Moura, Elaine Cristina Carvalho; Moreira, Maria de Fátima Santana; da Fonseca, Soraia Martins
2009-01-01
This study aimed to analyze the knowledge of nursing auxiliaries and technicians in handling and disposing of piercing-cutting material and describe their performance. This qualitative-descriptive research was carried out with three nursing auxiliaries and 12 technicians at a medium-size hospital, totaling 15 participants interviewed through a semi-structured script. Discourse was analyzed through the content analysis technique. Results appoint that, even though the participants have theoretical knowledge on the management of piercing-cutting material, they do not totally follow their knowledge, which exposes them to several biological risks, revealing reproductive knowledge and performance. Thus, we propose the implementation of continuing education programs based on constructivist methodological approach aiming at effective practices in the management and disposal of piercing-cutting material. In this perspective, research clarifying how adults apprehend knowledge can deepen the results described in the study.
Dynamic laser piercing of thick section metals
NASA Astrophysics Data System (ADS)
Pocorni, Jetro; Powell, John; Frostevarg, Jan; Kaplan, Alexander F. H.
2018-01-01
Before a contour can be laser cut the laser first needs to pierce the material. The time taken to achieve piercing should be minimised to optimise productivity. One important aspect of laser piercing is the reliability of the process because industrial laser cutting machines are programmed for the minimum reliable pierce time. In this work piercing experiments were carried out in 15 mm thick stainless steel sheets, comparing a stationary laser and a laser which moves along a circular trajectory with varying processing speeds. Results show that circular piercing can decrease the pierce duration by almost half compared to stationary piercing. High speed imaging (HSI) was employed during the piercing process to understand melt behaviour inside the pierce hole. HSI videos show that circular rotation of the laser beam forces melt to eject in opposite direction of the beam movement, while in stationary piercing the melt ejects less efficiently in random directions out of the hole.
Body piercing medical concerns with cutting-edge fashion.
Koenig, L M; Carnes, M
1999-06-01
To review the current information on medical complications, psychological implications, and legislative issues related to body piercing, a largely unregulated industry in the United States. We conducted a MEDLINE search of English language articles from 1966 until May 1998 using the search terms "body piercing" and "ear piercing." Bibliographies of these references were reviewed for additional citations. We also conducted an Internet search for "body piercing" on the World Wide Web. In this manuscript, we review the available body piercing literature. We conclude that body piercing is an increasingly common practice in the United States, that this practice carries substantial risk of morbidity, and that most body piercing in the United States is being performed by unlicensed, unregulated individuals. Primary care physicians are seeing growing numbers of patients with body pierces. Practitioners must be able to recognize, treat, and counsel patients on body piercing complications and be alert to associated psychological conditions in patients who undergo body piercing.
NASA Astrophysics Data System (ADS)
Brown, Nicholas W. A.
Composite parts can be manufactured to near-net shape with minimum wastage of material; however, there is almost always a need for further machining. The most common post-manufacture machining operations for composite materials are to create holes for assembly. This thesis presents and discusses a thermally-assisted piercing process that can be used as a technique for introducing holes into thermoplastic composites. The thermally-assisted piercing process heats up, and locally melts, thermoplastic composites to allow material to be displaced around a hole, rather than cutting them out from the structure. This investigation was concerned with how the variation of piercing process parameters (such as the size of the heated area, the temperature of the laminate prior to piercing and the geometry of the piercing spike) changed the material microstructure within carbon fibre/Polyetheretherketone (PEEK) laminates. The variation of process parameters was found to significantly affect the formation of resin rich regions, voids and the fibre volume fraction in the material surrounding the hole. Mechanical testing (using open-hole tension, open-hole compression, plain-pin bearing and bolted bearing tests) showed that the microstructural features created during piercing were having significant influence over the resulting mechanical performance of specimens. By optimising the process parameters strength improvements of up to 11% and 21% were found for pierced specimens when compared with drilled specimens for open-hole tension and compression loading, respectively. For plain-pin and bolted bearing tests, maximum strengths of 77% and 85%, respectively, were achieved when compared with drilled holes. Improvements in first failure force (by 10%) and the stress at 4% hole elongation (by 18%), however, were measured for the bolted bearing tests when compared to drilled specimens. The overall performance of pierced specimens in an industrially relevant application ultimately
... is piercing performed? A single-use, sterilized piercing gun is typically used to insert an earring into ... of jewelry into the hole. The safest piercing guns are single-use guns. It means that it ...
Fernandez, André de Paula; Castro Neto, Ivan de; Anias, Christiane Ribeiro; Pinto, Patrícia Ciminelli Linhares; Castro, Jair de Carvalho E; Carpes, Arturo Frick
2008-01-01
Piercing has become more and more popular among adolescents. The procedure is generally performed by unqualified professionals and carries its risk. Non-sterilized material or inappropiate hygiene increases the possibility of perichondritis and celulitis. The disease is characterized by erythema of the auricula pinna, unbearable pain and fever. Left untreated, the condition progresses with edema along the auricula and abscess formation that may result in ischemic necrosis and a cauliflower anesthetic deformation. The most common bacteria is Pseudomonas aeruginosa. In cases with abscesses, drainage is necessary along with antibiotic therapy guided by cultures and antibiogram. The aim of this case report was to review the past 10 years of published papers dealing with anatomical aspects of the auricular pinna, the history of piercing and its most common complications. A case report of perichondritis after 'high' ear piercing that required surgical treatment and that progressed with no esthetic loss. Theoretical and practical experience based on a review and a report of a case that progressed satisfactorily. The increased incidence of perichondritis in adolescents should require more elaborated primary prevention measures.
Development of a 2-stage shear-cutting-process to reduce cut-edge-sensitivity of steels
NASA Astrophysics Data System (ADS)
Gläsner, T.; Sunderkötter, C.; Hoffmann, H.; Volk, W.; Golle, R.
2017-09-01
The edge cracking sensitivity of AHSS and UHSS is a challenging factor in the cold forming process. Expanding cut holes during flanging operations is rather common in automotive components. During these flanging operations the pierced hole is stretched so that its diameter is increased. These flanging operations stretch material that has already been subjected to large amounts of plastic deformation, therefore forming problems may occur. An innovative cutting process decreases micro cracks in the cutting surface and facilitates the subsequent cold forming process. That cutting process consists of two stages, which produces close dimensional tolerance and smooth edges. As a result the hole expanding ratio was increased by nearly 100 % when using thick high strength steels for suspension components. The paper describes the mechanisms of the trimming process at the cut edge, and the positive effect of the 2-stage shear-cutting process on the hole extension capability of multiphase steels.
Body piercing: complications and prevention of health risks.
Holbrook, Jaimee; Minocha, Julia; Laumann, Anne
2012-02-01
Body and earlobe piercing are common practices in the USA today. Minor complications including infection and bleeding occur frequently and, although rare, major complications have been reported. Healthcare professionals should be cognizant of the medical consequences of body piercing. Complications vary depending on the body-piercing site, materials used, experience of the practitioner, hygiene regimens, and aftercare by the recipient. Localized infections are common. Systemic infections such as viral hepatitis and toxic shock syndrome and distant infections such as endocarditis and brain abscesses have been reported. Other general complications include allergic contact dermatitis (e.g. from nickel or latex), bleeding, scarring and keloid formation, nerve damage, and interference with medical procedures such as intubation and blood/organ donation. Site-specific complications have been reported. Oral piercings may lead to difficulty speaking and eating, excessive salivation, and dental problems. Oral and nasal piercings may be aspirated or become embedded, requiring surgical removal. Piercing tracts in the ear, nipple, and navel are prone to tearing. Galactorrhea may be caused by stimulation from a nipple piercing. Genital piercings may lead to infertility secondary to infection, and obstruction of the urethra secondary to scar formation. In men, priapism and fistula formation may occur. Women who are pregnant or breastfeeding and have a piercing or are considering obtaining one need to be aware of the rare complications that may affect them or their child. Though not a 'complication' per se, many studies have reported body piercing as a marker for high-risk behavior, psychopathologic symptoms, and anti-social personality traits. When it comes to piercing complications, prevention is the key. Body piercers should take a complete medical and social history to identify conditions that may predispose an individual to complications, and candidates should choose a
NASA Astrophysics Data System (ADS)
Senn, S.; Liewald, M.
2017-09-01
Deep drawn parts often do have complex designs and, therefore, must be trimmed or punched subsequently in a second stage. Due to the complex part geometry, most punching areas do reveal critical slant angle (angle between part surface and ram movement direction) different to perpendicular direction. Piercing within a critical range of slant angle may lead to severe damage of the cutting tool. Consequently, expensive cam units are required to transform the ram moving direction in order to perform the piercing process perpendicularly to the local part surface. For modern sheet metals, however, the described critical angle of attack has not been investigated adequately until now. Therefore, cam units are used in cases in which regular piercing with high slant angle wouldn’t be possible. Purpose of this study is to investigate influencing factors and their effect on punch damage during piercing of high strength steels with slant angles. Therefore, a modular shearing tool was designed, which allows to simply switch die parts to vary cutting clearance and cutting angle. The target size of the study is to measure the lateral deviation of the punch which is monitored by an eddy current sensor. The sensor is located in the downholder and measures the lateral punch deviation in-line during manufacturing. The deviation is mainly influenced by slant angle of workpiece surface. In relation to slang angle and sheet thickness the clearance has a small influence on the measured punch deflection.
Sandhu, Amonpreet; Gross, Melissa; Wylie, John; Van Caeseele, Paul; Plourde, Pierre
2007-01-01
Auricular or high helical ear piercing is an increasingly widespread fashion trend that is associated with an increased risk of potentially serious post-piercing complications such as auricular perichondritis. An 11-year-old girl developed severe auricular perichondritis following piercing of the upper helical cartilage of her ear at a hairdressing salon. Four days post piercing, she returned to the same salon for a haircut during which the pierced site was manipulated. She presented to her family physician and was treated unsuccessfully with oral cephalexin. She was then referred to an infectious diseases consultant and received antipseudomonal intravenous antibiotics with subsequent resolution. She also required debridement and removal of necrotic cartilage. Public health investigation evaluated potential sources of infection including the piercing gun, disinfectant solutions, and hair cutting spray water bottles. Final culture results of the ear helical aspirate grew Pseudomonas aeruginosa. Pseudomonas aeruginosa was also cultured from one of the water bottles used to wet her hair during the haircut. Although the pseudomonal strains from the water bottle were different than the infecting one, this contamination presents a potential source of wound infection. Damage to the helical cartilage caused by the piercing gun may also have contributed to this infection. Initial empiric antibiotic therapy for these kinds of infection must include anti-pseudomonal coverage. Auricular or high helical ear piercing using a piercing gun is not recommended.
Evaluation of Fracture Initiation in the Mannesmann Piercing Process
NASA Astrophysics Data System (ADS)
Fanini, S.; Ghiotti, A.; Bruschi, S.
2007-04-01
One of the challenging objectives in studying the Mannesmann piercing process is to predict the fracture initiation, known as "Mannesmann effect", in order to design and optimize the working parameters of the piercing process. The objective of the paper is to investigate the workability of a tube steel tested in the same conditions of the Mannesman piercing process. The stress and strain states as well as temperature fields arising during the process are identified through numerical simulations. The hot tensile test is chosen for fundamental studies on fracture initiation, as a tensile state of stress in the centre of the billet in the first stages of the piercing process before the plug arrival seems to be one of the main causes of the crack initiation. The material constants of energy-based models implemented in FEM codes are calculated and numerical results are compared with non-plug piercing tests carried out on the industrial plant.
Should Physicians Have Facial Piercings?
Newman, Alison W; Wright, Seth W; Wrenn, Keith D; Bernard, Aline
2005-01-01
OBJECTIVE The objective of this study was to assess attitudes of patrons and medical school faculty about physicians with nontraditional facial piercings. We also examined whether a piercing affected the perceived competency and trustworthiness of physicians. DESIGN Survey. SETTING Teaching hospital in the southeastern United States. PARTICIPANTS Emergency department patrons and medical school faculty physicians. INTERVENTIONS First, patrons were shown photographs of models with a nontraditional piercing and asked about the appropriateness for a physician or medical student. In the second phase, patrons blinded to the purpose of the study were shown identical photographs of physician models with or without piercings and asked about competency and trustworthiness. The third phase was an assessment of attitudes of faculty regarding piercings. MEASUREMENTS AND MAIN RESULTS Nose and lip piercings were felt to be appropriate for a physician by 24% and 22% of patrons, respectively. Perceived competency and trustworthiness of models with these types of piercings were also negatively affected. An earring in a male was felt to be appropriate by 35% of patrons, but an earring on male models did not negatively affect perceived competency or trustworthiness. Nose and eyebrow piercings were felt to be appropriate by only 7% and 5% of faculty physicians and working with a physician or student with a nose or eyebrow piercing would bother 58% and 59% of faculty, respectively. An ear piercing in a male was felt to be appropriate by 20% of faculty, and 25% stated it would bother them to work with a male physician or student with an ear piercing. CONCLUSIONS Many patrons and physicians feel that some types of nontraditional piercings are inappropriate attire for physicians, and some piercings negatively affect perceived competency and trustworthiness. Health care providers should understand that attire may affect a patient's opinion about their abilities and possibly erode confidence
Photodiode-based cutting interruption sensor for near-infrared lasers.
Adelmann, B; Schleier, M; Neumeier, B; Hellmann, R
2016-03-01
We report on a photodiode-based sensor system to detect cutting interruptions during laser cutting with a fiber laser. An InGaAs diode records the thermal radiation from the process zone with a ring mirror and optical filter arrangement mounted between a collimation unit and a cutting head. The photodiode current is digitalized with a sample rate of 20 kHz and filtered with a Chebyshev Type I filter. From the measured signal during the piercing, a threshold value is calculated. When the diode signal exceeds this threshold during cutting, a cutting interruption is indicated. This method is applied to sensor signals from cutting mild steel, stainless steel, and aluminum, as well as different material thicknesses and also laser flame cutting, showing the possibility to detect cutting interruptions in a broad variety of applications. In a series of 83 incomplete cuts, every cutting interruption is successfully detected (alpha error of 0%), while no cutting interruption is reported in 266 complete cuts (beta error of 0%). With this remarkable high detection rate and low error rate, the possibility to work with different materials and thicknesses in combination with the easy mounting of the sensor unit also to existing cutting machines highlight the enormous potential for this sensor system in industrial applications.
Body piercing with fatal consequences.
Ranga, N; Jeffery, A J
2011-01-25
Body modifications such as piercings, tattoos and surgery have increased in popularity in recent times and have become more socially acceptable. The common complications of piercing different parts of the human anatomy are well-documented, including sepsis, allergic reactions and, more rarely, endocarditis and ischaemia. Deaths related to piercing complications are primarily septic in origin. In this case, a man in his 50s died due to complications of his multiple umbilical piercings. The cause of death was unusually linked to body modification; the umbilical piercings had ultimately led to a mesenteric infarction. Cases such as these are forensically important due to potential manslaughter charges that could be brought against a piercing establishment. More importantly, this case highlights another extreme complication of body modification. Fashion statements are always changing and impact upon many lives. It is important to highlight to people the potentially life-threatening complications of common piercing practices.
Piercings and tattoos are body decorations that go back to ancient times. Body piercing involves making a hole in the skin so that you can ... but can be in other parts of the body. Tattoos are designs on the skin made with ...
Lessons from mosquitoes' painless piercing.
Gurera, Dev; Bhushan, Bharat; Kumar, Navin
2018-05-18
Arthropods are the largest group of the living organisms. They attack other organisms by biting, stinging, or piercing and sucking. Among various medically important arthropods, which feed on living hosts, mosquitoes' piercing spread viruses which have been reported to cause the highest number of deaths annually. The primary cause of the deaths is malaria, which is spread by infected mosquitoes' piercing. This study aims at elucidating lessons from mosquitoes' painless piercing. Mosquitoes pierce using their fascicle, which is a bundle of coherently functioning six stylets. Based on experiments and available literature, it is presented that mosquitoes painlessly pierce using a combination of the numbing, the fascicle's serrated design, the vibratory actuation, and the graded and frequency-dependent mechanical properties of the labrum. Based on this understanding, a mosquito-inspired microneedle design has also been proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
King, Keith A.; Vidourek, Rebecca A.
2007-01-01
Background: Health concerns of body piercing include infection, scarring, allergic reactions, pain, and disease. Current gaps in the research include students' perceived piercing risks and safe piercing practices. Purpose: The purpose of this study was to examine university students' involvement in body piercing, risk consideration and adherence…
Material properties and laser cutting of composites
NASA Astrophysics Data System (ADS)
Chen, Chia-Chieh; Cheng, Wing
Laser (Light Amplification by Stimulated Emission of Radiation) has been used successfully for many material cutting, drilling, metal welding and heat treating applications. However, laser cutting of polymer composites were attempted with varying degrees of success. Because composites are heterogeneous, the energy applied by laser could result in severe resin degradation before fibers were cut. In this study, cutting of glass, Kevlar, and graphite composites were evaluated based on their material properties and laser cutting parameters. A transient heat transfer analysis was used to determine the relative heat affected zones of these composites. Kevlar composites can be cut very well while graphite composites are difficult to cut. Though the cutting process is much more complicated in reality, the analysis provides a semi-quantitative perspective on the characteristics and limitations of laser cutting of different composites.
Modern laser technologies used for cutting textile materials
NASA Astrophysics Data System (ADS)
Isarie, Claudiu; Dragan, Anca; Isarie, Laura; Nastase, Dan
2006-02-01
With modern laser technologies we can cut multiple layers at once, yielding high production levels and short setup times between cutting runs. One example could be the operation of cutting the material named Nylon 66, used to manufacture automobile airbags. With laser, up to seven layers of Nylon 66 can be cut in one pass, that means high production rates on a single machine. Airbags must be precisely crafted piece of critical safety equipment that is built to very high levels of precision in a mass production environment. Of course, synthetic material, used for airbags, can be cut also by a conventional fixed blade system, but for a high production rates and a long term low-maintenance, laser cutting is most suitable. Most systems, are equipped with two material handling systems, which can cut on one half of he table while the finished product is being removed from the other half and the new stock material laid out. The laser system is reliable and adaptable to any flatbed-cutting task. Computer controlled industrial cutting and plotting machines are the latest offerings from a well established and experienced industrial engineering company that is dedicated to reduce cutting costs and boosting productivity in today's competitive industrial machine tool market. In this way, just one machine can carry out a multitude of production tasks. Authors have studied the cutting parameters for different textile materials, to reach the maximum output of the process.
A review on ductile mode cutting of brittle materials
NASA Astrophysics Data System (ADS)
Antwi, Elijah Kwabena; Liu, Kui; Wang, Hao
2018-06-01
Brittle materials have been widely employed for industrial applications due to their excellent mechanical, optical, physical and chemical properties. But obtaining smooth and damage-free surface on brittle materials by traditional machining methods like grinding, lapping and polishing is very costly and extremely time consuming. Ductile mode cutting is a very promising way to achieve high quality and crack-free surfaces of brittle materials. Thus the study of ductile mode cutting of brittle materials has been attracting more and more efforts. This paper provides an overview of ductile mode cutting of brittle materials including ductile nature and plasticity of brittle materials, cutting mechanism, cutting characteristics, molecular dynamic simulation, critical undeformed chip thickness, brittle-ductile transition, subsurface damage, as well as a detailed discussion of ductile mode cutting enhancement. It is believed that ductile mode cutting of brittle materials could be achieved when both crack-free and no subsurface damage are obtained simultaneously.
Body piercing: medical consequences and psychological motivations.
Stirn, Aglaja
2003-04-05
Body piercing is increasing in popularity around the world. In this review, I describe the history, origins, and peculiarities of various forms of body piercing, and procedures involved, variations in healing time, legal aspects and regulations, and complications and side-effects. I have also included a discussion of the motivation for and psychological background behind body piercing. In presenting research results, I aim to raise awareness of the many risks associated with body piercing. In presenting psychological data, I intend to create an understanding of the multifaceted and often intense motivations associated with body piercing, and, thus, to diminish any prejudices held by health professionals against people with piercings.
Non-Poissonian photon statistics from macroscopic photon cutting materials.
de Jong, Mathijs; Meijerink, Andries; Rabouw, Freddy T
2017-05-24
In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and 'cutting' them into multiple low-energy excitations that can subsequently be extracted. The occurrence of photon cutting or quantum cutting has been demonstrated in a variety of materials, including semiconductor quantum dots, lanthanides and organic dyes. Here we show that photon cutting results in bunched photon emission on the timescale of the excited-state lifetime, even when observing a macroscopic number of optical centres. Our theoretical derivation matches well with experimental data on NaLaF 4 :Pr 3+ , a material that can cut deep-ultraviolet photons into two visible photons. This signature of photon cutting can be used to identify and characterize new photon-cutting materials unambiguously.
Material cutting, shaping, and forming: A compilation
NASA Technical Reports Server (NTRS)
1974-01-01
Information is presented concerning cutting, shaping, and forming of materials, and the equipment and techniques required for utilizing these materials. The use of molds, electrical fields, and mechanical devices are related to forming materials. Material cutting methods by devices including borers and slicers are presented along with chemical techniques. Shaping and fabrication techniques are described for tubing, honeycomb panels, and ceramic structures. The characteristics of the materials are described. Patent information is included.
Material Behavior At The Extreme Cutting Edge In Bandsawing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarwar, Mohammed; Haider, Julfikar; Persson, Martin
2011-01-17
In recent years, bandsawing has been widely accepted as a favourite option for metal cutting off operations where the accuracy of cut, good surface finish, low kerf loss, long tool life and high material removal rate are required. Material removal by multipoint cutting tools such as bandsaw is a complex mechanism owing to the geometry of the bandsaw tooth (e.g., limited gullet size, tooth setting etc.) and the layer of material removed or undeformed chip thickness or depth of cut (5 {mu}m-50 {mu}m) being smaller than or equal to the cutting edge radius (5 {mu}m-15 {mu}m). This situation can leadmore » to inefficient material removal in bandsawing. Most of the research work are concentrated on the mechanics of material removal by single point cutting tool such as lathe tool. However, such efforts are very limited in multipoint cutting tools such as in bandsaw. This paper presents the fundamental understanding of the material behaviour at the extreme cutting edge of bandsaw tooth, which would help in designing and manufacturing of blades with higher cutting performance and life. ''High Speed Photography'' has been carried out to analyse the material removal process at the extreme cutting edge of bandsaw tooth. Geometric model of chip formation mechanisms based on the evidences found during ''High Speed Photography'' and ''Quick Stop'' process is presented. Wear modes and mechanism in bimetal and carbide tipped bandsaw teeth are also presented.« less
Phallic decoration in paleolithic art: genital scarification, piercing and tattoos.
Angulo, Javier C; García-Díez, Marcos; Martínez, Marc
2011-12-01
The primitive anthropological meaning of genital ornamentation is not clearly defined and the origin of penile intervention for decorative purposes is lost in time. Corporeal decoration was practiced in the Upper Paleolithic period. We discuss the existing evidence on the practice of phallic piercing, scarring and tattooing in prehistory. We studied the archaeological and artistic evidence regarding explicit genital male representations in portable art made in Europe approximately 38,000 to 11,000 years ago with special emphasis on decorations suggesting genital ornamentation. Archaeological evidence that has survived to our day includes 42 phallic pieces, of which 30 (71.4%) show intentional marks to a different extent with a probable decorative purpose. Of these ornamental elements 18 (60%) were recovered from the upper Magdalenian period (11,000 to 12,700 years ago) in France and Spain, and 23 (76.7%) belong to the category of perforated batons. Decorations show lines (70% of objects), plaques (26.7%), dots/holes (23.3%) or even human/animal forms (13.3%). These designs most probably represent skin scarification, cutting, piercing and tattooing. Notably there are some technical similarities between the motifs represented and some designs present in symbolic cave wall art. This evidence may show the anthropological origin of current male genital piercing and tattooing. European Paleolithic art shows decoration explicitly represented in a high proportion of portable art objects with a phallic form that have survived to our day. Decorative rituals of male genital tattooing, piercing and scarification may have been practiced during Paleolithic times. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Is chronic nipple piercing associated with hyperprolactinemia?
Sun, Grace E Ching; Pantalone, Kevin M; Gupta, Manjula; Kennedy, Laurence; Nasr, Christian; Constantiner, Marigel; Hamrahian, Amir H; Hatipoglu, Betul
2013-09-01
Literature on hyperprolactinemia in the setting of a nipple piercing is limited to individuals with concomitant breast/chest wall infection. It is unclear if chronic nipple stimulation from a piercing alone can cause sustained elevations of serum prolactin. Nipple piercing is emerging as a more mainstream societal form of body art, and the answer to this clinical question would potentially alter patient management. Our aim was to assess serum prolactin levels in subjects with nipple piercing. Inclusion criteria were as follows: men and women ≥ 18 years old with nipple piercing(s) present > 6 months. Exclusion criteria included: women who are pregnant, lactating or < 6 months postpartum; subjects on medications known to increase prolactin levels; chest wall/breast infection at the time of phlebotomy or conditions known to be associated with hyperprolactinemia. Three men and eight women were enrolled. Median (range) ages for men and women were 33 (24-42) and 27 years (23-42), respectively. All except one subject had bilateral piercings. The median interval from nipple piercing to blood draw was 4.0 (2.0-12.0) years. None of the subjects had hyperprolactinemia. Median (range) prolactin levels for men and women were 5.6 ng/mL (3.8-7.4) and 8.0 ng/mL (2.8-10.9), respectively. Our results suggest that in the absence of any concomitant infection, chronic nipple piercing is not associated with hyperprolactinemia.
Cytotoxicity due to corrosion of ear piercing studs.
Rogero, S O; Higa, O Z; Saiki, M; Correa, O V; Costa, I
2000-12-01
It is well known that allergic and/or inflammatory reactions can be elicited from the use of gold-coated studs, particularly the type used for piercing ears, since they are left in contact with body fluids until the puncture heals. Inasmuch as gold is known as a non-toxic element, other elements of the substrate material may be responsible for some allergies. Therefore, characteristics of the coating, such as defects that expose the substrate to the human skin or body fluids, play an important role in the development of skin sensitization. In this study, the cytotoxicity of commercial studs used for ear piercing and laboratory-made studs was determined in a culture of mammalian cells. The corrosion performance of the studs was investigated by means of weight loss measurements and electrochemical impedance spectroscopy. The elements that leached out into the medium were also analysed by instrumental neutron activation analysis. Further, the surfaces of the studs were examined by scanning electron microscopy and analysed by energy dispersive spectroscopy to identify defects and reaction products on the surface, both before and after their exposure to the culture medium. The stud which showed lower corrosion performance resulted in higher cytotoxicity. Ti showed no cytotoxicity and high corrosion resistance, proving to be a potential material for the manufacture of ear piercing studs.
Diode Laser Ear Piercing: A Novel Technique.
Suseela, Bibilash Babu; Babu, Preethitha; Chittoria, Ravi Kumar; Mohapatra, Devi Prasad
2016-01-01
Earlobe piercing is a common office room procedure done by a plastic surgeon. Various methods of ear piercing have been described. In this article, we describe a novel method of laser ear piercing using the diode laser. An 18-year-old female patient underwent an ear piercing using a diode laser with a power of 2.0 W in continuous mode after topical local anaesthetic and pre-cooling. The diode laser was fast, safe, easy to use and highly effective way of ear piercing. The advantages we noticed while using the diode laser over conventional methods were more precision, minimal trauma with less chances of hypertrophy and keloids, no bleeding with coagulation effect of laser, less time taken compared to conventional method and less chance of infection due to thermal heat effect of laser.
30 CFR 77.1002 - Box cuts; spoil material placement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Box cuts; spoil material placement. 77.1002 Section 77.1002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Ground Control § 77.1002 Box cuts; spoil material placement. When box cuts are made...
30 CFR 77.1002 - Box cuts; spoil material placement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Box cuts; spoil material placement. 77.1002 Section 77.1002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Ground Control § 77.1002 Box cuts; spoil material placement. When box cuts are made...
... weeks. Then you can start enjoying your pierced ears again! Reviewed by: Steven Dowshen, MD Date reviewed: September ... All information on KidsHealth® is for educational purposes only. For specific medical advice, diagnoses, and treatment, ...
Aqueous cutting fluid for machining fissionable materials
Duerksen, Walter K.; Googin, John M.; Napier, Jr., Bradley
1984-01-01
The present invention is directed to a cutting fluid for machining fissionable material. The cutting fluid is formed of glycol, water and boron compound in an adequate concentration for effective neutron attenuation so as to inhibit criticality incidents during machining.
NASA Astrophysics Data System (ADS)
Yilbas, Bekir Sami; Shaukat, Mian Mobeen; Ashraf, Farhan
2017-08-01
Laser cutting of various materials including Ti-6Al-4V alloy, steel 304, Inconel 625, and alumina is carried out to assess the kerf width size variation along the cut section. The life cycle assessment is carried out to determine the environmental impact of the laser cutting in terms of the material waste during the cutting process. The kerf width size is formulated and predicted using the lump parameter analysis and it is measured from the experiments. The influence of laser output power and laser cutting speed on the kerf width size variation is analyzed using the analytical tools including scanning electron and optical microscopes. In the experiments, high pressure nitrogen assisting gas is used to prevent oxidation reactions in the cutting section. It is found that the kerf width size predicted from the lump parameter analysis agrees well with the experimental data. The kerf width size variation increases with increasing laser output power. However, this behavior reverses with increasing laser cutting speed. The life cycle assessment reveals that material selection for laser cutting is critical for the environmental protection point of view. Inconel 625 contributes the most to the environmental damages; however, recycling of the waste of the laser cutting reduces this contribution.
