Sample records for pier program final

  1. Pathology Informatics Essentials for Residents: A Flexible Informatics Curriculum Linked to Accreditation Council for Graduate Medical Education Milestones.

    PubMed

    Henricks, Walter H; Karcher, Donald S; Harrison, James H; Sinard, John H; Riben, Michael W; Boyer, Philip J; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron

    2017-01-01

    -Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics has been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. -To develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills, and meets Accreditation Council for Graduate Medical Education Informatics Milestones. -The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. -Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). -PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time.

  2. Pathology Informatics Essentials for Residents: A flexible informatics curriculum linked to Accreditation Council for Graduate Medical Education milestones

    PubMed Central

    Henricks, Walter H; Karcher, Donald S; Harrison, James H; Sinard, John H; Riben, Michael W; Boyer, Philip J; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron

    2016-01-01

    Context: Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics have been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. Objective: The objective of the study is to develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills and meets Accreditation Council for Graduate Medical Education Informatics Milestones. Design: The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. Results: Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). Conclusions: PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time. PMID:27563486

  3. Engineering behavior of small-scale foundation piers constructed from alternative materials

    NASA Astrophysics Data System (ADS)

    Prokudin, Maxim Mikhaylovich

    Testing small-scale prototype pier foundations to evaluate engineering behavior is an alternative to full-scale testing that facilitates testing of several piers and pier groups at relatively low cost. In this study, various pier systems and pier groups at one tenth scale were subjected to static vertical loading under controlled conditions to evaluate stiffness, bearing capacity, and group efficiency. Pier length, material properties and methods of installation were evaluated. Pier length to diameter ratios varied between four and eight. A unique soil pit with dimensions of 2.1 m in width, 1.5 m in length and 2.0 m in depth was designed to carry out this research. The test pit was filled with moisture conditioned and compacted Western Iowa loess. A special load test frame was designed and fabricated to provide up to 25,000 kg vertical reaction force for load testing. A load cell and displacement instrumentation was setup to capture the load test data. Alternative materials to conventional cement concrete were studied. The pier materials evaluated in this study included compacted aggregate, cement stabilized silt, cementitious grouts, and fiber reinforced silt. Key findings from this study demonstrated that (1) the construction method influences the behavior of aggregate piers, (2) the composition of the pier has a significant impact on the stiffness, (3) group efficiencies were found to be a function of pier length and pier material, (4) in comparison to full-scale testing the scaled piers were found to produce a stiffer response with load-settlement and bearing capacities to be similar. Further, although full-scale test results were not available for all pier materials, the small-scale testing provided a means for comparing results between pier systems. Finally, duplicate pier tests for a given length and material were found to be repeatable.

  4. Final Environmental Assessment For Proposed Family Campground Expansion Maxwell Air Force Base, Montgomery County, Alabama

    DTIC Science & Technology

    2013-03-27

    water resources, it would likely cause no significant effect on water resources. The details of the construction of the boardwalk, fishing pier and...includes constructing a new boat dock, fishing pier and aeration fountains to the existing ponds. Constructing a fishing pier and boat dock would...air emissions due to construction related activities. These temporary emissions would not cause a significant effect . No Effect . There would be

  5. Evaluation of RC Bridge Piers Retrofitted using Fiber-Reinforced Polymer (FRP)

    NASA Astrophysics Data System (ADS)

    Shayanfar, M. A.; Zarrabian, M. S.

    2008-07-01

    For many long years, steel reinforcements have been considered as the only tool for concrete confinements and studied widely, but nowadays application of Fiber Reinforced Polymer (FRP) as an effective alternative is well appreciated. Many bridges have been constructed in the past that are necessary to be retrofitted for resisting against the earthquake motions. The objective of this research is evaluation of nonlinear behavior of RC bridge piers. Eight RC bridge piers have been modeled by ABAQUS software under micromechanical model for homogeneous anisotropic fibers. Also the Bilinear Confinement Model by Nonlinear Transition Zone of Mirmiran has been considered. Then types and angles of fibers and their effects on the final responses were evaluated [1]. Finally, effects of retrofitting are evaluated and some suggestions presented.

  6. Rapid repair of severely earthquake-damaged bridge piers with flexural-shear failure mode

    NASA Astrophysics Data System (ADS)

    Sun, Zhiguo; Wang, Dongsheng; Du, Xiuli; Si, Bingjun

    2011-12-01

    An experimental study was conducted to investigate the feasibility of a proposed rapid repair technique for severely earthquake-damaged bridge piers with flexural-shear failure mode. Six circular pier specimens were first tested to severe damage in flexural-shear mode and repaired using early-strength concrete with high-fluidity and carbon fiber reinforced polymers (CFRP). After about four days, the repaired specimens were tested to failure again. The seismic behavior of the repaired specimens was evaluated and compared to the original specimens. Test results indicate that the proposed repair technique is highly effective. Both shear strength and lateral displacement of the repaired piers increased when compared to the original specimens, and the failure mechanism of the piers shifted from flexural-shear failure to ductile flexural failure. Finally, a simple design model based on the Seible formulation for post-earthquake repair design was compared to the experimental results. It is concluded that the design equation for bridge pier strengthening before an earthquake could be applicable to seismic repairs after an earthquake if the shear strength contribution of the spiral bars in the repaired piers is disregarded and 1.5 times more FRP sheets is provided.

  7. Time rate of local scour at complex bridge piers field and laboratory analyses : final report, April 2009.

    DOT National Transportation Integrated Search

    2009-04-01

    A local scour evolution field study was conducted under this contract. One of the piers on the A1A Bridge over the Intracoastal Waterway (ICCW) in Fort Pierce, Florida was selected for the test site. The existing local scour hole was filled with sand...

  8. 77 FR 18853 - Trinity River National Wildlife Refuge, Liberty County, TX; Comprehensive Conservation Plan and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... the refuge. curricula, working with program, upon the local schools to meet completion of the State... fishing pier, at Champion Lake Public fishing piers at butterfly garden, Use Area, and construct Brierwood...

  9. 76 FR 1521 - Security Zone: Fleet Industrial Supply Center Pier, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2010-0423] RIN 1625-AA87 Security Zone: Fleet Industrial Supply Center Pier, San Diego, CA AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: The Coast Guard is removing a security zone on the navigable waters of San Diego...

  10. 3D numerical simulation of flow field with incompletely flaring gate pier in large unit discharge and deep tail water project

    NASA Astrophysics Data System (ADS)

    Zhao, Zhou; Junxing, Wang

    2018-06-01

    Limited by large unit discharge above the overflow weir and deep tail water inside the stilling basin, the incoming flow inside stilling basin is seriously short of enough energy dissipation and outgoing flow still carries much energy with large velocity, bound to result in secondary hydraulic jump outside stilling basin and scour downstream river bed. Based on the RNG k-ɛ turbulence model and the VOF method, this paper comparatively studies flow field between the conventional flat gate pier program and the incompletely flaring gate pier program to reveal energy dissipation mechanism of incomplete flaring gate pier. Results show that incompletely flaring gate pier can greatly promote the longitudinally stretched water jet to laterally diffuse and collide in the upstream region of stilling basin due to velocity gradients between adjacent inflow from each chamber through shrinking partial overflow flow chamber weir chamber, which would lead to large scale vertical axis vortex from the bottom to the surface and enhance mutual shear turbulence dissipation. This would significantly increase energy dissipation inside stilling basin to reduce outgoing velocity and totally solve the common hydraulic problems in large unit discharge and deep tail water projects.

  11. 78 FR 38582 - Safety Zones; Multiple Firework Displays in Captain of the Port, Puget Sound Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... Holmes Harbor, Elliot Bay Pier 90, and Southeast of Alki Point Light (approx. 1500 yds.) for various... from coming too close to the fireworks display and the associated hazards. C. Discussion of the Final... Elliot Bay, Pier 90; and Tuxedo and Tennis Shoes Event on July 20, 2013, near Alki Point Light. All...

  12. Three Dimensional Analysis of the Final Design of Pier Extensions and West Guide Wall to Mitigate Local Scour Risk at the BNSF Railroad Bridge Downstream of the Prado Dam Supplemental Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lottes, S. A.; Sinha, N.; Bojanowski, C.

    This report is a supplement to a previous report [ref] covering optimization of wedge shaped pier extensions to streamline large bluff body piers as a local scour countermeasure for the Burlington Northern and Santa Fe (BNSF) Railroad Bridge over the Santa Ana River downstream of Prado Dam in Riverside County, CA. The optimized design was tested in a 1/30 scale physical model at U.S. Army Engineer Research and Development Center (ERDC) in Vicksburg, MS, and the optimized design was used as the base for the construction design. Constructability issues having to do with both materials and site conditions including accessmore » underneath the BNSF bridge yielded a construction design that required making the pier extensions wider and either moving the western curve of the west guide wall upstream or changing its geometry.« less

  13. Observed and Predicted Pier Scour in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Lombard, Pamela J.

    2002-01-01

    Pier-scour and related data were collected and analyzed for nine high river flows at eight bridges across Maine from 1997 through 2001. Six bridges had multiple piers. Fifteen of 23 piers where data were measured during a high flow had observed maximum scour depths ranging from 0.5 feet (ft) to 12.0 ft. No pier scour was observed at the remaining eight piers. The maximum predicted pier-scour depths associated with the 23 piers were computed using the equations in the Federal Highway Administration's Hydraulic Engineering Circular number 18 (HEC-18), with data collected for this study. The predicted HEC-18 maximum pier-scour depths were compared to the observed maximum pier-scour depths. The HEC-18 pier-scour equations are intended to be envelope equations, ideally never underpredicting scour depths and not appreciably overpredicting them. The HEC-18 pier-scour equations performed well for rivers in Maine. Twenty-two out of 23 pier-scour depths were overpredicted by 0.7 ft to 18.3 ft. One pier-scour depth was underpredicted by 4.5 ft. For one pier at each of two bridges, large amounts of debris lodged on the piers after high-flow measurements were made at those sites. The scour associated with the debris increased the maximum pier-scour depths by about 5 ft in each case.

  14. 78 FR 49121 - Safety Zone; Luna Pier Fireworks, Luna Pier, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... Zone; Luna Pier Fireworks, Luna Pier, MI AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the safety zone for the Luna Pier Fireworks Show, Luna Pier... the fireworks launch site at the Clyde E. Evens Municipal Pier, located at position 41[deg]48'32'' N...

  15. Electronic automation of LRFD design programs.

    DOT National Transportation Integrated Search

    2010-03-01

    The study provided electronic programs to WisDOT for designing pre-stressed girders and piers using the Load : Resistance Factor Design (LRFD) methodology. The software provided is intended to ease the transition to : LRFD for WisDOT design engineers...

  16. Comparison of Scour and Flow Characteristics Around Circular and Oblong Bridge Piers in Seepage Affected Alluvial Channels

    NASA Astrophysics Data System (ADS)

    Chavan, Rutuja; Venkataramana, B.; Acharya, Pratik; Kumar, Bimlesh

    2018-06-01

    The present study examines scour geometry and turbulent flow characteristics around circular and oblong piers in alluvial channel with downward seepage. Experiments were conducted in plane sand bed of non-uniform sand under no seepage, 10% seepage and 15% seepage conditions. Scour depth at oblong pier is significantly lesser than the scour depth at circular one. However, the scour depth at both piers reduces with downward seepage. The measurements show that the velocity and Reynolds stresses are negative near the bed at upstream of piers where the strong reversal occurs. At downstream of oblong pier near the free surface, velocity and Reynolds stresses are less positive; whereas, they are negative at downstream of circular pier. The streamline shape of oblong pier leads to reduce the strength of wake vortices and consequently reversal flow at downstream of pier. With application of downward seepage turbulent kinetic energy is decreasing. The results show that the wake vortices at oblong pier are weaker than the wake vortices at circular pier. The strength of wake vortices diminishes with downward seepage. The Strouhal number is lesser for oblong pier and decreases with downward seepage for both oblong and circular piers.

  17. 24 CFR 3285.307 - Perimeter support piers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... support piers. (a) Piers required at mate-line supports, perimeter piers, and piers at exterior wall openings are permitted to be constructed of single open-cell or closed-cell concrete blocks, with nominal...

  18. Developing a bridge scour warning system : final report.

    DOT National Transportation Integrated Search

    2016-09-01

    Flooding and scour can be major threats to the integrity of bridges. During flood events, scour at bridge piers : and abutments can undermine the foundations of the bridge, causing significant damage or even total structure loss. : Because scour occu...

  19. Evaluation of pier-scour equations for coarse-bed streams

    USGS Publications Warehouse

    Chase, Katherine J.; Holnbeck, Stephen R.

    2004-01-01

    Streambed scour at bridge piers is among the leading causes of bridge failure in the United States. Several pier-scour equations have been developed to calculate potential scour depths at existing and proposed bridges. Because many pier-scour equations are based on data from laboratory flumes and from cohesionless silt- and sand-bottomed streams, they tend to overestimate scour for piers in coarse-bed materials. Several equations have been developed to incorporate the mitigating effects of large particle sizes on pier scour, but further investigations are needed to evaluate how accurately pier-scour depths calculated by these equations match measured field data. This report, prepared in cooperation with the Montana Department of Transportation, describes the evaluation of five pier-scour equations for coarse-bed streams. Pier-scour and associated bridge-geometry, bed-material, and streamflow-measurement data at bridges over coarse-bed streams in Montana, Alaska, Maryland, Ohio, and Virginia were selected from the Bridge Scour Data Management System. Pier scour calculated using the Simplified Chinese equation, the Froehlich equation, the Froehlich design equation, the HEC-18/Jones equation and the HEC-18/Mueller equation for flood events with approximate recurrence intervals of less than 2 to 100 years were compared to 42 pier-scour measurements. Comparison of results showed that pier-scour depths calculated with the HEC-18/Mueller equation were seldom smaller than measured pier-scour depths. In addition, pier-scour depths calculated using the HEC-18/Mueller equation were closer to measured scour than for the other equations that did not underestimate pier scour. However, more data are needed from coarse-bed streams and from less frequent flood events to further evaluate pier-scour equations.

  20. PIER 2. View is to the northeast, looking from Pier ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PIER 2. View is to the northeast, looking from Pier 1 toward Pier 2 from beneath completed bridge - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  1. Reliability and Validity Evidence of the Chinese Piers-Harris Children's Self-Concept Scale Scores among Taiwanese Children

    ERIC Educational Resources Information Center

    Flahive, Mon-hsin Wang; Chuang, Ying-Chih; Li, Chien-Mo

    2011-01-01

    The Piers-Harris Children's Self-Concept Scale-Second Edition (Piers-Harris 2) was designed to measure self-concept among children and adolescents. This study aimed to assess the reliability and validity of the scores of the Chinese version of the Piers-Harris 2 (Chinese Piers-Harris). The Chinese Piers-Harris 2 was administered to 243 Taiwanese…

  2. 28. GRAIN TERMINAL/COLUMBIA STREET PIER/ALTERATIONS AND REPAIRS TO PIER SHED: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. GRAIN TERMINAL/COLUMBIA STREET PIER/ALTERATIONS AND REPAIRS TO PIER SHED: WARM AREA - PLAN AND RETAILS (Drawing 2 of 7) - New York Barge Canal, Gowanus Bay Terminal Pier, East of bulkhead supporting Columbia Street, Brooklyn, Kings County, NY

  3. Further ecological and shoreline stability reconnaissance surveys of Back Island, Behm Canal, Southeast Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, J.S.; Strand, J.A.; Ecker, R.M.

    1987-09-01

    A diver reconnaissance of the intertidal and subtidal zones of Back Island was performed to catalog potentially vulnerable shellfish, other invertebrates, and marine plant resources occurring at three proposed alternate pier sites on the west side of Back Island. Additionally, a limited survey of terrestrial vegetation was conducted in the vicinity of one of the proposed alternate pier sites to describe the littoral community and to list the dominant plant species found there. Finally, a reconnaissance survey of the shoreline of Back Island was conducted to evaluate potential changes in shoreline stability resulting from construction of onshore portions of themore » Southeast Alaska Acoustic Measurement Facility (SEAFAC).« less

  4. 50 CFR 86.13 - What is boating infrastructure?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM BOATING INFRASTRUCTURE GRANT (BIG...) Floating docks and fixed piers; (g) Floating and fixed breakwaters; (h) Dinghy docks (floating or fixed...

  5. Upper bound of pier scour in laboratory and field data

    USGS Publications Warehouse

    Benedict, Stephen; Caldwell, Andral W.

    2016-01-01

    The U.S. Geological Survey (USGS), in cooperation with the South Carolina Department of Transportation, conducted several field investigations of pier scour in South Carolina and used the data to develop envelope curves defining the upper bound of pier scour. To expand on this previous work, an additional cooperative investigation was initiated to combine the South Carolina data with pier scour data from other sources and to evaluate upper-bound relations with this larger data set. To facilitate this analysis, 569 laboratory and 1,858 field measurements of pier scour were compiled to form the 2014 USGS Pier Scour Database. This extensive database was used to develop an envelope curve for the potential maximum pier scour depth encompassing the laboratory and field data. The envelope curve provides a simple but useful tool for assessing the potential maximum pier scour depth for effective pier widths of about 30 ft or less.

  6. Real time measurement of scour depth around bridge piers and abutments : final report.

    DOT National Transportation Integrated Search

    2015-01-01

    Scour is one of the most significant threats to bridge infrastructure and is the leading cause of failure within the : United States. Scour monitoring is an approved countermeasure as reported by the Federal Highway Administration. As : the monitorin...

  7. 33 CFR 207.100 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ruling to the District Engineer whose decision shall be final. A clearance by the dispatcher for a vessel..., jetties, piers, fences, buildings, trees, telephone lines, lighting structures, or any other property of...

  8. Finite element simulation of truck impacts on highway bridge piers : final report.

    DOT National Transportation Integrated Search

    2016-04-01

    Recent studies show that the dynamic forces because of truck impacts may be significantly higher than the : 600kips force recommended by the AASHTO. Hence, there is a need to carry out detailed investigations : on vehicular-bridge collision for a rel...

  9. 10. VIEW OF PIER 42 BULKHEAD BUILDING INTERIOR (PARTIALLY DEMOLISHED) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF PIER 42 BULKHEAD BUILDING INTERIOR (PARTIALLY DEMOLISHED) WITH JAVA HOUSE IN BACKGROUND, FACING NORTH. - Pier 42 Bulkhead Building, Pier 42, Embarcadero, San Francisco, San Francisco County, CA

  10. Experimental study on local scouring at pile-supported piers

    NASA Astrophysics Data System (ADS)

    Moreno, Mario; Birjukova, Olga; Grimaldi, Carmelo; Gaudio, Roberto; Cardoso, António H.

    2017-06-01

    In spite of the increasing importance of complex piers for bridges, the number of studies on these piers is comparatively small and the predictors of scour depth at complex piers are only a few, derived from limited experimental evidence. The main purpose of this paper is to share with the hydraulics community the results of 67 tests on scouring at pile-supported piers (including complex piers) aligned with the flow, under clear-water conditions close to the threshold of beginning of sediment motion, while contributing to shade some more light on the influence of the pile-cap thickness on the equilibrium scour depth, the reliability of the superposition approach, the contribution of each one of the complex pier components to the equilibrium scour depth of the ensemble, and the performance of existing predictors of local scour at complex piers.

  11. The upper bound of Pier Scour defined by selected laboratory and field data

    USGS Publications Warehouse

    Benedict, Stephen; Caldwell, Andral W.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted several field investigations of pier scour in South Carolina (Benedict and Caldwell, 2006; Benedict and Caldwell, 2009) and used that data to develop envelope curves defining the upper bound of pier scour. To expand upon this previous work, an additional cooperative investigation was initiated to combine the South Carolina data with pier-scour data from other sources and evaluate the upper bound of pier scour with this larger data set. To facilitate this analysis, a literature review was made to identify potential sources of published pier-scour data, and selected data were compiled into a digital spreadsheet consisting of approximately 570 laboratory and 1,880 field measurements. These data encompass a wide range of laboratory and field conditions and represent field data from 24 states within the United States and six other countries. This extensive database was used to define the upper bound of pier-scour depth with respect to pier width encompassing the laboratory and field data. Pier width is a primary variable that influences pier-scour depth (Laursen and Toch, 1956; Melville and Coleman, 2000; Mueller and Wagner, 2005, Ettema et al. 2011, Arneson et al. 2012) and therefore, was used as the primary explanatory variable in developing the upper-bound envelope curve. The envelope curve provides a simple but useful tool for assessing the potential maximum pier-scour depth for pier widths of about 30 feet or less.

  12. THE BUREAU OF AERONAUTICS RESEARCH AND DEVELOPMENT PROGRAM FOR WATER-BASED AIRCRAFT,

    DTIC Science & Technology

    WATER BASED AIRCRAFT, BUDGETS), RESEARCH MANAGEMENT, FLIGHT TESTING, WIND TUNNEL MODELS, TABLES(DATA), AIRCRAFT, TEST VEHICLES, HYDRODYNAMICS, PIERS, FLOATING DOCKS, LOADS(FORCES), WATER , STABILITY, SPRAYS, NAVAL AIRCRAFT.

  13. Two Promising Measures of Health Education Program Outcomes and Asthmatic Children.

    ERIC Educational Resources Information Center

    Green, Kathy E.; Kolff, Case

    1980-01-01

    Changes in health behaviors as well as changes in self-concept are often the primary goals of health education. Both the Piers-Harris and the Parcel-Meyer Health Locus of Control (HLC) scales are reliable measures of the affective impact of a health education program. (CJ)

  14. 5. VIEW OF CENTER PIER AND ADJACENT STRUCTURE, SHOWING PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF CENTER PIER AND ADJACENT STRUCTURE, SHOWING PIER STONE MASONRY AND LOWER PIN CONNECTIONS, LOOKING SOUTH - Emlenton Bridge, Spanning Allegheny River, Travel Route 38 (Legislative Route 75), Emlenton, Venango County, PA

  15. Prevention of Bridge Scour with Non-uniform Circular Piers Plane under Steady Flows

    NASA Astrophysics Data System (ADS)

    Chen, Hsing-Ting; Wang, Chuan-Yi

    2017-04-01

    River bed scour and deposit variation extremely severe because of most of rivers are steep and rapid flows, and river discharge extremely unstable and highly unsteady during different seasons in Taiwan. In addition to the obstruction of piers foundation, it causes local scour and threatens the safety of bridges. In the past, riprap, wire gabion or wrap pier works were adopted as the protections of piers foundation, but there were no effectual outcomes. The events of break off piers still happen sometimes. For example, typhoon Kalmaegi (2008) and Morakot (2009) caused heavy damages on Ho-Fon bridge in the Da-jia river and Shuang-Yuan bridge in the Kao-Ping river, respectively. Accordingly, to understand the piers scour system and propose an appropriate protection of piers foundation becomes an important topic for this study currently. This research improves the protection works of the existing uniform bridge pier (diameter D) to ensure the safety of the bridge. The non-uniform plane of circular piers (diameter D*) are placed on the top of a bridge pier foundation to reduce the down flow impacting energy and scour by its' surface roughness characteristics. This study utilize hydraulic models to simulate local scour depth and scour depth change with time for non-uniform pier diameter ratio D/D* of 0.3,0.4,0.5,0.6,0.7 and 0.8, and different type pier and initial bed level (Y) relative under the foundation top elevation under steady flows of V/Vc=0.95,0.80 and 0.65. The research results show that the scour depth increases with an increase of flow intensity (V/Vc) under different types of steady flow hydrographs. The scour depth decreases with increase of initial bed level (Y=+0.2D*,0D*and -0.2D*) relative under the foundation top elevation of the different type pier. The maximum scour depth occurred in the front of the pier for all conditions. Because of the scouring retardation by the non-uniform plane of foundation, the scour depth is reduced for the un-exposed bridge foundation (Y=+0.2D*) under any steady flows. Opposite results are found for the exposed (Y=-0.2D*) bridge foundation. For the condition non-uniform pier diameter ratio (D/D*=0.3 0.8) scours, when D/D* is equal to 0.4, because pier oncoming flow area is the smallest one so that down flow intensity is less; as non-uniform area is bigger and decrease more down flow energy so that bring smaller scour depth and effect area. Therefore, local scour depth for pier diameter ratio of 0.4 is less than other type of pier. Considering the safety of bridge structure, a non-uniform circular pier with D/D* which equals to 0.4 and initial bed level relative to Y=+0.2D* is the most ideal pier allocations.

  16. Fish populations associated with habitat-modified piers and natural woody debris in Piedmont Carolina reservoirs

    USGS Publications Warehouse

    Barwick, R.D.; Kwak, T.J.; Noble, R.L.; Barwick, D.H.

    2004-01-01

    A primary concern associated with reservoir shoreline residential development is reduction of littoral habitat complexity and diversity. One potential approach to compensate for this is the deployment of artificial-habitat modules under existing piers, but the benefit of this practice has not been demonstrated. To evaluate the effect of pier habitat modifications on fish populations in two Piedmont Carolina reservoirs, we studied 77 piers located on forty-seven, 100-m transects that were modified using plastic "fish hab" modules augmented with brush (brushed habs), hab modules alone (habs), or left unaltered for reference purposes. We sampled fish from all piers and transects during April, July, and October 2001 using a boat-mounted electrofisher. With few exceptions, catch rates were higher at brushed-hab piers and piers with habs than at reference piers during all seasons. Similarly, during spring and summer, fish abundance was generally higher on transects containing natural woody debris, brushed habs, and habs than on reference-developed transects; however, during fall, there were exceptions. Therefore, fish abundance associated with shorelines in these reservoirs appears to be related to the structural complexity of available habitat rather than structure composition. One year after installation, 92% of pier owners responding to a mail survey expressed satisfaction with pier modifications. Supplementing piers with habitat structures is recommended to enhance littoral habitat complexity for fishes in residentially developed reservoirs.

  17. Seismic damage analysis of the outlet piers of arch dams using the finite element sub-model method

    NASA Astrophysics Data System (ADS)

    Song, Liangfeng; Wu, Mingxin; Wang, Jinting; Xu, Yanjie

    2016-09-01

    This study aims to analyze seismic damage of reinforced outlet piers of arch dams by the nonlinear finite element (FE) sub-model method. First, the dam-foundation system is modeled and analyzed, in which the effects of infinite foundation, contraction joints, and nonlinear concrete are taken into account. The detailed structures of the outlet pier are then simulated with a refined FE model in the sub-model analysis. In this way the damage mechanism of the plain (unreinforced) outlet pier is analyzed, and the effects of two reinforcement measures (i.e., post-tensioned anchor cables and reinforcing bar) on the dynamic damage to the outlet pier are investigated comprehensively. Results show that the plain pier is damaged severely by strong earthquakes while implementation of post-tensioned anchor cables strengthens the pier effectively. In addition, radiation damping strongly alleviates seismic damage to the piers.

  18. Ocean Disposal of Man-Made Ice Piers

    EPA Pesticide Factsheets

    The National Science Foundation is permitted to ocean dump man-made ice piers from its base at McMurdo Sound in Antarctica under a MPRSA general permit. Information is provided about ice piers and impacts of ice pier disposal.

  19. MOVING SHAFT FORMS FROM PIER #2 TO PIER #1. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MOVING SHAFT FORMS FROM PIER #2 TO PIER #1. View is to the northeast, with shaft forms being moved by highline - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  20. Microplankton species assemblages at the Scripps Pier from March to November 1983 during the 1982-1984 El Nino event

    NASA Technical Reports Server (NTRS)

    Reid, F. M. H.; Lange, C. B.; White, M. M.

    1985-01-01

    A semiweekly sampling program at the Scripps Institution of Oceanography Pier was begun in 1983 during an El Nino event. Microplankton data for March to November 1983 show a temporal sequence of species assemblages of the 24 important taxa, with a residence time of 1 to 4 weeks. From March to early September, the assemblages consisted of typial neritic taxa. From mid-September to mid-November, the presence of oceanic warm-wave species was associated with positive temperature anomalies characteristic of the El Nino condition. During the period studied numerical abundances were low.

  1. Microplankton species assemblages at the Scripps Pier from March to November 1983 during the 1982-1984 El Nino event

    NASA Technical Reports Server (NTRS)

    Reid, F. M. H.; Lange, C. B.; White, M. M.

    1984-01-01

    A semiweekly sampling program at the Scripps Institution of Oceanography pier was begun in 1983 during an El Nino event. Microplankton data for March to November 1983 show a temporal sequence of species assemblages of the 24 important taxa, with a residence time of 1 to 4 weeks. From March to early September, the assemblages consisted of typical neritic taxa. From mid-September to mid-November, the presence of oceanic warm-wave species was associated with positive temperature anomalies characteristic of the El Nino condition. During the period studied numerical abundances were low.

  2. POURING FOOTING OF PIER #1. View is to the southwest, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    POURING FOOTING OF PIER #1. View is to the southwest, looking from Pier 2 in Trinity County toward Pier 1 in Humboldt County - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  3. In-situ monitoring and assessment of post barge-bridge collision damage for minimizing traffic delay and detour : final report.

    DOT National Transportation Integrated Search

    2016-07-31

    This report presents a novel framework for promptly assessing the probability of barge-bridge : collision damage of piers based on probabilistic-based classification through machine learning. The main : idea of the presented framework is to divide th...

  4. Evaluation of the Luling bridge retrofit details under service loads : final report.

    DOT National Transportation Integrated Search

    1991-08-01

    Extensive strain measurements were carried out on three cross girder boxes used to connect the cable stays to the orthotropic deck-trapezoidal box steel structure. The measurements were obtained at CG3, CG4 and CG5 adjacent to the tower at pier 2. : ...

  5. The Multimedia Piers-Harris Children's Self-Concept Scale 2: Its Psychometric Properties, Equivalence with the Paper-and-Pencil Version, and Respondent Preferences.

    PubMed

    Flahive, Mon-hsin Wang; Chuang, Ying-Chih; Li, Chien-Mo

    2015-01-01

    A multimedia version of Piers-Harris Children's Self-Concept Scale 2 (Piers-Harris 2) was created with audio and cartoon animation to facilitate the measurement of self-concept among younger children. This study aimed to assess the psychometric qualities of the computer version of Piers-Harris 2 scores, examine its score equivalence with the paper-and-pencil version, and survey the respondent preference of the two versions. Two hundred and forty eight Taiwanese students from the first to fourth grade were recruited. In regard to the psychometric properties, high internal consistency (α = .91) was found for the total score of multimedia Piers-Harris 2. High interscale correlations (.77 to .83) of the multimedia Piers-Harris 2 scores and the results of confirmatory factor analysis suggested the multimedia Piers-Harris 2 contained good structural characteristics. The scores of the multimedia Piers-Harris 2 also had significant correlations with the scores of the Elementary School Children's Self Concept Scale. The equality of convergence and criterion-related validities of Piers-Harris 2 scores for the multimedia and paper-and-pencil versions and the results of ICCs between the scores of the multimedia and paper-and-pencil Piers-Harris 2 suggested their high level of equivalence. Participants showed more positive attitudes towards the multimedia version.

  6. The Multimedia Piers-Harris Children's Self-Concept Scale 2: Its Psychometric Properties, Equivalence with the Paper-and-Pencil Version, and Respondent Preferences

    PubMed Central

    Flahive, Mon-hsin Wang; Chuang, Ying-Chih; Li, Chien-Mo

    2015-01-01

    A multimedia version of Piers-Harris Children's Self-Concept Scale 2 (Piers-Harris 2) was created with audio and cartoon animation to facilitate the measurement of self-concept among younger children. This study aimed to assess the psychometric qualities of the computer version of Piers-Harris 2 scores, examine its score equivalence with the paper-and-pencil version, and survey the respondent preference of the two versions. Two hundred and forty eight Taiwanese students from the first to fourth grade were recruited. In regard to the psychometric properties, high internal consistency (α = .91) was found for the total score of multimedia Piers-Harris 2. High interscale correlations (.77 to .83) of the multimedia Piers-Harris 2 scores and the results of confirmatory factor analysis suggested the multimedia Piers-Harris 2 contained good structural characteristics. The scores of the multimedia Piers-Harris 2 also had significant correlations with the scores of the Elementary School Children’s Self Concept Scale. The equality of convergence and criterion-related validities of Piers-Harris 2 scores for the multimedia and paper-and-pencil versions and the results of ICCs between the scores of the multimedia and paper-and-pencil Piers-Harris 2 suggested their high level of equivalence. Participants showed more positive attitudes towards the multimedia version. PMID:26252499

  7. 14. View south from first level roof of firing pier. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View south from first level roof of firing pier. Pitched corrugated metal roof marks location of the frame approach connecting the firing pier to the shop (shown in left distance). - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  8. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...

  9. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...

  10. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...

  11. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...

  12. Multispan Elevated Guideway Design for Passenger Transport Vehicles : Volume 2. Appendixes.

    DOT National Transportation Integrated Search

    1975-04-01

    Contents: Appendix A - derivation of vehicle-guideway interaction equations; Appendix B - evaluation of pier support dynamics; Appendix C - computer simulation program of two-dimensional vehicle over a multi-span guideway; Appendix D - computer progr...

  13. Science, Space, and Shuttles: An Interview With Astronaut and AGU Member Piers Sellers

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2010-05-01

    On 14 May, NASA is scheduled to launch what will likely be the final mission for space shuttle Atlantis. This mission will deliver cargo and science payloads—including the Russian-built Mini Research Module (MRM 1)—to the International Space Station (ISS). On board the shuttle will be Piers Sellers, an AGU member. Born in 1955 in Crowborough, United Kingdom, Sellers completed his doctorate in biometeorology at UK's Leeds University in 1981. He became an AGU Fellow in 1996 for research on how the Earth's biosphere and atmosphere interact; that same year, he was selected as an astronaut candidate. He has since logged more than 559 hours in space on two shuttle missions. In the course of those missions, he spent almost 41 hours on six space walks.

  14. Embedding research to improve program implementation in Latin America and the Caribbean.

    PubMed

    Tran, Nhan; Langlois, Etienne V; Reveiz, Ludovic; Varallyay, Ilona; Elias, Vanessa; Mancuso, Arielle; Becerra-Posada, Francisco; Ghaffar, Abdul

    2017-06-08

    In the last 10 years, implementation research has come to play a critical role in improving the implementation of already-proven health interventions by promoting the systematic uptake of research findings and other evidence-based strategies into routine practice. The Alliance for Health Policy and Systems Research and the Pan American Health Organization implemented a program of embedded implementation research to support health programs in Latin America and the Caribbean (LAC) in 2014-2015. A total of 234 applications were received from 28 countries in the Americas. The Improving Program Implementation through Embedded Research (iPIER) scheme supported 12 implementation research projects led by health program implementers from nine LAC countries: Argentina, Bolivia, Brazil, Chile, Colombia, Mexico, Panama, Peru, and Saint Lucia. Through this experience, we learned that the "insider" perspective, which implementers bring to the research proposal, is particularly important in identifying research questions that focus on the systems failures that often manifest in barriers to implementation. This paper documents the experience of and highlights key conclusions about the conduct of embedded implementation research. The iPIER experience has shown great promise for embedded research models that place implementers at the helm of implementation research initiatives.

