Modeling and analysis of the space shuttle nose-gear tire with semianalytic finite elements
NASA Technical Reports Server (NTRS)
Kim, Kyun O.; Noor, Ahmed K.; Tanner, John A.
1990-01-01
A computational procedure is presented for the geometrically nonlinear analysis of aircraft tires. The Space Shuttle Orbiter nose gear tire was modeled by using a two-dimensional laminated anisotropic shell theory with the effects of variation in material and geometric parameters included. The four key elements of the procedure are: (1) semianalytic finite elements in which the shell variables are represented by Fourier series in the circumferential direction and piecewise polynominals in the meridional direction; (2) a mixed formulation with the fundamental unknowns consisting of strain parameters, stress-resultant parameters, and generalized displacements; (3) multilevel operator splitting to effect successive simplifications, and to uncouple the equations associated with different Fourier harmonics; and (4) multilevel iterative procedures and reduction techniques to generate the response of the shell. Numerical results of the Space Shuttle Orbiter nose gear tire model are compared with experimental measurements of the tire subjected to inflation loading.
Time and Memory Efficient Online Piecewise Linear Approximation of Sensor Signals.
Grützmacher, Florian; Beichler, Benjamin; Hein, Albert; Kirste, Thomas; Haubelt, Christian
2018-05-23
Piecewise linear approximation of sensor signals is a well-known technique in the fields of Data Mining and Activity Recognition. In this context, several algorithms have been developed, some of them with the purpose to be performed on resource constrained microcontroller architectures of wireless sensor nodes. While microcontrollers are usually constrained in computational power and memory resources, all state-of-the-art piecewise linear approximation techniques either need to buffer sensor data or have an execution time depending on the segment’s length. In the paper at hand, we propose a novel piecewise linear approximation algorithm, with a constant computational complexity as well as a constant memory complexity. Our proposed algorithm’s worst-case execution time is one to three orders of magnitude smaller and its average execution time is three to seventy times smaller compared to the state-of-the-art Piecewise Linear Approximation (PLA) algorithms in our experiments. In our evaluations, we show that our algorithm is time and memory efficient without sacrificing the approximation quality compared to other state-of-the-art piecewise linear approximation techniques, while providing a maximum error guarantee per segment, a small parameter space of only one parameter, and a maximum latency of one sample period plus its worst-case execution time.
Piecewise linear approximation for hereditary control problems
NASA Technical Reports Server (NTRS)
Propst, Georg
1987-01-01
Finite dimensional approximations are presented for linear retarded functional differential equations by use of discontinuous piecewise linear functions. The approximation scheme is applied to optimal control problems when a quadratic cost integral has to be minimized subject to the controlled retarded system. It is shown that the approximate optimal feedback operators converge to the true ones both in case the cost integral ranges over a finite time interval as well as in the case it ranges over an infinite time interval. The arguments in the latter case rely on the fact that the piecewise linear approximations to stable systems are stable in a uniform sense. This feature is established using a vector-component stability criterion in the state space R(n) x L(2) and the favorable eigenvalue behavior of the piecewise linear approximations.
A method of power analysis based on piecewise discrete Fourier transform
NASA Astrophysics Data System (ADS)
Xin, Miaomiao; Zhang, Yanchi; Xie, Da
2018-04-01
The paper analyzes the existing feature extraction methods. The characteristics of discrete Fourier transform and piecewise aggregation approximation are analyzed. Combining with the advantages of the two methods, a new piecewise discrete Fourier transform is proposed. And the method is used to analyze the lighting power of a large customer in this paper. The time series feature maps of four different cases are compared with the original data, discrete Fourier transform, piecewise aggregation approximation and piecewise discrete Fourier transform. This new method can reflect both the overall trend of electricity change and its internal changes in electrical analysis.
On High-Order Upwind Methods for Advection
NASA Technical Reports Server (NTRS)
Huynh, Hung T.
2017-01-01
Scheme III (piecewise linear) and V (piecewise parabolic) of Van Leer are shown to yield identical solutions provided the initial conditions are chosen in an appropriate manner. This result is counter intuitive since it is generally believed that piecewise linear and piecewise parabolic methods cannot produce the same solutions due to their different degrees of approximation. The result also shows a key connection between the approaches of discontinuous and continuous representations.
Least Squares Approximation By G1 Piecewise Parametric Cubes
1993-12-01
ADDRESS(ES) 10.SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not...CODE Approved for public release; distribution is unlimited. 13. ABSTRACT (maximum 200 words) Parametric piecewise cubic polynomials are used throughout...piecewise parametric cubic polynomial to a sequence of ordered points in the plane. Cubic Bdzier curves are used as a basis. The parameterization, the
On High-Order Upwind Methods for Advection
NASA Technical Reports Server (NTRS)
Huynh, H. T.
2017-01-01
In the fourth installment of the celebrated series of five papers entitled "Towards the ultimate conservative difference scheme", Van Leer (1977) introduced five schemes for advection, the first three are piecewise linear, and the last two, piecewise parabolic. Among the five, scheme I, which is the least accurate, extends with relative ease to systems of equations in multiple dimensions. As a result, it became the most popular and is widely known as the MUSCL scheme (monotone upstream-centered schemes for conservation laws). Schemes III and V have the same accuracy, are the most accurate, and are closely related to current high-order methods. Scheme III uses a piecewise linear approximation that is discontinuous across cells, and can be considered as a precursor of the discontinuous Galerkin methods. Scheme V employs a piecewise quadratic approximation that is, as opposed to the case of scheme III, continuous across cells. This method is the basis for the on-going "active flux scheme" developed by Roe and collaborators. Here, schemes III and V are shown to be equivalent in the sense that they yield identical (reconstructed) solutions, provided the initial condition for scheme III is defined from that of scheme V in a manner dependent on the CFL number. This equivalence is counter intuitive since it is generally believed that piecewise linear and piecewise parabolic methods cannot produce the same solutions due to their different degrees of approximation. The finding also shows a key connection between the approaches of discontinuous and continuous polynomial approximations. In addition to the discussed equivalence, a framework using both projection and interpolation that extends schemes III and V into a single family of high-order schemes is introduced. For these high-order extensions, it is demonstrated via Fourier analysis that schemes with the same number of degrees of freedom ?? per cell, in spite of the different piecewise polynomial degrees, share the same sets of eigenvalues and thus, have the same stability and accuracy. Moreover, these schemes are accurate to order 2??-1, which is higher than the expected order of ??.
Weak-noise limit of a piecewise-smooth stochastic differential equation.
Chen, Yaming; Baule, Adrian; Touchette, Hugo; Just, Wolfram
2013-11-01
We investigate the validity and accuracy of weak-noise (saddle-point or instanton) approximations for piecewise-smooth stochastic differential equations (SDEs), taking as an illustrative example a piecewise-constant SDE, which serves as a simple model of Brownian motion with solid friction. For this model, we show that the weak-noise approximation of the path integral correctly reproduces the known propagator of the SDE at lowest order in the noise power, as well as the main features of the exact propagator with higher-order corrections, provided the singularity of the path integral associated with the nonsmooth SDE is treated with some heuristics. We also show that, as in the case of smooth SDEs, the deterministic paths of the noiseless system correctly describe the behavior of the nonsmooth SDE in the low-noise limit. Finally, we consider a smooth regularization of the piecewise-constant SDE and study to what extent this regularization can rectify some of the problems encountered when dealing with discontinuous drifts and singularities in SDEs.
Exponentially accurate approximations to piece-wise smooth periodic functions
NASA Technical Reports Server (NTRS)
Greer, James; Banerjee, Saheb
1995-01-01
A family of simple, periodic basis functions with 'built-in' discontinuities are introduced, and their properties are analyzed and discussed. Some of their potential usefulness is illustrated in conjunction with the Fourier series representations of functions with discontinuities. In particular, it is demonstrated how they can be used to construct a sequence of approximations which converges exponentially in the maximum norm to a piece-wise smooth function. The theory is illustrated with several examples and the results are discussed in the context of other sequences of functions which can be used to approximate discontinuous functions.
Ding, Shaojie; Qian, Min; Qian, Hong; Zhang, Xuejuan
2016-12-28
The stochastic Hodgkin-Huxley model is one of the best-known examples of piecewise deterministic Markov processes (PDMPs), in which the electrical potential across a cell membrane, V(t), is coupled with a mesoscopic Markov jump process representing the stochastic opening and closing of ion channels embedded in the membrane. The rates of the channel kinetics, in turn, are voltage-dependent. Due to this interdependence, an accurate and efficient sampling of the time evolution of the hybrid stochastic systems has been challenging. The current exact simulation methods require solving a voltage-dependent hitting time problem for multiple path-dependent intensity functions with random thresholds. This paper proposes a simulation algorithm that approximates an alternative representation of the exact solution by fitting the log-survival function of the inter-jump dwell time, H(t), with a piecewise linear one. The latter uses interpolation points that are chosen according to the time evolution of the H(t), as the numerical solution to the coupled ordinary differential equations of V(t) and H(t). This computational method can be applied to all PDMPs. Pathwise convergence of the approximated sample trajectories to the exact solution is proven, and error estimates are provided. Comparison with a previous algorithm that is based on piecewise constant approximation is also presented.
Edge-augmented Fourier partial sums with applications to Magnetic Resonance Imaging (MRI)
NASA Astrophysics Data System (ADS)
Larriva-Latt, Jade; Morrison, Angela; Radgowski, Alison; Tobin, Joseph; Iwen, Mark; Viswanathan, Aditya
2017-08-01
Certain applications such as Magnetic Resonance Imaging (MRI) require the reconstruction of functions from Fourier spectral data. When the underlying functions are piecewise-smooth, standard Fourier approximation methods suffer from the Gibbs phenomenon - with associated oscillatory artifacts in the vicinity of edges and an overall reduced order of convergence in the approximation. This paper proposes an edge-augmented Fourier reconstruction procedure which uses only the first few Fourier coefficients of an underlying piecewise-smooth function to accurately estimate jump information and then incorporate it into a Fourier partial sum approximation. We provide both theoretical and empirical results showing the improved accuracy of the proposed method, as well as comparisons demonstrating superior performance over existing state-of-the-art sparse optimization-based methods.
NASA Astrophysics Data System (ADS)
Vjačeslavov, N. S.
1980-02-01
In this paper estimates are found for L_pR_n(f) - the least deviation in the L_p-metric, 0 < p\\leq\\infty, of a piecewise analytic function f from the rational functions of degree at most n. It is shown that these estimates are sharp in a well-defined sense.Bibliography: 12 titles.
The structure of mode-locking regions of piecewise-linear continuous maps: II. Skew sawtooth maps
NASA Astrophysics Data System (ADS)
Simpson, D. J. W.
2018-05-01
In two-parameter bifurcation diagrams of piecewise-linear continuous maps on , mode-locking regions typically have points of zero width known as shrinking points. Near any shrinking point, but outside the associated mode-locking region, a significant proportion of parameter space can be usefully partitioned into a two-dimensional array of annular sectors. The purpose of this paper is to show that in these sectors the dynamics is well-approximated by a three-parameter family of skew sawtooth circle maps, where the relationship between the skew sawtooth maps and the N-dimensional map is fixed within each sector. The skew sawtooth maps are continuous, degree-one, and piecewise-linear, with two different slopes. They approximate the stable dynamics of the N-dimensional map with an error that goes to zero with the distance from the shrinking point. The results explain the complicated radial pattern of periodic, quasi-periodic, and chaotic dynamics that occurs near shrinking points.
Discretized energy minimization in a wave guide with point sources
NASA Technical Reports Server (NTRS)
Propst, G.
1994-01-01
An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.
Theodorakis, Stavros
2003-06-01
We emulate the cubic term Psi(3) in the nonlinear Schrödinger equation by a piecewise linear term, thus reducing the problem to a set of uncoupled linear inhomogeneous differential equations. The resulting analytic expressions constitute an excellent approximation to the exact solutions, as is explicitly shown in the case of the kink, the vortex, and a delta function trap. Such a piecewise linear emulation can be used for any differential equation where the only nonlinearity is a Psi(3) one. In particular, it can be used for the nonlinear Schrödinger equation in the presence of harmonic traps, giving analytic Bose-Einstein condensate solutions that reproduce very accurately the numerically calculated ones in one, two, and three dimensions.
NASA Astrophysics Data System (ADS)
Bauer, Werner; Behrens, Jörn
2017-04-01
We present a locally conservative, low-order finite element (FE) discretization of the covariant 1D linear shallow-water equations written in split form (cf. tet{[1]}). The introduction of additional differential forms (DF) that build pairs with the original ones permits a splitting of these equations into topological momentum and continuity equations and metric-dependent closure equations that apply the Hodge-star. Our novel discretization framework conserves this geometrical structure, in particular it provides for all DFs proper FE spaces such that the differential operators (here gradient and divergence) hold in strong form. The discrete topological equations simply follow by trivial projections onto piecewise constant FE spaces without need to partially integrate. The discrete Hodge-stars operators, representing the discretized metric equations, are realized by nontrivial Galerkin projections (GP). Here they follow by projections onto either a piecewise constant (GP0) or a piecewise linear (GP1) space. Our framework thus provides essentially three different schemes with significantly different behavior. The split scheme using twice GP1 is unstable and shares the same discrete dispersion relation and similar second-order convergence rates as the conventional P1-P1 FE scheme that approximates both velocity and height variables by piecewise linear spaces. The split scheme that applies both GP1 and GP0 is stable and shares the dispersion relation of the conventional P1-P0 FE scheme that approximates the velocity by a piecewise linear and the height by a piecewise constant space with corresponding second- and first-order convergence rates. Exhibiting for both velocity and height fields second-order convergence rates, we might consider the split GP1-GP0 scheme though as stable versions of the conventional P1-P1 FE scheme. For the split scheme applying twice GP0, we are not aware of a corresponding conventional formulation to compare with. Though exhibiting larger absolute error values, it shows similar convergence rates as the other split schemes, but does not provide a satisfactory approximation of the dispersion relation as short waves are propagated much to fast. Despite this, the finding of this new scheme illustrates the potential of our discretization framework as a toolbox to find and to study new FE schemes based on new combinations of FE spaces. [1] Bauer, W. [2016], A new hierarchically-structured n-dimensional covariant form of rotating equations of geophysical fluid dynamics, GEM - International Journal on Geomathematics, 7(1), 31-101.
Functional Data Approximation on Bounded Domains using Polygonal Finite Elements.
Cao, Juan; Xiao, Yanyang; Chen, Zhonggui; Wang, Wenping; Bajaj, Chandrajit
2018-07-01
We construct and analyze piecewise approximations of functional data on arbitrary 2D bounded domains using generalized barycentric finite elements, and particularly quadratic serendipity elements for planar polygons. We compare approximation qualities (precision/convergence) of these partition-of-unity finite elements through numerical experiments, using Wachspress coordinates, natural neighbor coordinates, Poisson coordinates, mean value coordinates, and quadratic serendipity bases over polygonal meshes on the domain. For a convex n -sided polygon, the quadratic serendipity elements have 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, rather than the usual n ( n + 1)/2 basis functions to achieve quadratic convergence. Two greedy algorithms are proposed to generate Voronoi meshes for adaptive functional/scattered data approximations. Experimental results show space/accuracy advantages for these quadratic serendipity finite elements on polygonal domains versus traditional finite elements over simplicial meshes. Polygonal meshes and parameter coefficients of the quadratic serendipity finite elements obtained by our greedy algorithms can be further refined using an L 2 -optimization to improve the piecewise functional approximation. We conduct several experiments to demonstrate the efficacy of our algorithm for modeling features/discontinuities in functional data/image approximation.
Hybrid Discrete-Continuous Markov Decision Processes
NASA Technical Reports Server (NTRS)
Feng, Zhengzhu; Dearden, Richard; Meuleau, Nicholas; Washington, Rich
2003-01-01
This paper proposes a Markov decision process (MDP) model that features both discrete and continuous state variables. We extend previous work by Boyan and Littman on the mono-dimensional time-dependent MDP to multiple dimensions. We present the principle of lazy discretization, and piecewise constant and linear approximations of the model. Having to deal with several continuous dimensions raises several new problems that require new solutions. In the (piecewise) linear case, we use techniques from partially- observable MDPs (POMDPS) to represent value functions as sets of linear functions attached to different partitions of the state space.
Piecewise-homotopy analysis method (P-HAM) for first order nonlinear ODE
NASA Astrophysics Data System (ADS)
Chin, F. Y.; Lem, K. H.; Chong, F. S.
2013-09-01
In homotopy analysis method (HAM), the determination for the value of the auxiliary parameter h is based on the valid region of the h-curve in which the horizontal segment of the h-curve will decide the valid h-region. All h-value taken from the valid region, provided that the order of deformation is large enough, will in principle yield an approximation series that converges to the exact solution. However it is found out that the h-value chosen within this valid region does not always promise a good approximation under finite order. This paper suggests an improved method called Piecewise-HAM (P-HAM). In stead of a single h-value, this method suggests using many h-values. Each of the h-values comes from an individual h-curve while each h-curve is plotted by fixing the time t at a different value. Each h-value is claimed to produce a good approximation only about a neighborhood centered at the corresponding t which the h-curve is based on. Each segment of these good approximations is then joined to form the approximation curve. By this, the convergence region is enhanced further. The P-HAM is illustrated and supported by examples.
Nonlinear Modeling by Assembling Piecewise Linear Models
NASA Technical Reports Server (NTRS)
Yao, Weigang; Liou, Meng-Sing
2013-01-01
To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.
Holographic representation of space-variant systems: system theory.
Marks Ii, R J; Krile, T F
1976-09-01
System theory for holographic representation of linear space-variant systems is derived. The utility of the resulting piecewise isoplanatic approximation (PIA) is illustrated by example application to the invariant system, ideal magnifier, and Fourier transformer. A method previously employed to holographically represent a space-variant system, the discrete approximation, is shown to be a special case of the PIA.
Numerically stable formulas for a particle-based explicit exponential integrator
NASA Astrophysics Data System (ADS)
Nadukandi, Prashanth
2015-05-01
Numerically stable formulas are presented for the closed-form analytical solution of the X-IVAS scheme in 3D. This scheme is a state-of-the-art particle-based explicit exponential integrator developed for the particle finite element method. Algebraically, this scheme involves two steps: (1) the solution of tangent curves for piecewise linear vector fields defined on simplicial meshes and (2) the solution of line integrals of piecewise linear vector-valued functions along these tangent curves. Hence, the stable formulas presented here have general applicability, e.g. exact integration of trajectories in particle-based (Lagrangian-type) methods, flow visualization and computer graphics. The Newton form of the polynomial interpolation definition is used to express exponential functions of matrices which appear in the analytical solution of the X-IVAS scheme. The divided difference coefficients in these expressions are defined in a piecewise manner, i.e. in a prescribed neighbourhood of removable singularities their series approximations are computed. An optimal series approximation of divided differences is presented which plays a critical role in this methodology. At least ten significant decimal digits in the formula computations are guaranteed to be exact using double-precision floating-point arithmetic. The worst case scenarios occur in the neighbourhood of removable singularities found in fourth-order divided differences of the exponential function.
NASA Technical Reports Server (NTRS)
Burkhart, G. R.; Chen, J.
1989-01-01
The integrodifferential equation describing the linear tearing instability in the bi-Maxwellian neutral sheet is solved without approximating the particle orbits or the eigenfunction psi. Results of this calculation are presented. Comparison between the exact solution and the three-region approximation motivates the piecewise-straight-line approximation, a simplification that allows faster solution of the integrodifferential equation, yet retains the important features of the exact solution.
The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations.
Storace, Marco; Linaro, Daniele; de Lange, Enno
2008-09-01
This paper provides a global picture of the bifurcation scenario of the Hindmarsh-Rose model. A combination between simulations and numerical continuations is used to unfold the complex bifurcation structure. The bifurcation analysis is carried out by varying two bifurcation parameters and evidence is given that the structure that is found is universal and appears for all combinations of bifurcation parameters. The information about the organizing principles and bifurcation diagrams are then used to compare the dynamics of the model with that of a piecewise-linear approximation, customized for circuit implementation. A good match between the dynamical behaviors of the models is found. These results can be used both to design a circuit implementation of the Hindmarsh-Rose model mimicking the diversity of neural response and as guidelines to predict the behavior of the model as well as its circuit implementation as a function of parameters. (c) 2008 American Institute of Physics.
A study of different modeling choices for simulating platelets within the immersed boundary method
Shankar, Varun; Wright, Grady B.; Fogelson, Aaron L.; Kirby, Robert M.
2012-01-01
The Immersed Boundary (IB) method is a widely-used numerical methodology for the simulation of fluid–structure interaction problems. The IB method utilizes an Eulerian discretization for the fluid equations of motion while maintaining a Lagrangian representation of structural objects. Operators are defined for transmitting information (forces and velocities) between these two representations. Most IB simulations represent their structures with piecewise linear approximations and utilize Hookean spring models to approximate structural forces. Our specific motivation is the modeling of platelets in hemodynamic flows. In this paper, we study two alternative representations – radial basis functions (RBFs) and Fourier-based (trigonometric polynomials and spherical harmonics) representations – for the modeling of platelets in two and three dimensions within the IB framework, and compare our results with the traditional piecewise linear approximation methodology. For different representative shapes, we examine the geometric modeling errors (position and normal vectors), force computation errors, and computational cost and provide an engineering trade-off strategy for when and why one might select to employ these different representations. PMID:23585704
NASA Technical Reports Server (NTRS)
Gottlieb, David; Shu, Chi-Wang
1993-01-01
The investigation of overcoming Gibbs phenomenon was continued, i.e., obtaining exponential accuracy at all points including at the discontinuities themselves, from the knowledge of a spectral partial sum of a discontinuous but piecewise analytic function. It was shown that if we are given the first N expansion coefficients of an L(sub 2) function f(x) in terms of either the trigonometrical polynomials or the Chebyshev or Legendre polynomials, an exponentially convergent approximation to the point values of f(x) in any sub-interval in which it is analytic can be constructed.
Inelastic strain analogy for piecewise linear computation of creep residues in built-up structures
NASA Technical Reports Server (NTRS)
Jenkins, Jerald M.
1987-01-01
An analogy between inelastic strains caused by temperature and those caused by creep is presented in terms of isotropic elasticity. It is shown how the theoretical aspects can be blended with existing finite-element computer programs to exact a piecewise linear solution. The creep effect is determined by using the thermal stress computational approach, if appropriate alterations are made to the thermal expansion of the individual elements. The overall transient solution is achieved by consecutive piecewise linear iterations. The total residue caused by creep is obtained by accumulating creep residues for each iteration and then resubmitting the total residues for each element as an equivalent input. A typical creep law is tested for incremental time convergence. The results indicate that the approach is practical, with a valid indication of the extent of creep after approximately 20 hr of incremental time. The general analogy between body forces and inelastic strain gradients is discussed with respect to how an inelastic problem can be worked as an elastic problem.
Difference equation state approximations for nonlinear hereditary control problems
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1982-01-01
Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems.
Quadratic spline subroutine package
Rasmussen, Lowell A.
1982-01-01
A continuous piecewise quadratic function with continuous first derivative is devised for approximating a single-valued, but unknown, function represented by a set of discrete points. The quadratic is proposed as a treatment intermediate between using the angular (but reliable, easily constructed and manipulated) piecewise linear function and using the smoother (but occasionally erratic) cubic spline. Neither iteration nor the solution of a system of simultaneous equations is necessary to determining the coefficients. Several properties of the quadratic function are given. A set of five short FORTRAN subroutines is provided for generating the coefficients (QSC), finding function value and derivatives (QSY), integrating (QSI), finding extrema (QSE), and computing arc length and the curvature-squared integral (QSK). (USGS)
High-Speed Numeric Function Generator Using Piecewise Quadratic Approximations
2007-09-01
application; User specifies the fuction to approxiamte. % % This programs turns the function provided into an inline function... PRIMARY = < primary file 1> < primary file 2> #SECONDARY = <secondary file 1> <secondary file 2> #CHIP2 = <file to compile to user chip
NASA Astrophysics Data System (ADS)
Korelin, Ivan A.; Porshnev, Sergey V.
2018-01-01
The paper demonstrates the possibility of calculating the characteristics of the flow of visitors to objects carrying out mass events passing through checkpoints. The mathematical model is based on the non-stationary queuing system (NQS) where dependence of requests input rate from time is described by the function. This function was chosen in such way that its properties were similar to the real dependencies of speed of visitors arrival on football matches to the stadium. A piecewise-constant approximation of the function is used when statistical modeling of NQS performing. Authors calculated the dependencies of the queue length and waiting time for visitors to service (time in queue) on time for different laws. Time required to service the entire queue and the number of visitors entering the stadium at the beginning of the match were calculated too. We found the dependence for macroscopic quantitative characteristics of NQS from the number of averaging sections of the input rate.
Primal-mixed formulations for reaction-diffusion systems on deforming domains
NASA Astrophysics Data System (ADS)
Ruiz-Baier, Ricardo
2015-10-01
We propose a finite element formulation for a coupled elasticity-reaction-diffusion system written in a fully Lagrangian form and governing the spatio-temporal interaction of species inside an elastic, or hyper-elastic body. A primal weak formulation is the baseline model for the reaction-diffusion system written in the deformed domain, and a finite element method with piecewise linear approximations is employed for its spatial discretization. On the other hand, the strain is introduced as mixed variable in the equations of elastodynamics, which in turn acts as coupling field needed to update the diffusion tensor of the modified reaction-diffusion system written in a deformed domain. The discrete mechanical problem yields a mixed finite element scheme based on row-wise Raviart-Thomas elements for stresses, Brezzi-Douglas-Marini elements for displacements, and piecewise constant pressure approximations. The application of the present framework in the study of several coupled biological systems on deforming geometries in two and three spatial dimensions is discussed, and some illustrative examples are provided and extensively analyzed.
NASA Technical Reports Server (NTRS)
Smith, Ralph C.
1994-01-01
A Galerkin method for systems of PDE's in circular geometries is presented with motivating problems being drawn from structural, acoustic, and structural acoustic applications. Depending upon the application under consideration, piecewise splines or Legendre polynomials are used when approximating the system dynamics with modifications included to incorporate the analytic solution decay near the coordinate singularity. This provides an efficient method which retains its accuracy throughout the circular domain without degradation at singularity. Because the problems under consideration are linear or weakly nonlinear with constant or piecewise constant coefficients, transform methods for the problems are not investigated. While the specific method is developed for the two dimensional wave equations on a circular domain and the equation of transverse motion for a thin circular plate, examples demonstrating the extension of the techniques to a fully coupled structural acoustic system are used to illustrate the flexibility of the method when approximating the dynamics of more complex systems.
Difference equation state approximations for nonlinear hereditary control problems
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1984-01-01
Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems. Previously announced in STAR as N83-33589
Krill herd and piecewise-linear initialization algorithms for designing Takagi-Sugeno systems
NASA Astrophysics Data System (ADS)
Hodashinsky, I. A.; Filimonenko, I. V.; Sarin, K. S.
2017-07-01
A method for designing Takagi-Sugeno fuzzy systems is proposed which uses a piecewiselinear initialization algorithm for structure generation and a metaheuristic krill herd algorithm for parameter optimization. The obtained systems are tested against real data sets. The influence of some parameters of this algorithm on the approximation accuracy is analyzed. Estimates of the approximation accuracy and the number of fuzzy rules are compared with four known methods of design.
2007-05-29
International Conference Acoustics Speech and Signal Processing (ICASSP 2007) conference 15 − 20 April 2007 in Honolulu, Hawaii. 1. E. Near Term...from the sensor measured in feet. The detection performance of the footstep in the presence of interfering speech was characterized in previously...investigation, we developed a simple piecewise linear approximation to the probability of detection curve with no interfering speech . This approximation was
Boundary Approximation Methods for Sloving Elliptic Problems on Unbounded Domains
NASA Astrophysics Data System (ADS)
Li, Zi-Cai; Mathon, Rudolf
1990-08-01
Boundary approximation methods with partial solutions are presented for solving a complicated problem on an unbounded domain, with both a crack singularity and a corner singularity. Also an analysis of partial solutions near the singular points is provided. These methods are easy to apply, have good stability properties, and lead to highly accurate solutions. Hence, boundary approximation methods with partial solutions are recommended for the treatment of elliptic problems on unbounded domains provided that piecewise solution expansions, in particular, asymptotic solutions near the singularities and infinity, can be found.
2001-09-01
diagnosis natural language understanding circuit fault diagnosis pattern recognition machine vision nancial auditing map learning sensor... ACCA ACCB A ights degree of command and control FCC value is assumed to be the average of all the ACC values of the aircraft in the
Akhter, Khalid P; Ahmad, Mahmood; Khan, Shujaat Ali; Ramzan, Munazza; Shafi, Ishrat; Muryam, Burhana; Javed, Zafar; Murtaza, Ghulam
2012-01-01
This study presents an application of the piecewise rational quadratic interpolant to the AUC calculation in the bioavailability study. The objective of this work is to find an area under the plasma concentration-time curve (AUC) for multiple doses of salbutamol sulfate sustained release tablets (Ventolin oral tablets SR 8 mg, GSK, Pakistan) in the group of 24 healthy adults by using computational mathematics techniques. Following the administration of 4 doses of Ventolin tablets 12 hourly to 24 healthy human subjects and bioanalysis of obtained plasma samples, plasma drug concentration-time profile was constructed. The approximated AUC was computed by using computational mathematics techniques such as extended rectangular, extended trapezium and extended Simpson's rule and compared with exact value of AUC calculated by using software - Kinetica to find best computational mathematics method that gives AUC values closest to exact. The exact values of AUC for four consecutive doses of Ventolin oral tablets were 150.58, 157.81, 164.41 and 162.78 ngxh/mL while the closest approximated AUC values were 149.24, 157.33, 164.25 and 162.28 ngxh/mL, respectively, as found by extended rectangular rule. The errors in the approximated values of AUC were negligible. It is concluded that all computational tools approximated values of AUC accurately but the extended rectangular rule gives slightly better approximated values of AUC as compared to extended trapezium and extended Simpson's rules.
The most important physiological constants among the Volga region long-livers
NASA Astrophysics Data System (ADS)
Malinova, L. I.; Shuvalov, S. S.; Denisova, T. P.
2012-03-01
In our research we brought out the age difference in the group of long-livers and the continuous character of the biochemical basal metabolism indexes changing. The results allowed us to carry out the polynominal high-powered approximation to study the dynamics of laboratory indexes. We revealed the progressive reduction of the cholesterol, triglycerides, glucose and creatinine levels starting from 90 years of age, and this reduction showed the non-linear character with interchange of local minimums and maximums. During the speed characteristics analysis we revealed the cooccurrence of the speed maximums of all the examined biochemical indexes, except the speed of changing the concentration of cholesterol, which maximum took the lead over the other indexes by four years. The phase-plane portrait analysis of the regulatory systems on the plane "time - speed" showed the unfulfilled attempt of system stabilization by all the searched parameters nearby the special spot - "stable focus". The standard deviation values analysis of the researched parameters showed their progressive reduction in the long-livers. That fact can be considered as the regulatory systems physiological "backlash" reduction among the centenarians.
Exponential Approximations Using Fourier Series Partial Sums
NASA Technical Reports Server (NTRS)
Banerjee, Nana S.; Geer, James F.
1997-01-01
The problem of accurately reconstructing a piece-wise smooth, 2(pi)-periodic function f and its first few derivatives, given only a truncated Fourier series representation of f, is studied and solved. The reconstruction process is divided into two steps. In the first step, the first 2N + 1 Fourier coefficients of f are used to approximate the locations and magnitudes of the discontinuities in f and its first M derivatives. This is accomplished by first finding initial estimates of these quantities based on certain properties of Gibbs phenomenon, and then refining these estimates by fitting the asymptotic form of the Fourier coefficients to the given coefficients using a least-squares approach. It is conjectured that the locations of the singularities are approximated to within O(N(sup -M-2), and the associated jump of the k(sup th) derivative of f is approximated to within O(N(sup -M-l+k), as N approaches infinity, and the method is robust. These estimates are then used with a class of singular basis functions, which have certain 'built-in' singularities, to construct a new sequence of approximations to f. Each of these new approximations is the sum of a piecewise smooth function and a new Fourier series partial sum. When N is proportional to M, it is shown that these new approximations, and their derivatives, converge exponentially in the maximum norm to f, and its corresponding derivatives, except in the union of a finite number of small open intervals containing the points of singularity of f. The total measure of these intervals decreases exponentially to zero as M approaches infinity. The technique is illustrated with several examples.
Non-Gaussian Analysis of Turbulent Boundary Layer Fluctuating Pressure on Aircraft Skin Panels
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Steinwolf, Alexander
2005-01-01
The purpose of the study is to investigate the probability density function (PDF) of turbulent boundary layer fluctuating pressures measured on the outer sidewall of a supersonic transport aircraft and to approximate these PDFs by analytical models. Experimental flight results show that the fluctuating pressure PDFs differ from the Gaussian distribution even for standard smooth surface conditions. The PDF tails are wider and longer than those of the Gaussian model. For pressure fluctuations in front of forward-facing step discontinuities, deviations from the Gaussian model are more significant and the PDFs become asymmetrical. There is a certain spatial pattern of the skewness and kurtosis behavior depending on the distance upstream from the step. All characteristics related to non-Gaussian behavior are highly dependent upon the distance from the step and the step height, less dependent on aircraft speed, and not dependent on the fuselage location. A Hermite polynomial transform model and a piecewise-Gaussian model fit the flight data well both for the smooth and stepped conditions. The piecewise-Gaussian approximation can be additionally regarded for convenience in usage after the model is constructed.
Dual-scale Galerkin methods for Darcy flow
NASA Astrophysics Data System (ADS)
Wang, Guoyin; Scovazzi, Guglielmo; Nouveau, Léo; Kees, Christopher E.; Rossi, Simone; Colomés, Oriol; Main, Alex
2018-02-01
The discontinuous Galerkin (DG) method has found widespread application in elliptic problems with rough coefficients, of which the Darcy flow equations are a prototypical example. One of the long-standing issues of DG approximations is the overall computational cost, and many different strategies have been proposed, such as the variational multiscale DG method, the hybridizable DG method, the multiscale DG method, the embedded DG method, and the Enriched Galerkin method. In this work, we propose a mixed dual-scale Galerkin method, in which the degrees-of-freedom of a less computationally expensive coarse-scale approximation are linked to the degrees-of-freedom of a base DG approximation. We show that the proposed approach has always similar or improved accuracy with respect to the base DG method, with a considerable reduction in computational cost. For the specific definition of the coarse-scale space, we consider Raviart-Thomas finite elements for the mass flux and piecewise-linear continuous finite elements for the pressure. We provide a complete analysis of stability and convergence of the proposed method, in addition to a study on its conservation and consistency properties. We also present a battery of numerical tests to verify the results of the analysis, and evaluate a number of possible variations, such as using piecewise-linear continuous finite elements for the coarse-scale mass fluxes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleshin, S. S., E-mail: aless2001@mail.ru; Lobanov, A. E., E-mail: lobanov@phys.msu.ru; Kharlanov, O. G., E-mail: okharl@mail.ru
The effect of flavor day-night asymmetry is considered for solar neutrinos of energy about 1 MeV under the assumption that the electron-density distribution within the Earth is approximately piecewise continuous on the scale of the neutrino-oscillation length. In this approximation, the resulting asymmetry factor for beryllium neutrinos does not depend on the structure of the inner Earth's layers or on the properties of the detector used. Its numerical estimate is on the order of -4 Multiplication-Sign 10{sup -4}, which is far beyond the reach of present-day experiments.
2012-12-01
acoustics One begins with Eikonal equation for the acoustic phase function S(t,x) as derived from the geometric acoustics (high frequency) approximation to...zb(x) is smooth and reasonably approximated as piecewise linear. The time domain ray (characteristic) equations for the Eikonal equation are ẋ(t)= c...travel time is affected, which is more physically relevant than global error in φ since it provides the phase information for the Eikonal equation (2.1
NASA Technical Reports Server (NTRS)
Gottlieb, David; Shu, Chi-Wang
1994-01-01
The paper presents a method to recover exponential accuracy at all points (including at the discontinuities themselves), from the knowledge of an approximation to the interpolation polynomial (or trigonometrical polynomial). We show that if we are given the collocation point values (or a highly accurate approximation) at the Gauss or Gauss-Lobatto points, we can reconstruct a uniform exponentially convergent approximation to the function f(x) in any sub-interval of analyticity. The proof covers the cases of Fourier, Chebyshev, Legendre, and more general Gegenbauer collocation methods.
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1985-01-01
Rayleigh-Ritz methods for the approximation of the natural modes for a class of vibration problems involving flexible beams with tip bodies using subspaces of piecewise polynomial spline functions are developed. An abstract operator theoretic formulation of the eigenvalue problem is derived and spectral properties investigated. The existing theory for spline-based Rayleigh-Ritz methods applied to elliptic differential operators and the approximation properties of interpolatory splines are useed to argue convergence and establish rates of convergence. An example and numerical results are discussed.
Uniformly high-order accurate non-oscillatory schemes, 1
NASA Technical Reports Server (NTRS)
Harten, A.; Osher, S.
1985-01-01
The construction and the analysis of nonoscillatory shock capturing methods for the approximation of hyperbolic conservation laws was begun. These schemes share many desirable properties with total variation diminishing schemes (TVD), but TVD schemes have at most first order accuracy, in the sense of truncation error, at extreme of the solution. A uniformly second order approximation was constucted, which is nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time. This is achieved via a nonoscillatory piecewise linear reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell.
Numerical solution of the unsteady Navier-Stokes equation
NASA Technical Reports Server (NTRS)
Osher, Stanley J.; Engquist, Bjoern
1985-01-01
The construction and the analysis of nonoscillatory shock capturing methods for the approximation of hyperbolic conservation laws are discussed. These schemes share many desirable properties with total variation diminishing schemes, but TVD schemes have at most first-order accuracy, in the sense of truncation error, at extrema of the solution. In this paper a uniformly second-order approximation is constructed, which is nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time. This is achieved via a nonoscillatory piecewise linear reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell.
Identification of Piecewise Linear Uniform Motion Blur
NASA Astrophysics Data System (ADS)
Patanukhom, Karn; Nishihara, Akinori
A motion blur identification scheme is proposed for nonlinear uniform motion blurs approximated by piecewise linear models which consist of more than one linear motion component. The proposed scheme includes three modules that are a motion direction estimator, a motion length estimator and a motion combination selector. In order to identify the motion directions, the proposed scheme is based on a trial restoration by using directional forward ramp motion blurs along different directions and an analysis of directional information via frequency domain by using a Radon transform. Autocorrelation functions of image derivatives along several directions are employed for estimation of the motion lengths. A proper motion combination is identified by analyzing local autocorrelation functions of non-flat component of trial restored results. Experimental examples of simulated and real world blurred images are given to demonstrate a promising performance of the proposed scheme.
NASA Astrophysics Data System (ADS)
Sun, Xiaoqiang; Cai, Yingfeng; Wang, Shaohua; Liu, Yanling; Chen, Long
2016-01-01
The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.
NASA Technical Reports Server (NTRS)
Mier Muth, A. M.; Willsky, A. S.
1978-01-01
In this paper we describe a method for approximating a waveform by a spline. The method is quite efficient, as the data are processed sequentially. The basis of the approach is to view the approximation problem as a question of estimation of a polynomial in noise, with the possibility of abrupt changes in the highest derivative. This allows us to bring several powerful statistical signal processing tools into play. We also present some initial results on the application of our technique to the processing of electrocardiograms, where the knot locations themselves may be some of the most important pieces of diagnostic information.
Interaction function of oscillating coupled neurons
Dodla, Ramana; Wilson, Charles J.
2013-01-01
Large scale simulations of electrically coupled neuronal oscillators often employ the phase coupled oscillator paradigm to understand and predict network behavior. We study the nature of the interaction between such coupled oscillators using weakly coupled oscillator theory. By employing piecewise linear approximations for phase response curves and voltage time courses, and parameterizing their shapes, we compute the interaction function for all such possible shapes and express it in terms of discrete Fourier modes. We find that reasonably good approximation is achieved with four Fourier modes that comprise of both sine and cosine terms. PMID:24229210
NASA Astrophysics Data System (ADS)
Nelson, Daniel A.; Jacobs, Gustaaf B.; Kopriva, David A.
2016-08-01
The effect of curved-boundary representation on the physics of the separated flow over a NACA 65(1)-412 airfoil is thoroughly investigated. A method is presented to approximate curved boundaries with a high-order discontinuous-Galerkin spectral element method for the solution of the Navier-Stokes equations. Multiblock quadrilateral element meshes are constructed with the grid generation software GridPro. The boundary of a NACA 65(1)-412 airfoil, defined by a cubic natural spline, is piecewise-approximated by isoparametric polynomial interpolants that represent the edges of boundary-fitted elements. Direct numerical simulation of the airfoil is performed on a coarse mesh and fine mesh with polynomial orders ranging from four to twelve. The accuracy of the curve fitting is investigated by comparing the flows computed on curved-sided meshes with those given by straight-sided meshes. Straight-sided meshes yield irregular wakes, whereas curved-sided meshes produce a regular Karman street wake. Straight-sided meshes also produce lower lift and higher viscous drag as compared with curved-sided meshes. When the mesh is refined by reducing the sizes of the elements, the lift decrease and viscous drag increase are less pronounced. The differences in the aerodynamic performance between the straight-sided meshes and the curved-sided meshes are concluded to be the result of artificial surface roughness introduced by the piecewise-linear boundary approximation provided by the straight-sided meshes.
NASA Astrophysics Data System (ADS)
Kuzmina, K. S.; Marchevsky, I. K.; Ryatina, E. P.
2017-11-01
We consider the methodology of numerical schemes development for two-dimensional vortex method. We describe two different approaches to deriving integral equation for unknown vortex sheet intensity. We simulate the velocity of the surface line of an airfoil as the influence of attached vortex and source sheets. We consider a polygonal approximation of the airfoil and assume intensity distributions of free and attached vortex sheets and attached source sheet to be approximated with piecewise constant or piecewise linear (continuous or discontinuous) functions. We describe several specific numerical schemes that provide different accuracy and have a different computational cost. The study shows that a Galerkin-type approach to solving boundary integral equation requires computing several integrals and double integrals over the panels. We obtain exact analytical formulae for all the necessary integrals, which makes it possible to raise significantly the accuracy of vortex sheet intensity computation and improve the quality of velocity and vorticity field representation, especially in proximity to the surface line of the airfoil. All the formulae are written down in the invariant form and depend only on the geometric relationship between the positions of the beginnings and ends of the panels.
Deformed Palmprint Matching Based on Stable Regions.
Wu, Xiangqian; Zhao, Qiushi
2015-12-01
Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods.
Canards in a minimal piecewise-linear square-wave burster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desroches, M.; Krupa, M.; Fernández-García, S., E-mail: soledad@us.es
We construct a piecewise-linear (PWL) approximation of the Hindmarsh-Rose (HR) neuron model that is minimal, in the sense that the vector field has the least number of linearity zones, in order to reproduce all the dynamics present in the original HR model with classical parameter values. This includes square-wave bursting and also special trajectories called canards, which possess long repelling segments and organise the transitions between stable bursting patterns with n and n + 1 spikes, also referred to as spike-adding canard explosions. We propose a first approximation of the smooth HR model, using a continuous PWL system, and show that itsmore » fast subsystem cannot possess a homoclinic bifurcation, which is necessary to obtain proper square-wave bursting. We then relax the assumption of continuity of the vector field across all zones, and we show that we can obtain a homoclinic bifurcation in the fast subsystem. We use the recently developed canard theory for PWL systems in order to reproduce the spike-adding canard explosion feature of the HR model as studied, e.g., in Desroches et al., Chaos 23(4), 046106 (2013).« less
Gorban, A N; Mirkes, E M; Zinovyev, A
2016-12-01
Most of machine learning approaches have stemmed from the application of minimizing the mean squared distance principle, based on the computationally efficient quadratic optimization methods. However, when faced with high-dimensional and noisy data, the quadratic error functionals demonstrated many weaknesses including high sensitivity to contaminating factors and dimensionality curse. Therefore, a lot of recent applications in machine learning exploited properties of non-quadratic error functionals based on L 1 norm or even sub-linear potentials corresponding to quasinorms L p (0
Efficient Digital Implementation of The Sigmoidal Function For Artificial Neural Network
NASA Astrophysics Data System (ADS)
Pratap, Rana; Subadra, M.
2011-10-01
An efficient piecewise linear approximation of a nonlinear function (PLAN) is proposed. This uses simulink environment design to perform a direct transformation from X to Y, where X is the input and Y is the approximated sigmoidal output. This PLAN is then used within the outputs of an artificial neural network to perform the nonlinear approximation. In This paper, is proposed a method to implement in FPGA (Field Programmable Gate Array) circuits different approximation of the sigmoid function.. The major benefit of the proposed method resides in the possibility to design neural networks by means of predefined block systems created in System Generator environment and the possibility to create a higher level design tools used to implement neural networks in logical circuits.
Estimating piecewise exponential frailty model with changing prior for baseline hazard function
NASA Astrophysics Data System (ADS)
Thamrin, Sri Astuti; Lawi, Armin
2016-02-01
Piecewise exponential models provide a very flexible framework for modelling univariate survival data. It can be used to estimate the effects of different covariates which are influenced by the survival data. Although in a strict sense it is a parametric model, a piecewise exponential hazard can approximate any shape of a parametric baseline hazard. In the parametric baseline hazard, the hazard function for each individual may depend on a set of risk factors or explanatory variables. However, it usually does not explain all such variables which are known or measurable, and these variables become interesting to be considered. This unknown and unobservable risk factor of the hazard function is often termed as the individual's heterogeneity or frailty. This paper analyses the effects of unobserved population heterogeneity in patients' survival times. The issue of model choice through variable selection is also considered. A sensitivity analysis is conducted to assess the influence of the prior for each parameter. We used the Markov Chain Monte Carlo method in computing the Bayesian estimator on kidney infection data. The results obtained show that the sex and frailty are substantially associated with survival in this study and the models are relatively quite sensitive to the choice of two different priors.
NASA Technical Reports Server (NTRS)
Gottlieb, David; Shu, Chi-Wang
1994-01-01
We continue our investigation of overcoming Gibbs phenomenon, i.e., to obtain exponential accuracy at all points (including at the discontinuities themselves), from the knowledge of a spectral partial sum of a discontinuous but piecewise analytic function. We show that if we are given the first N Gegenbauer expansion coefficients, based on the Gegenbauer polynomials C(sub k)(sup mu)(x) with the weight function (1 - x(exp 2))(exp mu - 1/2) for any constant mu is greater than or equal to 0, of an L(sub 1) function f(x), we can construct an exponentially convergent approximation to the point values of f(x) in any subinterval in which the function is analytic. The proof covers the cases of Chebyshev or Legendre partial sums, which are most common in applications.
Accurate Monotonicity - Preserving Schemes With Runge-Kutta Time Stepping
NASA Technical Reports Server (NTRS)
Suresh, A.; Huynh, H. T.
1997-01-01
A new class of high-order monotonicity-preserving schemes for the numerical solution of conservation laws is presented. The interface value in these schemes is obtained by limiting a higher-order polynominal reconstruction. The limiting is designed to preserve accuracy near extrema and to work well with Runge-Kutta time stepping. Computational efficiency is enhanced by a simple test that determines whether the limiting procedure is needed. For linear advection in one dimension, these schemes are shown as well as the Euler equations also confirm their high accuracy, good shock resolution, and computational efficiency.
Solving the Problem of Linear Viscoelasticity for Piecewise-Homogeneous Anisotropic Plates
NASA Astrophysics Data System (ADS)
Kaloerov, S. A.; Koshkin, A. A.
2017-11-01
An approximate method for solving the problem of linear viscoelasticity for thin anisotropic plates subject to transverse bending is proposed. The method of small parameter is used to reduce the problem to a sequence of boundary problems of applied theory of bending of plates solved using complex potentials. The general form of complex potentials in approximations and the boundary conditions for determining them are obtained. Problems for a plate with elliptic elastic inclusions are solved as an example. The numerical results for a plate with one, two elliptical (circular), and linear inclusions are analyzed.
Regularization by Functions of Bounded Variation and Applications to Image Enhancement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casas, E.; Kunisch, K.; Pola, C.
1999-09-15
Optimization problems regularized by bounded variation seminorms are analyzed. The optimality system is obtained and finite-dimensional approximations of bounded variation function spaces as well as of the optimization problems are studied. It is demonstrated that the choice of the vector norm in the definition of the bounded variation seminorm is of special importance for approximating subspaces consisting of piecewise constant functions. Algorithms based on a primal-dual framework that exploit the structure of these nondifferentiable optimization problems are proposed. Numerical examples are given for denoising of blocky images with very high noise.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1989-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.
Polynomial approximation of Poincare maps for Hamiltonian system
NASA Technical Reports Server (NTRS)
Froeschle, Claude; Petit, Jean-Marc
1992-01-01
Different methods are proposed and tested for transforming a non-linear differential system, and more particularly a Hamiltonian one, into a map without integrating the whole orbit as in the well-known Poincare return map technique. We construct piecewise polynomial maps by coarse-graining the phase-space surface of section into parallelograms and using either only values of the Poincare maps at the vertices or also the gradient information at the nearest neighbors to define a polynomial approximation within each cell. The numerical experiments are in good agreement with both the real symplectic and Poincare maps.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1992-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.
An Interpolation Approach to Optimal Trajectory Planning for Helicopter Unmanned Aerial Vehicles
2012-06-01
Armament Data Line DOF Degree of Freedom PS Pseudospectral LGL Legendre -Gauss-Lobatto quadrature nodes ODE Ordinary Differential Equation xiv...low order polynomials patched together in such away so that the resulting trajectory has several continuous derivatives at all points. In [7], Murray...claims that splines are ideal for optimal control problems because each segment of the spline’s piecewise polynomials approximate the trajectory
Enhanced algorithms for stochastic programming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna, Alamuru S.
1993-09-01
In this dissertation, we present some of the recent advances made in solving two-stage stochastic linear programming problems of large size and complexity. Decomposition and sampling are two fundamental components of techniques to solve stochastic optimization problems. We describe improvements to the current techniques in both these areas. We studied different ways of using importance sampling techniques in the context of Stochastic programming, by varying the choice of approximation functions used in this method. We have concluded that approximating the recourse function by a computationally inexpensive piecewise-linear function is highly efficient. This reduced the problem from finding the mean ofmore » a computationally expensive functions to finding that of a computationally inexpensive function. Then we implemented various variance reduction techniques to estimate the mean of a piecewise-linear function. This method achieved similar variance reductions in orders of magnitude less time than, when we directly applied variance-reduction techniques directly on the given problem. In solving a stochastic linear program, the expected value problem is usually solved before a stochastic solution and also to speed-up the algorithm by making use of the information obtained from the solution of the expected value problem. We have devised a new decomposition scheme to improve the convergence of this algorithm.« less
Optimizing X-Ray Optical Prescriptions for Wide-Field Applications
NASA Technical Reports Server (NTRS)
Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.
2010-01-01
X-ray telescopes with spatial resolution optimized over the field of view (FOV) are of special interest for missions, such as WFXT, focused on moderately deep and deep surveys of the x-ray sky, and for solar x-ray observations. Here we report on the present status of an on-going study of the properties of Wolter I and polynominal grazing incidence designs with a view to gain a deeper insight into their properties and simply the design process. With these goals in mind, we present some results in the complementary topics of (1) properties of Wolter I x-ray optics and polynominal x-ray optic ray tracing. Of crucial importance for the design of wide-field x-ray optics is the optimization criteria. Here we have adopted the minimization of a merit function, M, which measures the spatial resolution averaged over the FOV: M= ((integral of d phi) between the limits of 0 and 2 pi) (integral of d theta theta w(theta) sigma square (theta,phi) between the limits of 0 and theta(sub FOV)) (integral of d phi between the limits of 0 and phi/4) (Integral of d theta theta w(theta) between the limits of 0 and theta(sub FOV) where w(theta(sub 1) is a weighting function and Merit function: sigma-square (theta, phi) = summation of (x,y,z) [
The Relation of Finite Element and Finite Difference Methods
NASA Technical Reports Server (NTRS)
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fang, E-mail: fliu@lsec.cc.ac.cn; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
We present a numerical integration scheme for evaluating the convolution of a Green's function with a screened Coulomb potential on the real axis in the GW approximation of the self energy. Our scheme takes the zero broadening limit in Green's function first, replaces the numerator of the integrand with a piecewise polynomial approximation, and performs principal value integration on subintervals analytically. We give the error bound of our numerical integration scheme and show by numerical examples that it is more reliable and accurate than the standard quadrature rules such as the composite trapezoidal rule. We also discuss the benefit ofmore » using different self energy expressions to perform the numerical convolution at different frequencies.« less
Isogeometric Analysis of Boundary Integral Equations
2015-04-21
methods, IgA relies on Non-Uniform Rational B- splines (NURBS) [43, 46], T- splines [55, 53] or subdivision surfaces [21, 48, 51] rather than piece- wise...structural dynamics [25, 26], plates and shells [15, 16, 27, 28, 37, 22, 23], phase-field models [17, 32, 33], and shape optimization [40, 41, 45, 59...polynomials for approximating the geometry and field variables. Thus, by replacing piecewise polynomials with NURBS or T- splines , one can develop
Time-temperature effect in adhesively bonded joints
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1981-01-01
The viscoelastic analysis of an adhesively bonded lap joint was reconsidered. The adherends are approximated by essentially Reissner plates and the adhesive is linearly viscoelastic. The hereditary integrals are used to model the adhesive. A linear integral differential equations system for the shear and the tensile stress in the adhesive is applied. The equations have constant coefficients and are solved by using Laplace transforms. It is shown that if the temperature variation in time can be approximated by a piecewise constant function, then the method of Laplace transforms can be used to solve the problem. A numerical example is given for a single lap joint under various loading conditions.
A method for digital image registration using a mathematical programming technique
NASA Technical Reports Server (NTRS)
Yao, S. S.
1973-01-01
A new algorithm based on a nonlinear programming technique to correct the geometrical distortions of one digital image with respect to another is discussed. This algorithm promises to be superior to existing ones in that it is capable of treating localized differential scaling, translational and rotational errors over the whole image plane. A series of piece-wise 'rubber-sheet' approximations are used, constrained in such a manner that a smooth approximation over the entire image can be obtained. The theoretical derivation is included. The result of using the algorithm to register four channel S065 Apollo IX digitized photography over Imperial Valley, California, is discussed in detail.