The ins and outs of body piercing.
Larkin, Brenda G
2004-02-01
PATIENTS WITH BODY PIERCINGS present a challenge for today's perioperative nurses. The need to prepare these patients for surgery while promoting safety, preserving body image, and respecting cultural values has gone beyond the routine practice of jewelry removal. BODY ART (ie, tattooing, piercing) has been practiced by men, women, and children from ancient times to the present. It was used then, as it is now, for many purposes, including personal expression, rite of passage, and fashion trends. THE EXPANDING POPULARITY of body piercing increases the likelihood that patients will arrive for surgery with body jewelry in place. This article provides perioperative nurses with the proper tools to deliver culturally sensitive care to patients with body piercings.
Lasers in Materials Processing
NASA Astrophysics Data System (ADS)
Kukreja, L. M.; Paul, C. P.; Kumar, Atul; Kaul, R.; Ganesh, P.; Rao, B. T.
Laser is undoubtedly one of the most important inventions of the twentieth century. Today, it is widely deployed for a cornucopia of applications including materials processing. Different lasers such as CO2, Nd:YAG, excimer, copper vapor, diode, fiber lasers, etc., are being used extensively for various materials processing applications like cutting, welding, brazing, surface treatment, peening, and rapid manufacturing by adopting conventional and unconventional routes with unprecedented precision. In view of its potential for providing solution to the emerging problems of the industrial materials processing and manufacturing technologies, a comprehensive program on laser materials processing and allied technologies was initiated at our laboratory. A novel feature-based design and additive manufacturing technologies facilitated the laser rapid manufacturing of complex engineering components with superior performance. This technology is being extended for the fabrication of anatomically shaped prosthetics with internal heterogeneous architectures. Laser peening of spring steels brought significant improvement in its fatigue life. Laser surface treatments resulted in enhanced intergranular corrosion resistance of AISI 316(N) and 304 stainless steel. Parametric dependence of laser welding of dissimilar materials, AISI 316M stainless steel with alloy D9, was established for avoiding cracks under optimum processing conditions. In the domain of laser cutting and piercing, the development of a power ramped pulsed mode with high pulse repetition frequency and low duty cycle scheme could produce highly circular, narrow holes with minimum spattered pierced holes. A review of these experimental and some theoretical studies is presented and discussed in this chapter. These studies have provided deeper insight of fascinating laser-based materials processing application for industrial manufacturing technologies.
Engineering the shape and structure of materials by fractal cut.
Cho, Yigil; Shin, Joong-Ho; Costa, Avelino; Kim, Tae Ann; Kunin, Valentin; Li, Ju; Lee, Su Yeon; Yang, Shu; Han, Heung Nam; Choi, In-Suk; Srolovitz, David J
2014-12-09
In this paper we discuss the transformation of a sheet of material into a wide range of desired shapes and patterns by introducing a set of simple cuts in a multilevel hierarchy with different motifs. Each choice of hierarchical cut motif and cut level allows the material to expand into a unique structure with a unique set of properties. We can reverse-engineer the desired expanded geometries to find the requisite cut pattern to produce it without changing the physical properties of the initial material. The concept was experimentally realized and applied to create an electrode that expands to >800% the original area with only very minor stretching of the underlying material. The generality of our approach greatly expands the design space for materials so that they can be tuned for diverse applications.
Modified soldering iron speeds cutting of synthetic materials
NASA Technical Reports Server (NTRS)
Schafer, W. G., Jr.
1966-01-01
Modified soldering iron cuts large lots of synthetic materials economically without leaving frayed or jagged edges. The soldering iron is modified by machining an axial slot in its heating element tip and mounting a cutting disk in it. An alternate design has an axially threaded bore in the tip to permit the use of various shapes of cutting blades.
The Methodology of Calculation of Cutting Forces When Machining Composite Materials
NASA Astrophysics Data System (ADS)
Rychkov, D. A.; Yanyushkin, A. S.
2016-08-01
Cutting of composite materials has specific features and is different from the processing of metals. When this characteristic intense wear of the cutting tool. An important criterion in the selection process parameters composite processing is the value of the cutting forces, which depends on many factors and is determined experimentally, it is not always appropriate. The study developed a method of determining the cutting forces when machining composite materials and the comparative evaluation of the calculated and actual values of cutting forces. The methodology for calculating cutting forces into account specific features of the cutting tool and the extent of wear, the strength properties of the processed material and cutting conditions. Experimental studies conducted with fiberglass milling cutter equipped with elements of hard metal VK3M. The discrepancy between the estimated and the actual values of the cutting force is not more than 10%.
Diamond- cBN alloy: A universal cutting material
Wang, Pei; He, Duanwei; Wang, Liping; ...
2015-09-08
Diamond and cubic boron nitride ( cBN) as conventional superhard materials have found widespread industrial applications, but both have inherent limitations. Diamond is not suitable for high-speed cutting of ferrous materials due to its poor chemical inertness, while cBN is only about half as hard as diamond. Because of their affinity in structural lattices and covalent bonding character, diamond and cBN could form alloys that can potentially fill the performance gap. However, the idea has never been demonstrated because samples obtained in the previous studies were too small to be tested for their practical performance. Here, we report the synthesismore » and characterization of transparent bulk diamond- cBN alloy compacts whose diameters (3 mm) are sufficiently large for them to be processed into cutting tools. The testing results show that the diamond- cBN alloy has superior chemical inertness over polycrystalline diamond and higher hardness than single crystal cBN. In conclusion, high-speed cutting tests on hardened steel and granite suggest that diamond- cBN alloy is indeed a universal cutting material.« less
Diamond-cBN alloy: A universal cutting material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pei; High Pressure Science and Engineering Center and Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, Nevada 89154; He, Duanwei, E-mail: duanweihe@scu.edu.cn
Diamond and cubic boron nitride (cBN) as conventional superhard materials have found widespread industrial applications, but both have inherent limitations. Diamond is not suitable for high-speed cutting of ferrous materials due to its poor chemical inertness, while cBN is only about half as hard as diamond. Because of their affinity in structural lattices and covalent bonding character, diamond and cBN could form alloys that can potentially fill the performance gap. However, the idea has never been demonstrated because samples obtained in the previous studies were too small to be tested for their practical performance. Here, we report the synthesis andmore » characterization of transparent bulk diamond-cBN alloy compacts whose diameters (3 mm) are sufficiently large for them to be processed into cutting tools. The testing results show that the diamond-cBN alloy has superior chemical inertness over polycrystalline diamond and higher hardness than single crystal cBN. High-speed cutting tests on hardened steel and granite suggest that diamond-cBN alloy is indeed a universal cutting material.« less
Diamond- cBN alloy: A universal cutting material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pei; He, Duanwei; Wang, Liping
Diamond and cubic boron nitride ( cBN) as conventional superhard materials have found widespread industrial applications, but both have inherent limitations. Diamond is not suitable for high-speed cutting of ferrous materials due to its poor chemical inertness, while cBN is only about half as hard as diamond. Because of their affinity in structural lattices and covalent bonding character, diamond and cBN could form alloys that can potentially fill the performance gap. However, the idea has never been demonstrated because samples obtained in the previous studies were too small to be tested for their practical performance. Here, we report the synthesismore » and characterization of transparent bulk diamond- cBN alloy compacts whose diameters (3 mm) are sufficiently large for them to be processed into cutting tools. The testing results show that the diamond- cBN alloy has superior chemical inertness over polycrystalline diamond and higher hardness than single crystal cBN. In conclusion, high-speed cutting tests on hardened steel and granite suggest that diamond- cBN alloy is indeed a universal cutting material.« less
Experimental analysis of Nd-YAG laser cutting of sheet materials - A review
NASA Astrophysics Data System (ADS)
Sharma, Amit; Yadava, Vinod
2018-01-01
Cutting of sheet material is considered as an important process due to its relevance among products of everyday life such as aircrafts, ships, cars, furniture etc. Among various sheet cutting processes (ASCPs), laser beam cutting is one of the most capable ASCP to create complex geometries with stringent design requirements in difficult-to-cut sheet materials. Based on the recent research work in the area of sheet cutting, it is found that the Nd-YAG laser is used for cutting of sheet material in general and reflective sheet material in particular. This paper reviews the experimental analysis of Nd-YAG laser cutting process, carried out to study the influence of laser cutting parameters on the process performance index. The significance of experimental modeling and different optimization approaches employed by various researchers has also been discussed in this study.
Self-reported characteristics of women and men with intimate body piercings.
Caliendo, Carol; Armstrong, Myrna L; Roberts, Alden E
2005-03-01
The purpose of this paper is to report the findings of a study exploring factors associated with female and male intimate body piercing, with particular emphasis on health issues. Nipple and genital piercings (intimate piercings) have become common types of body art. Scant medical and nursing literature is available, leading to little understanding of these body modifications by health care providers. A convenience sample of intimately pierced individuals (63 women and 83 men) from 29 states in the United States of America was surveyed via an author-developed questionnaire. Questions focused on demographic characteristics, decision factors and health problems related to intimate piercings. Self-reported characteristics were compared between female and male participants, and participants were compared demographically to United States general population. Participants reported wearing nipple piercings (43%), genital piercings (25%) and both types (32%). Respondents were significantly younger, less ethnically diverse, better educated, less likely to be married, more often homosexual or bisexual and they initiated sexual activity at a younger age than the US population. Deliberate, individual decisions for procurement of the intimate piercings were made. Average purchase consideration was at age 25 (nipple) and 27 (genital); average age to obtain the piercing was 27 (nipple) and 28 (genital) years. Purposes for obtaining the piercings included uniqueness, self-expression and sexual expression. Most participants still liked their piercing (73-90%). Health concerns related to intimate piercings were described by both those with nipple piercings (66%) and with genital piercings (52%) and included site sensitivity, skin irritation, infection and change in urinary flow (male genital). Few STDs (3%) were reported and no HIV or hepatitis. Usually non-medical advice was sought for problems -- often from the body piercer. Understanding client rationale is not a necessary
The EPA is providing notice of a proposed Administrative Penalty Assessment against Pierce Lumber, Inc. (“Respondent”), located at 1629 13th Street, Belle Plaine, IA for alleged violations of its National Pollutant Discharge Elimination System permit (perm
Effect of Moisture Content of Paper Material on Laser Cutting
NASA Astrophysics Data System (ADS)
Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi; Salminen, Antti
Laser technology has been used in industrial processes for several decades. The most advanced development and implementation took place in laser welding and cutting of metals in automotive and ship building industries. However, there is high potential to apply laser processing to other materials in various industrial fields. One of these potential fields could be paper industry to fulfill the demand for high quality, fast and reliable cutting technology. Difficulties in industrial application of laser cutting for paper industry are associated to lack of basic information, awareness of technology and its application possibilities. Nowadays possibilities of using laser cutting for paper materials are widened and high automation level of equipment has made this technology more interesting for manufacturing processes. Promising area of laser cutting application at paper making machines is longitudinal cutting of paper web (edge trimming). There are few locations at a paper making machine where edge trimming is usually done: wet press section, calender or rewinder. Paper web is characterized with different moisture content at different points of the paper making machine. The objective of this study was to investigate the effect of moisture content of paper material on laser cutting parameters. Effect of moisture content on cellulose fibers, laser absorption and energy needed for cutting is described as well. Laser cutting tests were carried out using CO2 laser.
Hong, Bo-Kyung; Lee, Hyo Young
2017-01-01
Background: In recent years, increasing numbers of adults and adolescents have opted to undergo tattoo and piercing procedures. Studies among adolescents with tattoo and piercing have usually explored the relationship between one factor and the decision to have tattoos and/or piercings. The aim of this study was to determine relationships between body cosmetic procedures and selfesteem, propensity for sensation seeking, and risk behaviours among adults. Materials and Methods: The subjects were divided into two groups, i.e., those with (n=429) and those without tattoos/piercings (n=237), and self-esteem, propensity for sensation seeking, and risk behaviour were compared between the two groups using self-report questionnaires. To analyse differences in self-esteem and the propensity for sensation seeking, general characteristics were statistically adjusted. In addition, general characteristics, self-esteem, and propensity for sensation seeking were statistically adjusted to determine differences in the propensity for risk behaviour between the two groups. Results: Significant differences were observed in age, marital status, income level, occupation, values or sensitivity to fashion, and educational level between the group with and that without tattoos/ piercings. There was no significant difference in self-esteem, whereas there were significant differences in the propensity for sensation seeking and risk behaviour between the two groups. Conclusions: Continuous attention to, and interest in, the increased incidence of tattooing and piercing are necessary, especially in terms of public interventions for health education and health promotion, as these forms of self-adornment are associated with behaviours that pose a risk to health. Significance for public health The age range and occupations of people who undergo tattoo procedures have diversified with their increasing popularity as cosmetic procedures. This study investigated general characteristics of adults with
Wang, Bing; Liu, Zhanqiang; Hou, Xin; Zhao, Jinfu
2018-03-21
The paper aims to investigate the influences of material constitutive and fracture parameters in addition to cutting speed on chip formation during high-speed cutting of Inconel 718. Finite element analyses for chip formation are conducted with Johnson-Cook constitutive and fracture models. Meanwhile, experiments of high-speed orthogonal cutting are performed to verify the simulation results with cutting speeds ranging from 50 m/min to 7000 m/min. The research indicates that the chip morphology transforms from serrated to fragmented at the cutting speed of 7000 m/min due to embrittlement of the workpiece material under ultra-high cutting speeds. The parameter of shear localization sensitivity is put forward to describe the influences of material mechanical properties on serrated chip formation. The results demonstrate that the effects of initial yield stress and thermal softening coefficient on chip shear localization are much more remarkable than the other constitutive parameters. For the material fracture parameters, the effects of initial fracture strain and exponential factor of stress state on chip shear localization are more much prominent. This paper provides guidance for controlling chip formation through the adjustment of material mechanical properties and the selection of appropriate cutting parameters.
Hou, Xin; Zhao, Jinfu
2018-01-01
The paper aims to investigate the influences of material constitutive and fracture parameters in addition to cutting speed on chip formation during high-speed cutting of Inconel 718. Finite element analyses for chip formation are conducted with Johnson–Cook constitutive and fracture models. Meanwhile, experiments of high-speed orthogonal cutting are performed to verify the simulation results with cutting speeds ranging from 50 m/min to 7000 m/min. The research indicates that the chip morphology transforms from serrated to fragmented at the cutting speed of 7000 m/min due to embrittlement of the workpiece material under ultra-high cutting speeds. The parameter of shear localization sensitivity is put forward to describe the influences of material mechanical properties on serrated chip formation. The results demonstrate that the effects of initial yield stress and thermal softening coefficient on chip shear localization are much more remarkable than the other constitutive parameters. For the material fracture parameters, the effects of initial fracture strain and exponential factor of stress state on chip shear localization are more much prominent. This paper provides guidance for controlling chip formation through the adjustment of material mechanical properties and the selection of appropriate cutting parameters. PMID:29561770
Optimisation Of Cutting Parameters Of Composite Material Laser Cutting Process By Taguchi Method
NASA Astrophysics Data System (ADS)
Lokesh, S.; Niresh, J.; Neelakrishnan, S.; Rahul, S. P. Deepak
2018-03-01
The aim of this work is to develop a laser cutting process model that can predict the relationship between the process input parameters and resultant surface roughness, kerf width characteristics. The research conduct is based on the Design of Experiment (DOE) analysis. Response Surface Methodology (RSM) is used in this work. It is one of the most practical and most effective techniques to develop a process model. Even though RSM has been used for the optimization of the laser process, this research investigates laser cutting of materials like Composite wood (veneer)to be best circumstances of laser cutting using RSM process. The input parameters evaluated are focal length, power supply and cutting speed, the output responses being kerf width, surface roughness, temperature. To efficiently optimize and customize the kerf width and surface roughness characteristics, a machine laser cutting process model using Taguchi L9 orthogonal methodology was proposed.
Obituary: A. Keith Pierce, 1918 - 2005
NASA Astrophysics Data System (ADS)
Livingston, William Charles
2006-12-01
A. Keith Pierce was a solar astronomer who will be remembered for bringing the physics lab to the telescope and for his design of the world's largest solar telescope, the 1.5-meter McMath Telescope on Kitt Peak in Arizona. Born in Lincoln, Nebraska, he died of cancer in Tucson on 11 March 2005. He was eighty-six. His father, Tracy Pierce, had gone to graduate school in Berkeley, California, with a major in mathematics and a minor in astronomy. Fellow students of his class included Seth Nicholson and Donald Shane, people who were later to influence young Keith's life. Tracy Pierce received an appointment as an instructor, later Professor, of mathematics at the University of Nebraska in Lincoln. In his spare time dad Tracy became something of a telescope nut, following "the bible" —Albert Ingall's A.T.M (Amateur Telescope Making). His enthusiasm rubbed off on his son. Seth Nicholson, who became a famous Mt. Wilson Observatory astronomer, and Donald Shane from Berkeley, both stayed at the Pierce home while on their Sigma Xi lecture tours. After two years at Lincoln, followed by two more at Berkeley, Keith had earned his bachelor's degree in astronomy. During World War II, Dr. Shane became personnel director at the E.O. Lawrence Radiation Lab and arranged for Keith to work there at the cyclotron. A crash program to produce U235 from U238 was under way. At a crucial point in 1942 the cyclotron turned out the sought-after material. Much celebration ensued among the Rad Lab leaders. During this gala, Keith was on the night-shift and pretty much on his own. It was then that he turned a valve to the right, when left was called for, and the entire system went down. Shortly thereafter he was sent to Oak Ridge for the duration of the war. He cannot have been thought of badly, however, because he was invited to the Trinity test in New Mexico. (He didn't go because of the pending birth of his first son, John.) The year 1945 found Keith back in Berkeley working on his Ph
Smithsonian Marine Station (SMS) at Fort Pierce
Research Online Resources Get Involved Events Calendar NMNH Home Florida with star for Ft. Pierce RESEARCH Smithsonian Marine Station (SMS) at Fort Pierce, Florida is a research center specializing in marine biodiversity and ecosystems of Florida. Research focuses on the Indian River Lagoon and the offshore waters of
Effects of process parameters on friction self-piercing riveting of dissimilar materials
Liu, Xun; Lim, Yong Chae; Li, Yongbing; ...
2016-05-24
In the present work, a recently developed solid state joining technique, Friction self-piercing riveting (F-SPR), has been applied for joining high strength aluminum alloy AA7075-T6 to magnesium alloy AZ31B. The process was performed on a specially designed machine where the spindle can achieve the motion of sudden stop. Effects of rivet rotating rate and punch speed on axial plunge force, torque, joint microstructure and quality have been analyzed systematically. During F-SPR, higher rotating rate and slower punch speed can reduce axial force and torque, which correspondingly results in a slightly smaller interlock between rivet leg and joined materials. Improved localmore » flowability of both aluminum and magnesium alloys under a higher rotating speed results in a thicker aluminum layer surrounding the rivet leg, where formation of Al-Mg intermetallics was observed. Equivalent joint strength obtained in this study are higher than the yield strength of the AZ31 Mg alloy. One of the tensile failure modes is the rivet fracture, which is due to local softening of rivet leg from frictional heat. Lastly, other two failure modes include rivet pullout and shear through of bottom sheet.« less
Innovation Study for Laser Cutting of Complex Geometries with Paper Materials
NASA Astrophysics Data System (ADS)
Happonen, A.; Stepanov, A.; Piili, H.; Salminen, A.
Even though technology for laser cutting of paper materials has existed for over 30 years, it seems that results of applications of this technology and possibilities of laser cutting systems are not easily available. The aim of this study was to analyze the feasibility of the complex geometry laser cutting of paper materials and to analyze the innovation challenges and potential of current laser cutting technologies offer. This research studied the potential and possible challenges in applying CO2 laser cutting technology for cutting of paper materials in current supply chains trying to fulfil the changing needs of customer in respect of shape, fast response during rapid delivery cycle. The study is focused on examining and analyzing the different possibilities of laser cutting of paper material in application area of complex low volume geometry cutting. The goal of this case was to analyze the feasibility of the laser cutting from technical, quality and implementation points of view and to discuss availability of new business opportunities. It was noticed that there are new business models still available within laser technology applications in complex geometry cutting. Application of laser technology, in business-to-consume markets, in synergy with Internet service platforms can widen the customer base and offer new value streams for technology and service companies. Because of this, existing markets and competition has to be identified, and appropriate new and innovative business model needs to be developed. And to be competitive in the markets, models like these need to include the earning logic and the stages from production to delivery as discussed in the paper.
Apparatus and method for cutting soft materials, especially meat
Spletzer, Barry L.; Callow, Diane S.; Jones, James F.; Kuehl, Michael A.; Shaw, Dick L.; Scalia, Barbara J.
2005-10-18
An apparatus and method for cutting soft materials such as meat. Two or more spirally mounted helical blades are situated between two supports, and the supports are mounted to a shank. The shank is rotated to impart rotary action to the spiral shear blades, and the entire device may be used to perform various cutting operations. The distal or bottom one of the supports may also be a cutting blade, and a number of versions of bottom cutting blades are useable in the practice of the invention.
[Association between tattoos, piercings and risk behaviors in adolescents].
Cossio, María Laura T; Giesen, Laura F; Araya, Gabriela; Pérez-Cotapos, María Luisa S
2012-02-01
The use of tattoos and piercings has increased, especially among adolescents in the last decades. To evaluate the prevalence of these behaviors in adolescents and their association with risk behaviors such as alcohol, tobacco and illicit drug use and sexual promiscuity. An anonymous and confidential survey about tattooing and piercings was applied to randomly selected high school teenagers, attending municipal, private-subsidized and private schools, in four sectors of Santiago (north-east, south-east, north-west, south-west). The surveys were answered by 1329 participants with a mean age of 15 years (62% women) from 9 schools in Santiago. The prevalence of tattoos was 1.7% (confidence intervals (CI) 1.1% to 2.5%). The figure for piercings was 30.6% (CI 28.2 to 33.1%). A higher prevalence of tattooing and piercings was observed in groups with a history of psychiatric disorders, criminal records, alcohol, tobacco and illicit drug consumption and initiation of sexual activity (p < 0,001). This study confirms that tattoos and piercings are indicators of adolescent risk behaviors.
Dental and periodontal complications of lip and tongue piercing: prevalence and influencing factors.
Plessas, A; Pepelassi, E
2012-03-01
The aim of this study was to compare the prevalence of lip and tongue piercing complications and explore the effect of ornament time wear period, habits, ornament morphology and periodontal biotype on the development of complications. One hundred and ten subjects with 110 lip and 51 tongue piercings were assessed for abnormal toothwear and/or tooth chipping/cracking (dental defects), gingival recession, clinical attachment loss and probing depth of teeth adjacent to the pierced site. Piercing habits (biting, rolling, stroking, sucking) were recorded. Wear time and habits significantly affected the prevalence of dental defects and gingival recession. Pierced site significantly affected dental defects prevalence, with greater prevalence for tongue than lip piercing. Wear time significantly affected attachment loss and probing depth. Attachment loss and probing depth did not significantly differ between tongue and lip piercings. Gingival recession was significantly associated with ornament height closure and stem length of tongue ornaments. Periodontal biotype was not significantly associated with gingival recession, attachment loss and probing depth. Dental defects prevalence is greater for tongue than lip piercing. Gingival recession is similar for tongue and lip piercing. Longer wear time of tongue and lip piercing is associated with greater prevalence of dental defects and gingival recession, as well as greater attachment loss and probing depth of teeth adjacent to pierced sites. Ornament morphology affects gingival recession prevalence. © 2012 Australian Dental Association.
A cutting-edge solution for 1µm laser metal processing
NASA Astrophysics Data System (ADS)
Baumbach, N.; Kühl, P.; Karam, J.; Jonkers, J.; Villarreal-Saucedo, F.; Reyes, M.
2017-02-01
The recent 1μm-laser cutting market is dominated by fiber and disk lasers due to their excellent beam quality of below 4mm*mrad. Teradiode's 4kW direct diode laser source achieves similar beam quality while having a different beam shape and shorter wavelengths which are known for higher absorption rates at the inclined front of the cutting keyhole. Research projects, such as the HALO Project, have additionally shown that polarized radiation and beams with shapes different from the typical LG00 lead to improved cut quality for ferrous and non-ferrous metals. [1] Diode laser have the inherent property of not being sensitive to back reflection which brings advantages in cutting high-reflective materials. The II-VI HIGHYAG laser cutting head BIMO-FSC offers the unique feature of machine controlled and continuous adjustment of both the focus diameter and the focus position. This feature is proven to be beneficial for cutting and piercing with high speed and small hole diameters. In addition, the optics are designed for lowest focus shift. As a leading laser processing head manufacturer, II-VI HIGHYAG qualified its BIMO-FSC MZ (M=magnification, Z=focus position) cutting head for Teradiode's 4kW direct diode laser source to offer a cutting-edge solution for highpower laser cutting. Combining the magnification ability of the cutting head with this laser source, customers experience strong advantages in cutting metals in broad thickness ranges. Thicknesses up to 25mm mild steel can easily be cut with excellent edge quality. Furthermore, a new optical setup equivalent to an axicon with a variable axicon angle is demonstrated which generates variable sized ring spots. The setup provides new degrees of freedom to tailor the energy distribution for even higher productivity and quality.
Tattoos, piercing, and sexual behaviors in young adults.
Nowosielski, Krzysztof; Sipiński, Adam; Kuczerawy, Ilona; Kozłowska-Rup, Danuta; Skrzypulec-Plinta, Violetta
2012-09-01
Body piercing and tattooing are accepted by a growing number of teenagers and young adults as a way of self-expressing. Some authors suggest association between body piercings/tattoos and early sexual initiation, higher number of sexual partners, or risky sexual behaviors. The aim of the study was to evaluate sexual behaviors among young adults with body modifications (BMs)--tattoos and piercings. One hundred twenty young healthy adults, ages between 20 and 35, were included in the population study. The study group was divided into three subgroups: controls (N = 60), adults with tattoos (N = 28), and adults with piercings (N = 32). The research instrument was a self-prepared questionnaire containing 59 questions assessing socioepidemiological parameters, sexual behaviors, incidents of sexual harassment in the past, and self-attractiveness evaluation, as well as questions concerning tattoos and piercings. Socioepidemiological variables and sexual behaviors were compared between subgroups. To assess and describe the correlation between having BM--tattoos and piercing--and sexual behaviors in the population of young adults by using the logistic regression model. Adults with BMs have had their first intercourse statistically earlier and were more sexually active compared with controls. There were no statically significant differences in sexual orientation, sexual preferences, engaging in risky sexual behaviors, frequency of masturbation, and history of sexual abuse between the groups. In contrast, the frequency of sexual intercourses was statistically higher and oral sex was more likely to be a dominant sexual activity in adults with BM compared with controls. The multivariate logistic model revealed that adults with BM were four times less likely to participate in religious practices and twice more likely to have early sexual initiation. Having BM is associated with early sexual initiation and more liberal attitudes toward sexual behaviors but not with engaging in
Breast abscess after nipple piercing: sonographic findings with clinical correlation.
Leibman, A Jill; Misra, Monika; Castaldi, Maria
2011-09-01
The purpose of this series was to review the spectrum of clinical and sonographic features associated with infection after nipple piercing. Between 2002 and 2010, 6 patients presented to our breast center with a breast abscess after nipple piercing. A retrospective analysis of the imaging findings was performed with clinical and pathologic correlation. Patients with breast infections after nipple piercing tend to be young, and the timing since piercing varies from 2 weeks to 17 months. Sonography showed a complex or hypoechoic mass in 5 of 6 patients. Treatment of breast abscesses included surgical incision and drainage, percutaneous drainage, and antibiotic therapy. Surgical evacuation is commonly performed; however, sonographically guided aspiration may be an appropriate management strategy.
Cutting of optical materials by using femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Nolte, Stefan; Will, Matthias; Augustin, Markus; Triebel, Peter; Zoellner, Karsten; Tuennermann, Andreas
2001-11-01
In the past years, ultrashort pulse lasers have been established as precise and universal tools for the microstructuring of solid materials. Since thermal and mechanical influences are minimized, the application of this technology is also suitable for the structuring of optical materials and opens new possibilities. In this paper, the influence of pulse duration, pulse energy (fluence) and polarization on the cutting quality for glass and silicon will be discussed. As a concrete application, the cutting and micromarking of dielectric coated mirrors for high power fiber lasers will be highlighted.
Prediction Of The Fracture Due To Mannesmann Effect In Tube Piercing
NASA Astrophysics Data System (ADS)
Fanini, S.; Ghiotti, A.; Bruschi, S.