  15. Computer modeling design of a frame pier for a high-speed railway project

    NASA Astrophysics Data System (ADS)

    Shi, Jing-xian; Fan, Jiang

    2018-03-01

    In this paper, a double line pier on a high-speed railway in China is taken as an example. the size of each location is drawn up firstly. The design of pre-stressed steel beam for its crossbeam is carried out, and the configuration of ordinary reinforcement is carried out for concrete piers. Combined with bridge structure analysis software Midas Civil and BSAS, the frame pier is modeled and calculated. The results show that the beam and pier column section size reasonable design of pre-stressed steel beam with 17-7V5 high strength low relaxation steel strand, can meet the requirements of high speed railway carrying capacity; the main reinforcement of pier shaft with HRB400 diameter is 28mm, ring arranged around the pier, can satisfy the eccentric compression strength, stiffness and stability requirements, also meet the requirements of seismic design.

  16. 8. VIEW OF ACCESS BRIDGE AND INTAKE PIER FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF ACCESS BRIDGE AND INTAKE PIER FROM THE BRIDGE PIER ABUTMENT, LOOKING NORTHEAST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  17. Collision loads on bridge piers : phase 2, report of guidelines for designing bridge piers and abutments for vehicle collisions

    DOT National Transportation Integrated Search

    2011-03-01

    An instrumented, simulated bridge pier was constructed, and two full-scale collisions with an : 80,000-lb van-type tractor-trailer were performed on it. The trailer was ballasted with bags of sand on : pallets. The simulated pier was 36 inches in dia...

  18. 103. VIEW OF BEACH STRUCTURES ON NORTHWEST SIDE OF PIER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    103. VIEW OF BEACH STRUCTURES ON NORTHWEST SIDE OF PIER, LOOKING SOUTHEAST; PACIFIC ELECTRIC RAILWAY CAR (UPPER LEFT), CONCESSION STANDS (LOWER LEFT), BANDSHELL (RIGHT), AND PIER IN BACKGROUND Photograph #5352-HB. Photographer unknown, c. 1914 - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  19. 75 FR 71638 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliot Bay, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ...-AA00 Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliot Bay, Seattle, WA AGENCY: Coast Guard...) entitled ``Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliot Bay, Seattle, WA'' (Docket number...; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, Washington. (a) Location. The following...

  20. 7. View from gate spanning mouth of Dry Dock 5, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View from gate spanning mouth of Dry Dock 5, showing (1-r) north wall of Pier 10 and south wall of Pier 11. - Charlestown Navy Yard, Pier 10, Between Piers 9 & 11 along Mystic River on Charlestown Waterfront at eastern edge of Charlestown Navy Yard, Boston, Suffolk County, MA

  1. 77 FR 50919 - Safety Zone: Wedding Reception Fireworks at Pier 24, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ... mariners and spectators from the dangers associated with the pyrotechnics. Unauthorized persons or vessels... could be completed. Because of the dangers posed by the pyrotechnics used in this fireworks display, the... property from the hazards associated with the pyrotechnics. C. Discussion of the Final Rule The Coast Guard...

  2. 78 FR 39604 - Safety Zone; Northside Park Pier Fireworks Display, Assawoman Bay, Ocean City, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety... protect the life and property of the maritime public and spectators from the hazards associated with...: If you have questions on this temporary rule, call or email LCDR Hector Cintron, Waterways Management...

  3. Evaluation of pier-scour measurement methods and pier-scour predictions with observed scour measurements at selected bridge sites in New Hampshire, 1995-98

    USGS Publications Warehouse

    Boehmler, Erick M.; Olimpio, Joseph R.

    2000-01-01

    In a previous study, 44 of 48 bridge sites examined in New Hampshire were categorized as scour critical. In this study, the U.S. Geological Survey (USGS) evaluated pier-scour measurement methods and predictions at many of these sites. This evaluation included measurement of pier-scour depths at 20 bridge sites using Ground- Penetrating Radar (GPR) surveys. Pier scour was also measured during floods by teams at 5 of these 20 sites. At 4 of the 20 sites, fixed instruments were installed to monitor scour. At only one bridge site investigated by a team was any pier scour measurable during a flood event. A scour depth of 0.7 foot (0.21 m) was measured at a pier in the channel at the State Route 18 bridge over the Connecticut River in Littleton. Measurements made using GPR and (or) fixed instruments indicated pier scour for six sites. The GPR surveys indicated scour along the side of a pier and further upstream from the nose of a pier that was not detected by flood-team measurements at two sites. Most pier-scour equations selected for this examination were reviewed and published in previous scour investigations. Graphical comparison of residual pier-scour depths indicate that the Shen equation yielded pier-scour depth predictions closest to those measured, without underestimating. Measured depths of scour, however, were zero feet for 14 of the 20 sites. For the Blench-Inglis II equation and the Simplified Chinese equation, most differences between measured and predicted scour depths were within 5 feet. These two equations underpredicted scour for one of six sites with measurable scour. The underprediction, however, was within the resolution of the depth measurements. The Simplified Chinese equation is less sensitive than other equations to velocity and depth input variables, and is one of the few empirical equations to integrate the influence of flow competence, or a measure of the maximum streambed particle size that a stream is capable of transporting, in the computation of pier scour. Absence of a flow-competence component could explain some of the overprediction by other equations, but was not investigated in this study. Measurements of scour during large floods at additional sites are necessary to strengthen and substantiate the application of alternatives to the HEC-18 equation to estimate pier scour at waterway crossings in New Hampshire.

  4. 49 CFR 268.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TRANSPORTATION MAGNETIC LEVITATION TRANSPORTATION TECHNOLOGY DEPLOYMENT PROGRAM Overview § 268.1 Definitions. As..., including land, piers, guideways, propulsion equipment and other components attached to guideways, power... described in § 268.3. Maglev means transportation systems employing magnetic levitation that would be...

  5. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... block piers. 3285.306 Section 3285.306 Housing and Urban Development Regulations Relating to Housing and....306 Design procedures for concrete block piers. (a) Frame piers less than 36 inches high. (1) Frame... blocks, 8 inches “ 8 inches “ 16 inches, when the design capacity of the block is not exceeded. (2) The...

  6. 76 FR 30014 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ...-AA00 Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA AGENCY: Coast Guard...) entitled ``Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA'' in the Federal... is added to read as follows: Sec. 165.1330 Safety Zone; Fleet Week Maritime Festival, Pier 66...

  7. 33 CFR 118.75 - Lights on single-opening drawbridges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... span. (c) Pier or abutment lights. Every swing bridge shall be lighted so that the end of each pier, abutment or fixed portion of the bridge adjacent to the navigable channel through the draw, or each end of the protection piers for such piers, abutments, or fixed portion of the bridge will be marked by a red...

  8. A Risk Prediction Model for the Assessment and Triage of Women with Hypertensive Disorders of Pregnancy in Low-Resourced Settings: The miniPIERS (Pre-eclampsia Integrated Estimate of RiSk) Multi-country Prospective Cohort Study

    PubMed Central

    Payne, Beth A.; Hutcheon, Jennifer A.; Ansermino, J. Mark; Hall, David R.; Bhutta, Zulfiqar A.; Bhutta, Shereen Z.; Biryabarema, Christine; Grobman, William A.; Groen, Henk; Li, Jing; Magee, Laura A.; Merialdi, Mario; Nakimuli, Annettee; Qu, Ziguang; Sikandar, Rozina; Sass, Nelson; Sawchuck, Diane; Steyn, D. Wilhelm; Widmer, Mariana; Zhou, Jian; von Dadelszen, Peter

    2014-01-01

    Background Pre-eclampsia/eclampsia are leading causes of maternal mortality and morbidity, particularly in low- and middle- income countries (LMICs). We developed the miniPIERS risk prediction model to provide a simple, evidence-based tool to identify pregnant women in LMICs at increased risk of death or major hypertensive-related complications. Methods and Findings From 1 July 2008 to 31 March 2012, in five LMICs, data were collected prospectively on 2,081 women with any hypertensive disorder of pregnancy admitted to a participating centre. Candidate predictors collected within 24 hours of admission were entered into a step-wise backward elimination logistic regression model to predict a composite adverse maternal outcome within 48 hours of admission. Model internal validation was accomplished by bootstrapping and external validation was completed using data from 1,300 women in the Pre-eclampsia Integrated Estimate of RiSk (fullPIERS) dataset. Predictive performance was assessed for calibration, discrimination, and stratification capacity. The final miniPIERS model included: parity (nulliparous versus multiparous); gestational age on admission; headache/visual disturbances; chest pain/dyspnoea; vaginal bleeding with abdominal pain; systolic blood pressure; and dipstick proteinuria. The miniPIERS model was well-calibrated and had an area under the receiver operating characteristic curve (AUC ROC) of 0.768 (95% CI 0.735–0.801) with an average optimism of 0.037. External validation AUC ROC was 0.713 (95% CI 0.658–0.768). A predicted probability ≥25% to define a positive test classified women with 85.5% accuracy. Limitations of this study include the composite outcome and the broad inclusion criteria of any hypertensive disorder of pregnancy. This broad approach was used to optimize model generalizability. Conclusions The miniPIERS model shows reasonable ability to identify women at increased risk of adverse maternal outcomes associated with the hypertensive disorders of pregnancy. It could be used in LMICs to identify women who would benefit most from interventions such as magnesium sulphate, antihypertensives, or transportation to a higher level of care. Please see later in the article for the Editors' Summary PMID:24465185

  9. Detail of wharf A timber framing, showing piers and pier ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of wharf A timber framing, showing piers and pier caps or plates stepping down for a sloped launching deck, now built-up for a flat deck, interior of sheet steel bulkhead is visible at wharf edge - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  10. Evaluation of bridge-scour data at selected sites in Ohio

    USGS Publications Warehouse

    Jackson, K.S.

    1997-01-01

    Scour data collected during 1989-94 were evaluated to determine whether pier scour and contraction scour occurred at 22 bridge sites in Ohio. Pier-scour depths computed from selected pier-scour prediction equations were compared with measured pier-scour depths, and the accuracy of the prediction equations were evaluated. Observed pier-scour relations were compared to relations developed through laboratory research. Mean streambed elevations were evaluated to determine the depth of contraction scour. Channel stability was assessed by use of mean streambed elevations at the approach section. Ground-penetrating radar was used at all sites to investigate the presence of historical scour. Pier scour was observed in 45 of 47 scour measurements made during floods; 84 cases of pier scour were documented, 83 at solid-wall piers and 1 at a capped-pile type pier. Estimated recurrence intervals for 27 of the 35 measured streamflows, all on unregulated streams, were less than 2 years. Seventeen pier-scour prediction equations were evaluated. The Froehlich Design equation was found to most closely meet the 'best design equation' criteria for all 84 cases of the observed data. The Larras equation was found to be the best design equation for the observed data where approach-flow attack angles were 10 degrees or less. Observed pier-scour depths and flow depths ranged from 0.5 to 6.1 feet and 3.0 to 19.8 feet, respectively. All pier-scour depths were less than 2.4 times the corresponding pier width. Selected factors were normalized by dividing by effective pier width. LOWESS curves were developed using the 84 cases of observed pier scour. Normalized scour depth increased with normalized flow depth; however, the rate of increase appeared to lessen as normalized flow depth exceeded 2.5. Normalized scour depths increased rapidly as flow intensity approached the threshold value of 1 and then decreased as flow intensities exceeded this threshold. Normalized scour depth was found to increase with Froude number, and a steeper slope was evident for Froude numbers exceeding 0.2. Normalized scour depth was found to increase with median grain size up to about 10 millimeters for bed material near the pier, then decrease for median grain sizes greater than 10 millimeters. Normalized scour depth was also found to decrease as sediment gradation of bed material near the pier increased. The observed pier-scour relations determined from the field measurements tend to support conclusions by previous researchers of streambed scour, except for the previous finding that normalized scour depth decreases consistently with increasing median grain size. Possible factors that may have influenced the observed trends in the relation between normalized scour depth and median grain size in this study are cohesion and scour measurements made at nonequilibrium conditions. LOWESS curves were developed for 45 of 84 cases of observed pier scour where approach-flow attack angles were less than or equal to 10 degrees. These curves were visually compared to LOWESS curves developed from all observations of pier scour. For three relations, differences in the trends of the LOWESS curves were of sufficient magnitude to warrant discussion. Contraction scour was observed in 4 of the 47 scour measurements and ranged from 0.8 to2.3 feet in depth. Analysis of annual mean streambed approach-section elevations indicated that approach sections were generally stable at 18 of the 22 sites. Ground-penetrating radar, a geophysical method that enables subsurface exploration of the streambed when conditions are favorable, was used at all sites to determine whether historical scour had occurred. Results of the ground-penetrating radar surveys at 20 sites in 1990 indicated the presence of historical scour surfaces at 5 sites. At four of the five sites showing evidence of possible historical scour, differences between the estimated depth of historical scour and the maximum observed scour were w

  11. Concept Development Modular Hybrid Pier (MHP)

    DTIC Science & Technology

    2000-02-01

    rated FRP composite bridge or bridge deck is commercially available from Creative Pultrusions, Kansas Structural Systems, Martin - Marietta , Hardcore...NAVAL FACILITIES ENGINEERING SERVICE CENTER Port Hueneme, California 93043-4370 Contract Report CR 00-001-SHR FINAL REPORT PHASE 1 - CONCEPT...20000301 043 Approved for public release; distribution is unlimited. DTIC QUALITY IMWSOfBD 4 ^^ Printed on recycled paper REPORT DOCUMENTATION PAGE

  12. 76 FR 30024 - United States Navy Restricted Area, Menominee River, Marinette Marine Corporation Shipyard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... changed so that the restricted area could be marked with a signed floating buoy line instead of a signed floating barrier. That change has been made to the final rule. Procedural Requirements a. Review Under...; thence easterly along the Marinette Marine Corporation pier to the point of origin. The restricted area...

  13. 129. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: LIGHTING DIAGRAM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    129. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: LIGHTING DIAGRAM. Sheet lO of 11 (#3283) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  14. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... driven in tightly so that they do not occupy more than one inch of vertical height; and (3) Hardwood... used to fill in any remaining vertical gaps. (d) Manufactured pier heights. Manufactured pier heights...

  15. Detail of pier structure and wood fenders of Facility No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of pier structure and wood fenders of Facility No. B-1, showing floats in foreground and bollards on pier, view facing east - U.S. Naval Base, Pearl Harbor, South Quay Wall & Repair Wharf, L-shaped portion of quay walls starting at east side of mouth of Dry Dock No. 1, continuing along ocean side of Sixth Street, adjacent to Pier B-2, Pearl City, Honolulu County, HI

  16. Usability Evaluation of NLP-PIER: A Clinical Document Search Engine for Researchers.

    PubMed

    Hultman, Gretchen; McEwan, Reed; Pakhomov, Serguei; Lindemann, Elizabeth; Skube, Steven; Melton, Genevieve B

    2017-01-01

    NLP-PIER (Natural Language Processing - Patient Information Extraction for Research) is a self-service platform with a search engine for clinical researchers to perform natural language processing (NLP) queries using clinical notes. We conducted user-centered testing of NLP-PIER's usability to inform future design decisions. Quantitative and qualitative data were analyzed. Our findings will be used to improve the usability of NLP-PIER.

  17. A pier-scour database: 2,427 field and laboratory measurements of pier scour

    USGS Publications Warehouse

    Benedict, Stephen T.; Caldwell, Andral W.

    2014-01-01

    The U.S. Geological Survey conducted a literature review to identify potential sources of published pier-scour data, and selected data were compiled into a digital spreadsheet called the 2014 USGS Pier-Scour Database (PSDb-2014) consisting of 569 laboratory and 1,858 field measurements. These data encompass a wide range of laboratory and field conditions and represent field data from 23 States within the United States and from 6 other countries. The digital spreadsheet is available on the Internet and offers a valuable resource to engineers and researchers seeking to understand pier-scour relations in the laboratory and field.

  18. Looking northeast over Piers 22 and 23 toward Mare Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking northeast over Piers 22 and 23 toward Mare Island Strait and the City of Vallejo - Mare Island Naval Shipyard, Finger Piers 22 & 23, Railroad Avenue near Eighteenth Street, Vallejo, Solano County, CA

  19. 32. BARGE LOADING PIER, DETAIL OF WEST END SHOWING CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. BARGE LOADING PIER, DETAIL OF WEST END SHOWING CONTROL HOUSE AND CABLE CARS, LOOKING EAST - Pennsylvania Railroad, Canton Coal Pier, Clinton Street at Keith Avenue (Canton area), Baltimore, Independent City, MD

  20. GRS bridge piers and abutments.

    DOT National Transportation Integrated Search

    2001-01-01

    This report presents the following three recent projects on load testing of geosynthetic-reinforced soil (GRS) bridge abutments and piers: a full-scale bridge pier load test conducted by the Turner-Fairbank Highway Research Center, Federal Highway Ad...

  1. 25. GROUND VIEW OF PIER, LOOKING SOUTHEAST, SHOWING (LEFTRIGHT) BENTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. GROUND VIEW OF PIER, LOOKING SOUTHEAST, SHOWING (LEFT-RIGHT) BENTS 16-25, NEPTUNE'S LOCKER (LEFT), WITH CAPTAIN'S GALLEY BEHIND - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  2. 47. VIEW OF PIER DECK, LOOKING SOUTHWEST FROM GATE, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. VIEW OF PIER DECK, LOOKING SOUTHWEST FROM GATE, SHOWING CAPTAIN'S GALLEY (LEFT) AND NEPTUNE'S LOCKER (RIGHT) IN CENTER - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  3. 26. GROUND VIEW OF PIER, LOOKING SOUTHEAST, SHOWING (LEFTRIGHT) BENTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. GROUND VIEW OF PIER, LOOKING SOUTHEAST, SHOWING (LEFT-RIGHT) BENTS 18-23 NEPTUNE'S LOCKER (RIGHT), WITH CAPTAIN'S GALLEY BEHIND - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  4. 24. GROUND VIEW OF PIER, LOOKING SOUTHEAST, SHOWING (LEFTRIGHT) BENTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. GROUND VIEW OF PIER, LOOKING SOUTHEAST, SHOWING (LEFT-RIGHT) BENTS 10-19, NEPTUNE'S LOCKER (RIGHT), WITH CAPTAIN'S GALLEY BEHIND - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  5. 99. VIEW OF NORTHWEST SIDE OF PIER, LOOKING EAST FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. VIEW OF NORTHWEST SIDE OF PIER, LOOKING EAST FROM STORM-DAMAGED END. 3RD TEE BUILDINGS IN BACKGROUND - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  6. Structural assessment of "d" regions affected by premature concrete deterioration : technical report.

    DOT National Transportation Integrated Search

    2012-11-01

    The effects of ASR/DEF on the D-regions of structures are investigated by means of a dual experimental and : analytical modeling program. Four near full scale specimens that represent cantilever and straddle pier bents, : that are representative of t...

  7. 16. VIEW SOUTHWEST OF CONCRETE PIER SUPPORTING CAMELBACK AND PENNSYLVANIA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW SOUTHWEST OF CONCRETE PIER SUPPORTING CAMELBACK AND PENNSYLVANIA PETIT TRUSSES. ORIGINAL PIER LYING IN FOREGROUND DESTROYED BY 1915 FLOOD DURING CONSTRUCTION - New River Bridge, Spanning New River at State Route 623, Pembroke, Giles County, VA

  8. Backwater effects of Piers in Subcritical Flow

    DOT National Transportation Integrated Search

    2001-10-01

    Construction or renovation of bridge structures may require placement of bridge piers within the channel or floodplain of natural waterways. These piers will obstruct the flow and may cause an increase in water levels upstream of the bridge structure...

  9. Central part of Pier 22, showing the southeast side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Central part of Pier 22, showing the southeast side of the Shore Power Supply Electric Distribution Center (Building 734) - Mare Island Naval Shipyard, Finger Piers 22 & 23, Railroad Avenue near Eighteenth Street, Vallejo, Solano County, CA

  10. 17. Photocopy of photograph (original in possession of NYC Economic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of photograph (original in possession of NYC Economic Development Corp.) Signal Corps, USA, 1947 VIEW OF PIER 4 AND PIER 5-BROOKLYN ARMY BASE TERMINAL - Brooklyn Army Supply Base, Pier 4, Brooklyn, Kings County, NY

  11. 34. View of pier 3, showing supporting main anchor arm ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. View of pier 3, showing supporting main anchor arm and cantilever arm spans, as seen from shore near pier 4, looking north - Williamstown-Marietta Bridge, Spanning Ohio River between Williamstown & Marietta, Williamstown, Wood County, WV

  12. 97. VIEW OF PIER EXTENSION WITH RAMP IN FOREGROUND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    97. VIEW OF PIER EXTENSION WITH RAMP IN FOREGROUND AND 4TH TEE IN BACKGROUND, LOOKING SOUTHWEST FROM 3RD TEE - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  13. 41. West tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. West tile gauge on south pier. Each square tile is 4' in size. Bottom number scale of west tile - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  14. 48. East tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. East tile gauge on south pier. Each square tile is 4' in size. Lower section of tile cross only - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  15. 29. Aerial photograph (1973) looking south across Gould Island. Firing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Aerial photograph (1973) looking south across Gould Island. Firing pier (still possessing third and fourth levels) in foreground. Pitched roof extending from south end of firing pier marks location of frame approach between pier and shop building (center rear) and power plant (to right of shop). Photo courtesy of Naval Undersea Warfare Center, Division Newport, Rhode Island. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  16. 2. View of pier #3, West approach, Detroit Superior High ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of pier #3, West approach, Detroit Superior High Level bridge (1914-1917). Pier #3 and #4 support the steel rive span. They are 116 feet by 80 feet at the base and rest on stiff blue clay 45 feet below the surface of the river. Cast-steel bolsters of the three-hinge steel arch are anchored by structural steel grillage to the masory piers. - Detroit Superior High Level Bridge, Cleveland, Cuyahoga County, OH

  17. Study of technology of pile foundation construction of no.5 main pier of Shoujiang bridge in Wenchuan County

    NASA Astrophysics Data System (ADS)

    Huang, Xianbin; Liu, Chenyang; Chen, Chunyang; Wangren, Yahong; Xu, Jialin; Xian, Jin

    2018-03-01

    The group of pile foundation of no.5 pier in Shoujiang Bridge needs to overcome the big load of large span continuous steel structure. The length of single pile foundation is 77m and the diameter of single pile foundation is 250cm. It not only faces the flood in the upstream of Shoujiang river, the construction obstacles during summer rain period, but also the reservoir clearance activity of Zipingpu reservoir and the high water level in winter and other water level fluctuation that have huge impact on platform of pile foundation construction. This article introduces the preparation in aspect of personnel, material, equipment and so on of pile foundation construction, and also conduct intensive research on leveling the field, assaying pile location, the embedment of the steel casing, installing the drill, mixing mud, drilling, final hole inspection and clearance, steel cage construction, perfusing concrete under water.

  18. 77 FR 33094 - Safety Zone; International Bridge 50th Anniversary Celebration Fireworks, St. Mary's River, U.S...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    .... Army Corps of Engineers Locks, Sault Sainte Marie, MI AGENCY: Coast Guard, DHS. ACTION: Temporary final... Fireworks, St Mary's River, U.S. Army Corps of Engineers Locks, Sault Sainte Marie, MI; in the Federal... celebration, fireworks will be launched from the northeast pier of the U.S. Army Corp of Engineers Soo Locks...

  19. Mid-shot of Seller on EVA3 during STS-121 / Expedition 13 joint operations

    NASA Image and Video Library

    2006-07-12

    S121-E-06583 (12 July 2006) --- Astronaut Piers J. Sellers, STS-121 mission specialist, participates in the mission's third and final session of extravehicular activity (EVA). The demonstration of orbiter heat shield repair techniques was the objective of the 7-hour, 11-minute excursion outside Space Shuttle Discovery and the International Space Station.

  20. 15. VIEW SOUTH OF CONCRETE PIER SUPPORTING CAMELBACK AND PENNSYLVANIA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW SOUTH OF CONCRETE PIER SUPPORTING CAMELBACK AND PENNSYLVANIA PETIT TRUSSES. ORIGINAL PIER LYING IN FOREGROUND DESTROYED BY 1915 FLOOD DURING ORIGINAL CONSTRUCTION - New River Bridge, Spanning New River at State Route 623, Pembroke, Giles County, VA

  1. 48. VIEW OF PIER DECK, TAKEN FROM HALFWAY BETWEEN APPPROACH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. VIEW OF PIER DECK, TAKEN FROM HALFWAY BETWEEN APPPROACH AND 1ST TEE, LOOKING SOUTHWEST, SHOWING CAPTAIN'S GALLEY (LEFT) AND NEPTUNE'S LOCKER (RIGHT) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  2. Central part of Pier 22, southwest part, showing the northwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Central part of Pier 22, southwest part, showing the northwest side of the Shore Power Supply Electric Distribution Center (Building 734) - Mare Island Naval Shipyard, Finger Piers 22 & 23, Railroad Avenue near Eighteenth Street, Vallejo, Solano County, CA

  3. Debris mitigation methods for bridge piers.

    DOT National Transportation Integrated Search

    2012-06-01

    Debris accumulation on bridge piers is an on-going national problem that can obstruct the waterway openings at bridges and result in significant erosion of stream banks and scour at abutments and piers. In some cases, the accumulation of debris can a...

  4. 77 FR 51475 - Safety Zone; Apache Pier Labor Day Fireworks; Myrtle Beach, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ...-AA00 Safety Zone; Apache Pier Labor Day Fireworks; Myrtle Beach, SC AGENCY: Coast Guard, DHS. ACTION... Atlantic Ocean in the vicinity of Apache Pier in Myrtle Beach, SC, during the Labor Day fireworks... [[Page 51476

  5. Updating HEC-18 pier scour equations for noncohesive soils.

    DOT National Transportation Integrated Search

    2016-10-01

    A dataset of 594 bridge pier scour observations from two laboratory and three field studies was compiled. The dataset served as the testing ground for evaluating potential enhancements to the pier scour tools for noncohesive soils in Hydraulic Engine...

  6. Debris mitigation methods for bridge piers : tech transfer summary.

    DOT National Transportation Integrated Search

    2012-06-01

    Problem statement: Debris accumulation on bridge piers is an on-going national problem that can obstruct waterway openings at bridges and also result in significant erosion of stream banks and scour at abutments and piers. : In some cases, debris acc...

  7. 44. East tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. East tile gauge on south pier. Each square tile is 4' in size. Top left section of 4' square eagle section - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  8. 47. East tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. East tile gauge on south pier. Each square tile is 4' in size. Middle right section of 4' square eagle section - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  9. 40. West tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. West tile gauge on south pier. Each square tile is 4' in size. Bottom right hand corner of west tile - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  10. 46. East tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. East tile gauge on south pier. Each square tile is 4' in size. Lower right section of 4' square eagle section - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  11. 43. East tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. East tile gauge on south pier. Each square tile is 4' in size. Eagle itself in 4' square eagle section - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  12. 39. West tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. West tile gauge on south pier. Each square tile is 4' in size. Bottom left hand corner of west tile - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  13. 45. East tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. East tile gauge on south pier. Each square tile is 4' in size. Lower left section of 4' square eagel section - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  14. 51. East tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. East tile gauge on south pier. Each square tile is 4' in size. Lower end of cross second from bottom - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  15. Joint Program on Rapid Prototyping. RaPIER (Rapid Prototyping to Investigate End-User Requirements).

    DTIC Science & Technology

    1985-03-28

    can be found in [PATCH83]. In this section, we will discuss three systems which represent the state-of-the-technology. A . The DRACO - System . The DRACO ... System [NEIGHBORS8O] provides a programming environment in which the design and analysis of programs are reused. DRACO provides mechanisms for...automatic in the sense that the user can make individual implementation choices (called refinements in DRACO ) or even insert new tactics into the system

  16. Study on the use of self-consolidating concrete on the Interstate 25 bridge replacement in Trinidad, CO.

    DOT National Transportation Integrated Search

    2010-12-01

    As part of a national experiment sponsored by the FHWA under the Innovative Bridge Research and Construction (IBRC) : program, CDOT used self-consolidating concrete (SCC) to construct abutments, piers, and retaining walls on a bridge : replacement pr...

  17. 30. VIEW OF THE WESTERN SIDEWALK ON PIER 5, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VIEW OF THE WESTERN SIDEWALK ON PIER 5, SHOWING DEDICATION PLAQUE ON EASTERN PIER TOWER, LOOKING EAST - West End-North Side Bridge, Spanning Ohio River, approximately 1 mile downstream from confluence of Monongahela & Allegheny rivers, Pittsburgh, Allegheny County, PA

  18. 1. View of Pier G (center photo, on the water ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of Pier G (center photo, on the water line) taken from the foot of Washington Street. The view is of the southeastern, northeastern, and northern sides of the structure. - Lehigh Valley Railroad, Pier G, Jersey City, Hudson County, NJ

  19. 346. Caltrans, Photographer July 8, 1935 "PIER El"; VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    346. Caltrans, Photographer July 8, 1935 "PIER E-l"; VIEW OF PIER E-I, DECK TRUSS, AND CANTILEVER TRUSS ANCHOR ARM UNDER CONSTRUCTION. 5-1583 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  20. Detailed Project Report on Emergency Shoreline Protection, Section 14 Boggy Bayou, Valparaiso, Florida

    DTIC Science & Technology

    1989-08-01

    adjacent to Bayshore Drive. Along the shoreline within the current study area, (see Plate 4) private residents have constructed three wood piers and...a wood boat shed. The construction of piers and boat sheds is no longer permitted by the city. However, the piers and boat shed were allowed to remain...located in the project site. Removal and 6 replacement of the 3 wood piers and the boat shed and the steps that lead to them will be a responsibility of

  1. Measured Behavior and Thermal Gradients in Innovative Bridge Piers.

    DOT National Transportation Integrated Search

    1999-02-24

    Construction of the U.S. 183 elevated highway in Austin, Texas, provided a unique opportunity to investigate the behavior of two types of innovative concrete piers. Tied Y shape piers were used to support mainlane spans. They were cast in situ with s...

  2. Oblique perspective, due east by 70 degrees. Note concrete pier, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique perspective, due east by 70 degrees. Note concrete pier, added CA. 1930's. Other piers and abutments are heavily mortared rubble stone. - Watson Mill Bridge, Spanning South Fork Broad River, Watson Mill Road, Watson Mill Bridge State Park, Comer, Madison County, GA

  3. Security Enhancement of Littoral Combat Ship Class Utilizing an Autonomous Mustering and Pier Monitoring System

    DTIC Science & Technology

    2010-03-01

    allows the programmer to use the English language in an expressive manor while still maintaining the logical structure of a programming language ( Pressman ...and Choudhury Tanzeem. 2000. Face Recognition for Smart Environments, IEEE Computer, pp. 50–55. Pressman , Roger. 2010. Software Engineering A

  4. 33 CFR 118.140 - Painting bridge piers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Painting bridge piers. 118.140 Section 118.140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.140 Painting bridge piers. The District Commander may require...

  5. 18. INTAKE PIER, BRIDGE DETAILS, SHEET 9 OF 117, 1920. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. INTAKE PIER, BRIDGE DETAILS, SHEET 9 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  6. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  7. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  8. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  9. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  10. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  11. Looking northeast from shore along the length of Pier 22 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking northeast from shore along the length of Pier 22 with a view of rigging platforms and Shore Power Supply Electric Distribution Center (Building 734) in the distance - Mare Island Naval Shipyard, Finger Piers 22 & 23, Railroad Avenue near Eighteenth Street, Vallejo, Solano County, CA

  12. Field Test of a Three-Channel Seismic Event Discriminator

    DTIC Science & Technology

    1975-03-01

    vault contains three corner piers, in addition to the primary central pier. Using the corner piers, a pair of 19-foot long-period mercury tiltmeters ...seismometers were the sensors used in testing the seismic event- discriminator system. The recording equipment consisted of an eight- channel pressure

  13. Three-dimensional numerical simulations of local scouring around bridge piers

    USDA-ARS?s Scientific Manuscript database

    This paper presents a novel numerical method for simulating local scouring around bridge piers using a three-dimensional free-surface RANS turbulent flow model. Strong turbulent fluctuations and the down-flows around the bridge pier are considered important factors in scouring the bed. The turbulent...

  14. 33 CFR 118.140 - Painting bridge piers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Painting bridge piers. 118.140 Section 118.140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.140 Painting bridge piers. The District Commander may require...

  15. View of the yacht club from avila pier, facing west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the yacht club from avila pier, facing west northwest. The main entry is to the right and the more recent deck addition is to the left. - San Luis Yacht Club, Avila Pier, South of Front Street, Avila Beach, San Luis Obispo County, CA

  16. 20. Detail of sandstone pier under north line of trusses ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Detail of sandstone pier under north line of trusses showing granite pier cap (darker stone) which supports the vertical strut. View to east. - Selby Avenue Bridge, Spanning Short Line Railways track at Selby Avenue between Hamline & Snelling Avenues, Saint Paul, Ramsey County, MN

  17. 76 FR 11516 - Steel Erection; Extension of the Office of Management and Budget's (OMB) Approval of Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... that the concrete in the footings, piers, and walls, or the mortar in the masonry piers and walls, is... during steel erection. Note: This is not and will not be enforced for mortar in piers and walls until...

  18. Apparent Sea Level Rise due to Loading of the Atlantic City Pier by Spectators Viewing (1929-1978) Diving Horses

    NASA Astrophysics Data System (ADS)

    Galvin, C.

    2012-12-01

    Cyril Galvin, Coastal Engineer Springfield, Virginia 22150 USA Since 1911, the Steel Pier at Atlantic City, New Jersey, has been the site of the Atlantic City tide gauge, except for two intervals: 1911-1921 when the gauge was at the Million Dollar Pier in Atlantic City, and 1985-1991 when the gauge was at the Ventnor Fishing Pier (see Table 2, Zervos, 2009). By design, the Steel Pier was an amusement pier, and its most famous amusement was the Diving Horses: they dove bareback with a woman rider from a platform about 40 feet above sea level. They did that between 1929 and 1978, except for seven years - a post-war period, 1945 to 1953, when diving was suspended. The popularity of the diving horses is recorded on photos of crowds which occupied the bleachers at the seaward end of the pier to view the diving horses. By my count, the crowd pictured in the end papers of the book by Steve Liebowitz (2009) was about 4000 people. Typically, there were multiple shows daily. The weight of the crowd, estimated from the count of the crowd, was about 150 tons. This weight was loaded down on the piles by the crowd of spectators, and unloaded between shows of the diving horses. Most of the piles supporting the pier deck were imbedded in sand newly deposited since 1850. Using Atlantic City sea levels from the PSMSL data base and historical facts from Liebowitz (2009), and beginning with a 1912 start of the tide gauge, the apparent sea level rose at a rate of 3.1mm/yr until 1929 when the horses began diving. With the 1929 start of diving, the apparent sea level rise tripled, averaging 9.4 mm/yr until the act was suspended in 1945. In the 1945-1953 interval, when the horses did not dive (no crowds on the pier), apparent sea level fell (sea level FELL) at a rate of -1.6 mm/yr. The horses resumed diving in 1953, when the apparent sea level resumed at a rate of 4.0mm/yr. This 4.0 mm/yr is identical to the longtime sea level trend (1911-2006) from Zervos (2009) of 3.99mm/yr The history of apparent sea level rise at Steel Pier is consistent with increases caused by loading the pier deck with crowds, and the absence of apparent sea level rise when the pier deck was not loaded by spectators. CG/08Aug 2012

  19. Development of a Computational Approach to Detect Instability and Incipient Motion of Large Riprap Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bojanowski, C.; Lottes, S. A.; Flora, K.

