that has a PD/PID control form, by which the trajectory tracking system satisfies the reformulated ISS. Furthermore, we can obtain a theoretical argument about the L∞ gain from the disturbance to the regulated output through the proposed control law. Finally, experimental studies for a typical 3-degrees of freedom robotic manipulator are given to demonstrate the effectiveness of the method introduced in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Jaewon; Dahal, Som; Dauksher, Bill
2016-11-21
Various characterization techniques have historically been developed in order to screen potential induced degradation (PID)-susceptible cells, but those techniques require final solar cells. We present a new characterization technique for screening PID-susceptible cells during the cell fabrication process. Illuminated Lock-In Thermography (ILIT) was used to image PID shunting of the cell without metallization and clearly showed PID-affected areas. PID-susceptible cells can be screened by ILIT, and the sample structure can advantageously be simplified as long as the sample has the silicon nitride antireflection coating and an aluminum back surface field.
Single axis control of ball position in magnetic levitation system using fuzzy logic control
NASA Astrophysics Data System (ADS)
Sahoo, Narayan; Tripathy, Ashis; Sharma, Priyaranjan
2018-03-01
This paper presents the design and real time implementation of Fuzzy logic control(FLC) for the control of the position of a ferromagnetic ball by manipulating the current flowing in an electromagnet that changes the magnetic field acting on the ball. This system is highly nonlinear and open loop unstable. Many un-measurable disturbances are also acting on the system, making the control of it highly complex but interesting for any researcher in control system domain. First the system is modelled using the fundamental laws, which gives a nonlinear equation. The nonlinear model is then linearized at an operating point. Fuzzy logic controller is designed after studying the system in closed loop under PID control action. The controller is then implemented in real time using Simulink real time environment. The controller is tuned manually to get a stable and robust performance. The set point tracking performance of FLC and PID controllers were compared and analyzed.
Potential-induced degradation in photovoltaic modules: a critical review
Luo, Wei; Khoo, Yong Sheng; Hacke, Peter; ...
2016-11-21
Potential-induced degradation (PID) has received considerable attention in recent years due to its detrimental impact on photovoltaic (PV) module performance under field conditions. Both crystalline silicon (c-Si) and thin-film PV modules are susceptible to PID. While extensive studies have already been conducted in this area, the understanding of the PID phenomena is still incomplete and it remains a major problem in the PV industry. Herein, a critical review of the available literature is given to serve as a one-stop source for understanding the current status of PID research. This article also aims to provide an overview of future research pathsmore » to address PID-related issues. This paper consists of three parts. In the first part, the modelling of leakage current paths in the module package is discussed. The PID mechanisms in both c-Si and thin-film PV modules are also comprehensively reviewed. The second part summarizes various test methods to evaluate PV modules for PID. The last part focuses on studies related to PID in the omnipresent p-type c-Si PV modules. The dependence of temperature, humidity and voltage on the progression of PID is examined. Preventive measures against PID at the cell, module and system levels are illustrated. Moreover, PID recovery in standard p-type c-Si PV modules is also studied. Most of the findings from p-type c-Si PV modules are also applicable to other PV module technologies.« less
Stabilization and tracking control of X-Z inverted pendulum with sliding-mode control.
Wang, Jia-Jun
2012-11-01
X-Z inverted pendulum is a new kind of inverted pendulum which can move with the combination of the vertical and horizontal forces. Through a new transformation, the X-Z inverted pendulum is decomposed into three simple models. Based on the simple models, sliding-mode control is applied to stabilization and tracking control of the inverted pendulum. The performance of the sliding mode control is compared with that of the PID control. Simulation results show that the design scheme of sliding-mode control is effective for the stabilization and tracking control of the X-Z inverted pendulum. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hoyos Velasco, Fredy Edimer; García, Nicolás Toro; Garcés Gómez, Yeison Alberto
In this paper, the output voltage of a buck power converter is controlled by means of a quasi-sliding scheme. The Fixed Point Inducting Control (FPIC) technique is used for the control design, based on the Zero Average Dynamics (ZAD) strategy, including load estimation by means of the Least Mean Squares (LMS) method. The control scheme is tested in a Rapid Control Prototyping (RCP) system based on Digital Signal Processing (DSP) for dSPACE platform. The closed loop system shows adequate performance. The experimental and simulation results match. The main contribution of this paper is to introduce the load estimator by means of LMS, to make ZAD and FPIC control feasible in load variation conditions. In addition, comparison results for controlled buck converter with SMC, PID and ZAD-FPIC control techniques are shown.
Stabilisation problem in biaxial platform
NASA Astrophysics Data System (ADS)
Lindner, Tymoteusz; Rybarczyk, Dominik; Wyrwał, Daniel
2016-12-01
The article describes investigation of rolling ball stabilization problem on a biaxial platform. The aim of the control system proposed here is to stabilize ball moving on a plane in equilibrium point. The authors proposed a control algorithm based on cascade PID and they compared it with another control method. The article shows the results of the accuracy of ball stabilization and influence of applied filter on the signal waveform. The application used to detect the ball position measured by digital camera has been written using a cross platform .Net wrapper to the OpenCV image processing library - EmguCV. The authors used the bipolar stepper motor with dedicated electronic controller. The data between the computer and the designed controller are sent with use of the RS232 standard. The control stand is based on ATmega series microcontroller.
Hanna, L; Highleyman, L
1996-03-01
Pelvic inflammatory disease (PID) is a generic term relating to a broad range of conditions. The term is used to describe infections of the fallopian tubes, uterus, ovaries, or peritoneum. PID is a potentially life-threatening condition in any woman, but HIV-positive women are at serious risk of severe complications or death. PID is caused when infection-producing organisms spread upwards from the vagina through the cervix to the upper reproductive organs. Untreated sexually transmitted diseases are a leading cause of PID. Consequences include chronic pelvic pain, abdominal abscesses, inflammation of the covering of the liver, sepsis, and death. Sterility may also result from PID. PID is generally treated with a combination of antibiotics, and it is crucial to treat other concurrent infections as well. Early treatment of PID in HIV-positive women is essential.
Research on Potential Induced Degradation (PID) of PV Modules in Different Typical Climate Regions
NASA Astrophysics Data System (ADS)
Daoren, Gong; Yingnan, Chen; Gang, Sun; Wenjing, Wang; Zhenshuang, Ji
2018-03-01
Potential Induced Degradation (PID) is one of the most important factors effecting the performances of Photovoltaic (PV) modules and PV systems in recent years. In this paper the PID phenomena of the PV power plant in different typical climate regions were studied and some experimental PID simulations were carried out in order to find out the factors effecting the performance by PID. The results show that the typical PID phenomena are easy to occur in cells close to the border of the PV module. PID phenomena can appear in PV power plants under different climate conditions, but the effecting degrees on module performance are different depending on temperature, humidity and other parameters. We also find the maximum power would recover in some degree after positive-bias voltage duration.
NASA Astrophysics Data System (ADS)
Santos, Carlos Henrique Farias dos; Cildoz, Mariana Uzeda; Terra, Marco Henrique; De Pieri, Edson Roberto
2018-03-01
In this paper, we present a modified backstepping sliding mode control to deal with Euler-Lagrange systems. The controller is applied in an underwater vehicle in order to show the effectiveness of the approach proposed. Instantaneous power data provided by the propulsion system are used to tune the controller in order to guarantee robust performance and energy saving. Thanks to the combination of an internal Proportional Integral and Derivative (PID) controller, it is possible implement high gains to deal with the influence of disturbances and uncertainties. A comparative study among this backstepping sliding mode controller and standard sliding mode controls is presented.
NASA Technical Reports Server (NTRS)
Seltzer, S. M.
1976-01-01
The problem discussed is to design a digital controller for a typical satellite. The controlled plant is considered to be a rigid body acting in a plane. The controller is assumed to be a digital computer which, when combined with the proposed control algorithm, can be represented as a sampled-data system. The objective is to present a design strategy and technique for selecting numerical values for the control gains (assuming position, integral, and derivative feedback) and the sample rate. The technique is based on the parameter plane method and requires that the system be amenable to z-transform analysis.
Genetic Adaptive Control for PZT Actuators
NASA Technical Reports Server (NTRS)
Kim, Jeongwook; Stover, Shelley K.; Madisetti, Vijay K.
1995-01-01
A piezoelectric transducer (PZT) is capable of providing linear motion if controlled correctly and could provide a replacement for traditional heavy and large servo systems using motors. This paper focuses on a genetic model reference adaptive control technique (GMRAC) for a PZT which is moving a mirror where the goal is to keep the mirror velocity constant. Genetic Algorithms (GAs) are an integral part of the GMRAC technique acting as the search engine for an optimal PID controller. Two methods are suggested to control the actuator in this research. The first one is to change the PID parameters and the other is to add an additional reference input in the system. The simulation results of these two methods are compared. Simulated Annealing (SA) is also used to solve the problem. Simulation results of GAs and SA are compared after simulation. GAs show the best result according to the simulation results. The entire model is designed using the Mathworks' Simulink tool.
Tracking control of a spool displacement in a direct piezoactuator-driven servo valve system
NASA Astrophysics Data System (ADS)
Han, Chulhee; Hwang, Yong-Hoon; Choi, Seung-Bok
2017-03-01
This paper presents tracking control performances of a piezostack direct drive valve (PDDV) operated at various temperatures. As afirst step, a spool valve and valve system are designed operated by the piezoactuator. After briefly describing about operating principle, an experimental apparatus to investigate the effect of temperaturs on the performances is set up. Subsequently, the PDDV is installed in a large-size heat chamber equipped with electric circuits and sensors. A classical proportional-integral-derivative (PID) controller is designed and applied to control the spool displacement. In addition, a fuzzt algorithm is integrated with the PID controller to enhace performance of the proposed valve system. The tracking performance of a spool displacement is tested by increasing the teperature and exciting frequency up to 150°C and 200 Hz, respectively. It is shown that the tracking performance heavily depends on both the operating temperature and the excitation frequency.
Pelvic Inflammatory Disease (PID)
... a serious condition, in women. 1 in 8 women with a history of PID experience difficulties getting pregnant. You can prevent PID if you know how to protect yourself. What is PID? Pelvic inflammatory disease is an infection of a woman’s reproductive organs. It is a complication often caused ...
Ruder, Mark G; Allison, Andrew B; Stallknecht, David E; Mead, Daniel G; McGraw, Sabrina M; Carter, Deborah L; Kubiski, Steven V; Batten, Carrie A; Klement, Eyal; Howerth, Elizabeth W
2012-07-01
During the fall of 2006, in Israel, epizootic hemorrhagic disease virus (EHDV) serotype 7 caused an intense and widespread epizootic in domestic cattle that resulted in significant economic losses for the dairy industry. The susceptibility of potential North American vector and ruminant hosts to infection with EHDV-7 is not known but is essential to understanding the potential for establishment of this exotic orbivirus in North America if it were introduced. Our primary objective was to determine whether white-tailed deer (WTD; Odocoileus virginianus) are susceptible to infection with EHDV-7. Six, 8-mo-old WTD were experimentally infected with EHDV-7, and all became infected and exhibited varying degrees of clinical disease. Clinical signs, clinicopathologic abnormalities, and postmortem findings were consistent with previous reports of orbiviral hemorrhagic disease (HD) in this species. Four of six animals died or were euthanized because of the severity of disease, one on postinoculation day (PID) 5 and the remaining WTD on PID 7. All deer had detectable viremia on PID 3, which peaked on PID 5 or 6 and persisted for as long as PID 46 in one animal. Deer surviving the acute phase of the disease seroconverted by PID 10. Based on the 67% mortality rate we observed, this strain of EHDV-7 is virulent in WTD, reaffirming their role as a sentinel species for the detection of endemic and nonendemic EHDV. Further, the observed disease was indistinguishable from previous reports of disease caused by North American EHDV and bluetongue virus serotypes, highlighting the importance of serotype-specific diagnostics during suspected HD outbreaks.
Neural net controller for inlet pressure control of rocket engine testing
NASA Technical Reports Server (NTRS)
Trevino, Luis C.
1994-01-01
Many dynamic systems operate in select operating regions, each exhibiting characteristic modes of behavior. It is traditional to employ standard adjustable gain proportional-integral-derivative (PID) loops in such systems where no apriori model information is available. However, for controlling inlet pressure for rocket engine testing, problems in fine tuning, disturbance accommodation, and control gains for new profile operating regions (for research and development) are typically encountered. Because of the capability of capturing I/O peculiarities, using NETS, a back propagation trained neural network is specified. For select operating regions, the neural network controller is simulated to be as robust as the PID controller. For a comparative analysis, the higher order moment neural array (HOMNA) method is used to specify a second neural controller by extracting critical exemplars from the I/O data set. Furthermore, using the critical exemplars from the HOMNA method, a third neural controller is developed using NETS back propagation algorithm. All controllers are benchmarked against each other.
Muniraj, Murali; Arulmozhiyal, Ramaswamy
2015-01-01
A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system. PMID:26613102
Muniraj, Murali; Arulmozhiyal, Ramaswamy
2015-01-01
A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system.
Fossati, Andrea; Krueger, Robert F; Markon, Kristian E; Borroni, Serena; Maffei, Cesare
2013-12-01
In order to assess the internal consistency, factor structure, and ability to recover DSM-IV personality disorders (PDs) of the Personality Inventory for DSM-5 (PID-5) scales, 710 Italian adult community dwelling volunteers were administered the Italian translation of the PID-5, as well as the Italian translation of the Personality Diagnostic Questionnaire-4+ (PDQ-4+). Cronbach's alpha values were >.70 for all PID-5 facet scales and greater than .90 for all PID-5 domain scales. Parallel analysis and confirmatory factor analysis supported the theoretical five-factor model of the PID-5 trait scales. Regression analyses showed that both PID-5 trait and domain scales explained a substantial amount of variance in the PDQ-4+ PD scales, with the exception of the Passive-Aggressive PD scale. When the PID-5 was administered to a second independent sample of 389 Italian adult community dwelling volunteers, the basic psychometric properties of the scale were replicated. In this second sample, the PID-5 trait and domain scales proved to be significant predictors of psychopathy measures. As a whole, the results of the present study support the hypothesis that the PID-5 is a reliable instrument which is able to recover DSM-IV PDs, as well as to capture personality pathology that is not included in the DSM-IV (namely, psychopathy).
Impact of PID on industrial rooftop PV-installations
NASA Astrophysics Data System (ADS)
Buerhop, Claudia; Fecher, Frank W.; Pickel, Tobias; Patel, Tirth; Zetzmann, Cornelia; Camus, Christian; Hauch, Jens; Brabec, Christoph J.
2017-08-01
Potential induced degradation (PID) causes severe damage and financial losses even in modern PV-installations. In Germany, approximately 19% of PV-installations suffer from PID and resulting power loss. This paper focuses on the impact of PID in real installations and how different evaluated time intervals influence the performance ratio (PR) and the determined degradation rate. The analysis focuses exemplarily on a 314 kWp PV-system in the Atlantic coastal climate. IR-imaging is used for identifying PID without operation interruption. Historic electric performance data are available from a monitoring system for several years on system level, string level as well as punctually measured module string IV- curves. The data sets are combined for understanding the PID behavior of this PV plant. The number of PID affected cells within a string varies strongly between 1 to 22% with the string position on the building complex. With increasing number of PID-affected cells the performance ratio decreases down to 60% for daily and monthly periods. Local differences in PID evolution rates are identified. An average PR-reduction of -3.65% per year is found for the PV-plant. On the string level the degradation rate varied up to 8.8% per year depending on the string position and the time period. The analysis reveals that PID generation and evolution in roof-top installations on industrial buildings with locally varying operation conditions can be fairly complex. The results yield that local operating conditions, e.g. ambient weather conditions as well as surrounding conditions on an industrial building, seem to have a dominating impact on the PID evolution rate.