Cascades of alternating pitchfork and flip bifurcations in H-bridge inverters
NASA Astrophysics Data System (ADS)
Avrutin, Viktor; Zhusubaliyev, Zhanybai T.; Mosekilde, Erik
2017-04-01
Power electronic DC/AC converters (inverters) play an important role in modern power engineering. These systems are also of considerable theoretical interest because their dynamics is influenced by the presence of two vastly different forcing frequencies. As a consequence, inverter systems may be modeled in terms of piecewise smooth maps with an extremely high number of switching manifolds. We have recently shown that models of this type can demonstrate a complicated bifurcation structure associated with the occurrence of border collisions. Considering the example of a PWM H-bridge single-phase inverter, the present paper discusses a number of unusual phenomena that can occur in piecewise smooth maps with a very large number of switching manifolds. We show in particular how smooth (pitchfork and flip) bifurcations may form a macroscopic pattern that stretches across the overall bifurcation structure. We explain the observed bifurcation phenomena, show under which conditions they occur, and describe them quantitatively by means of an analytic approximation.
Piecewise polynomial representations of genomic tracks.
Tarabichi, Maxime; Detours, Vincent; Konopka, Tomasz
2012-01-01
Genomic data from micro-array and sequencing projects consist of associations of measured values to chromosomal coordinates. These associations can be thought of as functions in one dimension and can thus be stored, analyzed, and interpreted as piecewise-polynomial curves. We present a general framework for building piecewise polynomial representations of genome-scale signals and illustrate some of its applications via examples. We show that piecewise constant segmentation, a typical step in copy-number analyses, can be carried out within this framework for both array and (DNA) sequencing data offering advantages over existing methods in each case. Higher-order polynomial curves can be used, for example, to detect trends and/or discontinuities in transcription levels from RNA-seq data. We give a concrete application of piecewise linear functions to diagnose and quantify alignment quality at exon borders (splice sites). Our software (source and object code) for building piecewise polynomial models is available at http://sourceforge.net/projects/locsmoc/.
NASA Astrophysics Data System (ADS)
Liang, Feng; Wang, Dechang
In this paper, we suppose that a planar piecewise Hamiltonian system, with a straight line of separation, has a piecewise generalized homoclinic loop passing through a Saddle-Fold point, and assume that there exists a family of piecewise smooth periodic orbits near the loop. By studying the asymptotic expansion of the first order Melnikov function corresponding to the period annulus, we obtain the formulas of the first six coefficients in the expansion, based on which, we provide a lower bound for the maximal number of limit cycles bifurcated from the period annulus. As applications, two concrete systems are considered. Especially, the first one reveals that a quadratic piecewise Hamiltonian system can have five limit cycles near a generalized homoclinic loop under a quadratic piecewise smooth perturbation. Compared with the smooth case [Horozov & Iliev, 1994; Han et al., 1999], three more limit cycles are found.
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1995-01-01
Two methods for developing high order single step explicit algorithms on symmetric stencils with data on only one time level are presented. Examples are given for the convection and linearized Euler equations with up to the eighth order accuracy in both space and time in one space dimension, and up to the sixth in two space dimensions. The method of characteristics is generalized to nondiagonalizable hyperbolic systems by using exact local polynominal solutions of the system, and the resulting exact propagator methods automatically incorporate the correct multidimensional wave propagation dynamics. Multivariate Taylor or Cauchy-Kowaleskaya expansions are also used to develop algorithms. Both of these methods can be applied to obtain algorithms of arbitrarily high order for hyperbolic systems in multiple space dimensions. Cross derivatives are included in the local approximations used to develop the algorithms in this paper in order to obtain high order accuracy, and improved isotropy and stability. Efficiency in meeting global error bounds is an important criterion for evaluating algorithms, and the higher order algorithms are shown to be up to several orders of magnitude more efficient even though they are more complex. Stable high order boundary conditions for the linearized Euler equations are developed in one space dimension, and demonstrated in two space dimensions.
NASA Astrophysics Data System (ADS)
Kamakoshi, Y.; Nishida, S.; Kanbe, K.; Shohji, I.
2017-10-01
In recent years, powder metallurgy (P/M) materials have been expected to be applied to automobile products. Then, not only high cost performance but also more strength, wear resistance, long-life and so on are required for P/M materials. As an improvement method of mechanical properties of P/M materials, a densification is expected to be one of effective processes. In this study, to examine behaviours of the densification of Mo-alloyed sintered steel in a cold-forging process, finite element method (FEM) analysis was performed. Firstly, a columnar specimen was cut out from the inner part of a sintered specimen and a load-stroke diagram was obtained by the compression test. 2D FEM analysis was performed using the obtained load-stroke diagram. To correct the errors of stress between the porous mode and the rigid-elastic mode of analysis software, the analysis of a polynominal approximation was performed. As a result, the modified true stress-true strain diagram was obtained for the sintered steel with the densification. Afterwards, 3D FEM analysis of backward extrusion was carried out using the modified true stress-true strain diagram. It was confirmed that both the shape and density of the sintered steel analyzed by new FEM analysis that we suggest correspond well with experimental ones.
Algorithms for the explicit computation of Penrose diagrams
NASA Astrophysics Data System (ADS)
Schindler, J. C.; Aguirre, A.
2018-05-01
An algorithm is given for explicitly computing Penrose diagrams for spacetimes of the form . The resulting diagram coordinates are shown to extend the metric continuously and nondegenerately across an arbitrary number of horizons. The method is extended to include piecewise approximations to dynamically evolving spacetimes using a standard hypersurface junction procedure. Examples generated by an implementation of the algorithm are shown for standard and new cases. In the appendix, this algorithm is compared to existing methods.
Li, Changyang; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Yin, Yong; Dagan Feng, David
2015-01-01
Automated and general medical image segmentation can be challenging because the foreground and the background may have complicated and overlapping density distributions in medical imaging. Conventional region-based level set algorithms often assume piecewise constant or piecewise smooth for segments, which are implausible for general medical image segmentation. Furthermore, low contrast and noise make identification of the boundaries between foreground and background difficult for edge-based level set algorithms. Thus, to address these problems, we suggest a supervised variational level set segmentation model to harness the statistical region energy functional with a weighted probability approximation. Our approach models the region density distributions by using the mixture-of-mixtures Gaussian model to better approximate real intensity distributions and distinguish statistical intensity differences between foreground and background. The region-based statistical model in our algorithm can intuitively provide better performance on noisy images. We constructed a weighted probability map on graphs to incorporate spatial indications from user input with a contextual constraint based on the minimization of contextual graphs energy functional. We measured the performance of our approach on ten noisy synthetic images and 58 medical datasets with heterogeneous intensities and ill-defined boundaries and compared our technique to the Chan-Vese region-based level set model, the geodesic active contour model with distance regularization, and the random walker model. Our method consistently achieved the highest Dice similarity coefficient when compared to the other methods.
NASA Astrophysics Data System (ADS)
Wang, Qingzhi; Tan, Guanzheng; He, Yong; Wu, Min
2017-10-01
This paper considers a stability analysis issue of piecewise non-linear systems and applies it to intermittent synchronisation of chaotic systems. First, based on piecewise Lyapunov function methods, more general and less conservative stability criteria of piecewise non-linear systems in periodic and aperiodic cases are presented, respectively. Next, intermittent synchronisation conditions of chaotic systems are derived which extend existing results. Finally, Chua's circuit is taken as an example to verify the validity of our methods.
Geodesic regression for image time-series.
Niethammer, Marc; Huang, Yang; Vialard, François-Xavier
2011-01-01
Registration of image-time series has so far been accomplished (i) by concatenating registrations between image pairs, (ii) by solving a joint estimation problem resulting in piecewise geodesic paths between image pairs, (iii) by kernel based local averaging or (iv) by augmenting the joint estimation with additional temporal irregularity penalties. Here, we propose a generative model extending least squares linear regression to the space of images by using a second-order dynamic formulation for image registration. Unlike previous approaches, the formulation allows for a compact representation of an approximation to the full spatio-temporal trajectory through its initial values. The method also opens up possibilities to design image-based approximation algorithms. The resulting optimization problem is solved using an adjoint method.
High resolution A/D conversion based on piecewise conversion at lower resolution
Terwilliger, Steve [Albuquerque, NM
2012-06-05
Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.
Piecewise Linear-Linear Latent Growth Mixture Models with Unknown Knots
ERIC Educational Resources Information Center
Kohli, Nidhi; Harring, Jeffrey R.; Hancock, Gregory R.
2013-01-01
Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear-linear latent growth mixture model (LGMM) for describing segmented change of…
Luque-Fernandez, Miguel Angel; Belot, Aurélien; Quaresma, Manuela; Maringe, Camille; Coleman, Michel P; Rachet, Bernard
2016-10-01
In population-based cancer research, piecewise exponential regression models are used to derive adjusted estimates of excess mortality due to cancer using the Poisson generalized linear modelling framework. However, the assumption that the conditional mean and variance of the rate parameter given the set of covariates x i are equal is strong and may fail to account for overdispersion given the variability of the rate parameter (the variance exceeds the mean). Using an empirical example, we aimed to describe simple methods to test and correct for overdispersion. We used a regression-based score test for overdispersion under the relative survival framework and proposed different approaches to correct for overdispersion including a quasi-likelihood, robust standard errors estimation, negative binomial regression and flexible piecewise modelling. All piecewise exponential regression models showed the presence of significant inherent overdispersion (p-value <0.001). However, the flexible piecewise exponential model showed the smallest overdispersion parameter (3.2 versus 21.3) for non-flexible piecewise exponential models. We showed that there were no major differences between methods. However, using a flexible piecewise regression modelling, with either a quasi-likelihood or robust standard errors, was the best approach as it deals with both, overdispersion due to model misspecification and true or inherent overdispersion.
Multilevel Preconditioners for Reaction-Diffusion Problems with Discontinuous Coefficients
Kolev, Tzanio V.; Xu, Jinchao; Zhu, Yunrong
2015-08-23
In this study, we extend some of the multilevel convergence results obtained by Xu and Zhu, to the case of second order linear reaction-diffusion equations. Specifically, we consider the multilevel preconditioners for solving the linear systems arising from the linear finite element approximation of the problem, where both diffusion and reaction coefficients are piecewise-constant functions. We discuss in detail the influence of both the discontinuous reaction and diffusion coefficients to the performance of the classical BPX and multigrid V-cycle preconditioner.
The Inverse of Banded Matrices
2013-01-01
indexed entries all zeros. In this paper, generalizing a method of Mallik (1999) [5], we give the LU factorization and the inverse of the matrix Br,n (if it...r ≤ i ≤ r, 1 ≤ j ≤ r, with the remaining un-indexed entries all zeros. In this paper generalizing a method of Mallik (1999) [5...matrices and applications to piecewise cubic approximation, J. Comput. Appl. Math. 8 (4) (1982) 285–288. [5] R.K. Mallik , The inverse of a lower
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warnaar, S.O.
1996-07-01
We compute the one-dimensional configuration sums of the AFB model using the fermionic techniques introduced in part I of this paper. Combined with the results of Andrews, Baxter, and Forrester, we prove polynominal identities for finitizations of the Virasoro characters {sub {chi}b, a}{sup (r-1, r)}(q) as conjectured by Melzer. In the thermodynamic limit these identities reproduce Rogers-Ramanujan-type identities for the unitary minimal Virasoro characters conjectured by the Stony Brook group. We also present a list of additional Virasoro character identities which follow from our proof of Melzer`s identities and application of Bailey`s lemma.
Quasi-kernel polynomials and convergence results for quasi-minimal residual iterations
NASA Technical Reports Server (NTRS)
Freund, Roland W.
1992-01-01
Recently, Freund and Nachtigal have proposed a novel polynominal-based iteration, the quasi-minimal residual algorithm (QMR), for solving general nonsingular non-Hermitian linear systems. Motivated by the QMR method, we have introduced the general concept of quasi-kernel polynomials, and we have shown that the QMR algorithm is based on a particular instance of quasi-kernel polynomials. In this paper, we continue our study of quasi-kernel polynomials. In particular, we derive bounds for the norms of quasi-kernel polynomials. These results are then applied to obtain convergence theorems both for the QMR method and for a transpose-free variant of QMR, the TFQMR algorithm.
Variational models for discontinuity detection
NASA Astrophysics Data System (ADS)
Vitti, Alfonso; Battista Benciolini, G.
2010-05-01
The Mumford-Shah variational model produces a smooth approximation of the data and detects data discontinuities by solving a minimum problem involving an energy functional. The Blake-Zisserman model permits also the detection of discontinuities in the first derivative of the approximation. This model can result in a quasi piece-wise linear approximation, whereas the Mumford-Shah can result in a quasi piece-wise constant approximation. The two models are well known in the mathematical literature and are widely adopted in computer vision for image segmentation. In Geodesy the Blake-Zisserman model has been applied successfully to the detection of cycle-slips in linear combinations of GPS measurements. Few attempts to apply the model to time series of coordinates have been done so far. The problem of detecting discontinuities in time series of GNSS coordinates is well know and its relevance increases as the quality of geodetic measurements, analysis techniques, models and products improves. The application of the Blake-Zisserman model appears reasonable and promising due to the model characteristic to detect both position and velocity discontinuities in the same time series. The detection of position and velocity changes is of great interest in geophysics where the discontinuity itself can be the very relevant object. In the work for the realization of reference frames, detecting position and velocity discontinuities may help to define models that can handle non-linear motions. In this work the Mumford-Shah and the Blake-Zisserman models are briefly presented, the treatment is carried out from a practical viewpoint rather than from a theoretical one. A set of time series of GNSS coordinates has been processed and the results are presented in order to highlight the capabilities and the weakness of the variational approach. A first attempt to derive some indication for the automatic set up of the model parameters has been done. The underlying relation that could links the parameter values to the statistical properties of the data has been investigated.
The dynamical analysis of modified two-compartment neuron model and FPGA implementation
NASA Astrophysics Data System (ADS)
Lin, Qianjin; Wang, Jiang; Yang, Shuangming; Yi, Guosheng; Deng, Bin; Wei, Xile; Yu, Haitao
2017-10-01
The complexity of neural models is increasing with the investigation of larger biological neural network, more various ionic channels and more detailed morphologies, and the implementation of biological neural network is a task with huge computational complexity and power consumption. This paper presents an efficient digital design using piecewise linearization on field programmable gate array (FPGA), to succinctly implement the reduced two-compartment model which retains essential features of more complicated models. The design proposes an approximate neuron model which is composed of a set of piecewise linear equations, and it can reproduce different dynamical behaviors to depict the mechanisms of a single neuron model. The consistency of hardware implementation is verified in terms of dynamical behaviors and bifurcation analysis, and the simulation results including varied ion channel characteristics coincide with the biological neuron model with a high accuracy. Hardware synthesis on FPGA demonstrates that the proposed model has reliable performance and lower hardware resource compared with the original two-compartment model. These investigations are conducive to scalability of biological neural network in reconfigurable large-scale neuromorphic system.
NASA Astrophysics Data System (ADS)
Guo, Yongfeng; Shen, Yajun; Tan, Jianguo
2016-09-01
The phenomenon of stochastic resonance (SR) in a piecewise nonlinear model driven by a periodic signal and correlated noises for the cases of a multiplicative non-Gaussian noise and an additive Gaussian white noise is investigated. Applying the path integral approach, the unified colored noise approximation and the two-state model theory, the analytical expression of the signal-to-noise ratio (SNR) is derived. It is found that conventional stochastic resonance exists in this system. From numerical computations we obtain that: (i) As a function of the non-Gaussian noise intensity, the SNR is increased when the non-Gaussian noise deviation parameter q is increased. (ii) As a function of the Gaussian noise intensity, the SNR is decreased when q is increased. This demonstrates that the effect of the non-Gaussian noise on SNR is different from that of the Gaussian noise in this system. Moreover, we further discuss the effect of the correlation time of the non-Gaussian noise, cross-correlation strength, the amplitude and frequency of the periodic signal on SR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehtikangas, O., E-mail: Ossi.Lehtikangas@uef.fi; Tarvainen, T.; Department of Computer Science, University College London, Gower Street, London WC1E 6BT
2015-02-01
The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena onmore » the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light.« less
Fault detection for piecewise affine systems with application to ship propulsion systems.
Yang, Ying; Linlin, Li; Ding, Steven X; Qiu, Jianbin; Peng, Kaixiang
2017-09-09
In this paper, the design approach of non-synchronized diagnostic observer-based fault detection (FD) systems is investigated for piecewise affine processes via continuous piecewise Lyapunov functions. Considering that the dynamics of piecewise affine systems in different regions can be considerably different, the weighting matrices are used to weight the residual of each region, so as to optimize the fault detectability. A numerical example and a case study on a ship propulsion system are presented in the end to demonstrate the effectiveness of the proposed results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Armstrong, Jeffrey B.; Simon, Donald L.
2012-01-01
Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulations.Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulatns.
NASA Astrophysics Data System (ADS)
Kulyanitsa, A. L.; Rukhovich, A. D.; Rukhovich, D. D.; Koroleva, P. V.; Rukhovich, D. I.; Simakova, M. S.
2017-04-01
The concept of soil line can be to describe the temporal distribution of spectral characteristics of the bare soil surface. In this case, the soil line can be referred to as the multi-temporal soil line, or simply temporal soil line (TSL). In order to create TSL for 8000 regular lattice points for the territory of three regions of Tula oblast, we used 34 Landsat images obtained in the period from 1985 to 2014 after their certain transformation. As Landsat images are the matrices of the values of spectral brightness, this transformation is the normalization of matrices. There are several methods of normalization that move, rotate, and scale the spectral plane. In our study, we applied the method of piecewise linear approximation to the spectral neighborhood of soil line in order to assess the quality of normalization mathematically. This approach allowed us to range normalization methods according to their quality as follows: classic normalization > successive application of the turn and shift > successive application of the atmospheric correction and shift > atmospheric correction > shift > turn > raw data. The normalized data allowed us to create the maps of the distribution of a and b coefficients of the TSL. The map of b coefficient is characterized by the high correlation with the ground-truth data obtained from 1899 soil pits described during the soil surveys performed by the local institute for land management (GIPROZEM).
NASA Astrophysics Data System (ADS)
Majewski, Kurt
2018-03-01
Exact solutions of the Bloch equations with T1 - and T2 -relaxation terms for piecewise constant magnetic fields are numerically challenging. We therefore investigate an approximation for the achieved magnetization in which rotations and relaxations are split into separate operations. We develop an estimate for its accuracy and explicit first and second order derivatives with respect to the complex excitation radio frequency voltages. In practice, the deviation between an exact solution of the Bloch equations and this rotation relaxation splitting approximation seems negligible. Its computation times are similar to exact solutions without relaxation terms. We apply the developed theory to numerically optimize radio frequency excitation waveforms with T1 - and T2 -relaxations in several examples.
Changes in Clavicle Length and Maturation in Americans: 1840-1980.
Langley, Natalie R; Cridlin, Sandra
2016-01-01
Secular changes refer to short-term biological changes ostensibly due to environmental factors. Two well-documented secular trends in many populations are earlier age of menarche and increasing stature. This study synthesizes data on maximum clavicle length and fusion of the medial epiphysis in 1840-1980 American birth cohorts to provide a comprehensive assessment of developmental and morphological change in the clavicle. Clavicles from the Hamann-Todd Human Osteological Collection (n = 354), McKern and Stewart Korean War males (n = 341), Forensic Anthropology Data Bank (n = 1,239), and the McCormick Clavicle Collection (n = 1,137) were used in the analysis. Transition analysis was used to evaluate fusion of the medial epiphysis (scored as unfused, fusing, or fused). Several statistical treatments were used to assess fluctuations in maximum clavicle length. First, Durbin-Watson tests were used to evaluate autocorrelation, and a local regression (LOESS) was used to identify visual shifts in the regression slope. Next, piecewise regression was used to fit linear regression models before and after the estimated breakpoints. Multiple starting parameters were tested in the range determined to contain the breakpoint, and the model with the smallest mean squared error was chosen as the best fit. The parameters from the best-fit models were then used to derive the piecewise models, which were compared with the initial simple linear regression models to determine which model provided the best fit for the secular change data. The epiphyseal union data indicate a decline in the age at onset of fusion since the early twentieth century. Fusion commences approximately four years earlier in mid- to late twentieth-century birth cohorts than in late nineteenth- and early twentieth-century birth cohorts. However, fusion is completed at roughly the same age across cohorts. The most significant decline in age at onset of epiphyseal union appears to have occurred since the mid-twentieth century. LOESS plots show a breakpoint in the clavicle length data around the mid-twentieth century in both sexes, and piecewise regression models indicate a significant decrease in clavicle length in the American population after 1940. The piecewise model provides a slightly better fit than the simple linear model. Since the model standard error is not substantially different from the piecewise model, an argument could be made to select the less complex linear model. However, we chose the piecewise model to detect changes in clavicle length that are overfitted with a linear model. The decrease in maximum clavicle length is in line with a documented narrowing of the American skeletal form, as shown by analyses of cranial and facial breadth and bi-iliac breadth of the pelvis. Environmental influences on skeletal form include increases in body mass index, health improvements, improved socioeconomic status, and elimination of infectious diseases. Secular changes in bony dimensions and skeletal maturation stipulate that medical and forensic standards used to deduce information about growth, health, and biological traits must be derived from modern populations.
A tutorial on the piecewise regression approach applied to bedload transport data
Sandra E. Ryan; Laurie S. Porth
2007-01-01
This tutorial demonstrates the application of piecewise regression to bedload data to define a shift in phase of transport so that the reader may perform similar analyses on available data. The use of piecewise regression analysis implicitly recognizes different functions fit to bedload data over varying ranges of flow. The transition from primarily low rates of sand...
Generation of dark hollow beam by use of phase-only filtering
NASA Astrophysics Data System (ADS)
Liu, Zhengjun; Dai, Jingmin; Zhao, Xiaoyi; Sun, Xiaogang; Liu, Shutian; Ashfaq Ahmad, Muhammad
2009-11-01
A simple but effective scheme to generate dark hollow beams is proposed by use of phase-only filtering and optical Fourier transform. A Gaussian beam of fundamental mode is modulated by a pre-designed phase mask, which is a piecewise modification of an axicon lens, and followed by a Fourier transform to generate an ideal dark hollow beam at the focal plane. This method has an advantage that the total energy of the beam is conserved under paraxial approximation. Numerical calculations are provided to show the validity of the proposed scheme.
A simple finite element method for the Stokes equations
Mu, Lin; Ye, Xiu
2017-03-21
The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in primal velocity-pressure formulation and is so simple such that both velocity and pressure are approximated by piecewise constant functions. Implementation issues as well as error analysis are investigated. A basis for a divergence free subspace of the velocity field is constructed so that the original saddle point problem can be reduced to a symmetric and positive definite system with much fewer unknowns. The numerical experiments indicate that the method is accurate.
A simple finite element method for the Stokes equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in primal velocity-pressure formulation and is so simple such that both velocity and pressure are approximated by piecewise constant functions. Implementation issues as well as error analysis are investigated. A basis for a divergence free subspace of the velocity field is constructed so that the original saddle point problem can be reduced to a symmetric and positive definite system with much fewer unknowns. The numerical experiments indicate that the method is accurate.
Processing techniques development, volume 3
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator); Anuta, P. E.; Hixson, M. M.; Swain, P. H.
1978-01-01
The author has identified the following significant results. Analysis of the geometric characteristics of the aircraft synthetic aperture radar (SAR) relative to LANDSAT indicated that relatively low order polynominals would model the distortions to subpixel accuracy to bring SAR into registration for good quality imagery. Also the area analyzed was small, about 10 miles square, so this is an additional constraint. For the Air Force/ERIM data, none of the tested methods could achieve subpixel accuracy. Reasons for this is unknown; however, the noisy (high scintillation) nature of the data and attendent unrecognizability of features contribute to this error. It is concluded that the quadratic model would adequately provide distortion modeling for small areas, i.e., 10 to 20 miles square.
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Suttles, J. T.; Lecroy, S. R.
1985-01-01
Tabular values of phase function, Legendre polynominal coefficients, 180 deg backscatter, and extinction cross section are given for eight wavelengths in the atmospheric windows between 0.4 and 2.2 microns. Also included are single scattering albedo, asymmetry factor, and refractive indices. These values are based on Mie theory calculations for the standard rediation atmospheres (continental, maritime, urban, unperturbed stratospheric, volcanic, upper atmospheric, soot, oceanic, dust, and water-soluble) assest measured volcanic aerosols at several time intervals following the El Chichon eruption. Comparisons of extinction to 180 deg backscatter for different aerosol models are presented and related to lidar data.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2012-01-01
In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.
The NonConforming Virtual Element Method for the Stokes Equations
Cangiani, Andrea; Gyrya, Vitaliy; Manzini, Gianmarco
2016-01-01
In this paper, we present the nonconforming virtual element method (VEM) for the numerical approximation of velocity and pressure in the steady Stokes problem. The pressure is approximated using discontinuous piecewise polynomials, while each component of the velocity is approximated using the nonconforming virtual element space. On each mesh element the local virtual space contains the space of polynomials of up to a given degree, plus suitable nonpolynomial functions. The virtual element functions are implicitly defined as the solution of local Poisson problems with polynomial Neumann boundary conditions. As typical in VEM approaches, the explicit evaluation of the non-polynomial functionsmore » is not required. This approach makes it possible to construct nonconforming (virtual) spaces for any polynomial degree regardless of the parity, for two- and three-dimensional problems, and for meshes with very general polygonal and polyhedral elements. We show that the nonconforming VEM is inf-sup stable and establish optimal a priori error estimates for the velocity and pressure approximations. Finally, numerical examples confirm the convergence analysis and the effectiveness of the method in providing high-order accurate approximations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cangiani, Andrea; Gyrya, Vitaliy; Manzini, Gianmarco
In this paper, we present the nonconforming virtual element method (VEM) for the numerical approximation of velocity and pressure in the steady Stokes problem. The pressure is approximated using discontinuous piecewise polynomials, while each component of the velocity is approximated using the nonconforming virtual element space. On each mesh element the local virtual space contains the space of polynomials of up to a given degree, plus suitable nonpolynomial functions. The virtual element functions are implicitly defined as the solution of local Poisson problems with polynomial Neumann boundary conditions. As typical in VEM approaches, the explicit evaluation of the non-polynomial functionsmore » is not required. This approach makes it possible to construct nonconforming (virtual) spaces for any polynomial degree regardless of the parity, for two- and three-dimensional problems, and for meshes with very general polygonal and polyhedral elements. We show that the nonconforming VEM is inf-sup stable and establish optimal a priori error estimates for the velocity and pressure approximations. Finally, numerical examples confirm the convergence analysis and the effectiveness of the method in providing high-order accurate approximations.« less
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Cooper, D. E.; Cohen, D.
1985-01-01
The effects of a uniform temperature change on the stresses and deformations of composite tubes are investigated. The accuracy of an approximate solution based on the principle of complementary virtual work is determined. Interest centers on tube response away from the ends and so a planar elasticity approach is used. For the approximate solution a piecewise linear variation of stresses with the radial coordinate is assumed. The results from the approximate solution are compared with the elasticity solution. The stress predictions agree well, particularly peak interlaminar stresses. Surprisingly, the axial deformations also agree well. This, despite the fact that the deformations predicted by the approximate solution do not satisfy the interface displacement continuity conditions required by the elasticity solution. The study shows that the axial thermal expansion coefficient of tubes with a specific number of axial and circumferential layers depends on the stacking sequence. This is in contrast to classical lamination theory which predicts the expansion to be independent of the stacking arrangement. As expected, the sign and magnitude of the peak interlaminar stresses depends on stacking sequence.
Barrenechea, Gabriel R; Burman, Erik; Karakatsani, Fotini
2017-01-01
For the case of approximation of convection-diffusion equations using piecewise affine continuous finite elements a new edge-based nonlinear diffusion operator is proposed that makes the scheme satisfy a discrete maximum principle. The diffusion operator is shown to be Lipschitz continuous and linearity preserving. Using these properties we provide a full stability and error analysis, which, in the diffusion dominated regime, shows existence, uniqueness and optimal convergence. Then the algebraic flux correction method is recalled and we show that the present method can be interpreted as an algebraic flux correction method for a particular definition of the flux limiters. The performance of the method is illustrated on some numerical test cases in two space dimensions.
A model of the wall boundary layer for ducted propellers
NASA Technical Reports Server (NTRS)
Eversman, Walter; Moehring, Willi
1987-01-01
The objective of the present study is to include a representation of a wall boundary layer in an existing finite element model of the propeller in the wind tunnel environment. The major consideration is that the new formulation should introduce only modest alterations in the numerical model and should still be capable of producing economical predictions of the radiated acoustic field. This is accomplished by using a stepped approximation in which the velocity profile is piecewise constant in layers. In the limit of infinitesimally thin layers, the velocity profile of the stepped approximation coincides with that of the continuous profile. The approach described here could also be useful in modeling the boundary layer in other duct applications, particularly in the computation of the radiated acoustic field for sources contained in a duct.
H∞ control problem of linear periodic piecewise time-delay systems
NASA Astrophysics Data System (ADS)
Xie, Xiaochen; Lam, James; Li, Panshuo
2018-04-01
This paper investigates the H∞ control problem based on exponential stability and weighted L2-gain analyses for a class of continuous-time linear periodic piecewise systems with time delay. A periodic piecewise Lyapunov-Krasovskii functional is developed by integrating a discontinuous time-varying matrix function with two global terms. By applying the improved constraints to the stability and L2-gain analyses, sufficient delay-dependent exponential stability and weighted L2-gain criteria are proposed for the periodic piecewise time-delay system. Based on these analyses, an H∞ control scheme is designed under the considerations of periodic state feedback control input and iterative optimisation. Finally, numerical examples are presented to illustrate the effectiveness of our proposed conditions.
Model-Based Learning of Local Image Features for Unsupervised Texture Segmentation
NASA Astrophysics Data System (ADS)
Kiechle, Martin; Storath, Martin; Weinmann, Andreas; Kleinsteuber, Martin
2018-04-01
Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this work, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs a segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images.
WEAK GALERKIN METHODS FOR SECOND ORDER ELLIPTIC INTERFACE PROBLEMS
MU, LIN; WANG, JUNPING; WEI, GUOWEI; YE, XIU; ZHAO, SHAN
2013-01-01
Weak Galerkin methods refer to general finite element methods for partial differential equations (PDEs) in which differential operators are approximated by their weak forms as distributions. Such weak forms give rise to desirable flexibilities in enforcing boundary and interface conditions. A weak Galerkin finite element method (WG-FEM) is developed in this paper for solving elliptic PDEs with discontinuous coefficients and interfaces. Theoretically, it is proved that high order numerical schemes can be designed by using the WG-FEM with polynomials of high order on each element. Extensive numerical experiments have been carried to validate the WG-FEM for solving second order elliptic interface problems. High order of convergence is numerically confirmed in both L2 and L∞ norms for the piecewise linear WG-FEM. Special attention is paid to solve many interface problems, in which the solution possesses a certain singularity due to the nonsmoothness of the interface. A challenge in research is to design nearly second order numerical methods that work well for problems with low regularity in the solution. The best known numerical scheme in the literature is of order O(h) to O(h1.5) for the solution itself in L∞ norm. It is demonstrated that the WG-FEM of the lowest order, i.e., the piecewise constant WG-FEM, is capable of delivering numerical approximations that are of order O(h1.75) to O(h2) in the L∞ norm for C1 or Lipschitz continuous interfaces associated with a C1 or H2 continuous solution. PMID:24072935
Mamey, Mary Rose; Barbosa-Leiker, Celestina; McPherson, Sterling; Burns, G Leonard; Parks, Craig; Roll, John
2015-12-01
Researchers often want to examine 2 comorbid conditions simultaneously. One strategy to do so is through the use of parallel latent growth curve modeling (LGCM). This statistical technique allows for the simultaneous evaluation of 2 disorders to determine the explanations and predictors of change over time. Additionally, a piecewise model can help identify whether there are more than 2 growth processes within each disorder (e.g., during a clinical trial). A parallel piecewise LGCM was applied to self-reported attention-deficit/hyperactivity disorder (ADHD) and self-reported substance use symptoms in 303 adolescents enrolled in cognitive-behavioral therapy treatment for a substance use disorder and receiving either oral-methylphenidate or placebo for ADHD across 16 weeks. Assessing these 2 disorders concurrently allowed us to determine whether elevated levels of 1 disorder predicted elevated levels or increased risk of the other disorder. First, a piecewise growth model measured ADHD and substance use separately. Next, a parallel piecewise LGCM was used to estimate the regressions across disorders to determine whether higher scores at baseline of the disorders (i.e., ADHD or substance use disorder) predicted rates of change in the related disorder. Finally, treatment was added to the model to predict change. While the analyses revealed no significant relationships across disorders, this study explains and applies a parallel piecewise growth model to examine the developmental processes of comorbid conditions over the course of a clinical trial. Strengths of piecewise and parallel LGCMs for other addictions researchers interested in examining dual processes over time are discussed. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Bo, Zhang; Li, Jin-Ling; Wang, Guan-Gli
2002-01-01
We checked the dependence of the estimation of parameters on the choice of piecewise interval in the continuous piecewise linear modeling of the residual clock and atmosphere effects by single analysis of 27 VLBI experiments involving Shanghai station (Seshan 25m). The following are tentatively shown: (1) Different choices of the piecewise interval lead to differences in the estimation of station coordinates and in the weighted root mean squares ( wrms ) of the delay residuals, which can be of the order of centimeters or dozens of picoseconds respectively. So the choice of piecewise interval should not be arbitrary . (2) The piecewise interval should not be too long, otherwise the short - term variations in the residual clock and atmospheric effects can not be properly modeled. While in order to maintain enough degrees of freedom in parameter estimation, the interval can not be too short, otherwise the normal equation may become near or solely singular and the noises can not be constrained as well. Therefore the choice of the interval should be within some reasonable range. (3) Since the conditions of clock and atmosphere are different from experiment to experiment and from station to station, the reasonable range of the piecewise interval should be tested and chosen separately for each experiment as well as for each station by real data analysis. This is really arduous work in routine data analysis. (4) Generally speaking, with the default interval for clock as 60min, the reasonable range of piecewise interval for residual atmospheric effect modeling is between 10min to 40min, while with the default interval for atmosphere as 20min, that for residual clock behavior is between 20min to 100min.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Karisa M.; Wright, Bob W.; Synovec, Robert E.
2007-02-02
First, simulated chromatographic separations with declining retention time precision were used to study the performance of the piecewise retention time alignment algorithm and to demonstrate an unsupervised parameter optimization method. The average correlation coefficient between the first chromatogram and every other chromatogram in the data set was used to optimize the alignment parameters. This correlation method does not require a training set, so it is unsupervised and automated. This frees the user from needing to provide class information and makes the alignment algorithm more generally applicable to classifying completely unknown data sets. For a data set of simulated chromatograms wheremore » the average chromatographic peak was shifted past two neighboring peaks between runs, the average correlation coefficient of the raw data was 0.46 ± 0.25. After automated, optimized piecewise alignment, the average correlation coefficient was 0.93 ± 0.02. Additionally, a relative shift metric and principal component analysis (PCA) were used to independently quantify and categorize the alignment performance, respectively. The relative shift metric was defined as four times the standard deviation of a given peak’s retention time in all of the chromatograms, divided by the peak-width-at-base. The raw simulated data sets that were studied contained peaks with average relative shifts ranging between 0.3 and 3.0. Second, a “real” data set of gasoline separations was gathered using three different GC methods to induce severe retention time shifting. In these gasoline separations, retention time precision improved ~8 fold following alignment. Finally, piecewise alignment and the unsupervised correlation optimization method were applied to severely shifted GC separations of reformate distillation fractions. The effect of piecewise alignment on peak heights and peak areas is also reported. Piecewise alignment either did not change the peak height, or caused it to slightly decrease. The average relative difference in peak height after piecewise alignment was –0.20%. Piecewise alignment caused the peak areas to either stay the same, slightly increase, or slightly decrease. The average absolute relative difference in area after piecewise alignment was 0.15%.« less
Tensile stress-strain behavior of graphite/epoxy laminates
NASA Technical Reports Server (NTRS)
Garber, D. P.
1982-01-01
The tensile stress-strain behavior of a variety of graphite/epoxy laminates was examined. Longitudinal and transverse specimens from eleven different layups were monotonically loaded in tension to failure. Ultimate strength, ultimate strain, and strss-strain curves wee obtained from four replicate tests in each case. Polynominal equations were fitted by the method of least squares to the stress-strain data to determine average curves. Values of Young's modulus and Poisson's ratio, derived from polynomial coefficients, were compared with laminate analysis results. While the polynomials appeared to accurately fit the stress-strain data in most cases, the use of polynomial coefficients to calculate elastic moduli appeared to be of questionable value in cases involving sharp changes in the slope of the stress-strain data or extensive scatter.
Slow relaxation in weakly open rational polygons.
Kokshenev, Valery B; Vicentini, Eduardo
2003-07-01
The interplay between the regular (piecewise-linear) and irregular (vertex-angle) boundary effects in nonintegrable rational polygonal billiards (of m equal sides) is discussed. Decay dynamics in polygons (of perimeter P(m) and small opening Delta) is analyzed through the late-time survival probability S(m) approximately equal t(-delta). Two distinct slow relaxation channels are established. The primary universal channel exhibits relaxation of regular sliding orbits, with delta=1. The secondary channel is given by delta>1 and becomes open when m>P(m)/Delta. It originates from vertex order-disorder dual effects and is due to relaxation of chaoticlike excitations.
Optimal control of parametric oscillations of compressed flexible bars
NASA Astrophysics Data System (ADS)
Alesova, I. M.; Babadzanjanz, L. K.; Pototskaya, I. Yu.; Pupysheva, Yu. Yu.; Saakyan, A. T.
2018-05-01
In this paper the problem of damping of the linear systems oscillations with piece-wise constant control is solved. The motion of bar construction is reduced to the form described by Hill's differential equation using the Bubnov-Galerkin method. To calculate switching moments of the one-side control the method of sequential linear programming is used. The elements of the fundamental matrix of the Hill's equation are approximated by trigonometric series. Examples of the optimal control of the systems for various initial conditions and different number of control stages have been calculated. The corresponding phase trajectories and transient processes are represented.
NASA Astrophysics Data System (ADS)
Rajshekhar, G.; Gorthi, Sai Siva; Rastogi, Pramod
2010-04-01
For phase estimation in digital holographic interferometry, a high-order instantaneous moments (HIM) based method was recently developed which relies on piecewise polynomial approximation of phase and subsequent evaluation of the polynomial coefficients using the HIM operator. A crucial step in the method is mapping the polynomial coefficient estimation to single-tone frequency determination for which various techniques exist. The paper presents a comparative analysis of the performance of the HIM operator based method in using different single-tone frequency estimation techniques for phase estimation. The analysis is supplemented by simulation results.
A discontinuous Galerkin method for two-dimensional PDE models of Asian options
NASA Astrophysics Data System (ADS)
Hozman, J.; Tichý, T.; Cvejnová, D.
2016-06-01
In our previous research we have focused on the problem of plain vanilla option valuation using discontinuous Galerkin method for numerical PDE solution. Here we extend a simple one-dimensional problem into two-dimensional one and design a scheme for valuation of Asian options, i.e. options with payoff depending on the average of prices collected over prespecified horizon. The algorithm is based on the approach combining the advantages of the finite element methods together with the piecewise polynomial generally discontinuous approximations. Finally, an illustrative example using DAX option market data is provided.
NASA Astrophysics Data System (ADS)
Gorthi, Sai Siva; Rajshekhar, G.; Rastogi, Pramod
2010-04-01
For three-dimensional (3D) shape measurement using fringe projection techniques, the information about the 3D shape of an object is encoded in the phase of a recorded fringe pattern. The paper proposes a high-order instantaneous moments based method to estimate phase from a single fringe pattern in fringe projection. The proposed method works by approximating the phase as a piece-wise polynomial and subsequently determining the polynomial coefficients using high-order instantaneous moments to construct the polynomial phase. Simulation results are presented to show the method's potential.
The dynamics of two linearly coupled Goodwin oscillators
NASA Astrophysics Data System (ADS)
Antonova, A. O.; Reznik, S. N.; Todorov, M. D.
2017-10-01
In this paper the Puu model of the interaction of Goodwin's business cycles for two regions is reconsidered. We investigated the effect of the accelerator coefficients and the Hicksian 'ceiling' and 'floor' parameters on the time dynamics of incomes for different values of marginal propensity to import. The cases when the periods of isolated Goodwin's cycles are close, and when they differ approximately twice are considered. By perturbation theory we obtained the formulas for slowly varying amplitudes and phase difference of weakly nonlinear coupled Goodwin oscillations. The coupled oscillations of two Goodwin's cycles with piecewise linear accelerators with only 'floor' are considered.
NASA Technical Reports Server (NTRS)
Kvernadze, George; Hagstrom,Thomas; Shapiro, Henry
1997-01-01
A key step for some methods dealing with the reconstruction of a function with jump discontinuities is the accurate approximation of the jumps and their locations. Various methods have been suggested in the literature to obtain this valuable information. In the present paper, we develop an algorithm based on identities which determine the jumps of a 2(pi)-periodic bounded not-too-highly oscillating function by the partial sums of its differentiated Fourier series. The algorithm enables one to approximate the locations of discontinuities and the magnitudes of jumps of a bounded function. We study the accuracy of approximation and establish asymptotic expansions for the approximations of a 27(pi)-periodic piecewise smooth function with one discontinuity. By an appropriate linear combination, obtained via derivatives of different order, we significantly improve the accuracy. Next, we use Richardson's extrapolation method to enhance the accuracy even more. For a function with multiple discontinuities we establish simple formulae which "eliminate" all discontinuities of the function but one. Then we treat the function as if it had one singularity following the method described above.
Control algorithms for dynamic attenuators.
Hsieh, Scott S; Pelc, Norbert J
2014-06-01
The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without increasing peak variance. The 15-element piecewise-linear dynamic attenuator reduces dose by an average of 42%, and the perfect attenuator reduces dose by an average of 50%. Improvements in peak variance are several times larger than improvements in mean variance. Heuristic control eliminates the need for a prescan. For the piecewise-linear attenuator, the cost of heuristic control is an increase in dose of 9%. The proposed iterated WMV minimization produces results that are within a few percent of the true solution. Dynamic attenuators show potential for significant dose reduction. A wide class of dynamic attenuators can be accurately controlled using the described methods.
NASA Technical Reports Server (NTRS)
Maliassov, Serguei
1996-01-01
In this paper an algebraic substructuring preconditioner is considered for nonconforming finite element approximations of second order elliptic problems in 3D domains with a piecewise constant diffusion coefficient. Using a substructuring idea and a block Gauss elimination, part of the unknowns is eliminated and the Schur complement obtained is preconditioned by a spectrally equivalent very sparse matrix. In the case of quasiuniform tetrahedral mesh an appropriate algebraic multigrid solver can be used to solve the problem with this matrix. Explicit estimates of condition numbers and implementation algorithms are established for the constructed preconditioner. It is shown that the condition number of the preconditioned matrix does not depend on either the mesh step size or the jump of the coefficient. Finally, numerical experiments are presented to illustrate the theory being developed.
Integrate and fire neural networks, piecewise contractive maps and limit cycles.
Catsigeras, Eleonora; Guiraud, Pierre
2013-09-01
We study the global dynamics of integrate and fire neural networks composed of an arbitrary number of identical neurons interacting by inhibition and excitation. We prove that if the interactions are strong enough, then the support of the stable asymptotic dynamics consists of limit cycles. We also find sufficient conditions for the synchronization of networks containing excitatory neurons. The proofs are based on the analysis of the equivalent dynamics of a piecewise continuous Poincaré map associated to the system. We show that for efficient interactions the Poincaré map is piecewise contractive. Using this contraction property, we prove that there exist a countable number of limit cycles attracting all the orbits dropping into the stable subset of the phase space. This result applies not only to the Poincaré map under study, but also to a wide class of general n-dimensional piecewise contractive maps.
Global and local curvature in density functional theory.
Zhao, Qing; Ioannidis, Efthymios I; Kulik, Heather J
2016-08-07
Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide.
Ait Kaci Azzou, S; Larribe, F; Froda, S
2016-10-01
In Ait Kaci Azzou et al. (2015) we introduced an Importance Sampling (IS) approach for estimating the demographic history of a sample of DNA sequences, the skywis plot. More precisely, we proposed a new nonparametric estimate of a population size that changes over time. We showed on simulated data that the skywis plot can work well in typical situations where the effective population size does not undergo very steep changes. In this paper, we introduce an iterative procedure which extends the previous method and gives good estimates under such rapid variations. In the iterative calibrated skywis plot we approximate the effective population size by a piecewise constant function, whose values are re-estimated at each step. These piecewise constant functions are used to generate the waiting times of non homogeneous Poisson processes related to a coalescent process with mutation under a variable population size model. Moreover, the present IS procedure is based on a modified version of the Stephens and Donnelly (2000) proposal distribution. Finally, we apply the iterative calibrated skywis plot method to a simulated data set from a rapidly expanding exponential model, and we show that the method based on this new IS strategy correctly reconstructs the demographic history. Copyright © 2016. Published by Elsevier Inc.
Interpolation for de-Dopplerisation
NASA Astrophysics Data System (ADS)
Graham, W. R.
2018-05-01
'De-Dopplerisation' is one aspect of a problem frequently encountered in experimental acoustics: deducing an emitted source signal from received data. It is necessary when source and receiver are in relative motion, and requires interpolation of the measured signal. This introduces error. In acoustics, typical current practice is to employ linear interpolation and reduce error by over-sampling. In other applications, more advanced approaches with better performance have been developed. Associated with this work is a large body of theoretical analysis, much of which is highly specialised. Nonetheless, a simple and compact performance metric is available: the Fourier transform of the 'kernel' function underlying the interpolation method. Furthermore, in the acoustics context, it is a more appropriate indicator than other, more abstract, candidates. On this basis, interpolators from three families previously identified as promising - - piecewise-polynomial, windowed-sinc, and B-spline-based - - are compared. The results show that significant improvements over linear interpolation can straightforwardly be obtained. The recommended approach is B-spline-based interpolation, which performs best irrespective of accuracy specification. Its only drawback is a pre-filtering requirement, which represents an additional implementation cost compared to other methods. If this cost is unacceptable, and aliasing errors (on re-sampling) up to approximately 1% can be tolerated, a family of piecewise-cubic interpolators provides the best alternative.
Piecewise adiabatic following in non-Hermitian cycling
NASA Astrophysics Data System (ADS)
Gong, Jiangbin; Wang, Qing-hai
2018-05-01
The time evolution of periodically driven non-Hermitian systems is in general nonunitary but can be stable. It is hence of considerable interest to examine the adiabatic following dynamics in periodically driven non-Hermitian systems. We show in this work the possibility of piecewise adiabatic following interrupted by hopping between instantaneous system eigenstates. This phenomenon is first observed in a computational model and then theoretically explained, using an exactly solvable model, in terms of the Stokes phenomenon. In the latter case, the piecewise adiabatic following is shown to be a genuine critical behavior and the precise phase boundary in the parameter space is located. Interestingly, the critical boundary for piecewise adiabatic following is found to be unrelated to the domain for exceptional points. To characterize the adiabatic following dynamics, we also advocate a simple definition of the Aharonov-Anandan (AA) phase for nonunitary cyclic dynamics, which always yields real AA phases. In the slow driving limit, the AA phase reduces to the Berry phase if adiabatic following persists throughout the driving without hopping, but oscillates violently and does not approach any limit in cases of piecewise adiabatic following. This work exposes the rich features of nonunitary dynamics in cases of slow cycling and should stimulate future applications of nonunitary dynamics.
Preserving sparseness in multivariate polynominal factorization
NASA Technical Reports Server (NTRS)
Wang, P. S.
1977-01-01
Attempts were made to factor these ten polynomials on MACSYMA. However it did not get very far with any of the larger polynomials. At that time, MACSYMA used an algorithm created by Wang and Rothschild. This factoring algorithm was also implemented for the symbolic manipulation system, SCRATCHPAD of IBM. A closer look at this old factoring algorithm revealed three problem areas, each of which contribute to losing sparseness and intermediate expression growth. This study led to effective ways of avoiding these problems and actually to a new factoring algorithm. The three problems are known as the extraneous factor problem, the leading coefficient problem, and the bad zero problem. These problems are examined separately. Their causes and effects are set forth in detail; the ways to avoid or lessen these problems are described.
Development of models of the magnetorheological fluid damper
NASA Astrophysics Data System (ADS)
Kazakov, Yu. B.; Morozov, N. A.; Nesterov, S. A.
2017-06-01
The algorithm for analytical calculation of a power characteristic of magnetorheological (MR) dampers taking into account the rheological properties of MR fluid is considered. The nonlinear magnetorheological characteristics are represented by piecewise linear approximation to MR fluid areas with different viscosities. The extended calculated power characteristics of a MR damper are received and they coincide with actual results. The finite element model of a MR damper is developed; it allows carrying out the analysis of a MR damper taking into account the mutual influence of electromagnetic, hydrodynamic and thermal fields. The results of finite element simulation coincide with analytical solutions that allows using them for design development of a MR damper.
Design of multi-body Lambert type orbits with specified departure and arrival positions
NASA Astrophysics Data System (ADS)
Ishii, Nobuaki; Kawaguchi, Jun'ichiro; Matsuo, Hiroki
1991-10-01
A new procedure for designing a multi-body Lambert type orbit comprising a multiple swingby process is developed, aiming at relieving a numerical difficulty inherent to a highly nonlinear swingby mechanism. The proposed algorithm, Recursive Multi-Step Linearization, first divides a whole orbit into several trajectory segments. Then, with a maximum use of piecewised transition matrices, a segmentized orbit is repeatedly upgraded until an approximated orbit initially based on a patched conics method eventually converges. In application to the four body earth-moon system with sun's gravitation, one of the double lunar swingby orbits including 12 lunar swingbys is successfully designed without any velocity mismatch.
Pascazio, Vito; Schirinzi, Gilda
2002-01-01
In this paper, a technique that is able to reconstruct highly sloped and discontinuous terrain height profiles, starting from multifrequency wrapped phase acquired by interferometric synthetic aperture radar (SAR) systems, is presented. We propose an innovative unwrapping method, based on a maximum likelihood estimation technique, which uses multifrequency independent phase data, obtained by filtering the interferometric SAR raw data pair through nonoverlapping band-pass filters, and approximating the unknown surface by means of local planes. Since the method does not exploit the phase gradient, it assures the uniqueness of the solution, even in the case of highly sloped or piecewise continuous elevation patterns with strong discontinuities.
NASA Astrophysics Data System (ADS)
Guo, Sangang
2017-09-01
There are two stages in solving security-constrained unit commitment problems (SCUC) within Lagrangian framework: one is to obtain feasible units’ states (UC), the other is power economic dispatch (ED) for each unit. The accurate solution of ED is more important for enhancing the efficiency of the solution to SCUC for the fixed feasible units’ statues. Two novel methods named after Convex Combinatorial Coefficient Method and Power Increment Method respectively based on linear programming problem for solving ED are proposed by the piecewise linear approximation to the nonlinear convex fuel cost functions. Numerical testing results show that the methods are effective and efficient.
Self-sustained peristaltic waves: Explicit asymptotic solutions
NASA Astrophysics Data System (ADS)
Dudchenko, O. A.; Guria, G. Th.
2012-02-01
A simple nonlinear model for the coupled problem of fluid flow and contractile wall deformation is proposed to describe peristalsis. In the context of the model the ability of a transporting system to perform autonomous peristaltic pumping is interpreted as the ability to propagate sustained waves of wall deformation. Piecewise-linear approximations of nonlinear functions are used to analytically demonstrate the existence of traveling-wave solutions. Explicit formulas are derived which relate the speed of self-sustained peristaltic waves to the rheological properties of the transporting vessel and the transported fluid. The results may contribute to the development of diagnostic and therapeutic procedures for cases of peristaltic motility disorders.
Effective Methods for Solving Band SLEs after Parabolic Nonlinear PDEs
NASA Astrophysics Data System (ADS)
Veneva, Milena; Ayriyan, Alexander
2018-04-01
A class of models of heat transfer processes in a multilayer domain is considered. The governing equation is a nonlinear heat-transfer equation with different temperature-dependent densities and thermal coefficients in each layer. Homogeneous Neumann boundary conditions and ideal contact ones are applied. A finite difference scheme on a special uneven mesh with a second-order approximation in the case of a piecewise constant spatial step is built. This discretization leads to a pentadiagonal system of linear equations (SLEs) with a matrix which is neither diagonally dominant, nor positive definite. Two different methods for solving such a SLE are developed - diagonal dominantization and symbolic algorithms.
Higher-Dimensional Signal Processing via Multiscale Geometric Analysis
2010-02-10
dimensions. Surflets allowed a multiscale, piecewise polynomial approximation of discontinuities. We also created a compression algorithm using ...h (p) g (p) g (p) 0 1 g (p) g (p) 1,p 2,p 2,p dg h d h d 1,p 3,p 3,p 3,p 3,p Figure 1: The 1-D dual-tree CWT is implemented using a pair of...ψh(x)ψh(y) + j1ψg(x)ψh(y) + j2ψh(x)ψg(y) + j3ψg(x)ψg(y). (19) To compute the QWT coefficients, we can use a separable 2-D implementation [4] of the
NASA Astrophysics Data System (ADS)
Hsieh, Scott S.; Pelc, Norbert J.
2014-06-01
Photon counting x-ray detectors (PCXDs) offer several advantages compared to standard energy-integrating x-ray detectors, but also face significant challenges. One key challenge is the high count rates required in CT. At high count rates, PCXDs exhibit count rate loss and show reduced detective quantum efficiency in signal-rich (or high flux) measurements. In order to reduce count rate requirements, a dynamic beam-shaping filter can be used to redistribute flux incident on the patient. We study the piecewise-linear attenuator in conjunction with PCXDs without energy discrimination capabilities. We examined three detector models: the classic nonparalyzable and paralyzable detector models, and a ‘hybrid’ detector model which is a weighted average of the two which approximates an existing, real detector (Taguchi et al 2011 Med. Phys. 38 1089-102 ). We derive analytic expressions for the variance of the CT measurements for these detectors. These expressions are used with raw data estimated from DICOM image files of an abdomen and a thorax to estimate variance in reconstructed images for both the dynamic attenuator and a static beam-shaping (‘bowtie’) filter. By redistributing flux, the dynamic attenuator reduces dose by 40% without increasing peak variance for the ideal detector. For non-ideal PCXDs, the impact of count rate loss is also reduced. The nonparalyzable detector shows little impact from count rate loss, but with the paralyzable model, count rate loss leads to noise streaks that can be controlled with the dynamic attenuator. With the hybrid model, the characteristic count rates required before noise streaks dominate the reconstruction are reduced by a factor of 2 to 3. We conclude that the piecewise-linear attenuator can reduce the count rate requirements of the PCXD in addition to improving dose efficiency. The magnitude of this reduction depends on the detector, with paralyzable detectors showing much greater benefit than nonparalyzable detectors.