    2017-08-01

    Local scour at bridge piers is a potential safety hazard of major concern to transportation agencies. If it is determined that scour at bridge piers can adversely affect the stability of a bridge, scour countermeasures to protect the pier should be considered.

  20. 2. OVERALL VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OVERALL VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING NORTH. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  1. 16. INTAKE PIER, PLANS ELEVATIONS, AND SECTIONS, SHEETS 5 OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. INTAKE PIER, PLANS ELEVATIONS, AND SECTIONS, SHEETS 5 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  2. 4. DETAIL OF THE BRIDGE PIER SHOWING THE SUSPENSION CABLE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL OF THE BRIDGE PIER SHOWING THE SUSPENSION CABLE, LOOKING SOUTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  3. 3. APPROACH TO THE ACCESS BRIDGE AND INTAKE PIER, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. APPROACH TO THE ACCESS BRIDGE AND INTAKE PIER, LOOKING SOUTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  4. 7. DETAIL OF INTAKE PIER, LOOKING SOUTHWEST FROM EASTERN SACRAMENTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL OF INTAKE PIER, LOOKING SOUTHWEST FROM EASTERN SACRAMENTO LEVEE. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  5. STARTING EXCAVATION PIER 2. This view is roughly northeast, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STARTING EXCAVATION PIER 2. This view is roughly northeast, with Pier 2 on the Trinity County end of the bridge. The old suspension bridge, at upper right, was upstream of new bridge - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  6. 17. INTAKE PIER, BRIDGE STRESS SHEET, SHEET 8 OF 117, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTAKE PIER, BRIDGE STRESS SHEET, SHEET 8 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  7. Fiber reinforced polymer (FRP) composite piles used on pier rehabilitation, Little Diamond Island, Casco Bay, Portland, Maine.

    DOT National Transportation Integrated Search

    2012-10-01

    Fiber reinforced polymer (FRP) composite piles were used on a pier rehabilitation project at : Little Diamond Island in Casco Bay near Portland Maine. The project was the replacement : of an aging wooden pier at the ferry berthing terminal. The FRP p...

  8. 11. UNDERSIDE, VIEW PERPENDICULAR TO PIERS, SHOWING FLOOR SYSTEM OBLIQUELY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. UNDERSIDE, VIEW PERPENDICULAR TO PIERS, SHOWING FLOOR SYSTEM OBLIQUELY AND NORTH PIER. LOOKING NORTH. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ

  9. SHAKING TABLE TESTS ON SEISMIC DEFORMATION OF PILE SUPPORTED PIER

    NASA Astrophysics Data System (ADS)

    Fujita, Daiki; Kohama, Eiji; Takenobu, Masahiro; Yoshida, Makoto; Kiku, Hiroyoshi

    The seismic deformation characeteristics of a pile supported pier was examined with the shake table test, especially focusing on the pier after its deformation during earthquakes. The model based on the similitude of the fully-plastic moment in piles was prepared to confirm the deformation and stress characteristic after reaching the fully-plastic moment. Moreover, assuming transportation of emergency supplies and occurrence of after shock in the post-disaster period, the pile supported pier was loaded with weight after reaching fully-plastic moment and excited with the shaking table. As the result, it is identified that the displacement of the pile supported pier is comparatively small if bending strength of piles does not decrease after reaching fully-plastic moment due to nonoccourrence of local backling or strain hardening.

  10. 21 CFR 1240.86 - Protection of pier water system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Protection of pier water system. 1240.86 Section 1240.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... interstate traffic shall make a connection between its nonpotable water system and any pier potable water...

  11. 21 CFR 1240.86 - Protection of pier water system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Protection of pier water system. 1240.86 Section 1240.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... interstate traffic shall make a connection between its nonpotable water system and any pier potable water...

  12. 21 CFR 1240.86 - Protection of pier water system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Protection of pier water system. 1240.86 Section 1240.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... interstate traffic shall make a connection between its nonpotable water system and any pier potable water...

  13. 24. Photographic copy of blueprints and plans (from the originals ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Photographic copy of blueprints and plans (from the originals in possession of Detroit District, U.S. Army Corps of Engineers, Duluth, Minnesota). North pier of Duluth Canal, 1899, present and proposed piers - Duluth Ship Canal, North Pier, North end of Minnesota Point at Canal Park, Duluth, St. Louis County, MN

  14. 5. OBLIQUE VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. OBLIQUE VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING SOUTHWEST, FROM THE EASTERN LEVEE. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  15. 1. OVERALL VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING NORTHEAST FROM WESTERN LEVEE OF THE SACRAMENTO RIVER. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  16. 9. VIEW OF INTAKE PIER AND MAIN SPAN OF ACCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF INTAKE PIER AND MAIN SPAN OF ACCESS BRIDGE FROM WATER LEVEL, LOOKING NORTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  17. 24 CFR 3285.303 - Piers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... must be capable of transmitting the vertical live and dead loads to the footings or foundation. (b... dimensions of the home, the design dead and live loads, the spacing of the piers, and the way the piers are... to the loads required to safely support the dead and live loads, as required by § 3285.301, and the...

  18. 24 CFR 3285.303 - Piers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... must be capable of transmitting the vertical live and dead loads to the footings or foundation. (b... dimensions of the home, the design dead and live loads, the spacing of the piers, and the way the piers are... to the loads required to safely support the dead and live loads, as required by § 3285.301, and the...

  19. 24 CFR 3285.303 - Piers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... must be capable of transmitting the vertical live and dead loads to the footings or foundation. (b... dimensions of the home, the design dead and live loads, the spacing of the piers, and the way the piers are... to the loads required to safely support the dead and live loads, as required by § 3285.301, and the...

  20. 24 CFR 3285.303 - Piers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... must be capable of transmitting the vertical live and dead loads to the footings or foundation. (b... dimensions of the home, the design dead and live loads, the spacing of the piers, and the way the piers are... to the loads required to safely support the dead and live loads, as required by § 3285.301, and the...

  1. 24 CFR 3285.303 - Piers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... must be capable of transmitting the vertical live and dead loads to the footings or foundation. (b... dimensions of the home, the design dead and live loads, the spacing of the piers, and the way the piers are... to the loads required to safely support the dead and live loads, as required by § 3285.301, and the...

  2. Analysis of large truck collisions with bridge piers : phase 1, report of guidelines for designing bridge piers and abutments for vehicle collisions.

    DOT National Transportation Integrated Search

    2010-05-01

    The American Association of State Highway and Transportation Officials (AASHTO) Load and : Resistance Factor Design (LRFD) Bridge Design Specifications require that abutments and piers located : within a distance of 30.0 ft of the edge of the road...

  3. 33 CFR 165.1121 - Security Zone: Fleet Supply Center Industrial Pier, San Diego, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Center Industrial Pier, San Diego, CA. 165.1121 Section 165.1121 Navigation and Navigable Waters COAST... Guard District § 165.1121 Security Zone: Fleet Supply Center Industrial Pier, San Diego, CA. (a) Location. The following area is a security zone: the waters of San Diego Bay extending approximately 100...

  4. Evaluation of pier-scour measurement methods and pier-scour predictions with observed scour measurements at selected bridge sites in New Hampshire, 1995-98

    DOT National Transportation Integrated Search

    2000-11-01

    In a previous study, 44 of 48 bridge sites examined in New Hampshire were categorized as scour critical. This report summarizes research conducted to evaluate pier-scour measurement methods and predictions at many of these sites. This evaluation incl...

  5. Development and Evaluation of Clear-Water Pier and Contraction Scour Envelope Curves in the Coastal Plain and Piedmont Provinces of South Carolina

    DOT National Transportation Integrated Search

    2016-08-01

    The U.S. Geological Survey in cooperation with the South Carolina Department of Transportation collected clear-water pier- and contraction-scour data at 116 bridges in the Coastal Plain and Piedmont Physiographic Provinces of South Carolina. Pier-sco...

  6. Floating Double Deck Pier Fenders

    DTIC Science & Technology

    2011-07-01

    Center FDDP Floating Double Deck Pier FEM Finite Element Model MHP Modular Hybrid Pier NAVFAC Naval Facilities RDT&E Research, Development, Testing...4. FEM Performance of MV1000x900B Elements ........................................................ 14 Figure 4-5. Biaxial UE1200x1200E3.1 Fender...Deflection .......................................................... 15 Figure 4-6. FEM Performance of Biaxial UE Fender

  7. Productivity and Diversity of Phytoplankton in Relation to Copper Levels in San Diego Bay.

    DTIC Science & Technology

    1980-03-01

    phytoplankton assemblages taken from the PIER (P), INLET (1), and NAVY (N) sites from July 1978 through June 1979... 15 Figure 7. Chlorophyll A levels (mg/m 3...PIER (P) and INLET (1) assemblages as a function of added copper (ppb)... 23 Figure 17. Trends in chlorophyll A levels (mg/m 3 ) of the PIER (P) and...E 10 P 5- J A S O N 0 J F M A M J 1978 1979Date Figure 7. Chlorophyll A levels (mg/m 3) of the phytoplank- ton assemblages taken from the PIER (P

  8. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    STS -132 astronauts from left, Steve Bowen, Tony Antonelli, Garrett Reisman, Ken Ham, Piers Sellers, and Michael Good are seen with students fromthe Summer of Innovation program following a presentation by the crew at the Smithsonian National Air and Space Museum, Tuesday, July 27, 2010, in Washington. Photo Credit: (NASA/Paul E. Alers)

  9. 11. DETAIL VIEW OF APPROACH TO INTAKE PIER FROM ACCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL VIEW OF APPROACH TO INTAKE PIER FROM ACCESS BRIDGE, SHOWING DOOR TO INTERIOR GATE OPERATOR ROOM, LOOKING WEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  10. 33 CFR 334.293 - Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. 334.293 Section 334.293 Navigation and... RESTRICTED AREA REGULATIONS § 334.293 Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. (a) The area. (1) The waters within an area beginning at a point on the...

  11. 33 CFR 334.293 - Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. 334.293 Section 334.293 Navigation and... RESTRICTED AREA REGULATIONS § 334.293 Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. (a) The area. (1) The waters within an area beginning at a point on the...

  12. 33 CFR 334.293 - Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. 334.293 Section 334.293 Navigation and... RESTRICTED AREA REGULATIONS § 334.293 Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. (a) The area. (1) The waters within an area beginning at a point on the...

  13. 33 CFR 334.293 - Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. 334.293 Section 334.293 Navigation and... RESTRICTED AREA REGULATIONS § 334.293 Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. (a) The area. (1) The waters within an area beginning at a point on the...

  14. 33 CFR 334.293 - Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. 334.293 Section 334.293 Navigation and... RESTRICTED AREA REGULATIONS § 334.293 Elizabeth River, Craney Island Refueling Pier Restricted Area, Portsmouth VA; naval restricted area. (a) The area. (1) The waters within an area beginning at a point on the...

  15. 41. 'Firing Pier, Second Floor Plan, Section No. 2,' submitted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. 'Firing Pier, Second Floor Plan, Section No. 2,' submitted 29 December 1941 by John Brackett, Consulting Engineer, to Public Works Department, Bureau of Yards & Docks. PW Drawing 3867-46, Y&D Drawing 190841. Scale 1/4' = 1'. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  16. 42. 'Firing Pier, Second Floor Plan, Section No. 3,' submitted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. 'Firing Pier, Second Floor Plan, Section No. 3,' submitted 29 December 1941 by John Brackett, Consulting Engineer, to Public Works Department, Bureau of Yards & Docks. PW Drawing 3868-46, Y&D Drawing 190842. Scale 1/4' = 1'. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  17. 36. 'Firing Pier, First Floor Plan, Section No. 1,' submitted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. 'Firing Pier, First Floor Plan, Section No. 1,' submitted 29 December 1941 by John Brackett, Consulting Engineer, to Public Works Department, Bureau of Yards & Docks. PW Drawing 3862-46, Y&D Drawing 190836. Scale 1/4' = 1'. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  18. 43. 'Firing Pier, Third and Fourth Floors and Roof Plan,' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. 'Firing Pier, Third and Fourth Floors and Roof Plan,' submitted 29 December 1941 by John Brackett, Consulting Engineer, to Public Works Department, Bureau of Yards & Docks. PW Drawing 3869-46, Y&D Drawing 190843. Scale 1/4' = 1'. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  19. 38. 'Firing Pier, First Floor Plan, Section No. 3,' submitted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. 'Firing Pier, First Floor Plan, Section No. 3,' submitted 29 December 1941 by John Brackett, Consulting Engineer, to Public Works Department, Bureau of Yards & Docks. PW Drawing 3864-46, Y&D Drawing 190838. Scale 1/4' = 1'. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  20. 40. 'Firing Pier, Second Floor Plan, Section No. 1,' submitted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. 'Firing Pier, Second Floor Plan, Section No. 1,' submitted 29 December 1941 by John Brackett, Consulting Engineer, to Public Works Department, Bureau of Yards & Docks. PW Drawing 3866-46, Y&D Drawing 190840. Scale 1/4' = 1'. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  1. 39. 'Firing Pier, First Floor Plan, Section No. 4,' submitted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. 'Firing Pier, First Floor Plan, Section No. 4,' submitted 29 December 1941 by John Brackett, Consulting Engineer, to Public Works Department, Bureau of Yards & Docks. PW Drawing 3865-46, Y&D Drawing 190839. Scale 1/4' = 1'. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  2. 37. 'Firing Pier, First Floor Plan, Section No. 2,' submitted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. 'Firing Pier, First Floor Plan, Section No. 2,' submitted 29 December 1941 by John Brackett, Consulting Engineer, to Public Works Department, Bureau of Yards & Docks. PW Drawing 3863-46, Y&D Drawing 190837. Scale 1/4' = 1. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  3. 18. "Concrete Bridge Over Salt River, Port Kenyon, Humboldt County, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. "Concrete Bridge Over Salt River, Port Kenyon, Humboldt County, California, A.J. Logan, County Surveyor, H.J. Brunnier, Consulting Engineer, March 7, 1919," showing elevation of center pier, elevation and plan of north and south abutments, sections of abutments, pier, and pier footings - Salt River Bridge, Spanning Salt River at Dillon Road, Ferndale, Humboldt County, CA

  4. Investigation of pier scour in coarse-bed streams in Montana, 2001 through 2007

    USGS Publications Warehouse

    Holnbeck, Stephen R.

    2011-01-01

    A primary goal of ongoing field research of bridge scour is improvement of scour-prediction equations so that pier-scour depth is predicted accurately-an important element of hydraulic analysis and design of highway bridges that cross streams, rivers, and other waterways. Scour depth for piers in streambeds with a mixture of sand, gravel, cobbles, and boulders (coarse-bed streams, which are common in Montana) generally is less than the scour depth in finer-grained (sandy) streambeds under similar conditions. That difference is attributed to an armor layer of coarser material. Pier-scour data from the U.S. Geological Survey were used in this study to develop a bed-material correction factor, which was incorporated into the Federal Highway Administration's recommended equation for computing pier scour. This report describes results of a study of pier scour in coarse-bed streams at 59 bridge sites during 2001-2007 in the mountain and foothill regions of western Montana. Respective drainage areas ranged from about 3 square miles (mi2) to almost 20,000 mi2. Data collected and analyzed for this study included 103 pier-scour measurements; the report further describes data collection, shows expansion of the national coarse pier-scour database, discusses use of the new data in evaluation of relative accuracy of various predictive equations, and demonstrates how differences in size and gradation between surface bed material and shallow-subsurface bed material might relate to pier scour. Nearly all measurements were made under clear-water conditions with no incoming sediment supply to the bridge opening. Half of the measurements showed approach velocities that equaled or surpassed the critical velocity for incipient motion of bed material, possibly indicating that measurements were made very near the threshold between clear-water and live-bed scour, where maximum scour was shown in laboratory studies. Data collected in this study were compared to selected pier-scour data from the nationwide Bridge Scour Data Management System (BSDMS), to show the effect of bed-material size and gradation on scour depth. Unsteady field flow conditions and armoring by coarser material reduced scour relative to the clear-water/sandy-bed laboratory results at steady flow. The new correction factor and the standard scour equation produced the most accurate estimates of scour depth in armored, coarse-bed conditions. Maximum relative scour occurred at similar velocity across variations in bed material and gradation. Pier scour decreased with increased variation in particle size and gradation.

  5. Development and evaluation of clear-water pier and contraction scour envelope curves in the Coastal Plain and Piedmont Provinces of South Carolina

    USGS Publications Warehouse

    Benedict, Stephen T.; Caldwell, Andral W.

    2016-01-01

    The U.S. Geological Survey in cooperation with the South Carolina Department of Transportation collected clear-water pier- and contraction-scour data at 116 bridges in the Coastal Plain and Piedmont Physiographic Provinces of South Carolina. Pier-scour depths collected in both provinces ranged from 0 to 8.0 feet. Contraction-scour depths collected in the Coastal Plain ranged from 0 to 3.9 feet. Using hydraulic data estimated with a one-dimensional flow model, predicted clear-water scour depths were computed with scour equations from the Federal Highway Administration Hydraulic Engineering Circular 18 and compared with measured scour. This comparison indicated that predicted clear-water scour depths, in general, exceeded measured scour depths and at times were excessive. Predicted clear-water contraction scour, however, was underpredicted approximately 30 percent of the time by as much as 7.1 feet. The investigation focused on clear-water pier scour, comparing trends in the laboratory and field data. This comparison indicated that the range of dimensionless variables (relative depth, flow intensity, relative grain size) used in laboratory investigations of pier scour, were similar to the range for field data in South Carolina, further indicating that laboratory relations may have some applicability to field conditions in South Carolina. Variables determined to be important in developing pier scour in laboratory studies were investigated to understand their influence on the South Carolina field data, and many of these variables appeared to be insignificant under field conditions in South Carolina. The strongest explanatory variables were pier width and approach velocity. Envelope curves developed from the field data are useful tools for evaluating reasonable ranges of clear-water pier and contraction scour in South Carolina. A modified version of the Hydraulic Engineering Circular 18 pier-scour equation also was developed as a tool for evaluating clearwater pier scour. The envelope curves and modified equation offer an improvement over the current methods for predicting clear-water scour in South Carolina. Data from this study were compiled into a database that includes photographs, measured scour depths, predicted scour depths, limited basin characteristics, limited soil data, and modeled hydraulic data. The South Carolina database can be used to compare studied sites with unstudied sites to evaluate the potential for scour at the unstudied sites. In addition, the database can be used to evaluate the performance of various methods for predicting clear-water pier and contraction scour.

  6. Local-based damage detection of cyclically loaded bridge piers using wireless sensing units

    NASA Astrophysics Data System (ADS)

    Hou, Tsung-Chin; Lynch, Jerome P.; Parra-Montesinos, Gustavo

    2005-05-01

    Concrete bridge piers are a common structural element employed in the design of bridges and elevated roadways. In order to ensure adequate behavior under earthquake-induced displacements, extensive reinforcement detailing in the form of closely spaced ties or spirals is necessary, leading to congestion problems and difficulties during concrete casting. Further, costly repairs are often necessary in bridge piers after a major earthquake which in some cases involve the total or partial shutdown of the bridge. In order to increase the damage tolerance while relaxing the transverse reinforcement requirements of bridge piers, the use of high-performance fiber reinforced cementitious composites (HPFRCC) in earthquake-resistant bridge piers is explored. HPFRCCs are a relatively new class of cementitious material for civil structures with tensile strain-hardening behavior and high damage tolerance. To monitor the behavior of this new class of material in the field, low-cost wireless monitoring technologies will be adopted to provide HPFRCC structural elements the capability to accurately monitor their performance and health. In particular, the computational core of a wireless sensing unit can be harnessed to screen HPFRCC components for damage in real-time. A seismic damage index initially proposed for flexure dominated reinforced concrete elements is modified to serve as an algorithmic tool for the rapid assessment of damage (due to flexure and shear) in HPFRCC bridge piers subjected to large shear reversals. Traditional and non-traditional sensor strategies of an HPFRCC bridge pier are proposed to optimize the correlation between the proposed damage index model and the damage observed in a circular pier test specimen. Damage index models are shown to be a sufficiently accurate rough measure of the degree of local-area damage that can then be wirelessly communicated to bridge officials.

  7. Sellers translates along the S1 Truss during EVA3 on STS-121 / Expedition 13 joint operations

    NASA Image and Video Library

    2006-07-12

    S121-E-07413 (12 July 2006) --- Astronaut Piers J. Sellers, STS-121 mission specialist, translates along a truss on the International Space Station during the mission's third and final session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the station. A blue and white Earth and the blackness of space form the backdrop for the image.

  8. 2014 NASM Event

    NASA Image and Video Library

    2014-09-10

    NASA Administrator Charle Bolden, Dr. John Grunsfeld, Dr. Piers Sellers, Goddard Center Director Chris Scolese and MSBR president Ms. Yang hold a meet and greet with Wounded Warriors from Fort Belvoir, MSBR Final Frontier Students and STEM Partners from Summer of Innovation local camps at Vital Signs: Taking the Pulse of Our Planet - Annual NASA reception and lecture hosted by the National Air and Space Museum and Sponsored by the Maryland Space Business Roundtable

  9. 14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION FORCE MAINS, TREATED WATER PIPELINES, AND FILTRATION PLANT, SHEET 1 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  10. 10. DETAIL VIEW OF LOWER LEVEL OF INTAKE PIER SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL VIEW OF LOWER LEVEL OF INTAKE PIER SHOWING THE RIVER HEIGHT INDICATOR, ONE OF THE FIVE GATE OPENINGS, AND MOORINGS, LOOKING SOUTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  11. 33 CFR 334.510 - U.S. Navy Fuel Depot Pier, St. Johns River, Jacksonville, Fla.; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false U.S. Navy Fuel Depot Pier, St. Johns River, Jacksonville, Fla.; restricted area. 334.510 Section 334.510 Navigation and Navigable... REGULATIONS § 334.510 U.S. Navy Fuel Depot Pier, St. Johns River, Jacksonville, Fla.; restricted area. (a) The...

  12. Piers Harris and Coopersmith Measure of Self-Esteem: A Comparative Analysis

    ERIC Educational Resources Information Center

    Lynch, Mervin D.; Foley-Peres, Kathleen D.; Sullivan, Stefanie S.

    2008-01-01

    The purposes of this study were to see if the items from the Piers Harris Self Concept Scale and the Coopersmith Self Esteem Inventory had construct and predictive validity. Items used in this study were 50 items from the Coopersmith Self-Esteem Inventory and 80 items from the Piers Harris Self-Concept Scale. Construct measures were obtained using…

  13. Using geophysical data to assess scour development

    USGS Publications Warehouse

    Placzek, Gary; Haeni, Peter F.; Trent, Roy; ,

    1993-01-01

    The development of scour holes in the Connecticut River near the new Baldwin Bridge has been documented by comparing geophysical records collected before (1989), during (1990), and after (1992) bridge construction. Eight piers that support the 570-m (meter) span over the Connecticut River were protected by 12-m wide cofferdams during construction. The maximum flow during the study was equivalent to a 3-year recurrence-interval flood, indicating no significant floods. Fathometer data indicate that deep scour holes, 1.5 to 6.4 m deep, developed north of piers 6, 7, and 8. Scour holes, less than 1.3 m-deep, developed south of these piers. The deepest scour hole was north of pier 7, where data show a flat river bottom in 1989, a scour 3.3-m deep in 1990, and a scour hole 6.4-m deep in 1992. Continuous seismic-profiling (CSP) data show that a 1.5 -m deep scour hole north of pier 6 in 1990 was filled in with 1.5-m of material by 1992. No infilling was detected in the scour holes north of piers 7 and 8. Numerous subbottom reflectors from geologic layers, up to 7.6 -m deep were identified in the CSP records.

  14. Overview of Shipyard coast line with Piers G1, G2, G3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of Shipyard coast line with Piers G-1, G-2, G-3, G-4, and G-5 in view, view facing east-southeast - U.S. Naval Base, Pearl Harbor, Pier & Quay Walls, Entrance to Dry Dock No. 2 & Repair Wharfs, east & west sides of Dry Dock No. 2 & west side of Dry Dock No. 3, Pearl City, Honolulu County, HI

  15. 33 CFR 334.1050 - Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1050 Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. (a...

  16. 33 CFR 334.1050 - Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1050 Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. (a...

  17. 33 CFR 334.1050 - Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1050 Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. (a...

  18. 33 CFR 334.1050 - Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1050 Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. (a...

  19. 33 CFR 334.1050 - Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1050 Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. (a...

  20. Effects of seismic devices on transverse responses of piers in the Sutong Bridge

    NASA Astrophysics Data System (ADS)

    Shen, Xing; Camara, Alfredo; Ye, Aijun

    2015-12-01

    The Sutong Bridge in China opened to traffic in 2008, and is an arterial connection between the cities of Nantong and Suzhou. It is a cable-stayed bridge with a main span of 1,088 m. Due to a tight construction schedule and lack of suitable seismic devices at the time, fixed supports were installed between the piers and the girder in the transverse direction. As a result, significant transverse seismic forces could occur in the piers and foundations, especially during a return period of a 2500-year earthquake. Therefore, the piers, foundations and fixed bearings had to be designed extraordinarily strong. However, when larger earthquakes occur, the bearings, piers and foundations are still vulnerable. The recent rapid developments in seismic technology and the performance-based design approach offer a better opportunity to optimize the transverse seismic design for the Sutong Bridge piers. The optimized design can be applied to the Sutong Bridge (as a retrofit), as well as other bridges. Seismic design alternatives utilizing viscous fluid dampers (VFD), or friction pendulum sliding bearings (FPSB), or transverse yielding metallic dampers (TYMD) are thoroughly studied in this work, and the results are compared with those from the current condition with fixed transverse supports and a hypothetical condition in which only sliding bearings are provided on top of the piers (the girder can move "freely" in the transverse direction during the earthquake, except for frictional forces of the sliding bearings). Parametric analyses were performed to optimize the design of these proposed seismic devices. From the comparison of the peak bridge responses in these configurations, it was found that both VFD and TYMD are very effective in the reduction of transverse seismic forces in piers, while at the same time keeping the relative transverse displacements between piers and the box girder within acceptable limits. However, compared to VFD, TYMD do not interact with the longitudinal displacements of the girder, and have simpler details and lower initial and maintenance costs. Although the use of FPSB can also reduce seismic forces, it generally causes the transverse relative displacements to be higher than acceptable limits.

  1. Results of repeat bathymetric and velocimetric surveys at the Amelia Earhart Bridge on U.S. Highway 59 over the Missouri River at Atchison, Kansas, 2009-2013

    USGS Publications Warehouse

    Huizinga, Richard J.

    2013-01-01

    Bathymetric and velocimetric data were collected six times by the U.S. Geological Survey, in cooperation with the Kansas Department of Transportation, in the vicinity of Amelia Earhart Bridge on U.S. Highway 59 over the Missouri River at Atchison, Kansas. A multibeam echosounder mapping system and an acoustic Doppler current meter were used to obtain channel-bed elevations and depth-averaged velocities for a river reach approximately 2,300 feet long and extending across the active channel of the Missouri River. The bathymetric and velocimetric surveys provide a “snapshot” of the channel conditions at the time of each survey, and document changes to the channel-bed elevations and velocities during the course of construction of a new bridge for U.S. Highway 59 downstream from the Amelia Earhart Bridge. The baseline survey in June 2009 revealed substantial scour holes existed at the railroad bridge piers upstream from and at pier 10 of the Amelia Earhart Bridge, with mostly uniform flow and velocities throughout the study reach. After the construction of a trestle and cofferdam on the left (eastern) bank downstream from the Amelia Earhart Bridge, a survey on June 2, 2010, revealed scour holes with similar size and shape as the baseline for similar flow conditions, with slightly higher velocities and a more substantial contraction of flow near the bridges than the baseline. Subsequent surveys during flooding conditions in June 2010 and July 2011 revealed substantial scour near the bridges compared to the baseline survey caused by the contraction of flow; however, the larger flood in July 2011 resulted in less scour than in June 2010, partly because the removal of the cofferdam for pier 5 of the new bridge in March 2011 diminished the contraction near the bridges. Generally, the downstream part of the study reach exhibited varying amounts of scour in all of the surveys except the last when compared to the baseline. During the final survey, velocities throughout the study area were the lowest of all the surveys, resulting in overall deposition throughout the reach compared to the baseline survey—despite the presence of the trestle in the final survey. The multiple surveys at the Amelia Earhart Bridge document the effects of moderate- to high-flow conditions on scour, compounded by the effects of adding and removing a constriction in the channel. Additional factors such as pier shape and angle of approach flow also were documented.

  2. Local sediment scour model tests for the Woodrow Wilson Bridge piers

    USGS Publications Warehouse

    Sheppard, D.M.; Jones, J.S.; Odeh, M.; Glasser, T.

    2004-01-01

    The Woodrow Wilson Bridge on I-495 over the Potomac River in Prince Georges County, Maryland is being replaced. Physical local scour model studies for the proposed piers for the new bridge were performed in order to help establish design scour depths. Tests were conducted in two different flumes, one in the USGS-BRD Conte Research Center in Turners Falls, Massachusetts and one in the FHWA Turner Fairbanks Laboratory in McLean, Virginia. Due to space limitations in this publication only the tests conducted in the USGS flume are presented in this paper. Two different pier designs were tested. One of the piers was also tested with two different diameter dolphin systems. Copyright ASCE 2004.

  3. Bathymetric and velocimetric surveys at highway bridges crossing the Missouri and Mississippi Rivers near St. Louis, Missouri, May 23–27, 2016

    USGS Publications Warehouse

    Huizinga, Richard J.

    2017-09-26

    Bathymetric and velocimetric data were collected by the U.S. Geological Survey, in cooperation with the Missouri Department of Transportation, near 13 bridges at 8 highway crossings of the Missouri and Mississippi Rivers in the greater St. Louis, Missouri, area from May 23 to 27, 2016. A multibeam echosounder mapping system was used to obtain channel-bed elevations for river reaches ranging from 1,640 to 1,970 feet longitudinally and extending laterally across the active channel from bank to bank during low to moderate flood flow conditions. These bathymetric surveys indicate the channel conditions at the time of the surveys and provide characteristics of scour holes that may be useful in the development of predictive guidelines or equations for scour holes. These data also may be useful to the Missouri Department of Transportation as a low to moderate flood flow comparison to help assess the bridges for stability and integrity issues with respect to bridge scour during floods.Bathymetric data were collected around every pier that was in water, except those at the edge of water, and scour holes were observed at most surveyed piers. The observed scour holes at the surveyed bridges were examined with respect to shape and depth.The frontal slope values determined for scour holes observed in the current (2016) study generally are similar to recommended values in the literature and to values determined for scour holes in previous bathymetric surveys. Several of the structures had piers that were skewed to primary approach flow, as indicated by the scour hole being longer on the side of the pier with impinging flow, and some amount of deposition on the leeward side, as typically has been observed at piers skewed to approach flow; however, at most skewed piers in the current (2016) study, the scour hole was deeper on the leeward side of the pier. At most of these piers, the angled approach flow was the result of a deflection or contraction of flow caused by a spur dike near the pier, which may affect flow differently than for a simple skew. At structure A6500 (site 33), the wide face of the pier footing and seal course would behave as a complex foundation, for which scour is computed differently.Previous bathymetric surveys exist for all the sites examined in this study. A previous survey in October 2010 at most of the sites had similar flow conditions and similar results to the 2016 surveys. A survey during flood conditions in August 2011 at the sites on the Missouri River and in May 2009 at structures A4936 and A1850 (site 35) on the Mississippi River did not always indicate more substantial scour during flood conditions. At structure A6500 (site 33) on the Mississippi River, a previous survey in 2009 was part of a habitat assessment before construction of the bridge and provides unique insight into the effects of the construction of that bridge on the channel in this reach. Substantial scour was observed near the right pier, and the riprap blanket surrounding the left pier seems to limit scour near that pier. Multiple additional surveys have been completed at structures A4936 and A1850 (site 35) on the Mississippi River, and the results of these surveys also are presented.

  4. Lateral dynamic interaction analysis of a train girder pier system

    NASA Astrophysics Data System (ADS)

    Xia, H.; Guo, W. W.; Wu, X.; Pi, Y. L.; Bradford, M. A.

    2008-12-01

    A dynamic model of a coupled train-girder-pier system is developed in this paper. Each vehicle in a train is modeled with 27 degrees-of-freedom for a 4-axle passenger coach or freight car, and 31 for a 6-axle locomotive. The bridge model is applicable to straight and curved bridges. The centrifugal forces of moving vehicles on curved bridges are considered in both the vehicle model and the bridge model. The dynamic interaction between the bridge and train is realized through an assumed wheel-hunting movement. A case study is performed for a test train traversing two straight and two curved multi-span bridges with high piers. The histories of the train traversing the bridges are simulated and the dynamic responses of the piers and the train vehicles are calculated. A field experiment is carried out to verify the results of the analysis, by which the lateral resonant train speed inducing the peak pier-top amplitudes and some other observations are validated.

  5. Interaction Behavior between Thrust Faulting and the National Highway No. 3 - Tianliao III bridge as Determined using Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Li, C. H.; Wu, L. C.; Chan, P. C.; Lin, M. L.

    2016-12-01

    The National Highway No. 3 - Tianliao III Bridge is located in the southwestern Taiwan mudstone area and crosses the Chekualin fault. Since the bridge was opened to traffic, it has been repaired 11 times. To understand the interaction behavior between thrust faulting and the bridge, a discrete element method-based software program, PFC, was applied to conduct a numerical analysis. A 3D model for simulating the thrust faulting and bridge was established, as shown in Fig. 1. In this conceptual model, the length and width were 50 and 10 m, respectively. Part of the box bottom was moveable, simulating the displacement of the thrust fault. The overburden stratum had a height of 5 m with fault dip angles of 20° (Fig. 2). The bottom-up strata were mudstone, clay, and sand, separately. The uplift was 1 m, which was 20% of the stratum thickness. In accordance with the investigation, the position of the fault tip was set, depending on the fault zone, and the bridge deformation was observed (Fig. 3). By setting "Monitoring Balls" in the numerical model to analyzes bridge displacement, we determined that the bridge deck deflection increased as the uplift distance increased. Furthermore, the force caused by the loading of the bridge deck and fault dislocation was determined to cause a down deflection of the P1 and P2 bridge piers. Finally, the fault deflection trajectory of the P4 pier displayed the maximum displacement (Fig. 4). Similar behavior has been observed through numerical simulation as well as field monitoring data. Usage of the discrete element model (PFC3D) to simulate the deformation behavior between thrust faulting and the bridge provided feedback for the design and improved planning of the bridge.

  6. 77 FR 35862 - Safety Zone; Fleet Week Maritime Festival, Pier 66 Elliott Bay, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... Zone; Fleet Week Maritime Festival, Pier 66 Elliott Bay, Seattle, WA AGENCY: Coast Guard, DHS. ACTION... Festival's Pier 66 Safety Zone in Elliott Bay, WA from 8 a.m. until 8 p.m. on August 1, 2012, however, it... Fleet Week Maritime Festival in 33 CFR 165.1330 on August 1, 2012, from 8 a.m. until 8 p.m.; however, it...