2007-05-01
Mannesmann piercing process is a well-known hot rolling process used for seamless tube production. Its special feature is the so-called Mannesmann effect, that is the cavity formation in the center of the cylindrical billet and its propagation along the axis due to stress state caused by the rolls in the early stages of the process. The cavity is then expanded and sized in its internal diameter by an incoming plug. The industrial requirement is to know quite precisely the characteristics of the cavity especially in terms of its location along the billet axis in order to minimize the plug wear and the oxidation of the pierced bar. However, the scientific knowledge about the fracture mechanism leading to the Mannesmann effect is still limited, even if several theories have been proposed; this lack makes the design and optimization of the process through numerical simulations still a challenging task. The aim of this work is then to develop a suitably calibrated FE model of the piercing process in its first stage before the plug arrival, in order to investigate the Mannesmann effect using different damage criteria. Hot tensile tests, capable to reproduce the industrial conditions in terms of temperature, strain rate, and stress states, are carried out to investigate the material workability and to determine the parameters of the damage models on specimens machined from continuous-casting steel billets. The calculated parameters are implemented in the numerical model of the process and a sensitivity analysis to the different criteria is carried out, comparing numerical results with non-plug piercing tests conducted in the industrial plant.
Computer-aided analysis of cutting processes for brittle materials
NASA Astrophysics Data System (ADS)
Ogorodnikov, A. I.; Tikhonov, I. N.
2017-12-01
This paper is focused on 3D computer simulation of cutting processes for brittle materials and silicon wafers. Computer-aided analysis of wafer scribing and dicing is carried out with the use of the ANSYS CAE (computer-aided engineering) software, and a parametric model of the processes is created by means of the internal ANSYS APDL programming language. Different types of tool tip geometry are analyzed to obtain internal stresses, such as a four-sided pyramid with an included angle of 120° and a tool inclination angle to the normal axis of 15°. The quality of the workpieces after cutting is studied by optical microscopy to verify the FE (finite-element) model. The disruption of the material structure during scribing occurs near the scratch and propagates into the wafer or over its surface at a short range. The deformation area along the scratch looks like a ragged band, but the stress width is rather low. The theory of cutting brittle semiconductor and optical materials is developed on the basis of the advanced theory of metal turning. The fall of stress intensity along the normal on the way from the tip point to the scribe line can be predicted using the developed theory and with the verified FE model. The crystal quality and dimensions of defects are determined by the mechanics of scratching, which depends on the shape of the diamond tip, the scratching direction, the velocity of the cutting tool and applied force loads. The disunity is a rate-sensitive process, and it depends on the cutting thickness. The application of numerical techniques, such as FE analysis, to cutting problems enhances understanding and promotes the further development of existing machining technologies.
Cseke, Akos; Heinemann, Robert
2018-01-01
The research presented in this paper investigated the effects of spindle speed and feed rate on the resultant cutting forces (thrust force and torque) and temperatures while drilling SawBones ® biomechanical test materials and cadaveric cortical bone (bovine and porcine femur) specimens. It also investigated cortical bone anisotropy on the cutting forces, when drilling in axial and radial directions. The cutting forces are only affected by the feed rate, whereas the cutting temperature in contrast is affected by both spindle speed and feed rate. The temperature distribution indicates friction as the primary heat source, which is caused by the rubbing of the tool margins and the already cut chips over the borehole wall. Cutting forces were considerably higher when drilling animal cortical bone, in comparison to cortical test material. Drilling direction, and therewith anisotropy, appears to have a negligible effect on the cutting forces. The results suggest that this can be attributed to the osteons being cut at an angle rather than in purely axial or radial direction, as a result of a twist drill's point angle. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Avoiding Infection After Ear Piercing
... in fact, some piercing instruments themselves can put the gold posts in place at the same time, thus ... probing that can increase the chance of infection. The gold in the posts will reduce the risk of ...
About Us: Smithsonian Marine Station (SMS) at Fort Pierce
Smithsonian Marine Station at Fort Pierce Website Search Box Search Field: SMS Website Search [PDF] SMS Home ⺠About Us About Us Mission Statement The overall mission of the Smithsonian Marine Station at Fort Pierce is support and conduct of scholarly research in the marine sciences, including
The chemo-mechanical effect of cutting fluid on material removal in diamond scribing of silicon
NASA Astrophysics Data System (ADS)
Kumar, Arkadeep; Melkote, Shreyes N.
2017-07-01
The mechanical integrity of silicon wafers cut by diamond wire sawing depends on the damage (e.g., micro-cracks) caused by the cutting process. The damage type and extent depends on the material removal mode, i.e., ductile or brittle. This paper investigates the effect of cutting fluid on the mode of material removal in diamond scribing of single crystal silicon, which simulates the material removal process in diamond wire sawing of silicon wafers. We conducted scribing experiments with a diamond tipped indenter in the absence (dry) and in the presence of a water-based cutting fluid. We found that the cutting mode is more ductile when scribing in the presence of cutting fluid compared to dry scribing. We explain the experimental observations by the chemo-mechanical effect of the cutting fluid on silicon, which lowers its hardness and promotes ductile mode material removal.
Breast abscess following nipple piercing: a case report and review of the literature.
Kapsimalakou, Smaragda; Grande-Nagel, Isabell; Simon, Martin; Fischer, Dorothea; Thill, Marc; Stöckelhuber, Beate M
2010-12-01
Nipple piercing gains popularity and social acceptance within the last years, especially among young people. The medical literature reports an increase of complications in the post-piercing period. We report a case of a young woman, who presented with a light enlargement of the right breast and tenderness in the retroareolar region following nipple piercing 5 months ago. On ultrasound, a poorly marginated hypoechoic lesion was seen which was suspicious of an inflammation. After 1 week of antibiotic therapy, the mass had enlarged. As carcinoma could not be excluded, open biopsy was performed. Histology showed signs of chronic mastitis. To date, only a few reports of breast abscess after nipple piercing have been published. With the increasing prevalence of body piercing, it is important to document and report infections which may be discovered many months following piercing. Carcinoma can mimic breast abscess and should be included in the differential diagnosis.
Laser cutting plastic materials
NASA Astrophysics Data System (ADS)
Vancleave, R. A.
1980-08-01
A 1000 watt CO2 laser was demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics were laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass reinforced laminates, Kevlar/epoxy composites, fiberglass reinforced phenolics, nylon/epoxy laminates, ceramics, and disposal tooling made from acrylic.
27 CFR 478.148 - Armor piercing ammunition intended for sporting or industrial purposes.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Armor piercing ammunition... AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION Exemptions, Seizures, and Forfeitures § 478.148 Armor piercing ammunition intended for sporting or industrial purposes. The Director may exempt certain armor piercing...
27 CFR 478.148 - Armor piercing ammunition intended for sporting or industrial purposes.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Armor piercing ammunition... AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION Exemptions, Seizures, and Forfeitures § 478.148 Armor piercing ammunition intended for sporting or industrial purposes. The Director may exempt certain armor piercing...
27 CFR 478.148 - Armor piercing ammunition intended for sporting or industrial purposes.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Armor piercing ammunition... AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION Exemptions, Seizures, and Forfeitures § 478.148 Armor piercing ammunition intended for sporting or industrial purposes. The Director may exempt certain armor piercing...
27 CFR 478.148 - Armor piercing ammunition intended for sporting or industrial purposes.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Armor piercing ammunition... AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION Exemptions, Seizures, and Forfeitures § 478.148 Armor piercing ammunition intended for sporting or industrial purposes. The Director may exempt certain armor piercing...
An Integrated Finite Element-based Simulation Framework: From Hole Piercing to Hole Expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Xiaohua; Sun, Xin; Golovashchenko, Segey F.
An integrated finite element-based modeling framework is developed to predict the hole expansion ratio (HER) of AA6111-T4 sheet by considering the piercing-induced damages around the hole edge. Using damage models and parameters calibrated from previously reported tensile stretchability studies, the predicted HER correlates well with experimentally measured HER values for different hole piercing clearances. The hole piercing model shows burrs are not generated on the sheared surface for clearances less than 20%, which corresponds well with the experimental data on pierced holes cross-sections. Finite-element-calculated HER also is not especially sensitive to piercing clearances less than this value. However, as clearancesmore » increase to 30% and further to 40%, the HER values are predicted to be considerably smaller, also consistent with experimental measurements. Upon validation, the integrated modeling framework is used to examine the effects of different hole piercing and hole expansion conditions on the critical HERs for AA6111-T4.« less
SAW parameters on Y-cut langasite structured materials.
Puccio, Derek; Malocha, Donald C; Saldanha, Nancy; da Cunha, Mauricio Pereira
2007-09-01
This paper presents results and investigations of several new, man-made piezoelectric single crystal, Czochralski-grown substrate materials for surface acoustic waves (SAW) applications. These materials, langanite (LGN), langatate (LGT), Sr3TaGa3Si2O14 (STGS), Sr3NbGa3Si2O14 (SNGS), Ca3TaGa3Si2O14 (CTGS), and Ca3NbGa3Si2O14 (CNGS), have the same structure as langasite (LGS) and are of the same crystal class as quartz. These compounds are denser than quartz, resulting in lower phase velocities. They also have higher coupling. Unlike quartz and lithium niobate, there is no degradation of material properties below the material melting points resulting in the possibility of extreme high-temperature operation (> 1000 degrees C). This paper gives a summary of extracted SAW material parameters for various propagation angles on Y-cut substrates of the six materials. Parameters included are electromechanical coupling, phase velocity, transducer capacitance, metal strip reflectivity, and temperature coefficient of frequency. Using previously published fundamental material constants, extracted parameters are compared with predictions for LGT and LGN. In addition, power flow angle and fractional frequency curvature data are reported for propagation angles on CTGS and CNGS Y-cut substrates that exhibit temperature compensation near room temperature. Detailed descriptions of the SAW parameter extraction techniques are given. A discussion of the results is provided, including a comparison of extracted parameters and an overview of possible SAW applications.
Junco, Pilar; Barrios, Rocío; Ruiz, María José; Bravo, Manuel
2017-10-01
Oral piercing can lead to complications and dentists are in a unique position to detect such complications. The purpose of this study was: (i) to assess the immediate and the long-term effects, on dental students, of a training programme about oral piercing knowledge; and (ii) to assess the immediate effect, on adolescents, of a single educational intervention session about oral piercing. A training programme for dental students (n = 66) was carried out in three phases. The last phase consisted of preparing and giving talks about oral piercing at schools, which was delivered by a random selection of dental students involved in the training programme. Dental students answered a questionnaire about oral piercing knowledge, before, immediately after (only the dental students included in the last phase) and 12 months after the training programme. Adolescents (n = 347) answered a survey about oral piercing knowledge before and after the talks. There were statistically significant differences in all comparison groups, except for the results in the 'before intervention' and in the '12 months after intervention' groups among dental students who had not prepared and given the talks to adolescents. Knowledge about oral piercing significantly improved among adolescents when comparing results before (mean questionnaire score = 3.0) and after (mean questionnaire score = 6.2) the talks. Oral piercing educational intervention had a favourable impact on adolescents and dental students, particularly among those who were more involved in the learning process. © 2017 FDI World Dental Federation.
Tattoos and Piercings: Attitudes, Behaviors, and Interpretations of College Students
ERIC Educational Resources Information Center
Horne, Jenn; Knox, David; Zusman, Jane; Zusman, Marty E.
2007-01-01
Previously, in those segments of America where "proper" behavior was valued, tattoos and body piercings were examples of what Goffman identified as "stigma"--they spoiled one's identity. Today, tattoos and piercings have become more mainstream. This study reports the survey of 400 undergraduates at a large southeastern university. Regarding…
Implementation Analysis of Cutting Tool Carbide with Cast Iron Material S45 C on Universal Lathe
NASA Astrophysics Data System (ADS)
Junaidi; hestukoro, Soni; yanie, Ahmad; Jumadi; Eddy
2017-12-01
Cutting tool is the tools lathe. Cutting process tool CARBIDE with Cast Iron Material Universal Lathe which is commonly found at Analysiscutting Process by some aspects numely Cutting force, Cutting Speed, Cutting Power, Cutting Indication Power, Temperature Zone 1 and Temperatur Zone 2. Purpose of this Study was to determine how big the cutting Speed, Cutting Power, electromotor Power,Temperatur Zone 1 and Temperatur Zone 2 that drives the chisel cutting CARBIDE in the Process of tur ning Cast Iron Material. Cutting force obtained from image analysis relationship between the recommended Component Cuting Force with plane of the cut and Cutting Speed obtained from image analysis of relationships between the recommended Cutting Speed Feed rate.
PIERCE1 is critical for specification of left-right asymmetry in mice.
Sung, Young Hoon; Baek, In-Jeoung; Kim, Yong Hwan; Gho, Yong Song; Oh, S Paul; Lee, Young Jae; Lee, Han-Woong
2016-06-16
The specification of left-right asymmetry of the visceral organs is precisely regulated. The earliest breakage of left-right symmetry occurs as the result of leftward flow generated by asymmetric beating of nodal cilia, which eventually induces asymmetric Nodal/Lefty/Pitx2 expression on the left side of the lateral plate mesoderm. PIERCE1 has been identified as a p53 target gene involved in the DNA damage response. In this study, we found that Pierce1-null mice exhibit severe laterality defects, including situs inversus totalis and heterotaxy with randomized situs and left and right isomerisms. The spectrum of laterality defects was closely correlated with randomized expression of Nodal and its downstream genes, Lefty1/2 and Pitx2. The phenotype of Pierce1-null mice most closely resembled that of mutant mice with impaired ciliogenesis and/or ciliary motility of the node. We also found the loss of asymmetric expression of Cerl2, the earliest flow-responding gene in the node of Pierce1-null embryos. The results suggest that Pierce1-null embryos have defects in generating a symmetry breaking signal including leftward nodal flow. This is the first report implicating a role for PIERCE1 in the symmetry-breaking step of left-right asymmetry specification.
Adjustable knife cuts honeycomb material to specified depth
NASA Technical Reports Server (NTRS)
Rauschl, J. A.
1966-01-01
Calibrated, adjustable knife cuts aluminum honeycomb or other soft materials to a desired depth. The frame of the device accommodates standard commercial blades. Since the blade is always visible to the operator, the device can be used on any straight or irregular layout line.
Apparatus for cutting elastomeric materials
NASA Technical Reports Server (NTRS)
Corbett, A. B.
1974-01-01
Sharp thin cutting edge is held in head of milling machine designed for metal working. Controls of machine are used to position cutting edge in same plane as vibrating specimen. Controls then are operated, making blade come into contact with specimen, to cut it into shapes and sizes desired. Cut surfaces appear mirror-smooth; vibrating mechanism causes no visible striations.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... sources in Pierce County, Washington. On April 16, 2012, FEMA published a proposed rulemaking at 77 FR...-2013-0002; Internal Agency Docket No. FEMA-B-7748] Proposed Flood Elevation Determinations for Pierce... proposed rule concerning proposed flood elevation determinations for Pierce County, Washington, and...
Machines employing a hot gas jet to cut metals and nonmetallic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyaev, V.M.; Aleksandrenkov, V.P.
1995-07-01
The flame-cutting of metals is a basic materials-processing operation performed in the course of machine-building and, in some sectors (shipbuilding, aircraft construction, petrochemicals) it is the most important operation. In addition, this method of cutting remains the main operation performed in the processing of scrap metal. The importance of it has occasioned the development of a wide range of cutting tools within just the last decade. Not surprisingly, VNIIavtogen-mash (the All-Union Scientific Research Institute of Machinery for the Gas Welding and Cutting of Metals) is the leading designer of metal-cutting tools in this country. The problem of efficiently cutting metalsmore » is gaining in importance and will continue to do so in coming years in connection with the conversion of military hardware to other uses, the decommissioning of old and obsolete equipment, and utilization of the enormous reserves of scrap in this country. There will thus be a significant increase in the amounts of existing high-alloy steels, nonferrous metals and their alloys, and composites that require cutting. A wide range of cutters is available for the gas-flame cutting of metals, Liquid fuels based on petroleum products are promising from the viewpoint of energy efficiency and performance. The operation of a new generation of cutters, referred to as thermo-gas jet cutters, is based on the principle of the destructive action of a hot, fast-moving, chemically active jet on the material to be cut.« less
A review of cutting mechanics and modeling techniques for biological materials.
Takabi, Behrouz; Tai, Bruce L
2017-07-01
This paper presents a comprehensive survey on the modeling of tissue cutting, including both soft tissue and bone cutting processes. In order to achieve higher accuracy in tissue cutting, as a critical process in surgical operations, the meticulous modeling of such processes is important in particular for surgical tool development and analysis. This review paper is focused on the mechanical concepts and modeling techniques utilized to simulate tissue cutting such as cutting forces and chip morphology. These models are presented in two major categories, namely soft tissue cutting and bone cutting. Fracture toughness is commonly used to describe tissue cutting while Johnson-Cook material model is often adopted for bone cutting in conjunction with finite element analysis (FEA). In each section, the most recent mathematical and computational models are summarized. The differences and similarities among these models, challenges, novel techniques, and recommendations for future work are discussed along with each section. This review is aimed to provide a broad and in-depth vision of the methods suitable for tissue and bone cutting simulations. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Warshaw, Erin M; Kingsley-Loso, Jaime L; DeKoven, Joel G; Belsito, Donald V; Zug, Kathryn A; Zirwas, Matthew J; Maibach, Howard I; Taylor, James S; Sasseville, Denis; Fowler, Joseph F; Mathias, Charles Gordon Toby; DeLeo, Vincent A; Pratt, Melanie D; Marks, James G; Fransway, Anthony F
2014-01-01
This study aimed to examine the association between piercing and patch test sensitivity to metals (nickel, cobalt, and chromium) in North America. A retrospective analysis of 9334 patients tested by the North American Contact Dermatitis Group from 2007 to 2010 was conducted. Nickel sensitivity was statistically associated with at least 1 piercing (risk ratio [RR], 2.52; 95% confidence interval [CI], 2.26-2.81; P < 0.0001) and nickel sensitivity rates increased with the number of piercings (16% for 1 piercing to 32% for ≥ 5 piercings). Prevalence of nickel sensitivity was higher in females (23.2%) than in males (7.1%), but the association with piercing was stronger in males (RR, 2.38; 95% CI, 1.72-3.30; P < 0.0001) than in females (RR, 1.30; CI, 1.13-1.49; P = 0.0002). Crude analysis indicated that cobalt sensitivity was statistically associated with piercing (RR, 1.63; 95% CI, 1.40-1.91; P < 0.0001); however, stratified analysis showed that this relationship was confounded by nickel. After adjusting for nickel sensitivity, the adjusted risk ratio for piercing and cobalt was 0.78 (not significant). Chromium sensitivity was negatively associated with piercing (RR, 0.60; 95% CI, 0.48-0.75; P < 0.0001). Piercing was statistically associated with sensitivity to nickel. This relationship was dose dependent and stronger in males. Cobalt sensitivity was not associated with piercing when adjusted for nickel. Chromium sensitivity was negatively associated with piercing.
Hellard, Margaret; Aitken, Campbell; Mackintosh, Andrew; Ridge, Allison; Bowden, Scott
2003-06-01
Body piercing has become increasingly popular, leading to concerns about the associated risk of hepatitis C virus (HCV) transmission during piercing. Many body-piercing practitioners (BPPs) have recently entered the industry but little is known about their training and understanding of HCV transmission. This study measured BPP knowledge about HCV and infection control procedures. It also tested for HCV contamination within body-piercing establishments. BPPs completed a questionnaire about the number and type of piercings performed, their methods for disposing of and reprocessing piercing equipment, and their training and knowledge of HCV. Environmental swabs were collected and tested for HCV RNA. BPPs at 35 establishments were recruited. A total of 31 BPPs had training as a BPP, ranging from 1 hour to 6 years (median: 15 days). Reprocessing of equipment was variable; 8 establishments inadequately reprocessed piercing guns and 4 inadequately reprocessed forceps or guiding equipment. All BPPs were aware of HCV but many did not know how the virus was transmitted. A total of 19 BPPs performed extra cleaning after piercing a customer known to be HCV positive. No environmental swabs tested were positive for HCV RNA. This study showed that many BPPs had inadequate training, and lacked knowledge and understanding of HCV transmission, infection control, and universal precautions. To reduce the risk of HCV transmission, BPPs should be required to undergo formal training in infection control before being registered as BPPs.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-28
...-AA00 Safety Zone; Pierce County Department of Emergency Management Regional Water Exercise, East... the Regional Water Rescue Exercise. Basis and Purpose The Pierce County, Washington, Department of... to read as follows: Sec. 165.T13-0251 Safety Zone; Pierce County Department of Emergency Management...
Cost minimizing of cutting process for CNC thermal and water-jet machines
NASA Astrophysics Data System (ADS)
Tavaeva, Anastasia; Kurennov, Dmitry
2015-11-01
This paper deals with optimization problem of cutting process for CNC thermal and water-jet machines. The accuracy of objective function parameters calculation for optimization problem is investigated. This paper shows that working tool path speed is not constant value. One depends on some parameters that are described in this paper. The relations of working tool path speed depending on the numbers of NC programs frames, length of straight cut, configuration part are presented. Based on received results the correction coefficients for working tool speed are defined. Additionally the optimization problem may be solved by using mathematical model. Model takes into account the additional restrictions of thermal cutting (choice of piercing and output tool point, precedence condition, thermal deformations). At the second part of paper the non-standard cutting techniques are considered. Ones may lead to minimizing of cutting cost and time compared with standard cutting techniques. This paper considers the effectiveness of non-standard cutting techniques application. At the end of the paper the future research works are indicated.
NASA Astrophysics Data System (ADS)
Zhang, P. P.; Guo, Y.; Wang, B.
2017-05-01
The main problems in milling difficult-to-machine materials are the high cutting temperature and rapid tool wear. However it is impossible to investigate tool wear in machining. Tool wear and cutting chip formation are two of the most important representations for machining efficiency and quality. The purpose of this paper is to develop the model of tool wear with cutting chip formation (width of chip and radian of chip) on difficult-to-machine materials. Thereby tool wear is monitored by cutting chip formation. A milling experiment on the machining centre with three sets cutting parameters was performed to obtain chip formation and tool wear. The experimental results show that tool wear increases gradually along with cutting process. In contrast, width of chip and radian of chip decrease. The model is developed by fitting the experimental data and formula transformations. The most of monitored errors of tool wear by the chip formation are less than 10%. The smallest error is 0.2%. Overall errors by the radian of chip are less than the ones by the width of chip. It is new way to monitor and detect tool wear by cutting chip formation in milling difficult-to-machine materials.
Tongue piercing and insertion of metal studs: three cases of dental and oral consequences.
Ram, D; Peretz, B
2000-01-01
"Body art" is a fashion that appears to be gaining popularity worldwide. There are many risks and potentially adverse results associated with tongue piercing. Pain (the procedure is performed without anesthetics), post-placement edema and the risk of prolonged bleeding, if the blood vessels are punctured during the piercing, and fracture of tooth structures, are but a few of the risks. The purpose of the present article is to describe the consequences of three cases of tongue piercing in which metallic barbell-shaped studs were inserted: the consequences include the fracture of tooth structure, caused by the device knocking against the teeth; and inflammation and edema occurred as a result of the piercing of the tongue.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-25
..., Pierce College District, 9401 Farwest Dr. SW, Lakewood, WA 98498, telephone (253) 912-3655, before April... DEPARTMENT OF THE INTERIOR National Park Service Notice of Inventory Completion: Pierce College... completion of an inventory of human remains in the control of the Pierce College District, Lakewood, WA, and...
Discrimination of tooth layers and dental restorative materials using cutting sounds.
Zakeri, Vahid; Arzanpour, Siamak; Chehroudi, Babak
2015-03-01
Dental restoration begins with removing carries and affected tissues with air-turbine rotary cutting handpieces, and later restoring the lost tissues with appropriate restorative materials to retain the functionality. Most restoration materials eventually fail as they age and need to be replaced. One of the difficulties in replacing failing restorations is discerning the boundary of restorative materials, which causes inadvertent removal of healthy tooth layers. Developing an objective and sensor-based method is a promising approach to monitor dental restorative operations and to prevent excessive tooth losses. This paper has analyzed cutting sounds of an air-turbine handpiece to discriminate between tooth layers and two commonly used restorative materials, amalgam and composite. Support vector machines were employed for classification, and the averaged short-time Fourier transform coefficients were selected as the features. The classifier performance was evaluated from different aspects such as the number of features, feature scaling methods, classification schemes, and utilized kernels. The total classification accuracies were 89% and 92% for cases included composite and amalgam materials, respectively. The obtained results indicated the feasibility and effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Gu, Wen; Zhu, Zhiwei; Zhu, Wu-Le; Lu, Leyao; To, Suet; Xiao, Gaobo
2018-05-01
An automatic identification method for obtaining the critical depth-of-cut (DoC) of brittle materials with nanometric accuracy and sub-nanometric uncertainty is proposed in this paper. With this method, a two-dimensional (2D) microscopic image of the taper cutting region is captured and further processed by image analysis to extract the margin of generated micro-cracks in the imaging plane. Meanwhile, an analytical model is formulated to describe the theoretical curve of the projected cutting points on the imaging plane with respect to a specified DoC during the whole cutting process. By adopting differential evolution algorithm-based minimization, the critical DoC can be identified by minimizing the deviation between the extracted margin and the theoretical curve. The proposed method is demonstrated through both numerical simulation and experimental analysis. Compared with conventional 2D- and 3D-microscopic-image-based methods, determination of the critical DoC in this study uses the envelope profile rather than the onset point of the generated cracks, providing a more objective approach with smaller uncertainty.
Self-Pierce Riveting of Three Aluminium Alloy and Mild Steel Sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, K.; Abe, Y.; Sakai, S.
2010-06-15
Three aluminium alloy and steel sheets were joined with a self-piercing rivet. Self-pierce riveting has the function of joining steel and aluminium alloys having very different melting points due to plastic joining. The requisites for joining the three sheets are the driving of the rivet leg through the middle sheet, the flaring of the rivet leg in the lower sheet and the prevention of the fracture of the lower sheet. The joinability for various combinations of the three sheets was determined. When the rivet leg is small, no driving through the middle sheet occurs, the lower sheet ruptures for amore » large rivet leg. In addition, 980 MPa high strength steel, mild steel and aluminium alloy sheets were joined by the self-pierce riveting.« less
Analysis of fabric materials cut using ultraviolet laser ablation
NASA Astrophysics Data System (ADS)
Tsai, Hsin-Yi; Yang, Chih-Chung; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Andrew Yeh, J.
2016-04-01
Laser ablation technology has widely been applied in the clothing industry in recent years. However, the laser mechanism would affect the quality of fabric contours and its components. Hence, this study examined carbonization and oxidation conditions and contour variation in nonwoven, cotton, and composite leather fabrics cut by using an ultraviolet laser at a wavelength of 355 nm. Processing parameters such as laser power, pulse frequency, scanning speed, and number of pulses per spot were adjusted to investigate component variation of the materials and to determine suitable cutting parameters for the fabrics. The experimental results showed that the weights of the component changed substantially by pulse frequency but slightly by laser power, so pulse frequency of 100 kHz and laser power of 14 W were the approximate parameters for three fabrics for the smaller carbonization and a sufficient energy for rapidly cutting, which the pulse duration of laser system was fixed at 300 μs and laser irradiance was 0.98 J/mm2 simultaneously. In addition, the etiolate phenomenon of nonwoven was reduced, and the component weight of cotton and composite leather was closed to the value of knife-cut fabric as the scanning speed increased. The approximate scanning speed for nonwoven and composite leather was 200 mm/s, and one for cotton was 150 mm/s, respectively. The sharper and firmer edge is obtained by laser ablation mechanism in comparison with traditional knife cutting. Experimental results can serve as the reference for laser cutting in the clothing industry, for rapidly providing smoother patterns with lower carbonization and oxidation edge in the fashion industry.
Piercing the upper ear: a simple infection, a difficult reconstruction.
Cicchetti, S; Skillman, J; Gault, D T
2002-04-01
Piercing the upper ear to retain jewellery is now commonplace. When infection ensues, devastating chondritis leads to collapse of the ear. To our knowledge, the surgical reconstruction of post-piercing deformities has not been documented in the literature. We present five such cases referred for autogenous-tissue ear reconstruction. In four of these, the destroyed segments of ear cartilage were replaced with a carved costal-cartilage framework. One patient declined surgery. The importance of preventing infection is stressed. Copyright 2002 The British Association of Plastic Surgeons.
Triple inverter pierce oscillator circuit suitable for CMOS
Wessendorf,; Kurt, O [Albuquerque, NM
2007-02-27
An oscillator circuit is disclosed which can be formed using discrete field-effect transistors (FETs), or as a complementary metal-oxide-semiconductor (CMOS) integrated circuit. The oscillator circuit utilizes a Pierce oscillator design with three inverter stages connected in series. A feedback resistor provided in a feedback loop about a second inverter stage provides an almost ideal inverting transconductance thereby allowing high-Q operation at the resonator-controlled frequency while suppressing a parasitic oscillation frequency that is inherent in a Pierce configuration using a "standard" triple inverter for the sustaining amplifier. The oscillator circuit, which operates in a range of 10 50 MHz, has applications for use as a clock in a microprocessor and can also be used for sensor applications.