NASA Astrophysics Data System (ADS)
Farag, Mohammed; Fleckenstein, Matthias; Habibi, Saeid
2017-02-01
Model-order reduction and minimization of the CPU run-time while maintaining the model accuracy are critical requirements for real-time implementation of lithium-ion electrochemical battery models. In this paper, an isothermal, continuous, piecewise-linear, electrode-average model is developed by using an optimal knot placement technique. The proposed model reduces the univariate nonlinear function of the electrode's open circuit potential dependence on the state of charge to continuous piecewise regions. The parameterization experiments were chosen to provide a trade-off between extensive experimental characterization techniques and purely identifying all parameters using optimization techniques. The model is then parameterized in each continuous, piecewise-linear, region. Applying the proposed technique cuts down the CPU run-time by around 20%, compared to the reduced-order, electrode-average model. Finally, the model validation against real-time driving profiles (FTP-72, WLTP) demonstrates the ability of the model to predict the cell voltage accurately with less than 2% error.
Robust Neighboring Optimal Guidance for the Advanced Launch System
NASA Technical Reports Server (NTRS)
Hull, David G.
1993-01-01
In recent years, optimization has become an engineering tool through the availability of numerous successful nonlinear programming codes. Optimal control problems are converted into parameter optimization (nonlinear programming) problems by assuming the control to be piecewise linear, making the unknowns the nodes or junction points of the linear control segments. Once the optimal piecewise linear control (suboptimal) control is known, a guidance law for operating near the suboptimal path is the neighboring optimal piecewise linear control (neighboring suboptimal control). Research conducted under this grant has been directed toward the investigation of neighboring suboptimal control as a guidance scheme for an advanced launch system.
Stresses and deformations in cross-ply composite tubes subjected to a uniform temperature change
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Cooper, D. E.; Cohen, D.
1986-01-01
This study investigates the effects of a uniform temperature change on the stresses and deformations of composite tubes and determines the accuracy of an approximate solution based on the principle of complementary virtual work. Interest centers on tube response away from the ends and so a planar elasticity approach is used. For the approximate solution a piecewise linear variation of stresses with the radial coordinate is assumed. The results from the approximate solution are compared with the elasticity solution. The stress predictions agree well, particularly peak interlaminar stresses. Surprisingly, the axial deformations also agree well, despite the fact that the deformations predicted by the approximate solution do not satisfy the interface displacement continuity conditions required by the elasticity solution. The study shows that the axial thermal expansion coefficient of tubes with a specific number of axial and circumferential layers depends on the stacking sequence. This is in contrast to classical lamination theory, which predicts that the expansion will be independent of the stacking arrangement. As expected, the sign and magnitude of the peak interlaminar stresses depend on stacking sequence. For tubes with a specific number of axial and circumferential layers, thermally induced interlaminar stresses can be controlled by altering stacking arrangement.
Near constant-time optimal piecewise LDR to HDR inverse tone mapping
NASA Astrophysics Data System (ADS)
Chen, Qian; Su, Guan-Ming; Yin, Peng
2015-02-01
In a backward compatible HDR image/video compression, it is a general approach to reconstruct HDR from compressed LDR as a prediction to original HDR, which is referred to as inverse tone mapping. Experimental results show that 2- piecewise 2nd order polynomial has the best mapping accuracy than 1 piece high order or 2-piecewise linear, but it is also the most time-consuming method because to find the optimal pivot point to split LDR range to 2 pieces requires exhaustive search. In this paper, we propose a fast algorithm that completes optimal 2-piecewise 2nd order polynomial inverse tone mapping in near constant time without quality degradation. We observe that in least square solution, each entry in the intermediate matrix can be written as the sum of some basic terms, which can be pre-calculated into look-up tables. Since solving the matrix becomes looking up values in tables, computation time barely differs regardless of the number of points searched. Hence, we can carry out the most thorough pivot point search to find the optimal pivot that minimizes MSE in near constant time. Experiment shows that our proposed method achieves the same PSNR performance while saving 60 times computation time compared to the traditional exhaustive search in 2-piecewise 2nd order polynomial inverse tone mapping with continuous constraint.
Staley, James R; Burgess, Stephen
2017-05-01
Mendelian randomization, the use of genetic variants as instrumental variables (IV), can test for and estimate the causal effect of an exposure on an outcome. Most IV methods assume that the function relating the exposure to the expected value of the outcome (the exposure-outcome relationship) is linear. However, in practice, this assumption may not hold. Indeed, often the primary question of interest is to assess the shape of this relationship. We present two novel IV methods for investigating the shape of the exposure-outcome relationship: a fractional polynomial method and a piecewise linear method. We divide the population into strata using the exposure distribution, and estimate a causal effect, referred to as a localized average causal effect (LACE), in each stratum of population. The fractional polynomial method performs metaregression on these LACE estimates. The piecewise linear method estimates a continuous piecewise linear function, the gradient of which is the LACE estimate in each stratum. Both methods were demonstrated in a simulation study to estimate the true exposure-outcome relationship well, particularly when the relationship was a fractional polynomial (for the fractional polynomial method) or was piecewise linear (for the piecewise linear method). The methods were used to investigate the shape of relationship of body mass index with systolic blood pressure and diastolic blood pressure. © 2017 The Authors Genetic Epidemiology Published by Wiley Periodicals, Inc.
Staley, James R.
2017-01-01
ABSTRACT Mendelian randomization, the use of genetic variants as instrumental variables (IV), can test for and estimate the causal effect of an exposure on an outcome. Most IV methods assume that the function relating the exposure to the expected value of the outcome (the exposure‐outcome relationship) is linear. However, in practice, this assumption may not hold. Indeed, often the primary question of interest is to assess the shape of this relationship. We present two novel IV methods for investigating the shape of the exposure‐outcome relationship: a fractional polynomial method and a piecewise linear method. We divide the population into strata using the exposure distribution, and estimate a causal effect, referred to as a localized average causal effect (LACE), in each stratum of population. The fractional polynomial method performs metaregression on these LACE estimates. The piecewise linear method estimates a continuous piecewise linear function, the gradient of which is the LACE estimate in each stratum. Both methods were demonstrated in a simulation study to estimate the true exposure‐outcome relationship well, particularly when the relationship was a fractional polynomial (for the fractional polynomial method) or was piecewise linear (for the piecewise linear method). The methods were used to investigate the shape of relationship of body mass index with systolic blood pressure and diastolic blood pressure. PMID:28317167
Control algorithms for dynamic attenuators
Hsieh, Scott S.; Pelc, Norbert J.
2014-01-01
Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without increasing peak variance. The 15-element piecewise-linear dynamic attenuator reduces dose by an average of 42%, and the perfect attenuator reduces dose by an average of 50%. Improvements in peak variance are several times larger than improvements in mean variance. Heuristic control eliminates the need for a prescan. For the piecewise-linear attenuator, the cost of heuristic control is an increase in dose of 9%. The proposed iterated WMV minimization produces results that are within a few percent of the true solution. Conclusions: Dynamic attenuators show potential for significant dose reduction. A wide class of dynamic attenuators can be accurately controlled using the described methods. PMID:24877818
Class Identification Efficacy in Piecewise GMM with Unknown Turning Points
ERIC Educational Resources Information Center
Ning, Ling; Luo, Wen
2018-01-01
Piecewise GMM with unknown turning points is a new procedure to investigate heterogeneous subpopulations' growth trajectories consisting of distinct developmental phases. Unlike the conventional PGMM, which relies on theory or experiment design to specify turning points a priori, the new procedure allows for an optimal location of turning points…
ERIC Educational Resources Information Center
Sinclair, Nathalie; Armstrong, Alayne
2011-01-01
Piecewise linear functions and story graphs are concepts usually associated with algebra, but in the authors' classroom, they found success teaching this topic in a distinctly geometrical manner. The focus of the approach was less on learning geometric concepts and more on using spatial and kinetic reasoning. It not only supports the learning of…
Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis
Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel
2013-01-01
This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007
Rate-distortion optimized tree-structured compression algorithms for piecewise polynomial images.
Shukla, Rahul; Dragotti, Pier Luigi; Do, Minh N; Vetterli, Martin
2005-03-01
This paper presents novel coding algorithms based on tree-structured segmentation, which achieve the correct asymptotic rate-distortion (R-D) behavior for a simple class of signals, known as piecewise polynomials, by using an R-D based prune and join scheme. For the one-dimensional case, our scheme is based on binary-tree segmentation of the signal. This scheme approximates the signal segments using polynomial models and utilizes an R-D optimal bit allocation strategy among the different signal segments. The scheme further encodes similar neighbors jointly to achieve the correct exponentially decaying R-D behavior (D(R) - c(o)2(-c1R)), thus improving over classic wavelet schemes. We also prove that the computational complexity of the scheme is of O(N log N). We then show the extension of this scheme to the two-dimensional case using a quadtree. This quadtree-coding scheme also achieves an exponentially decaying R-D behavior, for the polygonal image model composed of a white polygon-shaped object against a uniform black background, with low computational cost of O(N log N). Again, the key is an R-D optimized prune and join strategy. Finally, we conclude with numerical results, which show that the proposed quadtree-coding scheme outperforms JPEG2000 by about 1 dB for real images, like cameraman, at low rates of around 0.15 bpp.
ERIC Educational Resources Information Center
Jaggars, Shanna Smith; Xu, Di
2016-01-01
Policymakers have become increasingly concerned with measuring--and holding colleges accountable for--students' labor market outcomes. In this article we introduce a piecewise growth curve approach to analyzing community college students' labor market outcomes, and we discuss how this approach differs from two popular econometric approaches:…
Harmonics analysis of the ITER poloidal field converter based on a piecewise method
NASA Astrophysics Data System (ADS)
Xudong, WANG; Liuwei, XU; Peng, FU; Ji, LI; Yanan, WU
2017-12-01
Poloidal field (PF) converters provide controlled DC voltage and current to PF coils. The many harmonics generated by the PF converter flow into the power grid and seriously affect power systems and electric equipment. Due to the complexity of the system, the traditional integral operation in Fourier analysis is complicated and inaccurate. This paper presents a piecewise method to calculate the harmonics of the ITER PF converter. The relationship between the grid input current and the DC output current of the ITER PF converter is deduced. The grid current is decomposed into the sum of some simple functions. By calculating simple function harmonics based on the piecewise method, the harmonics of the PF converter under different operation modes are obtained. In order to examine the validity of the method, a simulation model is established based on Matlab/Simulink and a relevant experiment is implemented in the ITER PF integration test platform. Comparative results are given. The calculated results are found to be consistent with simulation and experiment. The piecewise method is proved correct and valid for calculating the system harmonics.
Filter-based multiscale entropy analysis of complex physiological time series.
Xu, Yuesheng; Zhao, Liang
2013-08-01
Multiscale entropy (MSE) has been widely and successfully used in analyzing the complexity of physiological time series. We reinterpret the averaging process in MSE as filtering a time series by a filter of a piecewise constant type. From this viewpoint, we introduce filter-based multiscale entropy (FME), which filters a time series to generate multiple frequency components, and then we compute the blockwise entropy of the resulting components. By choosing filters adapted to the feature of a given time series, FME is able to better capture its multiscale information and to provide more flexibility for studying its complexity. Motivated by the heart rate turbulence theory, which suggests that the human heartbeat interval time series can be described in piecewise linear patterns, we propose piecewise linear filter multiscale entropy (PLFME) for the complexity analysis of the time series. Numerical results from PLFME are more robust to data of various lengths than those from MSE. The numerical performance of the adaptive piecewise constant filter multiscale entropy without prior information is comparable to that of PLFME, whose design takes prior information into account.
Piecewise convexity of artificial neural networks.
Rister, Blaine; Rubin, Daniel L
2017-10-01
Although artificial neural networks have shown great promise in applications including computer vision and speech recognition, there remains considerable practical and theoretical difficulty in optimizing their parameters. The seemingly unreasonable success of gradient descent methods in minimizing these non-convex functions remains poorly understood. In this work we offer some theoretical guarantees for networks with piecewise affine activation functions, which have in recent years become the norm. We prove three main results. First, that the network is piecewise convex as a function of the input data. Second, that the network, considered as a function of the parameters in a single layer, all others held constant, is again piecewise convex. Third, that the network as a function of all its parameters is piecewise multi-convex, a generalization of biconvexity. From here we characterize the local minima and stationary points of the training objective, showing that they minimize the objective on certain subsets of the parameter space. We then analyze the performance of two optimization algorithms on multi-convex problems: gradient descent, and a method which repeatedly solves a number of convex sub-problems. We prove necessary convergence conditions for the first algorithm and both necessary and sufficient conditions for the second, after introducing regularization to the objective. Finally, we remark on the remaining difficulty of the global optimization problem. Under the squared error objective, we show that by varying the training data, a single rectifier neuron admits local minima arbitrarily far apart, both in objective value and parameter space. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimal guidance law development for an advanced launch system
NASA Technical Reports Server (NTRS)
Calise, Anthony J.; Hodges, Dewey H.; Leung, Martin S.; Bless, Robert R.
1991-01-01
The proposed investigation on a Matched Asymptotic Expansion (MAE) method was carried out. It was concluded that the method of MAE is not applicable to launch vehicle ascent trajectory optimization due to a lack of a suitable stretched variable. More work was done on the earlier regular perturbation approach using a piecewise analytic zeroth order solution to generate a more accurate approximation. In the meantime, a singular perturbation approach using manifold theory is also under current investigation. Work on a general computational environment based on the use of MACSYMA and the weak Hamiltonian finite element method continued during this period. This methodology is capable of the solution of a large class of optimal control problems.
A variable-step-size robust delta modulator.
NASA Technical Reports Server (NTRS)
Song, C. L.; Garodnick, J.; Schilling, D. L.
1971-01-01
Description of an analytically obtained optimum adaptive delta modulator-demodulator configuration. The device utilizes two past samples to obtain a step size which minimizes the mean square error for a Markov-Gaussian source. The optimum system is compared, using computer simulations, with a linear delta modulator and an enhanced Abate delta modulator. In addition, the performance is compared to the rate distortion bound for a Markov source. It is shown that the optimum delta modulator is neither quantization nor slope-overload limited. The highly nonlinear equations obtained for the optimum transmitter and receiver are approximated by piecewise-linear equations in order to obtain system equations which can be transformed into hardware. The derivation of the experimental system is presented.
NASA Astrophysics Data System (ADS)
Okamoto, Kazuhisa; Nonaka, Chiho
2017-06-01
We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions.
What Can Tobit-Piecewise Regression Tell Us about the Determinants of Household Educational Debt?
ERIC Educational Resources Information Center
Thipbharos, Titirut
2014-01-01
Educational debt as part of household debt remains a problem for Thailand. The significant factors of household characteristics with regard to educational debt are shown by constructing a Tobit-piecewise regression for three different clusters, namely poor, middle and affluent households in Thailand. It was found that household debt is likely to…
ERIC Educational Resources Information Center
Jaggars, Shanna Smith; Xu, Di
2015-01-01
Policymakers have become increasingly concerned with measuring--and holding colleges accountable for--students' labor market outcomes. In this paper we introduce a piecewise growth curve approach to analyzing community college students' labor market outcomes, and we discuss how this approach differs from Mincerian and fixed-effects approaches. Our…
ERIC Educational Resources Information Center
Hindman, Annemarie H.; Cromley, Jennifer G.; Skibbe, Lori E.; Miller, Alison L.
2011-01-01
This article reviews the mechanics of conventional and piecewise growth models to demonstrate the unique affordances of each technique for examining the nature and predictors of children's early literacy learning during the transition from preschool through first grade. Using the nationally representative Family and Child Experiences Survey…
Limit Cycle Bifurcations by Perturbing a Piecewise Hamiltonian System with a Double Homoclinic Loop
NASA Astrophysics Data System (ADS)
Xiong, Yanqin
2016-06-01
This paper is concerned with the bifurcation problem of limit cycles by perturbing a piecewise Hamiltonian system with a double homoclinic loop. First, the derivative of the first Melnikov function is provided. Then, we use it, together with the analytic method, to derive the asymptotic expansion of the first Melnikov function near the loop. Meanwhile, we present the first coefficients in the expansion, which can be applied to study the limit cycle bifurcation near the loop. We give sufficient conditions for this system to have 14 limit cycles in the neighborhood of the loop. As an application, a piecewise polynomial Liénard system is investigated, finding six limit cycles with the help of the obtained method.
Quasi-conformal mapping with genetic algorithms applied to coordinate transformations
NASA Astrophysics Data System (ADS)
González-Matesanz, F. J.; Malpica, J. A.
2006-11-01
In this paper, piecewise conformal mapping for the transformation of geodetic coordinates is studied. An algorithm, which is an improved version of a previous algorithm published by Lippus [2004a. On some properties of piecewise conformal mappings. Eesti NSV Teaduste Akademmia Toimetised Füüsika-Matemaakika 53, 92-98; 2004b. Transformation of coordinates using piecewise conformal mapping. Journal of Geodesy 78 (1-2), 40] is presented; the improvement comes from using a genetic algorithm to partition the complex plane into convex polygons, whereas the original one did so manually. As a case study, the method is applied to the transformation of the Spanish datum ED50 and ETRS89, and both its advantages and disadvantages are discussed herein.
Hanni, Matti; Lantto, Perttu; Ilias, Miroslav; Jensen, Hans Jorgen Aagaard; Vaara, Juha
2007-10-28
Relativistic effects on the (129)Xe nuclear magnetic resonance shielding and (131)Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe(2) system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular interaction-induced binary chemical shift delta, the anisotropy of the shielding tensor Deltasigma, and the NQC constant along the internuclear axis chi( parallel) are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second-order Moller-Plesset many-body perturbation (DMP2) theory is used to examine the cross coupling between correlation and relativity on NQC. The same is investigated for delta and Deltasigma by BPPT with a density functional theory model. A semiquantitative agreement between the BPPT and DHF binary property curves is obtained for delta and Deltasigma in Xe(2). For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other hand, for the BPPT-based cross coupling of relativity and correlation. For chi( parallel), the fully relativistic DMP2 results obtain a correction for NR correlation effects beyond MP2. The computed temperature dependence of the second virial coefficient of the (129)Xe nuclear shielding is compared to experiment in Xe gas. Our best results, obtained with the piecewise approximation for the binary chemical shift combined with the previously published state of the art theoretical potential energy curve for Xe(2), are in excellent agreement with the experiment for the first time.
2013-01-01
Background Optimization procedures to identify gene knockouts for targeted biochemical overproduction have been widely in use in modern metabolic engineering. Flux balance analysis (FBA) framework has provided conceptual simplifications for genome-scale dynamic analysis at steady states. Based on FBA, many current optimization methods for targeted bio-productions have been developed under the maximum cell growth assumption. The optimization problem to derive gene knockout strategies recently has been formulated as a bi-level programming problem in OptKnock for maximum targeted bio-productions with maximum growth rates. However, it has been shown that knockout mutants in fact reach the steady states with the minimization of metabolic adjustment (MOMA) from the corresponding wild-type strains instead of having maximal growth rates after genetic or metabolic intervention. In this work, we propose a new bi-level computational framework--MOMAKnock--which can derive robust knockout strategies under the MOMA flux distribution approximation. Methods In this new bi-level optimization framework, we aim to maximize the production of targeted chemicals by identifying candidate knockout genes or reactions under phenotypic constraints approximated by the MOMA assumption. Hence, the targeted chemical production is the primary objective of MOMAKnock while the MOMA assumption is formulated as the inner problem of constraining the knockout metabolic flux to be as close as possible to the steady-state phenotypes of wide-type strains. As this new inner problem becomes a quadratic programming problem, a novel adaptive piecewise linearization algorithm is developed in this paper to obtain the exact optimal solution to this new bi-level integer quadratic programming problem for MOMAKnock. Results Our new MOMAKnock model and the adaptive piecewise linearization solution algorithm are tested with a small E. coli core metabolic network and a large-scale iAF1260 E. coli metabolic network. The derived knockout strategies are compared with those from OptKnock. Our preliminary experimental results show that MOMAKnock can provide improved targeted productions with more robust knockout strategies. PMID:23368729
Ren, Shaogang; Zeng, Bo; Qian, Xiaoning
2013-01-01
Optimization procedures to identify gene knockouts for targeted biochemical overproduction have been widely in use in modern metabolic engineering. Flux balance analysis (FBA) framework has provided conceptual simplifications for genome-scale dynamic analysis at steady states. Based on FBA, many current optimization methods for targeted bio-productions have been developed under the maximum cell growth assumption. The optimization problem to derive gene knockout strategies recently has been formulated as a bi-level programming problem in OptKnock for maximum targeted bio-productions with maximum growth rates. However, it has been shown that knockout mutants in fact reach the steady states with the minimization of metabolic adjustment (MOMA) from the corresponding wild-type strains instead of having maximal growth rates after genetic or metabolic intervention. In this work, we propose a new bi-level computational framework--MOMAKnock--which can derive robust knockout strategies under the MOMA flux distribution approximation. In this new bi-level optimization framework, we aim to maximize the production of targeted chemicals by identifying candidate knockout genes or reactions under phenotypic constraints approximated by the MOMA assumption. Hence, the targeted chemical production is the primary objective of MOMAKnock while the MOMA assumption is formulated as the inner problem of constraining the knockout metabolic flux to be as close as possible to the steady-state phenotypes of wide-type strains. As this new inner problem becomes a quadratic programming problem, a novel adaptive piecewise linearization algorithm is developed in this paper to obtain the exact optimal solution to this new bi-level integer quadratic programming problem for MOMAKnock. Our new MOMAKnock model and the adaptive piecewise linearization solution algorithm are tested with a small E. coli core metabolic network and a large-scale iAF1260 E. coli metabolic network. The derived knockout strategies are compared with those from OptKnock. Our preliminary experimental results show that MOMAKnock can provide improved targeted productions with more robust knockout strategies.
NASA Astrophysics Data System (ADS)
Shariati, Maryam; Yortsos, Yannis; Talon, Laurent; Martin, Jerome; Rakotomalala, Nicole; Salin, Dominique
2003-11-01
We consider miscible displacement between parallel plates, where the viscosity is a function of the concentration. By selecting a piece-wise representation, the problem can be considered as ``three-phase'' flow. Assuming a lubrication-type approximation, the mathematical description is in terms of two quasi-linear hyperbolic equations. When the mobility of the middle phase is smaller than its neighbors, the system is genuinely hyperbolic and can be solved analytically. However, when it is larger, an elliptic region develops. This change-of-type behavior is for the first time proved here based on sound physical principles. Numerical solutions with a small diffusion are presented. Good agreement is obtained outside the elliptic region, but not inside, where the numerical results show unstable behavior. We conjecture that for the solution of the real problem in the mixed-type case, the full higher-dimensionality problem must be considered inside the elliptic region, in which the lubrication (parallel-flow) approximation is no longer appropriate. This is discussed in a companion presentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Wei; Huang, Guo H., E-mail: huang@iseis.org; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2
2012-06-15
Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerancemore » intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities.« less
Architecture for time or transform domain decoding of reed-solomon codes
NASA Technical Reports Server (NTRS)
Hsu, In-Shek (Inventor); Truong, Trieu-Kie (Inventor); Deutsch, Leslie J. (Inventor); Shao, Howard M. (Inventor)
1989-01-01
Two pipeline (255,233) RS decoders, one a time domain decoder and the other a transform domain decoder, use the same first part to develop an errata locator polynomial .tau.(x), and an errata evaluator polynominal A(x). Both the time domain decoder and transform domain decoder have a modified GCD that uses an input multiplexer and an output demultiplexer to reduce the number of GCD cells required. The time domain decoder uses a Chien search and polynomial evaluator on the GCD outputs .tau.(x) and A(x), for the final decoding steps, while the transform domain decoder uses a transform error pattern algorithm operating on .tau.(x) and the initial syndrome computation S(x), followed by an inverse transform algorithm in sequence for the final decoding steps prior to adding the received RS coded message to produce a decoded output message.
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor); Madavan, Nateri K. (Inventor)
2007-01-01
A method and system for data modeling that incorporates the advantages of both traditional response surface methodology (RSM) and neural networks is disclosed. The invention partitions the parameters into a first set of s simple parameters, where observable data are expressible as low order polynomials, and c complex parameters that reflect more complicated variation of the observed data. Variation of the data with the simple parameters is modeled using polynomials; and variation of the data with the complex parameters at each vertex is analyzed using a neural network. Variations with the simple parameters and with the complex parameters are expressed using a first sequence of shape functions and a second sequence of neural network functions. The first and second sequences are multiplicatively combined to form a composite response surface, dependent upon the parameter values, that can be used to identify an accurate mode
Dechlorination of short chain chlorinated paraffins by nanoscale zero-valent iron.
Zhang, Zhi-Yong; Lu, Mang; Zhang, Zhong-Zhi; Xiao, Meng; Zhang, Min
2012-12-01
In this study, nanoscale zero-valent iron (NZVI) particles were synthesized and used for the reductive dehalogenation of short chain chlorinated paraffins (SCCPs) in the laboratory. The results show that the dechlorination rate of chlorinated n-decane (CP(10)) by NZVI increased with decreased solution pH. Increasing the loading of NZVI enhanced the dechlorination rate of CP(10). With an increase in temperature, the degradation rate increased. The reduction of CP(10) by NZVI was accelerated with increasing the concentration of humic acid up to 15 mg/L but then was inhibited. The dechlorination of CP(10) within the initial 18 h followed pseudo-first order rate model. The formation of intermediate products indicates a stepwise dechlorination pathway of SCCPs by NZVI. The carbon chain length and chlorination degree of SCCPs have a polynominal impact on dechlorination reactions. Copyright © 2012 Elsevier B.V. All rights reserved.
Pattern formations and optimal packing.
Mityushev, Vladimir
2016-04-01
Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite. Copyright © 2016 Elsevier Inc. All rights reserved.
A Variational Nodal Approach to 2D/1D Pin Resolved Neutron Transport for Pressurized Water Reactors
Zhang, Tengfei; Lewis, E. E.; Smith, M. A.; ...
2017-04-18
A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method ofmore » characteristics (MOC)-based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (P N) on the axial interfaces. The x-y surfaces are treated with high-order P N combined with quasi-reflected interface conditions. Furthermore, the method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.« less
A Variational Nodal Approach to 2D/1D Pin Resolved Neutron Transport for Pressurized Water Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Tengfei; Lewis, E. E.; Smith, M. A.
A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method ofmore » characteristics (MOC)-based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (P N) on the axial interfaces. The x-y surfaces are treated with high-order P N combined with quasi-reflected interface conditions. Furthermore, the method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.« less
BLUES function method in computational physics
NASA Astrophysics Data System (ADS)
Indekeu, Joseph O.; Müller-Nedebock, Kristian K.
2018-04-01
We introduce a computational method in physics that goes ‘beyond linear use of equation superposition’ (BLUES). A BLUES function is defined as a solution of a nonlinear differential equation (DE) with a delta source that is at the same time a Green’s function for a related linear DE. For an arbitrary source, the BLUES function can be used to construct an exact solution to the nonlinear DE with a different, but related source. Alternatively, the BLUES function can be used to construct an approximate piecewise analytical solution to the nonlinear DE with an arbitrary source. For this alternative use the related linear DE need not be known. The method is illustrated in a few examples using analytical calculations and numerical computations. Areas for further applications are suggested.
Okamoto, Kazuhisa; Nonaka, Chiho
2017-06-09
Here, we construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We also split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. Furthemore, we check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken’s flow and the Israel–Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin–Helmholtz instability inmore » high-energy heavy-ion collisions.« less
NASA Astrophysics Data System (ADS)
Gorthi, Sai Siva; Rajshekhar, Gannavarpu; Rastogi, Pramod
2010-06-01
Recently, a high-order instantaneous moments (HIM)-operator-based method was proposed for accurate phase estimation in digital holographic interferometry. The method relies on piece-wise polynomial approximation of phase and subsequent evaluation of the polynomial coefficients from the HIM operator using single-tone frequency estimation. The work presents a comparative analysis of the performance of different single-tone frequency estimation techniques, like Fourier transform followed by optimization, estimation of signal parameters by rotational invariance technique (ESPRIT), multiple signal classification (MUSIC), and iterative frequency estimation by interpolation on Fourier coefficients (IFEIF) in HIM-operator-based methods for phase estimation. Simulation and experimental results demonstrate the potential of the IFEIF technique with respect to computational efficiency and estimation accuracy.
An algorithm for the numerical solution of linear differential games
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polovinkin, E S; Ivanov, G E; Balashov, M V
2001-10-31
A numerical algorithm for the construction of stable Krasovskii bridges, Pontryagin alternating sets, and also of piecewise program strategies solving two-person linear differential (pursuit or evasion) games on a fixed time interval is developed on the basis of a general theory. The aim of the first player (the pursuer) is to hit a prescribed target (terminal) set by the phase vector of the control system at the prescribed time. The aim of the second player (the evader) is the opposite. A description of numerical algorithms used in the solution of differential games of the type under consideration is presented andmore » estimates of the errors resulting from the approximation of the game sets by polyhedra are presented.« less
ERIC Educational Resources Information Center
Zvoch, Keith
2016-01-01
Piecewise growth models (PGMs) were used to estimate and model changes in the preliteracy skill development of kindergartners in a moderately sized school district in the Pacific Northwest. PGMs were applied to interrupted time-series (ITS) data that arose within the context of a response-to-intervention (RtI) instructional framework. During the…
Bhaskar, Anand; Song, Yun S
2014-01-01
The sample frequency spectrum (SFS) is a widely-used summary statistic of genomic variation in a sample of homologous DNA sequences. It provides a highly efficient dimensional reduction of large-scale population genomic data and its mathematical dependence on the underlying population demography is well understood, thus enabling the development of efficient inference algorithms. However, it has been recently shown that very different population demographies can actually generate the same SFS for arbitrarily large sample sizes. Although in principle this nonidentifiability issue poses a thorny challenge to statistical inference, the population size functions involved in the counterexamples are arguably not so biologically realistic. Here, we revisit this problem and examine the identifiability of demographic models under the restriction that the population sizes are piecewise-defined where each piece belongs to some family of biologically-motivated functions. Under this assumption, we prove that the expected SFS of a sample uniquely determines the underlying demographic model, provided that the sample is sufficiently large. We obtain a general bound on the sample size sufficient for identifiability; the bound depends on the number of pieces in the demographic model and also on the type of population size function in each piece. In the cases of piecewise-constant, piecewise-exponential and piecewise-generalized-exponential models, which are often assumed in population genomic inferences, we provide explicit formulas for the bounds as simple functions of the number of pieces. Lastly, we obtain analogous results for the "folded" SFS, which is often used when there is ambiguity as to which allelic type is ancestral. Our results are proved using a generalization of Descartes' rule of signs for polynomials to the Laplace transform of piecewise continuous functions.
Bhaskar, Anand; Song, Yun S.
2016-01-01
The sample frequency spectrum (SFS) is a widely-used summary statistic of genomic variation in a sample of homologous DNA sequences. It provides a highly efficient dimensional reduction of large-scale population genomic data and its mathematical dependence on the underlying population demography is well understood, thus enabling the development of efficient inference algorithms. However, it has been recently shown that very different population demographies can actually generate the same SFS for arbitrarily large sample sizes. Although in principle this nonidentifiability issue poses a thorny challenge to statistical inference, the population size functions involved in the counterexamples are arguably not so biologically realistic. Here, we revisit this problem and examine the identifiability of demographic models under the restriction that the population sizes are piecewise-defined where each piece belongs to some family of biologically-motivated functions. Under this assumption, we prove that the expected SFS of a sample uniquely determines the underlying demographic model, provided that the sample is sufficiently large. We obtain a general bound on the sample size sufficient for identifiability; the bound depends on the number of pieces in the demographic model and also on the type of population size function in each piece. In the cases of piecewise-constant, piecewise-exponential and piecewise-generalized-exponential models, which are often assumed in population genomic inferences, we provide explicit formulas for the bounds as simple functions of the number of pieces. Lastly, we obtain analogous results for the “folded” SFS, which is often used when there is ambiguity as to which allelic type is ancestral. Our results are proved using a generalization of Descartes’ rule of signs for polynomials to the Laplace transform of piecewise continuous functions. PMID:28018011
Wang, Chunhua; Liu, Xiaoming; Xia, Hu
2017-03-01
In this paper, two kinds of novel ideal active flux-controlled smooth multi-piecewise quadratic nonlinearity memristors with multi-piecewise continuous memductance function are presented. The pinched hysteresis loop characteristics of the two memristor models are verified by building a memristor emulator circuit. Using the two memristor models establish a new memristive multi-scroll Chua's circuit, which can generate 2N-scroll and 2N+1-scroll chaotic attractors without any other ordinary nonlinear function. Furthermore, coexisting multi-scroll chaotic attractors are found in the proposed memristive multi-scroll Chua's circuit. Phase portraits, Lyapunov exponents, bifurcation diagrams, and equilibrium point analysis have been used to research the basic dynamics of the memristive multi-scroll Chua's circuit. The consistency of circuit implementation and numerical simulation verifies the effectiveness of the system design.
On piecewise interpolation techniques for estimating solar radiation missing values in Kedah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saaban, Azizan; Zainudin, Lutfi; Bakar, Mohd Nazari Abu
2014-12-04
This paper discusses the use of piecewise interpolation method based on cubic Ball and Bézier curves representation to estimate the missing value of solar radiation in Kedah. An hourly solar radiation dataset is collected at Alor Setar Meteorology Station that is taken from Malaysian Meteorology Deparment. The piecewise cubic Ball and Bézier functions that interpolate the data points are defined on each hourly intervals of solar radiation measurement and is obtained by prescribing first order derivatives at the starts and ends of the intervals. We compare the performance of our proposed method with existing methods using Root Mean Squared Errormore » (RMSE) and Coefficient of Detemination (CoD) which is based on missing values simulation datasets. The results show that our method is outperformed the other previous methods.« less
Vazquez-Leal, H.; Jimenez-Fernandez, V. M.; Benhammouda, B.; Filobello-Nino, U.; Sarmiento-Reyes, A.; Ramirez-Pinero, A.; Marin-Hernandez, A.; Huerta-Chua, J.
2014-01-01
We present a homotopy continuation method (HCM) for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL) representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking algorithm with a simple and highly accurate procedure based on the parametric straight line equation. PMID:25184157
Cubic Zig-Zag Enrichment of the Classical Kirchhoff Kinematics for Laminated and Sandwich Plates
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.
2012-01-01
A detailed anaylsis and examples are presented that show how to enrich the kinematics of classical Kirchhoff plate theory by appending them with a set of continuous piecewise-cubic functions. This analysis is used to obtain functions that contain the effects of laminate heterogeneity and asymmetry on the variations of the inplane displacements and transverse shearing stresses, for use with a {3, 0} plate theory in which these distributions are specified apriori. The functions used for the enrichment are based on the improved zig-zag plate theory presented recently by Tessler, Di Scuva, and Gherlone. With the approach presented herein, the inplane displacements are represented by a set of continuous piecewise-cubic functions, and the transverse shearing stresses and strains are represented by a set of piecewise-quadratic functions that are discontinuous at the ply interfaces.
Limit cycles via higher order perturbations for some piecewise differential systems
NASA Astrophysics Data System (ADS)
Buzzi, Claudio A.; Lima, Maurício Firmino Silva; Torregrosa, Joan
2018-05-01
A classical perturbation problem is the polynomial perturbation of the harmonic oscillator, (x‧ ,y‧) =(- y + εf(x , y , ε) , x + εg(x , y , ε)) . In this paper we study the limit cycles that bifurcate from the period annulus via piecewise polynomial perturbations in two zones separated by a straight line. We prove that, for polynomial perturbations of degree n , no more than Nn - 1 limit cycles appear up to a study of order N. We also show that this upper bound is reached for orders one and two. Moreover, we study this problem in some classes of piecewise Liénard differential systems providing better upper bounds for higher order perturbation in ε, showing also when they are reached. The Poincaré-Pontryagin-Melnikov theory is the main technique used to prove all the results.
Controllability of semi-infinite rod heating by a point source
NASA Astrophysics Data System (ADS)
Khurshudyan, A.
2018-04-01
The possibility of control over heating of a semi-infinite thin rod by a point source concentrated at an inner point of the rod, is studied. Quadratic and piecewise constant solutions of the problem are derived, and the possibilities of solving appropriate problems of optimal control are indicated. Determining of the parameters of the piecewise constant solution is reduced to a problem of nonlinear programming. Numerical examples are considered.
NASA Astrophysics Data System (ADS)
Nakae, T.; Ryu, T.; Matsuzaki, K.; Rosbi, S.; Sueoka, A.; Takikawa, Y.; Ooi, Y.
2016-09-01
In the torque converter, the damper of the lock-up clutch is used to effectively absorb the torsional vibration. The damper is designed using a piecewise-linear spring with three stiffness stages. However, a nonlinear vibration, referred to as a subharmonic vibration of order 1/2, occurred around the switching point in the piecewise-linear restoring torque characteristics because of the nonlinearity. In the present study, we analyze vibration reduction for subharmonic vibration. The model used herein includes the torque converter, the gear train, and the differential gear. The damper is modeled by a nonlinear rotational spring of the piecewise-linear spring. We focus on the optimum design of the spring characteristics of the damper in order to suppress the subharmonic vibration. A piecewise-linear spring with five stiffness stages is proposed, and the effect of the distance between switching points on the subharmonic vibration is investigated. The results of our analysis indicate that the subharmonic vibration can be suppressed by designing a damper with five stiffness stages to have a small spring constant ratio between the neighboring springs. The distances between switching points must be designed to be large enough that the amplitude of the main frequency component of the systems does not reach the neighboring switching point.
2008-06-01
Geometry Interpolation The function space , VpH , consists of discontinuous, piecewise-polynomials. This work used a polynomial basis for VpH such...between a piecewise-constant and smooth variation of viscosity in both a one- dimensional and multi- dimensional setting. Before continuing with the ...inviscid, transonic flow past a NACA 0012 at zero angle of attack and freestream Mach number of M∞ = 0.95. The
MAP Estimators for Piecewise Continuous Inversion
2016-08-08
MAP estimators for piecewise continuous inversion M M Dunlop1 and A M Stuart Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK E...Published 8 August 2016 Abstract We study the inverse problem of estimating a field ua from data comprising a finite set of nonlinear functionals of ua...then natural to study maximum a posterior (MAP) estimators. Recently (Dashti et al 2013 Inverse Problems 29 095017) it has been shown that MAP
Low-complexity piecewise-affine virtual sensors: theory and design
NASA Astrophysics Data System (ADS)
Rubagotti, Matteo; Poggi, Tomaso; Oliveri, Alberto; Pascucci, Carlo Alberto; Bemporad, Alberto; Storace, Marco
2014-03-01
This paper is focused on the theoretical development and the hardware implementation of low-complexity piecewise-affine direct virtual sensors for the estimation of unmeasured variables of interest of nonlinear systems. The direct virtual sensor is designed directly from measured inputs and outputs of the system and does not require a dynamical model. The proposed approach allows one to design estimators which mitigate the effect of the so-called 'curse of dimensionality' of simplicial piecewise-affine functions, and can be therefore applied to relatively high-order systems, enjoying convergence and optimality properties. An automatic toolchain is also presented to generate the VHDL code describing the digital circuit implementing the virtual sensor, starting from the set of measured input and output data. The proposed methodology is applied to generate an FPGA implementation of the virtual sensor for the estimation of vehicle lateral velocity, using a hardware-in-the-loop setting.
A Lyapunov method for stability analysis of piecewise-affine systems over non-invariant domains
NASA Astrophysics Data System (ADS)
Rubagotti, Matteo; Zaccarian, Luca; Bemporad, Alberto
2016-05-01
This paper analyses stability of discrete-time piecewise-affine systems, defined on possibly non-invariant domains, taking into account the possible presence of multiple dynamics in each of the polytopic regions of the system. An algorithm based on linear programming is proposed, in order to prove exponential stability of the origin and to find a positively invariant estimate of its region of attraction. The results are based on the definition of a piecewise-affine Lyapunov function, which is in general discontinuous on the boundaries of the regions. The proposed method is proven to lead to feasible solutions in a broader range of cases as compared to a previously proposed approach. Two numerical examples are shown, among which a case where the proposed method is applied to a closed-loop system, to which model predictive control was applied without a-priori guarantee of stability.
NASA Technical Reports Server (NTRS)
Wunsch, Carl; Stammer, Detlef
1995-01-01
Two years of altimetric data from the TOPEX/POSEIDON spacecraft have been used to produce preliminary estimates of the space and time spectra of global variability for both sea surface height and slope. The results are expressed in terms of both degree variances from spherical harmonic expansions and in along-track wavenumbers. Simple analytic approximations both in terms of piece-wise power laws and Pade fractions are provided for comparison with independent measurements and for easy use of the results. A number of uses of such spectra exist, including the possibility of combining the altimetric data with other observations, predictions of spatial coherences, and the estimation of the accuracy of apparent secular trends in sea level.
Hierarchy of models: From qualitative to quantitative analysis of circadian rhythms in cyanobacteria
NASA Astrophysics Data System (ADS)
Chaves, M.; Preto, M.
2013-06-01
A hierarchy of models, ranging from high to lower levels of abstraction, is proposed to construct "minimal" but predictive and explanatory models of biological systems. Three hierarchical levels will be considered: Boolean networks, piecewise affine differential (PWA) equations, and a class of continuous, ordinary, differential equations' models derived from the PWA model. This hierarchy provides different levels of approximation of the biological system and, crucially, allows the use of theoretical tools to more exactly analyze and understand the mechanisms of the system. The Kai ABC oscillator, which is at the core of the cyanobacterial circadian rhythm, is analyzed as a case study, showing how several fundamental properties—order of oscillations, synchronization when mixing oscillating samples, structural robustness, and entrainment by external cues—can be obtained from basic mechanisms.
The construction of high-accuracy schemes for acoustic equations
NASA Technical Reports Server (NTRS)
Tang, Lei; Baeder, James D.
1995-01-01
An accuracy analysis of various high order schemes is performed from an interpolation point of view. The analysis indicates that classical high order finite difference schemes, which use polynomial interpolation, hold high accuracy only at nodes and are therefore not suitable for time-dependent problems. Thus, some schemes improve their numerical accuracy within grid cells by the near-minimax approximation method, but their practical significance is degraded by maintaining the same stencil as classical schemes. One-step methods in space discretization, which use piecewise polynomial interpolation and involve data at only two points, can generate a uniform accuracy over the whole grid cell and avoid spurious roots. As a result, they are more accurate and efficient than multistep methods. In particular, the Cubic-Interpolated Psuedoparticle (CIP) scheme is recommended for computational acoustics.
Modal, ray, and beam techniques for analyzing the EM scattering by open-ended waveguide cavities
NASA Technical Reports Server (NTRS)
Pathak, Prabhakar H.; Burkholder, Robert J.
1989-01-01
The problem of high-frequency electromagnetic (EM) scattering by open-ended waveguide cavities with an interior termination is analyzed via three different approaches. When cavities can be adequately modeled by joining together piecewise separable waveguide sections, a hybrid combination of asymptotic high-frequency and modal techniques is employed. In the case of more arbitrarily shaped waveguide cavities for which modes cannot even be defined in the conventional sense, the geometrical optics ray approach proves to be highly useful. However, at sufficiently high frequencies, both of these approaches tend to become inefficient. Hence, a paraxial Gaussian batch technique, which retains much of the simplicity of the ray approximation but is potentially more efficient, is investigated. Typical numerical results based on the different approaches are discussed.
Robust and Quantized Wiener Filters for p-Point Spectral Classes.
1980-01-01
REPORT DOCUMENTATION, __BEFORE COMPLETING FORM A. REPORT NUMBER ’ 12. GOVT ACCESSION NO. 3 . RECIPIENT’S CATALOG NUMBER AFOSR-TR- 80-0425z__...re School of Electrical Engineerin . 3 - , Philadelphia, PA 19104 ABSTRACT In Section III, we show that a piecewise const- ant filter also possesses...determining the optimum piecewise ters using a band-model for the PSD’s. Poor [ 3 , 4] constant filter. Then, for a particular class of then considered
Millimeter wave attenuation prediction using a piecewise uniform rain rate model
NASA Technical Reports Server (NTRS)
Persinger, R. R.; Stutzman, W. L.; Bostian, C. W.; Castle, R. E., Jr.
1980-01-01
A piecewise uniform rain rate distribution model is introduced as a quasi-physical model of real rain along earth-space millimeter wave propagation paths. It permits calculation of the total attenuation from specific attenuation in a simple fashion. The model predications are verified by comparison with direct attenuation measurements for several frequencies, elevation angles, and locations. Also, coupled with the Rice-Holmberg rain rate model, attenuation statistics are predicated from rainfall accumulation data.
Separated Component-Based Restoration of Speckled SAR Images
2014-01-01
One of the simplest approaches for speckle noise reduction is known as multi-look processing. It involves non-coherently summing the independent...image is assumed to be piecewise smooth [21], [22], [23]. It has been shown that TV regular- ization often yields images with the stair -casing effect...as a function f , is to be decomposed into a sum of two components f = u+ v, where u represents the cartoon or geometric (i.e. piecewise smooth
Interface with weakly singular points always scatter
NASA Astrophysics Data System (ADS)
Li, Long; Hu, Guanghui; Yang, Jiansheng
2018-07-01
Assume that a bounded scatterer is embedded into an infinite homogeneous isotropic background medium in two dimensions. The refractive index function is supposed to be piecewise constant. If the scattering interface contains a weakly singular point, we prove that the scattered field cannot vanish identically. This implies the absence of non-scattering energies for piecewise analytic interfaces with one singular point. Local uniqueness is obtained for shape identification problems in inverse medium scattering with a single far-field pattern.
NASA Astrophysics Data System (ADS)
Beretta, Elena; Micheletti, Stefano; Perotto, Simona; Santacesaria, Matteo
2018-01-01
In this paper, we develop a shape optimization-based algorithm for the electrical impedance tomography (EIT) problem of determining a piecewise constant conductivity on a polygonal partition from boundary measurements. The key tool is to use a distributed shape derivative of a suitable cost functional with respect to movements of the partition. Numerical simulations showing the robustness and accuracy of the method are presented for simulated test cases in two dimensions.
NASA Astrophysics Data System (ADS)
Zhao, Dan; Wang, Xiaoman; Cheng, Yuan; Liu, Shaogang; Wu, Yanhong; Chai, Liqin; Liu, Yang; Cheng, Qianju
2018-05-01
Piecewise-linear structure can effectively broaden the working frequency band of the piezoelectric energy harvester, and improvement of its research can promote the practical process of energy collection device to meet the requirements for powering microelectronic components. In this paper, the incremental harmonic balance (IHB) method is introduced for the complicated and difficult analysis process of the piezoelectric energy harvester to solve these problems. After obtaining the nonlinear dynamic equation of the single-degree-of-freedom piecewise-linear energy harvester by mathematical modeling and the equation is solved based on the IHB method, the theoretical amplitude-frequency curve of open-circuit voltage is achieved. Under 0.2 g harmonic excitation, a piecewise-linear energy harvester is experimentally tested by unidirectional frequency-increasing scanning. The results demonstrate that the theoretical and experimental amplitudes have the same trend, and the width of the working band with high voltage output are 4.9 Hz and 4.7 Hz, respectively, and the relative error is 4.08%. The open-output peak voltage are 21.53 V and 18.25 V, respectively, and the relative error is 15.23%. Since the theoretical value is consistent with the experimental results, the theoretical model and the incremental harmonic balance method used in this paper are suitable for solving single-degree-of-freedom piecewise-linear piezoelectric energy harvester and can be applied to further parameter optimized design.
Spectral/ hp element methods: Recent developments, applications, and perspectives
NASA Astrophysics Data System (ADS)
Xu, Hui; Cantwell, Chris D.; Monteserin, Carlos; Eskilsson, Claes; Engsig-Karup, Allan P.; Sherwin, Spencer J.
2018-02-01
The spectral/ hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/ hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/ hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/ hp element method in more complex science and engineering applications are discussed.
An updated Lagrangian discontinuous Galerkin hydrodynamic method for gas dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Tong; Shashkov, Mikhail Jurievich; Morgan, Nathaniel Ray
Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for gas dynamics. The new method evolves conserved unknowns in the current configuration, which obviates the Jacobi matrix that maps the element in a reference coordinate system or the initial coordinate system to the current configuration. The density, momentum, and total energy (ρ, ρu, E) are approximated with conservative higher-order Taylor expansions over the element and are limited toward a piecewise constant field near discontinuities using a limiter. Two new limiting methods are presented for enforcing the bounds on the primitive variables of density, velocity, and specific internal energymore » (ρ, u, e). The nodal velocity, and the corresponding forces, are calculated by solving an approximate Riemann problem at the element nodes. An explicit second-order method is used to temporally advance the solution. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. 1D Cartesian coordinates test problem results are presented to demonstrate the accuracy and convergence order of the new DG method with the new limiters.« less
NASA Astrophysics Data System (ADS)
Zhou, Weifeng; Cai, Jian-Feng; Gao, Hao
2013-12-01
A popular approach for medical image reconstruction has been through the sparsity regularization, assuming the targeted image can be well approximated by sparse coefficients under some properly designed system. The wavelet tight frame is such a widely used system due to its capability for sparsely approximating piecewise-smooth functions, such as medical images. However, using a fixed system may not always be optimal for reconstructing a variety of diversified images. Recently, the method based on the adaptive over-complete dictionary that is specific to structures of the targeted images has demonstrated its superiority for image processing. This work is to develop the adaptive wavelet tight frame method image reconstruction. The proposed scheme first constructs the adaptive wavelet tight frame that is task specific, and then reconstructs the image of interest by solving an l1-regularized minimization problem using the constructed adaptive tight frame system. The proof-of-concept study is performed for computed tomography (CT), and the simulation results suggest that the adaptive tight frame method improves the reconstructed CT image quality from the traditional tight frame method.
Flexural-torsional vibration of a tapered C-section beam
NASA Astrophysics Data System (ADS)
Dennis, Scott T.; Jones, Keith W.
2017-04-01
Previous studies have shown that numerical models of tapered thin-walled C-section beams based on a stepped or piecewise prismatic beam approximation are inaccurate regardless of the number of elements assumed in the discretization. Andrade recently addressed this problem by extending Vlasov beam theory to a tapered geometry resulting in new terms that vanish for the uniform beam. (See One-Dimensional Models for the Spatial Behaviour of Tapered Thin-Walled Bars with Open Cross-Sections: Static, Dynamic and Buckling Analyses, PhD Thesis, University of Coimbra, Portugal, 2012, https://estudogeral.sib.uc.pt) In this paper, we model the coupled bending-twisting vibration of a cantilevered tapered thin-walled C-section using a Galerkin approximation of Andrade's beam equations resulting in an 8-degree-of-freedom beam element. Experimental natural frequencies and mode shapes for 3 prismatic and 2 tapered channel beams are compared to model predictions. In addition, comparisons are made to detailed shell finite element models and exact solutions for the uniform beams to confirm the validity of the approach. Comparisons to the incorrect stepped model are also presented.
Efficient Band-to-Trap Tunneling Model Including Heterojunction Band Offset
Gao, Xujiao; Huang, Andy; Kerr, Bert
2017-10-25
In this paper, we present an efficient band-to-trap tunneling model based on the Schenk approach, in which an analytic density-of-states (DOS) model is developed based on the open boundary scattering method. The new model explicitly includes the effect of heterojunction band offset, in addition to the well-known field effect. Its analytic form enables straightforward implementation into TCAD device simulators. It is applicable to all one-dimensional potentials, which can be approximated to a good degree such that the approximated potentials lead to piecewise analytic wave functions with open boundary conditions. The model allows for simulating both the electric-field-enhanced and band-offset-enhanced carriermore » recombination due to the band-to-trap tunneling near the heterojunction in a heterojunction bipolar transistor (HBT). Simulation results of an InGaP/GaAs/GaAs NPN HBT show that the proposed model predicts significantly increased base currents, due to the hole-to-trap tunneling enhanced by the emitter-base junction band offset. Finally, the results compare favorably with experimental observation.« less
An unsteady lifting surface method for single rotation propellers
NASA Technical Reports Server (NTRS)
Williams, Marc H.
1990-01-01
The mathematical formulation of a lifting surface method for evaluating the steady and unsteady loads induced on single rotation propellers by blade vibration and inflow distortion is described. The scheme is based on 3-D linearized compressible aerodynamics and presumes that all disturbances are simple harmonic in time. This approximation leads to a direct linear integral relation between the normal velocity on the blade (which is determined from the blade geometry and motion) and the distribution of pressure difference across the blade. This linear relation is discretized by breaking the blade up into subareas (panels) on which the pressure difference is treated as approximately constant, and constraining the normal velocity at one (control) point on each panel. The piece-wise constant loads can then be determined by Gaussian elimination. The resulting blade loads can be used in performance, stability and forced response predictions for the rotor. Mathematical and numerical aspects of the method are examined. A selection of results obtained from the method is presented. The appendices include various details of the derivation that were felt to be secondary to the main development in Section 1.
Monte Carlo simulations of product distributions and contained metal estimates
Gettings, Mark E.
2013-01-01
Estimation of product distributions of two factors was simulated by conventional Monte Carlo techniques using factor distributions that were independent (uncorrelated). Several simulations using uniform distributions of factors show that the product distribution has a central peak approximately centered at the product of the medians of the factor distributions. Factor distributions that are peaked, such as Gaussian (normal) produce an even more peaked product distribution. Piecewise analytic solutions can be obtained for independent factor distributions and yield insight into the properties of the product distribution. As an example, porphyry copper grades and tonnages are now available in at least one public database and their distributions were analyzed. Although both grade and tonnage can be approximated with lognormal distributions, they are not exactly fit by them. The grade shows some nonlinear correlation with tonnage for the published database. Sampling by deposit from available databases of grade, tonnage, and geological details of each deposit specifies both grade and tonnage for that deposit. Any correlation between grade and tonnage is then preserved and the observed distribution of grades and tonnages can be used with no assumption of distribution form.
First and second order derivatives for optimizing parallel RF excitation waveforms.
Majewski, Kurt; Ritter, Dieter
2015-09-01
For piecewise constant magnetic fields, the Bloch equations (without relaxation terms) can be solved explicitly. This way the magnetization created by an excitation pulse can be written as a concatenation of rotations applied to the initial magnetization. For fixed gradient trajectories, the problem of finding parallel RF waveforms, which minimize the difference between achieved and desired magnetization on a number of voxels, can thus be represented as a finite-dimensional minimization problem. We use quaternion calculus to formulate this optimization problem in the magnitude least squares variant and specify first and second order derivatives of the objective function. We obtain a small tip angle approximation as first order Taylor development from the first order derivatives and also develop algorithms for first and second order derivatives for this small tip angle approximation. All algorithms are accompanied by precise floating point operation counts to assess and compare the computational efforts. We have implemented these algorithms as callback functions of an interior-point solver. We have applied this numerical optimization method to example problems from the literature and report key observations. Copyright © 2015 Elsevier Inc. All rights reserved.