NASA Astrophysics Data System (ADS)
Qiang, Jiang; Meng-wei, Liao; Ming-jie, Luo
2018-03-01
Abstract.The control performance of Permanent Magnet Synchronous Motor will be affected by the fluctuation or changes of mechanical parameters when PMSM is applied as driving motor in actual electric vehicle,and external disturbance would influence control robustness.To improve control dynamic quality and robustness of PMSM speed control system, a new second order integral sliding mode control algorithm is introduced into PMSM vector control.The simulation results show that, compared with the traditional PID control,the modified control scheme optimized has better control precision and dynamic response ability and perform better with a stronger robustness facing external disturbance,it can effectively solve the traditional sliding mode variable structure control chattering problems as well.
Digital redesign of anti-wind-up controller for cascaded analog system.
Chen, Y S; Tsai, J S H; Shieh, L S; Moussighi, M M
2003-01-01
The cascaded conventional anti-wind-up (CAW) design method for integral controller is discussed. Then, the prediction-based digital redesign methodology is utilized to find the new pulse amplitude modulated (PAM) digital controller for effective digital control of the analog plant with input saturation constraint. The desired digital controller is determined from existing or pre-designed CAW analog controller. The proposed method provides a novel methodology for indirect digital design of a continuous-time unity output-feedback system with a cascaded analog controller as in the case of PID controllers for industrial control processes with the presence of actuator saturations. It enables us to implement an existing or pre-designed cascaded CAW analog controller via a digital controller effectively.
Furutani, Masahiko; Kajiwara, Takahito; Kato, Takehide; Treml, Birgit S; Stockum, Christine; Torres-Ruiz, Ramón A; Tasaka, Masao
2007-11-01
Intercellular transport of the phytohormone auxin is a significant factor for plant organogenesis. To investigate molecular mechanisms by which auxin controls organogenesis, we analyzed the macchi-bou 4 (mab4) mutant identified as an enhancer of pinoid (pid). Although mab4 and pid single mutants displayed relatively mild cotyledon phenotypes, pid mab4 double mutants completely lacked cotyledons. We found that MAB4 was identical to ENHANCER OF PINOID (ENP), which has been suggested to control PIN1 polarity in cotyledon primordia. MAB4/ENP encodes a novel protein, which belongs to the NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) family thought to function as a signal transducer in phototropism and control lateral translocation of auxin. MAB4/ENP mRNA was detected in the protodermal cell layer of the embryo and the meristem L1 layer at the site of organ initiation. In the mab4 embryo, the abundance of PIN1:GFP was severely decreased at the plasma membrane in the protodermal cell layer. In addition, subcellular localization analyses indicated that MAB4/ENP resides on a subpopulation of endosomes as well as on unidentified intracellular compartments. These results indicate that MAB4/ENP is involved in polar auxin transport in organogenesis.
Research on the Diesel Engine with Sliding Mode Variable Structure Theory
NASA Astrophysics Data System (ADS)
Ma, Zhexuan; Mao, Xiaobing; Cai, Le
2018-05-01
This study constructed the nonlinear mathematical model of the diesel engine high-pressure common rail (HPCR) system through two polynomial fitting which was treated as a kind of affine nonlinear system. Based on sliding-mode variable structure control (SMVSC) theory, a sliding-mode controller for affine nonlinear systems was designed for achieving the control of common rail pressure and the diesel engine’s rotational speed. Finally, on the simulation platform of MATLAB, the designed nonlinear HPCR system was simulated. The simulation results demonstrated that sliding-mode variable structure control algorithm shows favourable control performances which are overcoming the shortcomings of traditional PID control in overshoot, parameter adjustment, system precision, adjustment time and ascending time.
Research on precise control of 3D print nozzle temperature in PEEK material
NASA Astrophysics Data System (ADS)
Liu, Zhichao; Wang, Gong; Huo, Yu; Zhao, Wei
2017-10-01
3D printing technology has shown more and more applicability in medication, designing and other fields for its low cost and high timeliness. PEEK (poly-ether-ether-ketone), as a typical high-performance special engineering plastic, become one of the most excellent materials to be used in 3D printing technology because of its excellent mechanical property, good lubricity, chemical resistance, and other properties. But the nozzle of 3D printer for PEEK has also a series of very high requirements. In this paper, we mainly use the nozzle temperature control as the research object, combining with the advantages and disadvantages of PID control and fuzzy control. Finally realize a kind of fuzzy PID controller to solve the problem of the inertia of the temperature system and the seriousness of the temperature control hysteresis in the temperature control of the nozzle, and to meet the requirements of the accuracy of the nozzle temperature control and rapid reaction.
Dynamic analysis and control PID path of a model type gantry crane
NASA Astrophysics Data System (ADS)
Ospina-Henao, P. A.; López-Suspes, Framsol
2017-06-01
This paper presents an alternate form for the dynamic modelling of a mechanical system that simulates in real life a gantry crane type, using Euler’s classical mechanics and Lagrange formalism, which allows find the equations of motion that our model describe. Moreover, it has a basic model design system using the SolidWorks software, based on the material and dimensions of the model provides some physical variables necessary for modelling. In order to verify the theoretical results obtained, a contrast was made between solutions obtained by simulation in SimMechanics-Matlab and Euler-Lagrange equations system, has been solved through Matlab libraries for solving equation’s systems of the type and order obtained. The force is determined, but not as exerted by the spring, as this will be the control variable. The objective is to bring the mass of the pendulum from one point to another with a specified distance without the oscillation from it, so that, the answer is overdamped. This article includes an analysis of PID control in which the equations of motion of Euler-Lagrange are rewritten in the state space, once there, they were implemented in Simulink to get the natural response of the system to a step input in F and then draw the desired trajectories.
A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.
Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J; Paz-Vicente, Rafael; Civit-Balcells, Anton
2012-01-01
In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.
A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs
Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J.; Paz-Vicente, Rafael; Civit-Balcells, Anton
2012-01-01
In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control. PMID:22666004
Barzaghi, Federica; Passerini, Laura; Bacchetta, Rosa
2012-01-01
Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a rare monogenic primary immunodeficiency (PID) due to mutations of FOXP3, a key transcription factor for naturally occurring (n) regulatory T (Treg) cells. The dysfunction of Treg cells is the main pathogenic event leading to the multi-organ autoimmunity that characterizes IPEX syndrome, a paradigm of genetically determined PID with autoimmunity. IPEX has a severe early onset and can become rapidly fatal within the first year of life regardless of the type and site of the mutation. The initial presenting symptoms are severe enteritis and/or type-1 diabetes mellitus, alone or in combination with eczema and elevated serum IgE. Other autoimmune symptoms, such as hypothyroidism, cytopenia, hepatitis, nephropathy, arthritis, and alopecia can develop in patients who survive the initial acute phase. The current therapeutic options for IPEX patients are limited. Supportive and replacement therapies combined with pharmacological immunosuppression are required to control symptoms at onset. However, these procedures can allow only a reduction of the clinical manifestations without a permanent control of the disease. The only known effective cure for IPEX syndrome is hematopoietic stem cell transplantation, but it is always limited by the availability of a suitable donor and the lack of specific guidelines for bone marrow transplant in the context of this disease. This review aims to summarize the clinical histories and genomic mutations of the IPEX patients described in the literature to date. We will focus on the clinical and immunological features that allow differential diagnosis of IPEX syndrome and distinguish it from other PID with autoimmunity. The efficacy of the current therapies will be reviewed, and possible innovative approaches, based on the latest highlights of the pathogenesis to treat this severe primary autoimmune disease of childhood, will be discussed. PMID:23060872
Bastiaens, Tim; Claes, Laurence; Smits, Dirk; De Clercq, Barbara; De Fruyt, Filip; Rossi, Gina; Vanwalleghem, Dominique; Vermote, Rudi; Lowyck, Benedicte; Claes, Stephan; De Hert, Marc
2016-02-01
The factor structure and the convergent validity of the Personality Inventory for DSM-5 (PID-5), a self-report questionnaire designed to measure personality pathology as advocated in the fifth edition, Section III of Diagnostic and Statistical Manual of Mental Disorders (DSM-5), are already demonstrated in general population samples, but need replication in clinical samples. In 240 Flemish inpatients, we examined the factor structure of the PID-5 by means of exploratory structural equation modeling. Additionally, we investigated differences in PID-5 higher order domain scores according to gender, age and educational level, and explored convergent and discriminant validity by relating the PID-5 with the Dimensional Assessment of Personality Pathology-Basic Questionnaire and by comparing PID-5 scores of inpatients with and without a DSM-IV categorical personality disorder diagnosis. Our results confirmed the original five-factor structure of the PID-5. The reliability and the convergent and discriminant validity of the PID-5 proved to be adequate. Implications for future research are discussed. © The Author(s) 2015.
IUD users may have higher risk of contracting PID, studies find; pill may have protective effect.
1980-01-01
The incidence of pelvic inflammatory disease (PID), which can lead to serious reproductive impairment, infertility, or ectopic pregnancy, is increasing worldwide. About 500,000 women in their childbearing years contract PID for the first time each year in the U.S., and the incidence among young women appears to be increasing. Sexually transmitted diseases are responsible for many PID cases worldwide, while in developing countries postpartum and postabortion sepsis and endemic diseases such as filariasis and schistosomiasis may also be implicated. Some increase of PID is associated with legal abortion and IUD insertion, while pill use appears to protect women from PID. A worldwide review of medical literature indicates that the risk of PID is 3.5 times greater for IUD users than for nonusers, although several variables other than IUD use affect PID risk, such as age, race, socioeconomic status, and sexual activity. The risk for never pregnant IUD users in a Swedish study was 11.8 per 100 woman years, compared to 3.4 for ever-pregnant IUD users. There was no difference in relative risk for users of the pill or barrier methods, or for non-contraceptors. Another study reported a higher relative risk of PID related to duration of IUD use.
Anderson, Jaime L; Sellbom, Martin; Salekin, Randall T
2018-07-01
The Diagnostic and Statistical Manual of Mental Disorders-Fifth edition ( DSM-5) Personality and Personality Disorders workgroup developed the Personality Inventory for the DSM-5 (PID-5) for the assessment of the alternative trait model for DSM-5. Along with this measure, the American Psychiatric Association published an abbreviated version, the PID-5-Brief form (PID-5-BF). Although this measure is available on the DSM-5 website for use, only two studies have evaluated its psychometric properties and validity and no studies have examined the U.S. version of this measure. The current study evaluated the reliability, factor structure, and construct validity of PID-5-BF scale scores. This included an evaluation of the scales' associations with Section II PDs, a well-validated dimensional measure of personality psychopathology, and broad externalizing and internalizing psychopathology measures. We found support for the reliability of PID-5-BF scales as well as for the factor structure of the measure. Furthermore, a series of correlation and regression analyses showed conceptually expected associations between PID-5-BF and external criterion variables. Finally, we compared the correlations with external criterion measures to those of the full-length PID-5 and PID-5-Short form. Intraclass correlation analyses revealed a comparable pattern of correlations across all three measures, thereby supporting the use of the PID-5-BF as a screening measure of dimensional maladaptive personality traits.
Prevalence of Primary Immunodeficiency in Korea
Rhim, Jung Woo; Kim, Kyung Hyo; Kim, Dong Soo; Kim, Bong Seong; Kim, Jung Soo; Kim, Chang Hwi; Kim, Hwang Min; Park, Hee Ju; Pai, Ki Soo; Son, Byong Kwan; Shin, Kyung Sue; Oh, Moo Young; Woo, Young Jong; Yoo, Young; Lee, Kun Soo; Lee, Kyung Yil; Lee, Chong Guk; Lee, Joon Sung; Chung, Eun Hee; Choi, Eun Hwa; Hahn, Youn Soo; Park, Hyun Young
2012-01-01
This study represents the first epidemiological study based on the national registry of primary immunodeficiencies (PID) in Korea. Patient data were collected from 23 major hospitals. A total of 152 patients with PID (under 19 yr of age), who were observed from 2001 to 2005, have been entered in this registry. The period prevalence of PID in Korea in 2005 is 11.25 per million children. The following frequencies were found: antibody deficiencies, 53.3% (n = 81), phagocytic disorders, 28.9% (n = 44); combined immunodeficiencies, 13.2% (n = 20); and T cell deficiencies, 4.6% (n = 7). Congenital agammaglobulinemia (n = 21) and selective IgA deficiency (n = 21) were the most frequently reported antibody deficiency. Other reported deficiencies were common variable immunodeficiencies (n = 16), X-linked agammaglobulinemia (n = 15), IgG subclass deficiency (n = 4). Phagocytic disorder was mostly chronic granulomatous disease. A small number of patients with Wiskott-Aldrich syndrome, hyper-IgE syndrome, and severe combined immunodeficiency were also registered. Overall, the most common first manifestation was pneumonia. This study provides data that permit a more accurate estimation PID patients in Korea. PMID:22787376
The use of a photoionization detector to detect harmful volatile chemicals by emergency personnel
Patel, Neil D; Fales, William D; Farrell, Robert N
2009-01-01
Objective The objective of this investigation was to determine if a photoionization detector (PID) could be used to detect the presence of a simulated harmful chemical on simulated casualties of a chemical release. Methods A screening protocol, based on existing radiation screening protocols, was developed for the purposes of the investigation. Three simulated casualties were contaminated with a simulated chemical agent and two groups of emergency responders were involved in the trials. The success–failure ratio of the participants was used to judge the performance of the PID in this application. Results A high success rate was observed when the screening protocol was properly adhered to (97.67%). Conversely, the success rate suffered when participants deviated from the protocol (86.31%). With one exception, all failures were noted to have been the result of a failure to correctly observe the established screening protocol. Conclusions The results of this investigation indicate that the PID may be an effective screening tool for emergency responders. However, additional study is necessary to both confirm the effectiveness of the PID and refine the screening protocol if necessary. PMID:27147829
OCT in difficult diagnostic cases in gynecology
NASA Astrophysics Data System (ADS)
Panteleeva, Olga; Shakhova, Natalia; Gelikonov, Grigory; Yunusova, Ekaterina
2011-06-01
The study is aimed at developing new methods for diagnosing causes of impairment of female reproductive function. An increase of infertility and chronic pelvic pains syndrome, a growing level of latent diseases of this group, as well as a stably high percentage (up to 25% for infertility and up to 60% for the chronic pelvic pains syndrome) of undetermined origin make this research extremely important. As a complementary technique to laparoscopy we propose to use optical coherence tomography. We have acquired OCT images of different parts of fallopian tubes and pelvic peritoneum and analyzed OCT criteria of unaltered tissues. The OCT images of the isthmic part of fallopian tubes and peritoneum have been morphologically verified for pelvic inflammatory diseases (PID) and endometriosis. Changes in the optical properties of the studied organs typical of PID and endometriosis have been investigated. Based on comparative analysis of the OCT data and the results of histological studies OCT criteria of the considered diseases have been developed. Statistical analysis of diagnostic efficacy of OCT in the case of PID has been carried out. High (75-85%) diagnostic accuracy of OCT in PID is shown.
Zhang, Zhen; Ma, Cheng; Zhu, Rong
2016-10-14
High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial-temporal complexity. This paper presents a multi-input multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional-integral-derivative (PID) neural network (FCPIDNN) and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.
Improving Angles-Only Navigation Performance by Selecting Sufficiently Accurate Accelerometers
2009-08-01
controller for thrusters and a PID controller for momentum Wheels. Translational control leverages a PD controller for station keeping, and Clohessy ... Wiltshire (CW) equations targeting for trans- fers. Navigation is detailed in Section III.A. III.A. Kalman Filter Development A Square-Root EKF is
Digital force-feedback for protein unfolding experiments using atomic force microscopy
NASA Astrophysics Data System (ADS)
Bippes, Christian A.; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J.
2007-01-01
Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA.
Modeling a multivariable reactor and on-line model predictive control.