Bengualid, Victoria; Singh, Veera; Singh, Herpreet; Berger, Judith
2008-05-01
Body piercing has become increasingly prevalent. We describe a case of breast infection with combined mycobacteria and anaerobe following nipple piercing, and review the literature. A 17-year-old female developed a breast abscess 4 months after nipple piercing. Cultures grew Prevotalla melangenica and Mycobacterium fortuitum. She required drainage and antibiotic treatment. Three months into her treatment she stopped her medications, relapsed, and required drainage. Two months later, on antimycobacteria therapy, her wound is healing. Review of the infectious complications of nipple piercing yielded 12 cases, 5 of which had a foreign body. The pathogens isolated (coagulase negative staphylococcus, mycobacteria, streptococcus, anaerobe, and gordonia) are not the usual organisms to be isolated from a breast abscess. This could result from reporting bias or the presence of a foreign body, the nipple ring. The three cases of mycobacteria, in addition to ours, are reviewed. The average age is 22 years. Three to 9 months elapsed between piercing and infection. All cases required drainage. Antimycobacteria therapy was used in three of the four cases for 10 days to 6 months. With the increasing prevalence of body piercing, it is important to document and report infections. We describe a breast abscess following nipple piercing with combined anaerobic and a mycobacterial pathogens. This underscores the need for obtaining cultures including anaerobes and mycobacteria.
Improving Self-Pierce Rivet Performance through Processing and Alloy Development
NASA Astrophysics Data System (ADS)
Van Hall, Stephen N.
Spot welding has been used to join steel sheet material in the past during automotive manufacturing. The increasing use of aluminum and mixed materials to achieve continually increasing fuel economy standards requires mechanical joining methods to provide adequate impact performance. One such mechanical joining process is self-pierce riveting (SPR). Self-pierce riveting has grown in popularity in recent years due to fast cycle times, high static strength and fatigue performance as well as the ability to join many different sheet material combinations. Self-pierce rivet utilization has become limited due to the material properties of the rivet in two main areas: the joining of high-strength sheet material and joining of multiple sheet material combinations using a single rivet geometry, referred to as commonization. Two specific case studies have been developed to assess the failures that occur and evaluate potential solutions: joining of press-hardened steel (PHS) to Al6111 and improved commonization ability using a two layer aluminum joint that is currently joined with a specialized rivet. Riveting trials have been performed on each of the two case studies using cold forged rivets produced from 10B37 steel that has been heat-treated through a quench and temper process to a range of hardness levels to evaluate the failures that occur within the rivet. The failures occur with two different modes: buckling of the rivet at hardness values below 550 HV when joining PHS and Al6111 and fractures that occur in the rivet tail at hardness values above 550 HV during joining in each of the case studies under evaluation. The fractures have been attributed to a high degree of hoop strain that forms when the rivets are flared beyond the design specifications. A method to replicate the rivet flaring procedure under laboratory conditions has been developed by flaring the rivets through various strain paths to induce a hoop strain and the resultant fractures. The flaring method
Nipple piercing may be contraindicated in male patients with chest implants.
de Kleer, N; Cohen, M; Semple, J; Simor, A; Antonyshyn, O
2001-08-01
The authors present a man who underwent chest augmentation and nipple piercing. The patient developed chronic nipple infection, which led to unnecessary invasive diagnostic procedures, serious implant infection, and eventually urgent explantation. This unfavorable scenario illustrates the distinct features of the procedure in men, which includes close proximity of the nipple to the implant and reduced awareness by health care providers. Based on this case the authors recommend avoiding nipple piercing in men with chest implants.
Efficient production by laser materials processing integrated into metal cutting machines
NASA Astrophysics Data System (ADS)
Wiedmaier, M.; Meiners, E.; Dausinger, Friedrich; Huegel, Helmut
1994-09-01
Beam guidance of high power YAG-laser (cw, pulsed, Q-switched) with average powers up to 2000 W by flexible glass fibers facilitates the integration of the laser beam as an additional tool into metal cutting machines. Hence, technologies like laser cutting, joining, hardening, caving, structuring of surfaces and laser-marking can be applied directly inside machining centers in one setting, thereby reducing the flow of workpieces resulting in a lowering of costs and production time. Furthermore, materials with restricted machinability--especially hard materials like ceramics, hard metals or sintered alloys--can be shaped by laser-caving or laser assisted machining. Altogether, the flexibility of laser integrated machining centers is substantially increased or the efficiency of a production line is raised by time-savings or extended feasibilities with techniques like hardening, welding or caving.
Rules of Appointment at Franklin Pierce College.
ERIC Educational Resources Information Center
Franklyn Pierce Coll., Rindge, NH.
This memorandum sets forth the regulations and procedures affecting appointments to the instructional faculty of Franklin Pierce College. Part A: General Provisions, includes information on faculty ranks, the procedure of appointment, the regular review, and normal retirement. Part B deals with the terms and conditions of appointment, including…
Pierce Lumber, Inc. - Clean Water Act Public Notice
The EPA is providing notice of a proposed Administrative Penalty Assessment against Pierce Lumber, Inc. (“Respondent”), located at 1629 13th Street, Belle Plaine, IA for alleged violations of its National Pollutant Discharge Elimination System permit (perm
Jacobs, V R; Golombeck, K; Jonat, W; Kiechle, M
2002-07-01
Piercing is a growing fashion trend among young people. Nipple piercing has shown an increase over the last years. We report about three coincidental cases of breast abscess after nipple piercing within the last months in our clinics and discuss the related problems for health and society. Retrospective analysis of three case reports regarding course of illness and reasons as well as review of literature and internet. Three patients average age 31.9 (28-35) years were hospitalized with breast abscess after nipple piercing (2 x left, 1 x right). The distance piercing to infection was on average 7.7 (5-12) months. In all patients the abscess was incised and the abscess cavity removed, two had an irrigation tubing for a three days, all received i. v. antibiotics postoperatively. Evidence for bacteria was found in case 1: PCR-confirmation of atypical mycobacteria and coagulase negative staphylococcus, case 2: coagulase negative staphylococcus and group B-streptococcus and case 3: green and microaerophilic staphylococcus. The length of hospital stay was on average 8.0 (6-9) days/case, the hospital costs were 3 624,54 e (3 000,26-4 310,58 e) euro;/case. In a follow-up period of 10,0 (5-15) months one relapse occurred which had to be re-operated. Nipple piercing has grown in popularity within the last years and is in general not a stigma of a subculture or lower social classes any more. However, the risk for breast infection is on the one hand underestimated by the women and on the other hand played down by piercing studios. Breast infection after nipple piercing is rarely documented in scientific literature and data bases. Only seven case reports are scientifically published so far. Healing of the wound channel varies and can take up to 6-12 months. The risk for infection is approximately 10-20 %, often in a interval of months after the procedure. Insufficient understanding as well as inconsequent performance of hygienic preparation of the wound beneath other risk
Laser Cutting of Thin Nickel Bellows
NASA Technical Reports Server (NTRS)
Butler, C. L.
1986-01-01
Laser cutting technique produces narrow, precise, fast, and repeatable cuts in thin nickel-allow bellows material. Laser cutting operation uses intense focused beam to melt material and assisting gas to force melted material through part thickness, creating void. When part rotated or moved longitudinally, melting and material removal continuous and creates narrow, fast, precise, and repeatable cut. Technique used to produce cuts of specified depths less than material thickness. Avoids distortion, dents, and nicks produced in delicate materials during lathe trimming operations, which require high cutting-tool pressure and holding-fixture forces.
1949-08-24
t I- Results of Hardoed Survey* at Aberden Proving Ground an at Watertown Axue Average Average Surface Hardness...of surface hardness determination, made at Aberdeen ProvIng Ground and crocea-sectional hardness surveys made at Watertcwn Arsenal are limted in Table...Against 57 ma and, 90 w Armor-Piercing Ammunvtion,," At the request of this Arsenall,, Aerdeen Proving Ground provided 80 x 120" sections cut from a
Diagnostics of cathode material loss in cutting plasma torch
NASA Astrophysics Data System (ADS)
Gruber, J.; Šonský, J.; Hlína, J.
2014-07-01
A cutting plasma torch was observed in several ways by a high-speed camera with a focus on the cathode area. In the first experiment, the plasma arc between the nozzle tip and anode was recorded in a series of duty cycles ranging from new unworn cathodes to cathode failure due to wear and material loss. In the second experiment, we used a specially modified nozzle to observe the inside area between the cathode and the nozzle exit through a fused silica window. Finally, using tilted view, we observed a pool of molten hafnium at the cathode tip during the plasma torch operation. The process of cathode material melting, droplet formation, their expulsion and rate of cathode material loss was examined.
Complications following oral piercing. A study among 201 young adults in Strasbourg, France.
Hickey, B M; Schoch, E A; Bigeard, L; Musset, A M
2010-03-01
This study was designed to identify and quantify the number and type of complications relating to the oral environment following piercing of tissue in the oral sphere. The epidemiological survey included patients attending the University of Strasbourg Dental Hospital, students frequenting the University of Strasbourg canteen, and members of the public attending piercing conferences in Strasbourg, France between the months of February and June 2005. No dental examination was performed as part of this survey. RESULTS; 201 people were interviewed in this study. The average subject age was 22.7 years and 73.6% were smokers. Women comprised 72.6% of the sample population. Post-piercing complications occurred in 23.4%, but frequency depended on piercing location in relation to the oral sphere. Gingival recession occurred in 8.5%, and chipped teeth in 6.9% of the group who were aware of complications. Titanium, stainless steel and Teflon were associated with recession in 52.9%, 23.5% and 9%, and chipped teeth in 35.7%, 42.9% and 14.3% of this group respectively. The occurrence of complications was high. There is a need for public education and a further study with a dental examination.
The NASA/IPAC Teacher Archive Research Program (NITARP) at Pierce College
NASA Astrophysics Data System (ADS)
Mallory, Carolyn R.; Feig, M.; Mahmud, N.; Silic, T.; Rebull, L.; Hoette, V.; Johnson, C.; McCarron, K.
2011-01-01
Our team from Pierce Community College, Woodland Hills, CA, participated in the NASA/IPAC Teacher Archive Research Program (NITARP) this past year (2010). (NITARP is described in another poster, Rebull et al.) Our team worked with archival Spitzer, 2MASS, and optical data to look for young stars in CG4, part of the Gum Nebula; our scientific results are described in a companion poster, Johnson et al. In this poster, we describe more about what we learned and how we incorporated our NITARP experiences into the Pierce College environment. Students developed critical thinking skills and an ability to organize their data analysis and develop a mental "big picture" of what is going on in the CG4 region. The NITARP program is one of several "Active Learning" programs going on at Pierce, and the other programs are briefly summarized in this poster as well. This program was made possible through the NASA/IPAC Teacher Archive Research Project (NITARP) and was funded by NASA Astrophysics Data Program and Archive Outreach funds.
Pajor, Anna J; Broniarczyk-Dyła, Grażyna; Świtalska, Julita
2015-01-01
The aim of the study was to determine the level of life satisfaction and the various dimensions of self-esteem of pierced or tattooed people, and evaluate their mental health, compared to those without similar body modifications. The study was conducted on a sample of 449 people aged 16-58 years (mean age 26.7 ± 6.35), of whom 308 had body modifications: tattoo (n = 90), body piercings in places other than the ear lobe (n = 53), or both tattoos and piercings (n = 165). The control group consisted of 141 people without such modifications. The participants completed a questionnaire concerning their socio-demographic status, as well as the following psychological tests: The Satisfaction with Life Scale (SWLS), Multidimensional Self-Esteem Inventory (MSEI) and General Health Questionnaire (GHQ-28). Our findings show no significant differences in terms of life satisfaction between the group with tattoos or piercings and the control group. People with body modifications were characterized by higher self-esteem, with regard to their competence and leadership abilities. They also display fewer symptoms of social impairment and sleep disorders than the control group. Tattoos and piercings should not be considered as indicators of psychopathology.
Surface roughness analysis after laser assisted machining of hard to cut materials
NASA Astrophysics Data System (ADS)
Przestacki, D.; Jankowiak, M.
2014-03-01
Metal matrix composites and Si3N4 ceramics are very attractive materials for various industry applications due to extremely high hardness and abrasive wear resistance. However because of these features they are problematic for the conventional turning process. The machining on a classic lathe still requires special polycrystalline diamond (PCD) or cubic boron nitride (CBN) cutting inserts which are very expensive. In the paper an experimental surface roughness analysis of laser assisted machining (LAM) for two tapes of hard-to-cut materials was presented. In LAM, the surface of work piece is heated directly by a laser beam in order to facilitate, the decohesion of material. Surface analysis concentrates on the influence of laser assisted machining on the surface quality of the silicon nitride ceramic Si3N4 and metal matrix composite (MMC). The effect of the laser assisted machining was compared to the conventional machining. The machining parameters influence on surface roughness parameters was also investigated. The 3D surface topographies were measured using optical surface profiler. The analysis of power spectrum density (PSD) roughness profile were analyzed.
ERIC Educational Resources Information Center
Aizenman, Marta; Jensen, Mary Ann Conover
2007-01-01
Self-injurious behaviors were compared with tattooing and piercing in a college population. Findings indicate a high prevalence of self-injury. Students who self-injured were motivated by a desire to alleviate emotional pain; students who tattooed and pierced by self-expression. Students who self-injured scored higher than students who tattooed…
Transport of biologically active material in laser cutting.
Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P
1988-01-01
The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.
21. Historic American Buildings Survey Copyright C.C. Pierce Original: ...
21. Historic American Buildings Survey Copyright - C.C. Pierce Original: About 1902 Re-photo: April 1940 QUANDRANGLE (view from north) - Mission Nuestra Senora de la Soledad, Soledad, Monterey County, CA
Constraint Optimization Problem For The Cutting Of A Cobalt Chrome Refractory Material
NASA Astrophysics Data System (ADS)
Lebaal, Nadhir; Schlegel, Daniel; Folea, Milena
2011-05-01
This paper shows a complete approach to solve a given problem, from the experimentation to the optimization of different cutting parameters. In response to an industrial problem of slotting FSX 414, a Cobalt-based refractory material, we have implemented a design of experiment to determine the most influent parameters on the tool life, the surface roughness and the cutting forces. After theses trials, an optimization approach has been implemented to find the lowest manufacturing cost while respecting the roughness constraints and cutting force limitation constraints. The optimization approach is based on the Response Surface Method (RSM) using the Sequential Quadratic programming algorithm (SQP) for a constrained problem. To avoid a local optimum and to obtain an accurate solution at low cost, an efficient strategy, which allows improving the RSM accuracy in the vicinity of the global optimum, is presented. With these models and these trials, we could apply and compare our optimization methods in order to get the lowest cost for the best quality, i.e. a satisfying surface roughness and limited cutting forces.
1988-05-01
OF EXTRUSION HLSGFLN XRSO ICO-F XTUINPPER PATE CUT-OFF EXTRUSION I I 7 TUMBLE S TUMBLE HEAT &SORT TML I IEC SPANK & PIERCE P A SPANK & PIERCEI IF...implementation, the Walnut Cell will utilize 50% of the "As-Is" floor space. 106 -EGREflSEII HSL 59 i.CUT OFF EXTRUSION 2. SPANK & PIERCE I 3.DEGREASE 4...FEMALE MALE CUT-OFF EXTRUSION I HOUSNG HOUNG I SPANK & PIERCE SPANK & PIERCE I CLEAN I DEG SE I I DEGREASEI I C P P E R PL A TE I HEAT TREAT I HEAT
HP3 on ExoMars - Cutting airbag cloths with the sharp tip of a mechanical mole
NASA Astrophysics Data System (ADS)
Krause, C.; Izzo, M.; Re, E.; Mehls, C.; Richter, L.; Coste, P.
2009-04-01
The HP3 - Heat Flow and Physical Properties Package - is planned to be one of the Humboldt lander-based instruments on the ESA ExoMars mission. HP3 will allow the measurement of the subsurface temperature gradient and physical as well as thermophysical properties of the subsurface regolith of Mars down to a depth of 5 meters. From these measurements, the planetary heat flux can be inferred. The HP³ instrument package consists of a mole trailing a package of thermal and electrical sensors into the regolith. Beside the payload elements Thermal Excitation and Measurement Suite and a Permittivity Probe the HP3 experiment includes sensors to detect the forward motion and the tilt of the HP3 payload compartment. The HP3 experiment will be integrated into the lander platform of the ExoMars mission. The original accommodation featured a deployment device or a robotic arm to place HP3 onto the soil outside the deflated lander airbags. To avoid adding such deployment devices, it was suggested that the HP3 mole should be capable of piercing the airbags under the lander. The ExoMars lander airbag is made of 4 Kevlar layers (2 abrasive and 2 bladders). A double fold of the airbag (a worst case) would represent a pile of 12 layers. An exploratory study has examined the possibility of piercing airbag cloths by adding sharp cutting blades on the tip of a penetrating mole. In the experimental setup representative layers were laid over a Mars soil simulant. Initial tests used a hammer-driven cutting tip and had moderate to poor results. More representative tests used a prototype of the HP3 mole and were fully successful: the default 4 layer configuration was pierced as well as the 12 layer configuration, the latter one within 3 hours and about 3000 mole strokes This improved behaviour is attributed to the use of representative test hardware where guidance and suppression of mole recoil were concerned. The presentation will provide an explanation of the technical requirements on
NASA Astrophysics Data System (ADS)
Miranda, G.; Ferreira, P.; Buciumeanu, M.; Cabral, A.; Fredel, M.; Silva, F. S.; Henriques, B.
2017-08-01
The current trend to replace cobalt in diamond cutting tools (DCT) for stone cutting has motivated the study of alternative materials for this end. The present study characterizes several copper-nickel-based materials (Cu-Ni; Cu-Ni-10Sn, Cu-Ni-15Sn, Cu-Ni-Sn-2WC and Cu-Ni-Sn-10WC) for using as matrix material for diamond cutting tools for stone. Copper-nickel-based materials were produced by hot pressing, at a temperature of 850 °C during 15 min and under an applied pressure of 50 MPa. The mechanical properties were evaluated though the shear strength and hardness values. The microstructures and fracture surfaces were analyzed by SEM. The wear behavior of all specimens was assessed using a reciprocating ball-on-plate tribometer. The hot pressing produced compacts with good densification. Sn and WC promoted enhanced mechanical properties and wear performance to Cu-Ni alloys. Cu-Ni-10Sn and Cu-Ni-10Sn-2WC displayed the best compromise between mechanical and wear performance.
2014-01-01
Background A system providing disabled persons with control of various assistive devices with the tongue has been developed at Aalborg University in Denmark. The system requires an activation unit attached to the tongue with a small piercing. The aim of this study was to establish and evaluate a safe and tolerable procedure for medical tongue piercing and to evaluate the expected and perceived procedural discomfort. Methods Four tetraplegic subjects volunteered for the study. A surgical protocol for a safe insertion of a tongue barbell piercing was presented using sterilized instruments and piercing parts. Moreover, post-procedural observations of participant complications such as bleeding, edema, and infection were recorded. Finally, procedural discomforts were monitored by VAS scores of pain, changes in taste and speech as well as problems related to hitting the teeth. Results The piercings were all successfully inserted in less than 5 min and the pain level was moderate compared with oral injections. No bleeding, infection, embedding of the piercing, or tooth/gingival injuries were encountered; a moderate edema was found in one case without affecting the speech. In two cases the piercing rod later had to be replaced by a shorter rod, because participants complained that the rod hit their teeth. The replacements prevented further problems. Moreover, loosening of balls was encountered, which could be prevented with the addition of dental glue. No cases of swallowing or aspiration of the piercing parts were recorded. Conclusions The procedure proved simple, fast, and safe for insertion of tongue piercings for tetraplegic subjects in a clinical setting. The procedure represented several precautions in order to avoid risks in these susceptible participants with possible co-morbidity. No serious complications were encountered, and the procedure was found tolerable to the participants. The procedure may be used in future studies with tongue piercings being a
Ground-water resources of Benson and Pierce Counties, north-central North Dakota
Randich, P.G.
1972-01-01
The purpose of this investigation is to provide information about the ground-water resources in Benson and Pierce Counties that is sufficient for planning the safe and intelligent development of water supplies for irrigation, domestic, stock, industrial, and municipal purposes. The investigation is part of a statewide program to determine the location and extent of ground-water aquifers; to evaluate the occurrence and movement of ground water within the aquifers, including sources of recharge and discharge; to determine potential yields to wells developed in the aquifers; and to determine the chemical quality of ground water.Benson and Pierce Counties cover an area of 2,512 square miles in north-central North Dakota. This study, which began in July 1967 and was completed in June 1971, was made cooperatively by the U.S. Geological Survey, the North Dakota State Water Commission, the North Dakota Geological Survey, and the Benson and Pierce Counties Water Management Districts. This interim report presents only the major conclusions of the study.
Blanking and piercing theory, applications and recent experimental results
NASA Astrophysics Data System (ADS)
Zaid, Adnan l. O.
2014-06-01
Blanking and piercing are manufacturing processes by which certain geometrical shapes are sheared off a sheet metal. If the sheared off part is the one required, the processes referred to as blanking and if the remaining part in the sheet is the one required, the process is referred to as piercing. In this paper, the theory and practice of these processes are reviewed and discussed The main parameters affecting these processes are presented and discussed. These include: the radial clearance percentage, punch and die geometrical parameters, for example punch and die profile radii. The abovementioned parameters on the force and energy required to effect blanking together with their effect on the quality of the products are also presented and discussed. Recent experimental results together with photomacrographs and photomicrographs are also included and discussed. Finally, the effect of punch and die wear on the quality of the blanks is alsogiven and discussed.
Allergies associated with body piercing and tattoos: a report of the Allergy Vigilance Network.
Dron, P; Lafourcade, M P; Leprince, F; Nonotte-Varly, C; Van Der Brempt, X; Banoun, L; Sullerot, I; This-Vaissette, C; Parisot, L; Moneret-Vautrin, D A
2007-06-01
Body piercing and tattooing are increasingly common. As well as the risk of infection and scarring, allergic reactions are also reported. This is the first multi-centre study to assess the frequency of consultations for allergy. Of the 138 allergologists who answered our two questionnaires, 7.9% reported allergic reactions associated with body piercing and 18.9% identified allergies associated with temporary henna-based tattoos. Contact eczema, rhinitis and urticaria were related to nickel allergy. Contact eczema, generalized eczema, pruritus and edema were caused by tattoos. In 20 out of 28 cases, sensitization to para-phenylenediamine (PPD) was observed. The authors review the literature, underscoring the risk of serious allergy to PPD, the need for long-term monitoring of the risk of skin lymphocytoma, the difficulties met during treatment and the necessity of regulating tattooing and body piercing practices.
Pierce - University of Georgia | Division of Cancer Prevention
Principal Investigator: J. Michael Pierce, PhDInstitution: University of Georgia, Athens, GA Our project, Discovery and Development of Cancer Glycomarkers, is a joint collaboration between our laboratories at the CCRC, which include Karen Abbott, Lance Wells, Kevin Dobbin, and Mike Tiemeyer, those at TGen, in Phoenix, AZ, Daniel Von Hoff, Haiyong Han, and Mike Demeure, and
Pierce County High School: Excellence Is the Standard
ERIC Educational Resources Information Center
Principal Leadership, 2012
2012-01-01
This article features Pierce County High School in rural southeast Georgia whose 965 students, almost half of whom are from economically disadvantaged families, have demonstrated what a focus on student learning can accomplish. In 2004, the school ranked at the bottom of the state in students passing the high school graduation tests, and only 55%…
NASA Astrophysics Data System (ADS)
Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay
2017-02-01
In this paper, micro-processing of three kinds of super-hard materials of poly-crystal diamond (PCD)/tungsten-carbide (WC), CVD-diamond and cubic boron nitride (CNB) has been systematically studied using nanosecond laser (532nm and 355nm), and ultrafast laser (532nm and 515nm). Our purpose is to investigate a full laser micro-cutting solution to achieve a ready-to-use cutting tool insert (CTI). The results show a clean cut with little burns and recasting at edge. The cutting speed of 2-10mm/min depending on thickness was obtained. The laser ablation process was also studied by varying laser parameters (wavelength, pulse width, pulse energy, repetition rate) and tool path to improve cutting speed. Also, studies on material removal efficiency (MRE) of PCD/WC with 355nm-ns and 515nm-fs laser as a function of laser fluence show that 355nm-ns laser is able to achieve higher MRE for PCD and WC. Thus, ultrafast laser is not necessarily used for superhard material cutting. Instead, post-polishing with ultrafast laser can be used to clean cutting surface and improve smoothness.
ERIC Educational Resources Information Center
Canadian Commission of Employment and Immigration, Ottawa (Ontario).
Second in a resource series (see note), this annotated bibliography provides detailed information on training curriculum and instructional materials for welding, brazing, and flame-cutting. The materials are divided into thirty-fie sections by topic and type. Specific topic areas include gas and arc welding; arc welding; oxyacetylene welding and…
Williams, J G; Patel, Y
2016-06-06
The process of cutting is analysed in fracture mechanics terms with a view to quantifying the various parameters involved. The model used is that of orthogonal cutting with a wedge removing a layer of material or chip. The behaviour of the chip is governed by its thickness and for large radii of curvature the chip is elastic and smooth cutting occurs. For smaller thicknesses, there is a transition, first to plastic bending and then to plastic shear for small thicknesses and smooth chips are formed. The governing parameters are tool geometry, which is principally the wedge angle, and the material properties of elastic modulus, yield stress and fracture toughness. Friction can also be important. It is demonstrated that the cutting process may be quantified via these parameters, which could be useful in the study of cutting in biology.
The Pierce-diode approximation to the single-emitter plasma diode
NASA Astrophysics Data System (ADS)
Ender, A. Ya.; Kuhn, S.; Kuznetsov, V. I.
2006-11-01
The possibility of modeling fast processes in the collisionless single-emitter plasma diode (Knudsen diode with surface ionization, KDSI) by means of the Pierce-diode is studied. The KDSI is of practical importance in that it is an almost exact model of thermionic energy converters (TICs) in the collisionless regime and can also be used to model low-density Q-machines. At high temperatures, the Knudsen TIC comes close to the efficiency of the Carnot cycle and hence is the most promising converter of thermal to electric energy. TICs can be applied as component parts in high-temperature electronics. It is shown that normalizations must be chosen appropriately in order to compare the plasma characteristics of the two models: the KDSI and the Pierce-diode. A linear eigenmode theory of the KDSI is developed. For both nonlinear time-independent states and linear eigenmodes without electron reflection, excellent agreement is found between the analytical potential distributions for the Pierce-diode and the corresponding numerical ones for the KDSI. For the states with electron reflection, the agreement is satisfactory in a qualitative sense. A full classification of states of both diodes for the regimes with and without electron reflection is presented. The effect of the thermal spread in electron velocities on the potential distributions and the (ɛ,η) diagrams is analyzed. Generally speaking, the methodology developed is usefully applicable to a variety of systems in which the electrons have beam-like distributions.
The Pierce-diode approximation to the single-emitter plasma diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ender, A. Ya.; Kuhn, S.; Kuznetsov, V. I.
2006-11-15
The possibility of modeling fast processes in the collisionless single-emitter plasma diode (Knudsen diode with surface ionization, KDSI) by means of the Pierce-diode is studied. The KDSI is of practical importance in that it is an almost exact model of thermionic energy converters (TICs) in the collisionless regime and can also be used to model low-density Q-machines. At high temperatures, the Knudsen TIC comes close to the efficiency of the Carnot cycle and hence is the most promising converter of thermal to electric energy. TICs can be applied as component parts in high-temperature electronics. It is shown that normalizations mustmore » be chosen appropriately in order to compare the plasma characteristics of the two models: the KDSI and the Pierce-diode. A linear eigenmode theory of the KDSI is developed. For both nonlinear time-independent states and linear eigenmodes without electron reflection, excellent agreement is found between the analytical potential distributions for the Pierce-diode and the corresponding numerical ones for the KDSI. For the states with electron reflection, the agreement is satisfactory in a qualitative sense. A full classification of states of both diodes for the regimes with and without electron reflection is presented. The effect of the thermal spread in electron velocities on the potential distributions and the ({epsilon},{eta}) diagrams is analyzed. Generally speaking, the methodology developed is usefully applicable to a variety of systems in which the electrons have beam-like distributions.« less
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Armor piercing ammunition... FIREARMS AND AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION Exemptions, Seizures, and Forfeitures § 478.149 Armor piercing ammunition manufactured or imported for the purpose of testing or experimentation. The...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Armor piercing ammunition... FIREARMS AND AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION Exemptions, Seizures, and Forfeitures § 478.149 Armor piercing ammunition manufactured or imported for the purpose of testing or experimentation. The...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Armor piercing ammunition... FIREARMS AND AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION Exemptions, Seizures, and Forfeitures § 478.149 Armor piercing ammunition manufactured or imported for the purpose of testing or experimentation. The...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Armor piercing ammunition... FIREARMS AND AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION Exemptions, Seizures, and Forfeitures § 478.149 Armor piercing ammunition manufactured or imported for the purpose of testing or experimentation. The...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Armor piercing ammunition... FIREARMS AND AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION Exemptions, Seizures, and Forfeitures § 478.149 Armor piercing ammunition manufactured or imported for the purpose of testing or experimentation. The...