First and second order derivatives for optimizing parallel RF excitation waveforms
NASA Astrophysics Data System (ADS)
Majewski, Kurt; Ritter, Dieter
2015-09-01
For piecewise constant magnetic fields, the Bloch equations (without relaxation terms) can be solved explicitly. This way the magnetization created by an excitation pulse can be written as a concatenation of rotations applied to the initial magnetization. For fixed gradient trajectories, the problem of finding parallel RF waveforms, which minimize the difference between achieved and desired magnetization on a number of voxels, can thus be represented as a finite-dimensional minimization problem. We use quaternion calculus to formulate this optimization problem in the magnitude least squares variant and specify first and second order derivatives of the objective function. We obtain a small tip angle approximation as first order Taylor development from the first order derivatives and also develop algorithms for first and second order derivatives for this small tip angle approximation. All algorithms are accompanied by precise floating point operation counts to assess and compare the computational efforts. We have implemented these algorithms as callback functions of an interior-point solver. We have applied this numerical optimization method to example problems from the literature and report key observations.
Efficient Band-to-Trap Tunneling Model Including Heterojunction Band Offset
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xujiao; Huang, Andy; Kerr, Bert
In this paper, we present an efficient band-to-trap tunneling model based on the Schenk approach, in which an analytic density-of-states (DOS) model is developed based on the open boundary scattering method. The new model explicitly includes the effect of heterojunction band offset, in addition to the well-known field effect. Its analytic form enables straightforward implementation into TCAD device simulators. It is applicable to all one-dimensional potentials, which can be approximated to a good degree such that the approximated potentials lead to piecewise analytic wave functions with open boundary conditions. The model allows for simulating both the electric-field-enhanced and band-offset-enhanced carriermore » recombination due to the band-to-trap tunneling near the heterojunction in a heterojunction bipolar transistor (HBT). Simulation results of an InGaP/GaAs/GaAs NPN HBT show that the proposed model predicts significantly increased base currents, due to the hole-to-trap tunneling enhanced by the emitter-base junction band offset. Finally, the results compare favorably with experimental observation.« less
Supervised Learning Based on Temporal Coding in Spiking Neural Networks.
Mostafa, Hesham
2017-08-01
Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is encoded in spike times instead of spike rates, the network input-output relation is differentiable almost everywhere. Moreover, this relation is piecewise linear after a transformation of variables. Methods for training ANNs thus carry directly to the training of such spiking networks as we show when training on the permutation invariant MNIST task. In contrast to rate-based spiking networks that are often used to approximate the behavior of ANNs, the networks we present spike much more sparsely and their behavior cannot be directly approximated by conventional ANNs. Our results highlight a new approach for controlling the behavior of spiking networks with realistic temporal dynamics, opening up the potential for using these networks to process spike patterns with complex temporal information.
NASA Astrophysics Data System (ADS)
Bürger, Raimund; Kumar, Sarvesh; Ruiz-Baier, Ricardo
2015-10-01
The sedimentation-consolidation and flow processes of a mixture of small particles dispersed in a viscous fluid at low Reynolds numbers can be described by a nonlinear transport equation for the solids concentration coupled with the Stokes problem written in terms of the mixture flow velocity and the pressure field. Here both the viscosity and the forcing term depend on the local solids concentration. A semi-discrete discontinuous finite volume element (DFVE) scheme is proposed for this model. The numerical method is constructed on a baseline finite element family of linear discontinuous elements for the approximation of velocity components and concentration field, whereas the pressure is approximated by piecewise constant elements. The unique solvability of both the nonlinear continuous problem and the semi-discrete DFVE scheme is discussed, and optimal convergence estimates in several spatial norms are derived. Properties of the model and the predicted space accuracy of the proposed formulation are illustrated by detailed numerical examples, including flows under gravity with changing direction, a secondary settling tank in an axisymmetric setting, and batch sedimentation in a tilted cylindrical vessel.
An updated Lagrangian discontinuous Galerkin hydrodynamic method for gas dynamics
Wu, Tong; Shashkov, Mikhail Jurievich; Morgan, Nathaniel Ray; ...
2018-04-09
Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for gas dynamics. The new method evolves conserved unknowns in the current configuration, which obviates the Jacobi matrix that maps the element in a reference coordinate system or the initial coordinate system to the current configuration. The density, momentum, and total energy (ρ, ρu, E) are approximated with conservative higher-order Taylor expansions over the element and are limited toward a piecewise constant field near discontinuities using a limiter. Two new limiting methods are presented for enforcing the bounds on the primitive variables of density, velocity, and specific internal energymore » (ρ, u, e). The nodal velocity, and the corresponding forces, are calculated by solving an approximate Riemann problem at the element nodes. An explicit second-order method is used to temporally advance the solution. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. 1D Cartesian coordinates test problem results are presented to demonstrate the accuracy and convergence order of the new DG method with the new limiters.« less
NASA Astrophysics Data System (ADS)
Lovejoy, McKenna R.; Wickert, Mark A.
2017-05-01
A known problem with infrared imaging devices is their non-uniformity. This non-uniformity is the result of dark current, amplifier mismatch as well as the individual photo response of the detectors. To improve performance, non-uniformity correction (NUC) techniques are applied. Standard calibration techniques use linear, or piecewise linear models to approximate the non-uniform gain and off set characteristics as well as the nonlinear response. Piecewise linear models perform better than the one and two-point models, but in many cases require storing an unmanageable number of correction coefficients. Most nonlinear NUC algorithms use a second order polynomial to improve performance and allow for a minimal number of stored coefficients. However, advances in technology now make higher order polynomial NUC algorithms feasible. This study comprehensively tests higher order polynomial NUC algorithms targeted at short wave infrared (SWIR) imagers. Using data collected from actual SWIR cameras, the nonlinear techniques and corresponding performance metrics are compared with current linear methods including the standard one and two-point algorithms. Machine learning, including principal component analysis, is explored for identifying and replacing bad pixels. The data sets are analyzed and the impact of hardware implementation is discussed. Average floating point results show 30% less non-uniformity, in post-corrected data, when using a third order polynomial correction algorithm rather than a second order algorithm. To maximize overall performance, a trade off analysis on polynomial order and coefficient precision is performed. Comprehensive testing, across multiple data sets, provides next generation model validation and performance benchmarks for higher order polynomial NUC methods.
Sun, Wei; Huang, Guo H; Lv, Ying; Li, Gongchen
2012-06-01
To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities. Copyright © 2012 Elsevier Ltd. All rights reserved.
Heathcote, Andrew
2016-01-01
In the real world, decision making processes must be able to integrate non-stationary information that changes systematically while the decision is in progress. Although theories of decision making have traditionally been applied to paradigms with stationary information, non-stationary stimuli are now of increasing theoretical interest. We use a random-dot motion paradigm along with cognitive modeling to investigate how the decision process is updated when a stimulus changes. Participants viewed a cloud of moving dots, where the motion switched directions midway through some trials, and were asked to determine the direction of motion. Behavioral results revealed a strong delay effect: after presentation of the initial motion direction there is a substantial time delay before the changed motion information is integrated into the decision process. To further investigate the underlying changes in the decision process, we developed a Piecewise Linear Ballistic Accumulator model (PLBA). The PLBA is efficient to simulate, enabling it to be fit to participant choice and response-time distribution data in a hierarchal modeling framework using a non-parametric approximate Bayesian algorithm. Consistent with behavioral results, PLBA fits confirmed the presence of a long delay between presentation and integration of new stimulus information, but did not support increased response caution in reaction to the change. We also found the decision process was not veridical, as symmetric stimulus change had an asymmetric effect on the rate of evidence accumulation. Thus, the perceptual decision process was slow to react to, and underestimated, new contrary motion information. PMID:26760448
NASA Astrophysics Data System (ADS)
Orozco Cortés, Luis Fernando; Fernández García, Nicolás
2014-05-01
A method to obtain the general solution of any constant piecewise potential is presented, this is achieved by means of the analysis of the transfer matrices in each cutoff. The resonance phenomenon together with the supersymmetric quantum mechanics technique allow us to construct a wide family of complex potentials which can be used as theoretical models for optical systems. The method is applied to the particular case for which the potential function has six cutoff points.
NASA Astrophysics Data System (ADS)
Alessandrini, Giovanni; de Hoop, Maarten V.; Gaburro, Romina
2017-12-01
We discuss the inverse problem of determining the, possibly anisotropic, conductivity of a body Ω\\subset{R}n when the so-called Neumann-to-Dirichlet map is locally given on a non-empty curved portion Σ of the boundary \\partialΩ . We prove that anisotropic conductivities that are a priori known to be piecewise constant matrices on a given partition of Ω with curved interfaces can be uniquely determined in the interior from the knowledge of the local Neumann-to-Dirichlet map.
Balance Contrast Enhancement using piecewise linear stretching
NASA Astrophysics Data System (ADS)
Rahavan, R. V.; Govil, R. C.
1993-04-01
Balance Contrast Enhancement is one of the techniques employed to produce color composites with increased color contrast. It equalizes the three images used for color composition in range and mean. This results in a color composite with large variation in hue. Here, it is shown that piecewise linear stretching can be used for performing the Balance Contrast Enhancement. In comparison with the Balance Contrast Enhancement Technique using parabolic segment as transfer function (BCETP), the method presented here is algorithmically simple, constraint-free and produces comparable results.
NASA Technical Reports Server (NTRS)
Mehdi, S. Bilal; Puig-Navarro, Javier; Choe, Ronald; Cichella, Venanzio; Hovakimyan, Naira; Chandarana, Meghan; Trujillo, Anna; Rothhaar, Paul M.; Tran, Loc; Neilan, James H.;
2016-01-01
Autonomous operation of UAS holds promise for greater productivity of atmospheric science missions. However, several challenges need to be overcome before such missions can be made autonomous. This paper presents a framework for safe autonomous operations of multiple vehicles, particularly suited for atmospheric science missions. The framework revolves around the use of piecewise Bezier curves for trajectory representation, which in conjunction with path-following and time-coordination algorithms, allows for safe coordinated operations of multiple vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E; Yuan, F; Templeton, A
Purpose: The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor-control-probability(TCP) with an acceptable normal-tissue-complication probability(NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. We design treatment plans that optimize TCP directly and contrast them with the clinical dose-based plans. PET image is incorporated to evaluate gain in TCP for dose escalation. Methods: We build a nonlinear mixed integer programming optimization model that maximizes TCP directly while satisfying the dose requirements on themore » targeted organ and healthy tissues. The solution strategy first fits the TCP function with a piecewise-linear approximation, then solves the problem that maximizes the piecewise linear approximation of TCP, and finally performs a local neighborhood search to improve the TCP value. To gauge the feasibility, characteristics, and potential benefit of PET-image guided dose escalation, initial validation consists of fifteen cervical cancer HDR patient cases. These patients have all received prior 45Gy of external radiation dose. For both escalated strategies, we consider 35Gy PTV-dose, and two variations (37Gy-boost to BTV vs 40Gy-boost) to PET-image-pockets. Results: TCP for standard clinical plans range from 59.4% - 63.6%. TCP for dose-based PET-guided escalated-dose-plan ranges from 63.8%–98.6% for all patients; whereas TCP-optimized plans achieves over 91% for all patients. There is marginal difference in TCP among those with 37Gy-boosted vs 40Gy-boosted. There is no increase in rectum and bladder dose among all plans. Conclusion: Optimizing TCP directly results in highly conformed treatment plans. The TCP-optimized plan is individualized based on the biological PET-image of the patients. The TCP-optimization framework is generalizable and has been applied successfully to other external-beam delivery modalities. A clinical trial is on-going to gauge the clinical significance. Partially supported by the National Science Foundation.« less
Métris, Aline; George, Susie M; Ropers, Delphine
2017-01-02
Addition of salt to food is one of the most ancient and most common methods of food preservation. However, little is known of how bacterial cells adapt to such conditions. We propose to use piecewise linear approximations to model the regulatory adaptation of Escherichiacoli to osmotic stress. We apply the method to eight selected genes representing the functions known to be at play during osmotic adaptation. The network is centred on the general stress response factor, sigma S, and also includes a module representing the catabolic repressor CRP-cAMP. Glutamate, potassium and supercoiling are combined to represent the intracellular regulatory signal during osmotic stress induced by salt. The output is a module where growth is represented by the concentration of stable RNAs and the transcription of the osmotic gene osmY. The time course of gene expression of transport of osmoprotectant represented by the symporter proP and of the osmY is successfully reproduced by the network. The behaviour of the rpoS mutant predicted by the model is in agreement with experimental data. We discuss the application of the model to food-borne pathogens such as Salmonella; although the genes considered have orthologs, it seems that supercoiling is not regulated in the same way. The model is limited to a few selected genes, but the regulatory interactions are numerous and span different time scales. In addition, they seem to be condition specific: the links that are important during the transition from exponential to stationary phase are not all needed during osmotic stress. This model is one of the first steps towards modelling adaptation to stress in food safety and has scope to be extended to other genes and pathways, other stresses relevant to the food industry, and food-borne pathogens. The method offers a good compromise between systems of ordinary differential equations, which would be unmanageable because of the size of the system and for which insufficient data are available, and the more abstract Boolean methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Fluid-dynamically coupled solid propellant combustion instability - cold flow simulation
NASA Astrophysics Data System (ADS)
Ben-Reuven, M.
1983-10-01
The near-wall processes in an injected, axisymmetric, viscous flow is examined. Solid propellant rocket instability, in which cold flow simulation is evaluated as a tool to elucidate possible instability driving mechanisms is studied. One such prominent mechanism seems to be visco-acoustic coupling. The formulation is presented in terms of a singular boundary layer problem, with detail (up to second order) given only to the near wall region. The injection Reynolds number is assumed large, and its inverse square root serves as an appropriate small perturbation quantity. The injected Mach number is also small, and taken of the same order as the aforesaid small quantity. The radial-dependence of the inner solutions up to second order is solved, in polynominal form. This leaves the (x,t) dependence to much simpler partial differential equations. Particular results demonstrate the existence of a first order pressure perturbation, which arises due to the dissipative near wall processes. This pressure and the associated viscous friction coefficient are shown to agree very well with experimental injected flow data.
Implementation of an anomalous radial transport model for continuum kinetic edge codes
NASA Astrophysics Data System (ADS)
Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.
2007-11-01
Radial plasma transport in magnetic fusion devices is often dominated by plasma turbulence compared to neoclassical collisional transport. Continuum kinetic edge codes [such as the (2d,2v) transport version of TEMPEST and also EGK] compute the collisional transport directly, but there is a need to model the anomalous transport from turbulence for long-time transport simulations. Such a model is presented and results are shown for its implementation in the TEMPEST gyrokinetic edge code. The model includes velocity-dependent convection and diffusion coefficients expressed as a Hermite polynominals in velocity. The specification of the Hermite coefficients can be set, e.g., by specifying the ratio of particle and energy transport as in fluid transport codes. The anomalous transport terms preserve the property of no particle flux into unphysical regions of velocity space. TEMPEST simulations are presented showing the separate control of particle and energy anomalous transport, and comparisons are made with neoclassical transport also included.
Limit cycles in planar piecewise linear differential systems with nonregular separation line
NASA Astrophysics Data System (ADS)
Cardin, Pedro Toniol; Torregrosa, Joan
2016-12-01
In this paper we deal with planar piecewise linear differential systems defined in two zones. We consider the case when the two linear zones are angular sectors of angles α and 2 π - α, respectively, for α ∈(0 , π) . We study the problem of determining lower bounds for the number of isolated periodic orbits in such systems using Melnikov functions. These limit cycles appear studying higher order piecewise linear perturbations of a linear center. It is proved that the maximum number of limit cycles that can appear up to a sixth order perturbation is five. Moreover, for these values of α, we prove the existence of systems with four limit cycles up to fifth order and, for α = π / 2, we provide an explicit example with five up to sixth order. In general, the nonregular separation line increases the number of periodic orbits in comparison with the case where the two zones are separated by a straight line.
Theoretical and Experimental Study on Wide Range Optical Fiber Turbine Flow Sensor.
Du, Yuhuan; Guo, Yingqing
2016-07-15
In this paper, a novel fiber turbine flow sensor was proposed and demonstrated for liquid measurement with optical fiber, using light intensity modulation to measure the turbine rotational speed for converting to flow rate. The double-circle-coaxial (DCC) fiber probe was introduced in frequency measurement for the first time. Through the divided ratio of two rings light intensity, the interference in light signals acquisition can be eliminated. To predict the characteristics between the output frequency and flow in the nonlinear range, the turbine flow sensor model was built. Via analyzing the characteristics of turbine flow sensor, piecewise linear equations were achieved in expanding the flow measurement range. Furthermore, the experimental verification was tested. The results showed that the flow range ratio of DN20 turbine flow sensor was improved 2.9 times after using piecewise linear in the nonlinear range. Therefore, combining the DCC fiber sensor and piecewise linear method, it can be developed into a strong anti-electromagnetic interference(anti-EMI) and wide range fiber turbine flowmeter.
NASA Astrophysics Data System (ADS)
Zainudin, Mohd Lutfi; Saaban, Azizan; Bakar, Mohd Nazari Abu
2015-12-01
The solar radiation values have been composed by automatic weather station using the device that namely pyranometer. The device is functions to records all the radiation values that have been dispersed, and these data are very useful for it experimental works and solar device's development. In addition, for modeling and designing on solar radiation system application is needed for complete data observation. Unfortunately, lack for obtained the complete solar radiation data frequently occur due to several technical problems, which mainly contributed by monitoring device. Into encountering this matter, estimation missing values in an effort to substitute absent values with imputed data. This paper aimed to evaluate several piecewise interpolation techniques likes linear, splines, cubic, and nearest neighbor into dealing missing values in hourly solar radiation data. Then, proposed an extendable work into investigating the potential used of cubic Bezier technique and cubic Said-ball method as estimator tools. As result, methods for cubic Bezier and Said-ball perform the best compare to another piecewise imputation technique.
Evolution of inviscid Kelvin-Helmholtz instability from a piecewise linear shear layer
NASA Astrophysics Data System (ADS)
Guha, Anirban; Rahmani, Mona; Lawrence, Gregory
2012-11-01
Here we study the evolution of 2D, inviscid Kelvin-Helmholtz instability (KH) ensuing from a piecewise linear shear layer. Although KH pertaining to smooth shear layers (eg. Hyperbolic tangent profile) has been thorough investigated in the past, very little is known about KH resulting from sharp shear layers. Pozrikidis and Higdon (1985) have shown that piecewise shear layer evolves into elliptical vortex patches. This non-linear state is dramatically different from the well known spiral-billow structure of KH. In fact, there is a little acknowledgement that elliptical vortex patches can represent non-linear KH. In this work, we show how such patches evolve through the interaction of vorticity waves. Our work is based on two types of computational methods (i) Contour Dynamics: a boundary-element method which tracks the evolution of the contour of a vortex patch using Lagrangian marker points, and (ii) Direct Numerical Simulation (DNS): an Eulerian pseudo-spectral method heavily used in studying hydrodynamic instability and turbulence.
Theoretical and Experimental Study on Wide Range Optical Fiber Turbine Flow Sensor
Du, Yuhuan; Guo, Yingqing
2016-01-01
In this paper, a novel fiber turbine flow sensor was proposed and demonstrated for liquid measurement with optical fiber, using light intensity modulation to measure the turbine rotational speed for converting to flow rate. The double-circle-coaxial (DCC) fiber probe was introduced in frequency measurement for the first time. Through the divided ratio of two rings light intensity, the interference in light signals acquisition can be eliminated. To predict the characteristics between the output frequency and flow in the nonlinear range, the turbine flow sensor model was built. Via analyzing the characteristics of turbine flow sensor, piecewise linear equations were achieved in expanding the flow measurement range. Furthermore, the experimental verification was tested. The results showed that the flow range ratio of DN20 turbine flow sensor was improved 2.9 times after using piecewise linear in the nonlinear range. Therefore, combining the DCC fiber sensor and piecewise linear method, it can be developed into a strong anti-electromagnetic interference(anti-EMI) and wide range fiber turbine flowmeter. PMID:27428976
B-spline Method in Fluid Dynamics
NASA Technical Reports Server (NTRS)
Botella, Olivier; Shariff, Karim; Mansour, Nagi N. (Technical Monitor)
2001-01-01
B-spline functions are bases for piecewise polynomials that possess attractive properties for complex flow simulations : they have compact support, provide a straightforward handling of boundary conditions and grid nonuniformities, and yield numerical schemes with high resolving power, where the order of accuracy is a mere input parameter. This paper reviews the progress made on the development and application of B-spline numerical methods to computational fluid dynamics problems. Basic B-spline approximation properties is investigated, and their relationship with conventional numerical methods is reviewed. Some fundamental developments towards efficient complex geometry spline methods are covered, such as local interpolation methods, fast solution algorithms on cartesian grid, non-conformal block-structured discretization, formulation of spline bases of higher continuity over triangulation, and treatment of pressure oscillations in Navier-Stokes equations. Application of some of these techniques to the computation of viscous incompressible flows is presented.
Gradient Optimization for Analytic conTrols - GOAT
NASA Astrophysics Data System (ADS)
Assémat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank
Quantum optimal control becomes a necessary step in a number of studies in the quantum realm. Recent experimental advances showed that superconducting qubits can be controlled with an impressive accuracy. However, most of the standard optimal control algorithms are not designed to manage such high accuracy. To tackle this issue, a novel quantum optimal control algorithm have been introduced: the Gradient Optimization for Analytic conTrols (GOAT). It avoids the piecewise constant approximation of the control pulse used by standard algorithms. This allows an efficient implementation of very high accuracy optimization. It also includes a novel method to compute the gradient that provides many advantages, e.g. the absence of backpropagation or the natural route to optimize the robustness of the control pulses. This talk will present the GOAT algorithm and a few applications to transmons systems.
Segmentation of discrete vector fields.
Li, Hongyu; Chen, Wenbin; Shen, I-Fan
2006-01-01
In this paper, we propose an approach for 2D discrete vector field segmentation based on the Green function and normalized cut. The method is inspired by discrete Hodge Decomposition such that a discrete vector field can be broken down into three simpler components, namely, curl-free, divergence-free, and harmonic components. We show that the Green Function Method (GFM) can be used to approximate the curl-free and the divergence-free components to achieve our goal of the vector field segmentation. The final segmentation curves that represent the boundaries of the influence region of singularities are obtained from the optimal vector field segmentations. These curves are composed of piecewise smooth contours or streamlines. Our method is applicable to both linear and nonlinear discrete vector fields. Experiments show that the segmentations obtained using our approach essentially agree with human perceptual judgement.
Impact of Many-Body Effects on Landau Levels in Graphene
NASA Astrophysics Data System (ADS)
Sonntag, J.; Reichardt, S.; Wirtz, L.; Beschoten, B.; Katsnelson, M. I.; Libisch, F.; Stampfer, C.
2018-05-01
We present magneto-Raman spectroscopy measurements on suspended graphene to investigate the charge carrier density-dependent electron-electron interaction in the presence of Landau levels. Utilizing gate-tunable magnetophonon resonances, we extract the charge carrier density dependence of the Landau level transition energies and the associated effective Fermi velocity vF. In contrast to the logarithmic divergence of vF at zero magnetic field, we find a piecewise linear scaling of vF as a function of the charge carrier density, due to a magnetic-field-induced suppression of the long-range Coulomb interaction. We quantitatively confirm our experimental findings by performing tight-binding calculations on the level of the Hartree-Fock approximation, which also allow us to estimate an excitonic binding energy of ≈6 meV contained in the experimentally extracted Landau level transitions energies.
Boundary element modelling of dynamic behavior of piecewise homogeneous anisotropic elastic solids
NASA Astrophysics Data System (ADS)
Igumnov, L. A.; Markov, I. P.; Litvinchuk, S. Yu
2018-04-01
A traditional direct boundary integral equations method is applied to solve three-dimensional dynamic problems of piecewise homogeneous linear elastic solids. The materials of homogeneous parts are considered to be generally anisotropic. The technique used to solve the boundary integral equations is based on the boundary element method applied together with the Radau IIA convolution quadrature method. A numerical example of suddenly loaded 3D prismatic rod consisting of two subdomains with different anisotropic elastic properties is presented to verify the accuracy of the proposed formulation.
Nonlinear Deformation of a Piecewise Homogeneous Cylinder Under the Action of Rotation
NASA Astrophysics Data System (ADS)
Akhundov, V. M.; Kostrova, M. M.
2018-05-01
Deformation of a piecewise cylinder under the action of rotation is investigated. The cylinder consists of an elastic matrix with circular fibers of square cross section made of a more rigid elastic material and arranged doubly periodically in the cylinder. Behavior of the cylinder under large displacements and deformations is examined using the equations of a nonlinear elasticity theory for cylinder constituents. The problem posed is solved by the finite-difference method using the method of continuation with respect to the rotational speed of the cylinder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajpathak, Bhooshan, E-mail: bhooshan@ee.iitb.ac.in; Pillai, Harish K., E-mail: hp@ee.iitb.ac.in; Bandyopadhyay, Santanu, E-mail: santanu@me.iitb.ac.in
2015-10-15
In this paper, we analytically examine the unstable periodic orbits and chaotic orbits of the 1-D linear piecewise-smooth discontinuous map. We explore the existence of unstable orbits and the effect of variation in parameters on the coexistence of unstable orbits. Further, we show that this structuring is different from the well known period adding cascade structure associated with the stable periodic orbits of the same map. Further, we analytically prove the existence of chaotic orbit for this map.
1990-11-19
stir divers exemple-s le comportement des filtres l)r0pose5 par ra.)pDort ceux du processus estliner et dti filtre optimal obtenu de fa~on approch6e...Piecewise monotone filtering with small observation noise, Siam J., Control Optim. 20, 261-285, 1989 . Vii [10 W.ll. Fleming and R.W. Rishel...Milbeiro, de Oliveira : Filtres approch~s pour un probl~me de filtrage non lin~aire discret avec petit bruit d’observation,rapport INVRIA, 1142. 1989
Dynamic Programming for Structured Continuous Markov Decision Problems
NASA Technical Reports Server (NTRS)
Dearden, Richard; Meuleau, Nicholas; Washington, Richard; Feng, Zhengzhu
2004-01-01
We describe an approach for exploiting structure in Markov Decision Processes with continuous state variables. At each step of the dynamic programming, the state space is dynamically partitioned into regions where the value function is the same throughout the region. We first describe the algorithm for piecewise constant representations. We then extend it to piecewise linear representations, using techniques from POMDPs to represent and reason about linear surfaces efficiently. We show that for complex, structured problems, our approach exploits the natural structure so that optimal solutions can be computed efficiently.
Stress state of a piecewise uniform layered space with doubly periodic internal cracks
NASA Astrophysics Data System (ADS)
Hakobyan, V. N.; Dashtoyan, L. L.
2018-04-01
The present paper deals with the stress state of a piecewise homogeneous plane formed by alternation junction of two distinct strips of equal height manufactured of different materials. There is a doubly periodic system of cracks on the plane. The governing system of singular integral equations of the first kind for the density of the crack dislocation is derived. The solution of the problem in the case where only one of the repeated strips contains one doubly-periodic crack is obtained by the method of mechanical quadratures.
Puwal, Steffan; Roth, Bradley J; Basser, Peter J
2017-04-01
One goal of MRI is to determine the myelin water fraction in neural tissue. One approach is to measure the reduction in T 2 * arising from microscopic perturbations in the magnetic field caused by heterogeneities in the magnetic susceptibility of myelin. In this paper, analytic expressions for the induced magnetic field distribution are derived within and around an axon, assuming that the myelin susceptibility is anisotropic. Previous models considered the susceptibility to be piecewise continuous, whereas this model considers a sinusoidally varying susceptibility. Many conclusions are common in both models. When the magnetic field is applied perpendicular to the axon, the magnetic field in the intraaxonal space is uniformly perturbed, the magnetic field in the myelin sheath oscillates between the lipid and water layers, and the magnetic field in the extracellular space just outside the myelin sheath is heterogeneous. These field heterogeneities cause the spins to dephase, shortening T 2 *. When the magnetic field is applied along the axon, the field is homogeneous within water-filled regions, including between lipid layers. Therefore the spins do not dephase and the magnetic susceptibility has no effect on T 2 *. Generally, the response of an axon is given as the superposition of these two contributions. The sinusoidal model uses a different set of approximations compared with the piecewise model, so their common predictions indicate that the models are not too sensitive to the details of the myelin-water distribution. Other predictions, such as the sensitivity to water diffusion between myelin and water layers, may highlight differences between the two approaches. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data.
Pnevmatikakis, Eftychios A; Giovannucci, Andrea
2017-11-01
Motion correction is a challenging pre-processing problem that arises early in the analysis pipeline of calcium imaging data sequences. The motion artifacts in two-photon microscopy recordings can be non-rigid, arising from the finite time of raster scanning and non-uniform deformations of the brain medium. We introduce an algorithm for fast Non-Rigid Motion Correction (NoRMCorre) based on template matching. NoRMCorre operates by splitting the field of view (FOV) into overlapping spatial patches along all directions. The patches are registered at a sub-pixel resolution for rigid translation against a regularly updated template. The estimated alignments are subsequently up-sampled to create a smooth motion field for each frame that can efficiently approximate non-rigid artifacts in a piecewise-rigid manner. Existing approaches either do not scale well in terms of computational performance or are targeted to non-rigid artifacts arising just from the finite speed of raster scanning, and thus cannot correct for non-rigid motion observable in datasets from a large FOV. NoRMCorre can be run in an online mode resulting in comparable to or even faster than real time motion registration of streaming data. We evaluate its performance with simple yet intuitive metrics and compare against other non-rigid registration methods on simulated data and in vivo two-photon calcium imaging datasets. Open source Matlab and Python code is also made available. The proposed method and accompanying code can be useful for solving large scale image registration problems in calcium imaging, especially in the presence of non-rigid deformations. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
On Discontinuous Piecewise Linear Models for Memristor Oscillators
NASA Astrophysics Data System (ADS)
Amador, Andrés; Freire, Emilio; Ponce, Enrique; Ros, Javier
2017-06-01
In this paper, we provide for the first time rigorous mathematical results regarding the rich dynamics of piecewise linear memristor oscillators. In particular, for each nonlinear oscillator given in [Itoh & Chua, 2008], we show the existence of an infinite family of invariant manifolds and that the dynamics on such manifolds can be modeled without resorting to discontinuous models. Our approach provides topologically equivalent continuous models with one dimension less but with one extra parameter associated to the initial conditions. It is possible to justify the periodic behavior exhibited by three-dimensional memristor oscillators, by taking advantage of known results for planar continuous piecewise linear systems. The analysis developed not only confirms the numerical results contained in previous works [Messias et al., 2010; Scarabello & Messias, 2014] but also goes much further by showing the existence of closed surfaces in the state space which are foliated by periodic orbits. The important role of initial conditions that justify the infinite number of periodic orbits exhibited by these models, is stressed. The possibility of unsuspected bistable regimes under specific configurations of parameters is also emphasized.
NASA Astrophysics Data System (ADS)
Tan, Yimin; Lin, Kejian; Zu, Jean W.
2018-05-01
Halbach permanent magnet (PM) array has attracted tremendous research attention in the development of electromagnetic generators for its unique properties. This paper has proposed a generalized analytical model for linear generators. The slotted stator pole-shifting and implementation of Halbach array have been combined for the first time. Initially, the magnetization components of the Halbach array have been determined using Fourier decomposition. Then, based on the magnetic scalar potential method, the magnetic field distribution has been derived employing specially treated boundary conditions. FEM analysis has been conducted to verify the analytical model. A slotted linear PM generator with Halbach PM has been constructed to validate the model and further improved using piece-wise springs to trigger full range reciprocating motion. A dynamic model has been developed to characterize the dynamic behavior of the slider. This analytical method provides an effective tool in development and optimization of Halbach PM generator. The experimental results indicate that piece-wise springs can be employed to improve generator performance under low excitation frequency.
Slope Estimation in Noisy Piecewise Linear Functions✩
Ingle, Atul; Bucklew, James; Sethares, William; Varghese, Tomy
2014-01-01
This paper discusses the development of a slope estimation algorithm called MAPSlope for piecewise linear data that is corrupted by Gaussian noise. The number and locations of slope change points (also known as breakpoints) are assumed to be unknown a priori though it is assumed that the possible range of slope values lies within known bounds. A stochastic hidden Markov model that is general enough to encompass real world sources of piecewise linear data is used to model the transitions between slope values and the problem of slope estimation is addressed using a Bayesian maximum a posteriori approach. The set of possible slope values is discretized, enabling the design of a dynamic programming algorithm for posterior density maximization. Numerical simulations are used to justify choice of a reasonable number of quantization levels and also to analyze mean squared error performance of the proposed algorithm. An alternating maximization algorithm is proposed for estimation of unknown model parameters and a convergence result for the method is provided. Finally, results using data from political science, finance and medical imaging applications are presented to demonstrate the practical utility of this procedure. PMID:25419020
Wu, Ailong; Liu, Ling; Huang, Tingwen; Zeng, Zhigang
2017-01-01
Neurodynamic system is an emerging research field. To understand the essential motivational representations of neural activity, neurodynamics is an important question in cognitive system research. This paper is to investigate Mittag-Leffler stability of a class of fractional-order neural networks in the presence of generalized piecewise constant arguments. To identify neural types of computational principles in mathematical and computational analysis, the existence and uniqueness of the solution of neurodynamic system is the first prerequisite. We prove that the existence and uniqueness of the solution of the network holds when some conditions are satisfied. In addition, self-active neurodynamic system demands stable internal dynamical states (equilibria). The main emphasis will be then on several sufficient conditions to guarantee a unique equilibrium point. Furthermore, to provide deeper explanations of neurodynamic process, Mittag-Leffler stability is studied in detail. The established results are based on the theories of fractional differential equation and differential equation with generalized piecewise constant arguments. The derived criteria improve and extend the existing related results. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hadida, Jonathan; Desrosiers, Christian; Duong, Luc
2011-03-01
The segmentation of anatomical structures in Computed Tomography Angiography (CTA) is a pre-operative task useful in image guided surgery. Even though very robust and precise methods have been developed to help achieving a reliable segmentation (level sets, active contours, etc), it remains very time consuming both in terms of manual interactions and in terms of computation time. The goal of this study is to present a fast method to find coarse anatomical structures in CTA with few parameters, based on hierarchical clustering. The algorithm is organized as follows: first, a fast non-parametric histogram clustering method is proposed to compute a piecewise constant mask. A second step then indexes all the space-connected regions in the piecewise constant mask. Finally, a hierarchical clustering is achieved to build a graph representing the connections between the various regions in the piecewise constant mask. This step builds up a structural knowledge about the image. Several interactive features for segmentation are presented, for instance association or disassociation of anatomical structures. A comparison with the Mean-Shift algorithm is presented.
Slope Estimation in Noisy Piecewise Linear Functions.
Ingle, Atul; Bucklew, James; Sethares, William; Varghese, Tomy
2015-03-01
This paper discusses the development of a slope estimation algorithm called MAPSlope for piecewise linear data that is corrupted by Gaussian noise. The number and locations of slope change points (also known as breakpoints) are assumed to be unknown a priori though it is assumed that the possible range of slope values lies within known bounds. A stochastic hidden Markov model that is general enough to encompass real world sources of piecewise linear data is used to model the transitions between slope values and the problem of slope estimation is addressed using a Bayesian maximum a posteriori approach. The set of possible slope values is discretized, enabling the design of a dynamic programming algorithm for posterior density maximization. Numerical simulations are used to justify choice of a reasonable number of quantization levels and also to analyze mean squared error performance of the proposed algorithm. An alternating maximization algorithm is proposed for estimation of unknown model parameters and a convergence result for the method is provided. Finally, results using data from political science, finance and medical imaging applications are presented to demonstrate the practical utility of this procedure.
NASA Technical Reports Server (NTRS)
Childs, A. G.
1971-01-01
A discrete steepest ascent method which allows controls which are not piecewise constant (for example, it allows all continuous piecewise linear controls) was derived for the solution of optimal programming problems. This method is based on the continuous steepest ascent method of Bryson and Denham and new concepts introduced by Kelley and Denham in their development of compatible adjoints for taking into account the effects of numerical integration. The method is a generalization of the algorithm suggested by Canon, Cullum, and Polak with the details of the gradient computation given. The discrete method was compared with the continuous method for an aerodynamics problem for which an analytic solution is given by Pontryagin's maximum principle, and numerical results are presented. The discrete method converges more rapidly than the continuous method at first, but then for some undetermined reason, loses its exponential convergence rate. A comparsion was also made for the algorithm of Canon, Cullum, and Polak using piecewise constant controls. This algorithm is very competitive with the continuous algorithm.
Boys, C A; Robinson, W; Miller, B; Pflugrath, B; Baumgartner, L J; Navarro, A; Brown, R; Deng, Z
2016-05-01
A piecewise regression approach was used to objectively quantify barotrauma injury thresholds in two physoclistous species, Murray cod Maccullochella peelii and silver perch Bidyanus bidyanus, following simulated infrastructure passage in a barometric chamber. The probability of injuries such as swimbladder rupture, exophthalmia and haemorrhage, and emphysema in various organs increased as the ratio between the lowest exposure pressure and the acclimation pressure (ratio of pressure change, R(NE:A) ) reduced. The relationship was typically non-linear and piecewise regression was able to quantify thresholds in R(NE:A) that once exceeded resulted in a substantial increase in barotrauma injury. Thresholds differed among injury types and between species but by applying a multispecies precautionary principle, the maintenance of exposure pressures at river infrastructure above 70% of acclimation pressure (R(NE:A) of 0·7) should protect downstream migrating juveniles of these two physoclistous species sufficiently. These findings have important implications for determining the risk posed by current infrastructures and informing the design and operation of new ones. © 2016 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Saito, Asaki; Yasutomi, Shin-ichi; Tamura, Jun-ichi; Ito, Shunji
2015-06-01
We introduce a true orbit generation method enabling exact simulations of dynamical systems defined by arbitrary-dimensional piecewise linear fractional maps, including piecewise linear maps, with rational coefficients. This method can generate sufficiently long true orbits which reproduce typical behaviors (inherent behaviors) of these systems, by properly selecting algebraic numbers in accordance with the dimension of the target system, and involving only integer arithmetic. By applying our method to three dynamical systems—that is, the baker's transformation, the map associated with a modified Jacobi-Perron algorithm, and an open flow system—we demonstrate that it can reproduce their typical behaviors that have been very difficult to reproduce with conventional simulation methods. In particular, for the first two maps, we show that we can generate true orbits displaying the same statistical properties as typical orbits, by estimating the marginal densities of their invariant measures. For the open flow system, we show that an obtained true orbit correctly converges to the stable period-1 orbit, which is inherently possessed by the system.
A simulation model of the oxygen alveolo-capillary exchange in normal and pathological conditions.
Brighenti, Chiara; Gnudi, Gianni; Avanzolini, Guido
2003-05-01
This paper presents a mathematical model of the oxygen alveolo-capillary exchange to provide the capillary oxygen partial pressure profile in normal and pathological conditions. In fact, a thickening of the blood-gas barrier, heavy exercise or a low oxygen partial pressure (PO2) in the alveolar space can reduce the O2 alveolo-capillary exchange. Since the reversible binding between haemoglobin and oxygen makes it impossible to determine the closed form for the mathematical description of the PO2 profile along the pulmonary capillaries, an approximate analytical solution of the capillary PO2 profile is proposed. Simulation results are compared with the capillary PO2 profile obtained by numerical integration and by a piecewise linear interpolation of the oxyhaemoglobin dissociation curve. Finally, the proposed model is evaluated in a large range of physiopathological diffusive conditions. The good fit to numerical solutions in all experimental conditions seems to represent a substantial improvement with respect to the approach based on a linear approximation of the oxyhaemoglobin dissociation curve, and makes this model a candidate to be incorporated into the integrated descriptions of the entire respiratory system, where the datum of primary interest is the value of end capillary PO2.
Minimal norm constrained interpolation. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Irvine, L. D.
1985-01-01
In computational fluid dynamics and in CAD/CAM, a physical boundary is usually known only discreetly and most often must be approximated. An acceptable approximation preserves the salient features of the data such as convexity and concavity. In this dissertation, a smooth interpolant which is locally concave where the data are concave and is locally convex where the data are convex is described. The interpolant is found by posing and solving a minimization problem whose solution is a piecewise cubic polynomial. The problem is solved indirectly by using the Peano Kernal theorem to recast it into an equivalent minimization problem having the second derivative of the interpolant as the solution. This approach leads to the solution of a nonlinear system of equations. It is shown that Newton's method is an exceptionally attractive and efficient method for solving the nonlinear system of equations. Examples of shape-preserving interpolants, as well as convergence results obtained by using Newton's method are also shown. A FORTRAN program to compute these interpolants is listed. The problem of computing the interpolant of minimal norm from a convex cone in a normal dual space is also discussed. An extension of de Boor's work on minimal norm unconstrained interpolation is presented.
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
1993-01-01
The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation (SV) indicated by models of the observed geomagnetic field is examined in the source-free mantle/frozen-flux core (SFI/VFFC) approximation. This inverse problem is non-linear because solutions of the forward problem are deterministically chaotic. The SFM/FFC approximation is inexact, and neither the models nor the observations they represent are either complete or perfect. A method is developed for solving the non-linear inverse motional induction problem posed by the hypothesis of (piecewise, statistically) steady core surface flow and the supposition of a complete initial geomagnetic condition. The method features iterative solution of the weighted, linearized least-squares problem and admits optional biases favoring surficially geostrophic flow and/or spatially simple flow. Two types of weights are advanced radial field weights for fitting the evolution of the broad-scale portion of the radial field component near Earth's surface implied by the models, and generalized weights for fitting the evolution of the broad-scale portion of the scalar potential specified by the models.
Identification of cascade water tanks using a PWARX model
NASA Astrophysics Data System (ADS)
Mattsson, Per; Zachariah, Dave; Stoica, Petre
2018-06-01
In this paper we consider the identification of a discrete-time nonlinear dynamical model for a cascade water tank process. The proposed method starts with a nominal linear dynamical model of the system, and proceeds to model its prediction errors using a model that is piecewise affine in the data. As data is observed, the nominal model is refined into a piecewise ARX model which can capture a wide range of nonlinearities, such as the saturation in the cascade tanks. The proposed method uses a likelihood-based methodology which adaptively penalizes model complexity and directly leads to a computationally efficient implementation.
Modifications of the PCPT method for HJB equations
NASA Astrophysics Data System (ADS)
Kossaczký, I.; Ehrhardt, M.; Günther, M.
2016-10-01
In this paper we will revisit the modification of the piecewise constant policy timestepping (PCPT) method for solving Hamilton-Jacobi-Bellman (HJB) equations. This modification is called piecewise predicted policy timestepping (PPPT) method and if properly used, it may be significantly faster. We will quickly recapitulate the algorithms of PCPT, PPPT methods and of the classical implicit method and apply them on a passport option pricing problem with non-standard payoff. We will present modifications needed to solve this problem effectively with the PPPT method and compare the performance with the PCPT method and the classical implicit method.
NASA Astrophysics Data System (ADS)
Zarubin, V.; Bychkov, A.; Simonova, V.; Zhigarkov, V.; Karabutov, A.; Cherepetskaya, E.
2018-05-01
In this paper, a technique for reflection mode immersion 2D laser-ultrasound tomography of solid objects with piecewise linear 2D surface profiles is presented. Pulsed laser radiation was used for generation of short ultrasonic probe pulses, providing high spatial resolution. A piezofilm sensor array was used for detection of the waves reflected by the surface and internal inhomogeneities of the object. The original ultrasonic image reconstruction algorithm accounting for refraction of acoustic waves at the liquid-solid interface provided longitudinal resolution better than 100 μm in the polymethyl methacrylate sample object.
Trajectory Generation by Piecewise Spline Interpolation
1976-04-01
Lx) -a 0 + atx + aAx + x (21)0 1 2 3 and the coefficients are obtained from Equation (20) as ao m fl (22)i al " fi, (23) S3(fi + I f ) 2fj + fj+ 1 (24...reference frame to the vehicle fixed frame is pTO’ 0TO’ OTO’ *TO where a if (gZv0 - A >- 0 aCI (64) - azif (gzv0- AzvO < 0 These rotations may be...velocity frame axes directions (velocity frame from the output frame) aO, al , a 2 , a 3 Coefficients of the piecewise cubic polynomials [B ] Tridiagonal
NASA Astrophysics Data System (ADS)
Xing, Yanyuan; Yan, Yubin
2018-03-01
Gao et al. [11] (2014) introduced a numerical scheme to approximate the Caputo fractional derivative with the convergence rate O (k 3 - α), 0 < α < 1 by directly approximating the integer-order derivative with some finite difference quotients in the definition of the Caputo fractional derivative, see also Lv and Xu [20] (2016), where k is the time step size. Under the assumption that the solution of the time fractional partial differential equation is sufficiently smooth, Lv and Xu [20] (2016) proved by using energy method that the corresponding numerical method for solving time fractional partial differential equation has the convergence rate O (k 3 - α), 0 < α < 1 uniformly with respect to the time variable t. However, in general the solution of the time fractional partial differential equation has low regularity and in this case the numerical method fails to have the convergence rate O (k 3 - α), 0 < α < 1 uniformly with respect to the time variable t. In this paper, we first obtain a similar approximation scheme to the Riemann-Liouville fractional derivative with the convergence rate O (k 3 - α), 0 < α < 1 as in Gao et al. [11] (2014) by approximating the Hadamard finite-part integral with the piecewise quadratic interpolation polynomials. Based on this scheme, we introduce a time discretization scheme to approximate the time fractional partial differential equation and show by using Laplace transform methods that the time discretization scheme has the convergence rate O (k 3 - α), 0 < α < 1 for any fixed tn > 0 for smooth and nonsmooth data in both homogeneous and inhomogeneous cases. Numerical examples are given to show that the theoretical results are consistent with the numerical results.
NASA Astrophysics Data System (ADS)
Jerez-Hanckes, Carlos; Pérez-Arancibia, Carlos; Turc, Catalin
2017-12-01
We present Nyström discretizations of multitrace/singletrace formulations and non-overlapping Domain Decomposition Methods (DDM) for the solution of Helmholtz transmission problems for bounded composite scatterers with piecewise constant material properties. We investigate the performance of DDM with both classical Robin and optimized transmission boundary conditions. The optimized transmission boundary conditions incorporate square root Fourier multiplier approximations of Dirichlet to Neumann operators. While the multitrace/singletrace formulations as well as the DDM that use classical Robin transmission conditions are not particularly well suited for Krylov subspace iterative solutions of high-contrast high-frequency Helmholtz transmission problems, we provide ample numerical evidence that DDM with optimized transmission conditions constitute efficient computational alternatives for these type of applications. In the case of large numbers of subdomains with different material properties, we show that the associated DDM linear system can be efficiently solved via hierarchical Schur complements elimination.
Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T. (Inventor)
2016-01-01
An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.
NASA Astrophysics Data System (ADS)
Daşdemir, A.
2017-08-01
The forced vibration of a multi-layered plate-strip with initial stress under the action of an arbitrary inclined time-harmonic force resting on a rigid foundation is considered. Within the framework of the piecewise homogeneous body model with the use of the three-dimensional linearized theory of elastic waves in initially stressed bodies (TLTEWISB), a mathematical modelling is presented in plane strain state. It is assumed that there exists the complete contact interaction at the interface between the layers and the materials of the layer are linearly elastic, homogeneous and isotropic. The governing system of the partial differential equations of motion for the considered problem is solved approximately by employing the Finite Element Method (FEM). Further, the influence of the initial stress parameter on the dynamic response of the plate-strip is presented.
Boundary enhanced effects on the existence of quadratic solitons
NASA Astrophysics Data System (ADS)
Chen, Manna; Zhang, Ting; Li, Wenjie; Lu, Daquan; Guo, Qi; Hu, Wei
2018-05-01
We investigate, both analytically and numerically, the boundary enhanced effects exerted on the quadratic solitons consisting of fundamental waves and oscillatory second harmonics in the presence of boundary conditions. The nonlocal analogy predicts that the soliton for fundamental wave is supported by the balance between equivalent nonlinear confinement and diffraction (or dispersion). Under Snyder and Mitchell's strongly nonlocal approximation, we obtain the analytical soliton solutions both with and without the boundary conditions to show the impact of boundary conditions. We can distinguish explicitly the nonlinear confinement between the second harmonic mutual interaction and the enhanced effects caused by remote boundaries. Those boundary enhanced effects on the existence of solitons can be positive or negative, which depend on both sample size and nonlocal parameter. The piecewise existence regime of solitons can be explained analytically. The analytical soliton solutions are verified by the numerical ones and the discrepancy between them is also discussed.
Nonequilibrium dynamics of a pure dry friction model subjected to colored noise
NASA Astrophysics Data System (ADS)
Geffert, Paul M.; Just, Wolfram
2017-06-01
We investigate the impact of noise on a two-dimensional simple paradigmatic piecewise-smooth dynamical system. For that purpose, we consider the motion of a particle subjected to dry friction and colored noise. The finite correlation time of the noise provides an additional dimension in phase space, causes a nontrivial probability current, and establishes a proper nonequilibrium regime. Furthermore, the setup allows for the study of stick-slip phenomena, which show up as a singular component in the stationary probability density. Analytic insight can be provided by application of the unified colored noise approximation, developed by Jung and Hänggi [Phys. Rev. A 35, 4464(R) (1987), 10.1103/PhysRevA.35.4464]. The analysis of probability currents and of power spectral densities underpins the observed stick-slip transition, which is related with a critical value of the noise correlation time.
Nonparametric Bayesian Segmentation of a Multivariate Inhomogeneous Space-Time Poisson Process.
Ding, Mingtao; He, Lihan; Dunson, David; Carin, Lawrence
2012-12-01
A nonparametric Bayesian model is proposed for segmenting time-evolving multivariate spatial point process data. An inhomogeneous Poisson process is assumed, with a logistic stick-breaking process (LSBP) used to encourage piecewise-constant spatial Poisson intensities. The LSBP explicitly favors spatially contiguous segments, and infers the number of segments based on the observed data. The temporal dynamics of the segmentation and of the Poisson intensities are modeled with exponential correlation in time, implemented in the form of a first-order autoregressive model for uniformly sampled discrete data, and via a Gaussian process with an exponential kernel for general temporal sampling. We consider and compare two different inference techniques: a Markov chain Monte Carlo sampler, which has relatively high computational complexity; and an approximate and efficient variational Bayesian analysis. The model is demonstrated with a simulated example and a real example of space-time crime events in Cincinnati, Ohio, USA.
NASA Astrophysics Data System (ADS)
Bui, V. T.; Kalugin, V. T.; Lapygin, V. I.; Khlupnov, A. I.
2017-11-01
With the use of ANSYS Fluent software and ANSYS ICEM CFD calculation grid generator, the flows past a wing airfoil, an infinite cylinder, and 3D blunted bodies located in the open and closed test sections of low-speed wind tunnels were calculated. The mathematical model of the flows included the Reynolds equations and the SST model of turbulence. It was found that the ratios between the aerodynamic coefficients in the test section and in the free (unbounded) stream could be fairly well approximated with a piecewise-linear function of the blockage factor, whose value weakly depended on the angle of attack. The calculated data and data gained in the analysis of previously reported experimental studies proved to be in a good agreement. The impact of the extension of the closed test section on the airfoil lift force is analyzed.
Two-body loss rates for reactive collisions of cold atoms
NASA Astrophysics Data System (ADS)
Cop, C.; Walser, R.
2018-01-01
We present an effective two-channel model for reactive collisions of cold atoms. It augments elastic molecular channels with an irreversible, inelastic loss channel. Scattering is studied with the distorted-wave Born approximation and yields general expressions for angular momentum resolved cross sections as well as two-body loss rates. Explicit expressions are obtained for piecewise constant potentials. A pole expansion reveals simple universal shape functions for cross sections and two-body loss rates in agreement with the Wigner threshold laws. This is applied to collisions of metastable 20Ne and 21Ne atoms, which decay primarily through exothermic Penning or associative ionization processes. From a numerical solution of the multichannel Schrödinger equation using the best currently available molecular potentials, we have obtained synthetic scattering data. Using the two-body loss shape functions derived in this paper, we can match these scattering data very well.
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi; ...
2015-11-12
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
A hybridized formulation for the weak Galerkin mixed finite element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising frommore » the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
A hybridized formulation for the weak Galerkin mixed finite element method
Mu, Lin; Wang, Junping; Ye, Xiu
2016-01-14
This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising frommore » the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.« less
Nonequilibrium dynamics of a pure dry friction model subjected to colored noise.
Geffert, Paul M; Just, Wolfram
2017-06-01
We investigate the impact of noise on a two-dimensional simple paradigmatic piecewise-smooth dynamical system. For that purpose, we consider the motion of a particle subjected to dry friction and colored noise. The finite correlation time of the noise provides an additional dimension in phase space, causes a nontrivial probability current, and establishes a proper nonequilibrium regime. Furthermore, the setup allows for the study of stick-slip phenomena, which show up as a singular component in the stationary probability density. Analytic insight can be provided by application of the unified colored noise approximation, developed by Jung and Hänggi [Phys. Rev. A 35, 4464(R) (1987)0556-279110.1103/PhysRevA.35.4464]. The analysis of probability currents and of power spectral densities underpins the observed stick-slip transition, which is related with a critical value of the noise correlation time.
Geras'kin, Stanislav A; Oudalova, Alla A; Kim, Jin Kyu; Dikarev, Vladimir G; Dikareva, Nina S
2007-03-01
The induction of chromosome aberrations in Hordeum vulgare germinated seeds was studied after ionizing irradiation with doses in the range of 10-1,000 mGy. The relationship between the frequency of aberrant cells and the absorbed dose was found to be nonlinear. A dose-independent plateau in the dose range from about 50 to 500 mGy was observed, where the level of cytogenetic damage was significantly different from the spontaneous level. The comparison of the goodness of the experimental data fitting with mathematical models of different complexity, using the most common quantitative criteria, demonstrated the advantage of a piecewise linear model over linear and polynomial models in approximating the frequency of cytogenetical disturbances. The results of the study support the hypothesis of indirect mechanisms of mutagenesis induced by low doses. Fundamental and applied implications of these findings are discussed.
Hidden dynamics in models of discontinuity and switching
NASA Astrophysics Data System (ADS)
Jeffrey, Mike R.