Yu, D W; Yu, D L
2005-10-01
A nonlinear first principle model is developed for a laboratory-scaled multivariable chemical reactor rig in this paper and the on-line model predictive control (MPC) is implemented to the rig. The reactor has three variables-temperature, pH, and dissolved oxygen with nonlinear dynamics-and is therefore used as a pilot system for the biochemical industry. A nonlinear discrete-time model is derived for each of the three output variables and their model parameters are estimated from the real data using an adaptive optimization method. The developed model is used in a nonlinear MPC scheme. An accurate multistep-ahead prediction is obtained for MPC, where the extended Kalman filter is used to estimate system unknown states. The on-line control is implemented and a satisfactory tracking performance is achieved. The MPC is compared with three decentralized PID controllers and the advantage of the nonlinear MPC over the PID is clearly shown.
GA-optimized feedforward-PID tracking control for a rugged electrohydraulic system design.
Sarkar, B K; Mandal, P; Saha, R; Mookherjee, S; Sanyal, D
2013-11-01
Rugged electrohydraulic systems are preferred for remote and harsh applications. Despite the low bandwidth, large deadband and flow nonlinearities in proportional valves valve and highly nonlinear friction in industry-grade cylinders that comprise rugged systems, their maintenance are much easier than very sophisticated and delicate servocontrol and servocylinder systems. With the target of making the easily maintainable system to perform comparably to a servosystem, a feedforward control has been designed here for compensating the nonlinearities. A PID feedback of the piston displacement has been employed in tandem for absorbing the unmodeled effects. All the controller parameters have been optimized by a real-coded genetic algorithm. The agreement between the achieved real-time responses for step and sinusoidal demands with those achieved by modern servosystems clearly establishes the acceptability of the controller design. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Study on Temperature Control System Based on SG3525
NASA Astrophysics Data System (ADS)
Cheng, Cong; Zhu, Yifeng; Wu, Junfeng
2017-12-01
In this paper, it uses the way of dry bath temperature to heat the microfluidic chip directly by the heating plate and the liquid sample in microfluidic chip is heated through thermal conductivity, thus the liquid sample will maintain at target temperature. In order to improve the reliability of the whole machine, a temperature control system based on SG3525 is designed.SG3525 is the core of the system which uses PWM wave produced by itself to drive power tube to heat the heating plate. The bridge circuit consisted of thermistor and PID regulation ensure that the temperature can be controlled at 37 °C with a correctness of ± 0.2 °C and a fluctuation of ± 0.1 °C.
High-precision control of LSRM based X-Y table for industrial applications.
Pan, J F; Cheung, Norbert C; Zou, Yu
2013-01-01
The design of an X-Y table applying direct-drive linear switched reluctance motor (LSRM) principle is proposed in this paper. The proposed X-Y table has the characteristics of low cost, simple and stable mechanical structure. After the design procedure is introduced, an adaptive position control method based on online parameter identification and pole-placement regulation scheme is developed for the X-Y table. Experimental results prove the feasibility and its priority over a traditional PID controller with better dynamic response, static performance and robustness to disturbances. It is expected that the novel two-dimensional direct-drive system find its applications in high-precision manufacture area. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
On spacecraft maneuvers control subject to propellant engine modes.
Mazinan, A H
2015-09-01
The paper attempts to address a new control approach to spacecraft maneuvers based upon the modes of propellant engine. A realization of control strategy is now presented in engine on mode (high thrusts as well as further low thrusts), which is related to small angle maneuvers and engine off mode (specified low thrusts), which is also related to large angle maneuvers. There is currently a coarse-fine tuning in engine on mode. It is shown that the process of handling the angular velocities are finalized via rate feedback system in engine modes, where the angular rotations are controlled through quaternion based control (QBCL)strategy in engine off mode and these ones are also controlled through an optimum PID (OPIDH) strategy in engine on mode. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Movement decoupling control for two-axis fast steering mirror
NASA Astrophysics Data System (ADS)
Wang, Rui; Qiao, Yongming; Lv, Tao
2017-02-01
Based on flexure hinge and piezoelectric actuator of two-axis fast steering mirror is a complex system with time varying, uncertain and strong coupling. It is extremely difficult to achieve high precision decoupling control with the traditional PID control method. The feedback error learning method was established an inverse hysteresis model which was based inner product dynamic neural network nonlinear and no-smooth for piezo-ceramic. In order to improve the actuator high precision, a method was proposed, which was based piezo-ceramic inverse model of two dynamic neural network adaptive control. The experiment result indicated that, compared with two neural network adaptive movement decoupling control algorithm, static relative error is reduced from 4.44% to 0.30% and coupling degree is reduced from 12.71% to 0.60%, while dynamic relative error is reduced from 13.92% to 2.85% and coupling degree is reduced from 2.63% to 1.17%.
Pollock, Richard F; Meckley, Lisa M
2018-01-01
While most individual primary immunodeficiency diseases (PID) are rare, the collective prevalence of PID results in a substantial economic and clinical burden. The aim of this study was to evaluate the budgetary implications of Ig20Gly (Immune Globulin Subcutaneous [human] 20% solution; CUVITRU ® , Baxalta US Inc, now part of Shire Plc, Westlake Village, CA, USA) as a treatment for PID relative to intravenous immunoglobulin (IVIG) and other subcutaneous immunoglobulin (SCIG) formulations in the Swiss health care setting. A budget impact model was developed in Microsoft Excel to capture the estimated prevalence of PID in Switzerland, the proportion of patients treated in different health care settings, and the costs of administering SCIG and IVIG in each setting. Unit costs were based on a recent cost-minimization analysis of SCIG in Lausanne, and drug costs were taken from the Spezialitätenliste. All costs were reported in 2016 Swiss Francs (CHF), and future costs were not discounted. The total cost of treating PID in Switzerland was estimated to be CHF 11.16 m over 3 years, comprising CHF 9.28 m of drug costs and CHF 1.87 m of ancillary costs, including health care professional time and other administration costs, such as pumps and needle sets. The analysis showed that using Ig20Gly in place of other SCIG formulations would be cost neutral, while using Ig20Gly in place of IVIG would result in savings of 4.0%. Ig20Gly would be cost neutral relative to existing SCIG products and would result in cost savings relative to IVIG in patients with PID in Switzerland, even with modest uptake.
Nicholson, Amanda; Rait, Greta; Murray-Thomas, Tarita; Hughes, Gwenda; Mercer, Catherine H; Cassell, Jackie
2010-10-01
Prompt and effective treatment of pelvic inflammatory disease (PID) may help prevent long-term complications. Many PID cases are seen in primary care but it is not known how well management follows recommended guidelines. To estimate the incidence of first-episode PID cases seen in UK general practice, describe their management, and assess its adequacy in relation to existing guidelines. Cohort study. UK general practices contributing to the General Practice Research Database (GPRD). Women aged 15 to 40 years, consulting with a first episode of PID occurring between 30 June 2003 and 30 June 2008 were identified, based on the presence of a diagnostic code. The records within 28 days either side of the diagnosis date were analysed to describe management. A total of 3797 women with a first-ever coded diagnosis of PID were identified. Incidence fell during the study period from 19.3 to 8.9/10 000 person-years. Thirty-four per cent of cases had evidence of care elsewhere, while 2064 (56%) appeared to have been managed wholly within the practice. Of these 2064 women, 34% received recommended treatment including metronidazole, and 54% had had a Chlamydia trachomatis test, but only 16% received both. Management was more likely to follow guidelines in women in their 20s, and later in the study period. These analyses suggest that the management of PID in UK primary care, although improving, does not follow recommended guidelines for the majority of women. Further research is needed to understand the delivery of care in general practice and the coding of such complex syndromic conditions.
NASA Astrophysics Data System (ADS)
Powell, Keith B.; Vaitheeswaran, Vidhya
2010-07-01
The MMT observatory has recently implemented and tested an optimal wavefront controller for the NGS adaptive optics system. Open loop atmospheric data collected at the telescope is used as the input to a MATLAB based analytical model. The model uses nonlinear constrained minimization to determine controller gains and optimize the system performance. The real-time controller performing the adaptive optics close loop operation is implemented on a dedicated high performance PC based quad core server. The controller algorithm is written in C and uses the GNU scientific library for linear algebra. Tests at the MMT confirmed the optimal controller significantly reduced the residual RMS wavefront compared with the previous controller. Significant reductions in image FWHM and increased peak intensities were obtained in J, H and K-bands. The optimal PID controller is now operating as the baseline wavefront controller for the MMT NGS-AO system.
Market-oriented Programming Using Small-world Networks for Controlling Building Environments
NASA Astrophysics Data System (ADS)
Shigei, Noritaka; Miyajima, Hiromi; Osako, Tsukasa
The market model, which is one of the economic activity models, is modeled as an agent system, and applying the model to the resource allocation problem has been studied. For air conditioning control of building, which is one of the resource allocation problems, an effective method based on the agent system using auction has been proposed for traditional PID controller. On the other hand, it has been considered that this method is performed by decentralized control. However, its decentralization is not perfect, and its performace is not enough. In this paper, firstly, we propose a perfectly decentralized agent model and show its performance. Secondly, in order to improve the model, we propose the agent model based on small-world model. The effectiveness of the proposed model is shown by simulation.
Genovesi, E V; Knudsen, R C; Whyard, T C; Mebus, C A
1988-03-01
Blood samples of pigs infected with a moderately virulent African swine fever virus (ASFV) isolate, obtained from the Dominican Republic (DR-II), were monitored temporally for viremia, infective ASFV association with major blood components, differential changes in blood cell composition, and plasma antibodies to ASFV. After intranasal/oral virus inoculation, pigs underwent acute infection and illness that resolved. Acute illness began on postinoculation day (PID) 4 and continued to PID 11, and pigs were febrile, with maximal infective ASFV titers detected in blood. By PID 11, initial antibody titers to ASFV antigens were detected in plasma. The WBC numbers were maintained near preinoculation counts; however, lymphocyte counts decreased slightly with a compensatory increment in neutrophil and monocyte numbers. From PID 11 to PID 25, rectal temperatures gradually returned to preinoculation values, titers of viremia began to decrease, plasma antibody to ASFV antigens increased to peak titers, and WBC numbers increased slightly. Percentages of lymphocytes returned to preinoculation values, neutrophil percentages decreased to slightly below preinoculation values, monocyte percentages were mildly increased, and eosinophil percentages were unaffected. From PID 25 to PID 46, titers of viremia further decreased, and plasma titers of antibodies to ASFV antigens remained high. In pigs with DR-II viremia (PID 4 to PID 46), most viral infectivity (greater than 95%) was RBC associated. Plasma contained less than 1% infectivity, and less than 0.1% of virus was in the WBC fraction (monocytes, lymphocytes, and granulocytes). After PID 46, viremia was no longer detectable.
Design and Evaluation of a Robust PID Controller for a Fully Implantable Artificial Pancreas
2015-01-01
Treatment of type 1 diabetes mellitus could be greatly improved by applying a closed-loop control strategy to insulin delivery, also known as an artificial pancreas (AP). In this work, we outline the design of a fully implantable AP using intraperitoneal (IP) insulin delivery and glucose sensing. The design process utilizes the rapid glucose sensing and insulin action offered by the IP space to tune a PID controller with insulin feedback to provide safe and effective insulin delivery. The controller was tuned to meet robust performance and stability specifications. An anti-reset windup strategy was introduced to prevent dangerous undershoot toward hypoglycemia after a large meal disturbance. The final controller design achieved 78% of time within the tight glycemic range of 80–140 mg/dL, with no time spent in hypoglycemia. The next step is to test this controller design in an animal model to evaluate the in vivo performance. PMID:26538805
NASA Astrophysics Data System (ADS)
Muday, Gloria; Sukumar, Poornima; Edwards, Karin; Delong, Alison; Rahman, Abidur
Reversible protein phosphorylation is a key regulatory mechanism governing polar auxin transport. We tested the hypothesis that PINOID (PID)-mediated phosphorylation and RCN1- regulated dephosphorylation might antagonistically regulate auxin transport and gravity response in seedling roots. Here we show that basipetal IAA transport and gravitropism are reduced in pid mutant seedlings, while acropetal transport and lateral root development are unchanged. Treatment of wild-type seedlings with the protein kinase inhibitor, staurosporine, phenocopied the reduced auxin transport and gravity response of pid-9 and reduced formation of asymmetric DR5-revGFP expression at the root tip after reorientation relative to gravity. Gravitropism and auxin transport in pid are resistant to further inhibition by staurosporine. Gravity response defects of rcn1 and pid-9 are partially rescued by treatment with staurosporine or the phosphatase inhibitor, cantharidin, respectively, and in the pid-9 rcn1 double mutant. Furthermore, the effect of staurosporine is lost in pin2, and a PIN2::GFP fusion protein accumulates in endomembrane compartments after staurosporine treatment. In the pid-9 mutant, immunological techniques find a similar PIN2 localization. These data suggest that staurosporine inhibits gravitropism and basipetal IAA transport by blocking PID action and altering PIN2 localization and support the model that PID and RCN1 reciprocally regulate root gravitropic curvature.
Fossati, Andrea; Somma, Antonella; Borroni, Serena; Markon, Kristian E; Krueger, Robert F
2017-07-01
To assess the reliability and construct validity of the Personality Inventory for DSM-5 Brief Form (PID-5-BF) among adolescents, 877 Italian high school students were administered the PID-5-BF. Participants were administered also the Measure of Disordered Personality Functioning (MDPF) as a criterion measure. In the full sample, Cronbach's alpha values for the PID-5-BF scales ranged from .59 (Detachment) to .77 (Psychoticism); in addition, all PID-5-BF scales showed mean interitem correlation values in the .22 to .40 range. Cronbach's alpha values for the PID-5-BF total score was .83 (mean interitem r = .16). Although 2-month test-retest reliability could be assessed only in a small ( n = 42) subsample of participants, all PID-5-BF scale scores showed adequate temporal stability, as indexed by intraclass r values ranging from .78 (Negative Affectivity) to .97 (Detachment), all ps <.001. Exploratory structural equation modeling analyses provided at least moderate support for the a priori model of PID-5-BF items. Multiple regression analyses showed that PID-5-BF scales predicted a nonnegligible amount of variance in MDPF Non-Cooperativeness, adjusted R 2 = .17, p < .001, and Non-Coping scales, adjusted R 2 = .32, p < .001. Similarly, the PID-5-BF total score was a significant predictor of both MDPF Non-Coping, and Non-Cooperativeness scales.
Tuning-free controller to accurately regulate flow rates in a microfluidic network
NASA Astrophysics Data System (ADS)
Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun
2016-03-01
We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework.