Piercing and Tattoos in Adolescents: Legal and Medico-legal Implications
Conti, Adelaide; Bin, Paola; Casella, Claudia; Capasso, Emanuele; Fedeli, Piergiorgio; Salzano, Francesco Antonio; Terracciano, Lucia; Piras, Mauro
2018-01-01
Abstract Non-therapeutic body modification interventions are permitted within the limits of the use of one’s own body that can be specified in the legal system. The authors take into consideration Italian regulation on tattooing and piercing, in particular in relation to adolescents. Results In Italy, several regions have therefore issued acts aimed at regulating the activities of tattoo and piercing also in reference to minors. Discussion. With regard to minors, the rules taken into account set precise limits in relation to the age criterion and subordinate the implementation of such practices to the provision of consent by legal representatives. Conclusion If such practices are of an aesthetic nature, we cannot avoid considering the implications they have on health protection, and then adopt appropriate measures to protect the person who intends to undergo them, particularly in the case of minors. PMID:29675481
Piercing and Tattoos in Adolescents: Legal and Medico-legal Implications.
Conti, Adelaide; Bin, Paola; Casella, Claudia; Capasso, Emanuele; Fedeli, Piergiorgio; Salzano, Francesco Antonio; Terracciano, Lucia; Piras, Mauro
2018-01-01
Non-therapeutic body modification interventions are permitted within the limits of the use of one's own body that can be specified in the legal system. The authors take into consideration Italian regulation on tattooing and piercing, in particular in relation to adolescents. In Italy, several regions have therefore issued acts aimed at regulating the activities of tattoo and piercing also in reference to minors. Discussion. With regard to minors, the rules taken into account set precise limits in relation to the age criterion and subordinate the implementation of such practices to the provision of consent by legal representatives. If such practices are of an aesthetic nature, we cannot avoid considering the implications they have on health protection, and then adopt appropriate measures to protect the person who intends to undergo them, particularly in the case of minors.
Protein deposition on a lathe-cut silicone hydrogel contact lens material.
Subbaraman, Lakshman N; Woods, Jill; Teichroeb, Jonathan H; Jones, Lyndon
2009-03-01
To determine the quantity of total protein, total lysozyme, and the conformational state of lysozyme deposited on a novel, lathe-cut silicone hydrogel (SiHy) contact lens material (sifilcon A) after 3 months of wear. Twenty-four subjects completed a prospective, bilateral, daily-wear, 9-month clinical evaluation in which the subjects were fitted with a novel, custom-made, lathe-cut SiHy lens material. The lenses were worn for three consecutive 3-month periods, with lenses being replaced after each period of wear. After 3 months of wear, the lenses from the left eye were collected and assessed for protein analysis. The total protein deposited on the lenses was determined by a modified Bradford assay, total lysozyme using Western blotting and the lysozyme activity was determined using a modified micrococcal assay. The total protein recovered from the custom-made lenses was 5.3 +/- 2.3 microg/lens and the total lysozyme was 2.4 +/- 1.2 microg/lens. The denatured lysozyme found on the lenses was 1.9 +/- 1.0 microg/lens and the percentage of lysozyme denatured was 80 +/- 10%. Even after 3 months of wear, the quantity of protein and the conformational state of lysozyme deposited on these novel lens materials was very similar to that found on similar surface-coated SiHy lenses after 2 to 4 weeks of wear. These results indicate that extended use of the sifilcon A material is not deleterious in terms of the quantity and quality of protein deposited on the lens.
Cis-12-oxo-phytodienoic acid stimulates rice defense response to a piercing-sucking insect.
Guo, Hui-Min; Li, Hai-Chao; Zhou, Shi-Rong; Xue, Hong-Wei; Miao, Xue-Xia
2014-11-01
The brown planthopper (BPH, Nilaparvata lugens) is a destructive, monophagous, piercing-sucking insect pest of rice. Previous studies indicated that jasmonic acid (JA) positively regulates rice defense against chewing insect pests but negatively regulates it against the piercing-sucking insect of BPH. We here demonstrated that overexpression of allene oxide cyclase (AOC) but not OPR3 (cis-12-oxo-phytodienoic acid (OPDA) reductase 3, an enzyme adjacent to AOC in the JA synthetic pathway) significantly increased rice resistance to BPH, mainly by reducing the feeding activity and survival rate. Further analysis revealed that plant response to BPH under AOC overexpression was independent of the JA pathway and that significantly higher OPDA levels stimulated rice resistance to BPH. Microarray analysis identified multiple candidate resistance-related genes under AOC overexpression. OPDA treatment stimulated the resistance of radish seedlings to green peach aphid Myzus persicae, another piercing-sucking insect. These results imply that rice resistance to chewing insects and to sucking insects can be enhanced simultaneously through AOC-mediated increases of JA and OPDA and provide direct evidence of the potential application of OPDA in stimulating plant defense responses to piercing-sucking insect pests in agriculture. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.
Automated Laser Cutting In Three Dimensions
NASA Technical Reports Server (NTRS)
Bird, Lisa T.; Yvanovich, Mark A.; Angell, Terry R.; Bishop, Patricia J.; Dai, Weimin; Dobbs, Robert D.; He, Mingli; Minardi, Antonio; Shelton, Bret A.
1995-01-01
Computer-controlled machine-tool system uses laser beam assisted by directed flow of air to cut refractory materials into complex three-dimensional shapes. Velocity, position, and angle of cut varied. In original application, materials in question were thermally insulating thick blankets and tiles used on space shuttle. System shapes tile to concave or convex contours and cuts beveled edges on blanket, without cutting through outer layer of quartz fabric part of blanket. For safety, system entirely enclosed to prevent escape of laser energy. No dust generated during cutting operation - all material vaporized; larger solid chips dislodged from workpiece easily removed later.
Russell, W.H. Jr.
1959-06-30
A device is described for removing material from the interior of a hollow workpiece so as to form a true spherical internal surface in a workpiece, or to cut radial slots of an adjustable constant depth in an already established spherical internal surface. This is accomplished by a spring loaded cutting tool adapted to move axially wherein the entire force urging the tool against the workpiece is derived from the spring. Further features of importance involve the provision of a seal between the workpiece and the cutting device and a suction device for carrying away particles of removed material.
An experimental evaluation of precision laser cutting of dental hard tissues and materials.
Cox, C J; Patel, B C; Pearson, G J
1993-06-01
This paper examines the use of excimer laser radiation in the controlled removal of tooth tissue and three plastic restorative materials. Freshly extracted human third molar teeth were filled with three restorative materials and sectioned longitudinally through the restoratives. The cut surfaces of the materials and surrounding enamel and dentine were exposed to three laser energy densities and the dimensions and topographical details of the irradiated sites assessed using optical and scanning electron microscopy. The results showed that the radiation produced lesions of uniformly reproducible size and shape.
Self-Pierce Riveting Through 3 Sheet Metal Combinations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Roger; Jonason, Paul; Pettersson, Tommy
2011-05-04
One way to reduce the CO{sub 2} emissions in automotives is to reduce the weight of the Body-In-White. One easy to achieve the weight reduction is to replace steel sheet materials with Al alloys, which is 3 times lighter. One issue is the joining process, especially with combinations between steel grades and AL alloys. Example of combination of mixed material combinations (Al-steel) might be found in the door structure. The reason is because of the AL alloys worthier crash performance so the automotive manufacturer might want to use crash impact beams made by high strength steels in a AL intensivemore » door structure. The joining process between aluminum and steel are problematic due it's not possible to use traditional spot-welding technologies due to the materials total difference in microstructure characteristics as well thermal properties. To overcome this issue then mechanical as well adhesion joining are frequently used. This paper describes a development process and subsequently analysis of a self-pierce rivet (SPR) process between 3 sheet metal combinations. The multi-material combinations in this study were a combination of ultra high strength steels sheets (DP1000) and a Al-alloy (AA 6014). The analysis of the SPR process, in sense of mechanical strengths, has been done by peel- and shear tests. To reduce the amount of future physical tests a virtual FE-model has been developed for the process. This FE model of the process has been subsequently used to analyze the mechanical strength during plastic deformation. By using inverse analysis a correct contact algorithm has been evaluated that would predict the binding force between the rivet and sheet under a deformation process. With this new virtual model it will not only possible to analyze and develop the SPR process but also to achieve the final strength of the joint.« less
Sosin, Michael; Weissler, Jason M; Pulcrano, Marisa; Rodriguez, Eduardo D
2015-08-01
The purpose of this systematic review was to critically analyze infectious complications and treatment following transcartilaginous ear piercing. MEDLINE Pubmed database. A MEDLINE PubMed database search using free text, including "ear chondritis," "ear perichondritis," "ear cartilage piercing," and "auricle piercing," yielded 483 titles. Based on set inclusion and exclusion criteria, the titles, abstracts, and full text articles were reviewed for inclusion and underwent data extraction. Pooled outcomes are reported. A total of 29 articles met inclusion criteria, including 66 patients. The mean age of the patients was 18.7 ± 7.6 years (range: 11-49), 87.5% female. Ear deformity was more likely to occur following postpiercing perichondritis of the scapha 100% versus the helix 43% (P = 0.003). Mean duration of symptoms prior to patients seeking medical attention was 6.1 ± 4.1 days. Greater than 5 days of symptoms prior to seeking treatment was significantly more likely to result in hospitalization. Pseudomonas aeruginosa accounted for 87.2% infections. Of the patients with Pseudomonas, 92.3% were hospitalized versus 75% of the patients infected with Staphylococcus aureus. Initial oral antibiotics prescribed did not target the cultured bacterium in 53.3% of cases; of these, 87.5% were hospitalized. Transcartilaginous postpiercing infection may lead to ear deformity and hospitalization. Patients (customers) and practitioners must be aware of optimal treatment strategies to minimize associated morbidity. Scapha piercing and delay in presentation are associated with poorer outcomes. Pseudomonas is the most common bacterial infection. Initial antibiotic selection must be optimized accordingly. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Popovici, T. D.; Dijmărescu, M. R.
2017-08-01
The aim of the research presented in this paper is to determine a cutting force prediction model for milling machining of the X105CrMo17 stainless steel. The analysed material is a martensitic stainless steel which, due to the high Carbon content (∼1%) and Chromium (∼17%), has high hardness and good corrosion resistance characteristics. This material is used for the steel structures parts which are subject of wear in corrosive environments, for making valve seats, bearings, various types of cutters, high hardness bushings, casting shells and nozzles, measuring instruments, etc. The paper is structured into three main parts in accordance to the considered research program; they are preceded by an introduction and followed by relevant conclusions. In the first part, for a more detailed knowledge of the material characteristics, a quality and quantity micro-analysis X-ray and a spectral analysis were performed. The second part presents the physical experiment in terms of input, necessary means, process and registration of the experimental data. In the third part, the experimental data is analysed and the cutting force model is developed in terms of the cutting regime parameters such as cutting speed, feed rate, axial depth and radial depth.
NASA Astrophysics Data System (ADS)
Harwood, Casey; Young, Yin Lu; Ceccio, Steven
2014-11-01
High-lift devices that operate at or near a fluid free surface (such as surface-piercing or shallowly-submerged propellers and hydrofoils) are prone to a multiphase flow phenomenon called ventilation, wherein non-condensable gas is entrained in the low-pressure flow, forming a cavity around the body and dramatically altering the global hydrodynamic forces. Experiments are being conducted at the University of Michigan's towing tank using a canonical surface-piercing strut to investigate atmospheric ventilation. The goals of the work are (i) to gain an understanding of the dominant physics in fully wetted, partially ventilated, and fully ventilated flow regimes, (ii) to quantify the effects of governing dimensionless parameters on the transition between flow regimes, and (iii) to develop scaling relations for the transition between flow regimes. Using theoretical arguments and flow visualization techniques, new criteria are developed for classifying flow regimes and transition mechanisms. Unsteady transition mechanisms are described and mapped as functions of the governing non-dimensional parameters. A theoretical scaling relationship is developed for ventilation washout, which is shown to adequately capture the experimentally-observed washout boundary. This material is based upon work supported by the National Science Foundation Graduate Student Research Fellowship under Grant No. DGE 1256260. Support also comes from the Naval Engineering Education Center (Award No. N65540-10-C-003).
The nature of cometary materials
NASA Technical Reports Server (NTRS)
Stephens, James
1989-01-01
Because cometary surfaces are likely to be far colder and of a different composition than planetary surfaces, there are some new considerations that must be examined in regards to placing instrumented packages or sample return devices on their surfaces. The qualitative analysis of the problem of attaching hardware to a comet and not being ejected back into space can be divided into two parts. The first problem is to pierce the mantle and obtain access to the icy core. Drilling through the mantle requires that the drilling forces be reacted. Reacting such forces probably requires attachment to the icy core below. Therefore, some kinetic impact piercing device is likely to be required as the first act of attachment. The second problem for a piercing device to overcome is the force produced by the impact kinetic energy that tries to eject the piercing device back into space. The mantle and icy core can absorb some of the impact kinetic energy in the form of fracture formation and friction energy. The energy that is not absorbed in these two ways is stored by the core as elastic deformation of the mantle and icy core. It is concluded that because the cometary materials are almost certainly brittle and the icy core is likely to be self lubricating, the elastic rebound and gas pressure expulsion forces must be counteracted by forces greater than those that may be provided by a piercing device or its capture devices (barbs).
Meijer, C; Bredberg, M; Fischer, T; Widström, L
1995-03-01
Piercing the earlobes has increased in popularity among males in recent years. This habit would be expected to increase the incidence of nickel and cobalt sensitization. Patch testing with nickel sulfate and cobalt chloride was performed in 520 young Swedish men doing compulsory military service. The overall frequency of nickel/cobalt positive tests was 4.2%. The prevalence of nickel/cobalt positive tests was significantly higher (p < 0.05) in 152 men with pierced earlobes (7.9%) than in those 368 with unpierced earlobes (2.7%). A history of hand eczema (7/152 = 4.6%) or other types of eczema (22/152 = 14.5%) in individuals with pierced earlobes was no more common than in those with unpierced earlobes: 24/368 = 6.5% and 51/386 = 13.9%, respectively (n.s.). Hand eczema was no more common in sensitized (1/22 = 4.5%) than in nonsensitized individuals (32/498 = 6.4%) (n.s.).
Mixed Pierce-two-stream instability development in an extraction system of a negative ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barminova, H. Y., E-mail: barminova@mephi.ru; Chikhachev, A. S.
2016-02-15
Mixed Pierce-two-stream instability may occur in an extraction system of a negative ion source based on a volume-produced plasma. The reasons for instability development are discussed. Analytically the conditions of unstable beam propagation are determined. The instability threshold is shown to be increased compared with the pure Pierce instability. The influence of inclined perturbations on the instability behavior is investigated. The numerical calculations are performed in COMSOL Multiphysics. The simulation results confirm the existence of such a mixed instability appearance that develops due to both the electrons of the external circuit and the background positive ions.
Franklin Pierce College's Fire Department: 17 Student Volunteers and a Vintage Engine.
ERIC Educational Resources Information Center
Meyer, Thomas J.
1985-01-01
Seventeen student volunteers form the Franklin Pierce College Fire Department. When the firefighters are on duty, they must carry electronic pagers at all times. They also participate in dormitory inspections and attend weekend sessions at a local firefighters' training school. (MLW)
A Commentary on "Piercing the Bubble": Should Management Education "Confront" Poverty?
ERIC Educational Resources Information Center
Dart, Raymond
2008-01-01
This commentary contrasts "Piercing the Bubble" by proposing "pull" (rather than "push") strategies as a way for business schools to more meaningfully engage poverty and social exclusion. By reframing poverty issues in such a manner that they connect with core business student interests of career opportunities, current management practices, and…
Effect of Cutting Tool Properties and Depth of Cut in Rock Cutting: An Experimental Study
NASA Astrophysics Data System (ADS)
Rostamsowlat, Iman
2018-06-01
The current paper is designed to investigate the effect of worn (blunt) polycrystalline diamond compact cutter properties on both the contact stress (σ) and friction coefficient ( μ) mobilized at the wear flat-rock interface at different inclination angles of the wear flat surface and at a wide range of depths of cut. An extensive and comprehensive set of cutting experiments is carried out on two sedimentary rocks (one limestone and one sandstone) using a state-of-the-art rock cutting equipment (Wombat) and various blunt cutters. Experiments with blunt cutters are characterized by different wear flat inclination angles (β), different wear flat surface roughness (Ra), different wear flat material, and different cutting tool velocities ({\\varvec{v}}) were conducted. The experimental results show that both the contact stress and friction coefficient are predominantly affected by the wear flat roughness at all inclination angles of the wear flat; however, the cutting tool velocity has a negligible influence on both the contact stress and friction coefficient. Further investigations suggest that the contact stress is greatly affected by the depth of cut within the plastic regime of frictional contact while the contact stress is insensitive to the depth of cut within the elastic regime.
Tattoos and Piercings: A Review for the Emergency Physician
Urdang, Michael; Mallek, Jennifer T; Mallon, William K
2011-01-01
Tattoos and piercings are increasingly part of everyday life for large sections of the population, and more emergency physicians are seeing these body modifications (BM) adorn their patients. In this review we elucidate the most common forms of these BMs, we describe how they may affect both the physical and psychological health of the patient undergoing treatment, and also try to educate around any potential pitfalls in treating associated complications. PMID:22224126
27 CFR 478.37 - Manufacture, importation and sale of armor piercing ammunition.
Code of Federal Regulations, 2012 CFR
2012-04-01
... and sale of armor piercing ammunition. 478.37 Section 478.37 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION Administrative and Miscellaneous Provisions § 478.37 Manufacture...
27 CFR 478.37 - Manufacture, importation and sale of armor piercing ammunition.
Code of Federal Regulations, 2011 CFR
2011-04-01
... and sale of armor piercing ammunition. 478.37 Section 478.37 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION Administrative and Miscellaneous Provisions § 478.37 Manufacture...
27 CFR 478.37 - Manufacture, importation and sale of armor piercing ammunition.
Code of Federal Regulations, 2013 CFR
2013-04-01
... and sale of armor piercing ammunition. 478.37 Section 478.37 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION Administrative and Miscellaneous Provisions § 478.37 Manufacture...
27 CFR 478.37 - Manufacture, importation and sale of armor piercing ammunition.
Code of Federal Regulations, 2014 CFR
2014-04-01
... and sale of armor piercing ammunition. 478.37 Section 478.37 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION Administrative and Miscellaneous Provisions § 478.37 Manufacture...
Characterization of Coatings on Steel Self-Piercing Rivets for Use with Magnesium Alloys
NASA Astrophysics Data System (ADS)
McCune, Robert C.; Forsmark, Joy H.; Upadhyay, Vinod; Battocchi, Dante
Incorporation of magnesium alloys in self-pierce rivet (SPR) joints poses several unique challenges among which are the creation of spurious galvanic cells and aggravated corrosion of adjacent magnesium when coated steel rivets are employed. This work firstly reviews efforts on development of coatings to steel fasteners for the diminution of galvanic corrosion when used with magnesium alloys. Secondly, approaches, based on several electrochemical methods, for the measurement of the galvanic-limiting effect of a number of commercially-available coatings to hardened 10B37 steel self-piercing rivets inserted into alloy couples incorporating several grades of magnesium are reported. Electrochemical impedance spectroscopy (EIS), zero-resistance ammeter (ZRA), corrosion potential and potential-mapping visualization methods (e.g. scanning vibrating electrode technique — SVET) are illustrated for the several rivet coatings considered.
["My body belongs to me"--cultural history and psychology of piercings and tattoos].
Stirn, A
2007-02-01
At present tattoos and piercings can no longer be regarded as destructive acts of self mutilation practized by fringe groups. Body modifications (BMs) are found in virtually all preindustrial cultures and have their roots in ancient myths and magical rituals. The prevalence of tattoos and piercings in the German population is 8.5% and 6.8%, respectively. Unemployed young men and young women who do not live in a firm partnership show particularly high prevalences. The incidence of BMs correlates positively with the personality trait "sensation seeking", particularly in young women. BMs often serve to express individuality and identity, and they also reflect changed attitude towards the human body and body art as well as following fashion trends. However, BMs can also provide valuable diagnostic indications for identity search and risk taking behaviour.
Plasma Cutting and Carbon-Arc Cutting. Welding Module 8. Instructor's Guide.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Instructional Materials Lab.
This guide is intended to assist vocational educators in teaching the two units of a module in operating plasma cutting and carbon-arc cutting equipment. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The materials included in the module have been…
Bieg, Lothar F.
1993-01-12
A method for machining a workpiece. The method includes the use of a rotary cutting tool mounted on the end of a movable arm. The arm is adapted to move in a plane perpendicular to the axis of rotation of the cutting tool. The cutting tool has cutting teeth to cut chips of material off of the workpiece in a predetermined size and shape to facilitate better removal of the chips from the workpiece. The teeth can be of different type and length to permit the tool to both rough cut and finish cut the workpiece during machining. The total depth of cut is divided by the number of tool teeth, so that the longest tool always performs the finishing cut.
ERIC Educational Resources Information Center
Labatt, Joseph; Forrest, Michael
2016-01-01
James M. Cain used his literary skills to incorporate business and business law concepts into a best-selling novel, "Mildred Pierce." Set in the Great Depression era, "Mildred Pierce" tells the story of a divorced woman who raises two daughters on her own, while building a restaurant and bakery business. Even in today's popular…
Fujisaki, K; Yokota, H; Nakatsuchi, H; Yamagata, Y; Nishikawa, T; Udagawa, T; Makinouchi, A
2010-01-01
A three-dimensional (3D) internal structure observation system based on serial sectioning was developed from an ultrasonic elliptical vibration cutting device and an optical microscope combined with a high-precision positioning device. For bearing steel samples, the cutting device created mirrored surfaces suitable for optical metallography, even for long-cutting distances during serial sectioning of these ferrous materials. Serial sectioning progressed automatically by means of numerical control. The system was used to observe inclusions in steel materials on a scale of several tens of micrometers. Three specimens containing inclusions were prepared from bearing steels. These inclusions could be detected as two-dimensional (2D) sectional images with resolution better than 1 mum. A three-dimensional (3D) model of each inclusion was reconstructed from the 2D serial images. The microscopic 3D models had sharp edges and complicated surfaces.
27 CFR 478.37 - Manufacture, importation and sale of armor piercing ammunition.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Manufacture, importation... COMMERCE IN FIREARMS AND AMMUNITION Administrative and Miscellaneous Provisions § 478.37 Manufacture, importation and sale of armor piercing ammunition. No person shall manufacture or import, and no manufacturer...
ERIC Educational Resources Information Center
Kramer, David C.
1983-01-01
Describes a procedure for starting tree cuttings from woody plants, explaining "lag time," recommending materials, and giving step-by-step instructions for rooting and planting. Points out species which are likely candidates for cuttings and provides tips for teachers for developing a unit. (JM)
Orthogonal cutting of laser beam melted parts
NASA Astrophysics Data System (ADS)
Götze, Elisa; Zanger, Frederik; Schulze, Volker
2018-05-01
The finishing process of parts manufactured by laser beam melting is of high concern due to the lack of surface accuracy. Therefore, the focus of this work lies on the influence of the build-up direction of the parts and their effect on the finishing process. The orthogonal cutting reveals findings in the fields of chip formation, involved forces and temperatures appearing during machining. In the investigations, the cutting depth was varied between 0.05 and 0.15 mm representing a finishing process and the cutting velocity ranges from 30 to 200 m/min depending on the material. The experiments contain the materials stainless steel (AISI 316L), titanium (Ti6Al4V) and nickel-base alloy (IN718). The two materials named latter are of high interest in the aerospace sector and at the same time titanium is used in the medical field due to its biocompatibility. For the materials IN718 and Ti6Al4V a negative rake angle of -7.5° and for stainless steel a rake angle of 12.5° are chosen for the cutting experiments. The results provide the base for processing strategies. Therefore, the specimens were solely laser beam melted without post-processing like heat treatment. The evaluation of the experiments shows that an increase in cutting speed has different effects depending on the material. For stainless steel the measured forces regarding the machining direction to the layers approach the same values. In contrast, the influence of the layers regarding the forces appearing during orthogonal cutting of the materials IN718 and Ti6Al4V differ for lower cutting speeds.
Graph-Cut Methods for Grain Boundary Segmentation (Preprint)
2011-06-01
metals and metal alloys ) are among the strongest determinants of many material properties, such as mechanical strength or fracture resistance. In materials...cropped) Ni-based alloy image (a) using normalized cut (b) and ratio cut (c). Similar to normalized cut is the average-cut approach [11], where the...framework [2]. (a) (b) (c) Figure 3: Segmentation of a (cropped) Ni-based alloy image by optimal labeling. (a) Segmented grain bound- aries in a template
Witman, Matthew; Ling, Sanliang; Boyd, Peter; Barthel, Senja; Haranczyk, Maciej; Slater, Ben; Smit, Berend
2018-02-28
Scientific interest in two-dimensional (2D) materials, ranging from graphene and other single layer materials to atomically thin crystals, is quickly increasing for a large variety of technological applications. While in silico design approaches have made a large impact in the study of 3D crystals, algorithms designed to discover atomically thin 2D materials from their parent 3D materials are by comparison more sparse. We hypothesize that determining how to cut a 3D material in half (i.e., which Miller surface is formed) by severing a minimal number of bonds or a minimal amount of total bond energy per unit area can yield insight into preferred crystal faces. We answer this question by implementing a graph theory technique to mathematically formalize the enumeration of minimum cut surfaces of crystals. While the algorithm is generally applicable to different classes of materials, we focus on zeolitic materials due to their diverse structural topology and because 2D zeolites have promising catalytic and separation performance compared to their 3D counterparts. We report here a simple descriptor based only on structural information that predicts whether a zeolite is likely to be synthesizable in the 2D form and correctly identifies the expressed surface in known layered 2D zeolites. The discovery of this descriptor allows us to highlight other zeolites that may also be synthesized in the 2D form that have not been experimentally realized yet. Finally, our method is general since the mathematical formalism can be applied to find the minimum cut surfaces of other crystallographic materials such as metal-organic frameworks, covalent-organic frameworks, zeolitic-imidazolate frameworks, metal oxides, etc.
2018-01-01
Scientific interest in two-dimensional (2D) materials, ranging from graphene and other single layer materials to atomically thin crystals, is quickly increasing for a large variety of technological applications. While in silico design approaches have made a large impact in the study of 3D crystals, algorithms designed to discover atomically thin 2D materials from their parent 3D materials are by comparison more sparse. We hypothesize that determining how to cut a 3D material in half (i.e., which Miller surface is formed) by severing a minimal number of bonds or a minimal amount of total bond energy per unit area can yield insight into preferred crystal faces. We answer this question by implementing a graph theory technique to mathematically formalize the enumeration of minimum cut surfaces of crystals. While the algorithm is generally applicable to different classes of materials, we focus on zeolitic materials due to their diverse structural topology and because 2D zeolites have promising catalytic and separation performance compared to their 3D counterparts. We report here a simple descriptor based only on structural information that predicts whether a zeolite is likely to be synthesizable in the 2D form and correctly identifies the expressed surface in known layered 2D zeolites. The discovery of this descriptor allows us to highlight other zeolites that may also be synthesized in the 2D form that have not been experimentally realized yet. Finally, our method is general since the mathematical formalism can be applied to find the minimum cut surfaces of other crystallographic materials such as metal–organic frameworks, covalent-organic frameworks, zeolitic-imidazolate frameworks, metal oxides, etc. PMID:29532024
Improving Immunization Coverage in a Rural School District in Pierce County, Washington
ERIC Educational Resources Information Center
Peterson, Robin M.; Cook, Carolyn; Yerxa, Mary E.; Marshall, James H.; Pulos, Elizabeth; Rollosson, Matthew P.
2012-01-01
Washington State has some of the highest percentages of school immunization exemptions in the country. We compared school immunization records in a rural school district in Pierce County, Washington, to immunization records in the state immunization information system (IIS) and parent-held records. Correcting school immunization records resulted…
Aldrich, Thomas J; Rolshausen, Philippe E; Roper, M Caroline; Reader, Jordan M; Steinhaus, Matthew J; Rapicavoli, Jeannette; Vosburg, David A; Maloney, Katherine N
2015-08-01
The fastidious phytopathogenic bacterium, Xylella fastidiosa, poses a substantial threat to many economically important crops, causing devastating diseases including Pierce's Disease of grapevine. Grapevines (Vitis vinifera L.) planted in an area under Pierce's Disease pressure often display differences in disease severity and symptom expression, with apparently healthy vines growing alongside the dying ones, despite the fact that all the vines are genetic clones of one another. Under the hypothesis that endophytic microbes might be responsible for this non-genetic resistance to X. fastidiosa, endophytic fungi were isolated from vineyard cvs. 'Chardonnay' and 'Cabernet Sauvignon' grown under high Pierce's Disease pressure. A Cochliobolus sp. isolated from a Cabernet Sauvignon grapevine inhibited the growth of X. fastidiosa in vitro. Bioassay-guided isolation of an organic extract of Cochliobolus sp. yielded the natural product radicinin as the major active compound. Radicinin also inhibited proteases isolated from the culture supernatant of X. fastidiosa. In order to assess structure-activity relationships, three semi-synthetic derivatives of radicinin were prepared and tested for activity against X. fastidiosa in vitro. Assay results of these derivatives are consistent with enzyme inactivation by conjugate addition to carbon-10 of radicinin, as proposed previously. Copyright © 2015 Elsevier Ltd. All rights reserved.