2014-04-01
Sharp switches in behaviour, like impacts, stick-slip motion, or electrical relays, can be modelled by differential equations with discontinuities. A discontinuity approximates fine details of a switching process that lie beyond a bulk empirical model. The theory of piecewise-smooth dynamics describes what happens assuming we can solve the system of equations across its discontinuity. What this typically neglects is that effects which are vanishingly small outside the discontinuity can have an arbitrarily large effect at the discontinuity itself. Here we show that such behaviour can be incorporated within the standard theory through nonlinear terms, and these introduce multiple sliding modes. We show that the nonlinear terms persist in more precise models, for example when the discontinuity is smoothed out. The nonlinear sliding can be eliminated, however, if the model contains an irremovable level of unknown error, which provides a criterion for systems to obey the standard Filippov laws for sliding dynamics at a discontinuity.
Simplified curve fits for the thermodynamic properties of equilibrium air
NASA Technical Reports Server (NTRS)
Srinivasan, S.; Tannehill, J. C.; Weilmuenster, K. J.
1987-01-01
New, improved curve fits for the thermodynamic properties of equilibrium air have been developed. The curve fits are for pressure, speed of sound, temperature, entropy, enthalpy, density, and internal energy. These curve fits can be readily incorporated into new or existing computational fluid dynamics codes if real gas effects are desired. The curve fits are constructed from Grabau-type transition functions to model the thermodynamic surfaces in a piecewise manner. The accuracies and continuity of these curve fits are substantially improved over those of previous curve fits. These improvements are due to the incorporation of a small number of additional terms in the approximating polynomials and careful choices of the transition functions. The ranges of validity of the new curve fits are temperatures up to 25 000 K and densities from 10 to the -7 to 10 to the 3d power amagats.
A Galerkin discretisation-based identification for parameters in nonlinear mechanical systems
NASA Astrophysics Data System (ADS)
Liu, Zuolin; Xu, Jian
2018-04-01
In the paper, a new parameter identification method is proposed for mechanical systems. Based on the idea of Galerkin finite-element method, the displacement over time history is approximated by piecewise linear functions, and the second-order terms in model equation are eliminated by integrating by parts. In this way, the lost function of integration form is derived. Being different with the existing methods, the lost function actually is a quadratic sum of integration over the whole time history. Then for linear or nonlinear systems, the optimisation of the lost function can be applied with traditional least-squares algorithm or the iterative one, respectively. Such method could be used to effectively identify parameters in linear and arbitrary nonlinear mechanical systems. Simulation results show that even under the condition of sparse data or low sampling frequency, this method could still guarantee high accuracy in identifying linear and nonlinear parameters.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1997-01-01
In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton- Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. The key idea lies at the approximation level, where a nonlinear adaptive procedure is used to automatically choose the locally smoothest stencil, hence avoiding crossing discontinuities in the interpolation procedure as much as possible. ENO and WENO schemes have been quite successful in applications, especially for problems containing both shocks and complicated smooth solution structures, such as compressible turbulence simulations and aeroacoustics. These lecture notes are basically self-contained. It is our hope that with these notes and with the help of the quoted references, the reader can understand the algorithms and code them up for applications.
Optimized Quasi-Interpolators for Image Reconstruction.
Sacht, Leonardo; Nehab, Diego
2015-12-01
We propose new quasi-interpolators for the continuous reconstruction of sampled images, combining a narrowly supported piecewise-polynomial kernel and an efficient digital filter. In other words, our quasi-interpolators fit within the generalized sampling framework and are straightforward to use. We go against standard practice and optimize for approximation quality over the entire Nyquist range, rather than focusing exclusively on the asymptotic behavior as the sample spacing goes to zero. In contrast to previous work, we jointly optimize with respect to all degrees of freedom available in both the kernel and the digital filter. We consider linear, quadratic, and cubic schemes, offering different tradeoffs between quality and computational cost. Experiments with compounded rotations and translations over a range of input images confirm that, due to the additional degrees of freedom and the more realistic objective function, our new quasi-interpolators perform better than the state of the art, at a similar computational cost.
Analytic double product integrals for all-frequency relighting.
Wang, Rui; Pan, Minghao; Chen, Weifeng; Ren, Zhong; Zhou, Kun; Hua, Wei; Bao, Hujun
2013-07-01
This paper presents a new technique for real-time relighting of static scenes with all-frequency shadows from complex lighting and highly specular reflections from spatially varying BRDFs. The key idea is to depict the boundaries of visible regions using piecewise linear functions, and convert the shading computation into double product integrals—the integral of the product of lighting and BRDF on visible regions. By representing lighting and BRDF with spherical Gaussians and approximating their product using Legendre polynomials locally in visible regions, we show that such double product integrals can be evaluated in an analytic form. Given the precomputed visibility, our technique computes the visibility boundaries on the fly at each shading point, and performs the analytic integral to evaluate the shading color. The result is a real-time all-frequency relighting technique for static scenes with dynamic, spatially varying BRDFs, which can generate more accurate shadows than the state-of-the-art real-time PRT methods.
NASA Technical Reports Server (NTRS)
Cooke, C. H.; Blanchard, D. K.
1975-01-01
A finite element algorithm for solution of fluid flow problems characterized by the two-dimensional compressible Navier-Stokes equations was developed. The program is intended for viscous compressible high speed flow; hence, primitive variables are utilized. The physical solution was approximated by trial functions which at a fixed time are piecewise cubic on triangular elements. The Galerkin technique was employed to determine the finite-element model equations. A leapfrog time integration is used for marching asymptotically from initial to steady state, with iterated integrals evaluated by numerical quadratures. The nonsymmetric linear systems of equations governing time transition from step-to-step are solved using a rather economical block iterative triangular decomposition scheme. The concept was applied to the numerical computation of a free shear flow. Numerical results of the finite-element method are in excellent agreement with those obtained from a finite difference solution of the same problem.
NASA Astrophysics Data System (ADS)
Ngom, Ndèye Fatou; Monga, Olivier; Ould Mohamed, Mohamed Mahmoud; Garnier, Patricia
2012-02-01
This paper focuses on the modeling of soil microstructures using generalized cylinders, with a specific application to pore space. The geometric modeling of these microstructures is a recent area of study, made possible by the improved performance of computed tomography techniques. X-scanners provide very-high-resolution 3D volume images ( 3-5μm) of soil samples in which pore spaces can be extracted by thresholding. However, in most cases, the pore space defines a complex volume shape that cannot be approximated using simple analytical functions. We propose representing this shape using a compact, stable, and robust piecewise approximation by means of generalized cylinders. This intrinsic shape representation conserves its topological and geometric properties. Our algorithm includes three main processing stages. The first stage consists in describing the volume shape using a minimum number of balls included within the shape, such that their union recovers the shape skeleton. The second stage involves the optimum extraction of simply connected chains of balls. The final stage copes with the approximation of each simply optimal chain using generalized cylinders: circular generalized cylinders, tori, cylinders, and truncated cones. This technique was applied to several data sets formed by real volume computed tomography soil samples. It was possible to demonstrate that our geometric representation supplied a good approximation of the pore space. We also stress the compactness and robustness of this method with respect to any changes affecting the initial data, as well as its coherence with the intuitive notion of pores. During future studies, this geometric pore space representation will be used to simulate biological dynamics.
Chua's Equation was Proved to BE Chaotic in Two Years, Lorenz Equation in Thirty Six Years
NASA Astrophysics Data System (ADS)
Muthuswamy, Bharathwaj
2013-01-01
Although there are probably more publications on Chua's circuit than any other chaotic circuit, a tutorial with a historical emphasis is still lacking. Hence the goal of this chapter is to provide such a tutorial. This chapter will prove useful for a novice who is looking to understand the basics behind chaotic circuits without too much technical details. The chapter also includes a cookbook approach to a rigorous proof of chaos in piecewise-linear systems. The proof is a summary of the original piecewise-linear proof of chaos in Chua's circuit. The chapter concludes with a discussion of circuits derived from Chua's circuit.
NASA Technical Reports Server (NTRS)
Noah, S. T.; Kim, Y. B.
1991-01-01
A general approach is developed for determining the periodic solutions and their stability of nonlinear oscillators with piecewise-smooth characteristics. A modified harmonic balance/Fourier transform procedure is devised for the analysis. The procedure avoids certain numerical differentiation employed previously in determining the periodic solutions, therefore enhancing the reliability and efficiency of the method. Stability of the solutions is determined via perturbations of their state variables. The method is applied to a forced oscillator interacting with a stop of finite stiffness. Flip and fold bifurcations are found to occur. This led to the identification of parameter ranges in which chaotic response occurred.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2013-01-01
Large deformation displacement transfer functions were formulated for deformed shape predictions of highly flexible slender structures like aircraft wings. In the formulation, the embedded beam (depth wise cross section of structure along the surface strain sensing line) was first evenly discretized into multiple small domains, with surface strain sensing stations located at the domain junctures. Thus, the surface strain (bending strains) variation within each domain could be expressed with linear of nonlinear function. Such piecewise approach enabled piecewise integrations of the embedded beam curvature equations [classical (Eulerian), physical (Lagrangian), and shifted curvature equations] to yield closed form slope and deflection equations in recursive forms.
Piecewise multivariate modelling of sequential metabolic profiling data.
Rantalainen, Mattias; Cloarec, Olivier; Ebbels, Timothy M D; Lundstedt, Torbjörn; Nicholson, Jeremy K; Holmes, Elaine; Trygg, Johan
2008-02-19
Modelling the time-related behaviour of biological systems is essential for understanding their dynamic responses to perturbations. In metabolic profiling studies, the sampling rate and number of sampling points are often restricted due to experimental and biological constraints. A supervised multivariate modelling approach with the objective to model the time-related variation in the data for short and sparsely sampled time-series is described. A set of piecewise Orthogonal Projections to Latent Structures (OPLS) models are estimated, describing changes between successive time points. The individual OPLS models are linear, but the piecewise combination of several models accommodates modelling and prediction of changes which are non-linear with respect to the time course. We demonstrate the method on both simulated and metabolic profiling data, illustrating how time related changes are successfully modelled and predicted. The proposed method is effective for modelling and prediction of short and multivariate time series data. A key advantage of the method is model transparency, allowing easy interpretation of time-related variation in the data. The method provides a competitive complement to commonly applied multivariate methods such as OPLS and Principal Component Analysis (PCA) for modelling and analysis of short time-series data.
Semilinear programming: applications and implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohan, S.
Semilinear programming is a method of solving optimization problems with linear constraints where the non-negativity restrictions on the variables are dropped and the objective function coefficients can take on different values depending on whether the variable is positive or negative. The simplex method for linear programming is modified in this thesis to solve general semilinear and piecewise linear programs efficiently without having to transform them into equivalent standard linear programs. Several models in widely different areas of optimization such as production smoothing, facility locations, goal programming and L/sub 1/ estimation are presented first to demonstrate the compact formulation that arisesmore » when such problems are formulated as semilinear programs. A code SLP is constructed using the semilinear programming techniques. Problems in aggregate planning and L/sub 1/ estimation are solved using SLP and equivalent linear programs using a linear programming simplex code. Comparisons of CPU times and number iterations indicate SLP to be far superior. The semilinear programming techniques are extended to piecewise linear programming in the implementation of the code PLP. Piecewise linear models in aggregate planning are solved using PLP and equivalent standard linear programs using a simple upper bounded linear programming code SUBLP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boys, Craig A.; Robinson, Wayne; Miller, Brett
2016-05-13
Barotrauma injury can occur when fish are exposed to rapid decompression during downstream passage through river infrastructure. A piecewise regression approach was used to objectively quantify barotrauma injury thresholds in two physoclistous species (Murray cod Maccullochella peelii and silver perch Bidyanus bidyanus) following simulated infrastructure passage in barometric chambers. The probability of injuries such as swim bladder rupture; exophthalmia; and haemorrhage and emphysema in various organs increased as the ratio between the lowest exposure pressure and the acclimation pressure (ratio of pressure change RPCE/A) fell. The relationship was typically non-linear and piecewise regression was able to quantify thresholds in RPCE/Amore » that once exceeded resulted in a substantial increase in barotrauma injury. Thresholds differed among injury types and between species but by applying a multi-species precautionary principle, the maintenance of exposure pressures at river infrastructure above 70% of acclimation pressure (RPCE/A of 0.7) should sufficiently protect downstream migrating juveniles of these two physoclistous species. These findings have important implications for determining the risk posed by current infrastructures and informing the design and operation of new ones.« less
A partially penalty immersed Crouzeix-Raviart finite element method for interface problems.
An, Na; Yu, Xijun; Chen, Huanzhen; Huang, Chaobao; Liu, Zhongyan
2017-01-01
The elliptic equations with discontinuous coefficients are often used to describe the problems of the multiple materials or fluids with different densities or conductivities or diffusivities. In this paper we develop a partially penalty immersed finite element (PIFE) method on triangular grids for anisotropic flow models, in which the diffusion coefficient is a piecewise definite-positive matrix. The standard linear Crouzeix-Raviart type finite element space is used on non-interface elements and the piecewise linear Crouzeix-Raviart type immersed finite element (IFE) space is constructed on interface elements. The piecewise linear functions satisfying the interface jump conditions are uniquely determined by the integral averages on the edges as degrees of freedom. The PIFE scheme is given based on the symmetric, nonsymmetric or incomplete interior penalty discontinuous Galerkin formulation. The solvability of the method is proved and the optimal error estimates in the energy norm are obtained. Numerical experiments are presented to confirm our theoretical analysis and show that the newly developed PIFE method has optimal-order convergence in the [Formula: see text] norm as well. In addition, numerical examples also indicate that this method is valid for both the isotropic and the anisotropic elliptic interface problems.
Existence of almost periodic solutions for forced perturbed systems with piecewise constant argument
NASA Astrophysics Data System (ADS)
Xia, Yonghui; Huang, Zhenkun; Han, Maoan
2007-09-01
Certain almost periodic forced perturbed systems with piecewise argument are considered in this paper. By using the contraction mapping principle and some new analysis technique, some sufficient conditions are obtained for the existence and uniqueness of almost periodic solution of these systems. Furthermore, we study the harmonic and subharmonic solutions of these systems. The obtained results generalize the previous known results such as [A.M. Fink, Almost Periodic Differential Equation, Lecture Notes in Math., volE 377, Springer-Verlag, Berlin, 1974; C.Y. He, Almost Periodic Differential Equations, Higher Education Press, Beijing, 1992 (in Chinese); Z.S. Lin, The existence of almost periodic solution of linear system, Acta Math. Sinica 22 (5) (1979) 515-528 (in Chinese); C.Y. He, Existence of almost periodic solutions of perturbation systems, Ann. Differential Equations 9 (2) (1992) 173-181; Y.H. Xia, M. Lin, J. Cao, The existence of almost periodic solutions of certain perturbation system, J. Math. Anal. Appl. 310 (1) (2005) 81-96]. Finally, a tangible example and its numeric simulations show the feasibility of our results, the comparison between non-perturbed system and perturbed system, the relation between systems with and without piecewise argument.
Spike solutions in Gierer#x2013;Meinhardt model with a time dependent anomaly exponent
NASA Astrophysics Data System (ADS)
Nec, Yana
2018-01-01
Experimental evidence of complex dispersion regimes in natural systems, where the growth of the mean square displacement in time cannot be characterised by a single power, has been accruing for the past two decades. In such processes the exponent γ(t) in ⟨r2⟩ ∼ tγ(t) at times might be approximated by a piecewise constant function, or it can be a continuous function. Variable order differential equations are an emerging mathematical tool with a strong potential to model these systems. However, variable order differential equations are not tractable by the classic differential equations theory. This contribution illustrates how a classic method can be adapted to gain insight into a system of this type. Herein a variable order Gierer-Meinhardt model is posed, a generic reaction- diffusion system of a chemical origin. With a fixed order this system possesses a solution in the form of a constellation of arbitrarily situated localised pulses, when the components' diffusivity ratio is asymptotically small. The pattern was shown to exist subject to multiple step-like transitions between normal diffusion and sub-diffusion, as well as between distinct sub-diffusive regimes. The analytical approximation obtained permits qualitative analysis of the impact thereof. Numerical solution for typical cross-over scenarios revealed such features as earlier equilibration and non-monotonic excursions before attainment of equilibrium. The method is general and allows for an approximate numerical solution with any reasonably behaved γ(t).
Bilinear effect in complex systems
NASA Astrophysics Data System (ADS)
Lam, Lui; Bellavia, David C.; Han, Xiao-Pu; Alston Liu, Chih-Hui; Shu, Chang-Qing; Wei, Zhengjin; Zhou, Tao; Zhu, Jichen
2010-09-01
The distribution of the lifetime of Chinese dynasties (as well as that of the British Isles and Japan) in a linear Zipf plot is found to consist of two straight lines intersecting at a transition point. This two-section piecewise-linear distribution is different from the power law or the stretched exponent distribution, and is called the Bilinear Effect for short. With assumptions mimicking the organization of ancient Chinese regimes, a 3-layer network model is constructed. Numerical results of this model show the bilinear effect, providing a plausible explanation of the historical data. The bilinear effect in two other social systems is presented, indicating that such a piecewise-linear effect is widespread in social systems.
Limit cycles in piecewise-affine gene network models with multiple interaction loops
NASA Astrophysics Data System (ADS)
Farcot, Etienne; Gouzé, Jean-Luc
2010-01-01
In this article, we consider piecewise affine differential equations modelling gene networks. We work with arbitrary decay rates, and under a local hypothesis expressed as an alignment condition of successive focal points. The interaction graph of the system may be rather complex (multiple intricate loops of any sign, multiple thresholds, etc.). Our main result is an alternative theorem showing that if a sequence of region is periodically visited by trajectories, then under our hypotheses, there exists either a unique stable periodic solution, or the origin attracts all trajectories in this sequence of regions. This result extends greatly our previous work on a single negative feedback loop. We give several examples and simulations illustrating different cases.
Locomotion of C. elegans: A Piecewise-Harmonic Curvature Representation of Nematode Behavior
Padmanabhan, Venkat; Khan, Zeina S.; Solomon, Deepak E.; Armstrong, Andrew; Rumbaugh, Kendra P.; Vanapalli, Siva A.; Blawzdziewicz, Jerzy
2012-01-01
Caenorhabditis elegans, a free-living soil nematode, displays a rich variety of body shapes and trajectories during its undulatory locomotion in complex environments. Here we show that the individual body postures and entire trails of C. elegans have a simple analytical description in curvature representation. Our model is based on the assumption that the curvature wave is generated in the head segment of the worm body and propagates backwards. We have found that a simple harmonic function for the curvature can capture multiple worm shapes during the undulatory movement. The worm body trajectories can be well represented in terms of piecewise sinusoidal curvature with abrupt changes in amplitude, wavevector, and phase. PMID:22792224
NASA Technical Reports Server (NTRS)
Krishnamurthy, T.; Romero, V. J.
2002-01-01
The usefulness of piecewise polynomials with C1 and C2 derivative continuity for response surface construction method is examined. A Moving Least Squares (MLS) method is developed and compared with four other interpolation methods, including kriging. First the selected methods are applied and compared with one another in a two-design variables problem with a known theoretical response function. Next the methods are tested in a four-design variables problem from a reliability-based design application. In general the piecewise polynomial with higher order derivative continuity methods produce less error in the response prediction. The MLS method was found to be superior for response surface construction among the methods evaluated.
Domain decomposition methods for nonconforming finite element spaces of Lagrange-type
NASA Technical Reports Server (NTRS)
Cowsar, Lawrence C.
1993-01-01
In this article, we consider the application of three popular domain decomposition methods to Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order elliptic equations. The additive Schwarz method of Dryja and Widlund, the vertex space method of Smith, and the balancing method of Mandel applied to nonconforming elements are shown to converge at a rate no worse than their applications to the standard conforming piecewise linear Galerkin discretization. Essentially, the theory for the nonconforming elements is inherited from the existing theory for the conforming elements with only modest modification by constructing an isomorphism between the nonconforming finite element space and a space of continuous piecewise linear functions.
A piecewise smooth model of evolutionary game for residential mobility and segregation
NASA Astrophysics Data System (ADS)
Radi, D.; Gardini, L.
2018-05-01
The paper proposes an evolutionary version of a Schelling-type dynamic system to model the patterns of residential segregation when two groups of people are involved. The payoff functions of agents are the individual preferences for integration which are empirically grounded. Differently from Schelling's model, where the limited levels of tolerance are the driving force of segregation, in the current setup agents benefit from integration. Despite the differences, the evolutionary model shows a dynamics of segregation that is qualitatively similar to the one of the classical Schelling's model: segregation is always a stable equilibrium, while equilibria of integration exist only for peculiar configurations of the payoff functions and their asymptotic stability is highly sensitive to parameter variations. Moreover, a rich variety of integrated dynamic behaviors can be observed. In particular, the dynamics of the evolutionary game is regulated by a one-dimensional piecewise smooth map with two kink points that is rigorously analyzed using techniques recently developed for piecewise smooth dynamical systems. The investigation reveals that when a stable internal equilibrium exists, the bimodal shape of the map leads to several different kinds of bifurcations, smooth, and border collision, in a complicated interplay. Our global analysis can give intuitions to be used by a social planner to maximize integration through social policies that manipulate people's preferences for integration.
Three-Dimensional Piecewise-Continuous Class-Shape Transformation of Wings
NASA Technical Reports Server (NTRS)
Olson, Erik D.
2015-01-01
Class-Shape Transformation (CST) is a popular method for creating analytical representations of the surface coordinates of various components of aerospace vehicles. A wide variety of two- and three-dimensional shapes can be represented analytically using only a modest number of parameters, and the surface representation is smooth and continuous to as fine a degree as desired. This paper expands upon the original two-dimensional representation of airfoils to develop a generalized three-dimensional CST parametrization scheme that is suitable for a wider range of aircraft wings than previous formulations, including wings with significant non-planar shapes such as blended winglets and box wings. The method uses individual functions for the spanwise variation of airfoil shape, chord, thickness, twist, and reference axis coordinates to build up the complete wing shape. An alternative formulation parameterizes the slopes of the reference axis coordinates in order to relate the spanwise variation to the tangents of the sweep and dihedral angles. Also discussed are methods for fitting existing wing surface coordinates, including the use of piecewise equations to handle discontinuities, and mathematical formulations of geometric continuity constraints. A subsonic transport wing model is used as an example problem to illustrate the application of the methodology and to quantify the effects of piecewise representation and curvature constraints.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2015-01-01
Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were analytically generated from finite-element analysis. The shape prediction accuracies of the Variable- Domain Displacement Transfer Functions were then determined in light of the finite-element generated slopes and deflections, and were fofound to be comparable to the accuracies of the constant-domain Displacement Transfer Functions
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran; Lung, Shun-Fat
2017-01-01
For shape predictions of structures under large geometrically nonlinear deformations, Curved Displacement Transfer Functions were formulated based on a curved displacement, traced by a material point from the undeformed position to deformed position. The embedded beam (depth-wise cross section of a structure along a surface strain-sensing line) was discretized into multiple small domains, with domain junctures matching the strain-sensing stations. Thus, the surface strain distribution could be described with a piecewise linear or a piecewise nonlinear function. The discretization approach enabled piecewise integrations of the embedded-beam curvature equations to yield the Curved Displacement Transfer Functions, expressed in terms of embedded beam geometrical parameters and surface strains. By entering the surface strain data into the Displacement Transfer Functions, deflections along each embedded beam can be calculated at multiple points for mapping the overall structural deformed shapes. Finite-element linear and nonlinear analyses of a tapered cantilever tubular beam were performed to generate linear and nonlinear surface strains and the associated deflections to be used for validation. The shape prediction accuracies were then determined by comparing the theoretical deflections with the finiteelement- generated deflections. The results show that the newly developed Curved Displacement Transfer Functions are very accurate for shape predictions of structures under large geometrically nonlinear deformations.
Chaotic dynamics and diffusion in a piecewise linear equation
NASA Astrophysics Data System (ADS)
Shahrear, Pabel; Glass, Leon; Edwards, Rod
2015-03-01
Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.
Hamiltonian flows with random-walk behaviour originating from zero-sum games and fictitious play
NASA Astrophysics Data System (ADS)
van Strien, Sebastian
2011-06-01
In this paper we introduce Hamiltonian dynamics, inspired by zero-sum games (best response and fictitious play dynamics). The Hamiltonian functions we consider are continuous and piecewise affine (and of a very simple form). It follows that the corresponding Hamiltonian vector fields are discontinuous and multi-valued. Differential equations with discontinuities along a hyperplane are often called 'Filippov systems', and there is a large literature on such systems, see for example (di Bernardo et al 2008 Theory and applications Piecewise-Smooth Dynamical Systems (Applied Mathematical Sciences vol 163) (London: Springer); Kunze 2000 Non-Smooth Dynamical Systems (Lecture Notes in Mathematics vol 1744) (Berlin: Springer); Leine and Nijmeijer 2004 Dynamics and Bifurcations of Non-smooth Mechanical Systems (Lecture Notes in Applied and Computational Mechanics vol 18) (Berlin: Springer)). The special feature of the systems we consider here is that they have discontinuities along a large number of intersecting hyperplanes. Nevertheless, somewhat surprisingly, the flow corresponding to such a vector field exists, is unique and continuous. We believe that these vector fields deserve attention, because it turns out that the resulting dynamics are rather different from those found in more classically defined Hamiltonian dynamics. The vector field is extremely simple: outside codimension-one hyperplanes it is piecewise constant and so the flow phit piecewise a translation (without stationary points). Even so, the dynamics can be rather rich and complicated as a detailed study of specific examples show (see for example theorems 7.1 and 7.2 and also (Ostrovski and van Strien 2011 Regular Chaotic Dynf. 16 129-54)). In the last two sections of the paper we give some applications to game theory, and finish with posing a version of the Palis conjecture in the context of the class of non-smooth systems studied in this paper. To Jacob Palis on his 70th birthday.
Wu, Hao; Wan, Zhong
2018-02-01
In this paper, a multiobjective mixed-integer piecewise nonlinear programming model (MOMIPNLP) is built to formulate the management problem of urban mining system, where the decision variables are associated with buy-back pricing, choices of sites, transportation planning, and adjustment of production capacity. Different from the existing approaches, the social negative effect, generated from structural optimization of the recycling system, is minimized in our model, as well as the total recycling profit and utility from environmental improvement are jointly maximized. For solving the problem, the MOMIPNLP model is first transformed into an ordinary mixed-integer nonlinear programming model by variable substitution such that the piecewise feature of the model is removed. Then, based on technique of orthogonal design, a hybrid heuristic algorithm is developed to find an approximate Pareto-optimal solution, where genetic algorithm is used to optimize the structure of search neighborhood, and both local branching algorithm and relaxation-induced neighborhood search algorithm are employed to cut the searching branches and reduce the number of variables in each branch. Numerical experiments indicate that this algorithm spends less CPU (central processing unit) time in solving large-scale regional urban mining management problems, especially in comparison with the similar ones available in literature. By case study and sensitivity analysis, a number of practical managerial implications are revealed from the model. Since the metal stocks in society are reliable overground mineral sources, urban mining has been paid great attention as emerging strategic resources in an era of resource shortage. By mathematical modeling and development of efficient algorithms, this paper provides decision makers with useful suggestions on the optimal design of recycling system in urban mining. For example, this paper can answer how to encourage enterprises to join the recycling activities by government's support and subsidies, whether the existing recycling system can meet the developmental requirements or not, and what is a reasonable adjustment of production capacity.
Durstewitz, Daniel
2017-06-01
The computational and cognitive properties of neural systems are often thought to be implemented in terms of their (stochastic) network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit recordings or neuroimaging data, is an important step toward understanding its computations. Ideally, one would not only seek a (lower-dimensional) state space representation of the dynamics, but would wish to have access to its statistical properties and their generative equations for in-depth analysis. Recurrent neural networks (RNNs) are a computationally powerful and dynamically universal formal framework which has been extensively studied from both the computational and the dynamical systems perspective. Here we develop a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs (PLRNNs) within the statistical framework of state space models, which accounts for noise in both the underlying latent dynamics and the observation process. The Expectation-Maximization algorithm is used to infer the latent state distribution, through a global Laplace approximation, and the PLRNN parameters iteratively. After validating the procedure on toy examples, and using inference through particle filters for comparison, the approach is applied to multiple single-unit recordings from the rodent anterior cingulate cortex (ACC) obtained during performance of a classical working memory task, delayed alternation. Models estimated from kernel-smoothed spike time data were able to capture the essential computational dynamics underlying task performance, including stimulus-selective delay activity. The estimated models were rarely multi-stable, however, but rather were tuned to exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work advances a semi-analytical (thus reasonably fast) maximum-likelihood estimation framework for PLRNNs that may enable to recover relevant aspects of the nonlinear dynamics underlying observed neuronal time series, and directly link these to computational properties.
Statistical methods for investigating quiescence and other temporal seismicity patterns
Matthews, M.V.; Reasenberg, P.A.
1988-01-01
We propose a statistical model and a technique for objective recognition of one of the most commonly cited seismicity patterns:microearthquake quiescence. We use a Poisson process model for seismicity and define a process with quiescence as one with a particular type of piece-wise constant intensity function. From this model, we derive a statistic for testing stationarity against a 'quiescence' alternative. The large-sample null distribution of this statistic is approximated from simulated distributions of appropriate functionals applied to Brownian bridge processes. We point out the restrictiveness of the particular model we propose and of the quiescence idea in general. The fact that there are many point processes which have neither constant nor quiescent rate functions underscores the need to test for and describe nonuniformity thoroughly. We advocate the use of the quiescence test in conjunction with various other tests for nonuniformity and with graphical methods such as density estimation. ideally these methods may promote accurate description of temporal seismicity distributions and useful characterizations of interesting patterns. ?? 1988 Birkha??user Verlag.
The influence of ground conductivity on the structure of RF radiation from return strokes
NASA Technical Reports Server (NTRS)
Levine, D. M.; Gesell, L.
1984-01-01
The combination of the finite conductivity of the Earth plus the propagation of the return stroke current up the channel which results in an apparent time delay between the fast field changes and RF radiation for distant observers is shown. The time delay predicted from model return strokes is on the order of 20 micro and the received signal has the characteristics of the data observed in Virginia and Florida. A piecewise linear model for the return stroke channel and a transmission line model for current propagation on each segment was used. Radiation from each segment is calculated over a flat Earth with finite conductivity using asymptotics approximations for the Sommerfeld integrals. The radiation at the observer is processed by a model AM radio receiver. The output voltage was calculated for several frequencies between HF-UHF assuming a system bandwidth (300 kHz) characteristic of the system used to collect data in Florida and Virginia. Comparison with the theoretical fast field changes indicates a time delay of 20 microns.
Image Processing Of Images From Peripheral-Artery Digital Subtraction Angiography (DSA) Studies
NASA Astrophysics Data System (ADS)
Wilson, David L.; Tarbox, Lawrence R.; Cist, David B.; Faul, David D.
1988-06-01
A system is being developed to test the possibility of doing peripheral, digital subtraction angiography (DSA) with a single contrast injection using a moving gantry system. Given repositioning errors that occur between the mask and contrast-containing images, factors affecting the success of subtractions following image registration have been investigated theoretically and experimentally. For a 1 mm gantry displacement, parallax and geometric image distortion (pin-cushion) both give subtraction errors following registration that are approximately 25% of the error resulting from no registration. Image processing techniques improve the subtractions. The geometric distortion effect is reduced using a piece-wise, 8 parameter unwarping method. Plots of image similarity measures versus pixel shift are well behaved and well fit by a parabola, leading to the development of an iterative, automatic registration algorithm that uses parabolic prediction of the new minimum. The registration algorithm converges quickly (less than 1 second on a MicroVAX) and is relatively immune to the region of interest (ROI) selected.
Hypothalamic stimulation and baroceptor reflex interaction on renal nerve activity.
NASA Technical Reports Server (NTRS)
Wilson, M. F.; Ninomiya, I.; Franz, G. N.; Judy, W. V.
1971-01-01
The basal level of mean renal nerve activity (MRNA-0) measured in anesthetized cats was found to be modified by the additive interaction of hypothalamic and baroceptor reflex influences. Data were collected with the four major baroceptor nerves either intact or cut, and with mean aortic pressure (MAP) either clamped with a reservoir or raised with l-epinephrine. With intact baroceptor nerves, MRNA stayed essentially constant at level MRNA-0 for MAP below an initial pressure P1, and fell approximately linearly to zero as MAP was raised to P2. Cutting the baroceptor nerves kept MRNA at MRNA-0 (assumed to represent basal central neural output) independent of MAP. The addition of hypothalamic stimulation produced nearly constant increments in MRNA for all pressure levels up to P2, with complete inhibition at some level above P2. The increments in MRNA depended on frequency and location of the stimulus. A piecewise linear model describes MRNA as a linear combination of hypothalamic, basal central neural, and baroceptor reflex activity.
Sequential limiting in continuous and discontinuous Galerkin methods for the Euler equations
NASA Astrophysics Data System (ADS)
Dobrev, V.; Kolev, Tz.; Kuzmin, D.; Rieben, R.; Tomov, V.
2018-03-01
We present a new predictor-corrector approach to enforcing local maximum principles in piecewise-linear finite element schemes for the compressible Euler equations. The new element-based limiting strategy is suitable for continuous and discontinuous Galerkin methods alike. In contrast to synchronized limiting techniques for systems of conservation laws, we constrain the density, momentum, and total energy in a sequential manner which guarantees positivity preservation for the pressure and internal energy. After the density limiting step, the total energy and momentum gradients are adjusted to incorporate the irreversible effect of density changes. Antidiffusive corrections to bounds-compatible low-order approximations are limited to satisfy inequality constraints for the specific total and kinetic energy. An accuracy-preserving smoothness indicator is introduced to gradually adjust lower bounds for the element-based correction factors. The employed smoothness criterion is based on a Hessian determinant test for the density. A numerical study is performed for test problems with smooth and discontinuous solutions.
Synchronization and desynchronization in a network of locally coupled Wilson-Cowan oscillators.
Campbell, S; Wang, D
1996-01-01
A network of Wilson-Cowan (WC) oscillators is constructed, and its emergent properties of synchronization and desynchronization are investigated by both computer simulation and formal analysis. The network is a 2D matrix, where each oscillator is coupled only to its neighbors. We show analytically that a chain of locally coupled oscillators (the piecewise linear approximation to the WC oscillator) synchronizes, and we present a technique to rapidly entrain finite numbers of oscillators. The coupling strengths change on a fast time scale based on a Hebbian rule. A global separator is introduced which receives input from and sends feedback to each oscillator in the matrix. The global separator is used to desynchronize different oscillator groups. Unlike many other models, the properties of this network emerge from local connections that preserve spatial relationships among components and are critical for encoding Gestalt principles of feature grouping. The ability to synchronize and desynchronize oscillator groups within this network offers a promising approach for pattern segmentation and figure/ground segregation based on oscillatory correlation.
Refined Zigzag Theory for Laminated Composite and Sandwich Plates
NASA Technical Reports Server (NTRS)
Tessler, Alexander; DiSciuva, Marco; Gherlone, Marco
2009-01-01
A refined zigzag theory is presented for laminated-composite and sandwich plates that includes the kinematics of first-order shear deformation theory as its baseline. The theory is variationally consistent and is derived from the virtual work principle. Novel piecewise-linear zigzag functions that provide a more realistic representation of the deformation states of transverse-shear-flexible plates than other similar theories are used. The formulation does not enforce full continuity of the transverse shear stresses across the plate s thickness, yet is robust. Transverse-shear correction factors are not required to yield accurate results. The theory is devoid of the shortcomings inherent in the previous zigzag theories including shear-force inconsistency and difficulties in simulating clamped boundary conditions, which have greatly limited the accuracy of these theories. This new theory requires only C(sup 0)-continuous kinematic approximations and is perfectly suited for developing computationally efficient finite elements. The theory should be useful for obtaining relatively efficient, accurate estimates of structural response needed to design high-performance load-bearing aerospace structures.
Instabilities in a staircase stratified shear flow
NASA Astrophysics Data System (ADS)
Ponetti, G.; Balmforth, N. J.; Eaves, T. S.
2018-01-01
We study stratified shear flow instability where the density profile takes the form of a staircase of interfaces separating uniform layers. Internal gravity waves riding on density interfaces can resonantly interact due to a background shear flow, resulting in the Taylor-Caulfield instability. The many steps of the density profile permit a multitude of interactions between different interfaces, and a rich variety of Taylor-Caulfield instabilities. We analyse the linear instability of a staircase with piecewise-constant density profile embedded in a background linear shear flow, locating all the unstable modes and identifying the strongest. The interaction between nearest-neighbour interfaces leads to the most unstable modes. The nonlinear dynamics of the instabilities are explored in the long-wavelength, weakly stratified limit (the defect approximation). Unstable modes on adjacent interfaces saturate by rolling up the intervening layer into a distinctive billow. These nonlinear structures coexist when stacked vertically and are bordered by the sharp density gradients that are the remnants of the steps of the original staircase. Horizontal averages remain layer-like.
NASA Astrophysics Data System (ADS)
Nguyen, Ngoc Linh; Borghi, Giovanni; Ferretti, Andrea; Marzari, Nicola
The determination of spectral properties of the DNA and RNA nucleobases from first principles can provide theoretical interpretation for experimental data, but requires complex electronic-structure formulations that fall outside the domain of applicability of common approaches such as density-functional theory. In this work, we show that Koopmans-compliant functionals, constructed to enforce piecewise linearity in energy functionals with respect to fractional occupation-i.e., with respect to charged excitations-can predict not only frontier ionization potentials and electron affinities of the nucleobases with accuracy comparable or superior with that of many-body perturbation theory and high-accuracy quantum chemistry methods, but also the molecular photoemission spectra are shown to be in excellent agreement with experimental ultraviolet photoemsision spectroscopy data. The results highlight the role of Koopmans-compliant functionals as accurate and inexpensive quasiparticle approximations to the spectral potential, which transform DFT into a novel dynamical formalism where electronic properties, and not only total energies, can be correctly accounted for.
Focusing of concentric piecewise vector Bessel-Gaussian beam
NASA Astrophysics Data System (ADS)
Li, Jinsong; Fang, Ying; Zhou, Shenghua; Ye, Youxiang
2010-12-01
The focusing properties of a concentric piecewise vector Bessel-Gaussian beam are investigated in this paper. The beam consists of three portions: the center circular portion and outer annular portion are radially polarized, while the inner annular portion is generalized polarized with tunable polarized angle. Numerical simulations show that the evolution of focal pattern is altered considerably with different Bessel parameters in the Bessel term of the vector Bessel-Gaussian beam. The polarized angle also affects the focal pattern remarkably. Some interesting focal patterns may appear, such as two-peak, dark hollow focus; ring focus; spherical shell focus; cylindrical shell focus; and multi-ring-peak focus, and transverse focal switch occurs with increasing polarized angle of the inner annular portion, which may be used in optical manipulation.
Perturbations of Jacobi polynomials and piecewise hypergeometric orthogonal systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neretin, Yu A
2006-12-31
A family of non-complete orthogonal systems of functions on the ray [0,{infinity}] depending on three real parameters {alpha}, {beta}, {theta} is constructed. The elements of this system are piecewise hypergeometric functions with singularity at x=1. For {theta}=0 these functions vanish on [1,{infinity}) and the system is reduced to the Jacobi polynomials P{sub n}{sup {alpha}}{sup ,{beta}} on the interval [0,1]. In the general case the functions constructed can be regarded as an interpretation of the expressions P{sub n+{theta}}{sup {alpha}}{sup ,{beta}}. They are eigenfunctions of an exotic Sturm-Liouville boundary-value problem for the hypergeometric differential operator. The spectral measure for this problem ismore » found.« less
A Dynamical Analysis of a Piecewise Smooth Pest Control SI Model
NASA Astrophysics Data System (ADS)
Liu, Bing; Liu, Wanbo; Tao, Fennmei; Kang, Baolin; Cong, Jiguang
In this paper, we propose a piecewise smooth SI pest control system to model the process of spraying pesticides and releasing infectious pests. We assume that the pest population consists of susceptible pests and infectious pests, and that the disease spreads horizontally between pests. We take the susceptible pest as the control index on whether to implement chemical control and biological control strategies. Based on the theory of Filippov system, the sliding-mode domain and conditions for the existence of real equilibria, virtual equilibria, pseudo-equilibrium and boundary equilibria are given. Further, we show the global stability of real equilibria (or boundary equilibria) and pseudo-equilibrium. Our results can provide theoretical guidance for the problem of pest control.
Characterization of intermittency in renewal processes: Application to earthquakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akimoto, Takuma; Hasumi, Tomohiro; Aizawa, Yoji
2010-03-15
We construct a one-dimensional piecewise linear intermittent map from the interevent time distribution for a given renewal process. Then, we characterize intermittency by the asymptotic behavior near the indifferent fixed point in the piecewise linear intermittent map. Thus, we provide a framework to understand a unified characterization of intermittency and also present the Lyapunov exponent for renewal processes. This method is applied to the occurrence of earthquakes using the Japan Meteorological Agency and the National Earthquake Information Center catalog. By analyzing the return map of interevent times, we find that interevent times are not independent and identically distributed random variablesmore » but that the conditional probability distribution functions in the tail obey the Weibull distribution.« less
Numerical integration techniques for curved-element discretizations of molecule-solvent interfaces.
Bardhan, Jaydeep P; Altman, Michael D; Willis, David J; Lippow, Shaun M; Tidor, Bruce; White, Jacob K
2007-07-07
Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, here methods were developed to model several important surface formulations using exact surface discretizations. Following and refining Zauhar's work [J. Comput.-Aided Mol. Des. 9, 149 (1995)], two classes of curved elements were defined that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. Numerical integration techniques are presented that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, a set of calculations are presented that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planar-triangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute-solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources. The results clearly demonstrate that the methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry. A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online as supplemental material.
Multiple regression technique for Pth degree polynominals with and without linear cross products
NASA Technical Reports Server (NTRS)
Davis, J. W.
1973-01-01
A multiple regression technique was developed by which the nonlinear behavior of specified independent variables can be related to a given dependent variable. The polynomial expression can be of Pth degree and can incorporate N independent variables. Two cases are treated such that mathematical models can be studied both with and without linear cross products. The resulting surface fits can be used to summarize trends for a given phenomenon and provide a mathematical relationship for subsequent analysis. To implement this technique, separate computer programs were developed for the case without linear cross products and for the case incorporating such cross products which evaluate the various constants in the model regression equation. In addition, the significance of the estimated regression equation is considered and the standard deviation, the F statistic, the maximum absolute percent error, and the average of the absolute values of the percent of error evaluated. The computer programs and their manner of utilization are described. Sample problems are included to illustrate the use and capability of the technique which show the output formats and typical plots comparing computer results to each set of input data.
Hilger, Bettina; Fromme, Hermann; Völkel, Wolfgang; Coelhan, Mehmet
2011-04-01
Log octanol-water partition coefficients (log Kow) of 40 synthesized polychlorinated n-alkanes (PCAs) with different chlorination degrees were determined using reversed-phase high performance liquid chromatography (RP-HPLC). In addition, log Kow values of a technical mixture namely Cereclor 63L as well as 15 individual in house synthesized C10, C11, and C12 chloroalkanes with known chlorine positions were estimated. Based on these results, the effects of chain length, chlorination degree, and structure were explored. The estimated log Kow values ranged from 4.10 (polychlorinated n-decanes with 50.2% chlorine content) to 11.34 (polychlorinated n-octacosanes with 54.8% chlorine content) for PCAs and from 3.82 (1,2,5,6,9,10-hexachlorodecane) to 7.75 (1,1,1,3,9,11,11,11-octachlorododecane) for the individual chloroalkanes studied. The results showed that log Kow value was influenced linearly at a given chlorine content by chain length, while a polynominal effect was observed in dependence on the chlorination degree of an alkane chain. Chlorine substitution pattern influenced markedly the log Kow value of chloroalkanes.
Piecewise-Planar StereoScan: Sequential Structure and Motion using Plane Primitives.
Raposo, Carolina; Antunes, Michel; P Barreto, Joao
2017-08-09
The article describes a pipeline that receives as input a sequence of stereo images, and outputs the camera motion and a Piecewise-Planar Reconstruction (PPR) of the scene. The pipeline, named Piecewise-Planar StereoScan (PPSS), works as follows: the planes in the scene are detected for each stereo view using semi-dense depth estimation; the relative pose is computed by a new closed-form minimal algorithm that only uses point correspondences whenever plane detections do not fully constrain the motion; the camera motion and the PPR are jointly refined by alternating between discrete optimization and continuous bundle adjustment; and, finally, the detected 3D planes are segmented in images using a new framework that handles low texture and visibility issues. PPSS is extensively validated in indoor and outdoor datasets, and benchmarked against two popular point-based SfM pipelines. The experiments confirm that plane-based visual odometry is resilient to situations of small image overlap, poor texture, specularity, and perceptual aliasing where the fast LIBVISO2 pipeline fails. The comparison against VisualSfM+CMVS/PMVS shows that, for a similar computational complexity, PPSS is more accurate and provides much more compelling and visually pleasant 3D models. These results strongly suggest that plane primitives are an advantageous alternative to point correspondences for applications of SfM and 3D reconstruction in man-made environments.
Lindsey, J C; Ryan, L M
1994-01-01
The three-state illness-death model provides a useful way to characterize data from a rodent tumorigenicity experiment. Most parametrizations proposed recently in the literature assume discrete time for the death process and either discrete or continuous time for the tumor onset process. We compare these approaches with a third alternative that uses a piecewise continuous model on the hazards for tumor onset and death. All three models assume proportional hazards to characterize tumor lethality and the effect of dose on tumor onset and death rate. All of the models can easily be fitted using an Expectation Maximization (EM) algorithm. The piecewise continuous model is particularly appealing in this context because the complete data likelihood corresponds to a standard piecewise exponential model with tumor presence as a time-varying covariate. It can be shown analytically that differences between the parameter estimates given by each model are explained by varying assumptions about when tumor onsets, deaths, and sacrifices occur within intervals. The mixed-time model is seen to be an extension of the grouped data proportional hazards model [Mutat. Res. 24:267-278 (1981)]. We argue that the continuous-time model is preferable to the discrete- and mixed-time models because it gives reasonable estimates with relatively few intervals while still making full use of the available information. Data from the ED01 experiment illustrate the results. PMID:8187731
Solutions of some problems in applied mathematics using MACSYMA
NASA Technical Reports Server (NTRS)
Punjabi, Alkesh; Lam, Maria
1987-01-01
Various Symbolic Manipulation Programs (SMP) were tested to check the functioning of their commands and suitability under various operating systems. Support systems for SMP were found to be relatively better than the one for MACSYMA. The graphics facilities for MACSYMA do not work as expected under the UNIX operating system. Not all commands for MACSYMA function as described in the manuals. Shape representation is a central issue in computer graphics and computer-aided design. Aside from appearance, there are other application dependent, desirable properties like continuity to certain order, symmetry, axis-independence, and variation-diminishing properties. Several shape representations are studied, which include the Osculatory Method, a Piecewise Cubic Polynomial Method using two different slope estimates, Piecewise Cubic Hermite Form, a method by Harry McLaughlin, and a Piecewise Bezier Method. They are applied to collected physical and chemical data. Relative merits and demerits of these methods are examined. Kinematics of a single link, non-dissipative robot arm is studied using MACSYMA. Lagranian is set-up and Lagrange's equations are derived. From there, Hamiltonian equations of motion are obtained. Equations suggest that bifurcation of solutions can occur, depending upon the value of a single parameter. Using the characteristic function W, the Hamilton-Jacobi equation is derived. It is shown that the H-J equation can be solved in closed form. Analytical solutions to the H-J equation are obtained.
Piecewise exponential survival times and analysis of case-cohort data.
Li, Yan; Gail, Mitchell H; Preston, Dale L; Graubard, Barry I; Lubin, Jay H
2012-06-15
Case-cohort designs select a random sample of a cohort to be used as control with cases arising from the follow-up of the cohort. Analyses of case-cohort studies with time-varying exposures that use Cox partial likelihood methods can be computer intensive. We propose a piecewise-exponential approach where Poisson regression model parameters are estimated from a pseudolikelihood and the corresponding variances are derived by applying Taylor linearization methods that are used in survey research. The proposed approach is evaluated using Monte Carlo simulations. An illustration is provided using data from the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study of male smokers in Finland, where a case-cohort study of serum glucose level and pancreatic cancer was analyzed. Copyright © 2012 John Wiley & Sons, Ltd.
Piecewise silence in discrete cosmological models
NASA Astrophysics Data System (ADS)
Clifton, Timothy; Gregoris, Daniele; Rosquist, Kjell
2014-05-01
We consider a family of cosmological models in which all mass is confined to a regular lattice of identical black holes. By exploiting the reflection symmetry about planes that bisect these lattices into identical halves, we are able to consider the evolution of a number of geometrically distinguished surfaces that exist within each of them. We find that the evolution equations for the reflection symmetric surfaces can be written as a simple set of Friedmann-like equations, with source terms that behave like a set of interacting effective fluids. We then show that gravitational waves are effectively trapped within small chambers for all time, and are not free to propagate throughout the space-time. Each chamber therefore evolves as if it were in isolation from the rest of the universe. We call this phenomenon ‘piecewise silence’.
Ke, Jing; Dou, Hanfei; Zhang, Ximin; Uhagaze, Dushimabararezi Serge; Ding, Xiali; Dong, Yuming
2016-12-01
As a mono-sodium salt form of alendronic acid, alendronate sodium presents multi-level ionization for the dissociation of its four hydroxyl groups. The dissociation constants of alendronate sodium were determined in this work by studying the piecewise linear relationship between volume of titrant and pH value based on acid-base potentiometric titration reaction. The distribution curves of alendronate sodium were drawn according to the determined pKa values. There were 4 dissociation constants (pKa 1 =2.43, pKa 2 =7.55, pKa 3 =10.80, pKa 4 =11.99, respectively) of alendronate sodium, and 12 existing forms, of which 4 could be ignored, existing in different pH environments.
A generalized analog implementation of piecewise linear neuron models using CCII building blocks.
Soleimani, Hamid; Ahmadi, Arash; Bavandpour, Mohammad; Sharifipoor, Ozra
2014-03-01
This paper presents a set of reconfigurable analog implementations of piecewise linear spiking neuron models using second generation current conveyor (CCII) building blocks. With the same topology and circuit elements, without W/L modification which is impossible after circuit fabrication, these circuits can produce different behaviors, similar to the biological neurons, both for a single neuron as well as a network of neurons just by tuning reference current and voltage sources. The models are investigated, in terms of analog implementation feasibility and costs, targeting large scale hardware implementations. Results show that, in order to gain the best performance, area and accuracy; these models can be compromised. Simulation results are presented for different neuron behaviors with CMOS 350 nm technology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nolte, Guido
2003-11-21
The equation for the magnetic lead field for a given magnetoencephalography (MEG) channel is well known for arbitrary frequencies omega but is not directly applicable to MEG in the quasi-static approximation. In this paper we derive an equation for omega = 0 starting from the very definition of the lead field instead of using Helmholtz's reciprocity theorems. The results are (a) the transpose of the conductivity times the lead field is divergence-free, and (b) the lead field differs from the one in any other volume conductor by a gradient of a scalar function. Consequently, for a piecewise homogeneous and isotropic volume conductor, the lead field is always tangential at the outermost surface. Based on this theoretical result, we formulated a simple and fast method for the MEG forward calculation for one shell of arbitrary shape: we correct the corresponding lead field for a spherical volume conductor by a superposition of basis functions, gradients of harmonic functions constructed here from spherical harmonics, with coefficients fitted to the boundary conditions. The algorithm was tested for a prolate spheroid of realistic shape for which the analytical solution is known. For high order in the expansion, we found the solutions to be essentially exact and for reasonable accuracies much fewer multiplications are needed than in typical implementations of the boundary element methods. The generalization to more shells is straightforward.
Wetting and Layering for Solid-on-Solid I: Identification of the Wetting Point and Critical Behavior
NASA Astrophysics Data System (ADS)
Lacoin, Hubert
2018-06-01
We provide a complete description of the low temperature wetting transition for the two dimensional solid-on-solid model. More precisely, we study the integer-valued field {(φ(x))_{x\\in Z^2}} , associated associated with the energy functional V(φ)=β \\sum_{x ˜ y}|φ(x)-φ(y)|-\\sumx ( h{1}_{φ(x)=0}-∞{1}_{φ(x) < 0} ). Since the pioneering work Chalker [15], it is known that for every {β} , there exists {hw(β) > 0} delimiting a transition between a delocalized phase ({h < hw(β)} ) where the proportion of points at level zero vanishes, and a localized phase ({h > hw(β)} ) where this proportion is positive. We prove in the present paper that for {β} sufficiently large we have h_w(β)= log (e^{4β}/e^{4β-1} ). Furthermore, we provide a sharp asymptotic for the free energy at the vicinity of the critical line: We show that close to {h_w(β)} , the free energy is approximately piecewise affine and that the points of discontinuity for the derivative of the affine approximation forms a geometric sequence accumulating on the right of {h_w(β)} . This asymptotic behavior provides strong evidence for the conjectured existence of countably many "layering transitions" at the vicinity of the wetting line, corresponding to jumps for the typical height of the field.
NASA Astrophysics Data System (ADS)
Shariati, M.; Talon, L.; Martin, J.; Rakotomalala, N.; Salin, D.; Yortsos, Y. C.
2004-11-01
We consider miscible displacement between parallel plates in the absence of diffusion, with a concentration-dependent viscosity. By selecting a piecewise viscosity function, this can also be considered as ‘three-fluid’ flow in the same geometry. Assuming symmetry across the gap and based on the lubrication (‘equilibrium’) approximation, a description in terms of two quasi-linear hyperbolic equations is obtained. We find that the system is hyperbolic and can be solved analytically, when the mobility profile is monotonic, or when the mobility of the middle phase is smaller than its neighbours. When the mobility of the middle phase is larger, a change of type is displayed, an elliptic region developing in the composition space. Numerical solutions of Riemann problems of the hyperbolic system spanning the elliptic region, with small diffusion added, show good agreement with the analytical outside, but an unstable behaviour inside the elliptic region. In these problems, the elliptic region arises precisely at the displacement front. Crossing the elliptic region requires the solution of essentially an eigenvalue problem of the full higher-dimensional model, obtained here using lattice BGK simulations. The hyperbolic-to-elliptic change-of-type reflects the failing of the lubrication approximation, underlying the quasi-linear hyperbolic formalism, to describe the problem uniformly. The obtained solution is analogous to non-classical shocks recently suggested in problems with change of type.
NASA Astrophysics Data System (ADS)
Anderson, Daniel M.; McLaughlin, Richard M.; Miller, Cass T.