  7. Prediction of Scour Depth around Bridge Piers using Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Zhang, Hanqing

    2014-05-01

    Earth's surface is continuously shaped due to the action of geophysical flows. Erosion due to the flow of water in river systems has been identified as a key problem in preserving ecological health of river systems but also a threat to our built environment and critical infrastructure, worldwide. As an example, it has been estimated that a major reason for bridge failure is due to scour. Even though the flow past bridge piers has been investigated both experimentally and numerically, and the mechanisms of scouring are relatively understood, there still lacks a tool that can offer fast and reliable predictions. Most of the existing formulas for prediction of bridge pier scour depth are empirical in nature, based on a limited range of data or for piers of specific shape. In this work, the application of a Machine Learning model that has been successfully employed in Water Engineering, namely an Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed to estimate the scour depth around bridge piers. In particular, various complexity architectures are sequentially built, in order to identify the optimal for scour depth predictions, using appropriate training and validation subsets obtained from the USGS database (and pre-processed to remove incomplete records). The model has five variables, namely the effective pier width (b), the approach velocity (v), the approach depth (y), the mean grain diameter (D50) and the skew to flow. Simulations are conducted with data groups (bed material type, pier type and shape) and different number of input variables, to produce reduced complexity and easily interpretable models. Analysis and comparison of the results indicate that the developed ANFIS model has high accuracy and outstanding generalization ability for prediction of scour parameters. The effective pier width (as opposed to skew to flow) is amongst the most relevant input parameters for the estimation.

  8. 75 FR 81856 - Security Zone, Michoud Slip Position 30°0′34.2″ N, 89°55′40.7″ W to Position 30°0′29.5″ N, 89°55...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... preventer and adjacent piers and infrastructure from destruction, loss or injury from sabotage or other... and adjacent piers and infrastructure from destruction, loss or injury from sabotage or other... preventer and adjacent piers and infrastructure from destruction, loss or injury from sabotage or other...

  9. 33 CFR 165.T09-0417 - Safety Zone; Put-In-Bay Fireworks, Fox's the Dock Pier, South Bass Island; Put-In-Bay, OH.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Fox's the Dock Pier, South Bass Island; Put-In-Bay, OH. 165.T09-0417 Section 165.T09-0417 Navigation... the Dock Pier, South Bass Island; Put-In-Bay, OH. (a) Location. The following area is a temporary safety zone: All U.S. navigable waters of Lake Erie, South Bass Island, Put-In-Bay, OH within a 50-yard...

  10. Estimated and measured bridge scour at selected sites in North Dakota, 1990-97

    USGS Publications Warehouse

    Williams-Sether, Tara

    1999-01-01

    A Level 2 bridge scour method was used to estimate scour depths at 36 selected bridge sites located on the primary road system throughout North Dakota. Of the 36 bridge sites analyzed, the North Dakota Department of Transportation rated 15 as scour critical. Flood and scour data were collected at 19 of the 36 selected bridge sites during 1990-97. Data collected were sufficient to estimate pier scour but not contraction or abutment scour. Estimated pier scour depths ranged from -10.6 to -1.2 feet, and measured bed-elevation changes at piers ranged from -2.31 to +2.37 feet. Comparisons between the estimated pier scour depths and the measured bed-elevation changes indicate that the pier scour equations overestimate scour at bridges in North Dakota.A Level 1.5 bridge scour method also was used to estimate scour depths at 495 bridge sites located on the secondary road system throughout North Dakota. The North Dakota Department of Transportation determined that 26 of the 495 bridge sites analyzed were potentially scour critical.

  11. Structural strength deterioration of coastal bridge piers considering non-uniform corrosion in marine environments

    NASA Astrophysics Data System (ADS)

    Guo, Anxin; Yuan, Wenting; Li, Haitao; Li, Hui

    2018-04-01

    In the aggressive marine environment over a long-term service period, coastal bridges inevitably sustain corrosion-induced damage due to high sea salt and humidity. This paper investigates the strength reduction of coastal bridges, especially focusing on the effects of non-uniform corrosion along the height of bridge piers. First, the corrosion initiation time and the degradation of reinforcement and concrete are analyzed for bridge piers in marine environments. To investigate the various damage modes of the concrete cover, a discretization method with fiber cells is used for calculating time-dependent interaction diagrams of cross-sections of the bridge piers at the atmospheric zone and the splash and tidal zone under a combination of axial force and bending moment. Second, the shear strength of these aging structures is analyzed. Numerical simulation indicates that the strength of a concrete pier experiences dramatic reduction from corrosion initiation to the spalling of the concrete cover. Strength loss in the splash and tidal zone is more significant than in the atmospheric zone when structures' service time is assumed to be the same.

  12. Two-Dimensional Simulation of Flow and Evaluation of Bridge Scour at Structure A-1700 on Interstate 155 over the Mississippi River near Caruthersville, Missouri

    USGS Publications Warehouse

    Huizinga, Richard J.

    2007-01-01

    The evaluation of scour at bridges throughout the State of Missouri has been ongoing since 1991, and most of these evaluations have used one-dimensional hydraulic analysis and application of conventional scour depth prediction equations. Occasionally, the complex conditions of a site dictate a more thorough assessment of the stream hydraulics beyond a one-dimensional model. This was the case for structure A-1700, the Interstate 155 bridge crossing the Mississippi River near Caruthersville, Missouri. To assess the complex hydraulics at this site, a two-dimensional hydrodynamic flow model was used to simulate flow conditions on the Mississippi River in the vicinity of the Interstate 155 structure A-1700. The model was used to simulate flow conditions for three discharges: a flood that occurred on April 4, 1975 (the calibration flood), which had a discharge of 1,658,000 cubic feet per second; the 100-year flood, which has a discharge of 1,960,000 cubic feet per second; and the project design flood, which has a discharge of 1,974,000 cubic feet per second. The project design flood was essentially equivalent to the flood that would cause impending overtopping of the mainline levees along the Mississippi River in the vicinity of structure A-1700. Discharge and river-stage readings from the flood of April 4, 1975, were used to calibrate the flow model. The model was then used to simulate the 100-year and project design floods. Hydraulic flow parameters obtained from the three flow simulations were applied to scour depth prediction equations to determine contraction, local pier, and abutment scour depths at structure A-1700. Contraction scour and local pier scour depths computed for the project design discharge generally were the greatest, whereas the depths computed for the calibration flood were the least. The maximum predicted total scour depth (contraction and local pier scour) for the calibration flood was 66.1 feet; for the 100-year flood, the maximum predicted total scour depth was 74.6 feet; for the project design flood, the maximum predicted total scour depth was 93.0 feet. If scour protection did not exist, bent 14 and piers 15 through 21 would be substantially exposed or undermined by the predicted total scour depths in all of the flood simulations. However, piers 18 through 21 have a riprap blanket around the base of each, and the riprap blanket observed on the right bank around bent 14 is thought to extend around the base of pier 15, which would limit the amount of scour that would occur at these piers. Furthermore, the footings and caissons that are not exposed by computed contraction scour may arrest local pier scour, which will limit local pier scour at several bents and piers. Nevertheless, main-channel piers 16 and 17 and all of the bents on the left (as viewed facing downstream) overbank are moderately to substantially exposed by the predicted scour depths from the three flood simulations, and there is no known scour protection at these piers or bents. Abutment scour depths were computed for structure A-1700, but abutment scour is expected to be mitigated by the presence of guidebanks upstream from the bridge abutments, as well as riprap revetment on the abutment and guidebank faces.

  13. Sediment transport in the area of the Sopot pier

    NASA Astrophysics Data System (ADS)

    Przyborska, Anna; Jakacki, Jaromir; Andrzejewski, Jan

    2017-04-01

    Coastal sediment transport is a natural process that appears when energy of waves is sufficient for moving solid particles from the bottom. Sediment transport rate depends on the median diameter of local sand and it is compatible with the direction of wave propagation. Also it is natural, that any protruded from the beach construction disturbs continuity of beach transport caused by waves. The Sopot pier has been built over 100 years ago and it is the longest wooden pier on the Baltic Sea coast, it is about half kilometre long. The pier is located at the end of the Monte Casino street and it is one of the biggest attractions of the city as well as in the country. In the past and now we have observed the disturbed sediment transport in the area of the Sopot pier. But during recent years, this process has gained greater momentum. The beach at the Sopot pier has been growing by several meters. All indicates that the cause of the observed phenomenon is the marina. The marina structure which is in some distance from the shore, has been acting as a powerful, emerged breakwater boundary. As a tool the sediment transport model was implemented for Sopot pier area. The implemented numerical forecasting sediment transport model in the area of the Sopot pier reflects well the deposit growth rate for the archived data from 2010 to 2015. On the basis of differences in bathymetry data provided by the Maritime office and the analysis the model results the average deposits in accumulation in the pear area was determined to be about 16,000 m3 / year for the assumed area of analysis, the model have shown similar result. The analysis suggests that strong winds generating significant waves as well as meaningful sediment transport dominate in the autumn and winter. You cannot, however, rule out strong waves in summer. Under moderate waves the sediment transport is insignificant. The most intense movement of the sediment is observed in the vicinity of the shoreline, it disappears with distance from the shoreline. Numerical sediment transport model DHI MIKE also shows that the Sopot marina generates a 'shadow' of waves. The shadow causes a disturbance in the continuity of natural sediment transport along the beach, the consequence of which is the creation of the sand shapes at the bottom in the form of convexity of coastline known as a spit. The model results also shows that 80% of the accumulated sand near the pier come from local beaches south-east of the pier. The remaining 20% was transported from the north-west. The direction of sediment transport corresponds to the directions of local waves

  14. Underwater Facilities and Inspections and Assessments at Naval Air Station, Pensacola, Florida.

    DTIC Science & Technology

    1983-01-01

    hairline crack at 4-43 pile cap (vertical face) bent 34 27 Pier, 303 - Spalled concrete and exposed rebar 4-44 in pile cap bent 38 28 Pier 303 - Typical...of steel sheet pile 4-53 3’ below concrete encasement at station 83+25 37 Pier 303 - Exposed rebar and spall in concrete 4-54 encasement at station 83... corrosion and concrete deterioration due to exposure to the elements. 3.3 Inspection Equipment The following equipment was employed by diving engineers

  15. 28. Photocopy of original plan (on file at City of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Photocopy of original plan (on file at City of New York Department of Ports, International Trade, and Commerce) dated July 11, 1985 CONTRACT NO. 3960/CITY OF NEW YORK DEPARTMENT OF PORTS AND TERMINALS/DEMOLITION & REMOVAL OF SHEDS OF PIERS 95 AND 96, N.R./ BOROUGH OF. MANHATTAN/ PLANS, PIERHSED & BULKHEAD SHED, PIER 95 - West 55th Street & West 56th Street Piers, Hudson River at West Fifty-fifth & West Fifty-sixth Streets, Manhattan, New York County, NY

  16. 29. Photocopy of original plan (on file at City of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Photocopy of original plan (on file at City of New York Department of Ports, International Trade, and Commerce) dated July 11, 1985 CONTRACT NO. 3960/CITY OF NEW YORK DEPARTMENT OF PORTS AND TERMINALS/DEMOLITION & REMOVAL OF SHEDS OF PIERS 95 AND 96, N.R./ BOROUGH OF MANHATTAN/ PLANS AND SECTIONS, PIER 96 - West 55th Street & West 56th Street Piers, Hudson River at West Fifty-fifth & West Fifty-sixth Streets, Manhattan, New York County, NY

  17. General interior view of first floor showroom, showing piers. Photograph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General interior view of first floor showroom, showing piers. Photograph taken April 1973. - Scarritt Building & Arcade, Ninth Street & Grand Avenue, & 819 Walnut Street, Kansas City, Jackson County, MO

  18. 11. VIEW OF MIDSPAN PIER SUPPORT (CYLINDRICAL CONCRETE WITH PROTECTIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF MIDSPAN PIER SUPPORT (CYLINDRICAL CONCRETE WITH PROTECTIVE METAL ENCASEMENT), LOOKING NORTHEAST, UPSTREAM - Hot Springs Bridge, Spanning Bruneau River, Hot Springs Road, Bruneau, Owyhee County, ID

  19. 32 CFR 552.184 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... proper receptacles. Refuse such as seaweed, leftover bait, unwanted fish, crabs, etc., will NOT be left... Fort Monroe piers and seawalls. (h) Littering (to include leaving seaweed, bait, or fish on piers) is...

  20. 32 CFR 552.184 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... proper receptacles. Refuse such as seaweed, leftover bait, unwanted fish, crabs, etc., will NOT be left... Fort Monroe piers and seawalls. (h) Littering (to include leaving seaweed, bait, or fish on piers) is...

  1. Remediation of Centre Pier, Port Hope, Ontario: Historical, Logistical, Regulatory and Technical Challenges - 13118

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson Jones, Andrea; Case, Glenn; Lawrence, Dave

    Centre Pier is a 3.9 ha property owned by the Commissioners of the Port Hope Harbour in the Municipality of Port Hope, Ontario, Canada. It is centrally located on the Port Hope waterfront and is bounded on the west by the Port Hope Harbour, on the east by the Ganaraska River, on the south by Lake Ontario, and on the north by a railway corridor. The property is currently leased by the Commissioners of the Port Hope Harbour to the Cameco Corporation which owns the four onsite building that are used as warehouse space for their uranium conversion facility locatedmore » on the western side of the Harbour. Remediation of this site forms part of the Port Hope Project being undertaken by Atomic Energy of Canada Limited (AECL) and Public Works and Government Services Canada (PWGSC) as part of the Port Hope Area Initiative (PHAI). Soil impacts include radiological, metals and petroleum hydrocarbons resulting from long term historical industrial use. Radiological impacts in soil extend across most of the site primarily within the upper metre of fill. Metals-contaminated soil is present across the entire site in the underlying fill material. The metals-contaminated fill extends to a maximum depth of 2.0 m below grade at the north end of the site which is underlain by peat. However, the metals-contaminated soil could extend to the top of the bedrock on the remainder of the site. Based on the elevation of the bedrock in the adjacent river and Harbour Basin, the metals-contaminated soil may extend to a depth of 5.6 m or 6.5 m below existing grade. Petroleum-contaminated soil is present on the southeast side of the site, where a storage tank farm was previously located. Challenges include: - The complex history of the site both relating to site use and Pier construction. Pier development began in the 1800's and was undertaken by many different entities. Modifications and repairs were made over the years resulting in several different types of Pier walls and fill that must be considered during remediation. A wide variety of industrial activity on the Pier including extensive foundry operations as well as the industrial nature of the fill used to construct the Pier has resulted in extensive contamination distribution. The Pier structure will require reinforcement to permit both the remediation of the Pier and the adjacent Harbour and remediation techniques will need to be well suited to minimize disruption of wall structures as well as being able to deal with fill ranging from ash to boulders. - Multiple stakeholders are responsible for building demolition, remediation of radiological impacts, remediation of industrial impacts and the use of the site as a staging area for Harbour sediment remediation. The successful remediation of the Centre Pier will require careful negotiation and planning for the various remediation activities noted above. - The depth of contamination on the Pier would result in the complete removal of the Pier if all contamination were to be excavated. Therefore, a Risk Assessment will be conducted to determine the appropriate means for in situ risk management for materials to be left in place below a proposed depth of 1.5 m below current grade. With the concurrence of the property owners and Provincial regulators, the Risk Assessment will be undertaken in accordance with the Provincial requirements that will ensure adequate protection of the environment and future users of the site. - The end use of the Pier has yet to be confirmed by the Municipality. (authors)« less

  2. Streambed stresses and flow around bridge piers

    USGS Publications Warehouse

    Parola, A.C.; Ruhl, K.J.; Hagerty, D.J.; Brown, B.M.; Ford, D.L.; Korves, A.A.

    1996-01-01

    Scour of streambed material around bridge foundations by floodwaters is the leading cause of catastrophic bridge failure in the United States. The potential for scour and the stability of riprap used to protect the streambed from scour during extreme flood events must be known to evaluate the likelihood of bridge failure. A parameter used in estimating the potential for scour and removal of riprap protection is the time-averaged shear stress on the streambed often referred to as boundary stress. Bridge components, such as bridge piers and abutments, obstruct flow and induce strong vortex systems that create streambed or boundary stresses significantly higher than those in unobstructed flow. These locally high stresses can erode the streambed around pier and abutment foundations to the extent that the foundation is undermined, resulting in settlement or collapse of bridge spans. The purpose of this study was to estimate streambed stresses at a bridge pier under full-scale flow conditions and to compare these stresses with those obtained previously in small-scale model studies. Two-dimensional velocity data were collected for three flow conditions around a bridge pier at the Kentucky State Highway 417 bridge over the Green River at Greensburg in Green County, Ky. Velocity vector plots and the horizontal component of streambed stress contour plots were developed from the velocity data. The streambed stress contours were developed using both a near-bed velocity and velocity gradient method. Maximum near-bed velocities measured at the pier for the three flow conditions were 1.5, 1.6, and 2.0 times the average near-bed velocities measured in the upstream approach flow. Maximum streambed stresses for the three flow conditions were determined to be 10, 15, and 36 times the streambed stresses of the upstream approach flow. Both the near-bed velocity measurements and approximate maximum streambed stresses at the full-scale pier were consistent with those observed in experiments using small-scale models in which similar data were collected, except for a single observation of the near-bed velocity data and the corresponding streambed stress determination. The location of the maximum streambed stress was immediately downstream of a 90 degree radial of the upstream cylinder (with the center of the upstream cylinder being the origin) for the three flow conditions. This location was close to the flow wake separation point at the upstream cylinder. Other researchers have observed the maximum streambed stress around circular cylinders at this location or at a location immediately upstream of the wake separation point. Although the magnitudes of the estimated streambed stresses measured at the full-scale pier were consistent with those measured in small-scale model studies, the stress distributions were significantly different than those measured in small-scale models. The most significant discrepancies between stress contours developed in this study and those developed in the small-scale studies for flow around cylindrical piers on a flat streambed were associated with the shape of the stress contours. The extent of the high stress region of the streambed around the full-scale pier was substantially larger than the diameter of the upstream cylinder, while small-scale models had small regions compared to the diameter of the model cylinders. In addition, considerable asymmetry in the stress contours was observed. The large region of high stress and asymmetry was attributed to several factors including (1) the geometry of the full-scale pier, (2) the non-planar topography of the streambed, (3) the 20 degree skew of the pier to the approaching flow, and (4) the non-uniformity of the approach flow. The extent of effect of the pier on streambed stresses was found to be larger for the full-scale site than for model studies. The results from the model studies indicated that the streambed stresses created by the obstruction of flow by the 3-foot wide pi

  3. NRL Fact Book

    DTIC Science & Technology

    1978-01-01

    Environmental Studies Geophysical and bathymetric mea- surements taken in the NRL Arctic program from 1971 through 1975 have been combined with...instrumented for investigating acoustic echo characteristics of targets Tank 9.1 m (30 ft) in diameter by 6.7-m (22-ft) deep for precise studies of...34 Underwater Sound Reference Division (Orlando, FL) 2.8-hectare (7-acre) lake with a large pier and instrumentation for underwater acoustic studies

  4. Construct Validation of the Piers-Harris Children's Self Concept Scale.

    ERIC Educational Resources Information Center

    Franklin, Melvin R., Jr.; And Others

    1981-01-01

    Results indicated that the Piers-Harris Children's Self Concept Scale demonstrates both convergent and discriminant validity in an assessment of a relatively stable and internally consistent construct. (Author/BW)

  5. 16. DETAIL OF FLOOR BEAMS & VERTICAL PIER MEMBERS WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DETAIL OF FLOOR BEAMS & VERTICAL PIER MEMBERS WITH CROSS HATCH PATTERN INDICATING PREVIOUS USAGE OF MATERIALS, VIEW NORTH - Cottrell Road Bridge, Spanning CSX Transportation tracks, Vassar, Tuscola County, MI

  6. 31. General view of piers showin 1983 repair resulting in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. General view of piers showin 1983 repair resulting in different deck chord configurations. VIEW NORTHWEST - Chelsea Street Bridge & Draw Tender's House, Spanning Chelsea River, Boston, Suffolk County, MA

  7. 33 CFR 127.103 - Piers and wharves.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... facility handling LNG is in a region subject to earthquakes, the piers and wharves must be designed to resist earthquake forces. (b) Substructures, except moorings and breasting dolphins, that support or are...

  8. 33 CFR 127.103 - Piers and wharves.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... facility handling LNG is in a region subject to earthquakes, the piers and wharves must be designed to resist earthquake forces. (b) Substructures, except moorings and breasting dolphins, that support or are...

  9. 33 CFR 127.103 - Piers and wharves.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... facility handling LNG is in a region subject to earthquakes, the piers and wharves must be designed to resist earthquake forces. (b) Substructures, except moorings and breasting dolphins, that support or are...

  10. 33 CFR 127.103 - Piers and wharves.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... facility handling LNG is in a region subject to earthquakes, the piers and wharves must be designed to resist earthquake forces. (b) Substructures, except moorings and breasting dolphins, that support or are...

  11. 33 CFR 127.103 - Piers and wharves.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... facility handling LNG is in a region subject to earthquakes, the piers and wharves must be designed to resist earthquake forces. (b) Substructures, except moorings and breasting dolphins, that support or are...

  12. 76 FR 68260 - Availability of Finding of No Significant Impact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... evaluate the potential environmental impacts from replacement of a 600 foot section of timber pile supported pier with concrete pile supports and decking. The timber pile pier section to be replaced...

  13. Visitor center flight room, detail of twin structural piers at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Visitor center flight room, detail of twin structural piers at northeast corner supporting flight room dome - Wright Brothers National Memorial Visitor Center, Highway 158, Kill Devil Hills, Dare County, NC

  14. 18. Detail view of central pivot pier, drive gear rack, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Detail view of central pivot pier, drive gear rack, and stabilizing wheel, looking southwest - India Point Railroad Bridge, Spanning Seekonk River between Providence & East Providence, Providence, Providence County, RI

  15. 10. Photocopy of photograph (original in possession of NYC Economic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of photograph (original in possession of NYC Economic Development Corp.) Signal Corps, USA, 1945 INTERIOR VIEW OF PIER SHED - Brooklyn Army Supply Base, Pier 2, Brooklyn, Kings County, NY

  16. 10. Detail of truss located on top the northeast pier, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Detail of truss located on top the northeast pier, looking southwest. - Bridge No. 4800, Spanning Minnesota River on Trunk Highway 4 between Brown & Nicollet Counties, Sleepy Eye, Brown County, MN

  17. 12. Detail: pier wall and undersides of encased steel beams: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Detail: pier wall and undersides of encased steel beams: easternmost steel beam span, facing west. - Puente del Cano Perdomo, Route PR-2 spanning Cano Perdomo Channel, Arecibo, Arecibo Municipio, PR

  18. 78. VIEW SHOWING PLACEMENT OF LIFE SPAN SHOE ON PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. VIEW SHOWING PLACEMENT OF LIFE SPAN SHOE ON PIER 6, LOOKING NORTH, March 5, 1935 - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  19. Effect of using guide walls and piers with different geometries on the flow at entrance of a spillway

    NASA Astrophysics Data System (ADS)

    Jahani, Matin; Sarkardeh, Hamed; Jabbari, Ebrahim

    2018-03-01

    In the present paper, the effect of guide wall and pier geometry on the flow pattern of a dam spillway was studied. Different scenarios were numerically simulated to optimize the geometry of the guide walls and piers of the spillway in different hydraulic conditions. The RNG and VOF models were used for turbulence and free surface simulations, respectively. Numerical results were validated with experimental data and good agreement was found with an average relative deviation of less than 10%. Results showed that the vertical inclination of the guide wall and pier was the main affecting factor in the approach flow condition through the spillway. A 44% increase in the vertical inclination of the guide wall resulted in a 43% reduction of the turbulence factor and in a 13% increment of the discharge coefficient of the spillway. By increasing the vertical inclination of the piers of the spillway by 28%, the flow behaviour becomes more uniform and the discharge coefficient increases by as much as 11%. Moreover, the results indicate that increasing the straight length of the guide wall leads to a reduction of the depth-averaged velocity and of the turbulence energy in the approach channel.

  20. 75 FR 3474 - National Institute on Deafness and Other Communication Disorders; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... and evaluate grant applications. Place: Disney's Paradise Pier Hotel, 1717 S. Disneyland Drive... applications. Place: Disney's Paradise Pier Hotel, 1717 S. Disneyland Drive, Anaheim, CA 92802. Contact Person...

  1. 26. GENERAL VIEW LOOKING NORTH SHOWING THE STRUCTURAL PIERS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. GENERAL VIEW LOOKING NORTH SHOWING THE STRUCTURAL PIERS AND DRAFT CONE UNDER CONSTRUCTION. - Wilson Dam & Hydroelectric Plant, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  2. 7. DETAIL CENTRAL PIER (SKEWBACK) WITH BREAKWATER, UPSTREAM (EAST) SIDE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL CENTRAL PIER (SKEWBACK) WITH BREAKWATER, UPSTREAM (EAST) SIDE. NOTE FRACTURES ALONG BARREL ARCH EXTRADOS. - Roaring Creek Bridge, State Road 2005 spanning Roaring Creek in Locust Township, Slabtown, Columbia County, PA

  3. 12. Photocopy of photograph (original in possession of NYC Economic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopy of photograph (original in possession of NYC Economic Development Corp.) US Army Photograph, 1952 VIEW OF TEST HOLES BETWEEN PIERS - Brooklyn Army Supply Base, Pier 2, Brooklyn, Kings County, NY

  4. 18. Photocopy of photograph (original in possession of NYC Economic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of photograph (original in possession of NYC Economic Development Corp.) Signal Corps, USA, 1933 VIEW OF EAST (FRONT) ELEVATION-PIER 4 - Brooklyn Army Supply Base, Pier 4, Brooklyn, Kings County, NY

  5. 19. Photocopy of original drawing by Cass Gilbert, 1918 (original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of original drawing by Cass Gilbert, 1918 (original in possession of NYC Economic Development Corp.) BRIDGES BETWEEN WAREHOUSE A AND PIERS - Brooklyn Army Supply Base, Pier 2, Brooklyn, Kings County, NY

  6. 20. Photocopy of photograph (original in possession of NYC Economic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Photocopy of photograph (original in possession of NYC Economic Development Corp.) US Army photograph, 1949 VIEW SOUTH ELEVATION, OUTER END-PIER 4 - Brooklyn Army Supply Base, Pier 4, Brooklyn, Kings County, NY

  7. 21. Photocopy of original drawing by Cass Gilbert, 1918 (original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of original drawing by Cass Gilbert, 1918 (original in possession of NYC Economic Development Corp.) ERECTION PLAN-PIER NO. 4 - Brooklyn Army Supply Base, Pier 4, Brooklyn, Kings County, NY

  8. 19. Photocopy of photograph (original in possession of NYC Economic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of photograph (original in possession of NYC Economic Development Corp.) Photographer and date unknown PIER 4 CONNECTING BRIDGE AND WAREHOUSE A - Brooklyn Army Supply Base, Pier 4, Brooklyn, Kings County, NY

  9. NORTH NORTHWEST, SHOWING ABUTMENTS AND PIER MADE OF CUT, SQUARED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH NORTHWEST, SHOWING ABUTMENTS AND PIER MADE OF CUT, SQUARED STONE WITH MORTARED JOINTS. - Crum Bridge, Spanning Little Muskingum River, TR 384A (formerly Old Camp Road), Rinard Mills, Monroe County, OH

  10. Castles in the Far East: The U.S. Army Corps of Engineers Okinawa and Japan Districts 1945-1990

    DTIC Science & Technology

    1990-10-01

    on L Day, April!, 1945, in what was to become the last major battle of World War II. They met with little resistance on the beaches but Okinawa was...facilities and a new handball court, tennis courts and exercise rooms along with larger living quarters. By 1987 several facilities for the F/A-18...completion. was the damage done to Pier Bravo at White Beach . A big chunk of the pier was literally washed away and the remainder of the pier suffered

  11. Comparative Study on Different Slot Forms of Prestressed Anchor Blocks

    NASA Astrophysics Data System (ADS)

    Fan, Rong; Si, Jianhui; Jian, Zheng

    2018-03-01

    In this paper, two models of prestressed pier, rectangular cavity anchor block and arch hollow anchor block are established. The ABAQUS software was used to calculate the stress of the surface of the neck of the pier and the cavity of the anchor block, through comparative analysis. The results show that compared with the rectangular cavity anchor block, the stress of the pier and the cavity can be effectively reduced when the arch hole is used, and the amount of prestressed anchor can be reduced, so as to obtain obvious economic benefits.

  12. 34. DETAILS OF CAISSON FOR PIERS 2, 3, 4 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. DETAILS OF CAISSON FOR PIERS 2, 3, 4 AND 5 TO BE BUILT ON SOIL OVERBURDEN - East Bloomsburg Bridge, Spanning Susquehanna River at Pennsylvania Route 487 (Legislative Route 283), Bloomsburg, Columbia County, PA

  13. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... inches; (2) The concrete blocks must be stacked with their hollow cells aligned vertically; and (3) When... across capped-hollow block piers, as shown in Figures A and B to § 3285.306. (2) Caps must be solid...

  14. 1. NORTHWEST CORNER ENTRANCE OF BUILDING, WITH VIADUCT PIER FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTHWEST CORNER ENTRANCE OF BUILDING, WITH VIADUCT PIER FOR JULIEN DUBUQUE BRIDGE IN FOREGROUND. VIEW TO EAST. - Commercial & Industrial Buildings, International Harvester Company Showroom, Office & Warehouse, 10 South Main Street, Dubuque, Dubuque County, IA

  15. 8. Approach spans (two warren pony trusses), west side, detail ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Approach spans (two warren pony trusses), west side, detail of lower chords and pier no. 2 (west pier); looking south. - Bridge 4666, Minnesota Trunk Highway 19 spanning Minnesota River, North Redwood, Redwood County, MN

  16. Review Of ITS Benefits: Emerging Successes

    DOT National Transportation Integrated Search

    2001-01-01

    This report presents the following three recent projects on load testing of geosynthetic-reinforced soil (GRS) bridge abutments and piers: a full-scale bridge pier load test conducted by the Turner-Fairbank Highway Research Center, Federal Highway Ad...

  17. Progress In Electromagnetics Research Symposium (PIERS)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The third Progress In Electromagnetics Research Symposium (PIERS) was held 12-16 Jul. 1993, at the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California. More than 800 presentations were made, and those abstracts are included in this publication.

  18. 13. Telephoto view looking east showing center pier and deck ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Telephoto view looking east showing center pier and deck superstructure. Jet Lowe, photographer, 1983 - Neshanic Station Lenticular Truss Bridge, State Route 567, spanning South Branch of Raritan River, Neshanic Station, Somerset County, NJ

  19. 6. VIEW EAST OF CEMENT PIER AND TRAFFIC DECK SUPPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW EAST OF CEMENT PIER AND TRAFFIC DECK SUPPORT SYSTEM; NOTE FLOOR BEAMS AND STRINGERS VIEWED FROM UNDERNEATH THE BRIDGE - Water Street Bridge, County Route 119/26, over Guyandotte River, Logan, Logan County, WV

  20. 52. ARAII. Support piers for SL1 reactor building. September 5, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. ARA-II. Support piers for SL-1 reactor building. September 5, 1957. Ineel photo no. 57-4398. Photographer: Ken Mansfield. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  1. 19. ...INTAKE STRUCTURE AND PIER FOR SERVICE BRIDGE NEARING COMPLETION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. ...INTAKE STRUCTURE AND PIER FOR SERVICE BRIDGE NEARING COMPLETION. Volume XVI, No. 14, September 29, 1939. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  2. Sacramento River Water Treatment Plant Intake Pier & Access Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  3. 15. Photocopy of original drawing by Cass Gilbert, 1918 (original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopy of original drawing by Cass Gilbert, 1918 (original in possession of NYC Economic Development Corp.) TYPICAL DETAILS-PIERS 2, 3, AND 4 - Brooklyn Army Supply Base, Pier 2, Brooklyn, Kings County, NY

  4. 14. Photocopy of original drawing by Cass Gilbert, 1918 (original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of original drawing by Cass Gilbert, 1918 (original in possession of NYC Economic Development Corp.) SECTIONS AND DETAILS-PIERS 2, 3, AND 4 - Brooklyn Army Supply Base, Pier 2, Brooklyn, Kings County, NY

  5. MacMillan Pier Transportation Center Feasibility Study.

    DOT National Transportation Integrated Search

    2006-06-01

    The MacMillan Pier Transportation Center Feasibility Study examines two potential sites (landside and waterside) for a transportation center that provides a range of tourist and traveler information. It would serve as a gateway for Provincetown and t...

  6. 42. Exterior view of dockage and barracks on piers used ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Exterior view of dockage and barracks on piers used during construction of minesweepers. Now used for storage. Sunken barge crane in foreground. - Barbour Boat Works, Tryon Palace Drive, New Bern, Craven County, NC

  7. 27. A VIEW TOWARD THE FISHING PIER AT THE EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. A VIEW TOWARD THE FISHING PIER AT THE EAST END OF THE NORTH TRAINING WALL, SHOWING SIDE WALL CONSTRUCTION. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  8. 7. VIEW SOUTHEAST, SHOWING WEST SIDE FROM LAND, WITH WASTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW SOUTHEAST, SHOWING WEST SIDE FROM LAND, WITH WASTE PAPER BUNDLED ON DOCK, AWAITING LOADING ONTO ODIGITRIA B - Connecticut State Pier, State Pier Road at Thames River, New London, New London County, CT

  9. Lightweight Exoatmospheric Projectile (LEAP) Test Program. Environment Assessment

    DTIC Science & Technology

    1991-07-01

    and Man-Made Environment Kwajalein Atoll is a coral reef containing approximately 100 islands surrounding the largest lagoon in the Nlorld. The Atoll is...entirely from the remains of marine organisms such as reef corals , coralline algae, foramnifera, and others. Soils are coarse, grain size, alkaline...Kwajalein Atoll include ocean reefs , lagoon reefs , lagoon floor and sand flats, harbors, piers, quarries, and sea grass beds. Several reef species are

  10. Behavior of reinforced concrete pier caps under concentrated bearing loads.

    DOT National Transportation Integrated Search

    1995-02-01

    At congested highway interchanges, the Texas Department of Transportation (TxDOT) uses narrow concrete piers and : shallow depth steel cap girders. Research Project ()"1302 is concerned with the connection detail between these two : elements. This re...

  11. 33 CFR 165.111 - Safety Zone: Boston Harbor, Boston, Massachusetts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Boston Harbor from the time such vessels depart their respective berths until the time they complete... the face of both piers to the landside points where both piers end. (3) Around the U.S.S. Constitution...

  12. Deterioration of J-bar reinforcement in abutments and piers.

    DOT National Transportation Integrated Search

    2011-12-31

    Deterioration and necking of J-bars has been reportedly observed at the interface of the footing and stem wall during the demolition : of older retaining walls and bridge abutments. Similar deterioration has been reportedly observed between the pier ...