Tuning-free controller to accurately regulate flow rates in a microfluidic network
Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun
2016-01-01
We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework. PMID:26987587
Li, Y; Xu, D B; Wang, H J
2016-07-20
To analyze the effects of exogenous hydrogen sulfide on the secretion of growth factors basic fibroblast growth factor (bFGF) and transforming growth factor β1 (TGF-β1), as well as inflammatory mediators tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) in macrophages of deep partial-thickness burn wound in rats. Seventy-eight SD rats were divided into normal control group (n=6), pure burn group, sodium hydrosulfide group, propargylglycine (PPG) group, and sodium hydrosulfide+ PPG group according to the random number table, with 18 rats in each of the latter four groups. Rats in normal control group did not receive any treatment, while rats in the other four groups were inflicted with 5% total burn surface area deep partial-thickness scald (hereinafter referred to as burn) on the back. Immediately after burn, rats in pure burn group, sodium hydrosulfide group, and group PPG were intraperitoneally injected with saline 2 mL/kg, sodium hydrosulfide 56 μmol/kg, and PPG 45 mg/kg respectively, while those in sodium hydrosulfide+ PPG group were intraperitoneally injected with sodium hydrosulfide 56 μmol/kg and PPG 45 mg/kg, once a day till the day before harvesting specimen. Six rats of normal control group fed for one week, and 6 rats from each of the rest four groups on post injury day (PID) 3, 7, 14 were collected respectively. Normal skin on the back of rats in normal control group and tissue in the base of wound of rats in the other four groups were harvested to isolate macrophages, and then the content of bFGF, TGF-β1, TNF-α, and IL-1β in culture supernatant of macrophages was detected with enzyme-linked immunosorbent assay. Data were processed with one-way analysis of variance, analysis of variance of factorial design, and LSD test. Compared with that of normal control group [(42.6±2.5) and (18±4) pg/mL], the content of bFGF and TGF-β1 in culture supernatant of macrophages of rats in pure burn group was obviously increased at each time point (with P values below 0.01), peaking on PID 14 at (141.6±7.7) and (580±16) pg/mL respectively. Compared with that of pure burn group, the content of bFGF and TGF-β1 in culture supernatant of macrophages of rats in sodium hydrosulfide group was obviously increased at each time point (with P values below 0.01), peaking on PID 14 at (193.7±10.9) and (793±12) pg/mL respectively, while the content of bFGF and TGF-β1 in culture supernatant of macrophages of rats in group PPG was obviously decreased at each time point (with P values below 0.01), reaching the nadir on PID 3 at (62.0±7.1) and (170±10) pg/mL respectively. The content of bFGF and TGF-β1 in culture supernatant of macrophages of rats in sodium hydrosulfide+ PPG group was obviously lower than that of sodium hydrosulfide group but obviously higher than that of group PPG at each time point (with P values below 0.01), peaking on PID 14 at (151.3±9.0) and (579±9) pg/mL respectively. Compared with that of normal control group [(97±6) and (31±6) pg/mL], the content of TNF-α and IL-1β in culture supernatant of macrophages of rats in pure burn group was obviously increased at each time point (with P values below 0.01), peaking on PID 3 at (924±8) and (290±10) pg/mL respectively. Compared with that of pure burn group, the content of TNF-α and IL-1β in culture supernatant of macrophages of rats in sodium hydrosulfide group was obviously decreased at each time point (with P values below 0.01), reaching the nadir on PID 14 at (346±10) and (120±5) pg/mL respectively, while the content of TNF-α and IL-1β in culture supernatant of macrophages of rats in group PPG was obviously increased at each time point (with P values below 0.01), peaking on PID 3 at (1 232±13) and (410±10) pg/mL respectively. The content of TNF-α and IL-1β in culture supernatant of macrophages of rats in sodium hydrosulfide+ PPG group was obviously higher than that of sodium hydrosulfide group but obviously lower than that of group PPG at each time point (with P values below 0.01), reaching the nadir on PID 14 at (488±16) and (144±6) pg/mL respectively. Supplementation of exogenous hydrogen sulfide in small dosage can increase the secretion of growth factors bFGF and TGF-β1 in macrophages of wound in rats with deep partial-thickness burn in the early stage and reduce the release of inflammatory mediators TNF-α and IL-1β in the meantime, thus affecting the healing of wound.
Aerodynamic load control strategy of wind turbine in microgrid
NASA Astrophysics Data System (ADS)
Wang, Xiangming; Liu, Heshun; Chen, Yanfei
2017-12-01
A control strategy is proposed in the paper to optimize the aerodynamic load of the wind turbine in micro-grid. In grid-connection mode, the wind turbine adopts a new individual variable pitch control strategy. The pitch angle of the blade is rapidly given by the controller, and the pitch angle of each blade is fine tuned by the weight coefficient distributor. In islanding mode, according to the requirements of energy storage system, a given power tracking control method based on fuzzy PID control is proposed. Simulation result shows that this control strategy can effectively improve the axial aerodynamic load of the blade under rated wind speed in grid-connection mode, and ensure the smooth operation of the micro-grid in islanding mode.
Valencia-Palomo, G; Rossiter, J A
2011-01-01
This paper makes two key contributions. First, it tackles the issue of the availability of constrained predictive control for low-level control loops. Hence, it describes how the constrained control algorithm is embedded in an industrial programmable logic controller (PLC) using the IEC 61131-3 programming standard. Second, there is a definition and implementation of a novel auto-tuned predictive controller; the key novelty is that the modelling is based on relatively crude but pragmatic plant information. Laboratory experiment tests were carried out in two bench-scale laboratory systems to prove the effectiveness of the combined algorithm and hardware solution. For completeness, the results are compared with a commercial proportional-integral-derivative (PID) controller (also embedded in the PLC) using the most up to date auto-tuning rules. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Georgoff, Patrick E; Nikolian, Vahagn C; Halaweish, Ihab; Chtraklin, Kiril; Bruhn, Peter J; Eidy, Hassan; Rasmussen, Monica; Li, Yongqing; Srinivasan, Ashok; Alam, Hasan B
2017-07-01
We have shown previously that fresh frozen plasma (FFP) and lyophilized plasma (LP) decrease brain lesion size and improve neurological recovery in a swine model of traumatic brain injury (TBI) and hemorrhagic shock (HS). In this study, we examine whether these findings can be validated in a clinically relevant model of severe TBI, HS, and polytrauma. Female Yorkshire swine were subjected to TBI (controlled cortical impact), hemorrhage (40% volume), grade III liver and splenic injuries, rib fracture, and rectus abdominis crush. The animals were maintained in a state of shock (mean arterial pressure 30-35 mm Hg) for 2 h, and then randomized to resuscitation with normal saline (NS), FFP, or LP (n = 5 swine/group). Animals were recovered and monitored for 30 d, during which time neurological recovery was assessed. Brain lesion sizes were measured via magnetic resonance imaging (MRI) on post-injury days (PID) three and 10. Animals were euthanized on PID 30. The severity of shock and response to resuscitation was similar in all groups. When compared with NS-treated animals, plasma-treated animals (FFP and LP) had significantly lower neurologic severity scores (PID 1-7) and a faster return to baseline neurological function. There was no significant difference in brain lesion sizes between groups. LP treatment was well tolerated and similar to FFP. In this clinically relevant large animal model of severe TBI, HS, and polytrauma, we have shown that plasma-based resuscitation strategies are safe and result in neurocognitive recovery that is faster than recovery after NS-based resuscitation.
[Acute renal insufficiency caused by phenyl-indane-dione. Apropos of 1 case].
Horellou, M F; Feiss, P; Voultoury, J C; Gay, R
1978-01-01
One case of Phenindione (PID) adverse reaction is reported. The patient showed a typical picture of immunological reaction to the drug. In spite of severe bacteremia, she recovered. Only 33 cases of PID intolerance are reported in the literature. In all these patients, renal failure occurred. Superinfection is the most frequent cause of death. PID adverse reaction should be evoqued in the presence of signs such a fever, asthenia, anorexia and cutaneous reaction. The PID should be stopped immediatly but renal failure yet develops. During a PID treatment, frequent evaluation of blood azotemia, creatinine and proteinuria should be performed.
Samsygina, G A; Vykhristiuk, O F
1989-01-01
The anticoagulative blood system, blood and urine fibrinolysis were studied in 95 children with pyo-inflammatory diseases (PID) and in 56 normal neonates aged 2 to 28 days. The patients afflicted with PID were distributed into 3 groups; group I included patients with uneventful localized PID, group II consisted of patients with grave PID, and group III of patients with sepsis. Hemostasis and urine fibrinolysis were compared according to 20 indicators. The intensity and involvement of certain components of the fibrinolytic and anticoagulative blood systems in PID turned out different and were dependent on the disease gravity.
Detection of antipersonnel (AP) mines using mechatronics approach
NASA Astrophysics Data System (ADS)
Shahri, Ali M.; Naghdy, Fazel
1998-09-01
At present there are approximately 110 million land-mines scattered around the world in 64 countries. The clearance of these mines takes place manually. Unfortunately, on average for every 5000 mines cleared one mine clearer is killed. A Mine Detector Arm (MDA) using mechatronics approach is under development in this work. The robot arm imitates manual hand- prodding technique for mine detection. It inserts a bayonet into the soil and models the dynamics of the manipulator and environment parameters, such as stiffness variation in the soil to control the impact caused by contacting a stiff object. An explicit impact control scheme is applied as the main control scheme, while two different intelligent control methods are designed to deal with uncertainties and varying environmental parameters. Firstly, a neuro-fuzzy adaptive gain controller (NFAGC) is designed to adapt the force gain control according to the estimated environment stiffness. Then, an adaptive neuro-fuzzy plus PID controller is employed to switch from a conventional PID controller to neuro-fuzzy impact control (NFIC), when an impact is detected. The developed control schemes are validated through computer simulation and experimental work.
Quantifying commuter exposures to volatile organic compounds
NASA Astrophysics Data System (ADS)
Kayne, Ashleigh
Motor-vehicles can be a predominant source of air pollution in cities. Traffic-related air pollution is often unavoidable for people who live in populous areas. Commuters may have high exposures to traffic-related air pollution as they are close to vehicle tailpipes. Volatile organic compounds (VOCs) are one class of air pollutants of concern because exposure to VOCs carries risk for adverse health effects. Specific VOCs of interest for this work include benzene, toluene, ethylbenzene, and xylenes (BTEX), which are often found in gasoline and combustion products. Although methods exist to measure time-integrated personal exposures to BTEX, there are few practical methods to measure a commuter's time-resolved BTEX exposure which could identify peak exposures that could be concealed with a time-integrated measurement. This study evaluated the ability of a photoionization detector (PID) to measure commuters' exposure to BTEX using Tenax TA samples as a reference and quantified the difference in BTEX exposure between cyclists and drivers with windows open and closed. To determine the suitability of two measurement methods (PID and Tenax TA) for use in this study, the precision, linearity, and limits of detection (LODs) for both the PID and Tenax TA measurement methods were determined in the laboratory with standard BTEX calibration gases. Volunteers commuted from their homes to their work places by cycling or driving while wearing a personal exposure backpack containing a collocated PID and Tenax TA sampler. Volunteers completed a survey and indicated if the windows in their vehicle were open or closed. Comparing pairs of exposure data from the Tenax TA and PID sampling methods determined the suitability of the PID to measure the BTEX exposures of commuters. The difference between BTEX exposures of cyclists and drivers with windows open and closed in Fort Collins was determined. Both the PID and Tenax TA measurement methods were precise and linear when evaluated in the laboratory using standard BTEX gases. The LODs for the Tenax TA sampling tubes (determined with a sample volume of 1,000 standard cubic centimeters which is close to the approximate commuter sample volumes collected) were orders of magnitude lower (0.04 to 0.7 parts per billion (ppb) for individual compounds of BTEX) compared to the PIDs' LODs (9.3 to 15 ppb of a BTEX mixture), which makes the Tenax TA sampling method more suitable to measure BTEX concentrations in the sub-parts per billion (ppb) range. PID and Tenax TA data for commuter exposures were inversely related. The concentrations of VOCs measured by the PID were substantially higher than BTEX concentrations measured by collocated Tenax TA samplers. The inverse trend and the large difference in magnitude between PID responses and Tenax TA BTEX measurements indicates the two methods may have been measuring different air pollutants that are negatively correlated. Drivers in Fort Collins, Colorado with closed windows experienced greater time-weighted average BTEX exposures than cyclists (p: 0.04). Commuter BTEX exposures measured in Fort Collins were lower than commuter exposures measured in prior studies that occurred in larger cities (Boston and Copenhagen). Although route and intake may affect a commuter's BTEX dose, these variables are outside of the scope of this study. Within the limitations of this study (including: small sample size, small representative area of Fort Collins, and respiration rates not taken into account), it appears health risks associated with traffic-induced BTEX exposures may be reduced by commuting via cycling instead of driving with windows closed and living in a less populous area that has less vehicle traffic. Although the PID did not reliably measure low-level commuter BTEX exposures, the Tenax TA sampling method did. The PID measured BTEX concentrations reliably in a controlled environment, at high concentrations (300-800 ppb), and in the absence of other air pollutants. In environments where there could be multiple chemicals present that may produce a PID signal (such as nitrogen dioxide), Tenax TA samplers may be a better choice for measuring BTEX. Tenax TA measurements were the only suitable method within this study to measure commuter's BTEX exposure in Fort Collins, Colorado.
Application Examples for Handle System Usage
NASA Astrophysics Data System (ADS)
Toussaint, F.; Weigel, T.; Thiemann, H.; Höck, H.; Stockhause, M.; Lautenschlager, M.
2012-12-01
Besides the well-known DOI (Digital Object Identifiers) as a special form of Handles that resolve to scientific publications there are various other applications in use. Others perhaps are just not yet. We present some examples for the existing ones and some ideas for the future. The national German project C3-Grid provides a framework to implement a first solution for provenance tracing and explore unforeseen implications. Though project-specific, the high-level architecture is generic and represents well a common notion of data derivation. Users select one or many input datasets and a workflow software module (an agent in this context) to execute on the data. The output data is deposited in a repository to be delivered to the user. All data is accompanied by an XML metadata document. All input and output data, metadata and the workflow module receive Handles and are linked together to establish a directed acyclic graph of derived data objects and involved agents. Data that has been modified by a workflow module is linked to its predecessor data and the workflow module involved. Version control systems such as svn or git provide Internet access to software repositories using URLs. To refer to a specific state of the source code of for instance a C3 workflow module, it is sufficient to reference the URL to the svn revision or git hash. In consequence, individual revisions and the repository as a whole receive PIDs. Moreover, the revision specific PIDs are linked to their respective predecessors and become part of the provenance graph. Another example for usage of PIDs in a current major project is given in EUDAT (European Data Infrastructure) which will link scientific data of several research communities together. In many fields it is necessary to provide data objects at multiple locations for a variety of applications. To ensure consistency, not only the master of a data object but also its copies shall be provided with a PID. To verify transaction safety and to keep all copies consistent requires that the chain from master to copy and vice versa has to be resolvable, preferably through PIDs directly. As part of EUDAT necessary services are created on the basis of iRODS. These form the core structure of the data infrastructure developed within EUDAT. Though many implementations of PID systems already exist, many valuable web accessible data sources come with unresolvable identifiers like UUIDs, with instable recognition patterns like URLs, or even with proprietary implementations. However, other data collections would like to link to them in the data descriptions of their metadata. In addition, by usage of PIDs one can decouple the responsibilities for data and MD in projects where necessary. For some metadata entities like persons or even institutes it makes sense to give them single PIDs that point to contact and/or location information. ORCID (Open Researcher & Contributor ID), e.g., keeps track of persons working in scholarly fields, independent of name changes and linguistic variances. The ISO 27729 based International Standard Name Identifier (ISNI) also identifies legal entities and fictional characters besides natural persons. Other systems exist that, e.g., reference geographic localities. IDs of this kind may resolve to a URL where detailed information is given.
Impedance Control of the Rehabilitation Robot Based on Sliding Mode Control
NASA Astrophysics Data System (ADS)
Zhou, Jiawang; Zhou, Zude; Ai, Qingsong
As an auxiliary treatment, the 6-DOF parallel robot plays an important role in lower limb rehabilitation. In order to improve the efficiency and flexibility of the lower limb rehabilitation training, this paper studies the impedance controller based on the position control. A nonsingular terminal sliding mode control is developed to ensure the trajectory tracking precision and in contrast to traditional PID control strategy in the inner position loop, the system will be more stable. The stability of the system is proved by Lyapunov function to guarantee the convergence of the control errors. Simulation results validate the effectiveness of the target impedance model and show that the parallel robot can adjust gait trajectory online according to the human-machine interaction force to meet the gait request of patients, and changing the impedance parameters can meet the demands of different stages of rehabilitation training.
Pelvic Inflammatory Disease (PID)
... Education FAQs Pelvic Inflammatory Disease (PID) Patient Education Pamphlets - Spanish Pelvic Inflammatory Disease (PID) FAQ077, September 2015 ... on Patient Safety For Patients Patient FAQs Spanish Pamphlets Teen Health About ACOG About Us Leadership & Governance ...