2018-02-01
We examine a mathematical model of one-dimensional draining of a fluid through a periodically-layered porous medium. A porous medium, initially saturated with a fluid of a high density is assumed to drain out the bottom of the porous medium with a second lighter fluid replacing the draining fluid. We assume that the draining layer is sufficiently dense that the dynamics of the lighter fluid can be neglected with respect to the dynamics of the heavier draining fluid and that the height of the draining fluid, represented as a free boundary in the model, evolves in time. In this context, we neglect interfacial tension effects at the boundary between the two fluids. We show that this problem admits an exact solution. Our primary objective is to develop a homogenization theory in which we find not only leading-order, or effective, trends but also capture higher-order corrections to these effective draining rates. The approximate solution obtained by this homogenization theory is compared to the exact solution for two cases: (1) the permeability of the porous medium varies smoothly but rapidly and (2) the permeability varies as a piecewise constant function representing discrete layers of alternating high/low permeability. In both cases we are able to show that the corrections in the homogenization theory accurately predict the position of the free boundary moving through the porous medium.
A new approach to simulating collisionless dark matter fluids
NASA Astrophysics Data System (ADS)
Hahn, Oliver; Abel, Tom; Kaehler, Ralf
2013-09-01
Recently, we have shown how current cosmological N-body codes already follow the fine grained phase-space information of the dark matter fluid. Using a tetrahedral tessellation of the three-dimensional manifold that describes perfectly cold fluids in six-dimensional phase space, the phase-space distribution function can be followed throughout the simulation. This allows one to project the distribution function into configuration space to obtain highly accurate densities, velocities and velocity dispersions. Here, we exploit this technique to show first steps on how to devise an improved particle-mesh technique. At its heart, the new method thus relies on a piecewise linear approximation of the phase-space distribution function rather than the usual particle discretization. We use pseudo-particles that approximate the masses of the tetrahedral cells up to quadrupolar order as the locations for cloud-in-cell (CIC) deposit instead of the particle locations themselves as in standard CIC deposit. We demonstrate that this modification already gives much improved stability and more accurate dynamics of the collisionless dark matter fluid at high force and low mass resolution. We demonstrate the validity and advantages of this method with various test problems as well as hot/warm dark matter simulations which have been known to exhibit artificial fragmentation. This completely unphysical behaviour is much reduced in the new approach. The current limitations of our approach are discussed in detail and future improvements are outlined.
Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baudron, Anne-Marie, E-mail: anne-marie.baudron@cea.fr; CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex; Lautard, Jean-Jacques, E-mail: jean-jacques.lautard@cea.fr
2014-12-15
In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity ofmore » the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.« less
Dynamic optimization of open-loop input signals for ramp-up current profiles in tokamak plasmas
NASA Astrophysics Data System (ADS)
Ren, Zhigang; Xu, Chao; Lin, Qun; Loxton, Ryan; Teo, Kok Lay
2016-03-01
Establishing a good current spatial profile in tokamak fusion reactors is crucial to effective steady-state operation. The evolution of the current spatial profile is related to the evolution of the poloidal magnetic flux, which can be modeled in the normalized cylindrical coordinates using a parabolic partial differential equation (PDE) called the magnetic diffusion equation. In this paper, we consider the dynamic optimization problem of attaining the best possible current spatial profile during the ramp-up phase of the tokamak. We first use the Galerkin method to obtain a finite-dimensional ordinary differential equation (ODE) model based on the original magnetic diffusion PDE. Then, we combine the control parameterization method with a novel time-scaling transformation to obtain an approximate optimal parameter selection problem, which can be solved using gradient-based optimization techniques such as sequential quadratic programming (SQP). This control parameterization approach involves approximating the tokamak input signals by piecewise-linear functions whose slopes and break-points are decision variables to be optimized. We show that the gradient of the objective function with respect to the decision variables can be computed by solving an auxiliary dynamic system governing the state sensitivity matrix. Finally, we conclude the paper with simulation results for an example problem based on experimental data from the DIII-D tokamak in San Diego, California.
Feischl, Michael; Gantner, Gregor; Praetorius, Dirk
2015-01-01
We consider the Galerkin boundary element method (BEM) for weakly-singular integral equations of the first-kind in 2D. We analyze some residual-type a posteriori error estimator which provides a lower as well as an upper bound for the unknown Galerkin BEM error. The required assumptions are weak and allow for piecewise smooth parametrizations of the boundary, local mesh-refinement, and related standard piecewise polynomials as well as NURBS. In particular, our analysis gives a first contribution to adaptive BEM in the frame of isogeometric analysis (IGABEM), for which we formulate an adaptive algorithm which steers the local mesh-refinement and the multiplicity of the knots. Numerical experiments underline the theoretical findings and show that the proposed adaptive strategy leads to optimal convergence. PMID:26085698
Piecewise mass flows within a solar prominence observed by the New Vacuum Solar Telescope
NASA Astrophysics Data System (ADS)
Li, Hongbo; Liu, Yu; Tam, Kuan Vai; Zhao, Mingyu; Zhang, Xuefei
2018-06-01
The material of solar prominences is often observed in a state of flowing. These mass flows (MF) are important and useful for us to understand the internal structure and dynamics of prominences. In this paper, we present a high resolution Hα observation of MFs within a quiescent solar prominence. From the observation, we find that the plasma primarily has a circular motion and a downward motion separately in the middle section and legs of the prominence, which creates a piecewise mass flow along the observed prominence. Moreover, the observation also shows a clear displacement of MF's velocity peaks in the middle section of the prominence. All of these provide us with a detailed record of MFs within a solar prominence and show a new approach to detecting the physical properties of prominence.
An Ensemble of Neural Networks for Stock Trading Decision Making
NASA Astrophysics Data System (ADS)
Chang, Pei-Chann; Liu, Chen-Hao; Fan, Chin-Yuan; Lin, Jun-Lin; Lai, Chih-Ming
Stock turning signals detection are very interesting subject arising in numerous financial and economic planning problems. In this paper, Ensemble Neural Network system with Intelligent Piecewise Linear Representation for stock turning points detection is presented. The Intelligent piecewise linear representation method is able to generate numerous stocks turning signals from the historic data base, then Ensemble Neural Network system will be applied to train the pattern and retrieve similar stock price patterns from historic data for training. These turning signals represent short-term and long-term trading signals for selling or buying stocks from the market which are applied to forecast the future turning points from the set of test data. Experimental results demonstrate that the hybrid system can make a significant and constant amount of profit when compared with other approaches using stock data available in the market.
Active distribution network planning considering linearized system loss
NASA Astrophysics Data System (ADS)
Li, Xiao; Wang, Mingqiang; Xu, Hao
2018-02-01
In this paper, various distribution network planning techniques with DGs are reviewed, and a new distribution network planning method is proposed. It assumes that the location of DGs and the topology of the network are fixed. The proposed model optimizes the capacities of DG and the optimal distribution line capacity simultaneously by a cost/benefit analysis and the benefit is quantified by the reduction of the expected interruption cost. Besides, the network loss is explicitly analyzed in the paper. For simplicity, the network loss is appropriately simplified as a quadratic function of difference of voltage phase angle. Then it is further piecewise linearized. In this paper, a piecewise linearization technique with different segment lengths is proposed. To validate its effectiveness and superiority, the proposed distribution network planning model with elaborate linearization technique is tested on the IEEE 33-bus distribution network system.
Locally Contractive Dynamics in Generalized Integrate-and-Fire Neurons*
Jimenez, Nicolas D.; Mihalas, Stefan; Brown, Richard; Niebur, Ernst; Rubin, Jonathan
2013-01-01
Integrate-and-fire models of biological neurons combine differential equations with discrete spike events. In the simplest case, the reset of the neuronal voltage to its resting value is the only spike event. The response of such a model to constant input injection is limited to tonic spiking. We here study a generalized model in which two simple spike-induced currents are added. We show that this neuron exhibits not only tonic spiking at various frequencies but also the commonly observed neuronal bursting. Using analytical and numerical approaches, we show that this model can be reduced to a one-dimensional map of the adaptation variable and that this map is locally contractive over a broad set of parameter values. We derive a sufficient analytical condition on the parameters for the map to be globally contractive, in which case all orbits tend to a tonic spiking state determined by the fixed point of the return map. We then show that bursting is caused by a discontinuity in the return map, in which case the map is piecewise contractive. We perform a detailed analysis of a class of piecewise contractive maps that we call bursting maps and show that they robustly generate stable bursting behavior. To the best of our knowledge, this work is the first to point out the intimate connection between bursting dynamics and piecewise contractive maps. Finally, we discuss bifurcations in this return map, which cause transitions between spiking patterns. PMID:24489486
Kohli, Nidhi; Sullivan, Amanda L; Sadeh, Shanna; Zopluoglu, Cengiz
2015-04-01
Effective instructional planning and intervening rely heavily on accurate understanding of students' growth, but relatively few researchers have examined mathematics achievement trajectories, particularly for students with special needs. We applied linear, quadratic, and piecewise linear mixed-effects models to identify the best-fitting model for mathematics development over elementary and middle school and to ascertain differences in growth trajectories of children with learning disabilities relative to their typically developing peers. The analytic sample of 2150 students was drawn from the Early Childhood Longitudinal Study - Kindergarten Cohort, a nationally representative sample of United States children who entered kindergarten in 1998. We first modeled students' mathematics growth via multiple mixed-effects models to determine the best fitting model of 9-year growth and then compared the trajectories of students with and without learning disabilities. Results indicate that the piecewise linear mixed-effects model captured best the functional form of students' mathematics trajectories. In addition, there were substantial achievement gaps between students with learning disabilities and students with no disabilities, and their trajectories differed such that students without disabilities progressed at a higher rate than their peers who had learning disabilities. The results underscore the need for further research to understand how to appropriately model students' mathematics trajectories and the need for attention to mathematics achievement gaps in policy. Copyright © 2015 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Accurate upwind methods for the Euler equations
NASA Technical Reports Server (NTRS)
Huynh, Hung T.
1993-01-01
A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.
Compatible-strain mixed finite element methods for incompressible nonlinear elasticity
NASA Astrophysics Data System (ADS)
Faghih Shojaei, Mostafa; Yavari, Arash
2018-05-01
We introduce a new family of mixed finite elements for incompressible nonlinear elasticity - compatible-strain mixed finite element methods (CSFEMs). Based on a Hu-Washizu-type functional, we write a four-field mixed formulation with the displacement, the displacement gradient, the first Piola-Kirchhoff stress, and a pressure-like field as the four independent unknowns. Using the Hilbert complexes of nonlinear elasticity, which describe the kinematics and the kinetics of motion, we identify the solution spaces of the independent unknown fields. In particular, we define the displacement in H1, the displacement gradient in H (curl), the stress in H (div), and the pressure field in L2. The test spaces of the mixed formulations are chosen to be the same as the corresponding solution spaces. Next, in a conforming setting, we approximate the solution and the test spaces with some piecewise polynomial subspaces of them. Among these approximation spaces are the tensorial analogues of the Nédélec and Raviart-Thomas finite element spaces of vector fields. This approach results in compatible-strain mixed finite element methods that satisfy both the Hadamard compatibility condition and the continuity of traction at the discrete level independently of the refinement level of the mesh. By considering several numerical examples, we demonstrate that CSFEMs have a good performance for bending problems and for bodies with complex geometries. CSFEMs are capable of capturing very large strains and accurately approximating stress and pressure fields. Using CSFEMs, we do not observe any numerical artifacts, e.g., checkerboarding of pressure, hourglass instability, or locking in our numerical examples. Moreover, CSFEMs provide an efficient framework for modeling heterogeneous solids.
Automatic variance reduction for Monte Carlo simulations via the local importance function transform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, S.A.
1996-02-01
The author derives a transformed transport problem that can be solved theoretically by analog Monte Carlo with zero variance. However, the Monte Carlo simulation of this transformed problem cannot be implemented in practice, so he develops a method for approximating it. The approximation to the zero variance method consists of replacing the continuous adjoint transport solution in the transformed transport problem by a piecewise continuous approximation containing local biasing parameters obtained from a deterministic calculation. He uses the transport and collision processes of the transformed problem to bias distance-to-collision and selection of post-collision energy groups and trajectories in a traditionalmore » Monte Carlo simulation of ``real`` particles. He refers to the resulting variance reduction method as the Local Importance Function Transform (LIFI) method. He demonstrates the efficiency of the LIFT method for several 3-D, linearly anisotropic scattering, one-group, and multigroup problems. In these problems the LIFT method is shown to be more efficient than the AVATAR scheme, which is one of the best variance reduction techniques currently available in a state-of-the-art Monte Carlo code. For most of the problems considered, the LIFT method produces higher figures of merit than AVATAR, even when the LIFT method is used as a ``black box``. There are some problems that cause trouble for most variance reduction techniques, and the LIFT method is no exception. For example, the author demonstrates that problems with voids, or low density regions, can cause a reduction in the efficiency of the LIFT method. However, the LIFT method still performs better than survival biasing and AVATAR in these difficult cases.« less
Optimal clinical trial design based on a dichotomous Markov-chain mixed-effect sleep model.
Steven Ernest, C; Nyberg, Joakim; Karlsson, Mats O; Hooker, Andrew C
2014-12-01
D-optimal designs for discrete-type responses have been derived using generalized linear mixed models, simulation based methods and analytical approximations for computing the fisher information matrix (FIM) of non-linear mixed effect models with homogeneous probabilities over time. In this work, D-optimal designs using an analytical approximation of the FIM for a dichotomous, non-homogeneous, Markov-chain phase advanced sleep non-linear mixed effect model was investigated. The non-linear mixed effect model consisted of transition probabilities of dichotomous sleep data estimated as logistic functions using piecewise linear functions. Theoretical linear and nonlinear dose effects were added to the transition probabilities to modify the probability of being in either sleep stage. D-optimal designs were computed by determining an analytical approximation the FIM for each Markov component (one where the previous state was awake and another where the previous state was asleep). Each Markov component FIM was weighted either equally or by the average probability of response being awake or asleep over the night and summed to derive the total FIM (FIM(total)). The reference designs were placebo, 0.1, 1-, 6-, 10- and 20-mg dosing for a 2- to 6-way crossover study in six dosing groups. Optimized design variables were dose and number of subjects in each dose group. The designs were validated using stochastic simulation/re-estimation (SSE). Contrary to expectations, the predicted parameter uncertainty obtained via FIM(total) was larger than the uncertainty in parameter estimates computed by SSE. Nevertheless, the D-optimal designs decreased the uncertainty of parameter estimates relative to the reference designs. Additionally, the improvement for the D-optimal designs were more pronounced using SSE than predicted via FIM(total). Through the use of an approximate analytic solution and weighting schemes, the FIM(total) for a non-homogeneous, dichotomous Markov-chain phase advanced sleep model was computed and provided more efficient trial designs and increased nonlinear mixed-effects modeling parameter precision.
Model equations for the Eiffel Tower profile: historical perspective and new results
NASA Astrophysics Data System (ADS)
Weidman, Patrick; Pinelis, Iosif
2004-07-01
Model equations for the shape of the Eiffel Tower are investigated. One model purported to be based on Eiffel's writing does not give a tower with the correct curvature. A second popular model not connected with Eiffel's writings provides a fair approximation to the tower's skyline profile of 29 contiguous panels. Reported here is a third model derived from Eiffel's concern about wind loads on the tower, as documented in his communication to the French Civil Engineering Society on 30 March 1885. The result is a nonlinear, integro-differential equation which is solved to yield an exponential tower profile. It is further verified that, as Eiffel wrote, "in reality the curve exterior of the tower reproduces, at a determined scale, the same curve of the moments produced by the wind". An analysis of the actual tower profile shows that it is composed of two piecewise continuous exponentials with different growth rates. This is explained by specific safety factors for wind loading that Eiffel & Company incorporated in the design of the free-standing tower. To cite this article: P. Weidman, I. Pinelis, C. R. Mecanique 332 (2004).
Bula, Gustavo Alfredo; Prodhon, Caroline; Gonzalez, Fabio Augusto; Afsar, H Murat; Velasco, Nubia
2017-02-15
This work focuses on the Heterogeneous Fleet Vehicle Routing problem (HFVRP) in the context of hazardous materials (HazMat) transportation. The objective is to determine a set of routes that minimizes the total expected routing risk. This is a nonlinear function, and it depends on the vehicle load and the population exposed when an incident occurs. Thus, a piecewise linear approximation is used to estimate it. For solving the problem, a variant of the Variable Neighborhood Search (VNS) algorithm is employed. To improve its performance, a post-optimization procedure is implemented via a Set Partitioning (SP) problem. The SP is solved on a pool of routes obtained from executions of the local search procedure embedded on the VNS. The algorithm is tested on two sets of HFVRP instances based on literature with up to 100 nodes, these instances are modified to include vehicle and arc risk parameters. The results are competitive in terms of computational efficiency and quality attested by a comparison with Mixed Integer Linear Programming (MILP) previously proposed. Copyright © 2016 Elsevier B.V. All rights reserved.
Efficient visibility encoding for dynamic illumination in direct volume rendering.
Kronander, Joel; Jönsson, Daniel; Löw, Joakim; Ljung, Patric; Ynnerman, Anders; Unger, Jonas
2012-03-01
We present an algorithm that enables real-time dynamic shading in direct volume rendering using general lighting, including directional lights, point lights, and environment maps. Real-time performance is achieved by encoding local and global volumetric visibility using spherical harmonic (SH) basis functions stored in an efficient multiresolution grid over the extent of the volume. Our method enables high-frequency shadows in the spatial domain, but is limited to a low-frequency approximation of visibility and illumination in the angular domain. In a first pass, level of detail (LOD) selection in the grid is based on the current transfer function setting. This enables rapid online computation and SH projection of the local spherical distribution of visibility information. Using a piecewise integration of the SH coefficients over the local regions, the global visibility within the volume is then computed. By representing the light sources using their SH projections, the integral over lighting, visibility, and isotropic phase functions can be efficiently computed during rendering. The utility of our method is demonstrated in several examples showing the generality and interactive performance of the approach.
Advanced Control Considerations for Turbofan Engine Design
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy
2016-01-01
This paper covers the application of a model-based engine control (MBEC) methodology featuring a self tuning on-board model for an aircraft turbofan engine simulation. The nonlinear engine model is capable of modeling realistic engine performance, allowing for a verification of the advanced control methodology over a wide range of operating points and life cycle conditions. The on-board model is a piece-wise linear model derived from the nonlinear engine model and updated using an optimal tuner Kalman Filter estimation routine, which enables the on-board model to self-tune to account for engine performance variations. MBEC is used here to show how advanced control architectures can improve efficiency during the design phase of a turbofan engine by reducing conservative operability margins. The operability margins that can be reduced, such as stall margin, can expand the engine design space and offer potential for efficiency improvements. Application of MBEC architecture to a nonlinear engine simulation is shown to reduce the thrust specific fuel consumption by approximately 1% over the baseline design, while maintaining safe operation of the engine across the flight envelope.
Xu, Zhiliang; Chen, Xu-Yan; Liu, Yingjie
2014-01-01
We present a new formulation of the Runge-Kutta discontinuous Galerkin (RKDG) method [9, 8, 7, 6] for solving conservation Laws with increased CFL numbers. The new formulation requires the computed RKDG solution in a cell to satisfy additional conservation constraint in adjacent cells and does not increase the complexity or change the compactness of the RKDG method. Numerical computations for solving one-dimensional and two-dimensional scalar and systems of nonlinear hyperbolic conservation laws are performed with approximate solutions represented by piecewise quadratic and cubic polynomials, respectively. The hierarchical reconstruction [17, 33] is applied as a limiter to eliminate spurious oscillations in discontinuous solutions. From both numerical experiments and the analytic estimate of the CFL number of the newly formulated method, we find that: 1) this new formulation improves the CFL number over the original RKDG formulation by at least three times or more and thus reduces the overall computational cost; and 2) the new formulation essentially does not compromise the resolution of the numerical solutions of shock wave problems compared with ones computed by the RKDG method. PMID:25414520
Pricing of swing options: A Monte Carlo simulation approach
NASA Astrophysics Data System (ADS)
Leow, Kai-Siong
We study the problem of pricing swing options, a class of multiple early exercise options that are traded in energy market, particularly in the electricity and natural gas markets. These contracts permit the option holder to periodically exercise the right to trade a variable amount of energy with a counterparty, subject to local volumetric constraints. In addition, the total amount of energy traded from settlement to expiration with the counterparty is restricted by a global volumetric constraint. Violation of this global volumetric constraint is allowed but would lead to penalty settled at expiration. The pricing problem is formulated as a stochastic optimal control problem in discrete time and state space. We present a stochastic dynamic programming algorithm which is based on piecewise linear concave approximation of value functions. This algorithm yields the value of the swing option under the assumption that the optimal exercise policy is applied by the option holder. We present a proof of an almost sure convergence that the algorithm generates the optimal exercise strategy as the number of iterations approaches to infinity. Finally, we provide a numerical example for pricing a natural gas swing call option.
Stage-discharge relationship in tidal channels
NASA Astrophysics Data System (ADS)
Kearney, W. S.; Mariotti, G.; Deegan, L.; Fagherazzi, S.
2016-12-01
Long-term records of the flow of water through tidal channels are essential to constrain the budgets of sediments and biogeochemical compounds in salt marshes. Statistical models which relate discharge to water level allow the estimation of such records from more easily obtained records of water stage in the channel. While there is clearly structure in the stage-discharge relationship, nonlinearity and nonstationarity of the relationship complicates the construction of statistical stage-discharge models with adequate performance for discharge estimation and uncertainty quantification. Here we compare four different types of stage-discharge models, each of which is designed to capture different characteristics of the stage-discharge relationship. We estimate and validate each of these models on a two-month long time series of stage and discharge obtained with an Acoustic Doppler Current Profiler in a salt marsh channel. We find that the best performance is obtained by models which account for the nonlinear and time-varying nature of the stage-discharge relationship. Good performance can also be obtained from a simplified version of these models which approximates the fully nonlinear and time-varying models with a piecewise linear formulation.
NASA Astrophysics Data System (ADS)
Van Zandt, James R.
2012-05-01
Steady-state performance of a tracking filter is traditionally evaluated immediately after a track update. However, there is commonly a further delay (e.g., processing and communications latency) before the tracks can actually be used. We analyze the accuracy of extrapolated target tracks for four tracking filters: Kalman filter with the Singer maneuver model and worst-case correlation time, with piecewise constant white acceleration, and with continuous white acceleration, and the reduced state filter proposed by Mookerjee and Reifler.1, 2 Performance evaluation of a tracking filter is significantly simplified by appropriate normalization. For the Kalman filter with the Singer maneuver model, the steady-state RMS error immediately after an update depends on only two dimensionless parameters.3 By assuming a worst case value of target acceleration correlation time, we reduce this to a single parameter without significantly changing the filter performance (within a few percent for air tracking).4 With this simplification, we find for all four filters that the RMS errors for the extrapolated state are functions of only two dimensionless parameters. We provide simple analytic approximations in each case.
NASA Astrophysics Data System (ADS)
Divine, D. V.; Godtliebsen, F.; Rue, H.
2012-01-01
The paper proposes an approach to assessment of timescale errors in proxy-based series with chronological uncertainties. The method relies on approximation of the physical process(es) forming a proxy archive by a random Gamma process. Parameters of the process are partly data-driven and partly determined from prior assumptions. For a particular case of a linear accumulation model and absolutely dated tie points an analytical solution is found suggesting the Beta-distributed probability density on age estimates along the length of a proxy archive. In a general situation of uncertainties in the ages of the tie points the proposed method employs MCMC simulations of age-depth profiles yielding empirical confidence intervals on the constructed piecewise linear best guess timescale. It is suggested that the approach can be further extended to a more general case of a time-varying expected accumulation between the tie points. The approach is illustrated by using two ice and two lake/marine sediment cores representing the typical examples of paleoproxy archives with age models based on tie points of mixed origin.
An approach for spherical harmonic analysis of non-smooth data
NASA Astrophysics Data System (ADS)
Wang, Hansheng; Wu, Patrick; Wang, Zhiyong
2006-12-01
A method is proposed to evaluate the spherical harmonic coefficients of a global or regional, non-smooth, observable dataset sampled on an equiangular grid. The method is based on an integration strategy using new recursion relations. Because a bilinear function is used to interpolate points within the grid cells, this method is suitable for non-smooth data; the slope of the data may be piecewise continuous, with extreme changes at the boundaries. In order to validate the method, the coefficients of an axisymmetric model are computed, and compared with the derived analytical expressions. Numerical results show that this method is indeed reasonable for non-smooth models, and that the maximum degree for spherical harmonic analysis should be empirically determined by several factors including the model resolution and the degree of non-smoothness in the dataset, and it can be several times larger than the total number of latitudinal grid points. It is also shown that this method is appropriate for the approximate analysis of a smooth dataset. Moreover, this paper provides the program flowchart and an internet address where the FORTRAN code with program specifications are made available.
Optimal Operation System of the Integrated District Heating System with Multiple Regional Branches
NASA Astrophysics Data System (ADS)
Kim, Ui Sik; Park, Tae Chang; Kim, Lae-Hyun; Yeo, Yeong Koo
This paper presents an optimal production and distribution management for structural and operational optimization of the integrated district heating system (DHS) with multiple regional branches. A DHS consists of energy suppliers and consumers, district heating pipelines network and heat storage facilities in the covered region. In the optimal management system, production of heat and electric power, regional heat demand, electric power bidding and sales, transport and storage of heat at each regional DHS are taken into account. The optimal management system is formulated as a mixed integer linear programming (MILP) where the objectives is to minimize the overall cost of the integrated DHS while satisfying the operation constraints of heat units and networks as well as fulfilling heating demands from consumers. Piecewise linear formulation of the production cost function and stairwise formulation of the start-up cost function are used to compute nonlinear cost function approximately. Evaluation of the total overall cost is based on weekly operations at each district heat branches. Numerical simulations show the increase of energy efficiency due to the introduction of the present optimal management system.
Comparison Between Polynomial, Euler Beta-Function and Expo-Rational B-Spline Bases
NASA Astrophysics Data System (ADS)
Kristoffersen, Arnt R.; Dechevsky, Lubomir T.; Laksa˚, Arne; Bang, Børre
2011-12-01
Euler Beta-function B-splines (BFBS) are the practically most important instance of generalized expo-rational B-splines (GERBS) which are not true expo-rational B-splines (ERBS). BFBS do not enjoy the full range of the superproperties of ERBS but, while ERBS are special functions computable by a very rapidly converging yet approximate numerical quadrature algorithms, BFBS are explicitly computable piecewise polynomial (for integer multiplicities), similar to classical Schoenberg B-splines. In the present communication we define, compute and visualize for the first time all possible BFBS of degree up to 3 which provide Hermite interpolation in three consecutive knots of multiplicity up to 3, i.e., the function is being interpolated together with its derivatives of order up to 2. We compare the BFBS obtained for different degrees and multiplicities among themselves and versus the classical Schoenberg polynomial B-splines and the true ERBS for the considered knots. The results of the graphical comparison are discussed from analytical point of view. For the numerical computation and visualization of the new B-splines we have used Maple 12.
Fast mix table construction for material discretization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, S. R.
2013-07-01
An effective hybrid Monte Carlo-deterministic implementation typically requires the approximation of a continuous geometry description with a discretized piecewise-constant material field. The inherent geometry discretization error can be reduced somewhat by using material mixing, where multiple materials inside a discrete mesh voxel are homogenized. Material mixing requires the construction of a 'mix table,' which stores the volume fractions in every mixture so that multiple voxels with similar compositions can reference the same mixture. Mix table construction is a potentially expensive serial operation for large problems with many materials and voxels. We formulate an efficient algorithm to construct a sparse mixmore » table in O(number of voxels x log number of mixtures) time. The new algorithm is implemented in ADVANTG and used to discretize continuous geometries onto a structured Cartesian grid. When applied to an end-of-life MCNP model of the High Flux Isotope Reactor with 270 distinct materials, the new method improves the material mixing time by a factor of 100 compared to a naive mix table implementation. (authors)« less
Fast Mix Table Construction for Material Discretization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Seth R
2013-01-01
An effective hybrid Monte Carlo--deterministic implementation typically requires the approximation of a continuous geometry description with a discretized piecewise-constant material field. The inherent geometry discretization error can be reduced somewhat by using material mixing, where multiple materials inside a discrete mesh voxel are homogenized. Material mixing requires the construction of a ``mix table,'' which stores the volume fractions in every mixture so that multiple voxels with similar compositions can reference the same mixture. Mix table construction is a potentially expensive serial operation for large problems with many materials and voxels. We formulate an efficient algorithm to construct a sparse mix table inmore » $$O(\\text{number of voxels}\\times \\log \\text{number of mixtures})$$ time. The new algorithm is implemented in ADVANTG and used to discretize continuous geometries onto a structured Cartesian grid. When applied to an end-of-life MCNP model of the High Flux Isotope Reactor with 270 distinct materials, the new method improves the material mixing time by a factor of 100 compared to a naive mix table implementation.« less
Non-linear hydrodynamical evolution of rotating relativistic stars: numerical methods and code tests
NASA Astrophysics Data System (ADS)
Font, José A.; Stergioulas, Nikolaos; Kokkotas, Kostas D.
2000-04-01
We present numerical hydrodynamical evolutions of rapidly rotating relativistic stars, using an axisymmetric, non-linear relativistic hydrodynamics code. We use four different high-resolution shock-capturing (HRSC) finite-difference schemes (based on approximate Riemann solvers) and compare their accuracy in preserving uniformly rotating stationary initial configurations in long-term evolutions. Among these four schemes, we find that the third-order piecewise parabolic method scheme is superior in maintaining the initial rotation law in long-term evolutions, especially near the surface of the star. It is further shown that HRSC schemes are suitable for the evolution of perturbed neutron stars and for the accurate identification (via Fourier transforms) of normal modes of oscillation. This is demonstrated for radial and quadrupolar pulsations in the non-rotating limit, where we find good agreement with frequencies obtained with a linear perturbation code. The code can be used for studying small-amplitude or non-linear pulsations of differentially rotating neutron stars, while our present results serve as testbed computations for three-dimensional general-relativistic evolution codes.
Adaptive mesh fluid simulations on GPU
NASA Astrophysics Data System (ADS)
Wang, Peng; Abel, Tom; Kaehler, Ralf
2010-10-01
We describe an implementation of compressible inviscid fluid solvers with block-structured adaptive mesh refinement on Graphics Processing Units using NVIDIA's CUDA. We show that a class of high resolution shock capturing schemes can be mapped naturally on this architecture. Using the method of lines approach with the second order total variation diminishing Runge-Kutta time integration scheme, piecewise linear reconstruction, and a Harten-Lax-van Leer Riemann solver, we achieve an overall speedup of approximately 10 times faster execution on one graphics card as compared to a single core on the host computer. We attain this speedup in uniform grid runs as well as in problems with deep AMR hierarchies. Our framework can readily be applied to more general systems of conservation laws and extended to higher order shock capturing schemes. This is shown directly by an implementation of a magneto-hydrodynamic solver and comparing its performance to the pure hydrodynamic case. Finally, we also combined our CUDA parallel scheme with MPI to make the code run on GPU clusters. Close to ideal speedup is observed on up to four GPUs.
Numerical solution of the Navier-Stokes equations by discontinuous Galerkin method
NASA Astrophysics Data System (ADS)
Krasnov, M. M.; Kuchugov, P. A.; E Ladonkina, M.; E Lutsky, A.; Tishkin, V. F.
2017-02-01
Detailed unstructured grids and numerical methods of high accuracy are frequently used in the numerical simulation of gasdynamic flows in areas with complex geometry. Galerkin method with discontinuous basis functions or Discontinuous Galerkin Method (DGM) works well in dealing with such problems. This approach offers a number of advantages inherent to both finite-element and finite-difference approximations. Moreover, the present paper shows that DGM schemes can be viewed as Godunov method extension to piecewise-polynomial functions. As is known, DGM involves significant computational complexity, and this brings up the question of ensuring the most effective use of all the computational capacity available. In order to speed up the calculations, operator programming method has been applied while creating the computational module. This approach makes possible compact encoding of mathematical formulas and facilitates the porting of programs to parallel architectures, such as NVidia CUDA and Intel Xeon Phi. With the software package, based on DGM, numerical simulations of supersonic flow past solid bodies has been carried out. The numerical results are in good agreement with the experimental ones.
Simplified curve fits for the thermodynamic properties of equilibrium air
NASA Technical Reports Server (NTRS)
Srinivasan, S.; Tannehill, J. C.; Weilmuenster, K. J.
1986-01-01
New improved curve fits for the thermodynamic properties of equilibrium air were developed. The curve fits are for p = p(e,rho), a = a(e,rho), T = T(e,rho), s = s(e,rho), T = T(p,rho), h = h(p,rho), rho = rho(p,s), e = e(p,s) and a = a(p,s). These curve fits can be readily incorporated into new or existing Computational Fluid Dynamics (CFD) codes if real-gas effects are desired. The curve fits were constructed using Grabau-type transition functions to model the thermodynamic surfaces in a piecewise manner. The accuracies and continuity of these curve fits are substantially improved over those of previous curve fits appearing in NASA CR-2470. These improvements were due to the incorporation of a small number of additional terms in the approximating polynomials and careful choices of the transition functions. The ranges of validity of the new curve fits are temperatures up to 25,000 K and densities from 10 to the minus 7th to 100 amagats (rho/rho sub 0).
Electromagnetic analysis of arbitrarily shaped pinched carpets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupont, Guillaume; Guenneau, Sebastien; Enoch, Stefan
2010-09-15
We derive the expressions for the anisotropic heterogeneous tensors of permittivity and permeability associated with two-dimensional and three-dimensional carpets of an arbitrary shape. In the former case, we map a segment onto smooth curves whereas in the latter case we map an arbitrary region of the plane onto smooth surfaces. Importantly, these carpets display no singularity of the permeability and permeability tensor components. Moreover, a reduced set of parameters leads to nonmagnetic two-dimensional carpets in p polarization (i.e., for a magnetic field orthogonal to the plane containing the carpet). Such an arbitrarily shaped carpet is shown to work over amore » finite bandwidth when it is approximated by a checkerboard with 190 homogeneous cells of piecewise constant anisotropic permittivity. We finally perform some finite element computations in the full vector three-dimensional case for a plane wave in normal incidence and a Gaussian beam in oblique incidence. The latter requires perfectly matched layers set in a rotated coordinate axis which exemplifies the role played by geometric transforms in computational electromagnetism.« less
Effect of smoothing on robust chaos.
Deshpande, Amogh; Chen, Qingfei; Wang, Yan; Lai, Ying-Cheng; Do, Younghae
2010-08-01
In piecewise-smooth dynamical systems, situations can arise where the asymptotic attractors of the system in an open parameter interval are all chaotic (e.g., no periodic windows). This is the phenomenon of robust chaos. Previous works have established that robust chaos can occur through the mechanism of border-collision bifurcation, where border is the phase-space region where discontinuities in the derivatives of the dynamical equations occur. We investigate the effect of smoothing on robust chaos and find that periodic windows can arise when a small amount of smoothness is present. We introduce a parameter of smoothing and find that the measure of the periodic windows in the parameter space scales linearly with the parameter, regardless of the details of the smoothing function. Numerical support and a heuristic theory are provided to establish the scaling relation. Experimental evidence of periodic windows in a supposedly piecewise linear dynamical system, which has been implemented as an electronic circuit, is also provided.
ELASTIC NET FOR COX'S PROPORTIONAL HAZARDS MODEL WITH A SOLUTION PATH ALGORITHM.
Wu, Yichao
2012-01-01
For least squares regression, Efron et al. (2004) proposed an efficient solution path algorithm, the least angle regression (LAR). They showed that a slight modification of the LAR leads to the whole LASSO solution path. Both the LAR and LASSO solution paths are piecewise linear. Recently Wu (2011) extended the LAR to generalized linear models and the quasi-likelihood method. In this work we extend the LAR further to handle Cox's proportional hazards model. The goal is to develop a solution path algorithm for the elastic net penalty (Zou and Hastie (2005)) in Cox's proportional hazards model. This goal is achieved in two steps. First we extend the LAR to optimizing the log partial likelihood plus a fixed small ridge term. Then we define a path modification, which leads to the solution path of the elastic net regularized log partial likelihood. Our solution path is exact and piecewise determined by ordinary differential equation systems.
Sim, K S; Yeap, Z X; Tso, C P
2016-11-01
An improvement to the existing technique of quantifying signal-to-noise ratio (SNR) of scanning electron microscope (SEM) images using piecewise cubic Hermite interpolation (PCHIP) technique is proposed. The new technique uses an adaptive tuning onto the PCHIP, and is thus named as ATPCHIP. To test its accuracy, 70 images are corrupted with noise and their autocorrelation functions are then plotted. The ATPCHIP technique is applied to estimate the uncorrupted noise-free zero offset point from a corrupted image. Three existing methods, the nearest neighborhood, first order interpolation and original PCHIP, are used to compare with the performance of the proposed ATPCHIP method, with respect to their calculated SNR values. Results show that ATPCHIP is an accurate and reliable method to estimate SNR values from SEM images. SCANNING 38:502-514, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Linear response formula for piecewise expanding unimodal maps
NASA Astrophysics Data System (ADS)
Baladi, Viviane; Smania, Daniel
2008-04-01
The average R(t)=\\int \\varphi\\,\\rmd \\mu_t of a smooth function phiv with respect to the SRB measure μt of a smooth one-parameter family ft of piecewise expanding interval maps is not always Lipschitz (Baladi 2007 Commun. Math. Phys. 275 839-59, Mazzolena 2007 Master's Thesis Rome 2, Tor Vergata). We prove that if ft is tangent to the topological class of f, and if ∂t ft|t = 0 = X circle f, then R(t) is differentiable at zero, and R'(0) coincides with the resummation proposed (Baladi 2007) of the (a priori divergent) series \\sum_{n=0}^\\infty \\int X(y) \\partial_y (\\varphi \\circ f^n)(y)\\,\\rmd \\mu_0(y) given by Ruelle's conjecture. In fact, we show that t map μt is differentiable within Radon measures. Linear response is violated if and only if ft is transversal to the topological class of f.
NASA Astrophysics Data System (ADS)
Dobronets, Boris S.; Popova, Olga A.
2018-05-01
The paper considers a new approach of regression modeling that uses aggregated data presented in the form of density functions. Approaches to Improving the reliability of aggregation of empirical data are considered: improving accuracy and estimating errors. We discuss the procedures of data aggregation as a preprocessing stage for subsequent to regression modeling. An important feature of study is demonstration of the way how represent the aggregated data. It is proposed to use piecewise polynomial models, including spline aggregate functions. We show that the proposed approach to data aggregation can be interpreted as the frequency distribution. To study its properties density function concept is used. Various types of mathematical models of data aggregation are discussed. For the construction of regression models, it is proposed to use data representation procedures based on piecewise polynomial models. New approaches to modeling functional dependencies based on spline aggregations are proposed.
Piecewise Polynomial Aggregation as Preprocessing for Data Numerical Modeling
NASA Astrophysics Data System (ADS)
Dobronets, B. S.; Popova, O. A.
2018-05-01
Data aggregation issues for numerical modeling are reviewed in the present study. The authors discuss data aggregation procedures as preprocessing for subsequent numerical modeling. To calculate the data aggregation, the authors propose using numerical probabilistic analysis (NPA). An important feature of this study is how the authors represent the aggregated data. The study shows that the offered approach to data aggregation can be interpreted as the frequency distribution of a variable. To study its properties, the density function is used. For this purpose, the authors propose using the piecewise polynomial models. A suitable example of such approach is the spline. The authors show that their approach to data aggregation allows reducing the level of data uncertainty and significantly increasing the efficiency of numerical calculations. To demonstrate the degree of the correspondence of the proposed methods to reality, the authors developed a theoretical framework and considered numerical examples devoted to time series aggregation.
Transformations based on continuous piecewise-affine velocity fields
Freifeld, Oren; Hauberg, Soren; Batmanghelich, Kayhan; ...
2017-01-11
Here, we propose novel finite-dimensional spaces of well-behaved Rn → Rn transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization overmore » monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration; real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available.« less
Nonlinear filtering properties of detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Kiyono, Ken; Tsujimoto, Yutaka
2016-11-01
Detrended fluctuation analysis (DFA) has been widely used for quantifying long-range correlation and fractal scaling behavior. In DFA, to avoid spurious detection of scaling behavior caused by a nonstationary trend embedded in the analyzed time series, a detrending procedure using piecewise least-squares fitting has been applied. However, it has been pointed out that the nonlinear filtering properties involved with detrending may induce instabilities in the scaling exponent estimation. To understand this issue, we investigate the adverse effects of the DFA detrending procedure on the statistical estimation. We show that the detrending procedure using piecewise least-squares fitting results in the nonuniformly weighted estimation of the root-mean-square deviation and that this property could induce an increase in the estimation error. In addition, for comparison purposes, we investigate the performance of a centered detrending moving average analysis with a linear detrending filter and sliding window DFA and show that these methods have better performance than the standard DFA.
A novel approach to piecewise analytic agricultural machinery path reconstruction
NASA Astrophysics Data System (ADS)
Wörz, Sascha; Mederle, Michael; Heizinger, Valentin; Bernhardt, Heinz
2017-12-01
Before analysing machinery operation in fields, it has to be coped with the problem that the GPS signals of GPS receivers located on the machines contain measurement noise, are time-discrete, and the underlying physical system describing the positions, axial and absolute velocities, angular rates and angular orientation of the operating machines during the whole working time are unknown. This research work presents a new three-dimensional mathematical approach using kinematic relations based on control variables as Euler angular velocities and angles and a discrete target control problem, such that the state control function is given by the sum of squared residuals involving the state and control variables to get such a physical system, which yields a noise-free and piecewise analytic representation of the positions, velocities, angular rates and angular orientation. It can be used for a further detailed study and analysis of the problem of why agricultural vehicles operate in practice as they do.
Hurst Estimation of Scale Invariant Processes with Stationary Increments and Piecewise Linear Drift
NASA Astrophysics Data System (ADS)
Modarresi, N.; Rezakhah, S.
The characteristic feature of the discrete scale invariant (DSI) processes is the invariance of their finite dimensional distributions by dilation for certain scaling factor. DSI process with piecewise linear drift and stationary increments inside prescribed scale intervals is introduced and studied. To identify the structure of the process, first, we determine the scale intervals, their linear drifts and eliminate them. Then, a new method for the estimation of the Hurst parameter of such DSI processes is presented and applied to some period of the Dow Jones indices. This method is based on fixed number equally spaced samples inside successive scale intervals. We also present some efficient method for estimating Hurst parameter of self-similar processes with stationary increments. We compare the performance of this method with the celebrated FA, DFA and DMA on the simulated data of fractional Brownian motion (fBm).
Piecewise synonyms for enhanced UMLS source terminology integration.
Huang, Kuo-Chuan; Geller, James; Halper, Michael; Cimino, James J
2007-10-11
The UMLS contains more than 100 source vocabularies and is growing via the integration of others. When integrating a new source, the source terms already in the UMLS must first be found. The easiest approach to this is simple string matching. However, string matching usually does not find all concepts that should be found. A new methodology, based on the notion of piecewise synonyms, for enhancing the process of concept discovery in the UMLS is presented. This methodology is supported by first creating a general synonym dictionary based on the UMLS. Each multi-word source term is decomposed into its component words, allowing for the generation of separate synonyms for each word from the general synonym dictionary. The recombination of these synonyms into new terms creates an expanded pool of matching candidates for terms from the source. The methodology is demonstrated with respect to an existing UMLS source. It shows a 34% improvement over simple string matching.
Geometric analysis and restitution of digital multispectral scanner data arrays
NASA Technical Reports Server (NTRS)
Baker, J. R.; Mikhail, E. M.
1975-01-01
An investigation was conducted to define causes of geometric defects within digital multispectral scanner (MSS) data arrays, to analyze the resulting geometric errors, and to investigate restitution methods to correct or reduce these errors. Geometric transformation relationships for scanned data, from which collinearity equations may be derived, served as the basis of parametric methods of analysis and restitution of MSS digital data arrays. The linearization of these collinearity equations is presented. Algorithms considered for use in analysis and restitution included the MSS collinearity equations, piecewise polynomials based on linearized collinearity equations, and nonparametric algorithms. A proposed system for geometric analysis and restitution of MSS digital data arrays was used to evaluate these algorithms, utilizing actual MSS data arrays. It was shown that collinearity equations and nonparametric algorithms both yield acceptable results, but nonparametric algorithms possess definite advantages in computational efficiency. Piecewise polynomials were found to yield inferior results.
Payment contracts in a preventive health care system: a perspective from operations management.
Yaesoubi, Reza; Roberts, Stephen D
2011-12-01
We consider a health care system consisting of two noncooperative parties: a health purchaser (payer) and a health provider, where the interaction between the two parties is governed by a payment contract. We determine the contracts that coordinate the health purchaser-health provider relationship; i.e. the contracts that maximize the population's welfare while allowing each entity to optimize its own objective function. We show that under certain conditions (1) when the number of customers for a preventive medical intervention is verifiable, there exists a gate-keeping contract and a set of concave piecewise linear contracts that coordinate the system, and (2) when the number of customers is not verifiable, there exists a contract of bounded linear form and a set of incentive-feasible concave piecewise linear contracts that coordinate the system. Copyright © 2011 Elsevier B.V. All rights reserved.
Transformations Based on Continuous Piecewise-Affine Velocity Fields
Freifeld, Oren; Hauberg, Søren; Batmanghelich, Kayhan; Fisher, Jonn W.
2018-01-01
We propose novel finite-dimensional spaces of well-behaved ℝn → ℝn transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization over monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration; real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available. PMID:28092517
NASA Astrophysics Data System (ADS)
Zhang, Zhengfang; Chen, Weifeng
2018-05-01
Maximization of the smallest eigenfrequency of the linearized elasticity system with area constraint is investigated. The elasticity system is extended into a large background domain, but the void is vacuum and not filled with ersatz material. The piecewise constant level set (PCLS) method is applied to present two regions, the original material region and the void region. A quadratic PCLS function is proposed to represent the characteristic function. Consequently, the functional derivative of the smallest eigenfrequency with respect to PCLS function takes nonzero value in the original material region and zero in the void region. A penalty gradient algorithm is proposed, which initializes the whole background domain with the original material and decreases the area of original material region till the area constraint is satisfied. 2D and 3D numerical examples are presented, illustrating the validity of the proposed algorithm.
Sliding mode control of outbreaks of emerging infectious diseases.
Xiao, Yanni; Xu, Xiaxia; Tang, Sanyi
2012-10-01
This paper proposes and analyzes a mathematical model of an infectious disease system with a piecewise control function concerning threshold policy for disease management strategy. The proposed models extend the classic models by including a piecewise incidence rate to represent control or precautionary measures being triggered once the number of infected individuals exceeds a threshold level. The long-term behaviour of the proposed non-smooth system under this strategy consists of the so-called sliding motion-a very rapid switching between application and interruption of the control action. Model solutions ultimately approach either one of two endemic states for two structures or the sliding equilibrium on the switching surface, depending on the threshold level. Our findings suggest that proper combinations of threshold densities and control intensities based on threshold policy can either preclude outbreaks or lead the number of infected to a previously chosen level.
On solving three-dimensional open-dimension rectangular packing problems
NASA Astrophysics Data System (ADS)
Junqueira, Leonardo; Morabito, Reinaldo
2017-05-01
In this article, a recently proposed three-dimensional open-dimension rectangular packing problem is considered, in which the objective is to find a minimal volume rectangular container that packs a set of rectangular boxes. The literature has tackled small-sized instances of this problem by means of optimization solvers, position-free mixed-integer programming (MIP) formulations and piecewise linearization approaches. In this study, the problem is alternatively addressed by means of grid-based position MIP formulations, whereas still considering optimization solvers and the same piecewise linearization techniques. A comparison of the computational performance of both models is then presented, when tested with benchmark problem instances and with new instances, and it is shown that the grid-based position MIP formulation can be competitive, depending on the characteristics of the instances. The grid-based position MIP formulation is also embedded with real-world practical constraints, such as cargo stability, and results are additionally presented.
2D discontinuous piecewise linear map: Emergence of fashion cycles.
Gardini, L; Sushko, I; Matsuyama, K
2018-05-01
We consider a discrete-time version of the continuous-time fashion cycle model introduced in Matsuyama, 1992. Its dynamics are defined by a 2D discontinuous piecewise linear map depending on three parameters. In the parameter space of the map periodicity, regions associated with attracting cycles of different periods are organized in the period adding and period incrementing bifurcation structures. The boundaries of all the periodicity regions related to border collision bifurcations are obtained analytically in explicit form. We show the existence of several partially overlapping period incrementing structures, that is, a novelty for the considered class of maps. Moreover, we show that if the time-delay in the discrete time formulation of the model shrinks to zero, the number of period incrementing structures tends to infinity and the dynamics of the discrete time fashion cycle model converges to those of continuous-time fashion cycle model.
Yang, Licai; Shen, Jun; Bao, Shudi; Wei, Shoushui
2013-10-01
To treat the problem of identification performance and the complexity of the algorithm, we proposed a piecewise linear representation and dynamic time warping (PLR-DTW) method for ECG biometric identification. Firstly we detected R peaks to get the heartbeats after denoising preprocessing. Then we used the PLR method to keep important information of an ECG signal segment while reducing the data dimension at the same time. The improved DTW method was used for similarity measurements between the test data and the templates. The performance evaluation was carried out on the two ECG databases: PTB and MIT-BIH. The analystic results showed that compared to the discrete wavelet transform method, the proposed PLR-DTW method achieved a higher accuracy rate which is nearly 8% of rising, and saved about 30% operation time, and this demonstrated that the proposed method could provide a better performance.
Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens
NASA Technical Reports Server (NTRS)
Srawley, J. E.
1976-01-01
For each of the two types of specimens, bend and compact, described previously for plane strain fracture toughness of materials, E 399, a polynominal expression is given for calculation of the stress intensity factor, K, from the applied force, P, and the specimen dimensions. It is explicitly stated, however, that these expressions should not be used outside the range of relative crack length, a/W, from 0.45 to 0.55. While this range is sufficient for the purpose of E 399, the same specimen types are often used for other purposes over a much wider range of a/W; for example, in the study of fatigue crack growth. Expressions are presented which are at least as accurate as those in E 399-74, and which cover much wider ranges of a/W: for the three-point bend specimen from 0 to 1; and for the compact specimen from 0.2 to 1. The range has to be restricted for the compact specimen because of the proximity of the loading pin holes to the crackline, which causes the stress intensity factor to be sensitive to small variations in dimensions when a/W is small. This is a penalty inherently associated with the compactness of the specimen.
A Unified Theory for the Great Plains Nocturnal Low-Level Jet
NASA Astrophysics Data System (ADS)
Shapiro, A.; Fedorovich, E.; Rahimi, S.
2014-12-01
The nocturnal low-level jet (LLJ) is a warm-season atmospheric boundary layer phenomenon common to the Great Plains of the United States and other places worldwide, typically in regions east of mountain ranges. Low-level jets develop around sunset in fair weather conditions conducive to strong radiational cooling, reach peak intensity in the pre-dawn hours, and then dissipate with the onset of daytime convective mixing. In this study we consider the LLJ as a diurnal oscillation of a stably stratified atmosphere overlying a planar slope on the rotating Earth. The oscillations arise from diurnal cycles in both the heating of the slope (mechanism proposed by Holton in 1967) and the turbulent mixing (mechanism proposed by Blackadar in 1957). The governing equations are the equations of motion, incompressibility condition, and thermal energy in the Boussinesq approximation, with turbulent heat and momentum exchange parameterized through spatially constant but diurnally varying turbulent diffusion coefficients (diffusivities). Analytical solutions are obtained for diffusivities with piecewise constant waveforms (step-changes at sunrise and sunset) and slope temperatures/buoyancies with piecewise linear waveforms (saw-tooth function with minimum at sunrise and maximum before sunset). The jet characteristics are governed by eleven parameters: slope angle, Coriolis parameter, environmental buoyancy frequency, geostrophic wind strength, daytime and nighttime diffusivities, maximum (daytime) and minimum (nighttime) slope buoyancies, duration of daylight, lag time between peak slope buoyancy and sunset, and a Newtonian cooling time scale. An exploration of the parameter space yields results that are broadly consistent with findings particular to the Holton and Blackadar theories, and agree with climatological observations, for example, that stronger jets tend to occur over slopes of 0.15-0.25 degrees characteristic of the Great Plains. The solutions also yield intriguing predictions that peak jet strength increases with attenuation of the minimum surface buoyancy, and that the single most important parameter determining jet height is the nighttime diffusivity, with weaker nightime diffusion associated with smaller jet heights. These and other highlights will be discussed in the presentation.
Konrad, Stephanie; Paduraru, Peggy; Romero-Barrios, Pablo; Henderson, Sarah B; Galanis, Eleni
2017-08-31
Vibrio parahaemolyticus (Vp) is a naturally occurring bacterium found in marine environments worldwide. It can cause gastrointestinal illness in humans, primarily through raw oyster consumption. Water temperatures, and potentially other environmental factors, play an important role in the growth and proliferation of Vp in the environment. Quantifying the relationships between environmental variables and indicators or incidence of Vp illness is valuable for public health surveillance to inform and enable suitable preventative measures. This study aimed to assess the relationship between environmental parameters and Vp in British Columbia (BC), Canada. The study used Vp counts in oyster meat from 2002-2015 and laboratory confirmed Vp illnesses from 2011-2015 for the province of BC. The data were matched to environmental parameters from publicly available sources, including remote sensing measurements of nighttime sea surface temperature (SST) obtained from satellite readings at a spatial resolution of 1 km. Using three separate models, this paper assessed the relationship between (1) daily SST and Vp counts in oyster meat, (2) weekly mean Vp counts in oysters and weekly Vp illnesses, and (3) weekly mean SST and weekly Vp illnesses. The effects of salinity and chlorophyll a were also evaluated. Linear regression was used to quantify the relationship between SST and Vp, and piecewise regression was used to identify SST thresholds of concern. A total of 2327 oyster samples and 293 laboratory confirmed illnesses were included. In model 1, both SST and salinity were significant predictors of log(Vp) counts in oyster meat. In model 2, the mean log(Vp) count in oyster meat was a significant predictor of Vp illnesses. In model 3, weekly mean SST was a significant predictor of weekly Vp illnesses. The piecewise regression models identified a SST threshold of approximately 14 o C for both model 1 and 3, indicating increased risk of Vp in oyster meat and Vp illnesses at higher temperatures. Monitoring of SST, particularly through readily accessible remote sensing data, could serve as a warning signal for Vp and help inform the introduction and cessation of preventative or control measures.
Numerical Integration Techniques for Curved-Element Discretizations of Molecule–Solvent Interfaces
Bardhan, Jaydeep P.; Altman, Michael D.; Willis, David J.; Lippow, Shaun M.; Tidor, Bruce; White, Jacob K.