Device for cutting protrusions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bzorgi, Fariborz M
An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade.more » The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witman, Matthew; Ling, Sanliang; Boyd, Peter
Scientific interest in two-dimensional (2D) materials, ranging from graphene and other single layer materials to atomically thin crystals, is quickly increasing for a large variety of technological applications. While in silico design approaches have made a large impact in the study of 3D crystals, algorithms designed to discover atomically thin 2D materials from their parent 3D materials are by comparison more sparse. Here, we hypothesize that determining how to cut a 3D material in half (i.e., which Miller surface is formed) by severing a minimal number of bonds or a minimal amount of total bond energy per unit area canmore » yield insight into preferred crystal faces. We answer this question by implementing a graph theory technique to mathematically formalize the enumeration of minimum cut surfaces of crystals. While the algorithm is generally applicable to different classes of materials, we focus on zeolitic materials due to their diverse structural topology and because 2D zeolites have promising catalytic and separation performance compared to their 3D counterparts. We report here a simple descriptor based only on structural information that predicts whether a zeolite is likely to be synthesizable in the 2D form and correctly identifies the expressed surface in known layered 2D zeolites. The discovery of this descriptor allows us to highlight other zeolites that may also be synthesized in the 2D form that have not been experimentally realized yet. Finally, our method is general since the mathematical formalism can be applied to find the minimum cut surfaces of other crystallographic materials such as metal-organic frameworks, covalent-organic frameworks, zeolitic-imidazolate frameworks, metal oxides, etc.« less
Witman, Matthew; Ling, Sanliang; Boyd, Peter; ...
2018-02-06
Scientific interest in two-dimensional (2D) materials, ranging from graphene and other single layer materials to atomically thin crystals, is quickly increasing for a large variety of technological applications. While in silico design approaches have made a large impact in the study of 3D crystals, algorithms designed to discover atomically thin 2D materials from their parent 3D materials are by comparison more sparse. Here, we hypothesize that determining how to cut a 3D material in half (i.e., which Miller surface is formed) by severing a minimal number of bonds or a minimal amount of total bond energy per unit area canmore » yield insight into preferred crystal faces. We answer this question by implementing a graph theory technique to mathematically formalize the enumeration of minimum cut surfaces of crystals. While the algorithm is generally applicable to different classes of materials, we focus on zeolitic materials due to their diverse structural topology and because 2D zeolites have promising catalytic and separation performance compared to their 3D counterparts. We report here a simple descriptor based only on structural information that predicts whether a zeolite is likely to be synthesizable in the 2D form and correctly identifies the expressed surface in known layered 2D zeolites. The discovery of this descriptor allows us to highlight other zeolites that may also be synthesized in the 2D form that have not been experimentally realized yet. Finally, our method is general since the mathematical formalism can be applied to find the minimum cut surfaces of other crystallographic materials such as metal-organic frameworks, covalent-organic frameworks, zeolitic-imidazolate frameworks, metal oxides, etc.« less
27 CFR 478.148 - Armor piercing ammunition intended for sporting or industrial purposes.
Code of Federal Regulations, 2010 CFR
2010-04-01
... intended for sporting or industrial purposes. 478.148 Section 478.148 Alcohol, Tobacco Products, and... ammunition intended for sporting or industrial purposes. The Director may exempt certain armor piercing... for any such ammunition which is primarily intended for sporting purposes or intended for industrial...
On the Cutting Performance of Segmented Diamond Blades when Dry-Cutting Concrete
Martynenko, V.; Martínez Krahmer, D.; Benítez, A.; Genovese, G.
2018-01-01
The objective of the present study is to analyze and compare the cutting performance of segmented diamond blades when dry-cutting concrete. A cutting criteria is proposed to characterize the wear of the blades by measuring the variation of the external diameter and the weight loss of the blade. The results exhibit the cutting blade SB-A, which has twice the density of diamonds and large contact area, exhibits less wear even though the material removal rate is higher compared with the other two cutting blades. Additionally, the surface topography of the different blades is evaluated to examine the impact of wear depending on the surface profile and the distribution of the diamonds in the blade’s matrix. Large number of diamonds pull-out are found in blades type SB-C, which additionally shows the worst wear resistant capability. As a conclusion, the cutting efficiency of the blade is found to be related to the density of embedded diamonds and the type of the surface profile of the cutting blade after reaching the stop criteria. PMID:29425125
On the Cutting Performance of Segmented Diamond Blades when Dry-Cutting Concrete.
Sánchez Egea, A J; Martynenko, V; Martínez Krahmer, D; López de Lacalle, L N; Benítez, A; Genovese, G
2018-02-09
The objective of the present study is to analyze and compare the cutting performance of segmented diamond blades when dry-cutting concrete. A cutting criteria is proposed to characterize the wear of the blades by measuring the variation of the external diameter and the weight loss of the blade. The results exhibit the cutting blade SB-A, which has twice the density of diamonds and large contact area, exhibits less wear even though the material removal rate is higher compared with the other two cutting blades. Additionally, the surface topography of the different blades is evaluated to examine the impact of wear depending on the surface profile and the distribution of the diamonds in the blade's matrix. Large number of diamonds pull-out are found in blades type SB-C, which additionally shows the worst wear resistant capability. As a conclusion, the cutting efficiency of the blade is found to be related to the density of embedded diamonds and the type of the surface profile of the cutting blade after reaching the stop criteria.
Investigating the CO 2 laser cutting parameters of MDF wood composite material
NASA Astrophysics Data System (ADS)
Eltawahni, H. A.; Olabi, A. G.; Benyounis, K. Y.
2011-04-01
Laser cutting of medium density fibreboard (MDF) is a complicated process and the selection of the process parameters combinations is essential to get the highest quality cut section. This paper presents a means for selecting the process parameters for laser cutting of MDF based on the design of experiments (DOE) approach. A CO 2 laser was used to cut three thicknesses, 4, 6 and 9 mm, of MDF panels. The process factors investigated are: laser power, cutting speed, air pressure and focal point position. In this work, cutting quality was evaluated by measuring the upper kerf width, the lower kerf width, the ratio between the upper kerf width to the lower kerf width, the cut section roughness and the operating cost. The effect of each factor on the quality measures was determined. The optimal cutting combinations were presented in favours of high quality process output and in favours of low cutting cost.
Modeling the forces of cutting with scissors.
Mahvash, Mohsen; Voo, Liming M; Kim, Diana; Jeung, Kristin; Wainer, Joshua; Okamura, Allison M
2008-03-01
Modeling forces applied to scissors during cutting of biological materials is useful for surgical simulation. Previous approaches to haptic display of scissor cutting are based on recording and replaying measured data. This paper presents an analytical model based on the concepts of contact mechanics and fracture mechanics to calculate forces applied to scissors during cutting of a slab of material. The model considers the process of cutting as a sequence of deformation and fracture phases. During deformation phases, forces applied to the scissors are calculated from a torque-angle response model synthesized from measurement data multiplied by a ratio that depends on the position of the cutting crack edge and the curve of the blades. Using the principle of conservation of energy, the forces of fracture are related to the fracture toughness of the material and the geometry of the blades of the scissors. The forces applied to scissors generally include high-frequency fluctuations. We show that the analytical model accurately predicts the average applied force. The cutting model is computationally efficient, so it can be used for real-time computations such as haptic rendering. Experimental results from cutting samples of paper, plastic, cloth, and chicken skin confirm the model, and the model is rendered in a haptic virtual environment.
Quaranta, Alessia; Napoli, Christian; Fasano, Fabrizio; Montagna, Claudio; Caggiano, Giuseppina; Montagna, Maria Teresa
2011-10-07
The practice of tattooing and piercing has expanded in western society. In order to verify young adults' knowledge of the risk and practices related to body art, an investigation was conducted among freshmen of the University of Bari in the region of Apulia, Italy. The study was carried out in the Academic Year 2009-2010 through an anonymous self-administered written questionnaire distributed to 1.656 freshmen enrolled in 17 Degree Courses. Of the 1.598 students included in the analysis, 78.3% believe it is risky to undergo piercing/tattoo practices. AIDS was indicated as a possible infection by 60.3% of freshmen, hepatitis C by 38.2%, tetanus by 34.3% and hepatitis B by 33.7% of the sample. 28.1% of freshmen were not aware that there are also non-infectious complications. 29% of the sample had at least one piercing or tattoo (this percentage does not include earlobe piercing in women). Of those with body art, the decision to undergo body art was made autonomously in 57.9% of the participants. 56.3% of freshmen undergoing body art had taken less than a month to decide. With regard to the reasons that led the sample to undergo body art, 28.4% were unable to explain it, 23.8% answered to improve their aesthetic aspect, 18.4% to distinguish themselves from others, 12.3% for fashion; 17.1% for other reasons. 25.4% of the sample declared that they had a piercing (79.8% female vs 20.2% male; ratio M/F 1:4.0). The average age for a first piercing was 15.3 years (range 10-27; SD ± 2.9). 9.6% of the sample declared that they have a tattoo (69.9% female vs 30.1% male; ratio M/F 1:2.3). The average age for a first tattoo was 17.5 years (range 10-26, SD ± 2.4). Most of the freshmen knew about AIDS-related risks but not other potential risks. Body art is fairly common among young adults (especially women). The decision is often not shared with the family and is undertaken mostly without a specific reason or for the improvement of aesthetic aspect. Information about freshmen
Enclosed Cutting-And-Polishing Apparatus
NASA Technical Reports Server (NTRS)
Rossier, R. N.; Bicknell, B.
1989-01-01
Proposed apparatus cuts and polishes specimens while preventing contamination of outside environment or of subsequent specimens processed in it. Designed for use in zero gravity but also includes features useful in cutting and polishing of toxic or otherwise hazardous materials on Earth. Includes remote manipulator for handling specimens, cutting and polishing wire, inlets for gas and liquid, and outlets for waste liquid and gas. Replaceable plastic liner surrounds working space.
Qi, Chaolong; Echt, Alan; Murata, Taichi K
2016-06-01
We conducted a laboratory test to characterize dust from cutting Corian(®), a solid-surface composite material, with a circular saw. Air samples were collected using filters and direct-reading instruments in an automatic laboratory testing system. The average mass concentrations of the total and respirable dusts from the filter samples were 4.78±0.01 and 1.52±0.01mg cm(-3), respectively, suggesting about 31.8% mass of the airborne dust from cutting Corian(®) is respirable. Analysis of the metal elements on the filter samples reveals that aluminum hydroxide is likely the dominant component of the airborne dust from cutting Corian(®), with the total airborne and respirable dusts containing 86.0±6.6 and 82.2±4.1% aluminum hydroxide, respectively. The results from the direct-reading instruments confirm that the airborne dust generated from cutting Corian(®) were mainly from the cutting process with very few particles released from the running circular saw alone. The number-based size distribution of the dusts from cutting Corian(®) had a peak for fine particles at 1.05 µm with an average total concentration of 871.9 particles cm(-3), and another peak for ultrafine particles at 11.8nm with an average total concentration of 1.19×10(6) particles cm(-3) The small size and high concentration of the ultrafine particles suggest additional investigation is needed to study their chemical composition and possible contribution to pulmonary effect. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2016.
Qi, Chaolong; Echt, Alan; Murata, Taichi K
2016-01-01
We conducted a laboratory test to characterize dust from cutting Corian®, a solid-surface composite material, with a circular saw. Air samples were collected using filters and direct-reading instruments in an automatic laboratory testing system. The average mass concentrations of the total and respirable dusts from the filter samples were 4.78±0.01 and 1.52±0.01 mg cm−3, respectively, suggesting about 31.8% mass of the airborne dust from cutting Corian® is respirable. Analysis of the metal elements on the filter samples reveals that aluminum hydroxide is likely the dominant component of the airborne dust from cutting Corian®, with the total airborne and respirable dusts containing 86.0%±6.6% and 82.2%±4.1% aluminum hydroxide, respectively. The results from the direct-reading instruments confirm that the airborne dust generated from cutting Corian® were mainly from the cutting process with very few particles released from the running circular saw alone. The number-based size distribution of the dusts from cutting Corian® had a peak for fine particles at 1.05 µm with an average total concentration of 871.9 particles cm−3, and another peak for ultrafine particles at 11.8 nm with an average total concentration of 1.19×106 particles cm−3. The small size and high concentration of the ultrafine particles suggest additional investigation is needed to study their chemical composition and possible contribution to pulmonary effect. PMID:26872962
Efficiency of laser beam utilization in gas laser cutting of materials
NASA Astrophysics Data System (ADS)
Galushkin, M. G.; Grishaev, R. V.
2018-02-01
Relying on the condition of dynamic matching of the process parameters in gas laser cutting, the dependence of the beam utilization factor on the cutting speed and the beam power has been determined. An energy balance equation has been derived for a wide range of cutting speed values.
NASA Technical Reports Server (NTRS)
Spier, R. A.
1970-01-01
Triangular cutting tool uses carbide tips for notching heat-treated or abrasive materials, and alloys subjected to high structural stresses. The tool is rigidly mounted in a slot of mating contour to prevent deflection during cutting of tensile specimens. No other expensive machine equipment is required.
Experimental study on combined cold forging process of backward cup extrusion and piercing
NASA Astrophysics Data System (ADS)
Henry, Robinson; Liewald, Mathias
2018-05-01
A reduction in material usage of cold forged components while maintaining the functional requirements can be achieved using hollow or tubular preforms. These preforms are used to meet lightweight requirements and to decrease production costs of cold formed components. To increase production efficiency in common multi-stage cold forming processes, manufacturing of hollow preforms by combining the processes backward cup extrusion and piercing was established and will be discussed in this paper. Corresponding investigations and experimental studies are reported in this article. The objectives of the experimental investigations have been the detection of significant process parameters, determination of process limits for the combined processes and validation of the numerical investigations. In addition, the general influence concerning surface quality and diameter tolerance of hollow performs are discussed in this paper. The final goal is to summarize a guideline for industrial application, moreover, to transfer the knowledge to industry, as regards what are required part geometries to reduce the number of forming stages as well as tool cost.
High performance cutting of aircraft and turbine components
NASA Astrophysics Data System (ADS)
Krämer, A.; Lung, D.; Klocke, F.
2012-04-01
Titanium and nickel-based alloys belong to the group of difficult-to-cut materials. The machining of these high-temperature alloys is characterized by low productivity and low process stability as a result of their physical and mechanical properties. Major problems during the machining of these materials are low applicable cutting speeds due to excessive tool wear, long machining times, and thus high manufacturing costs, as well as the formation of ribbon and snarled chips. Under these conditions automation of the production process is limited. This paper deals with strategies to improve machinability of titanium and nickel-based alloys. Using the example of the nickel-based alloy Inconel 718 high performance cutting with advanced cutting materials, such as PCBN and cutting ceramics, is presented. Afterwards the influence of different cooling strategies, like high-pressure lubricoolant supply and cryogenic cooling, during machining of TiAl6V4 is shown.
An, Qinglong; Ming, Weiwei; Chen, Ming
2015-01-01
Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments. The same cutting speed of 300 mm/min was used in the experiments with single-crystal diamond tool. CUCT was determined according to the mentioned cutting characteristics. The results revealed that 320 nm was found as the CUCT in BK7 cutting and 50 nm was determined as the size effect of undeformed chip thickness. A high-quality machined surface could be obtained with the undeformed chip thickness between 50 and 320 nm at ductile cutting stage. Moreover, no CUCT was identified in fused silica cutting with the current cutting conditions, and brittle-fracture mechanism was confirmed as the predominant chip-separation mode throughout the nanometric cutting operation. PMID:28788010
An, Qinglong; Ming, Weiwei; Chen, Ming
2015-03-27
Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments. The same cutting speed of 300 mm/min was used in the experiments with single-crystal diamond tool. CUCT was determined according to the mentioned cutting characteristics. The results revealed that 320 nm was found as the CUCT in BK7 cutting and 50 nm was determined as the size effect of undeformed chip thickness. A high-quality machined surface could be obtained with the undeformed chip thickness between 50 and 320 nm at ductile cutting stage. Moreover, no CUCT was identified in fused silica cutting with the current cutting conditions, and brittle-fracture mechanism was confirmed as the predominant chip-separation mode throughout the nanometric cutting operation.
Piercing Ear Keloid: Excision Using Loupe Magnification and Topical Liquid Silicone Gel as Adjuvant
Ramesh, Bellam A.; Mohan, J.
2018-01-01
Background: Keloid is an abnormal growth of scar at the site of skin injury, which usually does not regress. It proliferates beyond the original scar. The ear keloid usually develops after piercing injury to wear ornaments. A patient usually asks for removal of keloid, as it is aesthetically unpleasant. Patient may sometimes complain of itching and pain. Aim: The study was conducted to analyze results following excision of keloid with its tract and topical silicone gel as the postsurgical adjuvant. Materials and Methods: Ear keloids measuring less than 0.5cm or more than 5cm in maximum dimension were excluded from the study. Nonpiercing causes such as burns, trauma, and recurrent keloid were excluded from the study. The study was carried out on 22 patients who had keloid because of piercing injury, including 4 cases with both ear keloids. Of 26 ear keloids, 19 had the tract or connecting tissue. The lesion was excised under anesthesia using magnification. For all the operated cases, topical liquid silicone gel was used as postsurgical adjuvant therapy. The method of application of topical silicone gel was taught to each patient and was considered significant. Result: The magnification helped in identification of tract in 73% of the cases in this study. Twenty patients had successfully responded to proposed treatment, and two patients developed recurrence while using topical silicone gel as the adjuvant. These two patients were managed with conventional triamcinolone injection. Conclusion: The topical silicone gel as postsurgical adjuvant therapy avoided the use of painful postsurgical injection or radiotherapy for the 1–3cm primary ear keloids. The advantages of magnification were better clearance of keloid tissue, easier identification of tract and removal of keloid pseudopods, meticulous suturing, and comfortable elevation of a small local flap. PMID:29731586
Comparison of cutting efficiencies between electric and air-turbine dental handpieces.
Choi, Charlson; Driscoll, Carl F; Romberg, Elaine
2010-02-01
Dentistry is gravitating toward the increased use of electric handpieces. The dental professional should have sufficient evidence to validate the switch from an air-turbine handpiece to an electric handpiece. However, there is little research quantifying the cutting efficiency of electric and air-turbine handpieces. Studies that do quantify cutting efficiency typically do so with only a single material. The purpose of this study was to compare the cutting efficiency of an electric handpiece and an air-turbine handpiece, using various materials commonly used in dentistry. Seven materials: Macor (machinable glass ceramic), silver amalgam, aluminum oxide, zirconium oxide, high noble metal alloy, noble metal alloy, and base metal alloy, were each cut with a bur 220 times; 110 times with an electric handpiece, and 110 times with an air-turbine handpiece. The weight difference of the material was calculated by subtracting the weight of the material after a cut from the weight of the material before the cut. The cutting efficiency was calculated by dividing the weight difference by the duration of the cut (g/s). Data were analyzed by a 2-way analysis of variance followed by Tukey's Honestly Significant Difference (HSD) test (alpha=.05). The electric handpiece cut more efficiently than the air-turbine handpiece (F=3098.9, P<.001). In particular, the high noble metal alloy, silver amalgam, and Macor were cut more efficiently with the electric handpiece (0.0383 +/-0.0002 g/s, 0.0260 +/-0.0002 g/s, and 0.0122 +/-0.0002 g/s, respectively) than with the air-turbine handpiece (0.0125 +/-0.0002 g/s, 0.0142 +/-0.0002 g/s, and 0.008 +/-0.0002 g/s, respectively). The electric handpiece is more efficient at cutting various materials used in dentistry, especially machinable glass ceramic, silver amalgam, and high noble alloy, than the air-turbine handpiece.
NASA Astrophysics Data System (ADS)
Vogt, S.; Neumayer, F. F.; Serkyov, I.; Jesner, G.; Kelsch, R.; Geile, M.; Sommer, A.; Golle, R.; Volk, W.
2017-09-01
Steel is the most common material used in vehicles’ chassis, which makes its research an important topic for the automotive industry. Recently developed ultra-high-strength steels (UHSS) provide extreme tensile strength up to 1,500 MPa and combine great crashworthiness with good weight reduction potential. However, in order to reach the final shape of sheet metal parts additional cutting steps such as trimming and piercing are often required. The final trimming of quenched metal sheets presents a huge challenge to a conventional process, mainly because of the required extreme cutting force. The high cutting impact, due to the materials’ brittleness, causes excessive tool wear or even sudden tool failure. Therefore, a laser is commonly used for the cutting process, which is time and energy consuming. The purpose of this paper is to demonstrate the capability of a conventional blanking tool design in a continuous stroke piercing process using boron steel 22MnB5 sheets. Two different types of tool steel were tested for their suitability as active cutting elements: electro-slag remelted (ESR) cold work tool steel Bohler K340 ISODUR and powder-metallurgic (PM) high speed steel Bohler S390 MICROCLEAN. A FEM study provided information about an optimized punch design, which withstands buckling under high cutting forces. The wear behaviour of the process was assessed by the tool wear of the active cutting elements as well as the quality of cut surfaces.
NASA Astrophysics Data System (ADS)
Setiawan, A.; Wangsaputra, R.; Martawirya, Y. Y.; Halim, A. H.
2016-02-01
This paper deals with Flexible Manufacturing System (FMS) production rescheduling due to unavailability of cutting tools caused either of cutting tool failure or life time limit. The FMS consists of parallel identical machines integrated with an automatic material handling system and it runs fully automatically. Each machine has a same cutting tool configuration that consists of different geometrical cutting tool types on each tool magazine. The job usually takes two stages. Each stage has sequential operations allocated to machines considering the cutting tool life. In the real situation, the cutting tool can fail before the cutting tool life is reached. The objective in this paper is to develop a dynamic scheduling algorithm when a cutting tool is broken during unmanned and a rescheduling needed. The algorithm consists of four steps. The first step is generating initial schedule, the second step is determination the cutting tool failure time, the third step is determination of system status at cutting tool failure time and the fourth step is the rescheduling for unfinished jobs. The approaches to solve the problem are complete-reactive scheduling and robust-proactive scheduling. The new schedules result differences starting time and completion time of each operations from the initial schedule.
A 120kV IGBT modulator for driving a pierce electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earley, L. M.; Brown, R. W.; Carlson, R. L.
2004-01-01
An IGBT modulator has been developed to drive a 120 kV, 23 A Pierce electron gun. The modulator is capable of producing pulses up to 10 {mu}s in width at repetition rates up to 10Hz with no active reset. The pulse rise time on the electron gun will be approximately 2 {mu}s and the remaining 8 {mu}s of flattop is tuned to have a ripple of less than 1 percent rms. The modulator technology was developed from a previous 50 kV prototype. The modulator consists of six boards, each with one EUPEC IGBT that drives a single common step-up transformermore » wound on METGLAS 2605SC cores. The six transformer cores share a common bi-filar output secondary winding. The modulator uses a fiber optic trigger system and has a high voltage cable output with an epoxy receptacle on the oil end and a ceramic receptacle on the vacuum end. The 120 kV electron gun was manufactured by MDS Co. and will be used to generate sheet electron beams from the standard pencil beam produced by the Pierce electron gun.« less
NASA Technical Reports Server (NTRS)
Montgomery, Kevin; Bruyns, Cynthia D.
2002-01-01
We present schemes for real-time generalized interactions such as probing, piercing, cauterizing and ablating virtual tissues. These methods have been implemented in a robust, real-time (haptic rate) surgical simulation environment allowing us to model procedures including animal dissection, microsurgery, hysteroscopy, and cleft lip repair.
Ohashi, Manabu; Hiki, Naoki; Ida, Satoshi; Kumagai, Koshi; Nunobe, Souya; Sano, Takeshi
2018-05-21
Delta-shaped anastomosis is usually applied for an intracorporeal gastrogastrostomy in totally laparoscopic pylorus-preserving gastrectomy (TLPPG). However, the remnant stomach is slightly twisted around the anastomosis because it connects in side-to-side fashion. To realize an intracorporeal end-to-end gastrogastrostomy using an endoscopic linear stapler, we invented a novel method including a unique anastomotic technique. In this new approach, we first made small gastrotomies at the greater and lesser curvatures of the transected antrum and then pierced it using an endoscopic linear stapler. After the pierced antrum and the proximal remnant stomach were mechanically connected, the gastrotomies and stapling lines were transected using an endoscopic linear stapler, creating an intracorporeal end-to-end gastrogastrostomy. We have named this technique the "piercing method" because piercing the stomach is essential to its implementation. Between October 2015 and June 2017, 26 patients who had clinically early gastric cancer at the middle third of the stomach without clinical evidence of lymph node metastasis underwent TLPPG involving the novel method. The 26 patients successfully underwent an intracorporeal mechanical end-to-end gastrogastrostomy by the piercing method. The median operation time of the 26 patients was 272 min (range 209-357 min). With the exception of one gastric stasis, no problems associated with the piercing method were encountered during and after surgery. The piercing method can safely create an intracorporeal mechanical end-to-end gastrogastrostomy in TLPPG. Piercing the stomach using an endoscopic linear stapler is a new technique for gastrointestinal anastomosis. This method should be considered if the surgical aim is creation of an intracorporeal end-to-end gastrogastrostomy in TLPPG.
29. TRACK LAYOUT, INDEX TO DRAWINGS AND INDEX TO MATERIALS, ...
29. TRACK LAYOUT, INDEX TO DRAWINGS AND INDEX TO MATERIALS, REED & STEM ARCHITECTS, ST. PAUL, NEW YORK, 1909 (Burlington Northern Collection, Seattle, Washington) - Union Passenger Station Concourse, 1713 Pacific Avenue, Tacoma, Pierce County, WA
Cutting holes in fabric-faced panels
NASA Technical Reports Server (NTRS)
Peterson, S. A.
1981-01-01
Tool has 2 carbide inserts that bore clean holes through fibrous material with knifelike slicing action. Cutting edge of insert is curved, with plane inner surface at 30 degree angle to tool axis. Drill press or hand-held drill can be used to hold cutting tool.
Compositions and Methods for the Treatment of Pierce's Disease
Gupta, Goutam
2008-10-07
Chimeric anti-microbial proteins, compositions, and methods for the therapeutic and prophylactic treatment of plant diseases caused by the bacterial pathogen Xylella fastidiosa are provided. The anti-microbial proteins of the invention generally comprise a surface recognition domain polypeptide, capable of binding to a bacterial membrane component, fused to a bacterial lysis domain polypeptide, capable of affecting lysis or rupture of the bacterial membrane, typically via a fused polypeptide linker. In particular, methods and compositions for the treatment or prevention of Pierce's disease of grapevines are provided. Methods for the generation of transgenic Vitus vinefera plants expressing xylem-secreted anti-microbial chimeras are also provided.
NASA Astrophysics Data System (ADS)
Decker, Jennifer Fino; Trépanier, Christine; Vien, Lot; Pelton, Alan R.
2011-07-01
Laser cutting and wire forming are two of the most commonly used processes in the manufacture of Nitinol medical devices. This study explores how varying the amount of material removed during the final surface treatment steps affects the corrosion resistance of Z-type stents that have either been laser-cut from tube or shape set from wire. All parts were subjected to a typical heat treatment process necessary to achieve an Austenite finish (Af) temperature of 25 ± 5 °C, and were subsequently post-processed with an electrochemical passivation process. The total weight loss during post-processing was recorded and the process adjusted to create groups with less than 5%, less than 10%, and less than 25% amounts of weight loss. The parts were then crimped to 6 mm and allowed to expand back to their original diameter. The corrosion test results showed that on average both groups of Z-stents experienced an increase in the corrosion breakdown potential and a decrease in the standard deviation with increasing amounts of material removal. In addition, less material removal is required from the wire-form Z-stents as compared to the laser-cut Z-stents to achieve high corrosion resistance. Finally, 7 day nickel ion release tests performed on the wire-formed Z-stents showed a dramatic decrease from 0.0132 mg of nickel leached per day for the low weight loss group to approximately 0.001 mg/day for the medium and high weight loss groups.
Effects of Waves on the Boundary Layer of a Surface-Piercing Body
1985-05-01
piercing bodies have been performed. Furthermore, all of these investigations have been of an approximate nature and none have properly accounted for...equation wall-turbulence model to account for the influence of the free surface. Lastly, in Section VII, a summary of the results from the present...requires V . In order to evaluate V correctly it was necessary to account for the grid nonorthogonality in the marching direction. Specifically, in
Female genital mutilation/cutting in Africa.
Odukogbe, Akin-Tunde A; Afolabi, Bosede B; Bello, Oluwasomidoyin O; Adeyanju, Ayodeji S
2017-04-01
Female genital mutilation/cutting (FGM/C) is a traditional practice in which the external female genitalia is partially or totally incised or excised for a non-therapeutic reason, usually without the consent of the individual. FGM/C is common in Africa with varying prevalence in different countries, though the incidence is reducing because it is considered a human rights issue with tremendous advocacy for its elimination by mainly nongovernmental organizations. It is mainly underreported in many countries in Africa especially where it has been declared illegal. FGM/C is often performed by a nonmedical practitioner with the aim of fulfilling religious or cultural rites and sometimes for economic benefits with the resultant acute, intermediate and late complications. It is sometimes performed by medical practitioners when it is speciously believed that its medicalization reduces the complications associated with the practice. The sensitivity of FGM/C is amplified when compared to male circumcision and voluntary alterations of the female external genitalia like piercing and tattooing as similar practices. The magnitude of the physical and psychosocial consequences of FGM/C outweighs the presumed benefits of the procedures highlighting the need for improvement of the multiple preventive measures by all the stakeholders and in all the sectors.
Female genital mutilation/cutting in Africa
Afolabi, Bosede B.; Bello, Oluwasomidoyin O.; Adeyanju, Ayodeji S.