Design of laser diode driver with constant current and temperature control system
NASA Astrophysics Data System (ADS)
Wang, Ming-cai; Yang, Kai-yong; Wang, Zhi-guo; Fan, Zhen-fang
2017-10-01
A laser Diode (LD) driver with constant current and temperature control system is designed according to the LD working characteristics. We deeply researched the protection circuit and temperature control circuit based on thermos-electric cooler(TEC) cooling circuit and PID algorithm. The driver could realize constant current output and achieve stable temperature control of LD. Real-time feedback control method was adopted in the temperature control system to make LD work on its best temperature point. The output power variety and output wavelength shift of LD caused by current and temperature instability were decreased. Furthermore, the driving current and working temperature is adjustable according to specific requirements. The experiment result showed that the developed LD driver meets the characteristics of LD.
Reekie, Joanne; Donovan, Basil; Guy, Rebecca; Hocking, Jane S; Jorm, Louisa; Kaldor, John M; Mak, Donna B; Preen, David; Pearson, Sallie; Roberts, Christine L; Stewart, Louise; Wand, Handan; Ward, James; Liu, Bette
2014-01-01
The presence and severity of pelvic inflammatory disease (PID) symptoms are thought to vary by microbiological etiology but there is limited empirical evidence. We sought to estimate and compare the rates of hospitalisation for PID temporally related to diagnoses of gonorrhoea and chlamydia. All women, aged 15-45 years in the Australian state of New South Wales (NSW), with a diagnosis of chlamydia or gonorrhoea between 01/07/2000 and 31/12/2008 were followed by record linkage for up to one year after their chlamydia or gonorrhoea diagnosis for hospitalisations for PID. Standardised incidence ratios compared the incidence of PID hospitalisations to the age-equivalent NSW population. A total of 38,193 women had a chlamydia diagnosis, of which 483 were hospitalised for PID; incidence rate (IR) 13.9 per 1000 person-years of follow-up (PYFU) (95%CI 12.6-15.1). In contrast, 1015 had a gonorrhoea diagnosis, of which 45 were hospitalised for PID (IR 50.8 per 1000 PYFU, 95%CI 36.0-65.6). The annual incidence of PID hospitalisation temporally related to a chlamydia or gonorrhoea diagnosis was 27.0 (95%CI 24.4-29.8) and 96.6 (95%CI 64.7-138.8) times greater, respectively, than the age-equivalent NSW female population. Younger age, socio-economic disadvantage, having a diagnosis prior to 2005 and having a prior birth were also associated with being hospitalised for PID. Chlamydia and gonorrhoea are both associated with large increases in the risk of PID hospitalisation. Our data suggest the risk of PID hospitalisation is much higher for gonorrhoea than chlamydia; however, further research is needed to confirm this finding.
Closed-loop regulation of arterial pressure after acute brain death.
Soltesz, Kristian; Sjöberg, Trygve; Jansson, Tomas; Johansson, Rolf; Robertsson, Anders; Paskevicius, Audrius; Liao, Quiming; Qin, Guangqi; Steen, Stig
2018-06-01
The purpose of this concept study was to investigate the possibility of automatic mean arterial pressure (MAP) regulation in a porcine heart-beating brain death (BD) model. Hemodynamic stability of BD donors is necessary for maintaining acceptable quality of donated organs for transplantation. Manual stabilization is challenging, due to the lack of vasomotor function in BD donors. Closed-loop stabilization therefore has the potential of increasing availability of acceptable donor organs, and serves to indicate feasibility within less demanding patient groups. A dynamic model of nitroglycerine pharmacology, suitable for controller synthesis, was identified from an experiment involving an anesthetized pig, using a gradient-based output error method. The model was used to synthesize a robust PID controller for hypertension prevention, evaluated in a second experiment, on a second, brain dead, pig. Hypotension was simultaneously prevented using closed-loop controlled infusion of noradrenaline, by means of a previously published controller. A linear model of low order, with variable (uncertain) gain, was sufficient to describe the dynamics to be controlled. The robustly tuned PID controller utilized in the second experiment kept the MAP within a user-defined range. The system was able to prevent hypertension, exceeding a reference of 100 mmHg by more than 10%, during 98% of a 12 h experiment. This early work demonstrates feasibility of the investigated modelling and control synthesis approach, for the purpose of maintaining normotension in a porcine BD model. There remains a need to characterize individual variability, in order to ensure robust performance over the expected population.
Design of optical axis jitter control system for multi beam lasers based on FPGA
NASA Astrophysics Data System (ADS)
Ou, Long; Li, Guohui; Xie, Chuanlin; Zhou, Zhiqiang
2018-02-01
A design of optical axis closed-loop control system for multi beam lasers coherent combining based on FPGA was introduced. The system uses piezoelectric ceramics Fast Steering Mirrors (FSM) as actuator, the Fairfield spot detection of multi beam lasers by the high speed CMOS camera for optical detecting, a control system based on FPGA for real-time optical axis jitter suppression. The algorithm for optical axis centroid detecting and PID of anti-Integral saturation were realized by FPGA. Optimize the structure of logic circuit by reuse resource and pipeline, as a result of reducing logic resource but reduced the delay time, and the closed-loop bandwidth increases to 100Hz. The jitter of laser less than 40Hz was reduced 40dB. The cost of the system is low but it works stably.
Second-order sliding mode control with experimental application.
Eker, Ilyas
2010-07-01
In this article, a second-order sliding mode control (2-SMC) is proposed for second-order uncertain plants using equivalent control approach to improve the performance of control systems. A Proportional + Integral + Derivative (PID) sliding surface is used for the sliding mode. The sliding mode control law is derived using direct Lyapunov stability approach and asymptotic stability is proved theoretically. The performance of the closed-loop system is analysed through an experimental application to an electromechanical plant to show the feasibility and effectiveness of the proposed second-order sliding mode control and factors involved in the design. The second-order plant parameters are experimentally determined using input-output measured data. The results of the experimental application are presented to make a quantitative comparison with the traditional (first-order) sliding mode control (SMC) and PID control. It is demonstrated that the proposed 2-SMC system improves the performance of the closed-loop system with better tracking specifications in the case of external disturbances, better behavior of the output and faster convergence of the sliding surface while maintaining the stability. 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Ashton, Michael C; Lee, Kibeom; de Vries, Reinout E; Hendrickse, Joshua; Born, Marise Ph
2012-10-01
The Personality Inventory for DSM-5 (PID-5), a new measure of maladaptive personality traits, has recently been developed by the DSM-5 Personality and Personality Disorders Workgroup. The PID-5 variables were examined within the seven-factor space defined by the six HEXACO factors and the Schizotypy/Dissociation factor (Ashton & Lee, 2012) using participant samples from Canada (N = 378) and the Netherlands (N = 476). Extension analyses showed that several PID-5 facet-level scales represented each of the Honesty-Humility, Emotionality, Extraversion, Conscientiousness, and Schizotypy/Dissociation factors. In contrast, only one PID-5 scale loaded strongly on HEXACO Agreeableness, and no PID-5 scales loaded strongly on Openness to Experience. In addition, a joint factor analysis involving the PID-5 variables and facets of the Five-Factor Model was conducted in the Canadian sample and recovered a set of seven factors corresponding rather closely to the HEXACO factors plus Schizotypy/Dissociation. The authors discuss implications for the assessment and structure of normal and abnormal personality.
Das, Saptarshi; Pan, Indranil; Das, Shantanu
2015-09-01
An optimal trade-off design for fractional order (FO)-PID controller is proposed with a Linear Quadratic Regulator (LQR) based technique using two conflicting time domain objectives. A class of delayed FO systems with single non-integer order element, exhibiting both sluggish and oscillatory open loop responses, have been controlled here. The FO time delay processes are handled within a multi-objective optimization (MOO) formalism of LQR based FOPID design. A comparison is made between two contemporary approaches of stabilizing time-delay systems withinLQR. The MOO control design methodology yields the Pareto optimal trade-off solutions between the tracking performance and total variation (TV) of the control signal. Tuning rules are formed for the optimal LQR-FOPID controller parameters, using median of the non-dominated Pareto solutions to handle delayed FO processes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Napolitano, Marcello R.
1995-01-01
This report is a compilation of PID (Proportional Integral Derivative) results for both longitudinal and lateral directional analysis that was completed during Fall 1994. It had earlier established that the maneuvers available for PID containing independent control surface inputs from OBES were not well suited for extracting the cross-coupling static (i.e., C(sub N beta)) or dynamic (i.e., C(sub Npf)) derivatives. This was due to the fact that these maneuvers were designed with the goal of minimizing any lateral directional motion during longitudinal maneuvers and vice-versa. This allows for greater simplification in the aerodynamic model as far as coupling between longitudinal and lateral directions is concerned. As a result, efforts were made to reanalyze this data and extract static and dynamic derivatives for the F/A-18 HARV (High Angle of Attack Research Vehicle) without the inclusion of the cross-coupling terms such that more accurate estimates of classical model terms could be acquired. Four longitudinal flights containing static PID maneuvers were examined. The classical state equations already available in pEst for alphadot, qdot and thetadot were used. Three lateral directional flights of PID static maneuvers were also examined. The classical state equations already available in pEst for betadot, p dot, rdot and phi dot were used. Enclosed with this document are the full set of longitudinal and lateral directional parameter estimate plots showing coefficient estimates along with Cramer-Rao bounds. In addition, a representative time history match for each type of meneuver tested at each angle of attack is also enclosed.
Potential-Induced Degradation-Delamination Mode in Crystalline Silicon Modules: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hacke, Peter L; Kempe, Michael D; Wohlgemuth, John
A test sequence producing potential-induced degradation-delamination (PID-d) in crystalline silicon modules has been tested and found comparable under visual inspection to cell/encapsulant delamination seen in some fielded modules. Four commercial modules were put through this sequence, 85 degrees C, 85%, 1000 h damp heat, followed by an intensive PID stress sequence of 72 degrees C, 95% RH, and -1000 V, with the module face grounded using a metal foil. The 60 cell c-Si modules exhibiting the highest current transfer (4.4 center dot 10-4 A) exhibited PID-d at the first inspection after 156 h of PID stress. Effects promoting PID-d aremore » reduced adhesion caused by damp heat, sodium migration further reducing adhesion to the cells, and gaseous products of electrochemical reactions driven by the applied system voltage. A new work item proposal for an IEC test standard to evaluate for PID-d is anticipated.« less
Cost-effectiveness of alternative outpatient pelvic inflammatory disease treatment strategies.
Smith, Kenneth J; Ness, Roberta B; Wiesenfeld, Harold C; Roberts, Mark S
2007-12-01
Effectiveness differences between outpatient pelvic inflammatory disease (PID) treatment regimens are uncertain, but significant differences in cost exist. To examine the influence of antibiotic costs on PID therapy cost-effectiveness. The authors used a Markov decision model to estimate the cost-effectiveness of recommended antibiotic regimens for PID and performed a value of information analysis to guide future research. Antibiotic costs vary between USD 43 and USD188. Pairwise comparisons, assuming a hypothetical 1% relative risk reduction in PID complications with the more expensive regimen, showed economically reasonable cost-effectiveness ratios. Value of information and sample size considerations support further investigation to detect 10% PID complication rate differences between regimens with >or=USD 50 cost differences. Within the cost range of recommended regimens, use of more expensive antibiotics would be economically reasonable if relatively small decreases in PID complication rates exist. Further investigation of effectiveness differences between regimens is needed.
Zou, Wei; Xiao, Zuoqi; Wen, Xiaoke; Luo, Jieying; Chen, Shuqiong; Cheng, Zeneng; Xiang, Daxiong; Hu, Jian; He, Jingyu
2016-11-25
Andrographis paniculata (Burm. f.) Nees (APN), a principal constituent of a famous traditional Chinese medicine Fukeqianjin tablet which is used for the treatment of pelvic inflammatory disease (PID), has been reported to have anti-inflammatory effect in vitro. However, whether it has pharmacological effect on PID in vivo is unclear. Therefore, the aim of this study is to test the anti-inflammatory effect of APN and illuminate a potential mechanism. Thirty-six female specific pathogen-free SD rats were randomly divided into control group, PID group, APN1 group, APN2 group, APN3 group and prednisone group. Pathogen-induced PID rats were constructed. The APN1, APN2 and APN3 group rats were orally administrated with APN extract at different levels. The prednisone group rats were administrated with prednisone. Eight days after the first infection, the histological examination of upper genital tract was carried out, and enzyme-linked immunosorbent assay (ELISA) was carried out using homogenate of the uterus and fallopian tube. Furthermore, immunohistochemical evaluations of NF-κB p65 and IκB-α in uterus was conducted. APN obviously suppressed the infiltrations of neutrophils and lymphocytes, and it could significantly reduce the excessive production of cytokines and chemokines including IL-1β, IL-6, CXCL-1, MCP-1 and RANTES in a dose-dependent manner. Furthermore, APN could block the pathogen-induced activation of NF-κB pathway. APN showed potent anti-inflammatory effect on pathogen-induced PID in rats, with a potential mechanism of inhibiting the NF-κB signal pathway.
A New Type of Tea Baking Machine Based on Pro/E Design
NASA Astrophysics Data System (ADS)
Lin, Xin-Ying; Wang, Wei
2017-11-01
In this paper, the production process of wulong tea was discussed, mainly the effect of baking on the quality of tea. The suitable baking temperature of different tea was introduced. Based on Pro/E, a new type of baking machine suitable for wulong tea baking was designed. The working principle, mechanical structure and constant temperature timing intelligent control system of baking machine were expounded. Finally, the characteristics and innovation of new baking machine were discussed.The mechanical structure of this baking machine is more simple and reasonable, and can use the heat of the inlet and outlet, more energy saving and environmental protection. The temperature control part adopts fuzzy PID control, which can improve the accuracy and response speed of temperature control and reduce the dependence of baking operation on skilled experience.
Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.
Pan, Indranil; Das, Saptarshi
2016-05-01
This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Development of a Clear Fiber Cherenkov Counter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, N.; Han, S.; Ito, H.