2012-01-01
Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, we have developed methods to model several important surface formulations using exact surface discretizations. Following and refining Zauhar’s work (J. Comp.-Aid. Mol. Des. 9:149-159, 1995), we define two classes of curved elements that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. We then present numerical integration techniques that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, we present a set of calculations that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planartriangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute–solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources. The results clearly demonstrate that our methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry. A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online at http://web.mit.edu/tidor. PMID:17627358
The Stiffness Variation of a Micro-Ring Driven by a Traveling Piecewise-Electrode
Li, Yingjie; Yu, Tao; Hu, Yuh-Chung
2014-01-01
In the practice of electrostatically actuated micro devices; the electrostatic force is implemented by sequentially actuated piecewise-electrodes which result in a traveling distributed electrostatic force. However; such force was modeled as a traveling concentrated electrostatic force in literatures. This article; for the first time; presents an analytical study on the stiffness variation of microstructures driven by a traveling piecewise electrode. The analytical model is based on the theory of shallow shell and uniform electrical field. The traveling electrode not only applies electrostatic force on the circular-ring but also alters its dynamical characteristics via the negative electrostatic stiffness. It is known that; when a structure is subjected to a traveling constant force; its natural mode will be resonated as the traveling speed approaches certain critical speeds; and each natural mode refers to exactly one critical speed. However; for the case of a traveling electrostatic force; the number of critical speeds is more than that of the natural modes. This is due to the fact that the traveling electrostatic force makes the resonant frequencies of the forward and backward traveling waves of the circular-ring different. Furthermore; the resonance and stability can be independently controlled by the length of the traveling electrode; though the driving voltage and traveling speed of the electrostatic force alter the dynamics and stabilities of microstructures. This paper extends the fundamental insights into the electromechanical behavior of microstructures driven by electrostatic forces as well as the future development of MEMS/NEMS devices with electrostatic actuation and sensing. PMID:25230308
The stiffness variation of a micro-ring driven by a traveling piecewise-electrode.
Li, Yingjie; Yu, Tao; Hu, Yuh-Chung
2014-09-16
In the practice of electrostatically actuated micro devices; the electrostatic force is implemented by sequentially actuated piecewise-electrodes which result in a traveling distributed electrostatic force. However; such force was modeled as a traveling concentrated electrostatic force in literatures. This article; for the first time; presents an analytical study on the stiffness variation of microstructures driven by a traveling piecewise electrode. The analytical model is based on the theory of shallow shell and uniform electrical field. The traveling electrode not only applies electrostatic force on the circular-ring but also alters its dynamical characteristics via the negative electrostatic stiffness. It is known that; when a structure is subjected to a traveling constant force; its natural mode will be resonated as the traveling speed approaches certain critical speeds; and each natural mode refers to exactly one critical speed. However; for the case of a traveling electrostatic force; the number of critical speeds is more than that of the natural modes. This is due to the fact that the traveling electrostatic force makes the resonant frequencies of the forward and backward traveling waves of the circular-ring different. Furthermore; the resonance and stability can be independently controlled by the length of the traveling electrode; though the driving voltage and traveling speed of the electrostatic force alter the dynamics and stabilities of microstructures. This paper extends the fundamental insights into the electromechanical behavior of microstructures driven by electrostatic forces as well as the future development of MEMS/NEMS devices with electrostatic actuation and sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollaeger, Ryan T.; Wollaber, Allan B.; Urbatsch, Todd J.
2016-02-23
Here, the non-linear thermal radiative-transfer equations can be solved in various ways. One popular way is the Fleck and Cummings Implicit Monte Carlo (IMC) method. The IMC method was originally formulated with piecewise-constant material properties. For domains with a coarse spatial grid and large temperature gradients, an error known as numerical teleportation may cause artificially non-causal energy propagation and consequently an inaccurate material temperature. Source tilting is a technique to reduce teleportation error by constructing sub-spatial-cell (or sub-cell) emission profiles from which IMC particles are sampled. Several source tilting schemes exist, but some allow teleportation error to persist. We examinemore » the effect of source tilting in problems with a temperature-dependent opacity. Within each cell, the opacity is evaluated continuously from a temperature profile implied by the source tilt. For IMC, this is a new approach to modeling the opacity. We find that applying both source tilting along with a source tilt-dependent opacity can introduce another dominant error that overly inhibits thermal wavefronts. We show that we can mitigate both teleportation and under-propagation errors if we discretize the temperature equation with a linear discontinuous (LD) trial space. Our method is for opacities ~ 1/T 3, but we formulate and test a slight extension for opacities ~ 1/T 3.5, where T is temperature. We find our method avoids errors that can be incurred by IMC with continuous source tilt constructions and piecewise-constant material temperature updates.« less
NASA Astrophysics Data System (ADS)
Krauze, W.; Makowski, P.; Kujawińska, M.
2015-06-01
Standard tomographic algorithms applied to optical limited-angle tomography result in the reconstructions that have highly anisotropic resolution and thus special algorithms are developed. State of the art approaches utilize the Total Variation (TV) minimization technique. These methods give very good results but are applicable to piecewise constant structures only. In this paper, we propose a novel algorithm for 3D limited-angle tomography - Total Variation Iterative Constraint method (TVIC) which enhances the applicability of the TV regularization to non-piecewise constant samples, like biological cells. This approach consists of two parts. First, the TV minimization is used as a strong regularizer to create a sharp-edged image converted to a 3D binary mask which is then iteratively applied in the tomographic reconstruction as a constraint in the object domain. In the present work we test the method on a synthetic object designed to mimic basic structures of a living cell. For simplicity, the test reconstructions were performed within the straight-line propagation model (SIRT3D solver from the ASTRA Tomography Toolbox), but the strategy is general enough to supplement any algorithm for tomographic reconstruction that supports arbitrary geometries of plane-wave projection acquisition. This includes optical diffraction tomography solvers. The obtained reconstructions present resolution uniformity and general shape accuracy expected from the TV regularization based solvers, but keeping the smooth internal structures of the object at the same time. Comparison between three different patterns of object illumination arrangement show very small impact of the projection acquisition geometry on the image quality.
NASA Astrophysics Data System (ADS)
Zolotaryuk, A. V.
2017-06-01
Several families of one-point interactions are derived from the system consisting of two and three δ-potentials which are regularized by piecewise constant functions. In physical terms such an approximating system represents two or three extremely thin layers separated by some distance. The two-scale squeezing of this heterostructure to one point as both the width of δ-approximating functions and the distance between these functions simultaneously tend to zero is studied using the power parameterization through a squeezing parameter \\varepsilon \\to 0 , so that the intensity of each δ-potential is cj =aj \\varepsilon1-μ , aj \\in {R} , j = 1, 2, 3, the width of each layer l =\\varepsilon and the distance between the layers r = c\\varepsilon^τ , c > 0. It is shown that at some values of the intensities a 1, a 2 and a 3, the transmission across the limit point potentials is non-zero, whereas outside these (resonance) values the one-point interactions are opaque splitting the system at the point of singularity into two independent subsystems. Within the interval 1 < μ < 2 , the resonance sets consist of two curves on the (a_1, a_2) -plane and three surfaces in the (a_1, a_2, a_3) -space. As the parameter μ approaches the value μ =2 , three types of splitting the one-point interactions into countable families are observed.
Robust stochastic optimization for reservoir operation
NASA Astrophysics Data System (ADS)
Pan, Limeng; Housh, Mashor; Liu, Pan; Cai, Ximing; Chen, Xin
2015-01-01
Optimal reservoir operation under uncertainty is a challenging engineering problem. Application of classic stochastic optimization methods to large-scale problems is limited due to computational difficulty. Moreover, classic stochastic methods assume that the estimated distribution function or the sample inflow data accurately represents the true probability distribution, which may be invalid and the performance of the algorithms may be undermined. In this study, we introduce a robust optimization (RO) approach, Iterative Linear Decision Rule (ILDR), so as to provide a tractable approximation for a multiperiod hydropower generation problem. The proposed approach extends the existing LDR method by accommodating nonlinear objective functions. It also provides users with the flexibility of choosing the accuracy of ILDR approximations by assigning a desired number of piecewise linear segments to each uncertainty. The performance of the ILDR is compared with benchmark policies including the sampling stochastic dynamic programming (SSDP) policy derived from historical data. The ILDR solves both the single and multireservoir systems efficiently. The single reservoir case study results show that the RO method is as good as SSDP when implemented on the original historical inflows and it outperforms SSDP policy when tested on generated inflows with the same mean and covariance matrix as those in history. For the multireservoir case study, which considers water supply in addition to power generation, numerical results show that the proposed approach performs as well as in the single reservoir case study in terms of optimal value and distributional robustness.
Linear stability analysis of collective neutrino oscillations without spurious modes
NASA Astrophysics Data System (ADS)
Morinaga, Taiki; Yamada, Shoichi
2018-01-01
Collective neutrino oscillations are induced by the presence of neutrinos themselves. As such, they are intrinsically nonlinear phenomena and are much more complex than linear counterparts such as the vacuum or Mikheyev-Smirnov-Wolfenstein oscillations. They obey integro-differential equations, for which it is also very challenging to obtain numerical solutions. If one focuses on the onset of collective oscillations, on the other hand, the equations can be linearized and the technique of linear analysis can be employed. Unfortunately, however, it is well known that such an analysis, when applied with discretizations of continuous angular distributions, suffers from the appearance of so-called spurious modes: unphysical eigenmodes of the discretized linear equations. In this paper, we analyze in detail the origin of these unphysical modes and present a simple solution to this annoying problem. We find that the spurious modes originate from the artificial production of pole singularities instead of a branch cut on the Riemann surface by the discretizations. The branching point singularities on the Riemann surface for the original nondiscretized equations can be recovered by approximating the angular distributions with polynomials and then performing the integrals analytically. We demonstrate for some examples that this simple prescription does remove the spurious modes. We also propose an even simpler method: a piecewise linear approximation to the angular distribution. It is shown that the same methodology is applicable to the multienergy case as well as to the dispersion relation approach that was proposed very recently.
Stenegren, Marcus; Berg, Carlo; Padilla, Cory C; David, Stefan-Sebastian; Montoya, Joseph P; Yager, Patricia L; Foster, Rachel A
2017-01-01
Diatom diazotroph associations (DDAs) are important components in the world's oceans, especially in the western tropical north Atlantic (WTNA), where blooms have a significant impact on carbon and nitrogen cycling. However, drivers of their abundances and distribution patterns remain unknown. Here, we examined abundance and distribution patterns for two DDA populations in relation to the Amazon River (AR) plume in the WTNA. Quantitative PCR assays, targeting two DDAs (het-1 and het-2) by their symbiont's nifH gene, served as input in a piecewise structural equation model (SEM). Collections were made during high (spring 2010) and low (fall 2011) flow discharges of the AR. The distributions of dissolved nutrients, chlorophyll- a , and DDAs showed coherent patterns indicative of areas influenced by the AR. A symbiotic Hemiaulus hauckii-Richelia (het-2) bloom (>10 6 cells L -1 ) occurred during higher discharge of the AR and was coincident with mesohaline to oceanic (30-35) sea surface salinities (SSS), and regions devoid of dissolved inorganic nitrogen (DIN), low concentrations of both DIP (>0.1 μmol L -1 ) and Si (>1.0 μmol L -1 ). The Richelia (het-1) associated with Rhizosolenia was only present in 2010 and at lower densities (10-1.76 × 10 5 nifH copies L -1 ) than het-2 and limited to regions of oceanic SSS (>36). The het-2 symbiont detected in 2011 was associated with H. membranaceus (>10 3 nifH copies L -1 ) and were restricted to regions with mesohaline SSS (31.8-34.3), immeasurable DIN, moderate DIP (0.1-0.60 μmol L -1 ) and higher Si (4.19-22.1 μmol L -1 ). The piecewise SEM identified a profound direct negative effect of turbidity on the het-2 abundance in spring 2010, while DIP and water turbidity had a more positive influence in fall 2011, corroborating our observations of DDAs at subsurface maximas. We also found a striking difference in the influence of salinity on DDA symbionts suggesting a niche differentiation and preferences in oceanic and mesohaline salinities by het-1 and het-2, respectively. The use of the piecewise SEM to disentangle the complex and concomitant hydrography of the WTNA acting on two biogeochemically relevant populations was novel and underscores its use to predict conditions favoring abundance and distributions of microbial populations.
NASA Astrophysics Data System (ADS)
Lau, Chun Sing
This thesis studies two types of problems in financial derivatives pricing. The first type is the free boundary problem, which can be formulated as a partial differential equation (PDE) subject to a set of free boundary condition. Although the functional form of the free boundary condition is given explicitly, the location of the free boundary is unknown and can only be determined implicitly by imposing continuity conditions on the solution. Two specific problems are studied in details, namely the valuation of fixed-rate mortgages and CEV American options. The second type is the multi-dimensional problem, which involves multiple correlated stochastic variables and their governing PDE. One typical problem we focus on is the valuation of basket-spread options, whose underlying asset prices are driven by correlated geometric Brownian motions (GBMs). Analytic approximate solutions are derived for each of these three problems. For each of the two free boundary problems, we propose a parametric moving boundary to approximate the unknown free boundary, so that the original problem transforms into a moving boundary problem which can be solved analytically. The governing parameter of the moving boundary is determined by imposing the first derivative continuity condition on the solution. The analytic form of the solution allows the price and the hedging parameters to be computed very efficiently. When compared against the benchmark finite-difference method, the computational time is significantly reduced without compromising the accuracy. The multi-stage scheme further allows the approximate results to systematically converge to the benchmark results as one recasts the moving boundary into a piecewise smooth continuous function. For the multi-dimensional problem, we generalize the Kirk (1995) approximate two-asset spread option formula to the case of multi-asset basket-spread option. Since the final formula is in closed form, all the hedging parameters can also be derived in closed form. Numerical examples demonstrate that the pricing and hedging errors are in general less than 1% relative to the benchmark prices obtained by numerical integration or Monte Carlo simulation. By exploiting an explicit relationship between the option price and the underlying probability distribution, we further derive an approximate distribution function for the general basket-spread variable. It can be used to approximate the transition probability distribution of any linear combination of correlated GBMs. Finally, an implicit perturbation is applied to reduce the pricing errors by factors of up to 100. When compared against the existing methods, the basket-spread option formula coupled with the implicit perturbation turns out to be one of the most robust and accurate approximation methods.
Using within-day hive weight changes to measure environmental effects on honey bee colonies
Holst, Niels; Weiss, Milagra; Carroll, Mark J.; McFrederick, Quinn S.; Barron, Andrew B.
2018-01-01
Patterns in within-day hive weight data from two independent datasets in Arizona and California were modeled using piecewise regression, and analyzed with respect to honey bee colony behavior and landscape effects. The regression analysis yielded information on the start and finish of a colony’s daily activity cycle, hive weight change at night, hive weight loss due to departing foragers and weight gain due to returning foragers. Assumptions about the meaning of the timing and size of the morning weight changes were tested in a third study by delaying the forager departure times from one to three hours using screen entrance gates. A regression of planned vs. observed departure delays showed that the initial hive weight loss around dawn was largely due to foragers. In a similar experiment in Australia, hive weight loss due to departing foragers in the morning was correlated with net bee traffic (difference between the number of departing bees and the number of arriving bees) and from those data the payload of the arriving bees was estimated to be 0.02 g. The piecewise regression approach was then used to analyze a fifth study involving hives with and without access to natural forage. The analysis showed that, during a commercial pollination event, hives with previous access to forage had a significantly higher rate of weight gain as the foragers returned in the afternoon, and, in the weeks after the pollination event, a significantly higher rate of weight loss in the morning, as foragers departed. This combination of continuous weight data and piecewise regression proved effective in detecting treatment differences in foraging activity that other methods failed to detect. PMID:29791462
Røislien, Jo; Lossius, Hans Morten; Kristiansen, Thomas
2015-01-01
Background Trauma is a leading global cause of death. Trauma mortality rates are higher in rural areas, constituting a challenge for quality and equality in trauma care. The aim of the study was to explore population density and transport time to hospital care as possible predictors of geographical differences in mortality rates, and to what extent choice of statistical method might affect the analytical results and accompanying clinical conclusions. Methods Using data from the Norwegian Cause of Death registry, deaths from external causes 1998–2007 were analysed. Norway consists of 434 municipalities, and municipality population density and travel time to hospital care were entered as predictors of municipality mortality rates in univariate and multiple regression models of increasing model complexity. We fitted linear regression models with continuous and categorised predictors, as well as piecewise linear and generalised additive models (GAMs). Models were compared using Akaike's information criterion (AIC). Results Population density was an independent predictor of trauma mortality rates, while the contribution of transport time to hospital care was highly dependent on choice of statistical model. A multiple GAM or piecewise linear model was superior, and similar, in terms of AIC. However, while transport time was statistically significant in multiple models with piecewise linear or categorised predictors, it was not in GAM or standard linear regression. Conclusions Population density is an independent predictor of trauma mortality rates. The added explanatory value of transport time to hospital care is marginal and model-dependent, highlighting the importance of exploring several statistical models when studying complex associations in observational data. PMID:25972600
Using within-day hive weight changes to measure environmental effects on honey bee colonies.
Meikle, William G; Holst, Niels; Colin, Théotime; Weiss, Milagra; Carroll, Mark J; McFrederick, Quinn S; Barron, Andrew B
2018-01-01
Patterns in within-day hive weight data from two independent datasets in Arizona and California were modeled using piecewise regression, and analyzed with respect to honey bee colony behavior and landscape effects. The regression analysis yielded information on the start and finish of a colony's daily activity cycle, hive weight change at night, hive weight loss due to departing foragers and weight gain due to returning foragers. Assumptions about the meaning of the timing and size of the morning weight changes were tested in a third study by delaying the forager departure times from one to three hours using screen entrance gates. A regression of planned vs. observed departure delays showed that the initial hive weight loss around dawn was largely due to foragers. In a similar experiment in Australia, hive weight loss due to departing foragers in the morning was correlated with net bee traffic (difference between the number of departing bees and the number of arriving bees) and from those data the payload of the arriving bees was estimated to be 0.02 g. The piecewise regression approach was then used to analyze a fifth study involving hives with and without access to natural forage. The analysis showed that, during a commercial pollination event, hives with previous access to forage had a significantly higher rate of weight gain as the foragers returned in the afternoon, and, in the weeks after the pollination event, a significantly higher rate of weight loss in the morning, as foragers departed. This combination of continuous weight data and piecewise regression proved effective in detecting treatment differences in foraging activity that other methods failed to detect.
A piecewise mass-spring-damper model of the human breast.
Cai, Yiqing; Chen, Lihua; Yu, Winnie; Zhou, Jie; Wan, Frances; Suh, Minyoung; Chow, Daniel Hung-Kay
2018-01-23
Previous models to predict breast movement whilst performing physical activities have, erroneously, assumed uniform elasticity within the breast. Consequently, the predicted displacements have not yet been satisfactorily validated. In this study, real time motion capture of the natural vibrations of a breast that followed, after raising and allowing it to fall freely, revealed an obvious difference in the vibration characteristics above and below the static equilibrium position. This implied that the elastic and viscous damping properties of a breast could vary under extension or compression. Therefore, a new piecewise mass-spring-damper model of a breast was developed with theoretical equations to derive values for its spring constants and damping coefficients from free-falling breast experiments. The effective breast mass was estimated from the breast volume extracted from a 3D body scanned image. The derived spring constant (k a = 73.5 N m -1 ) above the static equilibrium position was significantly smaller than that below it (k b = 658 N m -1 ), whereas the respective damping coefficients were similar (c a = 1.83 N s m -1 , c b = 2.07 N s m -1 ). These values were used to predict the nipple displacement during bare-breasted running for validation. The predicted and experimental results had a 2.6% or less root-mean-square-error of the theoretical and experimental amplitudes, so the piecewise mass-spring-damper model and equations were considered to have been successfully validated. This provides a theoretical basis for further research into the dynamic, nonlinear viscoelastic properties of different breasts and the prediction of external forces for the necessary breast support during different sports activities. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Adrian, S. B.; Andriulli, F. P.; Eibert, T. F.
2017-02-01
A new hierarchical basis preconditioner for the electric field integral equation (EFIE) operator is introduced. In contrast to existing hierarchical basis preconditioners, it works on arbitrary meshes and preconditions both the vector and the scalar potential within the EFIE operator. This is obtained by taking into account that the vector and the scalar potential discretized with loop-star basis functions are related to the hypersingular and the single layer operator (i.e., the well known integral operators from acoustics). For the single layer operator discretized with piecewise constant functions, a hierarchical preconditioner can easily be constructed. Thus the strategy we propose in this work for preconditioning the EFIE is the transformation of the scalar and the vector potential into operators equivalent to the single layer operator and to its inverse. More specifically, when the scalar potential is discretized with star functions as source and testing functions, the resulting matrix is a single layer operator discretized with piecewise constant functions and multiplied left and right with two additional graph Laplacian matrices. By inverting these graph Laplacian matrices, the discretized single layer operator is obtained, which can be preconditioned with the hierarchical basis. Dually, when the vector potential is discretized with loop functions, the resulting matrix can be interpreted as a hypersingular operator discretized with piecewise linear functions. By leveraging on a scalar Calderón identity, we can interpret this operator as spectrally equivalent to the inverse single layer operator. Then we use a linear-in-complexity, closed-form inverse of the dual hierarchical basis to precondition the hypersingular operator. The numerical results show the effectiveness of the proposed preconditioner and the practical impact of theoretical developments in real case scenarios.
Analysis of periodically excited non-linear systems by a parametric continuation technique
NASA Astrophysics Data System (ADS)
Padmanabhan, C.; Singh, R.
1995-07-01
The dynamic behavior and frequency response of harmonically excited piecewise linear and/or non-linear systems has been the subject of several recent investigations. Most of the prior studies employed harmonic balance or Galerkin schemes, piecewise linear techniques, analog simulation and/or direct numerical integration (digital simulation). Such techniques are somewhat limited in their ability to predict all of the dynamic characteristics, including bifurcations leading to the occurrence of unstable, subharmonic, quasi-periodic and/or chaotic solutions. To overcome this problem, a parametric continuation scheme, based on the shooting method, is applied specifically to a periodically excited piecewise linear/non-linear system, in order to improve understanding as well as to obtain the complete dynamic response. Parameter regions exhibiting bifurcations to harmonic, subharmonic or quasi-periodic solutions are obtained quite efficiently and systematically. Unlike other techniques, the proposed scheme can follow period-doubling bifurcations, and with some modifications obtain stable quasi-periodic solutions and their bifurcations. This knowledge is essential in establishing conditions for the occurrence of chaotic oscillations in any non-linear system. The method is first validated through the Duffing oscillator example, the solutions to which are also obtained by conventional one-term harmonic balance and perturbation methods. The second example deals with a clearance non-linearity problem for both harmonic and periodic excitations. Predictions from the proposed scheme match well with available analog simulation data as well as with multi-term harmonic balance results. Potential savings in computational time over direct numerical integration is demonstrated for some of the example cases. Also, this work has filled in some of the solution regimes for an impact pair, which were missed previously in the literature. Finally, one main limitation associated with the proposed procedure is discussed.
Microwave moisture sensing through use of a piecewise density-independent function
USDA-ARS?s Scientific Manuscript database
Microwave moisture sensing provides a means to determine nondestructively the amount of water in materials. This is accomplished through the correlation of dielectric properties with moisture in the material. In this study, linear relationships between a density-independent function of the dielectri...
An integral-equation solution for TE radiation and scattering from conducting cylinders
NASA Technical Reports Server (NTRS)
Richmond, J. H.
1973-01-01
The piecewise-sinusoidal reaction technique is applied to low frequency radiation and scattering from noncircular cylinders with perfect or imperfect conductivity. This report presents the theory, computer programs and numerical results for these two-dimensional problems with the TE polarization.
Building an Understanding of Functions: A Series of Activities for Pre-Calculus
ERIC Educational Resources Information Center
Carducci, Olivia M.
2008-01-01
Building block toys can be used to illustrate various concepts connected with functions including graphs and rates of change of linear and exponential functions, piecewise functions, and composition of functions. Five brief activities suitable for a pre-calculus course are described.
NASA Astrophysics Data System (ADS)
Bordoloi, Ankur D.; Ding, Liuyang; Martinez, Adam A.; Prestridge, Katherine; Adrian, Ronald J.
2018-07-01
We introduce a new method (piecewise integrated dynamics equation fit, PIDEF) that uses the particle dynamics equation to determine unsteady kinematics and drag coefficient (C D) for a particle in subsonic post-shock flow. The uncertainty of this method is assessed based on simulated trajectories for both quasi-steady and unsteady flow conditions. Traditional piecewise polynomial fitting (PPF) shows high sensitivity to measurement error and the function used to describe C D, creating high levels of relative error (1) when applied to unsteady shock-accelerated flows. The PIDEF method provides reduced uncertainty in calculations of unsteady acceleration and drag coefficient for both quasi-steady and unsteady flows. This makes PIDEF a preferable method over PPF for complex flows where the temporal response of C D is unknown. We apply PIDEF to experimental measurements of particle trajectories from 8-pulse particle tracking and determine the effect of incident Mach number on relaxation kinematics and drag coefficient of micron-sized particles.
Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde
2016-12-01
In this paper, the coexistence and dynamical behaviors of multiple equilibrium points are discussed for a class of memristive neural networks (MNNs) with unbounded time-varying delays and nonmonotonic piecewise linear activation functions. By means of the fixed point theorem, nonsmooth analysis theory and rigorous mathematical analysis, it is proven that under some conditions, such n-neuron MNNs can have 5 n equilibrium points located in ℜ n , and 3 n of them are locally μ-stable. As a direct application, some criteria are also obtained on the multiple exponential stability, multiple power stability, multiple log-stability and multiple log-log-stability. All these results reveal that the addressed neural networks with activation functions introduced in this paper can generate greater storage capacity than the ones with Mexican-hat-type activation function. Numerical simulations are presented to substantiate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.
ELASTIC NET FOR COX’S PROPORTIONAL HAZARDS MODEL WITH A SOLUTION PATH ALGORITHM
Wu, Yichao
2012-01-01
For least squares regression, Efron et al. (2004) proposed an efficient solution path algorithm, the least angle regression (LAR). They showed that a slight modification of the LAR leads to the whole LASSO solution path. Both the LAR and LASSO solution paths are piecewise linear. Recently Wu (2011) extended the LAR to generalized linear models and the quasi-likelihood method. In this work we extend the LAR further to handle Cox’s proportional hazards model. The goal is to develop a solution path algorithm for the elastic net penalty (Zou and Hastie (2005)) in Cox’s proportional hazards model. This goal is achieved in two steps. First we extend the LAR to optimizing the log partial likelihood plus a fixed small ridge term. Then we define a path modification, which leads to the solution path of the elastic net regularized log partial likelihood. Our solution path is exact and piecewise determined by ordinary differential equation systems. PMID:23226932
Parameterizations for ensemble Kalman inversion
NASA Astrophysics Data System (ADS)
Chada, Neil K.; Iglesias, Marco A.; Roininen, Lassi; Stuart, Andrew M.
2018-05-01
The use of ensemble methods to solve inverse problems is attractive because it is a derivative-free methodology which is also well-adapted to parallelization. In its basic iterative form the method produces an ensemble of solutions which lie in the linear span of the initial ensemble. Choice of the parameterization of the unknown field is thus a key component of the success of the method. We demonstrate how both geometric ideas and hierarchical ideas can be used to design effective parameterizations for a number of applied inverse problems arising in electrical impedance tomography, groundwater flow and source inversion. In particular we show how geometric ideas, including the level set method, can be used to reconstruct piecewise continuous fields, and we show how hierarchical methods can be used to learn key parameters in continuous fields, such as length-scales, resulting in improved reconstructions. Geometric and hierarchical ideas are combined in the level set method to find piecewise constant reconstructions with interfaces of unknown topology.
Use of autocorrelation scanning in DNA copy number analysis.
Zhang, Liangcai; Zhang, Li
2013-11-01
Data quality is a critical issue in the analyses of DNA copy number alterations obtained from microarrays. It is commonly assumed that copy number alteration data can be modeled as piecewise constant and the measurement errors of different probes are independent. However, these assumptions do not always hold in practice. In some published datasets, we find that measurement errors are highly correlated between probes that interrogate nearby genomic loci, and the piecewise-constant model does not fit the data well. The correlated errors cause problems in downstream analysis, leading to a large number of DNA segments falsely identified as having copy number gains and losses. We developed a simple tool, called autocorrelation scanning profile, to assess the dependence of measurement error between neighboring probes. Autocorrelation scanning profile can be used to check data quality and refine the analysis of DNA copy number data, which we demonstrate in some typical datasets. lzhangli@mdanderson.org. Supplementary data are available at Bioinformatics online.
Computation of the anharmonic orbits in two piecewise monotonic maps with a single discontinuity
NASA Astrophysics Data System (ADS)
Li, Yurong; Du, Zhengdong
2017-02-01
In this paper, the bifurcation values for two typical piecewise monotonic maps with a single discontinuity are computed. The variation of the parameter of those maps leads to a sequence of border-collision and period-doubling bifurcations, generating a sequence of anharmonic orbits on the boundary of chaos. The border-collision and period-doubling bifurcation values are computed by the word-lifting technique and the Maple fsolve function or the Newton-Raphson method, respectively. The scaling factors which measure the convergent rates of the bifurcation values and the width of the stable periodic windows, respectively, are investigated. We found that these scaling factors depend on the parameters of the maps, implying that they are not universal. Moreover, if one side of the maps is linear, our numerical results suggest that those quantities converge increasingly. In particular, for the linear-quadratic case, they converge to one of the Feigenbaum constants δ _F= 4.66920160\\cdots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samet Y. Kadioglu
2011-12-01
We present a computational gas dynamics method based on the Spectral Deferred Corrections (SDC) time integration technique and the Piecewise Parabolic Method (PPM) finite volume method. The PPM framework is used to define edge averaged quantities which are then used to evaluate numerical flux functions. The SDC technique is used to integrate solution in time. This kind of approach was first taken by Anita et al in [17]. However, [17] is problematic when it is implemented to certain shock problems. Here we propose significant improvements to [17]. The method is fourth order (both in space and time) for smooth flows,more » and provides highly resolved discontinuous solutions. We tested the method by solving variety of problems. Results indicate that the fourth order of accuracy in both space and time has been achieved when the flow is smooth. Results also demonstrate the shock capturing ability of the method.« less
Liu, Qingshan; Wang, Jun
2011-04-01
This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zainudin, Mohd Lutfi, E-mail: mdlutfi07@gmail.com; Institut Matematik Kejuruteraan; Saaban, Azizan, E-mail: azizan.s@uum.edu.my
The solar radiation values have been composed by automatic weather station using the device that namely pyranometer. The device is functions to records all the radiation values that have been dispersed, and these data are very useful for it experimental works and solar device’s development. In addition, for modeling and designing on solar radiation system application is needed for complete data observation. Unfortunately, lack for obtained the complete solar radiation data frequently occur due to several technical problems, which mainly contributed by monitoring device. Into encountering this matter, estimation missing values in an effort to substitute absent values with imputedmore » data. This paper aimed to evaluate several piecewise interpolation techniques likes linear, splines, cubic, and nearest neighbor into dealing missing values in hourly solar radiation data. Then, proposed an extendable work into investigating the potential used of cubic Bezier technique and cubic Said-ball method as estimator tools. As result, methods for cubic Bezier and Said-ball perform the best compare to another piecewise imputation technique.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goreac, Dan, E-mail: Dan.Goreac@u-pem.fr; Kobylanski, Magdalena, E-mail: Magdalena.Kobylanski@u-pem.fr; Martinez, Miguel, E-mail: Miguel.Martinez@u-pem.fr
2016-10-15
We study optimal control problems in infinite horizon whxen the dynamics belong to a specific class of piecewise deterministic Markov processes constrained to star-shaped networks (corresponding to a toy traffic model). We adapt the results in Soner (SIAM J Control Optim 24(6):1110–1122, 1986) to prove the regularity of the value function and the dynamic programming principle. Extending the networks and Krylov’s “shaking the coefficients” method, we prove that the value function can be seen as the solution to a linearized optimization problem set on a convenient set of probability measures. The approach relies entirely on viscosity arguments. As a by-product,more » the dual formulation guarantees that the value function is the pointwise supremum over regular subsolutions of the associated Hamilton–Jacobi integrodifferential system. This ensures that the value function satisfies Perron’s preconization for the (unique) candidate to viscosity solution.« less
Geometric constrained variational calculus I: Piecewise smooth extremals
NASA Astrophysics Data System (ADS)
Massa, Enrico; Bruno, Danilo; Luria, Gianvittorio; Pagani, Enrico
2015-05-01
A geometric setup for constrained variational calculus is presented. The analysis deals with the study of the extremals of an action functional defined on piecewise differentiable curves, subject to differentiable, non-holonomic constraints. Special attention is paid to the tensorial aspects of the theory. As far as the kinematical foundations are concerned, a fully covariant scheme is developed through the introduction of the concept of infinitesimal control. The standard classification of the extremals into normal and abnormal ones is discussed, pointing out the existence of an algebraic algorithm assigning to each admissible curve a corresponding abnormality index, related to the co-rank of a suitable linear map. Attention is then shifted to the study of the first variation of the action functional. The analysis includes a revisitation of Pontryagin's equations and of the Lagrange multipliers method, as well as a reformulation of Pontryagin's algorithm in Hamiltonian terms. The analysis is completed by a general result, concerning the existence of finite deformations with fixed endpoints.
Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde
2015-11-01
The problem of coexistence and dynamical behaviors of multiple equilibrium points is addressed for a class of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays. By virtue of the fixed point theorem, nonsmooth analysis theory and other analytical tools, some sufficient conditions are established to guarantee that such n-dimensional memristive Cohen-Grossberg neural networks can have 5(n) equilibrium points, among which 3(n) equilibrium points are locally exponentially stable. It is shown that greater storage capacity can be achieved by neural networks with the non-monotonic activation functions introduced herein than the ones with Mexican-hat-type activation function. In addition, unlike most existing multistability results of neural networks with monotonic activation functions, those obtained 3(n) locally stable equilibrium points are located both in saturated regions and unsaturated regions. The theoretical findings are verified by an illustrative example with computer simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Investigation on a mechanical vibration absorber with tunable piecewise-linear stiffness
NASA Astrophysics Data System (ADS)
Shui, Xin; Wang, Shimin
2018-02-01
The design and characterization of a mechanical vibration absorber are addressed. A distinctive feature of the absorber is its tunable piecewise-linear stiffness, which is realized by means of a slider with two stop-blocks installed constraining the bilateral deflections of the elastic support. A new analytical approach named as the equivalent stiffness technique (EST) is introduced and then employed to obtain the analytical relations of the frequency, amplitude and phase with a view to exhibit a more comprehensive characterization of the absorber. Experiments are conducted to demonstrate the feasibility of the design. The experimental data show good agreement with the analytical results. The final results indicate that the tunable stiffness absorber (TSA) possesses a typical nonlinear characteristic at each given position of the slider, and its stiffness can be tuned in real time over a wide range by adjusting the slider position. Hence the TSA has a large optimum vibration-absorption range together with a wide suppression band around each optimal position, which contributes to its excellent capacity of vibration absorption.
Enabling full-field physics-based optical proximity correction via dynamic model generation
NASA Astrophysics Data System (ADS)
Lam, Michael; Clifford, Chris; Raghunathan, Ananthan; Fenger, Germain; Adam, Kostas
2017-07-01
As extreme ultraviolet lithography becomes closer to reality for high volume production, its peculiar modeling challenges related to both inter and intrafield effects have necessitated building an optical proximity correction (OPC) infrastructure that operates with field position dependency. Previous state-of-the-art approaches to modeling field dependency used piecewise constant models where static input models are assigned to specific x/y-positions within the field. OPC and simulation could assign the proper static model based on simulation-level placement. However, in the realm of 7 and 5 nm feature sizes, small discontinuities in OPC from piecewise constant model changes can cause unacceptable levels of edge placement errors. The introduction of dynamic model generation (DMG) can be shown to effectively avoid these dislocations by providing unique mask and optical models per simulation region, allowing a near continuum of models through the field. DMG allows unique models for electromagnetic field, apodization, aberrations, etc. to vary through the entire field and provides a capability to precisely and accurately model systematic field signatures.
Observational constraint on dynamical evolution of dark energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Yungui; Cai, Rong-Gen; Chen, Yun
2010-01-01
We use the Constitution supernova, the baryon acoustic oscillation, the cosmic microwave background, and the Hubble parameter data to analyze the evolution property of dark energy. We obtain different results when we fit different baryon acoustic oscillation data combined with the Constitution supernova data to the Chevallier-Polarski-Linder model. We find that the difference stems from the different values of Ω{sub m0}. We also fit the observational data to the model independent piecewise constant parametrization. Four redshift bins with boundaries at z = 0.22, 0.53, 0.85 and 1.8 were chosen for the piecewise constant parametrization of the equation of state parametermore » w(z) of dark energy. We find no significant evidence for evolving w(z). With the addition of the Hubble parameter, the constraint on the equation of state parameter at high redshift is improved by 70%. The marginalization of the nuisance parameter connected to the supernova distance modulus is discussed.« less
NASA Astrophysics Data System (ADS)
Alves, Julio Cesar L.; Poppi, Ronei J.
2013-02-01
This paper reports the application of piecewise direct standardization (PDS) for matrix correction in front face fluorescence spectroscopy of solids when different excipients are used in a pharmaceutical preparation based on a mixture of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine. As verified in earlier studies, the use of different excipients and their ratio can cause a displacement, change in fluorescence intensity or band profile. To overcome this important drawback, a standardization strategy was adopted to convert all the excitation-emission fluorescence spectra into those used for model development. An excitation-emission matrix (EEM) for which excitation and emission wavelengths ranging from 265 to 405 nm and 300 to 480 nm, respectively, was used. Excellent results were obtained using unfolded partial least squares (U-PLS), with RMSEP values of 8.2 mg/g, 10.9 mg/g and 2.7 mg/g for ASA, paracetamol and caffeine, respectively, and with relative errors lesser than 5% for the three analytes.
Sullivan, Amanda L; Kohli, Nidhi; Farnsworth, Elyse M; Sadeh, Shanna; Jones, Leila
2017-09-01
Accurate estimation of developmental trajectories can inform instruction and intervention. We compared the fit of linear, quadratic, and piecewise mixed-effects models of reading development among students with learning disabilities relative to their typically developing peers. We drew an analytic sample of 1,990 students from the nationally representative Early Childhood Longitudinal Study-Kindergarten Cohort of 1998, using reading achievement scores from kindergarten through eighth grade to estimate three models of students' reading growth. The piecewise mixed-effects models provided the best functional form of the students' reading trajectories as indicated by model fit indices. Results showed slightly different trajectories between students with learning disabilities and without disabilities, with varying but divergent rates of growth throughout elementary grades, as well as an increasing gap over time. These results highlight the need for additional research on appropriate methods for modeling reading trajectories and the implications for students' response to instruction. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Cheng, Kung-Shan; Yuan, Yu; Li, Zhen; Stauffer, Paul R; Maccarini, Paolo; Joines, William T; Dewhirst, Mark W; Das, Shiva K
2009-04-07
In large multi-antenna systems, adaptive controllers can aid in steering the heat focus toward the tumor. However, the large number of sources can greatly increase the steering time. Additionally, controller performance can be degraded due to changes in tissue perfusion which vary non-linearly with temperature, as well as with time and spatial position. The current work investigates whether a reduced-order controller with the assumption of piecewise constant perfusion is robust to temperature-dependent perfusion and achieves steering in a shorter time than required by a full-order controller. The reduced-order controller assumes that the optimal heating setting lies in a subspace spanned by the best heating vectors (virtual sources) of an initial, approximate, patient model. An initial, approximate, reduced-order model is iteratively updated by the controller, using feedback thermal images, until convergence of the heat focus to the tumor. Numerical tests were conducted in a patient model with a right lower leg sarcoma, heated in a 10-antenna cylindrical mini-annual phased array applicator operating at 150 MHz. A half-Gaussian model was used to simulate temperature-dependent perfusion. Simulated magnetic resonance temperature images were used as feedback at each iteration step. Robustness was validated for the controller, starting from four approximate initial models: (1) a 'standard' constant perfusion lower leg model ('standard' implies a model that exactly models the patient with the exception that perfusion is considered constant, i.e., not temperature dependent), (2) a model with electrical and thermal tissue properties varied from 50% higher to 50% lower than the standard model, (3) a simplified constant perfusion pure-muscle lower leg model with +/-50% deviated properties and (4) a standard model with the tumor position in the leg shifted by 1.5 cm. Convergence to the desired focus of heating in the tumor was achieved for all four simulated models. The controller accomplished satisfactory therapeutic outcomes: approximately 80% of the tumor was heated to temperatures 43 degrees C and approximately 93% was maintained at temperatures <41 degrees C. Compared to the controller without model reduction, a approximately 9-25 fold reduction in convergence time was accomplished using approximately 2-3 orthonormal virtual sources. In the situations tested, the controller was robust to the presence of temperature-dependent perfusion. The results of this work can help to lay the foundation for real-time thermal control of multi-antenna hyperthermia systems in clinical situations where perfusion can change rapidly with temperature.
Hwang, Jing-Shiang; Nadziejko, Christine; Chen, Lung Chi
2005-04-01
Normal mice (C57) and mice prone to develop atherosclerosis (ApoE-/-) were implanted with electrocardiograph (EKG), core body temperature, and motion transmitters were exposed daily for 6 h to Tuxedo, NY, concentrated ambient particles (CAPs) for 5 day/wk during the spring and summer of 2003. The series of 5-min EKG monitoring and body-temperature measurements were obtained for each animal in the CAPs and filtered air sham exposure groups. Our hypothesis was that chronic exposure could cause cumulative health effects. We used our recently developed nonparametric method to estimate the daily time periods that mean heart rates (HR), body temperature, and physical activity differed significantly between the CAPs and sham exposed group. CAPs exposure most affected heart rate between 1:30 a.m. and 4:30 a.m. With the response variables being the average heart rate, body temperature, and physical activity, we adopted a two-stage modeling approach to obtain the estimates of chronic and acute effects on the changes of these three response variables. In the first stage, a time-varying model estimated daily crude effects. In the second stage, the true means of the estimated crude effects were modeled with a polynominal function of time for chronic effects, a linear term of daily CAPs exposure concentrations for acute effects, and a random component for unknown noise. A Bayesian framework combined these two stages. There were significant decreasing patterns of HR, body temperature, and physical activity for the ApoE-/- mice over the 5 mo of CAPs exposure, with smaller and nonsignificant changes for the C57 mice. The chronic effect changes of the three response variables for ApoE-/- mice were maximal in the last few weeks. There was also a significant relationship between CAPs exposure concentration and short-term changes of heart rate in ApoE-/- mice during exposure. Response variables were also defined for examining fluctuations of 5-min heart rates within long (i.e., 3-6 h) and short time periods (i.e., approximately 15 min). The results for the ApoE-/- mice showed that heart-rate fluctuation within the longer periods increased to 1.35-fold by the end of exposure experiment, while the heart-rate fluctuation within 15 min decreased to 0.7-fold.
Mathematical Tools for Image Reconstruction
1991-07-01
l.Diffuse tomography 2.Concentrating a signal in the physical and spectral domains. 3.New explicit solutions for the Kadomtsev - Petviashvili equation 4...the case of the Schroedinger equation it was possible to "beat Heisenberg" with piecewise linear potentials. Finally let me say that the paper Some
Radial Basis Function Based Quadrature over Smooth Surfaces
2016-03-24
Radial Basis Functions φ(r) Piecewise Smooth (Conditionally Positive Definite) MN Monomial |r|2m+1 TPS thin plate spline |r|2mln|r| Infinitely Smooth...smooth surfaces using polynomial interpolants, while [27] couples Thin - Plate Spline interpolation (see table 1) with Green’s integral formula [29
SIMULATION OF DISPERSION OF A POWER PLANT PLUME USING AN ADAPTIVE GRID ALGORITHM
A new dynamic adaptive grid algorithm has been developed for use in air quality modeling. This algorithm uses a higher order numerical scheme?the piecewise parabolic method (PPM)?for computing advective solution fields; a weight function capable of promoting grid node clustering ...
Multi-frequency Phase Unwrap from Noisy Data: Adaptive Least Squares Approach
NASA Astrophysics Data System (ADS)
Katkovnik, Vladimir; Bioucas-Dias, José
2010-04-01
Multiple frequency interferometry is, basically, a phase acquisition strategy aimed at reducing or eliminating the ambiguity of the wrapped phase observations or, equivalently, reducing or eliminating the fringe ambiguity order. In multiple frequency interferometry, the phase measurements are acquired at different frequencies (or wavelengths) and recorded using the corresponding sensors (measurement channels). Assuming that the absolute phase to be reconstructed is piece-wise smooth, we use a nonparametric regression technique for the phase reconstruction. The nonparametric estimates are derived from a local least squares criterion, which, when applied to the multifrequency data, yields denoised (filtered) phase estimates with extended ambiguity (periodized), compared with the phase ambiguities inherent to each measurement frequency. The filtering algorithm is based on local polynomial (LPA) approximation for design of nonlinear filters (estimators) and adaptation of these filters to unknown smoothness of the spatially varying absolute phase [9]. For phase unwrapping, from filtered periodized data, we apply the recently introduced robust (in the sense of discontinuity preserving) PUMA unwrapping algorithm [1]. Simulations give evidence that the proposed algorithm yields state-of-the-art performance for continuous as well as for discontinues phase surfaces, enabling phase unwrapping in extraordinary difficult situations when all other algorithms fail.
NASA Astrophysics Data System (ADS)
Ortiz, Sabine; Chomaz, Jean-Marc; Loiseleux, Thomas
2002-08-01
In mixing-layers between two parallel streams of different densities, shear and gravity effects interplay; buoyancy acts as a restoring force and the Kelvin-Helmholtz mode is known to be stabilized by the stratification. If the density interface is sharp enough, two new instability modes, known as Holmboe modes, appear, propagating in opposite directions. This mechanism has been studied in the temporal instability framework. The present paper analyzes the associated spatial instability problem. It considers, in the Boussinesq approximation, two immiscible inviscid fluids with a piecewise linear broken-line velocity profile. We show how the classical scenario for transition between absolute and convective instability should be modified due to the presence of propagating waves. In the convective region, the spatial theory is relevant and the slowest propagating wave is shown to be the most spatially amplified, as suggested by intuition. Predictions of spatial linear theory are compared with mixing-layer [C. G. Koop and F. K. Browand, J. Fluid Mech. 93, 135 (1979)] and exchange flow [G. Pawlak and L. Armi, J. Fluid Mech. 376, 1 (1999)] experiments. The physical mechanism for Holmboe mode destabilization is analyzed via an asymptotic expansion that predicts the absolute instability domain at large Richardson number.
A New Model Based on Adaptation of the External Loop to Compensate the Hysteresis of Tactile Sensors
Sánchez-Durán, José A.; Vidal-Verdú, Fernando; Oballe-Peinado, Óscar; Castellanos-Ramos, Julián; Hidalgo-López, José A.
2015-01-01
This paper presents a novel method to compensate for hysteresis nonlinearities observed in the response of a tactile sensor. The External Loop Adaptation Method (ELAM) performs a piecewise linear mapping of the experimentally measured external curves of the hysteresis loop to obtain all possible internal cycles. The optimal division of the input interval where the curve is approximated is provided by the error minimization algorithm. This process is carried out off line and provides parameters to compute the split point in real time. A different linear transformation is then performed at the left and right of this point and a more precise fitting is achieved. The models obtained with the ELAM method are compared with those obtained from three other approaches. The results show that the ELAM method achieves a more accurate fitting. Moreover, the involved mathematical operations are simpler and therefore easier to implement in devices such as Field Programmable Gate Array (FPGAs) for real time applications. Furthermore, the method needs to identify fewer parameters and requires no previous selection process of operators or functions. Finally, the method can be applied to other sensors or actuators with complex hysteresis loop shapes. PMID:26501279
Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments.
Choi, Ji Yeh; Hwang, Heungsun; Timmerman, Marieke E
2018-03-01
Parallel factor analysis (PARAFAC) is a useful multivariate method for decomposing three-way data that consist of three different types of entities simultaneously. This method estimates trilinear components, each of which is a low-dimensional representation of a set of entities, often called a mode, to explain the maximum variance of the data. Functional PARAFAC permits the entities in different modes to be smooth functions or curves, varying over a continuum, rather than a collection of unconnected responses. The existing functional PARAFAC methods handle functions of a one-dimensional argument (e.g., time) only. In this paper, we propose a new extension of functional PARAFAC for handling three-way data whose responses are sequenced along both a two-dimensional domain (e.g., a plane with x- and y-axis coordinates) and a one-dimensional argument. Technically, the proposed method combines PARAFAC with basis function expansion approximations, using a set of piecewise quadratic finite element basis functions for estimating two-dimensional smooth functions and a set of one-dimensional basis functions for estimating one-dimensional smooth functions. In a simulation study, the proposed method appeared to outperform the conventional PARAFAC. We apply the method to EEG data to demonstrate its empirical usefulness.
A Variational Approach to Simultaneous Image Segmentation and Bias Correction.
Zhang, Kaihua; Liu, Qingshan; Song, Huihui; Li, Xuelong
2015-08-01
This paper presents a novel variational approach for simultaneous estimation of bias field and segmentation of images with intensity inhomogeneity. We model intensity of inhomogeneous objects to be Gaussian distributed with different means and variances, and then introduce a sliding window to map the original image intensity onto another domain, where the intensity distribution of each object is still Gaussian but can be better separated. The means of the Gaussian distributions in the transformed domain can be adaptively estimated by multiplying the bias field with a piecewise constant signal within the sliding window. A maximum likelihood energy functional is then defined on each local region, which combines the bias field, the membership function of the object region, and the constant approximating the true signal from its corresponding object. The energy functional is then extended to the whole image domain by the Bayesian learning approach. An efficient iterative algorithm is proposed for energy minimization, via which the image segmentation and bias field correction are simultaneously achieved. Furthermore, the smoothness of the obtained optimal bias field is ensured by the normalized convolutions without extra cost. Experiments on real images demonstrated the superiority of the proposed algorithm to other state-of-the-art representative methods.
SINGER, A.; GILLESPIE, D.; NORBURY, J.; EISENBERG, R. S.
2009-01-01
Ion channels are proteins with a narrow hole down their middle that control a wide range of biological function by controlling the flow of spherical ions from one macroscopic region to another. Ion channels do not change their conformation on the biological time scale once they are open, so they can be described by a combination of Poisson and drift-diffusion (Nernst–Planck) equations called PNP in biophysics. We use singular perturbation techniques to analyse the steady-state PNP system for a channel with a general geometry and a piecewise constant permanent charge profile. We construct an outer solution for the case of a constant permanent charge density in three dimensions that is also a valid solution of the one-dimensional system. The asymptotical current–voltage (I–V ) characteristic curve of the device (obtained by the singular perturbation analysis) is shown to be a very good approximation of the numerical I–V curve (obtained by solving the system numerically). The physical constraint of non-negative concentrations implies a unique solution, i.e., for each given applied potential there corresponds a unique electric current (relaxing this constraint yields non-physical multiple solutions for sufficiently large voltages). PMID:19809600
Brittle failure of rock: A review and general linear criterion
NASA Astrophysics Data System (ADS)
Labuz, Joseph F.; Zeng, Feitao; Makhnenko, Roman; Li, Yuan
2018-07-01
A failure criterion typically is phenomenological since few models exist to theoretically derive the mathematical function. Indeed, a successful failure criterion is a generalization of experimental data obtained from strength tests on specimens subjected to known stress states. For isotropic rock that exhibits a pressure dependence on strength, a popular failure criterion is a linear equation in major and minor principal stresses, independent of the intermediate principal stress. A general linear failure criterion called Paul-Mohr-Coulomb (PMC) contains all three principal stresses with three material constants: friction angles for axisymmetric compression ϕc and extension ϕe and isotropic tensile strength V0. PMC provides a framework to describe a nonlinear failure surface by a set of planes "hugging" the curved surface. Brittle failure of rock is reviewed and multiaxial test methods are summarized. Equations are presented to implement PMC for fitting strength data and determining the three material parameters. A piecewise linear approximation to a nonlinear failure surface is illustrated by fitting two planes with six material parameters to form either a 6- to 12-sided pyramid or a 6- to 12- to 6-sided pyramid. The particular nature of the failure surface is dictated by the experimental data.
Focusers of obliquely incident laser radiation
NASA Astrophysics Data System (ADS)
Goncharskiy, A. V.; Danilov, V. A.; Popov, V. V.; Prokhorov, A. M.; Sisakyan, I. N.; Sayfer, V. A.; Stepanov, V. V.
1984-08-01
Focusing obliquely incident laser radiation along a given line in space with a given intensity distribution is treated as a problem of synthesizing a mirror surface. The intricate shape of such a surface, characterized by a function z= z (u,v) in the approximation of geometrical optics, is determined from the equation phi (u,v,z) - phi O(u,v,z)=O, which expresses that the incident field and the reflected field have identical eikonals. Further calculations are facilitated by replacing continuous mirror with a more easily manufactured piecewise continuous one. The problem is solved for the simple case of a plane incident wave with a typical iconal phi O(u,v,z)= -z cos0 at a large angle to a focus mirror in the z-plane region. Mirrors constructed on the basis of the theoretical solution were tested in an experiment with a CO2 laser. A light beam with Gaussian intensity distribution was, upon incidence at a 45 deg angle, focused into a circle or into an ellipse with uniform intensity distribution. Improvements in amplitudinal masking and selective tanning technology should reduce energy losses at the surface which results in efficient laser focusing mirrors.
Offset truss hex solar concentrator
NASA Technical Reports Server (NTRS)
White, John E. (Inventor); Sturgis, James D. (Inventor); Erikson, Raymond J. (Inventor); Waligroski, Gregg A. (Inventor); Scott, Michael A. (Inventor)
1991-01-01
A solar energy concentrator system comprises an offset reflector structure made up of a plurality of solar energy reflector panel sections interconnected with one another to form a piecewise approximation of a portion of a (parabolic) surface of revolution rotated about a prescribed focal axis. Each panel section is comprised of a plurality of reflector facets whose reflective surfaces effectively focus reflected light to preselected surface portions of the interior sidewall of a cylindrically shaped solar energy receiver. The longitudinal axis of the receiver is tilted at an acute angle with respect to the optical axis such that the distribution of focussed solar energy over the interior surface of the solar engine is optimized for dynamic solar energy conversion. Each reflector panel section comprises a flat, hexagonally shaped truss support framework and a plurality of beam members interconnecting diametrically opposed corners of the hexagonal framework recessed within which a plurality of (spherically) contoured reflector facets is disposed. The depth of the framework and the beam members is greater than the thickness of a reflector facet such that a reflector facet may be tilted (for controlling the effective focus of its reflected light through the receiver aperture) without protruding from the panel section.