  13. "U.S. Reclamation Service, Grand River Dam, details of piers 'C' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "U.S. Reclamation Service, Grand River Dam, details of piers 'C' & 'E,' Oct. 10, 1914." - Grand Valley Diversion Dam, Half a mile north of intersection of I-70 & Colorado State Route 65, Cameo, Mesa County, CO

  14. DETAIL OF PIER C (CANADIAN SIDE), SHOWING LOWER CHORDS, VERTICALS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF PIER C (CANADIAN SIDE), SHOWING LOWER CHORDS, VERTICALS AND DIAGONALS. VIEW TO NORTH. - Blue Water Bridge, Spanning St. Clair River at I-69, I-94, & Canadian Route 402, Port Huron, St. Clair County, MI

  15. 13. View South, showing the remaining pier footings for the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View South, showing the remaining pier footings for the steam engine water tower for the Chesapeake and Ohio Railroad. - Cotton Hill Station Bridge, Spanning New River at State Route 16, Cotton Hill, Fayette County, WV

  16. 8. Photocopy of photograph (original in possession of NYC Economic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopy of photograph (original in possession of NYC Economic Development Corp.) Signal Corp, USA, 1946 VIEW OF PIERS 2, 3, AND 4-BROOKLYN ARMY BASE TERMINAL - Brooklyn Army Supply Base, Pier 2, Brooklyn, Kings County, NY

  17. 16. Photocopy of original drawing by Cass Gilbert, 1918 (original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photocopy of original drawing by Cass Gilbert, 1918 (original in possession of NYC Economic Development Corp.) DETAILS OF INSHORE ENDS-PIERS 2, 3, AND 4 - Brooklyn Army Supply Base, Pier 2, Brooklyn, Kings County, NY

  18. 18. Photocopy of original drawing by Cass Gilbert, 1918 (original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of original drawing by Cass Gilbert, 1918 (original in possession of NYC Economic Development Corp.) PLANS AND SECTIONS, MECHANICAL EQUIPMENT-PIERS 2, 3, AND 4 - Brooklyn Army Supply Base, Pier 2, Brooklyn, Kings County, NY

  19. 9. Photocopy of photograph (original in possession of NYC Economic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of photograph (original in possession of NYC Economic Development Corp.) Photographer and date unknown VIEW BETWEEN PIERS 2 AND 3, LOOKING FROM WAREHOUSE ROOF - Brooklyn Army Supply Base, Pier 2, Brooklyn, Kings County, NY

  20. 17. Photocopy of original drawing by Cass Gilbert, 1918 (original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of original drawing by Cass Gilbert, 1918 (original in possession of NYC Economic Development Corp.) DETAILS OF OUTSHORE ENDS-PIERS 2, 3, AND 4 - Brooklyn Army Supply Base, Pier 2, Brooklyn, Kings County, NY

  1. Seismic retrofit of spliced sleeve connections for precast bridge piers : research brief.

    DOT National Transportation Integrated Search

    2017-03-01

    The rehabilitation method described in this paper concerns connections between precast columns and footings, and precast columns and pier caps. This research uses high-performance materials, including headed reinforcing bar, epoxy, nonshrink or expan...

  2. Elevation of pier building and main house looking south. Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation of pier building and main house looking south. Building at far right was fish smokehouse. Roof of building at right was used for drying fish. - Beacon Marine Basin, 211 East Main Street, Gloucester, Essex County, MA

  3. 6. DETAIL OF CONCRETE CYLINDER AND CONCRETEENCASED BEAM ON WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF CONCRETE CYLINDER AND CONCRETE-ENCASED BEAM ON WEST SIDE OF PIER 5 IMMEDIATELY SOUTH OF FOOTBRIDGE. - Baltimore Inner Harbor, Pier 5, South of Pratt Street between Market Place & Concord Street, Baltimore, Independent City, MD

  4. Seismic retrofit of spliced sleeve connections for precast bridge piers.

    DOT National Transportation Integrated Search

    2017-03-01

    Grouted Splice Sleeve (GSS) connectors are being considered for connecting bridge columns, footings, and pier caps in Accelerated Bridge Construction (ABC). A repair technique for precast reinforced concrete bridge column-to-footing and column-to-pie...

  5. Pier scour in clear-water conditions with non-uniform bed materials

    DOT National Transportation Integrated Search

    2012-05-01

    Pier scour design in the United States is currently accomplished through application of the Colorado State University : (CSU) equation. Since the Federal Highway Administration recommended the CSU equation in 2001, substantial : advances have been ma...

  6. Mass transit : review of the South Boston piers transitway finance plan

    DOT National Transportation Integrated Search

    2000-11-09

    The Massachusetts Bay Transportation Authority (MBTA) is constructing a 1.5-mile underground transitway to connect its existing transit system with the South Boston Piers area, which is undergoing significant economic development. The South Boston Pi...

  7. Recessed floating pier caps for highway bridges.

    DOT National Transportation Integrated Search

    1973-01-01

    Presented are alternate designs for two existing bridges in Virginia - one with steel beams and the other with prestressed concrete beams - whereby the pier caps are recessed within the depth of the longitudinal beams. The purpose of this recession i...

  8. PLANT AND PIER #2 EXCAVATION. View is to the northeast, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLANT AND PIER #2 EXCAVATION. View is to the northeast, looking from Humboldt County side of river toward Trinity County side - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  9. DETAIL OF VERTICAL AT PANEL OVER PIER C, SHOWING DECK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF VERTICAL AT PANEL OVER PIER C, SHOWING DECK, GUARDRAIL, VERTICAL AND UPPER CHORD, VIEW TO NORTHEAST. - Blue Water Bridge, Spanning St. Clair River at I-69, I-94, & Canadian Route 402, Port Huron, St. Clair County, MI

  10. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... across capped-hollow block piers, as shown in Figures A and B to § 3285.306. (2) Caps must be solid... shims to level the home and fill any gaps between the base of the main chassis beam and the top of the...

  11. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... across capped-hollow block piers, as shown in Figures A and B to § 3285.306. (2) Caps must be solid... shims to level the home and fill any gaps between the base of the main chassis beam and the top of the...

  12. Equivalent barge and flotilla impact forces on bridge piers.

    DOT National Transportation Integrated Search

    2008-06-01

    Bridge piers located in navigable inland waterways are designed to resist impact forces from barges and flotillas in addition to other design considerations (e.g., scour, dead and live loads, etc.). The primary design tool for estimating these forces...

  13. 16. Built c. 1936, this ramp from the first to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Built c. 1936, this ramp from the first to the second floor along the northwestern side of Pier G (shown at the first floor) was called 'ramp C.' - Lehigh Valley Railroad, Pier G, Jersey City, Hudson County, NJ

  14. Spatial practice, conceived space and lived space: Hong Kong's "Piers saga" through the Lefebvrian lens.

    PubMed

    Ng, Mee Kam; Tang, Wing Shing; Lee, Joanna; Leung, Darwin

    2010-01-01

    By applying the Lefebvrian lens, this paper tries to understand why unlike previous similar cases, the latest removal of the Star Ferry and Queen's Pier was so controversial. To Lefebvre, embedded in "spatial practices" that "secrete" a place are two contradicting spaces: "conceived spaces" produced by planners to create exchange values and "lived spaces" appropriated by citizens for use values. Applying Lefebvre's framework to examine the "Piers saga", it is found that the pre-Second World War (WWII) piers were "conceived" by spatial practices of a colonial and racially segregated trading enclave. The public space in the commercial heart that housed the previous generations of piers was not accessible to the Chinese community, thus denying them opportunities to appropriate them and turn them into "lived" spaces. It was only after WWII when the Government carried out further reclamation to meet the needs of an industrializing economy that inclusive public spaces were conceived in the commercial heart, enabling the general public to "appropriate" them as "lived" space. When the Government planned to remove this very first "lived" space in the political and economic heart of the city to conceive further reclamation for the restructuring economy, the more enlightened citizens were determined to defend it.

  15. View east, stone sluice, beginning of lower standing section, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View east, stone sluice, beginning of lower standing section, showing third drop, stone pier in center, cement piers to right - Glens Falls Feeder, Sluice, Along south side of Glens Falls Feeder between locks 10 & 20, Hudson Falls, Washington County, NY

  16. Pilot project for maximum heat of mass concrete.

    DOT National Transportation Integrated Search

    2013-04-01

    A 3-D finite element model was developed for prediction of early age behavior of mass concrete footing placed on a soil layer. Three bridge pier footings and one bridge pier cap in Florida were monitored for temperature development. The measured temp...

  17. 17. VIEW SOUTHWEST, SHARED MASONRY WALL PIER AND UNDERSIDE FRAMING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW SOUTHWEST, SHARED MASONRY WALL PIER AND UNDERSIDE FRAMING OF GIRDER SPAN - Route 1 Extension, Structure No. 0703-161, Spanning Conrail-Newark & New York Industrial tracks, Richards Lane, & Hawkins Street at Routes 1 & 9 Southbound, Newark, Essex County, NJ

  18. 7. DETAIL VIEW, LOOKING SOUTHWEST OF MASONRY PIER OUTER END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL VIEW, LOOKING SOUTHWEST OF MASONRY PIER OUTER END AT HEADGATES, WITH WEST INTAKE CHANNEL WALL BEYOND - Dundee Canal, Headgates, Guardlock & Uppermost Section, 250 feet northeast of Randolph Avenue, opposite & in line with East Clifton Avenue, Clifton, Passaic County, NJ

  19. 48. Photographic copy of original construction plan (Wabasha St. Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. Photographic copy of original construction plan (Wabasha St. Bridge, Plan of Masonry for Abutment, Piers No. 1 and 3, 1888); North abutment, first and second piers - Wabasha Street Bridge, Spanning Mississippi River at Wabasha Street, Saint Paul, Ramsey County, MN

  20. 20. Photocopy of original drawing by US Army Engineer District, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Photocopy of original drawing by US Army Engineer District, Corps of Engineers, 1964 (original in possession of NYC Economic Development Corp.) REPAIRS OF SPALLED CONCRETE-PIERS 2,3, AND 4 - Brooklyn Army Supply Base, Pier 2, Brooklyn, Kings County, NY

  1. Perspective view NW by 310. Note the concrete pier extending ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view NW by 310. Note the concrete pier extending from the bridge in the foreground. This way to allow maximum water flow during floods and rainy periods. - Weaverland Bridge, Quarry Road spanning Conestoga Creek, Terre Hill, Lancaster County, PA

  2. 51. ARAII. Camera looking southeast at foundation piers for SL1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. ARA-II. Camera looking southeast at foundation piers for SL-1 reactor building support. August 22, 1957. Ineel photo no. 57-4212. Photographer: Jack L. Anderson. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  3. 77 FR 59639 - Bear Lake National Wildlife Refuge, Bear Lake County, ID and Oxford Slough Waterfowl Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    .... Improved signage and small piers or fishing platforms would be constructed along the Outlet Canal north of... improved signage and small piers or fishing platforms along the Outlet Canal north of the Paris Dike...

  4. Proposal for monitoring concrete painting as a preventive maintenance tool (Abutments and pier caps).

    DOT National Transportation Integrated Search

    2017-07-01

    One of the growing number of preventive bridge maintenance activities conducted by the Kentucky Transportation Cabinet (KYTC) is washing and applying thin film protective coatings to bridge abutments and piers. Previous work conducted by Kentucky Tra...

  5. 77. VIEW SHOWING CONDITION OF OLD M STREET BRIDGE PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    77. VIEW SHOWING CONDITION OF OLD M STREET BRIDGE PIER 1 DOLPHIN, LOOKING SOUTHEAST, March 1, 1935. (Steamer Delta King is moored at River Lines Terminal.) - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  6. 5. DETAIL OF SOUTHERN ARCH. PIER AND ABUTMENTS HAVE BEEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL OF SOUTHERN ARCH. PIER AND ABUTMENTS HAVE BEEN REINFORCED WITH CONCRETE. INTRADOS HAS BEEN PARGED WITH MORTAR. - Core Creek County Bridge, Spanning Core Creek, approximately 1 mile South of State Route 332 (Newtown Bypass), Newtown, Bucks County, PA

  7. A Temperature-Based Monitoring System for Scour and Deposition at Bridge Piers

    DOT National Transportation Integrated Search

    2017-05-01

    Stream flows around a bridge pier can be fast and highly turbulent causing large shear stresses that may mobilize streambed sediment resulting in scour around bridge foundations. Scour is the leading cause of bridge failure in the USA because it comp...

  8. 26. Detail of south granite pier revealing riveted truss ends ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Detail of south granite pier revealing riveted truss ends and iron footing plates on top of granite cap stones. View north - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  9. 8. VIEW, LOOKING SOUTHEAST OF RUBBLE MASONRY PIER AT END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW, LOOKING SOUTHEAST OF RUBBLE MASONRY PIER AT END OF EAST INTAKE CHANNEL WALL, WITH SOUTH GUARDLOCK END BEYOND - Dundee Canal, Headgates, Guardlock & Uppermost Section, 250 feet northeast of Randolph Avenue, opposite & in line with East Clifton Avenue, Clifton, Passaic County, NJ

  10. 12. DETAIL OF NORTH ABUTMENT (EAST SIDE) AND PIER. LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAIL OF NORTH ABUTMENT (EAST SIDE) AND PIER. LOOKING NORTH. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ

  11. 40. Detail of typical subdeck of granite pier showing humanscale ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Detail of typical subdeck of granite pier showing human-scale arched openings in pies. Note remnants of fender system. View north - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  12. View northeast, wharf A, portion AA, details showing earlier piers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northeast, wharf A, portion AA, details showing earlier piers and braces sloping toward water, reused charred plates for existing decking - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  13. Long-term remote sensing system for bridge piers and abutments.

    DOT National Transportation Integrated Search

    2010-03-01

    Scour and other natural hazards have the potential to undermine the stability of piers in highway bridges. This has led to brid : collapse in the past, and significant efforts have been undertaken to address the potential danger of scour and other ha...

  14. INTERIOR OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING NORTH. NOTE THE PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING NORTH. NOTE THE PIER (CENTER) ON WHICH WAS WAS MOUNTED MAGNETIC MEASURING INSTRUMENTS FOR TESTING. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Standardizing Magnetic Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  15. Investigation of Pier Scour in Coarse-Bed Streams in Montana, 2001 through 2007

    DOT National Transportation Integrated Search

    2011-01-01

    Determination of pier-scour potential is an important consideration in the hydraulic analysis and design of highway bridges that cross streams, rivers, and other waterways in the United States. A primary goal of ongoing research in the field of bridg...

  16. Pier Moment-Rotation of Compact and Noncompact HPS70W I-Girders.

    DOT National Transportation Integrated Search

    2003-06-01

    A project to study the pier moment-rotation behavior of compact and noncompact high performance steel HPS70W bridge I-girders was conducted at Colorado State University in the context of examining two : restrictions for inelastic design of steel brid...

  17. 393. Delineator Unknown Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    393. Delineator Unknown Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; EAST BAY CROSSING; PIER-E3; GENERAL DETAILS; DRG. NO. 47 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  18. 10. GIRDER APPROACH ON YORKTOWN SIDE, SHOWING PIERS 8S5S (LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. GIRDER APPROACH ON YORKTOWN SIDE, SHOWING PIERS 8S-5S (LEFT TO RIGHT), AND FLOORBEAM/STRINGER SYSTEM. VIEW LOOKING NORTH. - George P. Coleman Memorial Bridge, Spanning York River at U.S. Route 17, Yorktown, York County, VA

  19. 20. VIEW TO SOUTHEAST AT CENTERLINE (U37) WHERE SWING SPANS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW TO SOUTHEAST AT CENTERLINE (U37) WHERE SWING SPANS MEET. PIVOT PIER 1N AT LEFT, PIVOT PIER 1S AT RIGHT. - George P. Coleman Memorial Bridge, Spanning York River at U.S. Route 17, Yorktown, York County, VA

  20. A novel bridge scour monitoring and prediction system

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Michalis, Panagiotis; Zhang, Hanqing

    2015-04-01

    Earth's surface is continuously shaped due to the action of geophysical flows. Erosion due to the flow of water in river systems has been identified as a key problem in preserving ecological health but also a threat to our built environment and critical infrastructure, worldwide. As an example, it has been estimated that a major reason for bridge failure is due to scour. Even though the flow past bridge piers has been investigated both experimentally and numerically, and the mechanisms of scouring are relatively understood, there still lacks a tool that can offer fast and reliable predictions. Most of the existing formulas for prediction of bridge pier scour depth are empirical in nature, based on a limited range of data or for piers of specific shape. In this work, the use of a novel methodology is proposed for the prediction of bridge scour. Specifically, the use of an Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed to estimate the scour depth around bridge piers. In particular, various complexity architectures are sequentially built, in order to identify the optimal for scour depth predictions, using appropriate training and validation subsets obtained from the USGS database (and pre-processed to remove incomplete records). The model has five variables, namely the effective pier width (b), the approach velocity (v), the approach depth (y), the mean grain diameter (D50) and the skew to flow. Simulations are conducted with data groups (bed material type, pier type and shape) and different number of input variables, to produce reduced complexity and easily interpretable models. Analysis and comparison of the results indicate that the developed ANFIS model has high accuracy and outstanding generalization ability for prediction of scour parameters. The effective pier width (as opposed to skew to flow) is amongst the most relevant input parameters for the estimation. Training of the system to new bridge geometries and flow conditions can be achieved by obtaining real time data, via novel electromagnetic sensors monitoring scour depth. Once the model is trained with data representative of the new system, bridge scour prediction can be performed for high/design flows or floods.

  1. Ultimate pier and contraction scour prediction in cohesive soils at selected bridges in Illinois.

    DOT National Transportation Integrated Search

    2013-09-01

    The Scour Rate In COhesive Soils-Erosion Function Apparatus (SRICOS-EFA) method includes an ultimate scour prediction that is : the equilibrium maximum pier and contraction scour of cohesive soils over time. The purpose of this report is to present t...

  2. 13. DETAIL VIEW, OF TAINTER GATE PIER, SHOWING RECESSES FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL VIEW, OF TAINTER GATE PIER, SHOWING RECESSES FOR EMERGENCY BULKHEADS AND DOGGING DEVICES, LOOKING SOUTHEAST (DOWN FACE). UPSTREAM FACE OF TAINTER GATE IS VISIBLE IN UPPER RIGHT CORNER - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  3. UNIDENTIFIED CATENARY SUSPENSION BRIDGE, SHOWING RIVETED METAL PIERS UNDER CONSTRUCTION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    UNIDENTIFIED CATENARY SUSPENSION BRIDGE, SHOWING RIVETED METAL PIERS UNDER CONSTRUCTION. NOTE APPROACH SPANS OF PIPE CONSTRUCTION IN RIGHT BACKGROUND. 3/4 VIEW FROM BELOW. - Clear Fork of Brazos River Suspension Bridge, Spanning Clear Fork of Brazos River at County Route 179, Albany, Shackelford County, TX

  4. 6. View of lower dam masonry pier which houses the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View of lower dam masonry pier which houses the sluice. Photograph taken from cut stone apron edging in Millstone Creek. VIEW WEST. - Loleta Recreation Area, Lower Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  5. 5. Rear view of lower dam showing crest, masonry pier ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Rear view of lower dam showing crest, masonry pier and sluice gate. Photograph taken from east bank of the sandy beach. VIEW SOUTH - Loleta Recreation Area, Lower Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  6. 22. Photocopy of original drawing by Office of the Post ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of original drawing by Office of the Post Engineer, New York Port of Embarkation, 1984 (original in possession of NYC Economic Development Corp.) STANDPIPE SYSTEM PROPOSAL/NEW YORK RAILWAY COMPANY-PIER 4 - Brooklyn Army Supply Base, Pier 4, Brooklyn, Kings County, NY

  7. 13. DETAIL OF SOUTH PIER TOP (WEST SIDE) AND CANTILEVERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL OF SOUTH PIER TOP (WEST SIDE) AND CANTILEVERED SIDEWALK. LOOKING NORTH. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ

  8. CELLAR LOOKING NORTH (REAR SIDE OF BUILDING). AT LEFT ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CELLAR LOOKING NORTH (REAR SIDE OF BUILDING). AT LEFT ARE ORIGINAL BRICK ARCHES SUPPORTING BRICK PARTITIONS UPSTAIRS. AT CENTER IS BRICK PIER SUPPORTING MODERN SAFE. AT RIGHT IS BRICK PIER AND VAULT SUPPORTING ORIGINAL SAFE - Kid-Chandler House, 323 Walnut Street, Philadelphia, Philadelphia County, PA

  9. 12. PIERS 5S AND 4S, SHOWING TRANSITION AT 4S FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. PIERS 5S AND 4S, SHOWING TRANSITION AT 4S FROM GIRDER SPAN TO 'SUSPENDED' TRUSS SPAN AT U0. VIEW LOOKING WEST. - George P. Coleman Memorial Bridge, Spanning York River at U.S. Route 17, Yorktown, York County, VA

  10. Centrifuge modeling of rocking-isolated inelastic RC bridge piers

    PubMed Central

    Loli, Marianna; Knappett, Jonathan A; Brown, Michael J; Anastasopoulos, Ioannis; Gazetas, George

    2014-01-01

    Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation, this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking-isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self-centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd. PMID:26300573

  11. Centrifuge modeling of rocking-isolated inelastic RC bridge piers.

    PubMed

    Loli, Marianna; Knappett, Jonathan A; Brown, Michael J; Anastasopoulos, Ioannis; Gazetas, George

    2014-12-01

    Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation , this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking-isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self-centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Published by John Wiley & Sons Ltd.

  12. View north, stone sluice, head of 40foot break, showing failed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View north, stone sluice, head of 40-foot break, showing failed arch in center, stone pier in center right, cement piers to upper left, retaining wall in background - Glens Falls Feeder, Sluice, Along south side of Glens Falls Feeder between locks 10 & 20, Hudson Falls, Washington County, NY

  13. 10. A PHOTOGRAPH OF THE FIRST PIER ON THE EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. A PHOTOGRAPH OF THE FIRST PIER ON THE EAST END OF THE BRIDGE (NORTH ELEVATION). IT SUPPORTS A SOLID, SEMI-CIRCULAR ARCH. CONSIDERABLE SOIL HAS WASHED IN UNDER THE BRIDGE FROM THE BANKS OF THE RAVINE. - Main Street Bridge, Spanning East Fork Whitewater River, Richmond, Wayne County, IN

  14. 20. Photographic copy of blueprints and plans (from the originals ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Photographic copy of blueprints and plans (from the originals in possession of Detroit District, U.S. Army Corps of Engineers, Duluth, Minnesota). North pier of Duluth Canal, 1899, monolithic blocks - Duluth Ship Canal, North Pier, North end of Minnesota Point at Canal Park, Duluth, St. Louis County, MN

  15. 18. Photographic copy of blueprints and plans (from the originals ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photographic copy of blueprints and plans (from the originals in possession of Detroit District, U.S. Army Corps of Engineers, Duluth, Minnesota). North pier of Duluth Canal, 1899, main crib - Duluth Ship Canal, North Pier, North end of Minnesota Point at Canal Park, Duluth, St. Louis County, MN

  16. 15. Photographic copy of blueprints and plans (from the originals ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photographic copy of blueprints and plans (from the originals in possession of Detroit District, U.S. Army Corps of Engineers, Duluth, Minnesota). North pier of Duluth Canal, 1899, crib sections - Duluth Ship Canal, North Pier, North end of Minnesota Point at Canal Park, Duluth, St. Louis County, MN

  17. 17. Photographic copy of blueprints and plans (from the originals ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photographic copy of blueprints and plans (from the originals in possession of Detroit District, U.S. Army Corps of Engineers, Duluth, Minnesota). North pier of Duluth Canal, 1899, steel plates - Duluth Ship Canal, North Pier, North end of Minnesota Point at Canal Park, Duluth, St. Louis County, MN

  18. 16. Photographic copy of blueprints and plans (from the originals ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photographic copy of blueprints and plans (from the originals in possession of Detroit District, U.S. Army Corps of Engineers, Duluth, Minnesota). North pier of Duluth Canal, 1899, steel plates - Duluth Ship Canal, North Pier, North end of Minnesota Point at Canal Park, Duluth, St. Louis County, MN

  19. 23. Photographic copy of blueprints and plans (from the originals ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Photographic copy of blueprints and plans (from the originals in possession of Detroit District, U.S. Army Corps of Engineers, Duluth, Minnesota). North pier of Duluth Canal, 1899, concrete superstructure - Duluth Ship Canal, North Pier, North end of Minnesota Point at Canal Park, Duluth, St. Louis County, MN

  20. Use of Fiber Bragg Grating (FBG) sensors for performing automated bridge pier structural damage detection and scour monitoring.

    DOT National Transportation Integrated Search

    2012-04-01

    The goal of this study was to evaluate the performance of Fiber Bragg Grating (FBG) sensors able to detect impacts with : different frequencies on a bridge pier. The FBG technology was evaluated under controlled conditions in a laboratory : flume set...

  1. Photography of photograph (original print located at Engineering Management Building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photography of photograph (original print located at Engineering Management Building, Naval Shipyard, Long Beach). U.S. Naval Air Station San Pedro Photograph, May 7, 1945, Photograph #9374. NET PIER, FACING NORTHEAST - Roosevelt Base, Net Pier, Corner of Richardson Avenue & Idaho Street, Long Beach, Los Angeles County, CA

  2. 52. Photocopy of photograph. AERIAL VIEW OF HEADHOUSE SECTIONS A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Photocopy of photograph. AERIAL VIEW OF HEADHOUSE SECTIONS A AND B-C, PIERS A AND B, LOOKING WEST. (Original negative #TP-1054 on file at Port Authority, New York, NY. Photographed by Stern, December 5, 1956) - Hoboken Piers Headhouse, River Street at Hudson River, Hoboken, Hudson County, NJ

  3. 18 CFR 1304.204 - Docks, piers, and boathouses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., boathouses, and all other residential water-use facilities shall not exceed a total footprint area of greater... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Docks, piers, and boathouses. 1304.204 Section 1304.204 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY...

  4. 18 CFR 1304.204 - Docks, piers, and boathouses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., boathouses, and all other residential water-use facilities shall not exceed a total footprint area of greater... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Docks, piers, and boathouses. 1304.204 Section 1304.204 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY...

  5. Detail, squared cut stone masonry center pier, from northwest, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, squared cut stone masonry center pier, from northwest, showing original cut stone masonry, concrete-encased nose on upstream end, portion of squared cut stone masonry south abutment, and portion of truss superstructure - Castle Garden Bridge, Township Route 343 over Bennetts Branch of Sinnemahoning Creek, Driftwood, Cameron County, PA

  6. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... configuration. (a) Concrete blocks. Installation instructions for concrete block piers must be developed in...-bearing (not decorative) concrete blocks must have nominal dimensions of at least 8 inches × 8 inches × 16 inches; (2) The concrete blocks must be stacked with their hollow cells aligned vertically; and (3) When...

  7. Autonomous measurements of bridge pier and abutment scour using motion-sensing radio transmitters : technical transfer summary.

    DOT National Transportation Integrated Search

    2010-01-01

    Scour around the foundations (piers and abutments) of a bridge due to river flow is often referred to as bridge scour. Bridge scour is a problem of national scope that has dramatic impacts on economics and safety of the traveling public. Bridge...

  8. 94. VIEW OF PILINGS ON SOUTHEAST SIDE, WITH 4TH TEE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    94. VIEW OF PILINGS ON SOUTHEAST SIDE, WITH 4TH TEE IN THE BACKGROUND, FACING WEST-SOUTHWEST FROM SOUTHEAST CORNER OF THE TACKLE BOX. RAMP OF PIER EXTENSION IS VISIBLE ON RIGHT - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  9. Bathymetric surveys at highway bridges crossing the Missouri River in Kansas City, Missouri, using a multibeam echo sounder, 2010

    USGS Publications Warehouse

    Huizinga, Richard J.

    2010-01-01

    Bathymetric surveys were conducted by the U.S. Geological Survey, in cooperation with the Missouri Department of Transportation, on the Missouri River in the vicinity of nine bridges at seven highway crossings in Kansas City, Missouri, in March 2010. A multibeam echo sounder mapping system was used to obtain channel-bed elevations for river reaches that ranged from 1,640 to 1,800 feet long and extending from bank to bank in the main channel of the Missouri River. These bathymetric scans will be used by the Missouri Department of Transportation to assess the condition of the bridges for stability and integrity with respect to bridge scour. Bathymetric data were collected around every pier that was in water, except those at the edge of the water or in extremely shallow water, and one pier that was surrounded by a large debris raft. A scour hole was present at every pier for which bathymetric data could be obtained. The scour hole at a given pier varied in depth relative to the upstream channel bed, depending on the presence and proximity of other piers or structures upstream from the pier in question. The surveyed channel bed at the bottom of the scour hole was between 5 and 50 feet above bedrock. At bridges with drilled shaft foundations, generally there was exposure of the upstream end of the seal course and the seal course often was undermined to some extent. At one site, the minimum elevation of the scour hole at the main channel pier was about 10 feet below the bottom of the seal course, and the sides of the drilled shafts were evident in a point cloud visualization of the data at that pier. However, drilled shafts generally penetrated 20 feet into bedrock. Undermining of the seal course was evident as a sonic 'shadow' in the point cloud visualization of several of the piers. Large dune features were present in the channel at nearly all of the surveyed sites, as were numerous smaller dunes and many ripples. Several of the sites are on or near bends in the river, resulting in a deep channel thalweg on the outside of the bend at these sites. At structure A5817 on State Highway 269, bedrock exposure was evident in the channel thalweg. The surveyed channel bed at a given site from this study generally was lower than the channel bed obtained during Level II scour assessments in 2002. At piers with well-defined scour holes, the frontal slopes of the holes were somewhat less than recommended values in the literature, and the shape of the holes appeared to be affected by the movement of dune features into and around the holes. The channel bed at all of the surveyed sites was lower than the channel bed at the time of construction, and an analysis of measurement data from the U.S. Geological Survey continuous streamflow-gaging station on the Missouri River at Kansas City, Missouri (station number 06893000), confirmed a lowering trend of the channel-bed elevations with time at the gaging station. The size of the scour holes observed at the surveyed sites likely was affected by the moderate flood conditions on the Missouri River at the time of the surveys. The scour holes likely would be substantially smaller during conditions of low flow.

  10. Department of the Navy. FY 1994/FY 1995 Biennial Budget Estimates. Military Construction Program. FY 1994

    DTIC Science & Technology

    1992-01-01

    3 are severely deteriorated. The concrete deck and supporting wood -pile structure are nearing the end of their life cycle. Both piers are to be...PROPOSED CONSTRUCTION One-story building with concrete foundation walls, load bearing masonry walls, and concrete floors; roof with wood truss framing...concrete building addition; concrete foundation and slab on grade; wood truss roof; 750 KVA. 3 phase transformer; utilities; concrete and storm drain. 11

  11. The Status and Prospect of Research into Protective Structures of Bridge Piers against Rockfall Impact

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Zhang, Shan; Zhang, Junfa; Wu, Xiangnan

    2017-06-01

    Rockfall impact on bridge piers threats severely the mountain bridge structures of lifeline engineering. Intended for mountain bridge pier protection against rockfall impact, the paper conducted comprehensive reviews on the research status of impact effects, anti-collision structure, impact response to rockfall, and protective design at home and abroad, and proposed a new-type protective structure against rockfall impact. In addition, the paper carried out deep studies on such key scientific issues as impact effect calculation, protective materials against rockfall impact, damage mechanism of protective units, and parameter optimization on the system of protective structures against rockfall impact as well, aiming to strength disaster prevention of mountain bridge structures.

  12. 21. Photographic copy of blueprints and plans (from the originals ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photographic copy of blueprints and plans (from the originals in possession of Detroit District, U.S. Army Corps of Engineers, Duluth, Minnesota). North pier of Duluth Canal, 1899, crib no. 17 - Duluth Ship Canal, North Pier, North end of Minnesota Point at Canal Park, Duluth, St. Louis County, MN

  13. 22. Photographic copy of blueprints and plans (from the originals ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photographic copy of blueprints and plans (from the originals in possession of Detroit District, U.S. Army Corps of Engineers, Duluth, Minnesota). North pier of Duluth Canal, 1899, timber molds for concrete superstructure - Duluth Ship Canal, North Pier, North end of Minnesota Point at Canal Park, Duluth, St. Louis County, MN

  14. 19. Photographic copy of blueprints and plans (from the originals ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photographic copy of blueprints and plans (from the originals in possession of Detroit District, U.S. Army Corps of Engineers, Duluth, Minnesota). North pier of Duluth Canal, 1899, north pierhead crib - Duluth Ship Canal, North Pier, North end of Minnesota Point at Canal Park, Duluth, St. Louis County, MN

  15. 6. VIEW OF APPROACH SPAN AND MAIN SPAN OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF APPROACH SPAN AND MAIN SPAN OF THE ACCESS BRIDGE AND INTAKE PIER, LOOKING SOUTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  16. 33 CFR 118.160 - Vertical clearance gauges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the foot marks, read from top to bottom. Each gauge must be installed on the end of the right... directly on the bridge channel pier or pier protection structure if the surface is suitable and has... be marked by black numerals and foot marks on a white background. Paint, if used, must be of good...

  17. 33 CFR 118.160 - Vertical clearance gauges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the foot marks, read from top to bottom. Each gauge must be installed on the end of the right... directly on the bridge channel pier or pier protection structure if the surface is suitable and has... be marked by black numerals and foot marks on a white background. Paint, if used, must be of good...

  18. 78 FR 7416 - Notice of Intent To Prepare an Environmental Impact Statement for Land-Water Interface and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Statement for Land-Water Interface and Service Pier Extension, Naval Base Kitsap Bangor, Silverdale, WA and... Land-Water Interface (LWI) structures and (2) the proposed construction and operation of a Service Pier... waterfront. Construction is anticipated to take two years. Construction activities occurring in the water...

  19. 18 CFR 1304.206 - Requirements for community docks, piers, boathouses, or other water-use facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Requirements for community docks, piers, boathouses, or other water-use facilities. 1304.206 Section 1304.206 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL OF CONSTRUCTION IN THE TENNESSEE RIVER...

  20. 18 CFR 1304.206 - Requirements for community docks, piers, boathouses, or other water-use facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Requirements for community docks, piers, boathouses, or other water-use facilities. 1304.206 Section 1304.206 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL OF CONSTRUCTION IN THE TENNESSEE RIVER...

  1. 76 FR 66274 - Small Takes of Marine Mammals Incidental to Specified Activities; Pier 36/Brannan Street Wharf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... biological functions including, but not limited to, (1) Social interactions; (2) foraging; (3) orientation...). Pinnipeds produce a wide range of social signals, most occurring at relatively low frequencies (Southall et... piers or opportunistically foraging. Pinnipeds produce a wide range of social signals, most occurring at...

  2. 19. Interior first level view looking north within forward (north) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Interior first level view looking north within forward (north) section of firing pier. Objects pictured include torpedo cart (left), floor-mounted roller tray (extending to lower right), and (at center rear), deck-type firing tube. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  3. High skew link slab bridge system with deck sliding over backwall or backwall sliding over abutments : part II.

    DOT National Transportation Integrated Search

    2011-09-30

    A new bridge design and construction trend to help improve durability and rideability is to remove expansion joints over piers and abutments. One approach to achieve this is to make the deck continuous over the piers by means of a link slab while the...