2015-07-01
We have developed a new PID detector consists of clear fibers. PID efficiency was measured with 470 MeV e{sup +} beam. As a result, this detector with thickness of 5 cm has the PID efficiency of 95 %. (authors)
The ToxiRAE Pro PID measures total volatile organic compounds (VOCs) using a photoionization detector (PID). This sensor can be programmed to measure concentrations of a specified compound automatically and has a real time reading of VOC concentrations in parts per million (ppm) ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, Rhian Siân, E-mail: rhian.s.davies@wales.nhs.uk; Perrett, Teresa; Powell, Jane
A study was performed to establish whether transrectal ultrasound (TRUS)-based postimplant dosimetry (PID) is both practically feasible and comparable to computed tomography (CT)-based PID, recommended in current published guidelines. In total, 22 patients treated consecutively at a single cancer center with low-dose-rate (LDR) brachytherapy for early-stage prostate cancer had a transrectal ultrasound performed immediately after implant (d0-TRUS) and computed tomography scan 30 days after implant (d30-CT). Postimplant dosimetry planning was performed on both image sets and the results were compared. The interobserver reproducibility of the transrectal ultrasound postimplant dosimetry planning technique was also assessed. It was noticed that there wasmore » no significant difference in mean prostate D{sub 90} (136.5 Gy and 144.4 Gy, p = 0.2197), V{sub 100} (86.4% and 89.1%, p = 0.1480) and V{sub 150} (52.0% and 47.8%, p = 0.1657) for d30-CT and d0-TRUS, respectively. Rectal doses were significantly higher for d0-TRUS than d30-CT. Urethral doses were available with d0-TRUS only. We have shown that d0-TRUS PID is a useful tool for assessing the quality of an implant after low-dose-rate prostate brachytherapy and is comparable to d30-CT PID. There are clear advantages to its use in terms of resource and time efficiency both for the clinical team and the patient.« less
Ballow, M; Notarangelo, L; Grimbacher, B; Cunningham-Rundles, C; Stein, M; Helbert, M; Gathmann, B; Kindle, G; Knight, A K; Ochs, H D; Sullivan, K; Franco, J L
2009-01-01
Primary immunodeficiencies (PIDs) are uncommon, chronic and severe disorders of the immune system in which patients cannot mount a sufficiently protective immune response, leading to an increased susceptibility to infections. The treatment of choice for PID patients with predominant antibody deficiency is intravenous immunoglobulin (Ig) replacement therapy. Despite major advances over the last 20 years in the molecular characterization of PIDs, many patients remain undiagnosed or are diagnosed too late, with severe consequences. Various strategies to ensure timely diagnosis of PIDs are in place, and novel approaches are being developed. In recent years, several patient registries have been established. Such registries shed light on the pathology and natural history of these varied disorders. Analyses of the registry data may also reveal which patients are likely to respond well to higher Ig infusion rates and may help to determine the optimal dosing of Ig products. Faster infusion rates may lead to improved convenience for patients and thus increase patient compliance, and may reduce nursing time and the need for hospital resources. Data from two recent studies suggest that Gamunex® and Privigen® are well tolerated at high infusion rates. Nevertheless, careful selection of patients for high infusion rates, based on co-morbid conditions and tolerance of the current infusion rate, is advisable. Based on the available data, intravenous Ig offers broad protection against encapsulated organisms. As vaccine trends change, careful monitoring of specific antibody levels in the general population, such as those against pneumococcal and meningococcal bacteria, should be implemented. PMID:19883420
de Vries, Esther
2010-01-01
Primary immunodeficiencies (PIDs) are characterized by an increased susceptibility to infections due to defects in one ore more components of the immune system. Although most PIDs are relatively rare, they are more frequent than generally acknowledged. Early diagnosis and treatment of PIDs save lives, prevent morbidity, and improve quality of life. This early diagnosis is the task of the pediatrician who encounters the child for the first time: he/she should suspect potential PID in time and perform the appropriate diagnostic tests. In this educational paper, the first in a series of five, we will describe the most common clinical presentations of PIDs and offer guidelines for the diagnostic process, as well as a brief overview of therapeutic possibilities and prognosis. PMID:21170549
Sellbom, Martin; Dhillon, Sonya; Bagby, R Michael
2018-05-01
Our aim in the current study was to develop a validity scale for the Personality Inventory for DSM-5 (PID-5) to detect noncredible overreported responding. To this end, we used a rare symptoms approach and identified extreme response options on PID-5 items that were infrequently endorsed by students in 3 different university samples (N = 1,370) and in a psychiatric patient sample (N = 194). The resulting 10-item scale (the PID-5-ORS) produced adequate-to-good estimates of internal reliability and was significantly correlated with the Minnesota Multiphasic Personality Inventory-2 Restructued Form (MMPI-2-RF) overreporting validity scales, providing evidence of concurrent validity. The criterion validity of the PID-5-ORS was demonstrated in an analog simulation design study. More specifically, university students instructed to overreport (n = 80) scored substantially higher on the PID-5-ORS relative to both a group of genuine psychiatric patients and students instructed to complete the PID-5 under standard (honest) instructions (n = 161); the effect size magnitudes associated with these differences were large. Classification accuracy analyses further revealed that high scores on the PID-5-ORS were associated with high specificity (and thus, low rates of false positive classifications) in differentiating overreporters from genuine patients, with sensitivity being somewhat weaker. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Cai, Le; Mao, Xiaobing; Ma, Zhexuan
2018-02-01
This study first constructed the nonlinear mathematical model of the high-pressure common rail (HPCR) system in the diesel engine. Then, the nonlinear state transformation was performed using the flow’s calculation and the standard state space equation was acquired. Based on sliding-mode variable structure control (SMVSC) theory, a sliding-mode controller for nonlinear systems was designed for achieving the control of common rail pressure and the diesel engine’s rotational speed. Finally, on the simulation platform of MATLAB, the designed nonlinear HPCR system was simulated. The simulation results demonstrate that sliding-mode variable structure control algorithm shows favorable control performances and overcome the shortcomings of traditional PID control in overshoot, parameter adjustment, system precision, adjustment time and ascending time.
Application of digital control techniques for satellite medium power DC-DC converters
NASA Astrophysics Data System (ADS)
Skup, Konrad R.; Grudzinski, Pawel; Nowosielski, Witold; Orleanski, Piotr; Wawrzaszek, Roman
2010-09-01
The objective of this paper is to present a work concerning a digital control loop system for satellite medium power DC-DC converters that is done in Space Research Centre. The whole control process of a described power converter bases on a high speed digital signal processing. The paper presents a development of a FPGA digital controller for voltage mode stabilization that was implemented using VHDL. The described controllers are a classical digital PID controller and a bang-bang controller. The used converter for testing is a simple model of 5-20 W, 200 kHz buck power converter. A high resolution digital PWM approach is presented. Additionally a simple and effective solution of filtering of an analog-to-digital converter output is presented.
Semen variables of sheep (Ovis aries) experimentally infected with Toxoplasma gondii.
Lopes, W D Z; Costa, A J; Souza, F A; Rodrigues, J D F; Costa, G H N; Soares, V E; Silva, G S
2009-04-01
The influence of Toxoplasma gondii on semen variables and sperm morphology of sheep was evaluated in eight reproductive males distributed into three experimental groups: GI, three sheep inoculated with 2.0x10(5) of P strain oocytes; GII, three sheep infected with 1.0x10(6) of RH strain tachyzoites and; GIII two control sheep. Clinical (rectal temperature, cardiac and respiratory frequencies), parasite and serology exams (IIF) were realized. Sperm variables (volume, motility, vigor and concentration) and semen morphology for each sheep were also evaluated. Thus, semen and blood collections were assessed on post-inoculation days (PIDs)-1,3,5,7,11,14 and weekly thereafter up to PID 70. Clinical alterations were observed (hypothermia and anorexia) in infected sheep from groups GI and GII. Parasitic outbreaks were detected in five sheep. All the infected sheep produced antibodies against T. gondii from PID 5 onwards, reaching a peak of 4096 and 8192 for group GI and GII sheep, respectively. Differences (P<0.05) were observed regarding the ejaculate volume between the inoculated groups (oocytes and tachyzoites) and control. Even though experimental toxoplasmic infection resulted in clinical symptomology in the inoculated sheep, the minimal alterations in sperm pathologies could not be directly attributed to T. gondii.
Definition of a Robust Supervisory Control Scheme for Sodium-Cooled Fast Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponciroli, R.; Passerini, S.; Vilim, R. B.
In this work, an innovative control approach for metal-fueled Sodium-cooled Fast Reactors is proposed. With respect to the classical approach adopted for base-load Nuclear Power Plants, an alternative control strategy for operating the reactor at different power levels by respecting the system physical constraints is presented. In order to achieve a higher operational flexibility along with ensuring that the implemented control loops do not influence the system inherent passive safety features, a dedicated supervisory control scheme for the dynamic definition of the corresponding set-points to be supplied to the PID controllers is designed. In particular, the traditional approach based onmore » the adoption of tabulated lookup tables for the set-point definition is found not to be robust enough when failures of the implemented SISO (Single Input Single Output) actuators occur. Therefore, a feedback algorithm based on the Reference Governor approach, which allows for the optimization of reference signals according to the system operating conditions, is proposed.« less
NASA Astrophysics Data System (ADS)
Kikuchi, Takahiro; Kubo, Ryogo
2016-08-01
In energy-efficient passive optical network (PON) systems, the increase in the queuing delays caused by the power-saving mechanism of optical network units (ONUs) is an important issue. Some researchers have proposed quality-of-service (QoS)-aware ONU cyclic sleep controllers in PON systems. We have proposed proportional (P) and proportional-derivative (PD)-based controllers to maintain the average queuing delay at a constant level regardless of the amount of downstream traffic. However, sufficient performance has not been obtained because of the sleep period limitation. In this paper, proportional-integral (PI) and proportional-integral-derivative (PID)-based controllers considering the sleep period limitation, i.e., using an anti-windup (AW) technique, are proposed to improve both the QoS and power-saving performance. Simulations confirm that the proposed controllers provide better performance than conventional controllers in terms of the average downstream queuing delay and the time occupancy of ONU active periods.
Simulation Exercises for an Undergraduate Digital Process Control Course.
ERIC Educational Resources Information Center
Reeves, Deborah E.; Schork, F. Joseph
1988-01-01
Presents six problems from an alternative approach to homework traditionally given to follow-up lectures. Stresses the advantage of longer term exercises which allow for creativity and independence on the part of the student. Problems include: "System Model,""Open-Loop Simulation,""PID Control,""Dahlin…
Modelling and Control of Robotic Leg as Assistive Device
NASA Astrophysics Data System (ADS)
Jingye, Yee; Zain, Badrul Aisham bin Md
2017-10-01
The ageing population (people older than 60 years old) is expected to constitute 21.8% of global population by year 2050. When human ages, bodily function including locomotors will deteriorate. Besides, there are hundreds of thousands of victims who suffer from multiple health conditions worldwide that leads to gait impairment. A promising solution will be the lower limb powered-exoskeleton. This study is to be a start-up platform to design a lower limb powered-exoskeleton for a normal Malaysian male, by designing and simulating the dynamic model of a 2-link robotic leg to observe its behaviour under different input conditions with and without a PID controller. Simulink in MATLAB software is used as the dynamic modelling and simulation software for this study. It is observed that the 2-links robotic leg behaved differently under different input conditions, and perform the best when it is constrained and controlled by PID controller. Simulink model is formed as a foundation for the upcoming researches and can be modified and utilised by the future researchers.
A digital intensity stabilization system for HeNe laser
NASA Astrophysics Data System (ADS)
Wei, Zhimeng; Lu, Guangfeng; Yang, Kaiyong; Long, Xingwu; Huang, Yun
2012-02-01
A digital intensity stabilization system for HeNe laser is developed. Based on a switching power IC to design laser power supply and a general purpose microcontroller to realize digital PID control, the system constructs a closed loop to stabilize the laser intensity by regulating its discharge current. The laser tube is made of glass ceramics and its integrated structure is steady enough to eliminate intensity fluctuations at high frequency and attenuates all intensity fluctuations, and this makes it easy to tune the control loop. The control loop between discharge current and photodiode voltage eliminates the long-term drifts. The intensity stability of the HeNe laser with this system is 0.014% over 12 h.
Research Based on AMESim of Electro-hydraulic Servo Loading System
NASA Astrophysics Data System (ADS)
Li, Jinlong; Hu, Zhiyong
2017-09-01
Electro-hydraulic servo loading system is a subject studied by many scholars in the field of simulation and control at home and abroad. The electro-hydraulic servo loading system is a loading device simulation of stress objects by aerodynamic moment and other force in the process of movement, its function is all kinds of gas in the lab condition to analyze stress under dynamic load of objects. The purpose of this paper is the design of AMESim electro-hydraulic servo system, PID control technology is used to configure the parameters of the control system, complete the loading process under different conditions, the optimal design parameters, optimization of dynamic performance of the loading system.
Jiang, Feng; Bai, Jingfeng; Chen, Yazhu
2005-08-01
Small-scale intellectualized medical instrument has attracted great attention in the field of biomedical engineering, and LabVIEW (Laboratory Virtual Instrument Engineering Workbench) provides a convenient environment for this application due to its inherent advantages. The principle and system structure of the hyperthermia instrument are presented. Type T thermocouples are employed as thermotransducers, whose amplifier consists of two stages, providing built-in ice point compensation and thus improving work stability over temperature. Control signals produced by specially designed circuit drive the programmable counter/timer 8254 chip to generate PWM (Pulse width modulation) wave, which is used as ultrasound radiation energy control signal. Subroutine design topics such as inner-tissue real time feedback temperature control algorithm, water temperature control in the ultrasound applicator are also described. In the cancer tissue temperature control subroutine, the authors exert new improvments to PID (Proportional Integral Differential) algorithm according to the specific demands of the system and achieve strict temperature control to the target tissue region. The system design and PID algorithm improvement have experimentally proved to be reliable and excellent, meeting the requirements of the hyperthermia system.
Concept for Future Data Services at the Long-Term Archive of WDCC combining DOIs with common PIDs
NASA Astrophysics Data System (ADS)
Stockhause, Martina; Weigel, Tobias; Toussaint, Frank; Höck, Heinke; Thiemann, Hannes; Lautenschlager, Michael
2013-04-01
The World Data Center for Climate (WDCC) hosted at the German Climate Computing Center (DKRZ) maintains a long-term archive (LTA) of climate model data as well as observational data. WDCC distinguishes between two types of LTA data: Structured data: Data output of an instrument or of a climate model run consists of numerous, highly structured individual datasets in a uniform format. Part of these data is also published on an ESGF (Earth System Grid Federation) data node. Detailed metadata is available allowing for fine-grained user-defined data access. Unstructured data: LTA data of finished scientific projects are in general unstructured and consist of datasets of different formats, different sizes, and different contents. For these data compact metadata is available as content information. The structured data is suitable for WDCC's DataCite DOI process, the project data only in exceptional cases. The DOI process includes a thorough quality control process of technical as well as scientific aspects by the publication agent and the data creator. DOIs are assigned to data collections appropriate to be cited in scientific publications, like a simulation run. The data collection is defined in agreement with the data creator. At the moment there is no possibility to identify and cite individual datasets within this DOI data collection analogous to the citation of chapters in a book. Also missing is a compact citation regulation for a user-specified collection of data. WDCC therefore complements its existing LTA/DOI concept by Persistent Identifier (PID) assignment to datasets using Handles. In addition to data identification for internal and external use, the concept of PIDs allows to define relations among PIDs. Such structural information is stored as key-value pair directly in the handles. Thus, relations provide basic provenance or lineage information, even if part of the data like intermediate results are lost. WDCC intends to use additional PIDs on metadata entities with a relation to the data PID(s). These add background information on the data creation process (e.g. descriptions of experiment, model, model set-up, and platform for the model run etc.) to the data. These pieces of additional information increase the re-usability of the archived model data, significantly. Other valuable additional information for scientific collaboration could be added by the same mechanism, like quality information and annotations. Apart from relations among data and metadata entities, PIDs on collections are advantageous for model data: Collections allow for persistent references to single datasets or subsets of data assigned a DOI, Data objects and additional information objects can be consistently connected via relations (provenance, creation, quality information for data),
NASA Astrophysics Data System (ADS)
Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.
2012-05-01
The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH). Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date direct measurements of total OH reactivity have been either performed using a Laser Induced Fluorescence (LIF) system ("pump-and-probe" or "flow reactor") or the Comparative Reactivity Method (CRM) with a Proton Transfer Reaction Mass Spectrometer (PTR-MS). Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photo-Ionization Detector (GC-PID). Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques. Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole) with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60-70 s), sensitivity (LOD 3-6 s-1) and overall uncertainty (25% in optimum conditions) for total OH reactivity were equivalent to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests) it presents a viably economical alternative for groups interested in total OH reactivity observations.
NASA Astrophysics Data System (ADS)
Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.
2012-12-01
The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH). Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date, direct measurements of total OH reactivity have been either performed using a Laser-Induced Fluorescence (LIF) system ("pump-and-probe" or "flow reactor") or the Comparative Reactivity Method (CRM) with a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS). Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photoionization Detector (GC-PID). Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques. Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole) with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60-70 s), sensitivity (LOD 3-6 s-1) and overall uncertainty (25% in optimum conditions) for total OH reactivity were similar to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests) it presents a viably economical alternative for groups interested in total OH reactivity observations.