An LPV Adaptive Observer for Updating a Map Applied to an MAF Sensor in a Diesel Engine.
Liu, Zhiyuan; Wang, Changhui
2015-10-23
In this paper, a new method for mass air flow (MAF) sensor error compensation and an online updating error map (or lookup table) due to installation and aging in a diesel engine is developed. Since the MAF sensor error is dependent on the engine operating point, the error model is represented as a two-dimensional (2D) map with two inputs, fuel mass injection quantity and engine speed. Meanwhile, the 2D map representing the MAF sensor error is described as a piecewise bilinear interpolation model, which can be written as a dot product between the regression vector and parameter vector using a membership function. With the combination of the 2D map regression model and the diesel engine air path system, an LPV adaptive observer with low computational load is designed to estimate states and parameters jointly. The convergence of the proposed algorithm is proven under the conditions of persistent excitation and given inequalities. The observer is validated against the simulation data from engine software enDYNA provided by Tesis. The results demonstrate that the operating point-dependent error of the MAF sensor can be approximated acceptably by the 2D map from the proposed method.
Effective Clipart Image Vectorization through Direct Optimization of Bezigons.
Yang, Ming; Chao, Hongyang; Zhang, Chi; Guo, Jun; Yuan, Lu; Sun, Jian
2016-02-01
Bezigons, i.e., closed paths composed of Bézier curves, have been widely employed to describe shapes in image vectorization results. However, most existing vectorization techniques infer the bezigons by simply approximating an intermediate vector representation (such as polygons). Consequently, the resultant bezigons are sometimes imperfect due to accumulated errors, fitting ambiguities, and a lack of curve priors, especially for low-resolution images. In this paper, we describe a novel method for vectorizing clipart images. In contrast to previous methods, we directly optimize the bezigons rather than using other intermediate representations; therefore, the resultant bezigons are not only of higher fidelity compared with the original raster image but also more reasonable because they were traced by a proficient expert. To enable such optimization, we have overcome several challenges and have devised a differentiable data energy as well as several curve-based prior terms. To improve the efficiency of the optimization, we also take advantage of the local control property of bezigons and adopt an overlapped piecewise optimization strategy. The experimental results show that our method outperforms both the current state-of-the-art method and commonly used commercial software in terms of bezigon quality.
NASA Astrophysics Data System (ADS)
D'Ambra, Pasqua; Tartaglione, Gaetano
2015-04-01
Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.
Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method
NASA Astrophysics Data System (ADS)
D'Ambra, Pasqua; Tartaglione, Gaetano
2015-03-01
Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.
Online Detection of Driver Fatigue Using Steering Wheel Angles for Real Driving Conditions.
Li, Zuojin; Li, Shengbo Eben; Li, Renjie; Cheng, Bo; Shi, Jinliang
2017-03-02
This paper presents a drowsiness on-line detection system for monitoring driver fatigue level under real driving conditions, based on the data of steering wheel angles (SWA) collected from sensors mounted on the steering lever. The proposed system firstly extracts approximate entropy (ApEn)featuresfromfixedslidingwindowsonreal-timesteeringwheelanglestimeseries. Afterthat, this system linearizes the ApEn features series through an adaptive piecewise linear fitting using a given deviation. Then, the detection system calculates the warping distance between the linear features series of the sample data. Finally, this system uses the warping distance to determine the drowsiness state of the driver according to a designed binary decision classifier. The experimental data were collected from 14.68 h driving under real road conditions, including two fatigue levels: "wake" and "drowsy". The results show that the proposed system is capable of working online with an average 78.01% accuracy, 29.35% false detections of the "awake" state, and 15.15% false detections of the "drowsy" state. The results also confirm that the proposed method based on SWA signal is valuable for applications in preventing traffic accidents caused by driver fatigue.
Online Detection of Driver Fatigue Using Steering Wheel Angles for Real Driving Conditions
Li, Zuojin; Li, Shengbo Eben; Li, Renjie; Cheng, Bo; Shi, Jinliang
2017-01-01
This paper presents a drowsiness on-line detection system for monitoring driver fatigue level under real driving conditions, based on the data of steering wheel angles (SWA) collected from sensors mounted on the steering lever. The proposed system firstly extracts approximate entropy (ApEn) features from fixed sliding windows on real-time steering wheel angles time series. After that, this system linearizes the ApEn features series through an adaptive piecewise linear fitting using a given deviation. Then, the detection system calculates the warping distance between the linear features series of the sample data. Finally, this system uses the warping distance to determine the drowsiness state of the driver according to a designed binary decision classifier. The experimental data were collected from 14.68 h driving under real road conditions, including two fatigue levels: “wake” and “drowsy”. The results show that the proposed system is capable of working online with an average 78.01% accuracy, 29.35% false detections of the “awake” state, and 15.15% false detections of the “drowsy” state. The results also confirm that the proposed method based on SWA signal is valuable for applications in preventing traffic accidents caused by driver fatigue. PMID:28257094
Robust pulmonary lobe segmentation against incomplete fissures
NASA Astrophysics Data System (ADS)
Gu, Suicheng; Zheng, Qingfeng; Siegfried, Jill; Pu, Jiantao
2012-03-01
As important anatomical landmarks of the human lung, accurate lobe segmentation may be useful for characterizing specific lung diseases (e.g., inflammatory, granulomatous, and neoplastic diseases). A number of investigations showed that pulmonary fissures were often incomplete in image depiction, thereby leading to the computerized identification of individual lobes a challenging task. Our purpose is to develop a fully automated algorithm for accurate identification of individual lobes regardless of the integrity of pulmonary fissures. The underlying idea of the developed lobe segmentation scheme is to use piecewise planes to approximate the detected fissures. After a rotation and a global smoothing, a number of small planes were fitted using local fissures points. The local surfaces are finally combined for lobe segmentation using a quadratic B-spline weighting strategy to assure that the segmentation is smooth. The performance of the developed scheme was assessed by comparing with a manually created reference standard on a dataset of 30 lung CT examinations. These examinations covered a number of lung diseases and were selected from a large chronic obstructive pulmonary disease (COPD) dataset. The results indicate that our scheme of lobe segmentation is efficient and accurate against incomplete fissures.
A coarse-grid-projection acceleration method for finite-element incompressible flow computations
NASA Astrophysics Data System (ADS)
Kashefi, Ali; Staples, Anne; FiN Lab Team
2015-11-01
Coarse grid projection (CGP) methodology provides a framework for accelerating computations by performing some part of the computation on a coarsened grid. We apply the CGP to pressure projection methods for finite element-based incompressible flow simulations. Based on it, the predicted velocity field data is restricted to a coarsened grid, the pressure is determined by solving the Poisson equation on the coarse grid, and the resulting data are prolonged to the preset fine grid. The contributions of the CGP method to the pressure correction technique are twofold: first, it substantially lessens the computational cost devoted to the Poisson equation, which is the most time-consuming part of the simulation process. Second, it preserves the accuracy of the velocity field. The velocity and pressure spaces are approximated by Galerkin spectral element using piecewise linear basis functions. A restriction operator is designed so that fine data are directly injected into the coarse grid. The Laplacian and divergence matrices are driven by taking inner products of coarse grid shape functions. Linear interpolation is implemented to construct a prolongation operator. A study of the data accuracy and the CPU time for the CGP-based versus non-CGP computations is presented. Laboratory for Fluid Dynamics in Nature.
Recent work on material interface reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosso, S.J.; Swartz, B.K.
1997-12-31
For the last 15 years, many Eulerian codes have relied on a series of piecewise linear interface reconstruction algorithms developed by David Youngs. In a typical Youngs` method, the material interfaces were reconstructed based upon nearly cell values of volume fractions of each material. The interfaces were locally represented by linear segments in two dimensions and by pieces of planes in three dimensions. The first step in such reconstruction was to locally approximate an interface normal. In Youngs` 3D method, a local gradient of a cell-volume-fraction function was estimated and taken to be the local interface normal. A linear interfacemore » was moved perpendicular to the now known normal until the mass behind it matched the material volume fraction for the cell in question. But for distorted or nonorthogonal meshes, the gradient normal estimate didn`t accurately match that of linear material interfaces. Moreover, curved material interfaces were also poorly represented. The authors will present some recent work in the computation of more accurate interface normals, without necessarily increasing stencil size. Their estimate of the normal is made using an iterative process that, given mass fractions for nearby cells of known but arbitrary variable density, converges in 3 or 4 passes in practice (and quadratically--like Newton`s method--in principle). The method reproduces a linear interface in both orthogonal and nonorthogonal meshes. The local linear approximation is generally 2nd-order accurate, with a 1st-order accurate normal for curved interfaces in both two and three dimensional polyhedral meshes. Recent work demonstrating the interface reconstruction for curved surfaces will /be discussed.« less
High-Order Space-Time Methods for Conservation Laws
NASA Technical Reports Server (NTRS)
Huynh, H. T.
2013-01-01
Current high-order methods such as discontinuous Galerkin and/or flux reconstruction can provide effective discretization for the spatial derivatives. Together with a time discretization, such methods result in either too small a time step size in the case of an explicit scheme or a very large system in the case of an implicit one. To tackle these problems, two new high-order space-time schemes for conservation laws are introduced: the first is explicit and the second, implicit. The explicit method here, also called the moment scheme, achieves a Courant-Friedrichs-Lewy (CFL) condition of 1 for the case of one-spatial dimension regardless of the degree of the polynomial approximation. (For standard explicit methods, if the spatial approximation is of degree p, then the time step sizes are typically proportional to 1/p(exp 2)). Fourier analyses for the one and two-dimensional cases are carried out. The property of super accuracy (or super convergence) is discussed. The implicit method is a simplified but optimal version of the discontinuous Galerkin scheme applied to time. It reduces to a collocation implicit Runge-Kutta (RK) method for ordinary differential equations (ODE) called Radau IIA. The explicit and implicit schemes are closely related since they employ the same intermediate time levels, and the former can serve as a key building block in an iterative procedure for the latter. A limiting technique for the piecewise linear scheme is also discussed. The technique can suppress oscillations near a discontinuity while preserving accuracy near extrema. Preliminary numerical results are shown
Boolean Operations with Prism Algebraic Patches
Bajaj, Chandrajit; Paoluzzi, Alberto; Portuesi, Simone; Lei, Na; Zhao, Wenqi
2009-01-01
In this paper we discuss a symbolic-numeric algorithm for Boolean operations, closed in the algebra of curved polyhedra whose boundary is triangulated with algebraic patches (A-patches). This approach uses a linear polyhedron as a first approximation of both the arguments and the result. On each triangle of a boundary representation of such linear approximation, a piecewise cubic algebraic interpolant is built, using a C1-continuous prism algebraic patch (prism A-patch) that interpolates the three triangle vertices, with given normal vectors. The boundary representation only stores the vertices of the initial triangulation and their external vertex normals. In order to represent also flat and/or sharp local features, the corresponding normal-per-face and/or normal-per-edge may be also given, respectively. The topology is described by storing, for each curved triangle, the two triples of pointers to incident vertices and to adjacent triangles. For each triangle, a scaffolding prism is built, produced by its extreme vertices and normals, which provides a containment volume for the curved interpolating A-patch. When looking for the result of a regularized Boolean operation, the 0-set of a tri-variate polynomial within each such prism is generated, and intersected with the analogous 0-sets of the other curved polyhedron, when two prisms have non-empty intersection. The intersection curves of the boundaries are traced and used to decompose each boundary into the 3 standard classes of subpatches, denoted in, out and on. While tracing the intersection curves, the locally refined triangulation of intersecting patches is produced, and added to the boundary representation. PMID:21516262
NASA Astrophysics Data System (ADS)
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
Almasi, Sepideh; Xu, Xiaoyin; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L
2015-02-01
A novel approach to determine the global topological structure of a microvasculature network from noisy and low-resolution fluorescence microscopy data that does not require the detailed segmentation of the vessel structure is proposed here. The method is most appropriate for problems where the tortuosity of the network is relatively low and proceeds by directly computing a piecewise linear approximation to the vasculature skeleton through the construction of a graph in three dimensions whose edges represent the skeletal approximation and vertices are located at Critical Points (CPs) on the microvasculature. The CPs are defined as vessel junctions or locations of relatively large curvature along the centerline of a vessel. Our method consists of two phases. First, we provide a CP detection technique that, for junctions in particular, does not require any a priori geometric information such as direction or degree. Second, connectivity between detected nodes is determined via the solution of a Binary Integer Program (BIP) whose variables determine whether a potential edge between nodes is or is not included in the final graph. The utility function in this problem reflects both intensity-based and structural information along the path connecting the two nodes. Qualitative and quantitative results confirm the usefulness and accuracy of this method. This approach provides a mean of correctly capturing the connectivity patterns in vessels that are missed by more traditional segmentation and binarization schemes because of imperfections in the images which manifest as dim or broken vessels. Copyright © 2014 Elsevier B.V. All rights reserved.
Some Applications of Piece-Wise Smooth Dynamical Systems
NASA Astrophysics Data System (ADS)
Janovská, Drahoslava; Hanus, Tomáš; Biák, Martin
2010-09-01
The Filippov systems theory is applied to selected problems from biology and chemical engineering, namely we explore and simulate Bazykin's ecological model, an ideal closed gas-liquid system including its dimensionless formulation. The last investigated system is a CSTR with an outfall and the CSTR with a reactor volume control.
Dynamical properties of maps fitted to data in the noise-free limit
Lindström, Torsten
2013-01-01
We argue that any attempt to classify dynamical properties from nonlinear finite time-series data requires a mechanistic model fitting the data better than piecewise linear models according to standard model selection criteria. Such a procedure seems necessary but still not sufficient. PMID:23768079
SIMULATION OF DISPERSION OF A POWER PLANT PLUME USING AN ADAPTIVE GRID ALGORITHM. (R827028)
A new dynamic adaptive grid algorithm has been developed for use in air quality modeling. This algorithm uses a higher order numerical scheme––the piecewise parabolic method (PPM)––for computing advective solution fields; a weight function capable o...
A RUTCOR Project in Discrete Applied Mathematics
1990-02-20
representations of smooth piecewise polynomial functions over triangulated regions have led in particular to the conclusion that Groebner basis methods of...Reversing Number of a Digraph," in preparation. 4. Billera, L.J., and Rose, L.L., " Groebner Basis Methods for Multivariate Splines," RRR 1-89, January
NASA Technical Reports Server (NTRS)
Ruffert, Maximilian; Arnett, David
1994-01-01
We investigate the hydrodynamics of three-dimensional classical Bondi-Hoyle accretion. Totally absorbing spheres of varying sizes (from 10 down to 0.01 accretion radii) move at Mach 3 relative to a homogeneous and slightly perturbed medium, which is taken to be an ideal gas (gamma = 5/3). To accommodate the long-range gravitational forces, the extent of the computational volume is 32(exp 3) accretion radii. We examine the influence of numerical procedure on physical behavior. The hydrodynamics is modeled by the 'piecewise parabolic method.' No energy sources (nuclear burning) or sinks (radiation, conduction) are included. The resolution in the vicinity of the accretor is increased by multiply nesting several (5-10) grids around the sphere, each finer grid being a factor of 2 smaller in zone dimension that the next coarser grid. The largest dynamic range (ratio of size of the largest grid to size of the finest zone) is 16,384. This allows us to include a coarse model for the surface of the accretor (vacuum sphere) on the finest grid, while at the same time evolving the gas on the coarser grids. Initially (at time t = 0-10), a shock front is set up, a Mach cone develops, and the accretion column is observable. Eventually the flow becomes unstable, destroying axisymmetry. This happens approximately when the mass accretion rate reaches the values (+/- 10%) predicted by the Bondi-Hoyle accretion formula (factor of 2 included). However, our three-dimensional models do not show the highly dynamic flip-flop flow so prominent in two-dimensional calculations performed by other authors. The flow, and thus the accretion rate of all quantities, shows quasi-periodic (P approximately equals 5) cycles between quiescent and active states. The interpolation formula proposed in an accompanying paper is found to follow the collected numerical data to within approximately 30%. The specific angular momentum accreted is of the same order of magnitude as the values previously found for two-dimensional flows.
NASA Astrophysics Data System (ADS)
Besse, Nicolas; Coulette, David
2016-08-01
Achieving plasmas with good stability and confinement properties is a key research goal for magnetic fusion devices. The underlying equations are the Vlasov-Poisson and Vlasov-Maxwell (VPM) equations in three space variables, three velocity variables, and one time variable. Even in those somewhat academic cases where global equilibrium solutions are known, studying their stability requires the analysis of the spectral properties of the linearized operator, a daunting task. We have identified a model, for which not only equilibrium solutions can be constructed, but many of their stability properties are amenable to rigorous analysis. It uses a class of solution to the VPM equations (or to their gyrokinetic approximations) known as waterbag solutions which, in particular, are piecewise constant in phase-space. It also uses, not only the gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but also an asymptotic approximation regarding the magnetic-field-induced anisotropy: the spatial variation along the field lines is taken much slower than across them. Together, these assumptions result in a drastic reduction in the dimensionality of the linearized problem, which becomes a set of two nested one-dimensional problems: an integral equation in the poloidal variable, followed by a one-dimensional complex Schrödinger equation in the radial variable. We show here that the operator associated to the poloidal variable is meromorphic in the eigenparameter, the pulsation frequency. We also prove that, for all but a countable set of real pulsation frequencies, the operator is compact and thus behaves mostly as a finite-dimensional one. The numerical algorithms based on such ideas have been implemented in a companion paper [D. Coulette and N. Besse, "Numerical resolution of the global eigenvalue problem for gyrokinetic-waterbag model in toroidal geometry" (submitted)] and were found to be surprisingly close to those for the original gyrokinetic-Vlasov equations. The purpose of the present paper is to make these new ideas accessible to two readerships: applied mathematicians and plasma physicists.
NASA Astrophysics Data System (ADS)
Greenough, J. A.; Rider, W. J.
2004-05-01
A numerical study is undertaken comparing a fifth-order version of the weighted essentially non-oscillatory numerical (WENO5) method to a modern piecewise-linear, second-order, version of Godunov's (PLMDE) method for the compressible Euler equations. A series of one-dimensional test problems are examined beginning with classical linear problems and ending with complex shock interactions. The problems considered are: (1) linear advection of a Gaussian pulse in density, (2) Sod's shock tube problem, (3) the "peak" shock tube problem, (4) a version of the Shu and Osher shock entropy wave interaction and (5) the Woodward and Colella interacting shock wave problem. For each problem and method, run times, density error norms and convergence rates are reported for each method as produced from a common code test-bed. The linear problem exhibits the advertised convergence rate for both methods as well as the expected large disparity in overall error levels; WENO5 has the smaller errors and an enormous advantage in overall efficiency (in accuracy per unit CPU time). For the nonlinear problems with discontinuities, however, we generally see both first-order self-convergence of error as compared to an exact solution, or when an analytic solution is not available, a converged solution generated on an extremely fine grid. The overall comparison of error levels shows some variation from problem to problem. For Sod's shock tube, PLMDE has nearly half the error, while on the peak problem the errors are nearly the same. For the interacting blast wave problem the two methods again produce a similar level of error with a slight edge for the PLMDE. On the other hand, for the Shu-Osher problem, the errors are similar on the coarser grids, but favors WENO by a factor of nearly 1.5 on the finer grids used. In all cases holding mesh resolution constant though, PLMDE is less costly in terms of CPU time by approximately a factor of 6. If the CPU cost is taken as fixed, that is run times are equal for both numerical methods, then PLMDE uniformly produces lower errors than WENO for the fixed computation cost on the test problems considered here.
ERIC Educational Resources Information Center
Sullivan, Amanda L.; Kohli, Nidhi; Farnsworth, Elyse M.; Sadeh, Shanna; Jones, Leila
2017-01-01
Objective: Accurate estimation of developmental trajectories can inform instruction and intervention. We compared the fit of linear, quadratic, and piecewise mixed-effects models of reading development among students with learning disabilities relative to their typically developing peers. Method: We drew an analytic sample of 1,990 students from…
Computerized Method for the Generation of Molecular Transmittance Functions in the Infrared Region.
1979-12-31
exponent of the double exponential function were ’bumpy’ for some cases. Since the nature of the transmittance does not predict this behavior, we...T ,IS RECOMPUTED FOR THE ORIGIONAL DATA *USING THE PIECEWISE- ANALITICAL TRANSMISSION FUNCTION.’//20X, *’STANDARD DEVIATIONS BETWEEN THE ACTUAL TAU
Computerized Method for the Generation of Molecular Transmittance Functions in the Infrared.
1980-04-01
predict this behavior, we conclude that the first method using linear function of x is accurate enough to be used in the actual application. The...PIECEWISE- ANALITICAL TRANSMISSION FUNCTION.’//20X, * ’STANDARD DEVIATIONS BETWEEN THE ACTUAL TAU AND THE RECOMPUTED’, * ’ TAU VALUES ARE COMPUTED.’////) 77
A variety of common activities in the home, such as smoking and cooking, generate indoor particle concentrations. Mathematical indoor air quality models permit predictions of indoor pollutant concentrations in homes, provided that parameter values such as source strengths and ...
Application of Markov Models for Analysis of Development of Psychological Characteristics
ERIC Educational Resources Information Center
Kuravsky, Lev S.; Malykh, Sergey B.
2004-01-01
A technique to study combined influence of environmental and genetic factors on the base of changes in phenotype distributions is presented. Histograms are exploited as base analyzed characteristics. A continuous time, discrete state Markov process with piece-wise constant interstate transition rates is associated with evolution of each histogram.…
ERIC Educational Resources Information Center
Seiffge-Krenke, Inge; Aunola, Kaisa; Nurmi, Jari-Erik
2009-01-01
The present study investigated the interplay between developmental changes in stress and coping during early and late adolescence. Using a longitudinal design, stress perception and coping styles of 200 adolescents in 7 different stressful situations were investigated. Multilevel piecewise latent growth curve models showed that stress perception…
Using within-day hive weight changes to measure environmental effects on honey bee colonies
USDA-ARS?s Scientific Manuscript database
Patterns in within-day hive weight data from two independent datasets in Arizona and California were modeled using piecewise regression, and analyzed with respect to honey bee colony behavior and landscape effects. The regression analysis yielded information on the start and finish of a colony’s dai...
A Spline Regression Model for Latent Variables
ERIC Educational Resources Information Center
Harring, Jeffrey R.
2014-01-01
Spline (or piecewise) regression models have been used in the past to account for patterns in observed data that exhibit distinct phases. The changepoint or knot marking the shift from one phase to the other, in many applications, is an unknown parameter to be estimated. As an extension of this framework, this research considers modeling the…
ERIC Educational Resources Information Center
Kieffer, Michael J.
2012-01-01
Using longitudinal data on a nationally representative U.S. cohort, this study investigated the relationship between socioeconomic status and students' reading growth between kindergarten and eighth grade. Piecewise latent growth modeling was used to describe nonlinear growth trajectories in reading during three developmental periods: kindergarten…
Development of a piecewise linear omnidirectional 3D image registration method
NASA Astrophysics Data System (ADS)
Bae, Hyunsoo; Kang, Wonjin; Lee, SukGyu; Kim, Youngwoo
2016-12-01
This paper proposes a new piecewise linear omnidirectional image registration method. The proposed method segments an image captured by multiple cameras into 2D segments defined by feature points of the image and then stitches each segment geometrically by considering the inclination of the segment in the 3D space. Depending on the intended use of image registration, the proposed method can be used to improve image registration accuracy or reduce the computation time in image registration because the trade-off between the computation time and image registration accuracy can be controlled for. In general, nonlinear image registration methods have been used in 3D omnidirectional image registration processes to reduce image distortion by camera lenses. The proposed method depends on a linear transformation process for omnidirectional image registration, and therefore it can enhance the effectiveness of the geometry recognition process, increase image registration accuracy by increasing the number of cameras or feature points of each image, increase the image registration speed by reducing the number of cameras or feature points of each image, and provide simultaneous information on shapes and colors of captured objects.
Sanders, Toby; Gelb, Anne; Platte, Rodrigo B.; ...
2017-01-03
Over the last decade or so, reconstruction methods using ℓ 1 regularization, often categorized as compressed sensing (CS) algorithms, have significantly improved the capabilities of high fidelity imaging in electron tomography. The most popular ℓ 1 regularization approach within electron tomography has been total variation (TV) regularization. In addition to reducing unwanted noise, TV regularization encourages a piecewise constant solution with sparse boundary regions. In this paper we propose an alternative ℓ 1 regularization approach for electron tomography based on higher order total variation (HOTV). Like TV, the HOTV approach promotes solutions with sparse boundary regions. In smooth regions however,more » the solution is not limited to piecewise constant behavior. We demonstrate that this allows for more accurate reconstruction of a broader class of images – even those for which TV was designed for – particularly when dealing with pragmatic tomographic sampling patterns and very fine image features. In conclusion, we develop results for an electron tomography data set as well as a phantom example, and we also make comparisons with discrete tomography approaches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordoloi, Ankur D.; Ding, Liuyang; Martinez, Adam A.
In this paper, we introduce a new method (piecewise integrated dynamics equation fit, PIDEF) that uses the particle dynamics equation to determine unsteady kinematics and drag coefficient (C D) for a particle in subsonic post-shock flow. The uncertainty of this method is assessed based on simulated trajectories for both quasi-steady and unsteady flow conditions. Traditional piecewise polynomial fitting (PPF) shows high sensitivity to measurement error and the function used to describe C D, creating high levels of relative error (>>1) when applied to unsteady shock-accelerated flows. The PIDEF method provides reduced uncertainty in calculations of unsteady acceleration and drag coefficientmore » for both quasi-steady and unsteady flows. This makes PIDEF a preferable method over PPF for complex flows where the temporal response of C D is unknown. Finally, we apply PIDEF to experimental measurements of particle trajectories from 8-pulse particle tracking and determine the effect of incident Mach number on relaxation kinematics and drag coefficient of micron-sized particles.« less
Bordoloi, Ankur D.; Ding, Liuyang; Martinez, Adam A.; ...
2018-04-26
In this paper, we introduce a new method (piecewise integrated dynamics equation fit, PIDEF) that uses the particle dynamics equation to determine unsteady kinematics and drag coefficient (C D) for a particle in subsonic post-shock flow. The uncertainty of this method is assessed based on simulated trajectories for both quasi-steady and unsteady flow conditions. Traditional piecewise polynomial fitting (PPF) shows high sensitivity to measurement error and the function used to describe C D, creating high levels of relative error (>>1) when applied to unsteady shock-accelerated flows. The PIDEF method provides reduced uncertainty in calculations of unsteady acceleration and drag coefficientmore » for both quasi-steady and unsteady flows. This makes PIDEF a preferable method over PPF for complex flows where the temporal response of C D is unknown. Finally, we apply PIDEF to experimental measurements of particle trajectories from 8-pulse particle tracking and determine the effect of incident Mach number on relaxation kinematics and drag coefficient of micron-sized particles.« less
Mixed Legendre moments and discrete scattering cross sections for anisotropy representation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calloo, A.; Vidal, J. F.; Le Tellier, R.
2012-07-01
This paper deals with the resolution of the integro-differential form of the Boltzmann transport equation for neutron transport in nuclear reactors. In multigroup theory, deterministic codes use transfer cross sections which are expanded on Legendre polynomials. This modelling leads to negative values of the transfer cross section for certain scattering angles, and hence, the multigroup scattering source term is wrongly computed. The first part compares the convergence of 'Legendre-expanded' cross sections with respect to the order used with the method of characteristics (MOC) for Pressurised Water Reactor (PWR) type cells. Furthermore, the cross section is developed using piecewise-constant functions, whichmore » better models the multigroup transfer cross section and prevents the occurrence of any negative value for it. The second part focuses on the method of solving the transport equation with the above-mentioned piecewise-constant cross sections for lattice calculations for PWR cells. This expansion thereby constitutes a 'reference' method to compare the conventional Legendre expansion to, and to determine its pertinence when applied to reactor physics calculations. (authors)« less
Piecewise-Constant-Model-Based Interior Tomography Applied to Dentin Tubules
He, Peng; Wei, Biao; Wang, Steve; ...
2013-01-01
Dentin is a hierarchically structured biomineralized composite material, and dentin’s tubules are difficult to study in situ. Nano-CT provides the requisite resolution, but the field of view typically contains only a few tubules. Using a plate-like specimen allows reconstruction of a volume containing specific tubules from a number of truncated projections typically collected over an angular range of about 140°, which is practically accessible. Classical computed tomography (CT) theory cannot exactly reconstruct an object only from truncated projections, needless to say a limited angular range. Recently, interior tomography was developed to reconstruct a region-of-interest (ROI) from truncated data in amore » theoretically exact fashion via the total variation (TV) minimization under the condition that the ROI is piecewise constant. In this paper, we employ a TV minimization interior tomography algorithm to reconstruct interior microstructures in dentin from truncated projections over a limited angular range. Compared to the filtered backprojection (FBP) reconstruction, our reconstruction method reduces noise and suppresses artifacts. Volume rendering confirms the merits of our method in terms of preserving the interior microstructure of the dentin specimen.« less
A variational method for analyzing limit cycle oscillations in stochastic hybrid systems
NASA Astrophysics Data System (ADS)
Bressloff, Paul C.; MacLaurin, James
2018-06-01
Many systems in biology can be modeled through ordinary differential equations, which are piece-wise continuous, and switch between different states according to a Markov jump process known as a stochastic hybrid system or piecewise deterministic Markov process (PDMP). In the fast switching limit, the dynamics converges to a deterministic ODE. In this paper, we develop a phase reduction method for stochastic hybrid systems that support a stable limit cycle in the deterministic limit. A classic example is the Morris-Lecar model of a neuron, where the switching Markov process is the number of open ion channels and the continuous process is the membrane voltage. We outline a variational principle for the phase reduction, yielding an exact analytic expression for the resulting phase dynamics. We demonstrate that this decomposition is accurate over timescales that are exponential in the switching rate ɛ-1 . That is, we show that for a constant C, the probability that the expected time to leave an O(a) neighborhood of the limit cycle is less than T scales as T exp (-C a /ɛ ) .
Puso, M. A.; Kokko, E.; Settgast, R.; ...
2014-10-22
An embedded mesh method using piecewise constant multipliers originally proposed by Puso et al. (CMAME, 2012) is analyzed here to determine effects of the pressure stabilization term and small cut cells. The approach is implemented for transient dynamics using the central difference scheme for the time discretization. It is shown that the resulting equations of motion are a stable linear system with a condition number independent of mesh size. Furthermore, we show that the constraints and the stabilization terms can be recast as non-proportional damping such that the time integration of the scheme is provably stable with a critical timemore » step computed from the undamped equations of motion. Effects of small cuts are discussed throughout the presentation. A mesh study is conducted to evaluate the effects of the stabilization on the discretization error and conditioning and is used to recommend an optimal value for stabilization scaling parameter. Several nonlinear problems are also analyzed and compared with comparable conforming mesh results. Finally, we show several demanding problems highlighting the robustness of the proposed approach.« less
Nie, Xiaobing; Zheng, Wei Xing
2015-05-01
This paper is concerned with the problem of coexistence and dynamical behaviors of multiple equilibrium points for neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays. The fixed point theorem and other analytical tools are used to develop certain sufficient conditions that ensure that the n-dimensional discontinuous neural networks with time-varying delays can have at least 5(n) equilibrium points, 3(n) of which are locally stable and the others are unstable. The importance of the derived results is that it reveals that the discontinuous neural networks can have greater storage capacity than the continuous ones. Moreover, different from the existing results on multistability of neural networks with discontinuous activation functions, the 3(n) locally stable equilibrium points obtained in this paper are located in not only saturated regions, but also unsaturated regions, due to the non-monotonic structure of discontinuous activation functions. A numerical simulation study is conducted to illustrate and support the derived theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hierarchical structure in sharply divided phase space for the piecewise linear map
NASA Astrophysics Data System (ADS)
Akaishi, Akira; Aoki, Kazuki; Shudo, Akira
2017-05-01
We have studied a two-dimensional piecewise linear map to examine how the hierarchical structure of stable regions affects the slow dynamics in Hamiltonian systems. In the phase space there are infinitely many stable regions, each of which is polygonal-shaped, and the rest is occupied by chaotic orbits. By using symbolic representation of stable regions, a procedure to compute the edges of the polygons is presented. The stable regions are hierarchically distributed in phase space and the edges of the stable regions show the marginal instability. The cumulative distribution of the recurrence time obeys a power law as ˜t-2 , the same as the one for the system with phase space, which is composed of a single stable region and chaotic components. By studying the symbol sequence of recurrence trajectories, we show that the hierarchical structure of stable regions has no significant effect on the power-law exponent and that only the marginal instability on the boundary of stable regions is responsible for determining the exponent. We also discuss the relevance of the hierarchical structure to those in more generic chaotic systems.
Resonant activation in piecewise linear asymmetric potentials.
Fiasconaro, Alessandro; Spagnolo, Bernardo
2011-04-01
This work analyzes numerically the role played by the asymmetry of a piecewise linear potential, in the presence of both a Gaussian white noise and a dichotomous noise, on the resonant activation phenomenon. The features of the asymmetry of the potential barrier arise by investigating the stochastic transitions far behind the potential maximum, from the initial well to the bottom of the adjacent potential well. Because of the asymmetry of the potential profile together with the random external force uniform in space, we find, for the different asymmetries: (1) an inversion of the curves of the mean first passage time in the resonant region of the correlation time τ of the dichotomous noise, for low thermal noise intensities; (2) a maximum of the mean velocity of the Brownian particle as a function of τ; and (3) an inversion of the curves of the mean velocity and a very weak current reversal in the miniratchet system obtained with the asymmetrical potential profiles investigated. An inversion of the mean first passage time curves is also observed by varying the amplitude of the dichotomous noise, behavior confirmed by recent experiments. ©2011 American Physical Society
Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.; Brown, Jesslyn F.
2015-01-01
Cheatgrass exhibits spatial and temporal phenological variability across the Great Basin as described by ecological models formed using remote sensing and other spatial data-sets. We developed a rule-based, piecewise regression-tree model trained on 99 points that used three data-sets – latitude, elevation, and start of season time based on remote sensing input data – to estimate cheatgrass beginning of spring growth (BOSG) in the northern Great Basin. The model was then applied to map the location and timing of cheatgrass spring growth for the entire area. The model was strong (R2 = 0.85) and predicted an average cheatgrass BOSG across the study area of 29 March–4 April. Of early cheatgrass BOSG areas, 65% occurred at elevations below 1452 m. The highest proportion of cheatgrass BOSG occurred between mid-April and late May. Predicted cheatgrass BOSG in this study matched well with previous Great Basin cheatgrass green-up studies.
Affine connection form of Regge calculus
NASA Astrophysics Data System (ADS)
Khatsymovsky, V. M.
2016-12-01
Regge action is represented analogously to how the Palatini action for general relativity (GR) as some functional of the metric and a general connection as independent variables represents the Einstein-Hilbert action. The piecewise flat (or simplicial) spacetime of Regge calculus is equipped with some world coordinates and some piecewise affine metric which is completely defined by the set of edge lengths and the world coordinates of the vertices. The conjugate variables are the general nondegenerate matrices on the three-simplices which play the role of a general discrete connection. Our previous result on some representation of the Regge calculus action in terms of the local Euclidean (Minkowsky) frame vectors and orthogonal connection matrices as independent variables is somewhat modified for the considered case of the general linear group GL(4, R) of the connection matrices. As a result, we have some action invariant w.r.t. arbitrary change of coordinates of the vertices (and related GL(4, R) transformations in the four-simplices). Excluding GL(4, R) connection from this action via the equations of motion we have exactly the Regge action for the considered spacetime.
Zhu, Hanhua; Chen, Cheng; Xu, Chao; Zhu, Qihong; Huang, Daoyou
2016-12-01
Intensive and paired soil and rice grain survey and multiple-field liming experiments were conducted to assess soil acidification in the past 30 years, quantify the relationships of Cd phytoavailability with soil acidity, and determine efficacies of liming on soil acidity and Cd phytoavailability in paddy soils of central subtropical China at a regional scale. Soil pH, total and extractable Cd (Cd tot and Cd ext ), rice grain Cd were determined, and all measured data were analyzed separately in groups of 0.1 pH units intervals. Paddy soil pH averagely declined at 0.031 unit yr -1 between 1980s and 2014 (P < 0.01). Piecewise means of log Cd transfer ratio kept around -0.062 between soil pH 4.0 and 5.5 and around -1.31 between pH 6.9 and 7.3, whereas linearly decreased by a factor of 0.76 with pH 5.5-6.9, and by a factor of 1.38 with pH 7.3-8.2 (P < 0.01), respectively. Similar responses to soil pH were observed for soil Cd ext to Cd tot ratio. However, the former exhibited a lag effect to soil acidification in the acidic soils and a leading effect in alkaline soils. Liming increased soil pH by 0.50 units, and decreased rice grain Cd by 35.3% and log Cd transfer ratio by a factor of 0.76 (P < 0.01). The piecewise relationship based on the survey precisely predicted the changes in Cd transfer ratio across the multiple-field liming experiments. In conclusion, soil acidification occurred and accelerated in the past 30 years, and piecewise-linearly increased Cd phytoavailability of paddy soils in central subtropical China. Mitigating soil acidification, i.e. liming, should be preferentially implemented to minimize Cd phytoavailability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Interior region-of-interest reconstruction using a small, nearly piecewise constant subregion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taguchi, Katsuyuki; Xu Jingyan; Srivastava, Somesh
2011-03-15
Purpose: To develop a method to reconstruct an interior region-of-interest (ROI) image with sufficient accuracy that uses differentiated backprojection (DBP) projection onto convex sets (POCS) [H. Kudo et al., ''Tiny a priori knowledge solves the interior problem in computed tomography'', Phys. Med. Biol. 53, 2207-2231 (2008)] and a tiny knowledge that there exists a nearly piecewise constant subregion. Methods: The proposed method first employs filtered backprojection to reconstruct an image on which a tiny region P with a small variation in the pixel values is identified inside the ROI. Total variation minimization [H. Yu and G. Wang, ''Compressed sensing basedmore » interior tomography'', Phys. Med. Biol. 54, 2791-2805 (2009); W. Han et al., ''A general total variation minimization theorem for compressed sensing based interior tomography'', Int. J. Biomed. Imaging 2009, Article 125871 (2009)] is then employed to obtain pixel values in the subregion P, which serve as a priori knowledge in the next step. Finally, DBP-POCS is performed to reconstruct f(x,y) inside the ROI. Clinical data and the reconstructed image obtained by an x-ray computed tomography system (SOMATOM Definition; Siemens Healthcare) were used to validate the proposed method. The detector covers an object with a diameter of {approx}500 mm. The projection data were truncated either moderately to limit the detector coverage to diameter 350 mm of the object or severely to cover diameter 199 mm. Images were reconstructed using the proposed method. Results: The proposed method provided ROI images with correct pixel values in all areas except near the edge of the ROI. The coefficient of variation, i.e., the root mean square error divided by the mean pixel values, was less than 2.0% or 4.5% with the moderate or severe truncation cases, respectively, except near the boundary of the ROI. Conclusions: The proposed method allows for reconstructing interior ROI images with sufficient accuracy with a tiny knowledge that there exists a nearly piecewise constant subregion.« less
Wide Area Security Region Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Lu, Shuai; Guo, Xinxin
2010-03-31
This report develops innovative and efficient methodologies and practical procedures to determine the wide-area security region of a power system, which take into consideration all types of system constraints including thermal, voltage, voltage stability, transient and potentially oscillatory stability limits in the system. The approach expands the idea of transmission system nomograms to a multidimensional case, involving multiple system limits and parameters such as transmission path constraints, zonal generation or load, etc., considered concurrently. The security region boundary is represented using its piecewise approximation with the help of linear inequalities (so called hyperplanes) in a multi-dimensional space, consisting of systemmore » parameters that are critical for security analyses. The goal of this approximation is to find a minimum set of hyperplanes that describe the boundary with a given accuracy. Methodologies are also developed to use the security hyperplanes, pre-calculated offline, to determine system security margins in real-time system operations, to identify weak elements in the system, and to calculate key contributing factors and sensitivities to determine the best system controls in real time and to assist in developing remedial actions and transmission system enhancements offline . A prototype program that automates the simulation procedures used to build the set of security hyperplanes has also been developed. The program makes it convenient to update the set of security hyperplanes necessitated by changes in system configurations. A prototype operational tool that uses the security hyperplanes to assess security margins and to calculate optimal control directions in real time has been built to demonstrate the project success. Numerical simulations have been conducted using the full-size Western Electricity Coordinating Council (WECC) system model, and they clearly demonstrated the feasibility and the effectiveness of the developed technology. Recommendations for the future work have also been formulated.« less
NASA Astrophysics Data System (ADS)
Kobulnicky, Henry A.; Kiminki, Daniel C.; Lundquist, Michael J.; Burke, Jamison; Chapman, James; Keller, Erica; Lester, Kathryn; Rolen, Emily K.; Topel, Eric; Bhattacharjee, Anirban; Smullen, Rachel A.; Vargas Álvarez, Carlos A.; Runnoe, Jessie C.; Dale, Daniel A.; Brotherton, Michael M.
2014-08-01
We analyze orbital solutions for 48 massive multiple-star systems in the Cygnus OB2 association, 23 of which are newly presented here, to find that the observed distribution of orbital periods is approximately uniform in log P for P < 45 days, but it is not scale-free. Inflections in the cumulative distribution near 6 days, 14 days, and 45 days suggest key physical scales of sime0.2, sime0.4, and sime1 A.U. where yet-to-be-identified phenomena create distinct features. No single power law provides a statistically compelling prescription, but if features are ignored, a power law with exponent β ~= -0.22 provides a crude approximation over P = 1.4-2000 days, as does a piece-wise linear function with a break near 45 days. The cumulative period distribution flattens at P > 45 days, even after correction for completeness, indicating either a lower binary fraction or a shift toward low-mass companions. A high degree of similarity (91% likelihood) between the Cyg OB2 period distribution and that of other surveys suggests that the binary properties at P <~ 25 days are determined by local physics of disk/clump fragmentation and are relatively insensitive to environmental and evolutionary factors. Fully 30% of the unbiased parent sample is a binary with period P < 45 days. Completeness corrections imply a binary fraction near 55% for P < 5000 days. The observed distribution of mass ratios 0.2 < q < 1 is consistent with uniform, while the observed distribution of eccentricities 0.1 < e < 0.6 is consistent with uniform plus an excess of e ~= 0 systems. We identify six stars, all supergiants, that exhibit aperiodic velocity variations of ~30 km s-1 attributed to atmospheric fluctuations.
Wrinkling of a thin circular sheet bonded to a spherical substrate
Kohn, Robert V.
2017-01-01
We consider a disc-shaped thin elastic sheet bonded to a compliant sphere. (Our sheet can slip along the sphere; the bonding controls only its normal displacement.) If the bonding is stiff (but not too stiff), the geometry of the sphere makes the sheet wrinkle to avoid azimuthal compression. The total energy of this system is the elastic energy of the sheet plus a (Winkler-type) substrate energy. Treating the thickness of the sheet h as a small parameter, we determine the leading-order behaviour of the energy as h tends to zero, and we give (almost matching) upper and lower bounds for the next-order correction. Our analysis of the leading-order behaviour determines the macroscopic deformation of the sheet; in particular, it determines the extent of the wrinkled region, and predicts the (non-trivial) radial strain of the sheet. The leading-order behaviour also provides insight about the length scale of the wrinkling, showing that it must be approximately independent of the distance r from the centre of the sheet (so that the number of wrinkles must increase with r). Our results on the next-order correction provide insight about how the wrinkling pattern should vary with r. Roughly speaking, they suggest that the length scale of wrinkling should not be exactly constant—rather, it should vary slightly, so that the number of wrinkles at radius r can be approximately piecewise constant in its dependence on r, taking values that are integer multiples of h−a with . This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications’. PMID:28373380
Piecewise SALT sampling for estimating suspended sediment yields
Robert B. Thomas
1989-01-01
A probability sampling method called SALT (Selection At List Time) has been developed for collecting and summarizing data on delivery of suspended sediment in rivers. It is based on sampling and estimating yield using a suspended-sediment rating curve for high discharges and simple random sampling for low flows. The method gives unbiased estimates of total yield and...
ERIC Educational Resources Information Center
Oh, Yoonkyung
2012-01-01
This study used the ECLS-K to examine the contextual influences of parent involvement on children's achievement growth in reading and math during elementary grades. The study used Rasch models and HLM measurement models to develop reliable and valid constructs of parent involvement both at the student and at the school level. Piecewise linear…
ERIC Educational Resources Information Center
Cheadle, Jacob E.
2008-01-01
Drawing on longitudinal data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-1999, this study used IRT modeling to operationalize a measure of parental educational investments based on Lareau's notion of concerted cultivation. It used multilevel piece-wise growth models regressing children's math and reading achievement…
Testing with Feedback Yields Potent, but Piecewise, Learning of History and Biology Facts
ERIC Educational Resources Information Center
Pan, Steven C.; Gopal, Arpita; Rickard, Timothy C.
2016-01-01
Does correctly answering a test question about a multiterm fact enhance memory for the entire fact? We explored that issue in 4 experiments. Subjects first studied Advanced Placement History or Biology facts. Half of those facts were then restudied, whereas the remainder were tested using "5 W" (i.e., "who, what, when, where",…
Modeling Students' Response to Intervention Using an Individualized Piecewise Growth Model
ERIC Educational Resources Information Center
Zvoch, Keith; Stevens, Joseph
2011-01-01
The early identification of students at-risk for future reading difficulty has become a focal point for K-12 stakeholders seeking to actively prevent the emergence of student reading deficits. Early and active intervention efforts for struggling readers have taken on greater urgency given the accountability pressures that stem from the No Child…
1987-12-01
8217ftp.. *,*IS ~. ~bw ~ ft.. p ’ft ’ft ft.. ’ft *I~ P* ’ft ’p 0n-I ci via 1 ca j I .11’ ft~ ’ fttH vialca *- ’ft ft..I ft. ’ft ft.. --ft ..ft ’ft ftp
Interstellar photoelectric absorption cross sections, 0.03-10 keV
NASA Technical Reports Server (NTRS)
Morrison, R.; Mccammon, D.
1983-01-01
An effective absorption cross section per hydrogen atom has been calculated as a function of energy in the 0.03-10 keV range using the most recent atomic cross section and cosmic abundance data. Coefficients of a piecewise polynomial fit to the numerical results are given to allow convenient application in automated calculations.
Bifurcation from an invariant to a non-invariant attractor
NASA Astrophysics Data System (ADS)
Mandal, D.
2016-12-01
Switching dynamical systems are very common in many areas of physics and engineering. We consider a piecewise linear map that periodically switches between more than one different functional forms. We show that in such systems it is possible to have a border collision bifurcation where the system transits from an invariant attractor to a non-invariant attractor.
A Model for Minimizing Numeric Function Generator Complexity and Delay
2007-12-01
allow computation of difficult mathematical functions in less time and with less hardware than commonly employed methods. They compute piecewise...Programmable Gate Arrays (FPGAs). The algorithms and estimation techniques apply to various NFG architectures and mathematical functions. This...thesis compares hardware utilization and propagation delay for various NFG architectures, mathematical functions, word widths, and segmentation methods
Defining phases of bedload transport using piecewise regression
Sandra E. Ryan; Laurie S. Porth; C. A. Troendle
2002-01-01
Differences in the transport rate and size of bedload exist for varying levels of flow in coarse-grained channels. For gravel-bed rivers, at least two phases of bedload transport, with notably differing qualities, have been described in the literature. Phase I consists primarily of sand and small gravel moving at relatively low rates over a stable channel surface....
Continuous analog of multiplicative algebraic reconstruction technique for computed tomography
NASA Astrophysics Data System (ADS)
Tateishi, Kiyoko; Yamaguchi, Yusaku; Abou Al-Ola, Omar M.; Kojima, Takeshi; Yoshinaga, Tetsuya
2016-03-01
We propose a hybrid dynamical system as a continuous analog to the block-iterative multiplicative algebraic reconstruction technique (BI-MART), which is a well-known iterative image reconstruction algorithm for computed tomography. The hybrid system is described by a switched nonlinear system with a piecewise smooth vector field or differential equation and, for consistent inverse problems, the convergence of non-negatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem. Namely, we can prove theoretically that a weighted Kullback-Leibler divergence measure can be a common Lyapunov function for the switched system. We show that discretizing the differential equation by using the first-order approximation (Euler's method) based on the geometric multiplicative calculus leads to the same iterative formula of the BI-MART with the scaling parameter as a time-step of numerical discretization. The present paper is the first to reveal that a kind of iterative image reconstruction algorithm is constructed by the discretization of a continuous-time dynamical system for solving tomographic inverse problems. Iterative algorithms with not only the Euler method but also the Runge-Kutta methods of lower-orders applied for discretizing the continuous-time system can be used for image reconstruction. A numerical example showing the characteristics of the discretized iterative methods is presented.
An LPV Adaptive Observer for Updating a Map Applied to an MAF Sensor in a Diesel Engine
Liu, Zhiyuan; Wang, Changhui
2015-01-01
In this paper, a new method for mass air flow (MAF) sensor error compensation and an online updating error map (or lookup table) due to installation and aging in a diesel engine is developed. Since the MAF sensor error is dependent on the engine operating point, the error model is represented as a two-dimensional (2D) map with two inputs, fuel mass injection quantity and engine speed. Meanwhile, the 2D map representing the MAF sensor error is described as a piecewise bilinear interpolation model, which can be written as a dot product between the regression vector and parameter vector using a membership function. With the combination of the 2D map regression model and the diesel engine air path system, an LPV adaptive observer with low computational load is designed to estimate states and parameters jointly. The convergence of the proposed algorithm is proven under the conditions of persistent excitation and given inequalities. The observer is validated against the simulation data from engine software enDYNA provided by Tesis. The results demonstrate that the operating point-dependent error of the MAF sensor can be approximated acceptably by the 2D map from the proposed method. PMID:26512675
A dispersion minimizing scheme for the 3-D Helmholtz equation based on ray theory
NASA Astrophysics Data System (ADS)
Stolk, Christiaan C.
2016-06-01
We develop a new dispersion minimizing compact finite difference scheme for the Helmholtz equation in 2 and 3 dimensions. The scheme is based on a newly developed ray theory for difference equations. A discrete Helmholtz operator and a discrete operator to be applied to the source and the wavefields are constructed. Their coefficients are piecewise polynomial functions of hk, chosen such that phase and amplitude errors are minimal. The phase errors of the scheme are very small, approximately as small as those of the 2-D quasi-stabilized FEM method and substantially smaller than those of alternatives in 3-D, assuming the same number of gridpoints per wavelength is used. In numerical experiments, accurate solutions are obtained in constant and smoothly varying media using meshes with only five to six points per wavelength and wave propagation over hundreds of wavelengths. When used as a coarse level discretization in a multigrid method the scheme can even be used with down to three points per wavelength. Tests on 3-D examples with up to 108 degrees of freedom show that with a recently developed hybrid solver, the use of coarser meshes can lead to corresponding savings in computation time, resulting in good simulation times compared to the literature.
Standara, Stanislav; Kulhánek, Petr; Marek, Radek; Straka, Michal
2013-08-15
The isotropic (129)Xe nuclear magnetic resonance (NMR) chemical shift (CS) in Xe@C60 dissolved in liquid benzene was calculated by piecewise approximation to faithfully simulate the experimental conditions and to evaluate the role of different physical factors influencing the (129)Xe NMR CS. The (129)Xe shielding constant was obtained by averaging the (129)Xe nuclear magnetic shieldings calculated for snapshots obtained from the molecular dynamics trajectory of the Xe@C60 system embedded in a periodic box of benzene molecules. Relativistic corrections were added at the Breit-Pauli perturbation theory (BPPT) level, included the solvent, and were dynamically averaged. It is demonstrated that the contribution of internal dynamics of the Xe@C60 system represents about 8% of the total nonrelativistic NMR CS, whereas the effects of dynamical solvent add another 8%. The dynamically averaged relativistic effects contribute by 9% to the total calculated (129)Xe NMR CS. The final theoretical value of 172.7 ppm corresponds well to the experimental (129)Xe CS of 179.2 ppm and lies within the estimated errors of the model. The presented computational protocol serves as a prototype for calculations of (129)Xe NMR parameters in different Xe atom guest-host systems. Copyright © 2013 Wiley Periodicals, Inc.
Retinal oxygen distribution and the role of neuroglobin.
Roberts, Paul A; Gaffney, Eamonn A; Luthert, Philip J; Foss, Alexander J E; Byrne, Helen M
2016-07-01
The retina is the tissue layer at the back of the eye that is responsible for light detection. Whilst equipped with a rich supply of oxygen, it has one of the highest oxygen demands of any tissue in the body and, as such, supply and demand are finely balanced. It has been suggested that the protein neuroglobin (Ngb), which is found in high concentrations within the retina, may help to maintain an adequate supply of oxygen via the processes of transport and storage. We construct mathematical models, formulated as systems of reaction-diffusion equations in one-dimension, to test this hypothesis. Numerical simulations show that Ngb may play an important role in oxygen transport, but not in storage. Our models predict that the retina is most susceptible to hypoxia in the regions of the photoreceptor inner segment and inner plexiform layers, where Ngb has the potential to prevent hypoxia and increase oxygen uptake by 30-40 %. Analysis of a simplified model confirms the utility of Ngb in transport and shows that its oxygen affinity ([Formula: see text] value) is near optimal for this process. Lastly, asymptotic analysis enables us to identify conditions under which the piecewise linear and quadratic approximations to the retinal oxygen profile, used in the literature, are valid.
An exploratory analysis of Indiana and Illinois biotic ...
EPA recognizes the importance of nutrient criteria in protecting designated uses from eutrophication effects associated with elevated phosphorus and nitrogen in streams and has worked with states over the past 12 years to assist them in developing nutrient criteria. Towards that end, EPA has provided states and tribes with technical guidance to assess nutrient impacts and to develop criteria. EPA published recommendations in 2000 on scientifically defensible empirical approaches for setting numeric criteria. EPA also published eco-regional criteria recommendations in 2000-2001 based on a frequency distribution approach meant to approximate reference condition concentrations. In 2010, EPA elaborated on one of these empirical approaches (i.e., stressor-response relationships) for developing nutrient criteria. The purpose of this report was to conduct exploratory analyses of state datasets from Illinois and Indiana to determine threshold values for nutrients and chlorophyll a that could guide Indiana and Illinois criteria development. Box and whisker plots were used to compare nutrient and chlorophyll a concentrations between Illinois and Indiana. Stressor response analyses, using piece-wise linear regression and change-point analysis (Illinois only) were conducted to determine thresholds of change in relationships between nutrients and biotic assemblages. Impact stmt: The purpose of this report was to conduct exploratory analyses of state datasets from Illinois