  4. 9. UNDERSIDE, SHOWING NORTH ROCK OUTCROP ON WHICH ROUTE 31 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. UNDERSIDE, SHOWING NORTH ROCK OUTCROP ON WHICH ROUTE 31 RESTS, NORTH PIER AGAINST ROCK, AND SOUTH PIER. LOOKING SOUTHEAST. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ

  5. 75 FR 8563 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ...-AA00 Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA AGENCY: Coast Guard... Fleet Week Maritime Festival. Entry into, transit through, mooring, or anchoring within these zones is... Fleet Week Maritime Festival. This safety zone is necessary as these events have historically resulted...

  6. 21 CFR 1240.86 - Protection of pier water system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Protection of pier water system. 1240.86 Section 1240.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION CONTROL OF COMMUNICABLE...

  7. 107. View showing open caisson Pier 4 with anchor bolts ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    107. View showing open caisson Pier 4 with anchor bolts placed ready for last pour of concrete. Also pile driver driving falsework piles for south anchor arm. Located at end of the old ferry landing slip at Crockett side of straits. - Carquinez Bridge, Spanning Carquinez Strait at Interstate 80, Vallejo, Solano County, CA

  8. PBF Cooling Tower. Camera facing southwest. Round piers will support ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. Camera facing southwest. Round piers will support Tower's wood "fill" or "packing." Black-topped stack in far distance is at Idaho Chemical Processing Plant. Photographer: John Capek. Date: October 16, 1968. INEEL negative no. 68-4097 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  9. High skew link slab bridge system with deck sliding over backwall or backwall sliding over abutments : part I.

    DOT National Transportation Integrated Search

    2011-09-30

    A new bridge design and construction trend to help improve durability and rideability is to remove expansion : joints over piers and abutments. One approach to achieve this is to make the deck continuous over the piers by : means of a link slab while...

  10. Development and Evaluation of Live-Bed Pier- and Contraction-Scour Envelope Curves in the Coastal Plain and Piedmont Provinces of South Carolina

    DOT National Transportation Integrated Search

    2009-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, used ground-penetrating radar to collect measurements of live-bed pier scour and contraction scour at 78 bridges in the Piedmont and Coastal Plain Physio...

  11. 78 FR 29086 - Safety Zone; Discovery World Fireworks, Milwaukee Harbor, Milwaukee, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... [Docket No. USCG-2013-0326] RIN 1625-AA00 Safety Zone; Discovery World Fireworks, Milwaukee Harbor... World Pier. This proposed safety zone is necessary to protect the surrounding public and vessels from... Discovery World Pier. The Captain of the Port, Lake Michigan, has determined that the likelihood of...

  12. 33 CFR 118.100 - Retroreflective panels on bridge piers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... six inches square. If the visibility required is more than one-half mile, the panels must be at least 12 inches square. (c) To mark bridge piers or channel sides on bridges not required to have bridge lighting. Lateral significant red triangles and green square retroreflective panels shall be used. The...

  13. 33 CFR 118.100 - Retroreflective panels on bridge piers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... six inches square. If the visibility required is more than one-half mile, the panels must be at least 12 inches square. (c) To mark bridge piers or channel sides on bridges not required to have bridge lighting. Lateral significant red triangles and green square retroreflective panels shall be used. The...

  14. 33 CFR 118.100 - Retroreflective panels on bridge piers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... six inches square. If the visibility required is more than one-half mile, the panels must be at least 12 inches square. (c) To mark bridge piers or channel sides on bridges not required to have bridge lighting. Lateral significant red triangles and green square retroreflective panels shall be used. The...

  15. 33 CFR 118.100 - Retroreflective panels on bridge piers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... six inches square. If the visibility required is more than one-half mile, the panels must be at least 12 inches square. (c) To mark bridge piers or channel sides on bridges not required to have bridge lighting. Lateral significant red triangles and green square retroreflective panels shall be used. The...

  16. 33 CFR 118.100 - Retroreflective panels on bridge piers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... six inches square. If the visibility required is more than one-half mile, the panels must be at least 12 inches square. (c) To mark bridge piers or channel sides on bridges not required to have bridge lighting. Lateral significant red triangles and green square retroreflective panels shall be used. The...

  17. 101. Pine Creek Bridge #7. It is the only parkway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. Pine Creek Bridge #7. It is the only parkway bridge with steel arch piers and the only one whose piers are attached to its foundations with steel pins allowing it to flex without damaging the structure. Looking northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  18. Effects of Gradation and Cohesion on Bridge Scour : Volume 4 : Experimental Study of Scour Around Circular Piers in Cohesive Soils

    DOT National Transportation Integrated Search

    1999-12-01

    The effects of cohesion on pier scour was investigated experimentally using four-foot-wide, eight-foot-wide, and twenty-foot-wide test flumes at the Engineering Research Center, Colorado State University. In the first part of the experiments, clay-sa...

  19. Seismic fragility curves of bridge piers accounting for ground motions in Korea

    NASA Astrophysics Data System (ADS)

    Nguyen, Duy-Duan; Lee, Tae-Hyung

    2018-04-01

    Korea is located in a slight-to-moderate seismic zone. Nevertheless, several studies pointed that the peak earthquake magnitude in the region can be reached to approximately 6.5. Accordingly, a seismic vulnerability evaluation of the existing structures accounting for ground motions in Korea is momentous. The purpose of this paper is to develop seismic fragility curves for bridge piers of a steel box girder bridge equipped with and without base isolators based on a set of ground motions recorded in Korea. A finite element simulation platform, OpenSees, is utilized to perform nonlinear time history analyses of the bridges. A series of damage states is defined based on a damage index which is expressed in terms of the column displacement ductility ratio. The fragility curves based on Korean motions were thereafter compared with the fragility curves generated using worldwide earthquakes to assess the effect of the two ground motion groups on the seismic fragility curves of the bridge piers. The results reveal that both non- and base-isolated bridge piers are less vulnerable during the Korean ground motions than that under worldwide earthquakes.

  20. Level II scour analysis for Bridge 12 (CHESVT01030012) on State Highway 103, crossing the Williams River, Chester, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Burns, Ronda L.

    1997-01-01

    northerly pier) and from 13.5 to 17.1 ft along Pier 2 (southerly pier). The worst case pier scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured -streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  1. Streambed scour evaluations and conditions at selected bridge sites in Alaska, 2013–15

    USGS Publications Warehouse

    Beebee, Robin A.; Dworsky, Karenth L.; Knopp, Schyler J.

    2017-12-27

    Streambed scour potential was evaluated at 52 river- and stream-spanning bridges in Alaska that lack a quantitative scour analysis or have unknown foundation details. All sites were evaluated for stream stability and long-term scour potential. Contraction scour and abutment scour were calculated for 52 bridges, and pier scour was calculated for 11 bridges that had piers. Vertical contraction (pressure flow) scour was calculated for sites where the modeled water surface was higher than the superstructure of the bridge. In most cases, hydraulic models of the 1- and 0.2-percent annual exceedance probability floods (also known as the 100- and 500-year floods, respectively) were used to derive hydraulic variables for the scour calculations. Alternate flood values were used in scour calculations for sites where smaller floods overtopped a bridge or where standard flood-frequency estimation techniques did not apply. Scour also was calculated for large recorded floods at 13 sites.Channel instability at 11 sites was related to human activities (in-channel mining, dredging, and channel relocation). Eight of the dredged sites are located on active unstable alluvial fans and were graded to protect infrastructure. The trend toward aggradation during major floods at these sites reduces confidence in scour estimates.Vertical contraction and pressure flow occurred during the 0.2-percent or smaller annual exceedance probability floods at eight sites. Contraction scour exceeded 5 feet (ft) at four sites, and total scour at piers (pier scour plus contraction scour) exceeded 5 ft at four sites. Debris accumulation increased calculated pier scour at six sites by an average of 2.4 ft. Total scour at abutments exceeded 5 ft at 10 sites. Scour estimates seemed excessive at two piers where equations did not account for channel armoring, and at four abutments where failure of the embankment and attendant channel widening would reduce scour.

  2. 36 CFR Appendix C to Part 1191 - Architectural Barriers Act: Scoping

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... That portion of a room or space where the play or practice of a sport occurs. Assembly Area. A building... devices to bypass the acoustical space between a sound source and a listener by means of induction loop, radio frequency, infrared, or direct-wired equipment. Boarding Pier. A portion of a pier where a boat is...

  3. GARAGE EXTERIOR EAST SIDE AND REAR SHOWING PIER SUPPORTS UNDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GARAGE EXTERIOR EAST SIDE AND REAR SHOWING PIER SUPPORTS UNDER SHED-ROOFED REAR STORAGE COMPARTMENT, ASBESTOS SIDING OVER ORIGINAL WOOD SIDING, AND SINGLE CASEMENT WINDOW OVER REAR STORAGE COMPARTMENT. VIEW TO NORTHWEST - Big Creek Hydroelectric System, Big Creek Town, Operator House Garage, Orchard Avenue south of Huntington Lake Road, Big Creek, Fresno County, CA

  4. 18 CFR 1304.206 - Requirements for community docks, piers, boathouses, or other water-use facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Requirements for community docks, piers, boathouses, or other water-use facilities. 1304.206 Section 1304.206 Conservation of... management shall be in accordance with the requirements of § 1304.203 except that, at TVA's discretion, the...

  5. 18 CFR 1304.206 - Requirements for community docks, piers, boathouses, or other water-use facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Requirements for community docks, piers, boathouses, or other water-use facilities. 1304.206 Section 1304.206 Conservation of... management shall be in accordance with the requirements of § 1304.203 except that, at TVA's discretion, the...

  6. 18 CFR 1304.206 - Requirements for community docks, piers, boathouses, or other water-use facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Requirements for community docks, piers, boathouses, or other water-use facilities. 1304.206 Section 1304.206 Conservation of... management shall be in accordance with the requirements of § 1304.203 except that, at TVA's discretion, the...

  7. 77 FR 19573 - Safety Zone; Wedding Fireworks Display, Boston Inner Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ...-AA00 Safety Zone; Wedding Fireworks Display, Boston Inner Harbor, Boston, MA AGENCY: Coast Guard, DHS... zone on the navigable waters of the Boston Inner Harbor in the vicinity of Anthony's Pier 4, Boston, MA... Boston Inner Harbor in the vicinity of Anthony's Pier 4, Boston, MA. The Captain of the Port (COTP...

  8. 26. Photocopy of 35 mm. color slide (City of New ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photocopy of 35 mm. color slide (City of New York Department of Ports, International Trade, and Commerce), May 1985, Norman Berger AERIAL VIEW NORTHEAST OF PIERS 95, 96, AND 97 - West 55th Street & West 56th Street Piers, Hudson River at West Fifty-fifth & West Fifty-sixth Streets, Manhattan, New York County, NY

  9. 6. VIEW OF THE EASTERN BRIDGE ELEVATION, SHOWING CENTRAL PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF THE EASTERN BRIDGE ELEVATION, SHOWING CENTRAL PIER AND ASSOCIATED SUPERSTRUCTURE, AND CANTILEVERED NORTHERN TRUSS SECTION. NOTE THE JOIN BETWEEN EYE-BAR (LEFT) AND RIVETED CHANNEL (RIGHT) LOWER BRIDGE CHORDS AT CENTER LEFT OF PHOTOGRAPH. FACING NORTH. - Coverts Crossing Bridge, Spanning Mahoning River along Township Route 372 (Covert Road), New Castle, Lawrence County, PA

  10. 13. PRATT STREET BULKHEAD: SECTIONS 2, 3, 4, 5, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. PRATT STREET BULKHEAD: SECTIONS 2, 3, 4, 5, AND 6, DRAWER 10, PLAN NO. 1, 1 IN. = 15 FT. AND 1/2 IN. = 1 FT., APRIL 25, 1906, DRAWING SHOWS DESIGN FOR PRATT STREET BULKHEAD BETWEEN PIERS - Baltimore Inner Harbor, Pier 5, South of Pratt Street between Market Place & Concord Street, Baltimore, Independent City, MD

  11. 75 FR 53195 - Security Zone; U.S. Coast Guard BSU Seattle, Pier 36, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... its effects on them and participate in the rulemaking process. Small businesses may send comments on... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2010-0021] RIN 1625-AA87 Security Zone; U.S. Coast Guard BSU Seattle, Pier 36, Seattle, WA AGENCY: Coast Guard, DHS. ACTION...

  12. 23. DETAIL PHOTO OF A TYPICAL PIER BELT COURSE AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. DETAIL PHOTO OF A TYPICAL PIER BELT COURSE AT THE SPRING LINE OF ONE OF THE ARCHES. IT IS BEVELLED AND SUPPORTED BY A SIMPLE CAVETTO MOLDING. THE PILE OF AGGREGATE ON THE COPING HAS FALLEN FROM THE ERODING ARRISES ABOVE. - Main Street Bridge, Spanning East Fork Whitewater River, Richmond, Wayne County, IN

  13. 33 CFR 165.1324 - Safety and Security Zone; Cruise Ship Protection, Elliott Bay and Pier-91, Seattle, Washington.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Areas Thirteenth Coast Guard District § 165.1324 Safety and Security Zone; Cruise Ship Protection... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety and Security Zone; Cruise Ship Protection, Elliott Bay and Pier-91, Seattle, Washington. 165.1324 Section 165.1324 Navigation and...

  14. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. 165.1709 Section...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a...

  15. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. 165.1709 Section...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a...

  16. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. 165.1709 Section...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a...

  17. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. 165.1709 Section...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a...

  18. 33 CFR 110.84 - Black Rock Channel opposite foot of Porter Avenue, Buffalo, N.Y.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of Porter Avenue, Buffalo, N.Y. 110.84 Section 110.84 Navigation and Navigable Waters COAST GUARD... Channel opposite foot of Porter Avenue, Buffalo, N.Y. An area extending northwesterly between Black Rock... Triangulation Marker “N-5” on Bird Island Pier; thence southeasterly along the pier a distance of approximately...

  19. 21 CFR 1240.86 - Protection of pier water system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Protection of pier water system. 1240.86 Section 1240.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION CONTROL OF COMMUNICABLE DISEASES Source and Use of Potable...

  20. A Comparative Analysis of the Factorial Structures of Two Administrations of the Piers-Harris Children's Self Concept Scale to One Group of Elementary School Children.

    ERIC Educational Resources Information Center

    Platten, Marvin R.; Williams, Larry R.

    1979-01-01

    The Piers-Harris Children's Self-Concept Scale was administered twice to a sample of elementary school pupils and both sets of data were factor analyzed. Results led the authors to question the factor stability of the instrument. (Items are included). (JKS)

  1. 22. VIEW EAST TOWARDS WAIKOLU VALLEY OF PIPELINE ALONG PALI. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. VIEW EAST TOWARDS WAIKOLU VALLEY OF PIPELINE ALONG PALI. EYE BOLTS IN ROCK FACE AT RIGHT WERE USED BRIEFLY IN PLACE OF PIERS TO SUSPEND PIPE BY CHAIN BECAUSE THE CONCRETE PIERS WERE SUSCEPTIBLE TO HEAVY WAVE ACTION IN THIS AREA. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  2. 33 CFR 334.102 - Sandy Hook Bay, Naval Weapons Station EARLE, Piers and Terminal Channel, restricted area...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Sandy Hook Bay, Naval Weapons... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.102 Sandy Hook Bay, Naval Weapons Station EARLE, Piers..., shall be enforced by the Commanding Officer, Naval Weapons Station Earle, and/or other persons or...

  3. 33 CFR 334.102 - Sandy Hook Bay, Naval Weapons Station EARLE, Piers and Terminal Channel, restricted area...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Sandy Hook Bay, Naval Weapons... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.102 Sandy Hook Bay, Naval Weapons Station EARLE, Piers..., shall be enforced by the Commanding Officer, Naval Weapons Station Earle, and/or other persons or...

  4. 33 CFR 334.102 - Sandy Hook Bay, Naval Weapons Station EARLE, Piers and Terminal Channel, restricted area...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Sandy Hook Bay, Naval Weapons... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.102 Sandy Hook Bay, Naval Weapons Station EARLE, Piers..., shall be enforced by the Commanding Officer, Naval Weapons Station Earle, and/or other persons or...

  5. 33 CFR 334.102 - Sandy Hook Bay, Naval Weapons Station EARLE, Piers and Terminal Channel, restricted area...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Sandy Hook Bay, Naval Weapons... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.102 Sandy Hook Bay, Naval Weapons Station EARLE, Piers..., shall be enforced by the Commanding Officer, Naval Weapons Station Earle, and/or other persons or...

  6. 33 CFR 334.102 - Sandy Hook Bay, Naval Weapons Station EARLE, Piers and Terminal Channel, restricted area...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Sandy Hook Bay, Naval Weapons... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.102 Sandy Hook Bay, Naval Weapons Station EARLE, Piers..., shall be enforced by the Commanding Officer, Naval Weapons Station Earle, and/or other persons or...

  7. 33 CFR 165.1330 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, Washington.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Seattle, Washington. (a) Location. The following area is a safety zone: All waters extending 100 yards... minutes following the conclusion of the Parade of Ships. For the purpose of this rule, the Parade of Ships includes both the pass and review of the ships near Pier 66 and the aerial demonstrations immediately...

  8. 33 CFR 165.1330 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, Washington.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Seattle, Washington. (a) Location. The following area is a safety zone: All waters extending 100 yards... minutes following the conclusion of the Parade of Ships. For the purpose of this rule, the Parade of Ships includes both the pass and review of the ships near Pier 66 and the aerial demonstrations immediately...

  9. 33 CFR 165.1330 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, Washington.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Seattle, Washington. (a) Location. The following area is a safety zone: All waters extending 100 yards... minutes following the conclusion of the Parade of Ships. For the purpose of this rule, the Parade of Ships includes both the pass and review of the ships near Pier 66 and the aerial demonstrations immediately...

  10. 33 CFR 165.1330 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, Washington.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Seattle, Washington. (a) Location. The following area is a safety zone: All waters extending 100 yards... minutes following the conclusion of the Parade of Ships. For the purpose of this rule, the Parade of Ships includes both the pass and review of the ships near Pier 66 and the aerial demonstrations immediately...

  11. Overall contextual view of Building Nos. 92, 391, and 392, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall contextual view of Building Nos. 92, 391, and 392, taken from pier side, crane rails along bravo piers in foreground, palm tree and street light at right center, view facing east-northeast - U.S. Naval Base, Pearl Harbor, Marine Railway No. 1 Accessories House & Apprentice Welding School, Additions, Intersection of Avenue B & Sixth Street, Pearl City, Honolulu County, HI

  12. 13. A CLOSEUP VIEW FROM THE SAME LOCATION AS THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. A CLOSE-UP VIEW FROM THE SAME LOCATION AS THE PREVIOUS PHOTO, LOOKING EAST, OF THE CENTRAL PIER AND THE UNDERSIDE OF THE BRIDGE. BOTH THE NORTH AND THE SOUTH SHEARWATERS ARE VISIBLE, SHOWING THE SLIGHTLY LARGER PROFILE OF THE UPSTREAM PIER. - Putnam County Bridge No. 111, Spanning Little Walnut Creek on County Road 50, Greencastle, Putnam County, IN

  13. Streambed scour evaluations and conditions at selected bridge sites in Alaska, 2012

    USGS Publications Warehouse

    Beebee, Robin A.; Schauer, Paul V.

    2015-11-19

    Vertical contraction and pressure flow occurred during 1 percent or smaller annual exceedance probability floods at five sites, including three aggradation sites. Contraction scour exceeded 5 feet at two sites, and total scour at piers (pier scour plus contraction scour) exceeded 5 feet at two sites. Debris accumulation increased calculated pier scour at six sites by an average of 1.2 feet. Total scour at abutments including contraction scour exceeded 5 feet at seven sites. Scour estimates seemed excessive at aggradation sites where upstream sediment supply controls scour and deposition processes, at cohesive soil sites where conservative assumptions were made for soil strength and flood duration, and for abutment scour at sites where failure of the embankment and attendant channel widening would reduce scour.

  14. Non-linear vehicle-bridge-wind interaction model for running safety assessment of high-speed trains over a high-pier viaduct

    NASA Astrophysics Data System (ADS)

    Olmos, José M.; Astiz, Miguel Á.

    2018-04-01

    In order to properly study the high-speed traffic safety on a high-pier viaduct subject to episodes of lateral turbulent winds, an efficient dynamic interaction train-bridge-wind model has been developed and experimentally validated. This model considers the full wheel and rail profiles, the friction between these two bodies in contact, and the piers P-Delta effect. The model has been used to determine the critical train and wind velocities from which the trains cannot travel safely over the O'Eixo Bridge. The dynamic simulations carried out and the results obtained in the time domain show that traffic safety rates exceed the allowed limits for turbulent winds with mean velocities at the deck higher than 25 m/s.

  15. 76 FR 64818 - Safety Zone; Truman-Hobbs Alteration of the Elgin Joliet & Eastern Railroad Drawbridge, Morris, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... bridge piers and pier protection cells. DATES: This rule is effective in the CFR on October 19, 2011... this temporary rule, contact or email BM1 Adam Kraft, U.S. Coast Guard Sector Lake Michigan, at 414-747-7148 or Adam[email protected] . If you have questions on viewing the docket, call Renee V. Wright...

  16. 75 FR 34927 - Safety Zone; Parade of Ships, Seattle SeaFair Fleet Week, Pier 66, Elliott Bay, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ...-AA00 Safety Zone; Parade of Ships, Seattle SeaFair Fleet Week, Pier 66, Elliott Bay, WA AGENCY: Coast... Seattle SeaFair Fleet Week. This action is intended to restrict vessel traffic movement and entry into... of Ships for the annual Seattle SeaFair Fleet Week. For the purposes of this rule the Parade of Ships...

  17. 25. Aerial photograph dated 20 June 1942, showing north end ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Aerial photograph dated 20 June 1942, showing north end of Gould Island from the northeast (caption on photo is in error). Shop and power plant under construction at left, firing pier under construction at far right. Photo courtesy of Naval Undersea Warfare Center, Division Newport, Rhode Island. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  18. 30. Photocopy of photograph (Frank O. Braynard Collection, Sea Cliff, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Photocopy of photograph (Frank O. Braynard Collection, Sea Cliff, NY), date and photographer unknown, probably c1935-40 VIEW NORTHWEST OF WEST 55TH ST. PIER INSHORE FACADE; QUEEN OF BERMUDA AND MONARCH OF BERMUDA MOORED ON EITHER SIDE. - West 55th Street & West 56th Street Piers, Hudson River at West Fifty-fifth & West Fifty-sixth Streets, Manhattan, New York County, NY

  19. Potential-scour assessments and estimates of scour depth using different techniques at selected bridge sites in Missouri

    USGS Publications Warehouse

    Huizinga, Richard J.; Rydlund, Jr., Paul H.

    2004-01-01

    The evaluation of scour at bridges throughout the state of Missouri has been ongoing since 1991 in a cooperative effort by the U.S. Geological Survey and Missouri Department of Transportation. A variety of assessment methods have been used to identify bridges susceptible to scour and to estimate scour depths. A potential-scour assessment (Level 1) was used at 3,082 bridges to identify bridges that might be susceptible to scour. A rapid estimation method (Level 1+) was used to estimate contraction, pier, and abutment scour depths at 1,396 bridge sites to identify bridges that might be scour critical. A detailed hydraulic assessment (Level 2) was used to compute contraction, pier, and abutment scour depths at 398 bridges to determine which bridges are scour critical and would require further monitoring or application of scour countermeasures. The rapid estimation method (Level 1+) was designed to be a conservative estimator of scour depths compared to depths computed by a detailed hydraulic assessment (Level 2). Detailed hydraulic assessments were performed at 316 bridges that also had received a rapid estimation assessment, providing a broad data base to compare the two scour assessment methods. The scour depths computed by each of the two methods were compared for bridges that had similar discharges. For Missouri, the rapid estimation method (Level 1+) did not provide a reasonable conservative estimate of the detailed hydraulic assessment (Level 2) scour depths for contraction scour, but the discrepancy was the result of using different values for variables that were common to both of the assessment methods. The rapid estimation method (Level 1+) was a reasonable conservative estimator of the detailed hydraulic assessment (Level 2) scour depths for pier scour if the pier width is used for piers without footing exposure and the footing width is used for piers with footing exposure. Detailed hydraulic assessment (Level 2) scour depths were conservatively estimated by the rapid estimation method (Level 1+) for abutment scour, but there was substantial variability in the estimates and several substantial underestimations.

  20. Phase I Source Investigation, Heckathorn Superfund Site, Richmond, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohn, Nancy P; Evans, Nathan R

    This report represents Phase I of a multi-phase approach to a source investigation of DDT at the Heckathorn Superfund Site, Richmond, California, the former site of a pesticide packaging plant, and the adjacent waterway, the Lauritzen Channel. Potential identified sources of contamination were from sloughed material from undredged areas (such as side banks) and from outfall pipes. Objectives of Phase I included the (1) evaluation of pesticide concentrations associated with discharge from outfalls, (2) identification of additional outfalls in the area, (3) identification of type, quantity, and distribution of sediment under the Levin pier, (4) quantification of pesticide concentrations inmore » sediment under the pier, and (5) evaluation of sediment structure and slope stability under the pier. Field operations included the collection of sediment directly from inside the mouths of outfall pipes, when possible, or the deployment of specially designed particle traps where direct sampling was problematic. Passive water samplers were placed at the end of known outfall pipes and analyzed for DDT and other pesticides of concern. Underwater dive surveys were conducted beneath the Levin pier to document type, slope, and thickness of sediment. Samples were collected at locations of interest and analyzed for contaminants. Also sampled was soil from bank areas, which were suspected of potentially contributing to continued DDT contamination of the Lauritzen Channel through erosion and groundwater leaching. The Phase I Source Investigation was successful in identifying significant sources of DDT contamination to Lauritzen Channel sediment. Undredged sediment beneath the Levin pier that has been redistributed to the channel is a likely source. Two outfalls tested bear further investigation. Not as well-defined are the contributions of bank erosional material and groundwater leaching. Subsequent investigations will be based on the results of this first phase.« less

  1. Effect of Antigen Retrieval Methods on Nonspecific Binding of Antibody-Metal Nanoparticle Conjugates on Formalin-Fixed Paraffin-Embedded Tissue.

    PubMed

    Zhang, Yuying; Wang, Xin-Ping; Perner, Sven; Bankfalvi, Agnes; Schlücker, Sebastian

    2018-01-02

    Immunohistochemical analysis of formalin-fixed paraffin-embedded (FFPE) tissues provides important diagnostic and prognostic information in pathology. Metal nanoparticles (NPs) and, in particular, surface-enhanced Raman scattering (SERS) nanotags as a new class of labeling reagents are promising to be used for multiplexed protein profiling on tissue sections. However, nonspecific binding of NPs onto the tissue specimens greatly hampers their clinical applications. In this study, we found that the antigen retrieval method strongly influences the extent of nonspecific binding of the antibody-SERS NP conjugates to the tissue. Our SERS labels comprised ca. 70 nm Au nanostars coated with ethylene glycol-modified Raman reporter molecules for hydrophilic stabilization and subsequent covalent bioconjugation to antibodies. We systematically investigated the influence of heat- and protease-induced epitope retrieval (HIER and PIER, respectively) on the immunostaining quality of prostate-specific antigen (PSA) on human prostate tissue sections. The best staining results were obtained with PIER. Pretreatment of the tissue sections by HIER led to selective but nonspecific adsorption of the antibody-Au nanostar conjugates onto epithelial cells, while enzymatic treatment within PIER did not. In addition to gold nanostars, also other types of metal NPs with different shapes and sizes (including ca. 20 nm quasi-spherical Au NPs and ca. 60 nm quasi-spherical Au/Ag nanoshells) as well as tissue sections from different organs (including prostate and breast) were tested; in each case the same tendency was observed, i.e., PIER yielded better results than HIER. Therefore, we recommend PIER for future NP-based tissue immunostaining such as immuno-SERS microscopy. Alternatively, for antigens that can only be unmasked by heating, PEGylation of the NPs is recommended to avoid nonspecific binding.

  2. U.S. Geological Survey - Virginia Department of Transportation: Bridge scour pilot study

    USGS Publications Warehouse

    Austin, Samuel H.

    2018-02-27

    BackgroundCost effective and safe highway bridge designs are required to ensure the long-term sustainability of Virginia’s road systems. The streamflows that, over time, scour streambed sediments from bridge piers inherently affect bridge safety and design costs. To ensure safety, bridge design must anticipate streambed scour at bridge piers over the lifespan of a bridge. Until recently Federal Highway Administration (FHWA) guidance provided only for scour estimates of granular, noncohesive, highly erosive material yielding overestimates of scour potential in instances when streambed materials offer some resistance to scour. This study seeks to estimate stream power and streambed scour for these more resistive sites, with bridge piers potentially established in cohesive soil or erodible rock. This new knowledge may provide significant construction cost savings while ensuring design and construction of safe highway bridges.

  3. Complications after Total Porous Implant Ear Reconstruction and Their Management.

    PubMed

    Lewin, Sheryl

    2015-12-01

    Microtia reconstruction using porous polyethylene implants has become an established alternative to autologous costal cartilage techniques. Few surgeons are trained in porous implant ear reconstruction (PIER), leading to a relative lack of understanding of the nuances of this type of surgery. The risks of exposure, infection, and fracture of the implant have further discouraged surgeons from performing PIERs. Meticulous technique and proper management of complications are critical to the success of surgeries involving porous implants (Medpor, Su-Por). There are a limited number of articles in the literature that report the management of complications of porous implant auricular reconstruction. The purpose of this work is to present a comprehensive review of the management of complications with PIER based on over 10 years of experience with this surgical technique. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. STS-112 crew post-landing briefing for the media

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-112 crew takes part in a post-landing briefing for the media. Moderating, at left, is George Diller, with the NASA News Center. The crew, from left, are Commander Jeffrey Ashby, Pilot Pamela Melroy and Mission Specialists David Wolf, Sandra Magnus, Piers Sellers and cosmonaut Fyodor Yurchikhin. Mission STS-112 was the 15th assembly flight to the International Space Station, installing the S1 truss. The landing was the 60th at KSC in the history of the Shuttle program.

  5. 10. 100 foot through truss north west bearing abutment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. 100 foot through truss - north west bearing abutment of the second through truss, showing the diagonal sway bracing to its alternate pier. This bearing point is on a concrete extension of the original bearing point now covered by rock and soil. Note that the bearing point is to the backmost position on the concrete pier. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  6. 10. Photocopy of drawing dated November 25, 1957, DETAILS & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of drawing dated November 25, 1957, DETAILS & GENERAL DECK PLAN, REHABILITATION OF 29TH ST. PIER, GOWANUS BAY. city of New York Department of Marine and Aviation, Contract 2994, Drawing 2. (On file, city of New York Department of Ports and Trade). - South Brooklyn Freight Terminal, 29th Street Pier, Opposite end of Twenty-ninth Street on upper New York Bay, Brooklyn, Kings County, NY

  7. 11. Photocopy of drawing dated November 25, 1957, SECTIONS & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of drawing dated November 25, 1957, SECTIONS & METHODS OF REPAIR, REHABILITATION OF 29TH ST. PIER, GOWANUS BAY. City of New York Department of Marine and Aviation, Contract 2994, Drawing 1. (On file, City of New York Department of Ports and Trade). - South Brooklyn Freight Terminal, 29th Street Pier, Opposite end of Twenty-ninth Street on upper New York Bay, Brooklyn, Kings County, NY

  8. 27. VIEW NORTHWEST FROM DECKING ON SOUTHEAST CORNER OF PIVOT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. VIEW NORTHWEST FROM DECKING ON SOUTHEAST CORNER OF PIVOT PIER, DRIVE SYSTEM FOR SWING-SPAN INCLUDES: (from left to right) WEDGE DRIVE GEAR BOX, SHAFTS TO WEDGE DRIVE DRIVE, WEDGE DRIVE CRANK SHAFTS, ELECTRIC MOTOR, INTERNATIONAL HARVESTER GASOLINE ENGINE, CONTROL RODS FOR STARTING AND CHOKING ENGINE, PIVOT (bottom center), AND TRACK ON CONCRETE PIER - Tipers Bridge, Spanning Great Wicomico River at State Route 200, Kilmarnock, Lancaster County, VA

  9. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a... navigable waters within a 1000-yard radius of the Liquefied Natural Gas (LNG) tankers during their inbound... Natural Gas tankers while they are moored at Phillips Petroleum LNG Pier, 60°40′43″ N and 151°24′10″ W. (b...

  10. General Model Study of Scour at Proposed Pier Extensions - Santa Ana River at BNSF Bridge, Corona, California

    DTIC Science & Technology

    2017-11-01

    model of the bridge piers, other related structures, and the adjacent channel. Data from the model provided a qualitative and quantitative evaluation of...minus post-test lidar survey . ......................... 42 Figure 38. Test 1 (30,000 cfs existing conditions) pre- minus post-test lidar survey ...43 Figure 39. Test 7 (15,000 cfs original proposed conditions) pre- minus post-test lidar survey

  11. 76 FR 31851 - Safety Zone; Put-in-Bay Fireworks, Fox's the Dock Pier; South Bass Island, Put-in-Bay, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2011-0417] RIN 1625-AA00 Safety Zone; Put-in-Bay Fireworks, Fox's the Dock Pier; South Bass Island, Put-in-Bay, OH AGENCY.... Add Sec. 165.T09-0417 as follows: Sec. 165.T09-0417 Safety Zone; Put-In-Bay Fireworks, Fox's the Dock...

  12. 33 CFR 165.164 - Security Zones: Dignitary Arrival/Departure and United Nations Meetings, New York, NY.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...°44′23″ N, 073°57′44.5″ W (Hunters Point, Long Island City), and south of the Queensboro Bridge. All... of Governors Island) and north of a line drawn from the point north of Governors Island to the southwest corner of Pier 7 North, Brooklyn; and south of a line drawn between the northeast corner of Pier...

  13. Measurement of bridge scour at the SR-32 crossing of the Sacramento River at Hamilton City, California, 1987-92

    USGS Publications Warehouse

    Blodgett, J.C.; Harris, Carroll D.; ,

    1993-01-01

    A study of the State Route 32 crossing of the Sacramento River near Hamilton City, California, is being made to determine those channel and bridge factors that contribute to scour at the site. Three types of scour data have been measured-channel bed (natural) scour, constriction (general) scour, and local (bridge-pier induced) scour. During the years 1979-93, a maximum of 3.4 ft of channel bed scour, with a mean of 1.4 ft, has been measured. Constriction scour, which may include channel bed scour, has been measured at the site nine times during the years 1987-92. The calculated amount of constriction scour ranged from 0.2 to 3.0 ft, assuming the reference is the mean bed elevation. Local scour was measured four times at the site in 1991 and 1992 and ranged from -2.1 (fill) to 11.6 ft , with the calculated amounts dependent on the bed reference elevation and method of computation used. Surveys of the channel bed near the bridge piers indicate the horizontal location of lowest bed elevation (maximum depth of scour) may vary at least 17 ft between different surveys at the same pier and most frequently is located downstream from the upstream face of the pier.