Bruyndonckx, Robin; Hens, Niel; Aerts, Marc; Goossens, Herman; Cortiñas Abrahantes, José; Coenen, Samuel
2015-04-01
The objective of this study was to explore the association between resistance and outpatient antibiotic use, expressed as either DDDs per 1000 inhabitants per day (DID) or packages per 1000 inhabitants per day (PID). IMS Health data on outpatient penicillin and cephalosporin (β-lactam) and tetracycline, macrolide, lincosamide and streptogramin (TMLS) use, aggregated at the level of the active substance (WHO version 2011) expressed as DID and PID (2000-07) were linked to European Antimicrobial Resistance Surveillance System (EARSS) data on proportions of penicillin-non-susceptible Streptococcus pneumoniae (PNSP) and erythromycin-non-susceptible S. pneumoniae (ENSP) (2000-09). Combined data for 27 European countries were analysed with a generalized linear mixed model. Model fit for use in DID, PID or both and 0, 1 or 2 year time lags between use and resistance was assessed and predictions of resistance were made for decreasing use expressed as DID, PID or both. When exploring the association between β-lactam use and PNSP, the best model fit was obtained for use in PID without time lag. For the association between TMLS use and ENSP, the best model fit was obtained for use in both PID and DID with a 1 year time lag. PNSP and ENSP are predicted to decrease when use decreases in PID, but not when use decreases in DID. Associations between outpatient antibiotic use and resistance and predictions of resistance were inconsistent whether expressing antibiotic use as DID or PID. We recommend that data on antibiotic use be expressed as PID and that time lags between use and resistance be considered when exploring these associations. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Decentralized adaptive control of manipulators - Theory, simulation, and experimentation
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1989-01-01
The author presents a simple decentralized adaptive-control scheme for multijoint robot manipulators based on the independent joint control concept. The control objective is to achieve accurate tracking of desired joint trajectories. The proposed control scheme does not use the complex manipulator dynamic model, and each joint is controlled simply by a PID (proportional-integral-derivative) feedback controller and a position-velocity-acceleration feedforward controller, both with adjustable gains. Simulation results are given for a two-link direct-drive manipulator under adaptive independent joint control. The results illustrate trajectory tracking under coupled dynamics and varying payload. The proposed scheme is implemented on a MicroVAX II computer for motion control of the three major joints of a PUMA 560 arm. Experimental results are presented to demonstrate that trajectory tracking is achieved despite coupled nonlinear joint dynamics.
Model-free adaptive speed control on travelling wave ultrasonic motor
NASA Astrophysics Data System (ADS)
Di, Sisi; Li, Huafeng
2018-01-01
This paper introduced a new data-driven control (DDC) method for the speed control of ultrasonic motor (USM). The model-free adaptive control (MFAC) strategy was presented in terms of its principles, algorithms, and parameter selection. To verify the efficiency of the proposed method, a speed-frequency-time model, which contained all the measurable nonlinearity and uncertainties based on experimental data was established for simulation to mimic the USM operation system. Furthermore, the model was identified using particle swarm optimization (PSO) method. Then, the control of the simulated system using MFAC was evaluated under different expectations in terms of overshoot, rise time and steady-state error. Finally, the MFAC results were compared with that of proportion iteration differentiation (PID) to demonstrate its advantages in controlling general random system.
Instrumentation, control, and automation for submerged anaerobic membrane bioreactors.
Robles, Ángel; Durán, Freddy; Ruano, María Victoria; Ribes, Josep; Rosado, Alfredo; Seco, Aurora; Ferrer, José
2015-01-01
A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on-off and PID algorithms were implemented to control the following operating variables: flow-rates (influent, permeate, sludge recycling and wasting, and recycled biogas through both reactor and membrane tanks), sludge wasting volume, temperature, transmembrane pressure, and gas sparging. The proposed ICA for AnMBRs for urban wastewater treatment enables the optimization of this new technology to be achieved with a high level of process robustness towards disturbances.
Maples, Jessica L; Carter, Nathan T; Few, Lauren R; Crego, Cristina; Gore, Whitney L; Samuel, Douglas B; Williamson, Rachel L; Lynam, Donald R; Widiger, Thomas A; Markon, Kristian E; Krueger, Robert F; Miller, Joshua D
2015-12-01
The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) includes an alternative model of personality disorders (PDs) in Section III, consisting in part of a pathological personality trait model. To date, the 220-item Personality Inventory for DSM-5 (PID-5; Krueger, Derringer, Markon, Watson, & Skodol, 2012) is the only extant self-report instrument explicitly developed to measure this pathological trait model. The present study used item response theory-based analyses in a large sample (n = 1,417) to investigate whether a reduced set of 100 items could be identified from the PID-5 that could measure the 25 traits and 5 domains. This reduced set of PID-5 items was then tested in a community sample of adults currently receiving psychological treatment (n = 109). Across a wide range of criterion variables including NEO PI-R domains and facets, DSM-5 Section II PD scores, and externalizing and internalizing outcomes, the correlational profiles of the original and reduced versions of the PID-5 were nearly identical (rICC = .995). These results provide strong support for the hypothesis that an abbreviated set of PID-5 items can be used to reliably, validly, and efficiently assess these personality disorder traits. The ability to assess the DSM-5 Section III traits using only 100 items has important implications in that it suggests these traits could still be measured in settings in which assessment-related resources (e.g., time, compensation) are limited. (c) 2015 APA, all rights reserved).
Somma, Antonella; Borroni, Serena; Maffei, Cesare; Giarolli, Laura E; Markon, Kristian E; Krueger, Robert F; Fossati, Andrea
2017-10-01
In order to assess the reliability, factorial validity, and criterion validity of the Personality Inventory for DSM-5 (PID-5) among adolescents, 1,264 Italian high school students were administered the PID-5. Participants were also administered the Questionnaire on Relationships and Substance Use as a criterion measure. In the full sample, McDonald's ω values were adequate for the PID-5 scales (median ω = .85, SD = .06), except for Suspiciousness. However, all PID-5 scales showed average inter-item correlation values in the .20-.55 range. Exploratory structural equation modeling analyses provided moderate support for the a priori model of PID-5 trait scales. Ordinal logistic regression analyses showed that selected PID-5 trait scales predicted a significant, albeit moderate (Cox & Snell R 2 values ranged from .08 to .15, all ps < .001) amount of variance in Questionnaire on Relationships and Substance Use variables.
Markon, Kristian E; Quilty, Lena C; Bagby, R Michael; Krueger, Robert F
2013-06-01
The current article reports on the development, psychometric properties, and external validity of an informant-report form of the Personality Inventory for DSM-5 (the PID-5-IRF). Using data from two nationally representative samples, as well as an elevated-risk community sample, we report on the PID-5-IRF item characteristics, scale properties, superordinate factor structure, and correlations with other measures. The PID-5-IRF replicates the factor structure of the self-report form and has relationships with other measures (including the PID-5 self-report form and a widely used Big Five measure) that are consistent with previous research and theory. We believe that the PID-5-IRF is a useful measure for a number of scenarios, such as when additional sources of information are desired, where informant measures are expected to provide incremental validity over self-report, where relationships or social perception is a focal interest, or when response bias is a salient concern. Areas for future research are also discussed.
Automatic PID Control Loops Design for Performance Improvement of Cryogenic Turboexpander
NASA Astrophysics Data System (ADS)
Joshi, D. M.; Patel, H. K.; Shah, D. K.
2015-04-01
Cryogenics field involves temperature below 123 K which is much less than ambient temperature. In addition, many industrially important physical processes—from fulfilling the needs of National Thermonuclear Fusion programs, superconducting magnets to treatment of cutting tools and preservation of blood cells, require extreme low temperature. The low temperature required for liquefaction of common gases can be obtained by several processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Helium liquefier is used for the liquefaction process of helium gas. In general, the Helium Refrigerator/Liquefier (HRL) needs turboexpander as expansion machine to produce cooling effect which is further used for the production of liquid helium. Turboexpanders, a high speed device that is supported on gas bearings, are the most critical component in many helium refrigeration systems. A very minor fault in the operation and manufacturing or impurities in the helium gas can destroy the turboexpander. However, since the performance of expanders is dependent on a number of operating parameters and the relations between them are quite complex, the instrumentation and control system design for turboexpander needs special attention. The inefficiency of manual control leads to the need of designing automatic control loops for turboexpander. Proper design and implementation of the control loops plays an important role in the successful operation of the cryogenic turboexpander. The PID control loops has to be implemented with accurate interlocks and logic to enhance the performance of the cryogenic turboexpander. For different normal and off-normal operations, speeds will be different and hence a proper control method for critical rotational speed avoidance is must. This paper presents the design of PID control loops needed for the efficient performance of cryogenic turboexpander (Radial Inflow type) to ensure that the control systems meet the technical conditions and constraints more accurately and ensure the equipment safety.
Harvey, Steven P.; Moseley, John; Norman, Andrew; ...
2018-02-27
We investigated the potential-induced degradation (PID) shunting mechanism in multicrystalline-silicon photovoltaic modules by using a multiscale, multitechnique characterization approach. Both field-stressed modules and laboratory-stressed mini modules were studied. We used photoluminescence, electroluminescence, and dark lock-in thermography imaging to identify degraded areas at the module scale. Small samples were then removed from degraded areas, laser marked, and imaged by scanning electron microscopy. We used simultaneous electron-beam induced current imaging and focused ion beam milling to mark around PID shunts for chemical analysis by time-of-flight secondary-ion mass spectrometry or to isolate individual shunt defects for transmission electron microscopy and atom-probe tomography analysis.more » By spanning a range of 10 orders of magnitude in size, this approach enabled us to investigate the root-cause mechanisms for PID shunting. We observed a direct correlation between recombination active shunts and sodium content. The sodium content in shunted areas peaks at the SiNX/Si interface and is consistently observed at a concentration of 0.1% to 2% in shunted areas. Analysis of samples subjected to PID recovery, either activated by electron beam or thermal effects only, reveals that recovery of isolated shunts correlates with diffusion of sodium out of the structural defects to the silicon surface. We observed the role of oxygen and chlorine in PID shunting and found that those species - although sometimes present in structural defects where PID shunting was observed - do not play a consistent role in PID shunting.« less
PIDs, Types and the Semantic Web
NASA Astrophysics Data System (ADS)
Schwardmann, Ulrich
2017-04-01
PID Information Types are becoming a crucial role in scientific data management because they can provide state (what) and binding (where) information about digital objects as attributes of the PID. This is a similar but much more flexible approach than the well known mime type characterization, because both of these types concepts allow to decide about preconditions for processes in advance and before touching the data. One aspect of this is the need for standards and correctness of the used types to ensure reliability for the processes operating on the digital objects. This requires registries and schemas for PID InfoTypes and suggests an automated schema generation process. Such a process in combination with data type registries will be described in more detail in the intended talk. Another aspect of PID InfoTypes is its intrinsic grammar as subject-predicate-object triple, with the PID as subject, the type as predicate and its value (often again a PID) as object in this relation. Given the registration of types and the proposed syntactical rigidness of the value, guaranteed by the schema, together with the use of PIDs in subject and predicate, the type concept has the ability to overcome the fuzziness and lack of reliability of semantic web categories with its URL references and possibly changing locations and content. The intended talk will also describe this approach in more detail, discusses the differences to linked data and describes some necessary technological developments for the type concept to keep up with the possibilities currently provided by the semantic web.
RF control at SSCL — an object oriented design approach
NASA Astrophysics Data System (ADS)
Dohan, D. A.; Osberg, E.; Biggs, R.; Bossom, J.; Chillara, K.; Richter, R.; Wade, D.
1994-12-01
The Superconducting Super Collider (SSC) in Texas, the construction of which was stopped in 1994, would have represented a major challenge in accelerator research and development. This paper addresses the issues encountered in the parallel design and construction of the control systems for the RF equipment for the five accelerators comprising the SSC. An extensive analysis of the components of the RF control systems has been undertaken, based upon the Schlaer-Mellor object-oriented analysis and design (OOA/OOD) methodology. The RF subsystem components such as amplifiers, tubes, power supplies, PID loops, etc. were analyzed to produce OOA information, behavior and process models. Using these models, OOD was iteratively applied to develop a generic RF control system design. This paper describes the results of this analysis and the development of 'bridges' between the analysis objects, and the EPICS-based software and underlying VME-based hardware architectures. The application of this approach to several of the SSCL RF control systems is discussed.
Research on flight stability performance of rotor aircraft based on visual servo control method
NASA Astrophysics Data System (ADS)
Yu, Yanan; Chen, Jing
2016-11-01
control method based on visual servo feedback is proposed, which is used to improve the attitude of a quad-rotor aircraft and to enhance its flight stability. Ground target images are obtained by a visual platform fixed on aircraft. Scale invariant feature transform (SIFT) algorism is used to extract image feature information. According to the image characteristic analysis, fast motion estimation is completed and used as an input signal of PID flight control system to realize real-time status adjustment in flight process. Imaging tests and simulation results show that the method proposed acts good performance in terms of flight stability compensation and attitude adjustment. The response speed and control precision meets the requirements of actual use, which is able to reduce or even eliminate the influence of environmental disturbance. So the method proposed has certain research value to solve the problem of aircraft's anti-disturbance.
Gogate, A; Brabin, L; Nicholas, S; Gogate, S; Gaonkar, T; Naidu, A; Divekar, A; Karande, A; Hart, C A
1998-12-01
Sexually transmitted diseases (STDs) are an important cause of pelvic inflammatory disease (PID) but have often not been detected in microbiological studies of Indian women admitted to hospital gynaecology wards or private clinics. In this cross sectional study, women living in the inner city of Mumbai (Bombay) were investigated for socioeconomic, clinical, and microbiological risk factors for PID. Microbiological tests and laparoscopic examination were carried out on 2736 women aged < or = 35 years who came to a health facility with suspected acute salpingitis or infertility or for laparoscopic sterilisation. 86 women with a clinical diagnosis of PID were not referred for laparoscopy although their characteristics are described. Associations between various risk factors and PID status were investigated and logistic regression performed on all factors that remained significant. Of women with a laparoscopically confirmed evaluation, 26 women had acute and 48 chronic pelvic infection. Independent risk factors for PID were later age at menarche (> or = 14 years), a history of stillbirth and no previous pregnancy, history of tuberculosis, STD, dilatation and curettage or previous laparoscopy, and presence of Gardnerella vaginalis. It is concluded that STD related risk factors applied to only a small proportion of PID cases and that other determinants of PID are important, including obstetric complications, invasive surgical procedures such as laparoscopy, and tuberculosis.
Method and apparatus for controlling LCL converters using asymmetric voltage cancellation techniques
Wu, Hunter; Sealy, Kylee Devro; Sharp, Bryan Thomas; Gilchrist, Aaron
2016-01-26
A method and apparatus for LCL resonant converter control utilizing Asymmetric Voltage Cancellation is described. The methods to determine the optimal trajectory of the control variables are discussed. Practical implementations of sensing load parameters are included. Simple PI, PID and fuzzy logic controllers are included with AVC for achieving good transient response characteristics with output current regulation.
Low-cost feedback-controlled syringe pressure pumps for microfluidics applications.
Lake, John R; Heyde, Keith C; Ruder, Warren C
2017-01-01
Microfluidics are widely used in research ranging from bioengineering and biomedical disciplines to chemistry and nanotechnology. As such, there are a large number of options for the devices used to drive and control flow through microfluidic channels. Commercially available syringe pumps are probably the most commonly used instruments for this purpose, but are relatively high-cost and have inherent limitations due to their flow profiles when they are run open-loop. Here, we present a low-cost ($110) syringe pressure pump that uses feedback control to regulate the pressure into microfluidic chips. Using an open-source microcontroller board (Arduino), we demonstrate an easily operated and programmable syringe pump that can be run using either a PID or bang-bang control method. Through feedback control of the pressure at the inlets of two microfluidic geometries, we have shown stability of our device to within ±1% of the set point using a PID control method and within ±5% of the set point using a bang-bang control method with response times of less than 1 second. This device offers a low-cost option to drive and control well-regulated pressure-driven flow through microfluidic chips.
Low-cost feedback-controlled syringe pressure pumps for microfluidics applications
Lake, John R.; Heyde, Keith C.