2017-01-01
Female genital mutilation/cutting (FGM/C) is a traditional practice in which the external female genitalia is partially or totally incised or excised for a non-therapeutic reason, usually without the consent of the individual. FGM/C is common in Africa with varying prevalence in different countries, though the incidence is reducing because it is considered a human rights issue with tremendous advocacy for its elimination by mainly nongovernmental organizations. It is mainly underreported in many countries in Africa especially where it has been declared illegal. FGM/C is often performed by a nonmedical practitioner with the aim of fulfilling religious or cultural rites and sometimes for economic benefits with the resultant acute, intermediate and late complications. It is sometimes performed by medical practitioners when it is speciously believed that its medicalization reduces the complications associated with the practice. The sensitivity of FGM/C is amplified when compared to male circumcision and voluntary alterations of the female external genitalia like piercing and tattooing as similar practices. The magnitude of the physical and psychosocial consequences of FGM/C outweighs the presumed benefits of the procedures highlighting the need for improvement of the multiple preventive measures by all the stakeholders and in all the sectors. PMID:28540220
Pierce Butler's "An Introduction to Library Science: A Tract for Our Times? A Review Article
ERIC Educational Resources Information Center
Cronin, Blaise
2004-01-01
Considers the historic and contemporary import of Pierce Butler's "An Introduction to Library Science". Characterizes the content of each chapter and critically analyses the central theses. Relates Butler's positivistic premises, assumptions and conclusions to the congeries of competing epistemological and ideological standpoints that defines…
Digital modeling of end-mill cutting tools for FEM applications from the active cutting contour
NASA Astrophysics Data System (ADS)
Salguero, Jorge; Marcos, M.; Batista, M.; Gómez, A.; Mayuet, P.; Bienvenido, R.
2012-04-01
A very current technique in the research field of machining by material removal is the use of simulations using the Finite Element Method (FEM). Nevertheless, and although is widely used in processes that allows approximations to orthogonal cutting, such as shaping, is scarcely used in more complexes processes, such as milling. This fact is due principally to the complex geometry of the cutting tools in these processes, and the need to realize the studi es in an oblique cutting configuration. This paper shows a methodology for the geometrical characterization of commercial endmill cutting tools, by the extraction of the cutting tool contour, making use of optical metrology, and using this geometry to model the active cutting zone with a 3D CAD software. This model is easily exportable to different CAD formats, such as IGES or STEP, and importable from FEM software, where is possible to study the behavior in service of the same ones.
NASA Astrophysics Data System (ADS)
Kirk, K. B.; Manduca, C. A.; Myers, J. D.; Loxsom, F.
2009-12-01
Global climate change and energy use are among the most relevant and pressing issues in today’s science curriculum, yet they are also complex topics to teach. The underlying science spans multiple disciplines and is quickly evolving. Moreover, a comprehensive treatment of climate change and energy use must also delve into perspectives not typically addressed in geosciences courses, such as public policy and economics. Thus, faculty attempting to address these timely issues face many challenges. To support faculty in teaching these subjects, the On the Cutting Edge faculty development program has created a series of websites and workshop opportunities to provide faculty with information and resources for teaching about climate and energy. A web-based collection of teaching materials was developed in conjunction with the On the Cutting Edge workshops “Teaching about Energy in Geoscience Courses: Current Research and Pedagogy.” The website is designed to provide faculty with examples, references and ideas for either incorporating energy topics into existing geoscience courses or for designing or refining a course about energy. The website contains a collection of over 30 classroom and lab activities contributed by faculty and covering such diverse topics as renewable energy, energy policy and energy conservation. Course descriptions and syllabi for energy courses address audiences ranging from introductory courses to advanced seminars. Other materials available on the website include a collection of visualizations and animations, a catalog of recommended books, presentations and related references from the teaching energy workshops, and ideas for novel approaches or new topics for teaching about energy in the geosciences. The Teaching Climate Change website hosts large collections of teaching materials spanning many different topics within climate change, climatology and meteorology. Classroom activities highlight diverse pedagogic approaches such as role
Research Results Of Stress-Strain State Of Cutting Tool When Aviation Materials Turning
NASA Astrophysics Data System (ADS)
Serebrennikova, A. G.; Nikolaeva, E. P.; Savilov, A. V.; Timofeev, S. A.; Pyatykh, A. S.
2018-01-01
Titanium alloys and stainless steels are hard-to-machine of all the machining types. Cutting edge state of turning tool after machining titanium and high-strength aluminium alloys and corrosion-resistant high-alloy steel has been studied. Cutting forces and chip contact arears with the rake surface of cutter has been measured. The relationship of cutting forces and residual stresses are shown. Cutting forces and residual stresses vs value of cutting tool rake angle relation were obtained. Measurements of residual stresses were performed by x-ray diffraction.
Shock synthesized and static sintered boron nitride cutting tool
NASA Astrophysics Data System (ADS)
Araki, M.; Kuroyama, Y.
1986-05-01
Shock synthesis of wBN (wurtzite phase boron nitride) on an industrial scale was achieved by Nippon Oil & Fats and Showa Denko in 1971. It seemed that the resultant wBN powder might display excellent qualities as a cutting tool material when it was sintered under very high static pressure and temperature because of its polycrystalline nature. Attempts to produce a wBN cutting tool material were commenced by the Tokyo Institute of Technology and Nippon Oil & Fats in 1976 and commercially available wBN cutting tools were first sold in 1980. Meanwhile, a new type of explosion chamber designed to eliminate explosion sound and earth vibration problems, novel high pressure vessels and other peripheral apparatuses have been developed. Now, WURZIN (trademark for the wBN cutting tool) is used in many aspects of the steel cutting field because it is durable when cutting various steels from mild steels to superalloys under high speed, interrupt and precision cutting conditions.
Transforming the Cross Cultural Collaborative of Pierce County Through Assessment Capacity Building
Garza, Mary A.; Abatemarco, Diane J.; Gizzi, Cindan; Abegglen, Lynn M.; Johnson-Conley, Christina
2010-01-01
Background Underserved populations are underrepresented in public health initiatives such as tobacco control and in cancer clinical trials. Community involvement is crucial to interventions aimed at reducing health disparities, and local health departments increasingly are called upon to provide both leadership and funding. The Tacoma Pierce County Health Department (TPCHD), in conjunction with 13 key community-based organizations and healthcare systems, formed the Cross Cultural Collaborative of Pierce County (CCC) that successfully employs needs-assessment and evaluation techniques to identify community health initiatives. Methods Community leaders from six underserved populations of the CCC were trained in needs-assessments techniques. Assessments measured effectiveness of the collaborative process and community health initiatives by using key informant (n = 18) and group interviews (n = 3). Results The CCC, facilitated by its partnership with the TPCHD, built capacity and competence across community groups to successfully obtain two funded public health initiatives for six priority populations. Members expressed overall satisfaction with the training, organizational structure, and leadership. The CCC’s diversity, cultural competency, and sharing of resources were viewed both as a strength and a decision-making challenge. Conclusion Public health department leadership, collaboration, and evidence-based assessment and evaluation were key to demonstrating effectiveness of the interventions, ensuring the CCC’s sustainability. PMID:19077598
Rock Cutting Depth Model Based on Kinetic Energy of Abrasive Waterjet
NASA Astrophysics Data System (ADS)
Oh, Tae-Min; Cho, Gye-Chun
2016-03-01
Abrasive waterjets are widely used in the fields of civil and mechanical engineering for cutting a great variety of hard materials including rocks, metals, and other materials. Cutting depth is an important index to estimate operating time and cost, but it is very difficult to predict because there are a number of influential variables (e.g., energy, geometry, material, and nozzle system parameters). In this study, the cutting depth is correlated to the maximum kinetic energy expressed in terms of energy (i.e., water pressure, water flow rate, abrasive feed rate, and traverse speed), geometry (i.e., standoff distance), material (i.e., α and β), and nozzle system parameters (i.e., nozzle size, shape, and jet diffusion level). The maximum kinetic energy cutting depth model is verified with experimental test data that are obtained using one type of hard granite specimen for various parameters. The results show a unique curve for a specific rock type in a power function between cutting depth and maximum kinetic energy. The cutting depth model developed here can be very useful for estimating the process time when cutting rock using an abrasive waterjet.
Mochel, Margaret E.; Humphreys, Colin J.
1985-04-02
A method for the cutting of holes 20 Angstroms in diameter, or lines 20 Angstroms wide in a material having positive ionic conduction by the use of a focused electron probe is described. The holes and lines are stable under ambient conditions.
USDA-ARS?s Scientific Manuscript database
Studying feeding, plant damage, and transmission of plant pathogens by hemipteran insect pests is challenging. Hemipteran piercing-sucking mouthparts, the stylets, are probed into opaque plant tissues precluding direct observation. This challenge was overcome by the invention of electropenetrography...
NASA Astrophysics Data System (ADS)
Nath, A. K.; Paul, C. P.; Rao, B. T.; Kau, R.; Raghu, T.; Mazumdar, J. Dutta; Dayal, R. K.; Mudali, U. Kamachi; Sastikumar, D.; Gandhi, B. K.
2006-01-01
We have developed high power transverse flow (TF) CW CO II lasers up to 15kW, a high repetition rate TEA CO II laser of 500Hz, 500W average power and a RF excited fast axial flow CO II laser at the Centre for Advanced Technology and have carried out various material processing applications with these lasers. We observed very little variation of discharge voltage with electrode gap in TF CO II lasers. With optimally modulated laser beam we obtained better results in laser piercing and cutting of titanium and resolidification of 3 16L stainless steel weld-metal for improving intergranular corrosion resistance. We carried out microstructure and phase analysis of laser bent 304 stainless steel sheet and optimum process zones were obtained. We carried out laser cladding of 316L stainless steel and Al-alloy substrates with Mo, WC, and Cr IIC 3 powder to improve their wear characteristics. We developed a laser rapid manufacturing facility and fabricated components of various geometries with minimum surface roughness of 5-7 microns Ra and surface waviness of 45 microns between overlapped layers using Colmonoy-6, 3 16L stainless steel and Inconel powders. Cutting of thick concrete blocks by repeated laser glazing followed by mechanical scrubbing process and drilling holes on a vertical concrete with laser beam incident at an optimum angle allowing molten material to flow out under gravity were also done. Some of these studies are briefly presented here.
Piercing mandrel strengthening by surfacing with nickel aluminide-based alloy
NASA Astrophysics Data System (ADS)
Zorin, I. V.; Dubtsov, Yu N.; Sokolov, G. N.; Artem'ev, A. A.; Lysak, V. I.; Elsukov, S. N.
2017-02-01
Electrode composite wire (CW) was used for argon-arc surfacing of a thermal-resisting nickel aluminide-based alloy (Ni-Al-Cr-W-Mo-Ta system) on the butt-end surface of the non-water-cooled piercing mandrel. It was shown that multipassing surfacing forms a defect-free deposited metal based on the γ’-Ni3Al phase of various structural origins. Using high-temperature sclerometry and thermal fatigue testing methods, the metal deposited with CW containing ultrafine particle of 0.3-0.4 % wt. WC carbide features increased resistance to thermal and force effects at temperatures up to 1200 °C.
Mochel, M.E.; Humphreys, C.J.
1985-04-02
A method for the cutting of holes 20 Angstroms in diameter, or lines 20 Angstroms wide in a material having positive ionic conduction by the use of a focused electron probe is described. The holes and lines are stable under ambient conditions. 2 figs.
Gir, Elucir; Netto, Jeniffer Caffer; Malaguti, Silmara Elaine; Canini, Silvia Rita Marin da Silva; Hayashida, Miyeko; Machado, Alcyone Artioli
2008-01-01
Undergraduate students from the health area often handle piercing-cutting instruments in their academic activities, which exposes them to the risk of contracting infections. This study aimed to analyze accidents with biological material among these students. Out of 170 accidents registered, 83 (48.8%) occurred with Dentistry students, 69 (40.6%) with Medical students, 11 (6.5%) with Nursing students and in 06 (3.5%) of the cases there was no such information in the files. Most accidents, 106 (62.4%), occurred with students from private schools and 55 (32.3%) with those from public schools. Percutaneous accidents occurred in 133 (78.2%) exposures and there was immediate search for specialized health care in only 38 (21.3%) accidents. In 127 (74.7%) accidents, the immunization schedule against hepatitis B was complete. Therefore, schools need to offer courses and specific class subjects regarding biosafety measures, including aspects related to immunization, especially the vaccine against hepatitis B.
NASA Astrophysics Data System (ADS)
Benhassine, Mehdi; Rivière-Lorphèvre, Edouard; Arrazola, Pedro-Jose; Gobin, Pierre; Dumas, David; Madhavan, Vinay; Aizpuru, Ohian; Ducobu, François
2018-05-01
Carbon-fiber reinforced composites (CFRP) are attractive materials for lightweight designs in applications needing good mechanical properties. Machining of such materials can be harder than metals due to their anisotropic behavior. In addition, the combination of the fibers and resin mechanical properties must also include the fiber orientation. In the case of orthogonal cutting, the tool inclination, rake angle or cutting angle usually influence the cutting process but such a detailed investigation is currently lacking in a 2D configuration. To address this issue, a model has been developed with Abaqus Explicit including Hashin damage. This model has been validated with experimental results from the literature. The effects of the tool parameters (rake angle, clearance angle) on the tool cutting forces, CFRP chip morphology and surface damage are herewith studied. It is shown that 90° orientation for the CFRP increases the surface damage. The rake angle has a minimal effect on the cutting forces but modifies the chip formation times. The feed forces are increased with increasing rake angle.
Study on Crystallographic Orientation Effect on Surface Generation of Aluminum in Nano-cutting
NASA Astrophysics Data System (ADS)
Xu, Feifei; Fang, Fengzhou; Zhu, Yuanqing; Zhang, Xiaodong
2017-04-01
The material characteristics such as size effect are one of the most important factors that could not be neglected in cutting the material at nanoscale. The effects of anisotropic nature of single crystal materials in nano-cutting are investigated employing the molecular dynamics simulation. Results show that the size effect of the plastic deformation is based on different plastic carriers, such as the twin, stacking faults, and dislocations. The minimum uncut chip thickness is dependent on cutting direction, where even a negative value is obtained when the cutting direction is {110}<001>. It also determines the material deformation and removal mechanism (e.g., shearing, extruding, and rubbing mechanism) with a decrease in uncut chip thickness. When material is deformed by shearing, the primary shearing zone expands from the stagnation point or the tip of stagnation zone. When a material is deformed by extruding and rubbing, the primary deformation zone almost parallels to the cutting direction and expands from the bottom of the cutting edge merging with the tertiary deformation zone. The generated surface quality relates to the crystallographic orientation and the minimum uncut chip thickness. The cutting directions of {110}<001>, {110}<1-10>, and {111}<1-10>, whose minimum uncut chip thickness is relatively small, have better surface qualities compared to the other cutting direction.
Study on Crystallographic Orientation Effect on Surface Generation of Aluminum in Nano-cutting.
Xu, Feifei; Fang, Fengzhou; Zhu, Yuanqing; Zhang, Xiaodong
2017-12-01
The material characteristics such as size effect are one of the most important factors that could not be neglected in cutting the material at nanoscale. The effects of anisotropic nature of single crystal materials in nano-cutting are investigated employing the molecular dynamics simulation. Results show that the size effect of the plastic deformation is based on different plastic carriers, such as the twin, stacking faults, and dislocations. The minimum uncut chip thickness is dependent on cutting direction, where even a negative value is obtained when the cutting direction is {110}<001>. It also determines the material deformation and removal mechanism (e.g., shearing, extruding, and rubbing mechanism) with a decrease in uncut chip thickness. When material is deformed by shearing, the primary shearing zone expands from the stagnation point or the tip of stagnation zone. When a material is deformed by extruding and rubbing, the primary deformation zone almost parallels to the cutting direction and expands from the bottom of the cutting edge merging with the tertiary deformation zone. The generated surface quality relates to the crystallographic orientation and the minimum uncut chip thickness. The cutting directions of {110}<001>, {110}<1-10>, and {111}<1-10>, whose minimum uncut chip thickness is relatively small, have better surface qualities compared to the other cutting direction.
Microwave interferometer controls cutting depth of plastics
NASA Technical Reports Server (NTRS)
Heisman, R. M.; Iceland, W. F.
1969-01-01
Microwave interferometer system controls the cutting of plastic materials to a prescribed depth. The interferometer is mounted on a carriage with a spindle and cutting tool. A cross slide, mounted on the carriage, allows the interferometer and cutter to move toward or away from the plastic workpiece.
Adiabatic shear mechanisms for the hard cutting process
NASA Astrophysics Data System (ADS)
Yue, Caixu; Wang, Bo; Liu, Xianli; Feng, Huize; Cai, Chunbin
2015-05-01
The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remains some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high strain domain caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.
Force-frequency effect of Y-cut langanite and Y-cut langatate.
Kim, Yoonkee; Ballato, Arthur
2003-12-01
Most recently, langasite and its isomorphs (LGX) have been advanced as potential substitutes for quartz, owing to their extremely high-quality (Q) factors. At least twice higher Q value of LGX than that of quartz has been reported. High Q translates into potentially greater stability. In order to make such materials practical, the environmental sensitivities must be addressed. One of such sensitivities is the force-frequency effect, which relates the sensitiveness of a resonator to shock and vibration via the third-order (non-Hookean) elastic constants. In this paper, we report measured force-frequency coefficients of a Y-cut langanite (LGN) resonator and a Y-cut langatate (LGT) resonator as a function of the azimuthal angle, which is the angle between the crystalline x-axis of a resonator plate and the direction of in-plane diametric force applied to the periphery of the resonator. It was found that the LGN and the LGT behave like AT-cut quartz in the polarity of the frequency changes and the existence of zero-coefficient angle. The maximum magnitudes of the coefficients of the LGN and the LGT are five and seven times smaller than that of stress-compensated cut (SC-cut) quartz, respectively (or, 7 and 10 times smaller comparing to AT-cut quartz). The coefficients of planar-stress, which represent the superposition of a continuous distribution of periphery stresses, also were obtained as 0.52 X 10(-15) m x s/N and 0.38 X 10(-15) m x s/N for the LGN and the LGT, respectively.
Numerical modelling of tool wear in turning with cemented carbide cutting tools
NASA Astrophysics Data System (ADS)
Franco, P.; Estrems, M.; Faura, F.
2007-04-01
A numerical model is proposed for analysing the flank and crater wear resulting from the loss of material on cutting tool surface in turning processes due to wear mechanisms of adhesion, abrasion and fracture. By means of this model, the material loss along cutting tool surface can be analysed, and the worn surface shape during the workpiece machining can be determined. The proposed model analyses the gradual degradation of cutting tool during turning operation, and tool wear can be estimated as a function of cutting time. Wear-land width (VB) and crater depth (KT) can be obtained for description of material loss on cutting tool surface, and the effects of the distinct wear mechanisms on surface shape can be studied. The parameters required for the tool wear model are obtained from bibliography and experimental observation for AISI 4340 steel turning with WC-Co cutting tools.
Hard particle effect on surface generation in nano-cutting
NASA Astrophysics Data System (ADS)
Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong
2017-12-01
The influence of the hard particle on the surface generation, plastic deformation and processing forces in nano-cutting of aluminum is investigated by means of molecular dynamics simulations. In this investigation, a hard particle which is simplified as a diamond ball is embedded under the free surface of workpiece with different depths. The influence of the position of the hard ball on the surface generation and other material removal mechanism, such as the movement of the ball under the action of cutting tool edge, is revealed. The results show that when the hard particle is removed, only a small shallow pit is left on the machined surface. Otherwise, it is pressed down to the subsurface of the workpiece left larger and deeper pit on the generated surface. Besides that, the hard particle in the workpiece would increase the processing force when the cutting tool edge or the plastic carriers interact with the hard particle. It is helpful to optimize the cutting parameters and material properties for obtaining better surface quality in nano-cutting of composites or other materials with micro/nanoscale hard particles in it.
Analytical Modeling of Plasma Arc Cutting of Steel Plate
NASA Astrophysics Data System (ADS)
Cimbala, John; Fisher, Lance; Settles, Gary; Lillis, Milan
2000-11-01
A transferred-arc plasma torch cuts steel plate, and in the process ejects a molten stream of iron and ferrous oxides ("ejecta"). Under non-optimum conditions - especially during low speed cuts and/or small-radius corner cuts - "dross" is formed. Dross is re-solidified molten metal that sticks to the underside of the cut and renders it rough. The present research is an attempt to analytically model this process, with the goal of predicting dross formation. With the aid of experimental data, a control volume formulation is used in a steady frame of reference to predict the mass flow of molten material inside the cut. Although simple, the model is three-dimensional, can predict the shear stress driving the molten material in the direction of the plasma jet, and can predict the velocity of molten material exiting the bottom of the plate. In order to predict formation of dross, a momentum balance is performed on the flowing melt, considering the resisting viscous and surface tension forces. Preliminary results are promising, and provide a potential means of predicting dross formation without resorting to detailed computational analyses.
NASA Astrophysics Data System (ADS)
Afolalu, S. A.; Okokpujie, I. P.; Salawu, E. Y.; Abioye, A. A.; Abioye, O. P.; Ikumapayi, O. M.
2018-04-01
The degree of holding temperature and time play a major role in nano-case treatment of cutting tools which immensely contributed to its performance during machining operation. The objective of this research work is to carryout comparative study of performance of nano-case treatment tools developed using low and medium carbon steel as work piece. Turning operation was carried out under two different categories with specific work piece on universal lathe machine using HSS cutting tools 100 mm × 12mm × 12mm that has been nano-case treated under varying conditions of temperatures and timeof 800,850, 900, 950°C and 60, 90, 120 mins respectively. The turning parameters used in evaluating this experiment were cutting speed of 270, 380 and 560mm/min, feed rate of 0.15, 0.20 and 0.25 mm/min, depth of cut of 2mm, work piece diameter of 25mm and rake angle of 7° each at three levels. The results of comparative study of their performances revealed that the timespent in the machining of low carbon steel material at a minimum temperature and time of 800°C, 60 mins were1.50, 2.17 mins while at maximum temperature and time of 950°C, 120 mins were 1.19, 2.02 mins. It was also observed that at a corresponding constant speed of 270,380 and 560mm/min at higher temperature and time, a relative increased in the length of cut were observed. Critical observation of the result showed that at higher case hardening temperature and time (950°C/120mins), the HSS cutting tool gave a better performance as lesser time was consumed during the turning operation.
On the closed form mechanistic modeling of milling: Specific cutting energy, torque, and power
NASA Astrophysics Data System (ADS)
Bayoumi, A. E.; Yücesan, G.; Hutton, D. V.
1994-02-01
Specific energy in metal cutting, defined as the energy expended in removing a unit volume of workpiece material, is formulated and determined using a previously developed closed form mechanistic force model for milling operations. Cutting power is computed from the cutting torque, cutting force, kinematics of the cutter, and the volumetric material removal rate. Closed form expressions for specific cutting energy were formulated and found to be functions of the process parameters: pressure and friction for both rake and flank surfaces and chip flow angle at the rake face of the tool. Friction is found to play a very important role in cutting torque and power. Experiments were carried out to determine the effects of feedrate, cutting speed, workpiece material, and flank wear land width on specific cutting energy. It was found that the specific cutting energy increases with a decrease in the chip thickness and with an increase in flank wear land.
Sinuous Flow in Cutting of Metals
NASA Astrophysics Data System (ADS)
Yeung, Ho; Viswanathan, Koushik; Udupa, Anirudh; Mahato, Anirban; Chandrasekar, Srinivasan
2017-11-01
Using in situ high-speed imaging, we unveil details of a highly unsteady plastic flow mode in the cutting of annealed and highly strain-hardening metals. This mesoscopic flow mode, termed sinuous flow, is characterized by repeated material folding, large rotation, and energy dissipation. Sinuous flow effects a very large shape transformation, with local strains of ten or more, and results in a characteristic mushroomlike surface morphology that is quite distinct from the well-known morphologies of metal-cutting chips. Importantly, the attributes of this unsteady flow are also fundamentally different from other well-established unsteady plastic flows in large-strain deformation, like adiabatic shear bands. The nucleation and development of sinuous flow, its dependence on material properties, and its manifestation across material systems are demonstrated. Plastic buckling and grain-scale heterogeneity are found to play key roles in triggering this flow at surfaces. Implications for modeling and understanding flow stability in large-strain plastic deformation, surface quality, and preparation of near-strain-free surfaces by cutting are discussed. The results point to the inadequacy of the widely used shear-zone models, even for ductile metals.
NASA Astrophysics Data System (ADS)
dell'Erba, M.; Galantucci, L. M.; Miglietta, S.
This paper reports on the results of research which investigated the potential for the application of an excimer laser in the field of composite material drilling and cutting, by comparing this technology with that using CO2 sources. In particular, the scope of the work was to check whether the interaction between excimer lasers and composite materials, whose characteristic feature is the absence of thermal transfer, could yield better results than those obtainable with CO2 sources once heat transfer-induced difficulties had been eliminated. The materials selected for the experiments were multilayer composites having an epoxy resin matrix (65 percent in volume), with aramid fiber (Kevlar), carbon fiber and glass fiber as reinforcing materials, all of considerable interest for the aerospace industry. Optimal operational parameters were identified in relation to each source with a view to obtaining undersize holes or through cuts exhibiting severed areas of good quality. A comparison between the two types of processing carried out show that rims processed by excimer lasers are of better quality - particularly so with Kevlar - whereas the ablation rate is undoubtedly rather low compared with the CO2 technology.
Garrett, Ryan W; Carlson, Katherine A; Goggans, Matthew Scott; Nesson, Michael H; Shepard, Christopher A; Schofield, Robert M S
2016-01-01
Leafcutter ants cut trimmings from plants, carry them to their underground nests and cut them into smaller pieces before inoculating them with a fungus that serves as a primary food source for the colony. Cutting is energetically costly, so the amount of cutting is important in understanding foraging energetics. Estimates of the cutting density, metres of cutting per square metre of leaf, were made from samples of transported leaf cuttings and of fungal substrate from field colonies of Atta cephalotes and Atta colombica. To investigate cutting inside the nest, we made leaf-processing observations of our laboratory colony, A. cephalotes. We did not observe the commonly reported reduction of the leaf fragments into a pulp, which would greatly increase the energy cost of processing. Video clips of processing behaviours, including behaviours that have not previously been described, are linked. An estimated 2.9 (±0.3) km of cutting with mandibles was required to reduce a square metre of leaf to fungal substrate. Only about 12% (±1%) of this cutting took place outside of the nest. The cutting density and energy cost is lower for leaf material with higher ratios of perimeter to area, so we tested for, and found that the laboratory ants had a preference for leaves that were pre-cut into smaller pieces. Estimates suggest that the energy required to transport and cut up the leaf material is comparable to the metabolic energy available from the fungus grown on the leaves, and so conservation of energy is likely to be a particularly strong selective pressure for leafcutter ants.
Microbiopsy/precision cutting devices
Krulevitch, Peter A.; Lee, Abraham P.; Northrup, M. Allen; Benett, William J.
1999-01-01
Devices for performing tissue biopsy on a small scale (microbiopsy). By reducing the size of the biopsy tool and removing only a small amount of tissue or other material in a minimally invasive manner, the risks, costs, injury and patient discomfort associated with traditional biopsy procedures can be reduced. By using micromachining and precision machining capabilities, it is possible to fabricate small biopsy/cutting devices from silicon. These devices can be used in one of four ways 1) intravascularly, 2) extravascularly, 3) by vessel puncture, and 4) externally. Additionally, the devices may be used in precision surgical cutting.
Microbiopsy/precision cutting devices
Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Benett, W.J.
1999-07-27
Devices are disclosed for performing tissue biopsy on a small scale (microbiopsy). By reducing the size of the biopsy tool and removing only a small amount of tissue or other material in a minimally invasive manner, the risks, costs, injury and patient discomfort associated with traditional biopsy procedures can be reduced. By using micromachining and precision machining capabilities, it is possible to fabricate small biopsy/cutting devices from silicon. These devices can be used in one of four ways (1) intravascularly, (2) extravascularly, (3) by vessel puncture, and (4) externally. Additionally, the devices may be used in precision surgical cutting. 6 figs.
USDA-ARS?s Scientific Manuscript database
Proteins such as rabbit IgG and chicken IgY are markers that are easy to apply and analyze on insects for monitoring dispersal and/or pest consumption, but current application techniques are less effective in research for the large guild of piercing-sucking predators used in biocontrol. To address t...