  14. Relation of channel stability to scour at highway bridges over waterways in Maryland

    USGS Publications Warehouse

    Doheny, Edward J.; ,

    1993-01-01

    Data from assessments of channel stability and observed-scour conditions at 876 highway bridges over Maryland waterways were entered into a database. Relations were found to exist among specific, deterministic variables and observed-scour and debris conditions. Relations were investigated between (1) high-flow angle of attack and pier- and abutment-footing exposure, (2)abutment location and abutment-footing exposure, (3) type of bed material and pier-footing exposure, (4) tree cover on channel banks and mass wasting of the channel banks, and (5) land use near the bridge and the presence of debris blockage at the bridge opening. The results of the investigation indicate the following: (1) The number of pier and abutment-footing exposures increased for increasing high-flow angles of attack, (2) the number of abutment-footing exposures increased for abutments that protrude into the channel, (3) pier-footing exposures were most common for bridges over streams with channel beds of gravel, (4) mass wasting of channel banks with tree cover of 50 percent or greater near the bridge was less than mass wasting of channel banks with tree cover of less than 50 percent near the bridge, and (5) bridges blockage than bridge in row crop and swamp basins.

  15. UNIDENTIFIED CATENARY SUSPENSION BRIDGE ON RIVETED METAL PIERS, SHOWING HOWE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    UNIDENTIFIED CATENARY SUSPENSION BRIDGE ON RIVETED METAL PIERS, SHOWING HOWE PIPE TRUSS RAILING AND TRUSSED DECK BEAMS TYPICAL TO BRIDGES BUILT BY FLINN-MOYER COMPANY. TRIPODAL PIPE TOWERS RESEMBLE CLEAR FORK OF THE BRAZOS SUSPENSION BRIDGE’S TOWERS PRIOR TO ENCASEMENT IN CONCRETE. NOTE COLLAPSED TRUSS IN RIVER. ELEVATION VIEW. - Clear Fork of Brazos River Suspension Bridge, Spanning Clear Fork of Brazos River at County Route 179, Albany, Shackelford County, TX

  16. Usability Evaluation of an Unstructured Clinical Document Query Tool for Researchers.

    PubMed

    Hultman, Gretchen; McEwan, Reed; Pakhomov, Serguei; Lindemann, Elizabeth; Skube, Steven; Melton, Genevieve B

    2018-01-01

    Natural Language Processing - Patient Information Extraction for Researchers (NLP-PIER) was developed for clinical researchers for self-service Natural Language Processing (NLP) queries with clinical notes. This study was to conduct a user-centered analysis with clinical researchers to gain insight into NLP-PIER's usability and to gain an understanding of the needs of clinical researchers when using an application for searching clinical notes. Clinical researcher participants (n=11) completed tasks using the system's two existing search interfaces and completed a set of surveys and an exit interview. Quantitative data including time on task, task completion rate, and survey responses were collected. Interviews were analyzed qualitatively. Survey scores, time on task and task completion proportions varied widely. Qualitative analysis indicated that participants found the system to be useful and usable in specific projects. This study identified several usability challenges and our findings will guide the improvement of NLP-PIER 's interfaces.

  17. Automating FEA programming

    NASA Technical Reports Server (NTRS)

    Sharma, Naveen

    1992-01-01

    In this paper we briefly describe a combined symbolic and numeric approach for solving mathematical models on parallel computers. An experimental software system, PIER, is being developed in Common Lisp to synthesize computationally intensive and domain formulation dependent phases of finite element analysis (FEA) solution methods. Quantities for domain formulation like shape functions, element stiffness matrices, etc., are automatically derived using symbolic mathematical computations. The problem specific information and derived formulae are then used to generate (parallel) numerical code for FEA solution steps. A constructive approach to specify a numerical program design is taken. The code generator compiles application oriented input specifications into (parallel) FORTRAN77 routines with the help of built-in knowledge of the particular problem, numerical solution methods and the target computer.

  18. Proceedings of the XIIIth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition, and Processing

    USGS Publications Warehouse

    Love, Jeffrey J.

    2009-01-01

    The thirteenth biennial International Association of Geomagnetism and Aeronomy (IAGA) Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing was held in the United States for the first time on June 9-18, 2008. Hosted by the U.S. Geological Survey's (USGS) Geomagnetism Program, the workshop's measurement session was held at the Boulder Observatory and the scientific session was held on the campus of the Colorado School of Mines in Golden, Colorado. More than 100 participants came from 36 countries and 6 continents. Preparation for the workshop began when the USGS Geomagnetism Program agreed, at the close of the twelfth workshop in Belsk Poland in 2006, to host the next workshop. Working under the leadership of Alan Berarducci, who served as the chairman of the local organizing committee, and Tim White, who served as co-chairman, preparations began in 2007. The Boulder Observatory was extensively renovated and additional observation piers were installed. Meeting space on the Colorado School of Mines campus was arranged, and considerable planning was devoted to managing the many large and small issues that accompany an international meeting. Without the devoted efforts of both Alan and Tim, other Geomagnetism Program staff, and our partners at the Colorado School of Mines, the workshop simply would not have occurred. We express our thanks to Jill McCarthy, the USGS Central Region Geologic Hazards Team Chief Scientist; Carol A. Finn, the Group Leader of the USGS Geomagnetism Program; the USGS International Office; and Melody Francisco of the Office of Special Programs and Continuing Education of the Colorado School of Mines. We also thank the student employees that the Geomagnetism Program has had over the years and leading up to the time of the workshop. For preparation of the proceedings, thanks go to Eddie and Tim. And, finally, we thank our sponsors, the USGS, IAGA, and the Colorado School of Mines.

  19. Comparative Noise Performance of Portable Broadband Sensor Emplacements

    NASA Astrophysics Data System (ADS)

    Sweet, Justin; Arias-Dotson, Eliana; Beaudoin, Bruce; Anderson, Kent

    2015-04-01

    IRIS PASSCAL has supported portable broadband seismic experiments for close to 30 years. During that time we have seen a variety of sensor vaults deployed. The vaults deployed fall into two broad categories, a PASSCAL style vault and a Flexible Array style vault. The PASSCAL vault is constructed of materials available in-county and it is the Principle Investigator (PI) who establishes the actual field deployed design. These vaults generally are a large barrel placed in a ~1 m deep hole. A small pier, decoupled from the barrel, is fashioned in the bottom of the vault (either cement, paving stone or tile) for the sensor placement. The sensor is insulated and protected. Finally the vault is sealed and buried under ~30 cm of soil. The Flexible Array vault is provided to PIs by the EarthScope program, offering a uniform portable vault for these deployments. The vault consists of a 30 cm diameter by 0.75 cm tall piece of plastic sewage pipe buried with ~10 cm of pipe above grade. A rubber membrane covers the bottom and cement was poured into the bottom, coupling the pier to the pipe. The vault is sealed and buried under ~30 cm of soil. Cost, logistics, and the availability of materials in-country are usually the deciding factors for PIs when choosing a vault design and frequently trades are made given available resources. Recently a third type of portable broadband installation, direct burial, is being tested. In this case a sensor designed for shallow, direct burial is installed in a ~20 cm diameter by ~1 m deep posthole. Direct burial installation costs are limited to the time and effort required to dig the posthole and emplace the sensor. Our initial analyses suggest that direct burial sensors perform as well and at times better than sensor in vaults on both horizontal and vertical channels across a range of periods (<1 s to 100 s). Moving towards an instrument pool composed entirely of direct burial sensors (some with integrated digitizers) could yield higher-quality data at lower cost. Until recently vault performance for portable installations supported by the PASSCAL program was anecdotal. A formal comparison of these various installation techniques is the subject of this poster. We've selected a suite of experiments that are representative of the three installation techniques and compare their noise performance by using PSD probability density functions (McNamara and Buland, 2004).

  20. 28. VIEW EAST FROM DECKING ON SOUTHWEST CORNER OF PIVOT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. VIEW EAST FROM DECKING ON SOUTHWEST CORNER OF PIVOT PIER, DRIVE SYSTEM FOR SWING-SPAN INCLUDES: (from left to right) ELECTRIC LINE FROM SHORE (bottom left), TRACK AND RAIL ON CONCRETE PIER, ELECTRIC MOTOR, GASOLINE MOTOR, SHAFTS TO WEDGE DRIVE CRANKS, WEDGE DRIVE DRIVE SHAFT, WEDGE DRIVE GEAR BOX, AND (on right) GEARING FOR MANUAL WEDGE DRIVE ACCESSED THROUGH BRIDGE DECK - Tipers Bridge, Spanning Great Wicomico River at State Route 200, Kilmarnock, Lancaster County, VA

  1. 34. Photocopy of original plan (on file at City of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. Photocopy of original plan (on file at City of New York Department of Ports, International Trade, and Commerce) no date CONTRACT 1519/CITY OF NEW YORK/DEPARTMENT OF DOCKS AND FERRIES/ FREIGHT SHED/ W. 55TH ST. IMPROVEMENT/BOROUGH OF MANHATTAN/ GENERAL FRAMING PLANS - PIER SHED (Drawing 6 of 16) - West 55th Street & West 56th Street Piers, Hudson River at West Fifty-fifth & West Fifty-sixth Streets, Manhattan, New York County, NY

  2. 36. Photocopy of original plan (on file at City of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. Photocopy of original plan (on file at City of New York Department of Ports, International Trade and Commerce) no date CONTRACT 1519//CITY OF NEW YORK/DEPARTMENT OF DOCKS AND FERRIES/ FREIGHT SHED/ W. 55TH ST. IMPROVEMENT/BOROUGH OF MANHATTAN/ SIDE FRAMING OF PIER SHED (Drawing 10 of 16) - West 55th Street & West 56th Street Piers, Hudson River at West Fifty-fifth & West Fifty-sixth Streets, Manhattan, New York County, NY

  3. 12. Photocopy of drawing dated May 26, 1902, on file, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopy of drawing dated May 26, 1902, on file, City of New York Department of Ports, International Trade, and Commerce. ERECTION DIAGRAM/44TH ST. PIER - S. BROOKLYN - N.Y./WATER FRONT IMPROVEMENTS FOR THE BUSH COMPANY LT'D. American Bridge Company, Brooklyn Plant, Drawing No. 1431, Order No. A1343, Sheet No. 5. - Bush Terminal Company, Pier 5, Opposite end of Forty-first Street on Upper New York Bay, Brooklyn, Kings County, NY

  4. 35. Photocopy of original plan (on file at City of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. Photocopy of original plan (on file at City of New York Department of Ports, International Trade, and Commerce) no date CONTRACT 1519/CITY OF NEW YORK/DEPARTMENT OF DOCKS AND FERRIES/ FREIGHT SHED/ W. 55TH ST. IMPROVEMENT/BOROUGH OF MANHATTAN/ CROSS SECTION AND DETAILS - PIER SHED (Drawing 8 of 16) - West 55th Street & West 56th Street Piers, Hudson River at West Fifty-fifth & West Fifty-sixth Streets, Manhattan, New York County, NY

  5. Short Course on Implementation of Zone Technology in the Repair and Overhaul Environment

    DTIC Science & Technology

    1996-04-01

    Pier Zone & Sys Pier/DD/Staging Zone Management Approach Varies Function to Project Project/Matrix Project/Matrix Project Project Fig. 9-3. Nature of...intractable problems that currently exist. Nature can give us many clues. If only we could harness the material that makes the dolphin’s outer shell so smooth...the natural effect of requiring peak manning and confined outfitting schedules. Through the application of system oriented logic to actual work accom

  6. Closeup view under the track at the center/pivot pier showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view under the track at the center/pivot pier showing the system of distributing girders which transfer all the load of the swing span, both dead, live load, wind, etc., onto the circular drum, thence to the rim bearing 40 20-inch diameter wheels. Note: The track timber ties supported on the bottom truss chord of the swing span truss. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL

  7. The Relationship of Emerita talpoida to Beach Characteristics.

    DTIC Science & Technology

    1981-05-01

    shore toward the step. High density cells frequently lie within areas of reduced wave energy such as cusp troughs. Structures extending across the...relatively con- stant across the beach. The cell of fine sand (0.35 mm) in the upper and middle foreshore immediately north of the pier is a consequence...across the foreshore for approximately 200 meters south and 100 meters north of the pier. Cells of coarse sand are found in the lower foreshore. The 200

  8. 76 FR 77125 - Safety Zone; Sausalito Yacht Club's Annual Lighted Boat Parade and Fireworks Display, Sausalito, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ..., pyrotechnics will be loaded onto a barge at Pier 50 near position 37[deg]46'28'' N, 122[deg]23'06'' W (NAD 83... position 37[deg]51'30.92'' N, 122[deg]28'27.97'' W (NAD 83). The temporary safety zone will extend 100 feet... Pier 50 to position 37[deg]51'30.92'' N, 122[deg]28'27.97'' W (NAD 83). The fireworks display is...

  9. General closeup view of the swing span bridge in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General close-up view of the swing span bridge in the close position, looking upriver. The pivot/center pier is positioned in the center of Tennessee River. Note: Each arm of the continuous swing span acts as simple spans. The total span over four (4) supports is partially continuous-- the middle panel at the center pier is continuous for bending moments, but discontinuous for shears. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL

  10. 100. Photocopied August 1978. COMPENSATING GATES, VIEW LOOKING SOUTHWEST, JULY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    100. Photocopied August 1978. COMPENSATING GATES, VIEW LOOKING SOUTHWEST, JULY 8, 1916. COMPLETED GATES 13-16 ARE AT THE LEFT. THE PIERS OF GATES 9-12 ARE ON THE RIGHT. SUPER-STRUCTURE ERECTION ON THESE PIERS HAD NOT YET BEGUN. JUST ABOVE THE COFFER DAM, THE BREAKWATER INSTALLED TO PROTECT THE CONSTRUCTION SITE FROM THE RIVER CURRENT CAN BE SEEN. (684) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  11. Pier Diego Siccardi (1880-1917) and the "Clinica del Lavoro" in the trench warfare.

    PubMed

    Riva, Michele Augusto; Caramella, Michela; Turato, Massimo; Cesana, Giancarlo

    2017-12-14

    The year 2017 marks the centenary of the death of the Italian scientist Pier Diego Siccardi (1880-1917), one of Luigi Devoto's assistants at the "Clinica del Lavoro" in Milan. To commemorate Siccardi and to describe the activities of the physicians of the "Clinica del Lavoro" during World War I. A comprehensive analysis was conducted on scientific papers written by Pier Diego Siccardi and by other physicians belonging to the Clinica del Lavoro, in the period 1915-1918. During the Great War, the Clinica del Lavoro became a military hospital, even though it indirectly maintained a role in Occupational Health, assisting women who had started to work to replace the men sent to the front. Devoto and his assistants were drafted as Army doctors, but continued their research activities while at the front; focusing on the diseases that affected the soldiers, mainly infections. Bleeding fevers and jaundice were endemic among Italian troops, but their etiology was unknown. Pier Diego Siccardi identified this syndrome as an infection caused by a spirochete, and was the first one to isolate the infectious agent. Siccardi prematurely died of the same disease as a consequence of a laboratory accident, which provided further confirmation for his research. The heroic life of Siccardi and his tragic death testify the important activities of the scientists of the "Clinica del Lavoro" in the years of the Great War.

  12. Pier and contraction scour prediction in cohesive soils at selected bridges in Illinois

    USGS Publications Warehouse

    Straub, Timothy D.; Over, Thomas M.

    2010-01-01

    This report presents the results of testing the Scour Rate In Cohesive Soils-Erosion Function Apparatus (SRICOS-EFA) method for estimating scour depth of cohesive soils at 15 bridges in Illinois. The SRICOS-EFA method for complex pier and contraction scour in cohesive soils has two primary components. The first component includes the calculation of the maximum contraction and pier scour (Zmax). The second component is an integrated approach that considers a time factor, soil properties, and continued interaction between the contraction and pier scour (SRICOS runs). The SRICOS-EFA results were compared to scour prediction results for non-cohesive soils based on Hydraulic Engineering Circular No. 18 (HEC-18). On average, the HEC-18 method predicted higher scour depths than the SRICOS-EFA method. A reduction factor was determined for each HEC-18 result to make it match the maximum of three types of SRICOS run results. The unconfined compressive strength (Qu) for the soil was then matched with the reduction factor and the results were ranked in order of increasing Qu. Reduction factors were then grouped by Qu and applied to each bridge site and soil. These results, and comparison with the SRICOS Zmax calculation, show that less than half of the reduction-factor method values were the lowest estimate of scour; whereas, the Zmax method values were the lowest estimate for over half. A tiered approach to predicting pier and contraction scour was developed. There are four levels to this approach numbered in order of complexity, with the fourth level being a full SRICOS-EFA analysis. Levels 1 and 2 involve the reduction factors and Zmax calculation, and can be completed without EFA data. Level 3 requires some surrogate EFA data. Levels 3 and 4 require streamflow for input into SRICOS. Estimation techniques for both EFA surrogate data and streamflow data were developed.

  13. National Dam Inspection Program. Ohio River Basin, Conneautee Creek, Erie County, Pennsylvania, Edinboro Lake Dam (NDI ID Number PA-18, DER ID Number 25-4). Borough of Edinboro. Phase I Inspection Report.

    DTIC Science & Technology

    1981-03-01

    constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam...culvert. S ince the reservoir was lowered, a better view of the upstream face of thie retaining wall was possible. The concrte appeared to be in fair ...Observations. The spillway appeared to be in fair condition. The concrete piers and iron pasts which are located along the spillway crest appeared to be in

  14. Detail of middle panel at pivot pier and above the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of middle panel at pivot pier and above the two (2) center supports. The middle panel chords (not shown) were made strong enough to provide for the full bending moment with the span open and arms swinging. The middle posts support the operator's house. When closed, the bridge acts as two (2) separate simple spans, except a small amount of negative bending is accommodated due to a continuous condition. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL

  15. Environmental Assessment for Facilities Expansion at Naval Nuclear Power Training Unit -Charleston (NPTU Charleston), Joint Base Charleston, South Carolina

    DTIC Science & Technology

    2012-09-01

    pier and are exposed to salt water, wind , and adverse weather conditions. Utilities include electricity, potable water, and communication. Other...the NPTU Charleston piers (NOAA 2010). Daylight-only ship traffic extends upstream as far as the Nucor Steel Plant, accessing a slip for ocean-going...produced by the reactor plant is transmitted through the ship’s main engine turbine to a water break which simulates the action of a propeller without

  16. 33 CFR 165.910 - Security Zones; Captain of the Port Lake Michigan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the southeast corner of the Jardine Water Filtration Plant at 41°53′36″ N, 87°36′10″ W, to the northeast corner of the Navy Pier at 41°53′32″ N, 87°35′55″ W; then following the Navy Pier, seawall, and... Nuclear Power Plant encompassed by a line starting on the shoreline at 41°23′45″ N, 88°16′18″ W; then east...

  17. 33 CFR 165.910 - Security Zones; Captain of the Port Lake Michigan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the southeast corner of the Jardine Water Filtration Plant at 41°53′36″ N, 87°36′10″ W, to the northeast corner of the Navy Pier at 41°53′32″ N, 87°35′55″ W; then following the Navy Pier, seawall, and... Nuclear Power Plant encompassed by a line starting on the shoreline at 41°23′45″ N, 88°16′18″ W; then east...

  18. 33 CFR 165.166 - Safety Zone: Macy's July 4th Fireworks, East River, NY.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Station Pier), Battery Park City, in approximate position 40°42′15.4″ N 074°01′06.8″ W (NAD 1983) to the... (NAD 1983); north of a line drawn from Pier 7, Jersey City, NJ, in approximate position 40°41′26.4″ N 074°03′17.3″ W (NAD 1983) to Liberty Island Lighted Gong Buoy 29 (LLNR 34995), in approximate position...

  19. Specific conductance, water temperature, and water level data, San Francisco Bay, California, water year 1998

    USGS Publications Warehouse

    Buchanan, Paul A.

    1999-01-01

    Specific conductance and water temperature data are continuously recorded at four sites in San Francisco Bay, California: San Pablo Strait at Point San Pablo, Central San Francisco Bay at Presidio Military Reservation, Pier 24 at Bay Bridge, and South San Francisco Bay at San Mateo Bridge near Foster City (Figure 1). Water level data are recorded only at San Pablo Strait at Point San Pablo. These data were recorded by the Department of Water Resources (DWR) before 1988, by the US Geological Survey (USGS) National Research Program from 1988 to 1989, and by the USGS-DWR cooperative program since 1990. This article presents time-series plots of data from the four sites in San Francisco Bay during water year 1998 (1 October 1997 through 30 September 1998).

  20. Measuring precise sea level from a buoy using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Rocken, Christian; Kelecy, Thomas M.; Born, George H.; Young, Larry E.; Purcell, George H., Jr.; Wolf, Susan Kornreich

    1990-01-01

    The feasibility of using the Global Positioning System (GPS) for accurate sea surface positioning was examined. An experiment was conducted on the Scripps pier at La Jolla, California from December 13-15, 1989. A GPS-equipped buoy was deployed about 100 m off the pier. Two fixed reference GPS receivers, located on the pier and about 80 km away on Monument Peak, were used to estimate the relative position of the floater. Kinematic GPS processing software, developed at the National Geodetic Survey, and the Jet Propulsion Laboratory's GPS Infrared Processing System software were used to determine the floater position relative to land-fixing receivers. Calculations were made of sea level and ocean wave spectra from GPS measurements. It is found that the GPS sea level for the short 100 m baseline agrees with the PPT sea level at the 1 cm level and has an rms variation of 5 mm over a period of 4 hours.

  1. New Control Over Silicone Synthesis using SiH Chemistry: The Piers-Rubinsztajn Reaction.

    PubMed

    Brook, Michael A

    2018-06-18

    There is a strong imperative to synthesize polymers with highly controlled structures and narrow property ranges. Silicone polymers do not lend themselves to this paradigm because acids or bases lead to siloxane equilibration and loss of structure. By contrast, elegant levels of control are possible when using the Piers-Rubinsztajn reaction and analogues, in which the hydrophobic, strong Lewis acid B(C 6 F 5 ) 3 activates SiH groups, permitting the synthesis of precise siloxanes under mild conditions in high yield; siloxane decomposition processes are slow under these conditions. A broad range of oxygen nucleophiles including alkoxysilanes, silanols, phenols, and aryl alkyl ethers participate in the reaction to create elastomers, foams and green composites, for example, derived from lignin. In addition, the process permits the synthesis of monofunctional dendrons that can be assembled into larger entities including highly branched silicones and dendrimers either using the Piers-Rubinsztajn process alone, or in combination with hydrosilylation or other orthogonal reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nester, Patrick

    The rooftop Photovoltaic (PV) panels and radiant piping project was constructed by Fort Mason Center as part of its $21 million comprehensive rehabilitation of the Pier 2 shed which include the shed’s electrical, natural gas and water systems. Fort Mason Center improved performance while reducing energy and water usage and costs to demonstrate the efficiencies and opportunities available to large multi-function facilities. The scalable demand of these facilities required a layered approach to conservation, control and production. The project employed a comprehensive retrofit of electrical natural gas, and plumbing systems to maximize efficiency and lower carbon footprint specifically to demonstratemore » the effectiveness of these strategies in a public setting with varied and diverse use. The project was completed in July 2014 and met the expected outcomes regarding increased comfort and operational efficiency throughout the Pier 2 shed as well as on site electrical generation of current consumption. The entire Pier 2 shed project won a 2015 California Preservation Foundation design award for historic rehabilitation.« less

  3. Propagule pressure determines recruitment from a commercial shipping pier.

    PubMed

    Hedge, Luke H; Johnston, Emma L

    2012-01-01

    Artificial structures associated with shipping and boating activities provide habitats for a diverse suite of non-indigenous marine species. Little is known about the proportion of invader success in nearby waters that is attributable to these structures. Areas close to piles, wharves and piers are likely to be exposed to increasing levels of propagule pressure, enhancing the recruitment of non-indigenous species. Recruitment of non-indigenous and native marine biofouling taxa were evaluated at different distances from a large commercial shipping pier. Since artificial structures also represent a desirable habitat for fish, how predation on marine invertebrates influences the establishment of non-indigenous and native species was also evaluated. The colonisation of several non-indigenous marine species declined rapidly with distance from the structure. Little evidence was found to suggest that predators have much influence on the colonisation success of marine sessile invertebrate species, non-indigenous or otherwise. It is suggested that propagule pressure, not predation, more strongly predicts establishment success in these biofouling assemblages.

  4. Construction of 3.6m ARIES telescope enclosure with eccentric pier at Devasthal, Nainital

    NASA Astrophysics Data System (ADS)

    Bangia, Tarun

    Space optimized enclosure with eccentric pier for 3.6m ARIES telescope presents construction challenges at the unique observing site of Devasthal, Nainital, India. Enclosure comprises of about 16.5m diameter and 14m high insulated steel framed cylindrical dome rotating on a 14m high stationery dome supporting structure and a 24m × 12m extension structure building for accommodating aluminizing plant and ventilation system etc. Great deal of manual and mechanical excavation was carried out at the rocky site using rock breaking and JCB machines. Foundation bolts for columns of dome supporting structure and extension structure building were grouted after alignment with total station. A 7m diameter hollow cylindrical pier isolated from other structures and 1.85m eccentric with dome center designed due to space limitation at site is being casted for mounting 150 MT mass of the largest 3.6m telescope in the country. A 7m diameter template was fabricated for 3.6m pier top. Most of enclosure components are manufactured and tested in works before assembly/erection at site. Dome drive was tested with dummy loads using VVVF drive with 6 drive and 12 idler wheel assemblies at works to simulate dome weight and smooth operation before erection at site. A 4.2m wide motorized windscreen is being manufactured with a special grade synthetic fabric to withstand wind speed up to 15m/s.

  5. Social anxiety and self-concept in children with epilepsy: a pilot intervention study.

    PubMed

    Jones, Jana E; Blocher, Jacquelyn B; Jackson, Daren C; Sung, Connie; Fujikawa, Mayu

    2014-10-01

    The purpose of this study was to assess the impact of a cognitive behavioral therapy (CBT) anxiety intervention on social phobia, social skill development, and self-concept. Fifteen children with epilepsy and a primary anxiety disorder participated in a CBT intervention for 12 weeks plus a 3-month follow-up visit. Children were assessed at baseline, week 7, week 12, and 3 months post treatment to measure changes in social phobia using the Screen for Child Anxiety Related Emotional Disorders (SCARED). Self-concept was also assessed by using the Piers-Harris Children's Self-Concept Scale II (Piers-Harris 2). There was a significant reduction in symptoms of social phobia and improved self-concept at the end of the 12-week intervention and at the 3 month follow-up. Repeated measures ANOVA's of child ratings revealed significant change over time on the SCARED-Social Phobia/Social Anxiety subscale score (p=0.024). In terms of self-concept, significant change over time was detected on the Piers-Harris 2-Total score (p=0.015) and several subscale scores of Piers-Harris 2, including: Physical Appearance and Attributes (p=0.016), Freedom from Anxiety (p=0.005), and Popularity (p=0.003). This pilot investigation utilized an evidenced based CBT intervention to reduce symptoms of social phobia, which in turn provided a vehicle to address specific social skills improving self-concept in children with epilepsy. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  6. High profile students’ growth of mathematical understanding in solving linier programing problems

    NASA Astrophysics Data System (ADS)

    Utomo; Kusmayadi, TA; Pramudya, I.

    2018-04-01

    Linear program has an important role in human’s life. This linear program is learned in senior high school and college levels. This material is applied in economy, transportation, military and others. Therefore, mastering linear program is useful for provision of life. This research describes a growth of mathematical understanding in solving linear programming problems based on the growth of understanding by the Piere-Kieren model. Thus, this research used qualitative approach. The subjects were students of grade XI in Salatiga city. The subjects of this study were two students who had high profiles. The researcher generally chose the subjects based on the growth of understanding from a test result in the classroom; the mark from the prerequisite material was ≥ 75. Both of the subjects were interviewed by the researcher to know the students’ growth of mathematical understanding in solving linear programming problems. The finding of this research showed that the subjects often folding back to the primitive knowing level to go forward to the next level. It happened because the subjects’ primitive understanding was not comprehensive.

  7. Photographic copy of circa 1934 black and white aerial photograph. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of circa 1934 black and white aerial photograph. Loose in oversized box located at the National Museum of American History, Smithsonian Institution, Archives Center, Work and Industry Division, Washington, D.C. Original Photographer unknown. CIRCA 1934 AERIAL PHOTOGRAPH TAKEN FROM EAST BANK LOOKING SOUTH TOWARD WEST BANK SHOWING COMPLETED BRIDGE PIERS AND DECK TRUSS BETWEEN PIERS C, B, AND V. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  8. Photographic copy of circa, 1934 black and white photograph. Loose ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of circa, 1934 black and white photograph. Loose in oversized box located at the National Museum of American History, Smithsonian Institution, Archives Center, Work and Industry Division, Washington, D.C. Original Photographer unknown. VIEW FROM EAST BANK LOOKING SOUTH TOWARD WEST BANK AT BRIDGE UNDER CONSTRUCTION SHOWING COMPLETED THROUGH TRUSS SPAN BETWEEN PIER III AND IV AND THE UNCOMPLETED DECK TRUSS SPAN BETWEEN PIER IV AND V. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  9. Experiments and Analyses of the Formation of Erosional Scour Marks with Implications to the Origin of the Martian Outflow Channels

    NASA Technical Reports Server (NTRS)

    Komar, P. D.

    1985-01-01

    The objectives of the present study of erosional scour marks on Mars involve flume experiments to examine the details of scour patterns around a variety of obstacle shapes, and to review the engineering literature on the scour around bridge piers to determine whether those results might provide a quantitative evaluation of the flows which formed the scour marks in the outflow channels. The flume experiments completed to date examined the scour which develops around a circular island and around a streamlined island (having a lemniscate shape with length/width = 3.0). The islands themselves are non-erodable solids, but are surrounded by a fine-grained sediment bed. The scour patterns which occur around the circular island agree with those produced by prototype bridge piers and by scale-model piers employed in the engineering studies. The scour patterns around the model streamlined islands correspond extremely well with those seen adjacent to the streamlined islands on Mars, providing still more confirmation for a water-flow origin.

  10. Scour at bridge sites in Delaware, Maryland, and Virginia

    USGS Publications Warehouse

    Hayes, Donald C.

    1996-01-01

    Scour data were obtained from discharge measure- ments to develop and evaluate the reliability of constriction-scour and local-scour equations for rivers in Delaware, Maryland, and Virginia. No independent constriction-scour or local-scour equations were developed from the data because no significant relation was deter-mined between measured scour and streamflow, streambed, and bridge characteristics. Two existing equations were evaluated for prediction of constriction scour and 14 existing equations were evaluated for prediction of local scour. Constriction-scour data were obtained from historical stream discharge measurements, field surveys, and bridge plans at nine bridge sites in the three-State area. Constriction scour was computed by subtracting the average-streambed elevation in the constricted reach from an uncontracted-channel reference elevation. Hydraulic conditions were estimated for the measurements with the greatest discharges by use of the Water-Surface Profile computation model. Measured and calculated constriction-scour data were used to evaluate the reliability of Laursen's clear-water constriction-scour equation and Laursen's live-bed constriction-scour equation. Laursen's clear-water constriction-scour equation underestimated 21 of 23 scour measure- ments made at three sites. A sensitivity analysis showed that the equation is extremely sensitive to estimates of the channel-bottom width. Reduction in estimates of bottom width by one-third resulted in predictions of constriction scour slightly greater than measured values for all scour measurements. Laursen's live-bed constriction- scour equation underestimated 10 of 14 scour measurements made at one site. The error between measured and predicted constriction scour was less than 1.0 ft (feet) for 12 measure-ments and less than 0.5 ft for 8 measurements. Local-scour data were obtained from stream discharge measurements, field surveys, and bridge plans at 15 bridge sites in the three-State area. The reliability of 14 local-scour equations were evaluated. From visual inspection of the plotted data, the Colorado State University, Froehlich design, Laursen, and Mississippi pier-scour equations appeared to be the best predictors of local scour. The Colorado State University equation underestimated 11 scour depths in clear-water scour conditions by a maximum of 2.4 ft, and underestimated 3 scour depth in live-bed scour conditions by a maximum of 1.3 ft. The Froehlich design equation under- estimated two scour depth in clear-water scour conditions by a maximum of 1.2 ft, and under- estimated one scour depth in live-bed scour conditions by a maximum of 0.4 ft. Laursen's equation overestimated the maximum scour depth in clear-water scour conditions by approximately one-half pier width or approximately 1.5 ft, and overestimated the maximum scour depth in live-bed scour conditions by approximately one-pier width or approximately 3 ft. The Mississippi equation underestimated six scour depths in clear-water scour conditions by a maximum of 1.2 ft, and underestimated one scour depth in live-bed scour conditions by 1.6 ft. In both clear-water and live-bed scour conditions, the upper limit for the depth of scour to pier-width ratio for all local scour measurements was 2.1. An accurate pier- approach velocity is necessary to use many local pier-scour equations for bridge design. Velocity data from all the discharge measurements reviewed for this investigation were used to develop a design curve to estimate pier-approach velocity from mean cross-sectional velocity. A least- squares regression and offset were used to envelop the velocity data.

  11. Bathymetric and velocimetric surveys at highway bridges crossing the Missouri River in and into Missouri during summer flooding, July-August 2011

    USGS Publications Warehouse

    Huizinga, Richard J.

    2012-01-01

    Bathymetric and velocimetric surveys were conducted by the U.S. Geological Survey, in cooperation with the Kansas and Missouri Departments of Transportation, in the vicinity of 36 bridges at 27 highway crossings of the Missouri River between Brownville, Nebraska and St. Louis, Missouri, from July 13 through August 3, 2011, during a summer flood. A multibeam echo sounder mapping system was used to obtain channel-bed elevations for river reaches ranging from 1,350 to 1,860 feet and extending across the active channel of the Missouri River. These bathymetric scans provide a "snapshot" of the channel conditions at the time of the surveys and provide characteristics of scour holes that may be useful in the development of predictive guidelines or equations for scour holes. These data also may be used by the Kansas and Missouri Departments of Transportation to assess the bridges for stability and integrity issues with respect to bridge scour during floods. Bathymetric data were collected around every pier that was in water, except those at the edge of water, in extremely shallow water, or surrounded by debris rafts. Scour holes were present at most piers for which bathymetry could be obtained, except at piers on channel banks, those near or embedded in lateral or longitudinal spur dikes, and those on exposed bedrock outcrops. Scour holes observed at the surveyed bridges were examined with respect to depth and shape. Although exposure of parts of foundational support elements was observed at several piers, at most sites the exposure likely can be considered minimal compared to the overall substructure that remains buried in bed material; however, there were several notable exceptions where the bed material thickness between the bottom of the scour hole and bedrock was less than 6 feet. Such substantial exposure of usually buried substructural elements may warrant special observation in future flood events. Previous bathymetric surveys had been done at several of the sites, and comparisons between bathymetric surfaces from the previous surveys and those of this study indicate substantial variability in the response of the channel bed to the 2011 summer flood conditions. At sites in Kansas City, there was no consistent deepening of the channel or increase in the size of scour holes, despite substantially more discharge and a higher water-surface elevation in the 2011 surveys, which implies the high-flow conditions during the 2011 surveys created a similar scour scenario to the previous surveys. At Jefferson City and the St. Louis sites, there was a consistent deepening of the channel, and a slight to substantial increase in the depth of scour holes in the 2011 surveys compared to previous surveys, although the effects of the higher flow appeared to be mitigated by the shape and alignment of the piers at most sites in St. Louis. Construction activities related to a new bridge at the Atchison, Kansas, site likely have contributed to the substantial additional scour observed there in a previous survey during the 2010 flooding, and the subsequent aggradation of the channel bed observed in the 2011 survey. Pier size, nose shape, and alignment to flow also had a profound effect on the size of the scour hole observed for a given pier.