2017-01-01
Microfluidics are widely used in research ranging from bioengineering and biomedical disciplines to chemistry and nanotechnology. As such, there are a large number of options for the devices used to drive and control flow through microfluidic channels. Commercially available syringe pumps are probably the most commonly used instruments for this purpose, but are relatively high-cost and have inherent limitations due to their flow profiles when they are run open-loop. Here, we present a low-cost ($110) syringe pressure pump that uses feedback control to regulate the pressure into microfluidic chips. Using an open-source microcontroller board (Arduino), we demonstrate an easily operated and programmable syringe pump that can be run using either a PID or bang-bang control method. Through feedback control of the pressure at the inlets of two microfluidic geometries, we have shown stability of our device to within ±1% of the set point using a PID control method and within ±5% of the set point using a bang-bang control method with response times of less than 1 second. This device offers a low-cost option to drive and control well-regulated pressure-driven flow through microfluidic chips. PMID:28369134
A Novel Instructional Approach to the Design of Standard Controllers: Using Inversion Formulae
ERIC Educational Resources Information Center
Ntogramatzidis, Lorenzo; Zanasi, Roberto; Cuoghi, Stefania
2014-01-01
This paper describes a range of design techniques for standard compensators (Lead-Lag networks and PID controllers) that have been applied to the teaching of many undergraduate control courses throughout Italy over the last twenty years, but that have received little attention elsewhere. These techniques hinge upon a set of simple formulas--herein…
Persistent identifiers for CMIP6 data in the Earth System Grid Federation
NASA Astrophysics Data System (ADS)
Buurman, Merret; Weigel, Tobias; Juckes, Martin; Lautenschlager, Michael; Kindermann, Stephan
2016-04-01
The Earth System Grid Federation (ESGF) is a distributed data infrastructure that will provide access to the CMIP6 experiment data. The data consist of thousands of datasets composed of millions of files. Over the course of the CMIP6 operational phase, datasets may be retracted and replaced by newer versions that consist of completely or partly new files. Each dataset is hosted at a single data centre, but can have one or several backups (replicas) at other data centres. To keep track of the different data entities and relationships between them, to ensure their consistency and improve exchange of information about them, Persistent Identifiers (PIDs) are used. These are unique identifiers that are registered at a globally accessible server, along with some metadata (the PID record). While usually providing access to the data object they refer to, as long as it exists, the metadata record will remain available even beyond the object's lifetime. Besides providing access to data and metadata, PIDs will allow scientists to communicate effectively and on a fine granularity about CMIP6 data. The initiative to introduce PIDs in the ESGF infrastructure has been described and agreed upon through a series of white papers governed by the WGCM Infrastructure Panel (WIP). In CMIP6, each dataset and each file is assigned a PID that keeps track of the data object's physical copies throughout the object lifetime. In addition to this, its relationship with other data objects is stored in the PID recordA human-readable version of this information is available on an information page also linked in the PID record. A possible application that exploits the information available from the PID records is a smart information tool, which a scientific user can call to find out if his/her version was replaced by a new one, to view and browse the related datasets and files, and to get access to the various copies or to additional metadata on a dedicated website. The PID registration process is embedded in the ESGF data publication process. During their first publication, the PID records are populated with metadata including the parent dataset(s), other existing versions and physical location. Every subsequent publication, un-publication or replica publication of a dataset or file then updates the PID records to keep track of changing physical locations of the data (or lack thereof) and of reported errors in the data. Assembling the metadata records and registering the PIDs on a central server is a potential performance bottleneck as millions of data objects may be published in a short timeframe when the CMIP6 experiment phase begins. For this reason, the PID registration and metadata update tasks are pushed to a message queueing system facilitating high availability and scalability and then processed asynchronously. This will lead to a slight delay in PID registration but will avoid blocking resources at the data centres and slowing down the publication of the data so eagerly awaited by the scientists.
Primary Immunodeficiency Diseases in Aguascalientes, Mexico: Results from an Educational Program.
Alvarez-Cardona, Aristoteles; Espinosa-Padilla, Sara Elva; Reyes, Saul Oswaldo Lugo; Ventura-Juarez, Javier; Lopez-Valdez, Jaime Asael; Martínez-Medina, Lucila; Santillan-Artolozaga, Alberto; Cajero-Avelar, Adriana; De Luna-Sosa, Alma R; Torres-Bernal, Luis F; Espinosa-Rosales, Francisco J
2016-04-01
Primary immunodeficiencies (PIDs) are a heterogeneous group of disorders characterized mainly by recurrent infections. Late diagnosis remains as one of the main issues to solve. We aimed to increase PID diagnosis in Aguascalientes, a 1.3 million inhabitants state in the center of Mexico, and to describe the clinical features of such patients. We developed an educational program for health personnel and general public; patients with possible PID were referred to a State University clinical center from December 2011 to December 2012. The patients were evaluated at the clinic and their definitive diagnosis pursued through laboratory, molecular and genetic assays. We describe the findings of those patients and analyze the impact of the program in terms of number of referrals. After 41 talks and 12 media appearances 151 patients were referred for evaluation. Fifteen (9.9%) were diagnosed with PID: five (33%) had antibody deficiencies, seven (47%) Well-defined syndromes, two (13%) Severe combined Immunodeficiency (SCID) and one case (7%) of an innate immune deficiency. All of the 15 PID patients had been referred by physicians, as opposed to the public. We estimated a "number needed to teach" of 75 physicians to get one PID patient referral. Educational programs are a fundamental part of the global efforts to increase PID diagnosis and care. To be successful, such programs should include public relations, reach for first-contact physicians, and aim to develop an efficient referral network with molecular diagnostic capability. Enhancing medical knowledge on PID is a successful strategy to improve early diagnosis and treatment.
Particle identification in ALICE: a Bayesian approach
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Benacek, P.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kostarakis, P.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Pereira Da Costa, H.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shahzad, M. I.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Souza, R. D. de; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thakur, D.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yang, H.; Yang, P.; Yano, S.; Yasin, Z.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.
2016-05-01
We present a Bayesian approach to particle identification (PID) within the ALICE experiment. The aim is to more effectively combine the particle identification capabilities of its various detectors. After a brief explanation of the adopted methodology and formalism, the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE is studied. PID is performed via measurements of specific energy loss ( d E/d x) and time of flight. PID efficiencies and misidentification probabilities are extracted and compared with Monte Carlo simulations using high-purity samples of identified particles in the decay channels K0S → π-π+, φ→ K-K+, and Λ→ p π- in p-Pb collisions at √{s_{NN}}=5.02 TeV. In order to thoroughly assess the validity of the Bayesian approach, this methodology was used to obtain corrected pT spectra of pions, kaons, protons, and D0 mesons in pp collisions at √{s}=7 TeV. In all cases, the results using Bayesian PID were found to be consistent with previous measurements performed by ALICE using a standard PID approach. For the measurement of D0 → K-π+, it was found that a Bayesian PID approach gave a higher signal-to-background ratio and a similar or larger statistical significance when compared with standard PID selections, despite a reduced identification efficiency. Finally, we present an exploratory study of the measurement of Λc+ → p K-π+ in pp collisions at √{s}=7 TeV, using the Bayesian approach for the identification of its decay products.
Adoptive T Cell Immunotherapy for Patients with Primary Immunodeficiency Disorders.
McLaughlin, Lauren P; Bollard, Catherine M; Keller, Michael
2017-01-01
Primary immunodeficiency disorders (PID) are a group of inborn errors of immunity with a broad range of clinical severity but often associated with recurrent and serious infections. While hematopoietic stem cell transplantation (HSCT) can be curative for some forms of PID, chronic and/or refractory viral infections remain a cause of morbidity and mortality both before and after HSCT. Although antiviral pharmacologic agents exist for many viral pathogens, these are associated with significant costs and toxicities and may not be effective for increasingly drug-resistant pathogens. Thus, the emergence of adoptive immunotherapy with virus-specific T lymphocytes (VSTs) is an attractive option for addressing the underlying impaired T cell immunity in many PID patients. VSTs have been utilized for PID patients following HSCT in many prior phase I trials, and may potentially be beneficial before HSCT in patients with chronic viral infections. We review the various methods of generating VSTs, clinical experience using VSTs for PID patients, and current limitations as well as potential ways to broaden the clinical applicability of adoptive immunotherapy for PID patients.
Primary Immune Deficiencies – Principles of Care
Chapel, Helen; Prevot, Johan; Gaspar, Hubert Bobby; Español, Teresa; Bonilla, Francisco A.; Solis, Leire; Drabwell, Josina
2014-01-01
Primary immune deficiencies (PIDs) are a growing group of over 230 different disorders caused by ineffective, absent or an increasing number of gain of function mutations in immune components, mainly cells and proteins. Once recognized, these rare disorders are treatable and in some cases curable. Otherwise untreated PIDs are often chronic, serious, or even fatal. The diagnosis of PIDs can be difficult due to lack of awareness or facilities for diagnosis, and management of PIDs is complex. This document was prepared by a worldwide multi-disciplinary team of specialists; it aims to set out comprehensive principles of care for PIDs. These include the role of specialized centers, the importance of registries, the need for multinational research, the role of patient organizations, management and treatment options, the requirement for sustained access to all treatments including immunoglobulin therapies and hematopoietic stem cell transplantation, important considerations for developing countries and suggestions for implementation. A range of healthcare policies and services have to be put into place by government agencies and healthcare providers, to ensure that PID patients worldwide have access to appropriate and sustainable medical and support services. PMID:25566243
Jiang, Pengfei; Zhou, Na; Chen, Xinyu; Zhao, Xing; Li, Dengyun; Wang, Fen; Bi, Lijun; Zhang, Deli
2015-01-01
H1N1 swine influenza A virus (H1N1 SwIV) is one key subtype of influenza viruses with pandemic potential. MicroRNAs (miRNAs) are endogenous small RNA molecules that regulate gene expression. MiRNAs relevant with H1N1 SwIV have rarely been reported. To understand the biological functions of miRNAs during H1N1 SwIV infection, this study profiled differentially expressed (DE) miRNAs in pulmonary alveolar macrophages from piglets during the H1N1 SwIV infection using a deep sequencing approach, which was validated by quantitative real-time PCR. Compared to control group, 70 and 16 DE miRNAs were respectively identified on post-infection day (PID) 4 and PID 7. 56 DE miRNAs were identified between PID 4 and PID 7. Our results suggest that most host miRNAs are down-regulated to defend the H1N1 SwIV infection during the acute phase of swine influenza whereas their expression levels gradually return to normal during the recovery phase to avoid the occurrence of too severe porcine lung damage. In addition, targets of DE miRNAs were also obtained, for which bioinformatics analyses were performed. Our results would be useful for investigating the functions and regulatory mechanisms of miRNAs in human influenza because pig serves as an excellent animal model to study the pathogenesis of human influenza. PMID:25639204
Host defense responses associated with experimental hemorrhagic disease in white-tailed deer.
Quist, C F; Howerth, E W; Stallknecht, D E; Brown, J; Pisell, T; Nettles, V F
1997-07-01
Our objectives were to examine the immunity conferred by epizootic hemorrhagic disease virus serotype 2 (EHDV-2) infection in white-tailed deer (Odocoileus virginianus) and determine if this immunity was protective during challenge with homologous (EHDV-2) or heterologous (bluetongue virus serotype 10; BTV-10) virus. Trials were conducted in the fall of 1992 and 1993. In the first experiment, naive white-tailed deer were infected intradermally and subcutaneously with EHDV-2 and monitored via physical examinations, complete blood counts, alpha and beta interferon (IFN) assays, viral isolation, and serology. Infected deer had a wide range of clinical signs in response to infection. Eleven of the 16 deer had body temperature elevations > or = 0.5 C between post-infection day (PID) 4 and 8. Infected deer had decreased lymphocyte counts between PID 6 and 10 that returned to normal levels by PID 17. Severely lymphopenic animals had the most severe clinical signs; five of 10 deer with lymphocyte counts less than 1000 cells/microliters succumbed to the infection. Viremia was detected in all 16 EHDV-2 infected animals by PID 4, and peak viremias occurred between PID 4 and PID 10. Three deer remained viremic until PID 56, the study endpoint. Interferon was first detected between PID 2 and 6. Peak alpha and beta IFN levels coincided with peak viremia in 11 deer. Precipitating and neutralizing antibodies were detected in infected deer by PID 10. In the second experiment, convalescent deer were challenged subcutaneously and intradermally with either EHDV-2 or BTV-10 and similarly monitored. Virus was detected in the blood of all four deer challenged with BTV-10, but viremia was not detected in three EHDV-2-challenged deer. Temperature fluctuations, blood cell parameter changes, and IFN and antibody responses seen in BTV-10-challenged deer were similar to those seen in the initial experiment. Deer challenged with EHDV-2 had mildly increased temperatures, but minimal IFN response and lymphocyte alterations.
The Effect of Response Bias on the Personality Inventory for DSM-5 (PID-5).
McGee Ng, Sarah A; Bagby, R Michael; Goodwin, Brandee E; Burchett, Danielle; Sellbom, Martin; Ayearst, Lindsay E; Dhillon, Sonya; Yiu, Shirley; Ben-Porath, Yossef S; Baker, Spencer
2016-01-01
Valid self-report assessment of psychopathology relies on accurate and credible responses to test questions. There are some individuals who, in certain assessment contexts, cannot or choose not to answer in a manner typically representative of their traits or symptoms. This is referred to, most broadly, as test response bias. In this investigation, we explore the effect of response bias on the Personality Inventory for DSM-5 (PID-5; Krueger, Derringer, Markon, Watson, & Skodol, 2013 ), a self-report instrument designed to assess the pathological personality traits used to inform diagnosis of the personality disorders in Section III of DSM-5. A set of Minnesota Multiphasic Personality Inventory Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008 / 2011 ) validity scales, which are used to assess and identify response bias, were employed to identify individuals who engaged in either noncredible overreporting (OR) or underreporting (UR), or who were deemed to be reporting or responding to the items in a "credible" manner-credible responding (CR). A total of 2,022 research participants (1,587 students, 435 psychiatric patients) completed the MMPI-2-RF and PID-5; following protocol screening, these participants were classified into OR, UR, or CR response groups based on MMPI-2-RF validity scale scores. Groups of students and patients in the OR group scored significantly higher on the PID-5 than those students and patients in the CR group, whereas those in the UR group scored significantly lower than those in the CR group. Although future research is needed to explore the effects of response bias on the PID-5, results from this investigation provide initial evidence suggesting that response bias influences scale elevations on this instrument.
Jolles, S; Sánchez-Ramón, S; Quinti, I; Soler-Palacín, P; Agostini, C; Florkin, B; Couderc, L-J; Brodszki, N; Jones, A; Longhurst, H; Warnatz, K; Haerynck, F; Matucci, A; de Vries, E
2017-11-01
Many patients with primary immunodeficiency (PID) who have antibody deficiency develop progressive lung disease due to underlying subclinical infection and inflammation. To understand how these patients are monitored we conducted a retrospective survey based on patient records of 13 PID centres across Europe, regarding the care of 1061 adult and 178 paediatric patients with PID on immunoglobulin (Ig) G replacement. The most common diagnosis was common variable immunodeficiency in adults (75%) and hypogammaglobulinaemia in children (39%). The frequency of clinic visits varied both within and between centres: every 1-12 months for adult patients and every 3-6 months for paediatric patients. Patients diagnosed with lung diseases were more likely to receive pharmaceutical therapies and received a wider range of therapies than patients without lung disease. Variation existed between centres in the frequency with which some clinical and laboratory monitoring tests are performed, including exercise tests, laboratory testing for IgG subclass levels and specific antibodies, and lung function tests such as spirometry. Some tests were carried out more frequently in adults than in children, probably due to difficulties conducting these tests in younger children. The percentage of patients seen regularly by a chest physician, or who had microbiology tests performed following chest and sinus exacerbations, also varied widely between centres. Our survey revealed a great deal of variation across Europe in how frequently patients with PID visit the clinic and how frequently some monitoring tests are carried out. These results highlight the urgent need for consensus guidelines on how to monitor lung complications in PID patients. © 2017 The Authors. Clinical and Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.