  12. Surface-geophysical techniques used to detect existing and infilled scour holes near bridge piers

    USGS Publications Warehouse

    Placzek, Gary; Haeni, F.P.

    1995-01-01

    Surface-geophysical techniques were used with a position-recording system to study riverbed scour near bridge piers. From May 1989 to May 1993. Fathometers, fixed- and swept-frequency con- tinuous seismic-reflection profiling (CSP) systems, and a ground-penetrating radar (GPR) system were used with a laser-positioning system to measure the depth and extent of existing and infilled scour holes near bridge piers. Equipment was purchased commercially and modified when necessary to interface the components and (or) to improve their performance. Three 200-kHz black-and-white chart- recording Fathometers produced profiles of the riverbed that included existing scour holes and exposed pier footings. The Fathometers were used in conjunction with other geophysical techniques to help interpret the geophysical data. A 20-kHz color Fathometer delineated scour-hole geometry and, in some cases, the thickness of fill material in the hole. The signal provided subbottom information as deep as 10 ft in fine-grained materials and resolved layers of fill material as thin as 1 foot thick. Fixed-frequency and swept-frequency CSP systems were evaluated. The fixed-frequency system used a 3.5-, 7.0-, or 14-kHz signal. The 3.5-kHz signal pene- trated up to 50 ft of fine-grained material and resolved layers as thin as 2.5-ft thick. The 14-kHz signal penetrated up to 20 ft of fine-grained material and resolved layers as thin as 1-ft thick. The swept-frequency systems used a signal that swept from 2- to 16-kHz. With this system, up to 50 ft of penetration was achieved, and fill material as thin as 1 ft was resolved. Scour-hole geometry, exposed pier footings, and fill thickness in scour holes were detected with both CSP systems. The GPR system used an 80-, 100-, or 300-megahertz signal. The technique produced records in water up to 15 ft deep that had a specific conductance less than 200x11ms/cm. The 100-MHz signal penetrated up to 40 ft of resistive granular material and resolved layers as thin as 2-ft thick. Scour-hole geometry, the thickness of fill material in scour holes, and riverbed deposition were detected using this technique. Processing techniques were applied after data collection to assist with the interpretation of the data. Data were transferred from the color Fathometer, CSP, and GPR systems to a personal computer, and a commercially available software package designed to process GPR data was used to process the GPR and CSP data. Digital filtering, predictive-deconvolution, and migration algorithms were applied to some of the data. The processed data were displayed and printed as color amplitude or wiggle-trace plots. These processing methods eased and improved the interpretation of some of the data, but some interference from side echoes from bridge piers and multiple reflections remained in the data. The surface-geophysical techniques were applied at six bridge sites in Connecticut. Each site had different water depths, specific conductance, and riverbed materials. Existing and infilled scour holes, exposed pier footings, and riverbed deposition were detected by the surveys. The interpretations of the geophysical data were confirmed by comparing the data with lithologic and (or) probing data.

  13. Using GIS to appraise structural control of the river bottom morphology near hydrotechnical objects on Alluvial rivers

    NASA Astrophysics Data System (ADS)

    Habel, Michal; Babinski, Zygmunt; Szatten, Dawid

    2017-11-01

    The paper presents the results of analyses of structural changes of the Vistula River bottom, in a section of direct influence of the bridge in Torun (Northern Poland) fitted with one pier in the form of a central island. The pier limits a free water flow by reducing the active width of the riverbed by 12%. In 2011, data on the bottom morphology was collected, i.e. before commencing bridge construction works, throughout the whole building period - 38 measurements. Specific river depth measurements are carried out with SBES and then bathymetric maps are drawn up every two months. The tests cover the active Vistula river channel of 390 - 420 metres in width, from 730+40 to 732+30 river kilometre. The paper includes the results of morphometric analyses of vertical and horizontal changes of the river bottom surrounded by the bridge piers. The seasonality of scour holes and inclination of accumulative forms (sand bars) in the relevant river reach was analysed. Morphometric analyses were performed on raster bases with GIS tools, including the Map Algebra algorithm. The obtained results shown that scour holes/pools of up to 10 metres in depth and exceeding 1200 metres in length are formed in the tested river segment. Scour holes within the pier appeared in specific periods. Constant scour holes were found at the riverbank, and the rate of their movement down the river was 0.6 to 1.3 m per day. The tests are conducted as part of a project ordered by the City of Torun titled `Monitoring Hydrotechniczny Inwestycji Mostowej 2011 - 2014' (Hydrotechnical Monitoring of the Bridge Investment, period 2011 - 2014).

  14. Study on safety level of RC beam bridges under earthquake

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Lin, Junqi; Liu, Jinlong; Li, Jia

    2017-08-01

    This study considers uncertainties in material strengths and the modeling which have important effects on structural resistance force based on reliability theory. After analyzing the destruction mechanism of a RC bridge, structural functions and the reliability were given, then the safety level of the piers of a reinforced concrete continuous girder bridge with stochastic structural parameters against earthquake was analyzed. Using response surface method to calculate the failure probabilities of bridge piers under high-level earthquake, their seismic reliability for different damage states within the design reference period were calculated applying two-stage design, which describes seismic safety level of the built bridges to some extent.

  15. Photocopy of photograph (original print in collection of Gerald A. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original print in collection of Gerald A. Doyle, Phoenix) Photographer unknown, June 7, 1943 AERIAL VIEW OF THE YUMA CROSSING LOOKING WEST. THE 1924 SPRR BRIDGE AND THE OCEAN-TO-OCEAN HIGHWAY BRIDGE ARE AT THE BOTTOM OF THE IMAGE. THE SITE OF SPRR BRIDGES AT MADISON AVENUE IS MARKED BY THE REMNANTS OF TWO MID-STREAM BRIDGE PIERS. THE CIRCULAR FOUNDATION OF THE SWINGING SPAN OF THE STEEL BRIDGE IS ON THE SHORELINE AT THE LEFT OF THE SOUTH (LEFT) PIER. THE RIVER IS IN FLOOD STAGE. - Yuma Crossing, Riverfront Area, between Prison Hill & Fourth Avenue, Yuma, Yuma County, AZ

  16. Conceptual Designs for Berthing Pier Galleries and Deck Lighting.

    DTIC Science & Technology

    1983-06-01

    to 100 feet wide and 1,200 feet long, providing four 600-foot-long berths. o For des ign purposes, a pier should accommodate a maximum of eight ships...points4. It identifies the locrit ion aind 01 ovat ion otf eajch service for oarih des igo ship frht tror and port si d-. Th is, wais used tO de to rino t...rung a n I or ea chI 11li O!l ip11), :id pos it ion i g moo r inig f it t ings alIong the p)iecr t o prope-rly, .ree;,modrite all of the des ;ign clalss

  17. Evaluation of historical scour at selected stream crossings in Indian

    USGS Publications Warehouse

    Mueller, David S.; Miller, Robert L.; ,

    1993-01-01

    Geophysical data were collected by means of ground-penetrating radar and tuned transducer systems to estimate the historical scour at ten bridges in Indiana. These geophysical data were used to compare and evaluate the results of 13 published pier-scour equations. In order to make this comparison, it was assumed that the measured historical scour was associated with the peak historical discharge. Because the geophysical data were not sufficient to map the lateral extent of the refilled scour hole, local scour could not be isolated from concentration scour. For the evaluation, computed contraction scour and pier scour were used in combination with the existing channel geometry to determine a computed bed elevation. This computed bed elevation was compared to be minimum historic bed elevation estimated from the geophysical data. None of the selected pier-scour equations, when combined with the contraction-scour equation, accurately represented the historical scour at all of the study sites. On the basis of the limited data presented, the equations currently recommended by the Federal Highway Administration provided a combination of accuracy and safety, required by design equations, equal to or better than the other equations evaluated.

  18. Development and Calibration of Two-Dimensional Hydrodynamic Model of the Tanana River near Tok, Alaska

    USGS Publications Warehouse

    Conaway, Jeffrey S.; Moran, Edward H.

    2004-01-01

    Bathymetric and hydraulic data were collected by the U.S. Geological Survey on the Tanana River in proximity to Alaska Department of Transportation and Public Facilities' bridge number 505 at mile 80.5 of the Alaska Highway. Data were collected from August 7-9, 2002, over an approximate 5,000- foot reach of the river. These data were combined with topographic data provided by Alaska Department of Transportation and Public Facilities to generate a two-dimensional hydrodynamic model. The hydrodynamic model was calibrated with water-surface elevations, flow velocities, and flow directions collected at a discharge of 25,600 cubic feet per second. The calibrated model was then used for a simulation of the 100-year recurrence interval discharge of 51,900 cubic feet per second. The existing bridge piers were removed from the model geometry in a second simulation to model the hydraulic conditions in the channel without the piers' influence. The water-surface elevations, flow velocities, and flow directions from these simulations can be used to evaluate the influence of the piers on flow hydraulics and will assist the Alaska Department of Transportation and Public Facilities in the design of a replacement bridge.

  19. Development of a Cloud Computing-Based Pier Type Port Structure Stability Evaluation Platform Using Fiber Bragg Grating Sensors.

    PubMed

    Jo, Byung Wan; Jo, Jun Ho; Khan, Rana Muhammad Asad; Kim, Jung Hoon; Lee, Yun Sung

    2018-05-23

    Structure Health Monitoring is a topic of great interest in port structures due to the ageing of structures and the limitations of evaluating structures. This paper presents a cloud computing-based stability evaluation platform for a pier type port structure using Fiber Bragg Grating (FBG) sensors in a system consisting of a FBG strain sensor, FBG displacement gauge, FBG angle meter, gateway, and cloud computing-based web server. The sensors were installed on core components of the structure and measurements were taken to evaluate the structures. The measurement values were transmitted to the web server via the gateway to analyze and visualize them. All data were analyzed and visualized in the web server to evaluate the structure based on the safety evaluation index (SEI). The stability evaluation platform for pier type port structures involves the efficient monitoring of the structures which can be carried out easily anytime and anywhere by converging new technologies such as cloud computing and FBG sensors. In addition, the platform has been successfully implemented at “Maryang Harbor” situated in Maryang-Meyon of Korea to test its durability.

  20. New seismic instrumentation packaged for all terrestrial environments (including the quietest observatories!).

    NASA Astrophysics Data System (ADS)

    Parker, Tim; Devanney, Peter; Bainbridge, Geoff; Townsend, Bruce

    2017-04-01

    The march to make every type of seismometer, weak to strong motion, reliable and economically deployable in any terrestrial environment continues with the availability of three new sensors and seismic systems including ones with over 200dB of dynamic range. Until recently there were probably 100 pier type broadband sensors for every observatory type pier, not the types of deployments geoscientists are needing to advance science and monitoring capability. Deeper boreholes are now the recognized quieter environments for best observatory class instruments and these same instruments can now be deployed in direct burial environments which is unprecedented. The experiences of facilities in large deployments of broadband seismometers in continental scale rolling arrays proves the utility of packaging new sensors in corrosion resistant casings and designing in the robustness needed to work reliably in temporary deployments. Integrating digitizers and other sensors decreases deployment complexity, decreases acquisition and deployment costs, increases reliability and utility. We'll discuss the informed evolution of broadband pier instruments into the modern integrated field tools that enable economic densification of monitoring arrays along with supporting new ways to approach geoscience research in a field environment.

  1. Self-concept in children and adolescents with epilepsy: The role of family functioning, mothers' emotional symptoms and ADHD.

    PubMed

    Ekinci, Ozalp; Isik, Uğur; Gunes, Serkan; Yildirim, Canan; Killi, Yunus; Guler, Gülen

    2016-09-01

    This study aimed to identify the associated factors of poor self-concept in children and adolescents with epilepsy. Fifty-three patients with uncomplicated epilepsy (aged 7-18years) and 28 healthy controls were included. Study measures included the Piers-Harris 2 Self-Concept Scale, Family Assessment Device (FAD), Turgay DSM-IV based ADHD rating Scale (T-DSM-IV-S), Conners' Teacher Rating Scale (CTRS-R), Beck Depression Inventory and State-Trait Anxiety Inventory (STAI). Neurology clinic charts were reviewed for the epilepsy-related variables. While the Piers-Harris 2 total score was not significantly different between the groups, patients with epilepsy had lower (poorer) scores on freedom from anxiety and popularity subscales. Linear regression analysis revealed that the problem solving, affective responsiveness, general functioning and communication scores of FAD; total and inattentiveness scores of T-DSM-IV-S and mothers' Beck scores were associated with the total score of Piers-Harris 2. Epilepsy-related factors were not found to be associated with self-concept scores. Poor self-concept in children with epilepsy is associated with negative family functioning, mothers' emotional symptoms and ADHD, especially the symptoms of inattentiveness. Copyright © 2016. Published by Elsevier B.V.

  2. Level II scour analysis for Bridge 20 (GRAFTH00010020) on Town Highway 1, crossing the Saxtons River, Grafton Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure GRAFTH00010020 on Town Highway 1 crossing the Saxtons River, Grafton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 33.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest upstream of the bridge and shrub and brush downstream. In the study area, the Saxtons River has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 97 ft and an average bank height of 2 ft. The predominant channel bed material is gravel with a median grain size (D50) of 58.6 mm (0.192 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 21, 1996, indicated that the reach was laterally unstable due to distinctive cut bank development on the upstream right bank and point bar development on the upstream left bank and downstream right bank. The Town Highway 1 crossing of the Saxtons River is a 191-ft-long, two-lane bridge consisting of three steel-beam spans (Vermont Agency of Transportation, written communication, March 29, 1995). The bridge is supported by vertical, concrete abutments with spill-through embankments and two piers. The channel is skewed approximately 40 degrees to the opening. The opening-skew-to-roadway is 45 degrees in the VTAOT records but measured 50 degrees from surveyed points. The scour protection measures at the site were type-1 stone fill (less than 12 inches diameter) on the left abutment, type-2 stone fill (less than 36 inches diameter) on the right abutment and downstream right bank, and a stone wall is noted on the left bank downstream. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.9 feet. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 8.0 to 14.9 feet. The worst-case abutment scour occurred at the 500-year discharge for the right abutment. There are two piers for which computed pier scour ranged from 8.7 to 26.0 feet. The left and right piers in this report are presented as pier 1 and pier 2 respectively. The worst-case pier scour occurred at pier 2 for the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  3. Use of fathometers and electrical-conductivity probes to monitor riverbed scour at bridge piers

    USGS Publications Warehouse

    Hayes, Donald C.; Drummond, F.E.

    1995-01-01

    Two methods, a fathometer system and an electrical- conductivity probe system, were developed to monitor scour at bridge piers. The scour-monitoring systems consisted of a sensor (fathometer or electrical- conductivity probe), power supply, data logger, relay, and system program. The fathometer system was installed and tested at a bridge over the Leipsic River at Leipsic, Delaware, and at a bridge over Sinepuxent Bay near Ocean City. Maryland. Field data collected indicate that fathometers can be used to identify and monitor the riverbed elevation if post processing of the data and trends in the data are used to determine the riverbed location in relation to the transducer. The accuracy of the system is approximately the same as the resolution of the fathometer. Signal scatter can be a major source of error in the data. The electrical- conductivity probe system was installed and tested at a bridge over the Pamunkey River near Hanover, Virginia. The approximate elevation of the riverbed is determined by comparing conductivities of the surface-water flow with conductivities of submerged bed material from sensors located in each. Field data collected indicate that an electrical- conductivity probe, as tested, has limited usefulness in identifying and monitoring the riverbed elevation during high flows. As the discharge increases, the concentration of sediment in the surface-water flow increases, especially near the riverbed. Conductivities, measured at the sensors in the surface-water flow could not be distinguished from conductivities measured at the shallowest sensor in the submerged bed material.

  4. Smart vibration control analysis of seismic response using MR dampers in the elevated highway bridge structures

    NASA Astrophysics Data System (ADS)

    Yan, Shi; Zhang, Hai

    2005-05-01

    The magnetorheological (MR) damper is on of the smart controllers used widely in civil engineering structures. These kinds of dampers are applied in the paper in the elevated highway bridge (EHB) with rubber bearing support piers to mitigate damages of the bridge during the severe earthquake ground motion. The dynamic calculating model and equation of motion for the EHB system are set up theoretically and the LQR semi-active control algorithm of seismic response for the EHB system is developed to reduce effectively the responses of the structure. The non-linear calculation model of the piers that rigid degradation is considered and numerical simulative calculation are carried out by Matlab program. The number and location as well as the maximum control forces of the MR dampers, which are the most important parameters for the controlled system, are determined and the rubber bearing and connection forms of the damper play also important rule in the control efficiency. A real EHB structure that is located in Anshan city, Liaoning province in China is used as an example to be calculated under different earthquake records. The results of the calculation show that it is effective to reduce seismic responses of the EHB system by combining the rubber bearing isolation with semi-active MR control technique under the earthquake ground motion. The locations of MR dampers and structural parameters will influence seriously to the effects of structural vibration control.

  5. Development of a Fan-Filter Unit Test Standard, LaboratoryValidations, and its Applications across Industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tengfang

    2006-10-20

    Lawrence Berkeley National Laboratory (LBNL) is now finalizing the Phase 2 Research and Demonstration Project on characterizing 2-foot x 4-foot (61-cm x 122-cm) fan-filter units in the market using the first-ever standard laboratory test method developed at LBNL.[1][2][3] Fan-filter units deliver re-circulated air and provide particle filtration control for clean environments. Much of the energy in cleanrooms (and minienvironments) is consumed by 2-foot x 4-foot (61-cm x 122-cm) or 4-foot x 4-foot (122-cm x 122-cm) fan-filter units that are typically located in the ceiling (25-100% coverage) of cleanroom controlled environments. Thanks to funding support by the California Energy Commission's Industrialmore » Program of the Public Interest Energy Research (PIER) Program, and significant participation from manufacturers and users of fan-filter units from around the world, LBNL has developed and performed a series of standard laboratory tests and reporting on a variety of 2-foot x 4-foot (61-cm x 122-cm) fan-filter units (FFUs). Standard laboratory testing reports have been completed and reported back to anonymous individual participants in this project. To date, such reports on standard testing of FFU performance have provided rigorous and useful data for suppliers and end users to better understand, and more importantly, to quantitatively characterize performance of FFU products under a variety of operating conditions.[1] In the course of the project, the standard laboratory method previously developed at LBNL has been under continuous evaluation and update.[2][3] Based upon the updated standard, it becomes feasible for users and suppliers to characterize and evaluate energy performance of FFUs in a consistent way.« less

  6. Scour assessments and sediment-transport simulation for selected bridge sites in South Dakota

    USGS Publications Warehouse

    Niehus, C.A.

    1996-01-01

    Scour at bridges is a major concern in the design of new bridges and in the evaluation of structural stability of existing bridges. Equations for estimating pier, contraction, and abutment scour have been developed from numerous laboratory studies using sand-bed flumes, but little verification of these scour equations has been done for actual rivers with various bed conditions. This report describes the results of reconnaissance and detailed scour assessments and a sediment-transport simulation for selected bridge sites in South Dakota. Reconnaissance scour assessments were done during 1991 for 32 bridge sites. The reconnaissance assessments for each bridge site included compilation of general and structural data, field inspection to record and measure pertinent scour variables, and evaluation of scour susceptibility using various scour-index forms. Observed pier scour at the 32 sites ranged from 0 to 7 feet, observed contraction scour ranged from 0 to 4 feet, and observed abutment scour ranged from 0 to 10 feet. Thirteen bridge sites having high potential for scour were selected for detailed assessments, which were accomplished during 1992-95. These detailed assessments included prediction of scour depths for 2-, 100-, and 500-year flows using selected published scour equations; measurement of scour during high flows; comparison of measured and predicted scour; and identification of which scour equations best predict actual scour. The medians of predicted pier-scour depth at each of the 13 bridge sites (using 13 scour equations) ranged from 2.4 to 6.8 feet for the 2-year flows and ranged from 3.4 to 13.3 feet for the 500-year flows. The maximum pier scour measured during high flows ranged from 0 to 8.5 feet. Statistical comparison (Spearman rank correlation) of predicted pier-scour depths (using flow data col- lected during scour measurements) indicate that the Laursen, Shen (method b), Colorado State University, and Blench (method b) equations correlate closer with measured scour than do the other prediction equations. The predicted pier-scour depths using the Varzeliotis and Carstens equations have weak statistical rela- tions with measured scour depths. Medians of predicted pier-scour depth from the Shen (method a), Chitale, Bata, and Carstens equations are statistically equal to the median of measured pier-scour depths, based on the Wilcoxon signed-ranks test. The medians of contraction scour depth at each of the 13 bridge sites (using one equation) ranged from -0.1 foot for the 2- year flows to 23.2 feet for the 500-year flows. The maximum contraction scour measured during high flows ranged from 0 to 3.0 feet. The contraction- scour prediction equation substantially overestimated the scour depths in almost all comparisons with the measured scour depths. A significant reason for this discrepancy is due to the wide flood plain (as wide as 5,000 feet) at most of the bridge sites that were investigated. One possible way to reduce this effect for bridge design is to make a decision on what is the effective approach section and thereby limit the size of the bridge flow approach width. The medians of abutment-scour depth at each of the 13 bridge sites (using five equations) ranged from 8.2 to 16.5 feet for the 2-year flows and ranged from 5.7 to 41 feet for the 500-year flows. The maximum abutment scour measured during high flows ranged from 0 to 4.0 feet. The abutment-scour prediction equations also substantially overestimated the scour depths in almost all comparisons with the measured scour depths. The Liu and others (live bed) equation predicted abutment-scour depths substantially lower than the other four abutment-scour equations and closer to the actual measured scour depths. However, this equation at times predicted greater scour depths for 2-year flows than it did for 500-year flows, making its use highly questionable. Again, limiting the bridge flow approach width would produce more reasonable predicted abutment scour.

  7. Quantitative x-ray diffraction mineralogy of Los Angeles basin core samples

    USGS Publications Warehouse

    Hein, James R.; McIntyre, Brandie R.; Edwards, Brian D.; Lakota, Orion I.

    2006-01-01

    This report contains X-ray diffraction (XRD) analysis of mineralogy for 81 sediment samples from cores taken from three drill holes in the Los Angeles Basin in 2000-2001. We analyzed 26 samples from Pier F core, 29 from Pier C core, and 26 from the Webster core. These three sites provide an offshore-onshore record across the Southern California coastal zone. This report is designed to be a data repository; these data will be used in further studies, including geochemical modeling as part of the CABRILLO project. Summary tables quantify the major mineral groups, whereas detailed mineralogy is presented in three appendices. The rationale, methodology, and techniques are described in the following paper.

  8. Reverse innovation in maternal health.

    PubMed

    Firoz, Tabassum; Makanga, Prestige Tatenda; Nathan, Hannah L; Payne, Beth; Magee, Laura A

    2017-09-01

    Reverse innovation, defined as the flow of ideas from low- to high-income settings, is gaining traction in healthcare. With an increasing focus on value, investing in low-cost but effective and innovative solutions can be of mutual benefit to both high- and low-income countries. Reverse innovation has a role in addressing maternal health challenges in high-income countries by harnessing these innovative solutions for vulnerable populations especially in rural and remote regions. In this paper, we present three examples of 'reverse innovation' for maternal health: a low-cost, easy-to-use blood pressure device (CRADLE), a diagnostic algorithm (mini PIERS) and accompanying mobile app (PIERS on the Move), and a novel method for mapping maternal outcomes (MOM).

  9. NLP-PIER: A Scalable Natural Language Processing, Indexing, and Searching Architecture for Clinical Notes.

    PubMed

    McEwan, Reed; Melton, Genevieve B; Knoll, Benjamin C; Wang, Yan; Hultman, Gretchen; Dale, Justin L; Meyer, Tim; Pakhomov, Serguei V

    2016-01-01

    Many design considerations must be addressed in order to provide researchers with full text and semantic search of unstructured healthcare data such as clinical notes and reports. Institutions looking at providing this functionality must also address the big data aspects of their unstructured corpora. Because these systems are complex and demand a non-trivial investment, there is an incentive to make the system capable of servicing future needs as well, further complicating the design. We present architectural best practices as lessons learned in the design and implementation NLP-PIER (Patient Information Extraction for Research), a scalable, extensible, and secure system for processing, indexing, and searching clinical notes at the University of Minnesota.

  10. 8” x 10” black and white photographic print made from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8” x 10” black and white photographic print made from original 1934, 8” x 10” black and white photographic negative. New 4” x 5” archival negative made from print. Original photographer unknown. Original 8” x 10” negative located in the files of the New Orleans Public Belt Railroad administrative offices at 5100 Jefferson Highway, Jefferson, LA 70123. FEBRUARY 26, 1934 PHOTOGRAPH NO. 124 OF CONTRACT NO. 3 SHOWING MAIN BRIDGE ERECTING FORMS AT PIER SHAFT PIER A. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  11. How implicitly activated and explicitly acquired knowledge contribute to the effectiveness of retrieval cues.

    PubMed

    Nelson, Douglas L; Fisher, Serena L; Akirmak, Umit

    2007-12-01

    The extralist cued recall task simulates everyday reminding because a memory is encoded on the fly and retrieved later by an unexpected cue. Target words are studied individually, and recall is cued by associatively related words having preexisting forward links to them. In Experiments 1 and 2, forward cue-to-target and backward target-to-cue strengths were varied over an extended range in order to determine how these two sources of strength are related and which source has a greater effect. Forward and backward strengths had additive effects on recall, with forward strength having a consistently larger effect. The PIER2 model accurately predicted these findings, but a plausible generation-recognition version of the model, called PIER.GR, could not. In Experiment 3, forward and backward strengths, level of processing, and study time were varied in order to determine how preexisting lexical knowledge is related to knowledge acquired during the study episode. The main finding indicates that preexisting knowledge and episodic knowledge have additive effects on extralist cued recall. PIER2 can explain these findings because it assumes that these sources of strength contribute independently to recall, whereas the eSAM model cannot explain the findings because it assumes that the sources of strength are multiplicatively related.

  12. STS-112 Atlantis landing at KSC's shuttle landing facility

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis approaches the runway at the Shuttle Landing Facility, completing the 4.5-million-mile journey to the International Space Station. Main gear touchdown occurred at 11:43:40 a.m. EDT; nose gear touchdown at 11:43:48 a.m.; and wheel stop at 11:44:35 a.m. Mission elapsed time was 10:19:58:44. Mission STS-112 expanded the size of the Station with the addition of the S1 truss segment. The returning crew of Atlantis are Commander Jeffrey Ashby, Pilot Pamela Melroy, and Mission Specialists David Wolf, Piers Sellers, Sandra Magnus and Fyodor Yurchikhin. This landing is the 60th at KSC in the history of the Shuttle program. .

  13. Orion is Taken From Ship & Put in Shipping Container

    NASA Image and Video Library

    2014-12-10

    The Orion crew module is being lowered onto the crew module transportation fixture at the Mole Pier at Naval Base San Diego in California. The fixture has been secured on the back of a flatbed truck. Orion is being prepared for the overland trip back to NASA's Kennedy Space Center in Florida. Orion was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. NASA, the U.S. Navy and Lockheed Martin coordinated efforts to recover Orion. The Ground Systems Development and Operations Program led the recovery, offload and pre-transportation efforts.

  14. Psychophysiological correlates of emotion regulation training in adolescent anxiety: Evidence from the novel PIER task.

    PubMed

    De Witte, Nele A J; Sütterlin, Stefan; Braet, Caroline; Mueller, Sven C

    2017-05-01

    Anxiety disorders are the leading cause of mental illness in adolescence. While anxious adolescents show impairments in emotion processing and deficits in emotion regulation, few studies have attempted to improve emotion regulation within these populations. This study used a multi-method design to test a newly developed emotion regulation training aimed at improving insight into emotions and instructing cognitive reappraisal. The efficacy of cognitive reappraisal was investigated in 27 clinically anxious youth (Age: M=12.36, SD=2.59) and 43 healthy controls (Age: M=13.07, SD=2.19) using psychophysiological measures. Specifically, heart rate variability, pupil dilation, and visual fixations were recorded while youth had to up- or downregulate their emotions in response to affective pictures in the Psychophysiological Indicators of Emotion Regulation (PIER) task. The novel training effectively improved self-reported emotion regulation and momentary anxiety in both groups. Moreover, initial group differences in emotional reactivity mostly disappeared when participants were instructed to apply emotion regulation in the task. However, pupil dilation data suggested that participants with anxiety disorders required more cognitive resources for the upregulation of negative affect to counteract this effect. The relatively small sample size and large age range could hamper detection of additional group differences that may exist. The current study provides evidence that anxious youth can apply cognitive reappraisal to a similar extent as healthy adolescents after emotion regulation training but may need to exert more effort to do so. This training could be a valuable addition to current treatment programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. NLP-PIER: A Scalable Natural Language Processing, Indexing, and Searching Architecture for Clinical Notes

    PubMed Central

    McEwan, Reed; Melton, Genevieve B.; Knoll, Benjamin C.; Wang, Yan; Hultman, Gretchen; Dale, Justin L.; Meyer, Tim; Pakhomov, Serguei V.

    2016-01-01

    Many design considerations must be addressed in order to provide researchers with full text and semantic search of unstructured healthcare data such as clinical notes and reports. Institutions looking at providing this functionality must also address the big data aspects of their unstructured corpora. Because these systems are complex and demand a non-trivial investment, there is an incentive to make the system capable of servicing future needs as well, further complicating the design. We present architectural best practices as lessons learned in the design and implementation NLP-PIER (Patient Information Extraction for Research), a scalable, extensible, and secure system for processing, indexing, and searching clinical notes at the University of Minnesota. PMID:27570663

  16. A karate program for improving self-concept and quality of life in childhood epilepsy: results of a pilot study.

    PubMed

    Conant, Kerry D; Morgan, Amy K; Muzykewicz, David; Clark, Derrick C; Thiele, Elizabeth A

    2008-01-01

    The potential cognitive and psychosocial effects of childhood epilepsy have significant implications for a child's self-image and academic achievement. This study focuses on a 10-week karate program for children and adolescents with epilepsy aimed at increasing social confidence, self-concept, and quality of life, as well as reducing parental anxiety. Eleven children (8-16 years old) and their parents participated in this questionnaire study, and complete data were available for nine of these families. Measures consisted of the Piers-Harris Children's Self-Concept Scale, the Quality of Life in Childhood Epilepsy (QOLCE) questionnaire, and the Parental Stress Index. By parental report, significant improvement in memory function and largely positive trends in quality of life on multiple subscales were observed. By child report, intellectual self-esteem and social confidence also improved. Parental stress decreased, although not significantly, suggesting a potential benefit and indicating a role for future interventions targeting family anxiety.

  17. Level II scour analysis for Bridge 23 (CRAFTH00390023) on Town Highway 39, crossing the Black River, Craftsbury, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.

    1997-01-01

    Contraction scour for all modelled flows ranged from 20.1 to 25.2 and the worst-case contraction scour occurred at the 500-year discharge. Although this bridge has two piers, the flow through the spans between each abutment and pier is assumed to be negligible. Hence, abutment scour was computed assuming the forces contributing to scour actually occur on the main-span sides of each pier in this case. Abutment scour ranged from 8.8 to 10.6 and the worst-case abutment scour occurred at the 500-year discharge. Scour depths and depths to armoring are summarized on p. 14 in the section titled “Scour Results”. Scour elevations, based on the calculated depths are presented in tables 1 and 2. A graph of the scour elevations is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  18. Level II scour analysis for Bridge 11R (ROCKTH0001011R) on Town Highway 1 (VT 121 & FAS 125), crossing the Saxtons River, Rockingham, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROCKTH0001011R on Town Highway 1 crossing the Saxtons River, Rockingham, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 68.3-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover consists of houses, short grass, and scattered trees except along the immediate river banks, which are tree covered. In the study area, the Saxtons River has a sinuous channel with a slope of approximately 0.005 ft/ft, an average channel top width of 121 ft and an average bank height of 8 ft. The predominant channel bed materials are gravel and cobbles with a median grain size (D50) of 109 mm (0.359 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 3, 1996, indicated that the reach was laterally unstable. Lateral instability was evident with respect to a cut-bank on the left bank upstream with slip failure of bank material. Furthermore, there is a wide point bar along the right bank upstream opposite the cut-bank. The Town Highway 1 crossing of the Saxtons River is a 184-ft-long, two-lane bridge consisting of three steel-beam spans (Vermont Agency of Transportation, written communication, March 30, 1995). The bridge is supported by vertical, concrete, skeletal-style abutment walls with spill-through embankments adjacent to each wall. The channel is skewed approximately 35 degrees to the opening while the opening-skew-to-roadway is 30 degrees. The only scour protection measure at the site was type-3 stone fill (less than 48 inches diameter) on the spill-through embankments. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. There was no computed contraction scour for all modelled flows at this site. Abutment scour ranged from 9.0 to 13.4 feet. The worst-case abutment scour occurred at the 500-year discharge for the left abutment. There are two piers for which computed pier scour ranged from 9.0 to 18.4 feet. The left and right piers in this report are presented as pier 1 and pier 2, respectively. The worst-case pier scour occurred at pier 2 for the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  19. KSC-02pd1589

    NASA Image and Video Library

    2002-10-18

    KENNEDY SPACE CENTER, FLA. - A fire rescue truck stands by for safety reasons as Space Shuttle Atlantis slows to a stop on Runway 33 at the Shuttle Landing Facility, completing the 4.5-million-mile journey to the International Space Station. Main gear touchdown occurred at 11:43:40 a.m. EDT; nose gear touchdown at 11:43:48 a.m.; and wheel stop at 11:44:35 a.m. Mission elapsed time was 10:19:58:44. Mission STS-112 expanded the size of the Station with the addition of the S1 truss segment. The returning crew of Atlantis are Commander Jeffrey Ashby, Pilot Pamela Melroy, and Mission Specialists David Wolf, Piers Sellers, Sandra Magnus and Fyodor Yurchikhin. This landing is the 60th at KSC in the history of the Shuttle program. .

  20. STS-112 Atlantis landing at KSC's shuttle landing facility

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis stirs up dust as it touches down on Runway 33 at the Shuttle Landing Facility, completing the 4.5-million-mile journey to the International Space Station. Main gear touchdown occurred at 11:43:40 a.m. EDT; nose gear touchdown at 11:43:48 a.m.; and wheel stop at 11:44:35 a.m. Mission elapsed time was 10:19:58:44. Mission STS-112 expanded the size of the Station with the addition of the S1 truss segment. The returning crew of Atlantis are Commander Jeffrey Ashby, Pilot Pamela Melroy, and Mission Specialists David Wolf, Piers Sellers, Sandra Magnus and Fyodor Yurchikhin. This landing is the 60th at KSC in the history of the Shuttle program. .

Top