ERIC Educational Resources Information Center
Nelson, Steve; Clark, Robey
Comparing program objectives with program outcomes, 4 program components targeted at 1,100 American Indian students in 9 school districts in Pierce County, Washington were evaluated. Program objectives operationalized by an 11-member staff including 9 specialists and 1 coordinator were to develop: (1) basic skills via tutoring services for…
Hydrodynamics of material removal by melt expulsion: Perspectives of laser cutting and drilling
NASA Astrophysics Data System (ADS)
Poprawe, Reinhart; Schulz, Wolfgang; Schmitt, Robert
With the introduction of fiber-guided radiation at 1 μ wavelength emitting in the milti-kW range at better beam quality than CO2-lasers the most established application in laser processing, namely laser fusion cutting, came back into the industrial and scientific focus. Laser sources with extraordinary optical and economical properties - disk and fiber lasers - in a stormy way enter the market of cutting machines so far reserved for the 10 μ radiation source and led to a volatile situation. The new laser sources can already address a market-relevant class of applications, namely, fusion cutting of steel up to a sheet thickness of 2 mm with pronounced advantages in productivity. However, there is a significant lack of cut quality for larger sheet thickness. The main reason for the drawback and its physical background are given. With the availability of cutting machines with 1 μ fiber-guided radiation the race for the worldwide market regarding the larger sheet thickness is opened and the priority issues to improve the cut quality are related to the three levels: wavelength, beam delivery and the application stage of the machine. The stability model called QuCut is presented which for the first time allows to analyze stability of cutting with fiber-guided radiation. Experimental ripple patterns and ripple spectra resolved with respect to the cutting depth are well reproduced by the new stability model. A number of different experimental methods towards an improved understanding of the dynamics in laser drilling are developed, however, there are gaps related to in-situ observation which is obscured by the hole walls. There are four novel experimental methods resolving the dynamics from a μms-down to a ns-time scale having a spatial resolution with respect to transient drilling depth on the μm scale. As result, the different mechanisms contributing to recast formation and dynamical features of drilling are revealed in more detail. In particular, the action of
Investigation of Cutting Quality of Remote DOE Laser Cutting in 0.5 mm Stainless Steel
NASA Astrophysics Data System (ADS)
Villumsen, Sigurd Lazic; Kristiansen, Morten
It has previously been shown that the stability of the remote fusion cutting (RFC) process can be increased by modifying the intensity profile of the laser by means of a diffractive optical element (DOE). This paper investigates the quality of remote DOE cutting (RDC) conducted with a 3 kW single mode fiber laser in 0.5 mm stainless steel. An automatic measurement system is used to investigate how the travel speed, focus offset and angle of incidence effect the kerf width and kerf variance. The study shows that the RDC process has a very low kerf width variance, and that the kerf width decreases with cutting speed. Furthermore, selected etched samples show a significant increase in the perpendicularity of the cuts when compared to RFC. Also, on average, the depth of the layer of molten material for RFC is 83% deeper than for RDC.
Shen, Qi; Liu, Zhanqiang; Hua, Yang; Zhao, Jinfu; Lv, Woyun; Mohsan, Aziz Ul Hassan
2018-06-14
Service performance of components such as fatigue life are dramatically influenced by the machined surface and subsurface residual stresses. This paper aims at achieving a better understanding of the influence of cutting edge microgeometry on machined surface residual stresses during orthogonal dry cutting of Inconel 718. Numerical and experimental investigations have been conducted in this research. The cutting edge microgeometry factors of average cutting edge radius S¯, form-factor K , and chamfer were investigated. An increasing trend for the magnitudes of both tensile and compressive residual stresses was observed by using larger S¯ or introducing a chamfer on the cutting edges. The ploughing depth has been predicted based on the stagnation zone. The increase of ploughing depth means that more material was ironed on the workpiece subsurface, which resulted in an increase in the compressive residual stress. The thermal loads were leading factors that affected the surface tensile residual stress. For the unsymmetrical honed cutting edge with K = 2, the friction between tool and workpiece and tensile residual stress tended to be high, while for the unsymmetrical honed cutting edge with K = 0.5, the high ploughing depth led to a higher compressive residual stress. This paper provides guidance for regulating machine-induced residual stress by edge preparation.
ERIC Educational Resources Information Center
Ryan, Richard M.; Deci, Edward L.
1996-01-01
The conclusion of J. Cameron and W. D. Pierce that rewards do not pose a threat to intrinsic motivation (1994) is a misrepresentation of the literature based on a flawed meta-analysis. Their analysis is more an attempt to defend behaviorist turf rather than meaningful consideration of relevant data and issues. (Author/SLD)
Side Flow Effect on Surface Generation in Nano Cutting
NASA Astrophysics Data System (ADS)
Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong
2017-05-01
The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.
Experimental Investigation of Multi-mode Fiber Laser Cutting of Cement Mortar.
Lee, Dongkyoung; Pyo, Sukhoon
2018-02-10
This study successfully applied multi-mode laser cutting with the variation of the laser cutting speed to cement mortar for the first time. The effects of the amount of silica sand in the cement mortar on laser cutting are tested and analyzed. The kerf width and penetration depth of the specimens after laser cutting are investigated. As the laser cutting speed increases, the penetration depth decreases for both cement paste and cement mortar, whereas the kerf width becomes saturated and increases, respectively, for cement paste and cement mortar. Cross sections of the specimens are compared with illustrations. Top-view images of the cement mortar with indicators of the physical characteristics, such as re-solidification, burning, and cracks are examined, and the possible causes of these characteristics are explained. The optical absorption rates of cement-based materials are quantified at wide ranges of wavelength to compare the absorption rates in accordance with the materials compositions. The chemical composition variation before and after laser cutting is also compared by EDX (Energy Dispersive X-Ray) analysis. In addition to these observations, material removal mechanisms for cement mortar are proposed.
Experimental Investigation of Multi-mode Fiber Laser Cutting of Cement Mortar
2018-01-01
This study successfully applied multi-mode laser cutting with the variation of the laser cutting speed to cement mortar for the first time. The effects of the amount of silica sand in the cement mortar on laser cutting are tested and analyzed. The kerf width and penetration depth of the specimens after laser cutting are investigated. As the laser cutting speed increases, the penetration depth decreases for both cement paste and cement mortar, whereas the kerf width becomes saturated and increases, respectively, for cement paste and cement mortar. Cross sections of the specimens are compared with illustrations. Top-view images of the cement mortar with indicators of the physical characteristics, such as re-solidification, burning, and cracks are examined, and the possible causes of these characteristics are explained. The optical absorption rates of cement-based materials are quantified at wide ranges of wavelength to compare the absorption rates in accordance with the materials compositions. The chemical composition variation before and after laser cutting is also compared by EDX (Energy Dispersive X-Ray) analysis. In addition to these observations, material removal mechanisms for cement mortar are proposed. PMID:29439431
Grading technologies for the manufacture of innovative cutting blades
NASA Astrophysics Data System (ADS)
Rostek, Tim; Homberg, Werner
2018-05-01
Cutting blades for harvesting applications are used in a variety of agricultural machines. These parts are in contact with highly abrasive lawn clippings and often wear out within hours which results in high expensive re-sharpening maintenance. This paper relates to manufacturing techniques enhancing the durability of cutting blades based on a structural analysis of the prevailing wear mechanisms containing chipping and abrasive wear. Each mechanism results in specific demands on the cutting edge's mechanical characteristics. The design of evaluation methods respectively is one issue of the paper. This is basis for approaches to improve the cutting edge performance on purpose. On option to improve abrasive wear resistance and, thus, service life is the application of locally graded steel materials as semi-finished products for self-sharpening cutting blades. These materials comprise a layered structure consisting of a hard, wear resistant layer and a relatively softer layer which is lesser wear resistant. As the cutting blade is subjected to wear conditions, the less wear resistant layer wears faster than the relatively more wear resistant harder layer revealing a durable cross section of the cutting edge and, thus, cutting performance. Anyways, chipping is another key issue on the cutting edge's lifetime. Here, the cutting edges cross section by means of geometry and grind respectively as well as its mechanical properties matter. FEM analysis reveal innovative options to optimize the cross section of the blade as well as thermomechanical strengthening add further strength to reduce chipping. This paper contains a comprehensive strategy to improve cutting blades with use of innovative manufacturing technologies which apply application-specific graded mechanical characteristics and, thus, significantly improved performance characteristics.
Tabor, Rowland W.; Haugerud, Ralph A.; Booth, Derek B.; Troost, Kathy Goetz
2013-01-01
The Olalla 7.5' quadrangle, which lies almost in the center of the Puget Lowland, displays the broad range of geologic environments typical of the region. The upland plain is fluted by the passage of the great continental ice sheet that last covered the area about 17,000 (14,000 radiocarbon) years ago. The plain is cut by channel deposits, both late glacial and postglacial in age, and it is cleaved even more deeply by one of the major arms of Puget Sound, Colvos Passage, which here separates the west coast of Vashon Island from the Kitsap Peninsula. Beneath the deposits of the last ice sheet is a complex sequence of older Quaternary-age sediments that extends about 400 m below the modern ground surface. These older sediments are best exposed along the shorelines and beach cliffs of Puget Sound, where wave action and landslides maintain relatively fresh exposures. The older sediments typically are compact, having been loaded by ice during one or more episodes of glaciation subsequent to their deposition. Locally these sediments are also cemented by iron and manganese oxides and hydroxides, a consequence of many tens or hundreds of thousands of years of weathering and groundwater movement. Our map is an interpretation of a 6-ft resolution lidar-derived digital elevation model combined with the geology depicted on the "Geologic map of the Olalla 7.5' quadrangle, King, Kitsap, and Pierce Counties, Washington," by Booth and Troost (2005), which was described, interpreted, and located on the 1953 1:24,000-scale topographic map of the Olalla 7.5-minute quadrangle. The original topographic base map, derived from 1951 aerial photographs, has 20-ft contours, nominal horizontal resolution of circa 40 ft (12 m), and nominal mean vertical accuracy of circa 13 ft (4 m). This new DEM has a horizontal resolution of 6 ft (2 m) and mean vertical accuracy circa 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM facilitated a much-improved interpretation of many
Effects of Different Polarization Strategies on Laser Cutting with Direct Diode Lasers
NASA Astrophysics Data System (ADS)
Rodrigues, G. Costa; Duflou, J. R.
As Direct Diode Lasers are introduced as an emerging technology for laser cutting of metal sheets, new challenges arise. The relatively low beam quality remains a limitation to the maximum cutting speed. One way to balance this may be a strategic use of laser polarization in order to influence laser material interaction in the cutting kerf. In this paper the effects of cross-, linear-, radial- and azimuthal- laser beam polarization arrangements are studied with both Fusion and Flame cutting at an output power of approximately 750W. Different combinations of materials and thicknesses were cut and the maximum cutting speed and edge quality analyzed. It is found that at similar cutting edge quality, improvements in cutting speed can go up to 40% with an inert gas, such as Nitrogen, and up to 20% with a reactive gas, such as Oxygen, in agreement with analytical models for absorption previously developed by the authors.
Reuse of ornamental rock-cutting waste in aluminous porcelain.
Silva, M A; Paes, H R; Holanda, J N F
2011-03-01
Large amounts of solid wastes are discarded in the ornamental rocks industry. This work investigates the incorporation of ornamental rock-cutting waste as a raw material into an aluminous porcelain body, replacing natural feldspar material by up to 35 wt.%. Formulations containing rock-cutting waste were pressed and sintered at 1350 °C. The porcelain pieces were tested to determine their properties (linear shrinkage, water absorption, apparent density, mechanical strength, and electrical resistivity). Development of the microstructure was followed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. The results showed that ornamental rock-cutting waste could be used in aluminous porcelains, in the range up to 10 wt.%, as a partial replacement for traditional flux material, resulting in a valid route for management of this abundant waste. Copyright © 2010 Elsevier Ltd. All rights reserved.
Molecular dynamic simulation for nanometric cutting of single-crystal face-centered cubic metals.
Huang, Yanhua; Zong, Wenjun
2014-01-01
In this work, molecular dynamics simulations are performed to investigate the influence of material properties on the nanometric cutting of single crystal copper and aluminum with a diamond cutting tool. The atomic interactions in the two metallic materials are modeled by two sets of embedded atom method (EAM) potential parameters. Simulation results show that although the plastic deformation of the two materials is achieved by dislocation activities, the deformation behavior and related physical phenomena, such as the machining forces, machined surface quality, and chip morphology, are significantly different for different materials. Furthermore, the influence of material properties on the nanometric cutting has a strong dependence on the operating temperature.
... Staying Safe Videos for Educators Search English Español Cutting KidsHealth / For Teens / Cutting What's in this article? ... Getting Help Print en español Cortarse What Is Cutting? Emma's mom first noticed the cuts when Emma ...
Slice-push, formation of grooves and the scale effect in cutting.
Atkins, A G
2016-06-06
Three separate aspects of cutting are investigated which complement other papers on the mechanics of separation processes presented at this interdisciplinary Theo Murphy meeting. They apply in all types of cutting whether blades are sharp or blunt, and whether the material being cut is 'hard, stiff and strong' or 'soft, compliant and weak'. The first topic discusses why it is easier to cut when there is motion along (parallel to) the blade as well motion across (perpendicular to) the cutting edge, and the analysis is applied to optimization of blade geometries to produce minimum cutting forces and hence minimum damage to cut surfaces. The second topic concerns cutting with more than one edge with particular application to the formation of grooves in surfaces by hard pointed tools. The mechanics are investigated and applied to the topic of abrasive wear by hard particles. Traditional analyses say that abrasive wear resistance increases monotonically with the hardness of the workpiece, but we show that the fracture toughness of the surface material is also important, and that behaviour is determined by the toughness-to-hardness ratio rather than hardness alone. Scaling forms the third subject. As cutting is a branch of elasto-plastic fracture mechanics, cube-square energy scaling applies in which the important length scale is (ER/k (2)), where E is Young's modulus, R is the fracture toughness and k is the shear yield strength. Whether, in cutting, material is removed as ductile ribbons, as semi-ductile discontinuous chips, or by brittle 'knocking lumps out' is shown to depend on the depth of cut relative to this characteristic length parameter. Scaling in biology is called allometry and its relationship with engineering scaling is discussed. Some speculative predictions are made in relation to the action of teeth on food.
CO 2 laser cutting of MDF . 2. Estimation of power distribution
NASA Astrophysics Data System (ADS)
Ng, S. L.; Lum, K. C. P.; Black, I.
2000-02-01
Part 2 of this paper details an experimentally-based method to evaluate the power distribution for both CW and PM cutting. Variations in power distribution with different cutting speeds, material thickness and pulse ratios are presented. The paper also provides information on both the cutting efficiency and absorptivity index for MDF, and comments on the beam dispersion characteristics after the cutting process.
NASA Astrophysics Data System (ADS)
Biffi, C. A.; Tuissi, A.
2017-03-01
Thermal processing can affect the properties of smart materials, and the correct selection of the best manufacturing technology is fundamental for producing high tech smart devices, containing embedded functional properties. In this work cutting of thin superelastic Nitinol plates using a femtosecond (fs) and continuous wave (CW) laser was studied. Diamond shaped elements were cut to characterize the kerf qualitative features; microstructural analysis of the cross sections allowed identification of thermal damage characteristics introduced into the material during the laser processes. A thermally undamaged microstructure was observed for fs laser cutting, while CW was seen to be characterized by a large heat-affected zone. Functional properties were investigated by differential scanning calorimetry and tensile testing of laser cut microelements and of the reference material. It was seen that the martensitic transformation behavior of Nitinol is not affected by fs regime, while cw cutting provokes an effect equivalent to a high temperature thermal treatment in the material surrounding the cutting kerf, degradating the material properties. Finally, tensile testing indicated that superelastic performances were guaranteed by fs regime, while strong reduction of the recoverable strain was detected in the CW processed sample.
Potential of the McMath-Pierce 1.6-Meter Solar Telescope for Speckle Interferometry
NASA Astrophysics Data System (ADS)
Harshaw, Richard; Jones, Gregory; Wiley, Edward; Boyce, Patrick; Branston, Detrick; Rowe, David; Genet, Russell
2015-09-01
We explored the aiming and tracking accuracy of the McMath-Pierce 1.6 m solar telescope at Kitt Peak National Observatory as part of an investigation of using this telescope for speckle interferometry of close visual double stars. Several slews of various lengths looked for hysteresis in the positioning system (we found none of significance) and concluded that the 1.6 m telescope would make a useful telescope for speckle interferometry.
Close Binary Star Speckle Interferometry on the McMath-Pierce 0.8-Meter Solar Telescope
NASA Astrophysics Data System (ADS)
Wiley, Edward; Harshaw, Richard; Jones, Gregory; Branston, Detrick; Boyce, Patrick; Rowe, David; Ridgely, John; Estrada, Reed; Genet, Russell
2015-09-01
Observations were made in April 2014 to assess the utility of the 0.8-meter solar telescope at the McMath-Pierce Solar Observatory at Kitt Peak National Observatory for performing speckle interferometry observations of close binary stars. Several configurations using science cameras, acquisition cameras, eyepieces, and flip mirrors were evaluated. Speckle images were obtained and recommendations for further improvement of the acquisition system are presented.
Cutting Modeling of Hybrid CFRP/Ti Composite with Induced Damage Analysis
Xu, Jinyang; El Mansori, Mohamed
2016-01-01
In hybrid carbon fiber reinforced polymer (CFRP)/Ti machining, the bi-material interface is the weakest region vulnerable to severe damage formation when the tool cutting from one phase to another phase and vice versa. The interface delamination as well as the composite-phase damage is the most serious failure dominating the bi-material machining. In this paper, an original finite element (FE) model was developed to inspect the key mechanisms governing the induced damage formation when cutting this multi-phase material. The hybrid composite model was constructed by establishing three disparate physical constituents, i.e., the Ti phase, the interface, and the CFRP phase. Different constitutive laws and damage criteria were implemented to build up the entire cutting behavior of the bi-material system. The developed orthogonal cutting (OC) model aims to characterize the dynamic mechanisms of interface delamination formation and the affected interface zone (AIZ). Special focus was made on the quantitative analyses of the parametric effects on the interface delamination and composite-phase damage. The numerical results highlighted the pivotal role of AIZ in affecting the formation of interface delamination, and the significant impacts of feed rate and cutting speed on delamination extent and fiber/matrix failure. PMID:28787824
Liu, Rong-Xiu; Li, Yong-Jie; Li, Lin; Miao, Xiao-Su; Wang, Xue-Sen; Zhang, Dan; Wei, Sheng-Li
2016-06-01
By measuring the growth data of Scutellaria baicalensis in different cutting-seedling and determined active ingredient contents by HPLC and ultraviolet spectrophotometric determination. such as flavonoids. baicalin. wogonoside. baicalein. wogonin. oroxylin A. scutellarin. luteolin. and apigenin in the whole plant. Under circumstances of guaranteeing the quality and yield of medicinal materials. the yield of medicinal materials. and stems and leaves reached 193.60,63.21 kg/mu after twice cutting seedling. Not only yield but also active ingredient contents have been improved to some extent. the contents of flavonoids. baicalin. wogonoside. baicalein. wogonin. oroxylin A reached 18.52%. 15.13%. 4.03%. 1.04%. 1.04%. 0.12%. respectively in roots. Luteolin was not detected in young stems and leaves of S. baicalensis,the contents of other active ingredients such as scutellarin. luteolin and apigenin reached 7.00%. 0.96%. 0.04% respectively under twice cutting seedling. Therefore. regular cutting seedling could be regard as a new cultivation technique for wider range of promotion. And gaining high quality and yield of medicinal materials and tea with the purpose of rational utilization of natural resources and promoting the development of integration of herbal combination. Copyright© by the Chinese Pharmaceutical Association.
Laser cutting metallic plates using a 2kW direct diode laser source
NASA Astrophysics Data System (ADS)
Fallahi Sichani, E.; Hauschild, D.; Meinschien, J.; Powell, J.; Assunção, E. G.; Blackburn, J.; Khan, A. H.; Kong, C. Y.
2015-07-01
This paper investigates the feasibility of using a 2kW direct diode laser source for producing high-quality cuts in a variety of materials. Cutting trials were performed in a two-stage experimental procedure. The first phase of trials was based on a one-factor-at-a-time change of process parameters aimed at exploring the process window and finding a semi-optimum set of parameters for each material/thickness combination. In the second phase, a full factorial experimental matrix was performed for each material and thickness, as a result of which, the optimum cutting parameters were identified. Characteristic values of the optimum cuts were then measured as per BS EN ISO 9013:2002.
Side Flow Effect on Surface Generation in Nano Cutting.
Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong
2017-12-01
The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.
Reconfigurable manufacturing execution system for pipe cutting
NASA Astrophysics Data System (ADS)
Yin, Y. H.; Xie, J. Y.
2011-08-01
This article presents a reconfigurable manufacturing execution system (RMES) filling the gap between enterprise resource planning and resource layer for pipe-cutting production with mass customisation and rapid adaptation to dynamic market, which consists of planning and scheduling layer and executive control layer. Starting from customer's task and process requirements, the cutting trajectories are planned under generalised mathematical model able to reconfigure in accordance with various intersecting types' joint, and all tasks are scheduled by nesting algorithm to maximise the utilisation rate of rough material. This RMES for pipe cutting has been effectively implemented in more than 100 companies.
Application of laser spot cutting on spring contact probe for semiconductor package inspection
NASA Astrophysics Data System (ADS)
Lee, Dongkyoung; Cho, Jungdon; Kim, Chan Ho; Lee, Seung Hwan
2017-12-01
A packaged semiconductor has to be electrically tested to make sure they are free of any manufacturing defects. The test interface, typically employed between a Printed Circuit Board and the semiconductor devices, consists of densely populated Spring Contact Probe (SCP). A standard SCP typically consists of a plunger, a barrel, and an internal spring. Among these components, plungers are manufactured by a stamping process. After stamping, plunger connecting arms need to be cut into pieces. Currently, mechanical cutting has been used. However, it may damage to the body of plungers due to the mechanical force engaged at the cutting point. Therefore, laser spot cutting is considered to solve this problem. The plunger arm is in the shape of a rectangular beam, 50 μm (H) × 90 μm (W). The plunger material used for this research is gold coated beryllium copper. Laser parameters, such as power and elapsed time, have been selected to study laser spot cutting. Laser material interaction characteristics such as a crater size, material removal zone, ablation depth, ablation threshold, and full penetration are observed. Furthermore, a carefully chosen laser parameter (Etotal = 1000mJ) to test feasibility of laser spot cutting are applied. The result show that laser spot cutting can be applied to cut SCP.
Cutting Symmetrical Recesses In Soft Ceramic Tiles
NASA Technical Reports Server (NTRS)
Nesotas, Tony C.; Tyler, Brent
1989-01-01
Simple tool cuts hemispherical recesses in soft ceramic tiles. Designed to expose wires of thermocouples embedded in tiles without damaging leads. Creates neat, precise holes around wires. End mill includes axial hole to accommodate thermocouple wires embedded in material to be cut. Wires pass into hole without being bent or broken. Dimensions in inches. Used in place of such tools as dental picks, tweezers, spatulas, and putty knives.
ERIC Educational Resources Information Center
Mattern, Krista D.; Patterson, Brian F.
2013-01-01
Research on the predictive bias of cognitive tests has generally shown (a) no slope effects and (b) small intercept effects, typically favoring the minority group. Aguinis, Culpepper, and Pierce (2010) simulated data and demonstrated that statistical artifacts may have led to a lack of power to detect slope differences and an overestimate of the…
Economic technology of laser cutting
NASA Astrophysics Data System (ADS)
Fedin, Alexander V.; Shilov, Igor V.; Vassiliev, Vladimir V.; Malov, Dmitri V.; Peskov, Vladimir N.
2000-02-01
The laser cutting of color metals and alloys by a thickness more than 2 mm has significant difficulties due to high reflective ability and large thermal conduction. We made it possible to raise energy efficiency and quality of laser cutting by using a laser processing system (LPS) consisting both of the YAG:Nd laser with passive Q-switching on base of LiF:F2- crystals and the CO2 laser. A distinctive feature of the LPS is that the radiation of different lasers incorporated in a coaxial beam has simultaneously high level of peak power (more than 400 kW in a TEM00 mode) and significant level of average power (up to 800 W in a TEM01 mode of the CO2 laser). The application of combined radiation for cutting of an aluminum alloy of D16 type made it possible to decrease the cutting energy threshold in 1.7 times, to increase depth of treatment from 2 up to 4 mm, and velocity from 0.015 up to 0.7 m/min, and also to eliminate application of absorptive coatings. At cutting of steels the velocity of treatment was doubled, and also an oxygen flow was eliminated from the technological process and replaced by the air. The obtained raise of energy efficiency and quality of cutting is explained by an essential size reducing of a formed penetration channel and by the shifting of a thermal cutting mode from melting to evaporation. The evaluation of interaction efficiency of a combined radiation was produced on the basis of non-stationary thermal-hydrodynamic model of a heating source moving as in the cutting direction, and also into the depth of material.
Imaging, cutting, and collecting instrument and method
Tench, Robert J.; Siekhaus, Wigbert J.; Balooch, Mehdi; Balhorn, Rodney L.; Allen, Michael J.
1995-01-01
Instrumentation and techniques to image small objects, such as but not limited to individual human chromosomes, with nanometer resolution, to cut-off identified parts of such objects, to move around and manipulate such cut-off parts on the substrate on which they are being imaged to predetermined locations on the substrate, and to remove the cut-off parts from the substrate. This is accomplished using an atomic force microscope (AFM) and by modification of the conventional cantilever stylus assembly of an AFM, such that plural cantilevers are used with either sharp-tips or knife-edges thereon. In addition, the invention can be utilized for measuring hardness of materials.
The Effects of Cryogenic Treatment on Cutting Tools
NASA Astrophysics Data System (ADS)
Kumar, Satish; Khedkar, Nitin K.; Jagtap, Bhushan; Singh, T. P.
2017-08-01
Enhancing the cutting tool life is important and economic factor to reduce the tooling as well as manufacturing cost. The tool life is improved considerably by 92 % after cryogenic treatment. The cryogenic treatment is a one-time permanent, sub-zero heat treatment that entirely changes cross-section of cutting tool. The cryogenic treatment is carried out with deep freezing of cutting tool materials to enhance physical and mechanical properties. The cryogenic treatment improves mechanical such as hardness, toughness and tribological properties such as wear resistance, coefficient of friction, surface finish, dimensional stability and stress relief. The deep cryogenic treatment is the most beneficial treatment applied on cutting tools. The cryogenic treatment is the most advanced heat treatment and popular to improve performance of the cutting tool. The optimization of cryogenic treatment variables is necessary to improve tool life. This study reviews the effects of cryogenic treatment on microstructure, tribological properties of tool steels and machining applications of cutting tool by investigating the surface and performing the surface characterization test like SEM. The economy of cutting tool can be achieved by deep cryogenic treatment.
Discrete and continuum modelling of soil cutting
NASA Astrophysics Data System (ADS)
Coetzee, C. J.
2014-12-01
Both continuum and discrete methods are used to investigate the soil cutting process. The Discrete Element Method ( dem) is used for the discrete modelling and the Material-Point Method ( mpm) is used for continuum modelling. M pmis a so-called particle method or meshless finite element method. Standard finite element methods have difficulty in modelling the entire cutting process due to large displacements and deformation of the mesh. The use of meshless methods overcomes this problem. M pm can model large deformations, frictional contact at the soil-tool interface, and dynamic effects (inertia forces). In granular materials the discreteness of the system is often important and rotational degrees of freedom are active, which might require enhanced theoretical approaches like polar continua. In polar continuum theories, the material points are considered to possess orientations. A material point has three degrees-of-freedom for rigid rotations, in addition to the three classic translational degrees-of-freedom. The Cosserat continuum is the most transparent and straightforward extension of the nonpolar (classic) continuum. Two-dimensional dem and mpm (polar and nonpolar) simulations of the cutting problem are compared to experiments. The drag force and flow patterns are compared using cohesionless corn grains as material. The corn macro (continuum) and micro ( dem) properties were obtained from shear and oedometer tests. Results show that the dilatancy angle plays a significant role in the flow of material but has less of an influence on the draft force. Nonpolar mpm is the most accurate in predicting blade forces, blade-soil interface stresses and the position and orientation of shear bands. Polar mpm fails in predicting the orientation of the shear band, but is less sensitive to mesh size and mesh orientation compared to nonpolar mpm. dem simulations show less material dilation than observed during experiments.
FEM simulation of single beard hair cutting with foil-blade-shaving system.
Fang, Gang; Köppl, Alois
2015-06-01
The performance of dry-shavers depends on the interaction of the shaving components, hair and skin. Finite element models on the ABAQUS/Explicit platform are established to simulate the process of beard hair cutting. The skin is modelled as three-layer structure with a single cylindrical hair inserted into the skin. The material properties of skin are considered as Neo-Hookean hyper-elastic (epidermis) and Prony visco-elastic (dermis and hypodermis) with finite deformations. The hair is modelled as elastic-plastic material with shear damage. The cutting system is composed of a blade and a foil of shaver. The simulation results of cutting processes are analyzed, including the skin compression, hair bending, hair cutting and hair severance. Calculations of cutting loads, skin stress, and hair damage show the impact of clearance, skin bulge height, blade dimension and shape on cutting results. The details show the build-up of finite element models for hair cutting, and highlight the challenges arising during model construction and numerical simulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Core Cutting Test with Vertical Rock Cutting Rig (VRCR)
NASA Astrophysics Data System (ADS)
Yasar, Serdar; Osman Yilmaz, Ali
2017-12-01
Roadheaders are frequently used machines in mining and tunnelling, and performance prediction of roadheaders is important for project economics and stability. Several methods were proposed so far for this purpose and, rock cutting tests are the best choice. Rock cutting tests are generally divided into two groups which are namely, full scale rock cutting tests and small scale rock cutting tests. These two tests have some superiorities and deficiencies over themselves. However, in many cases, where rock sampling becomes problematic, small scale rock cutting test (core cutting test) is preferred for performance prediction, since small block samples and core samples can be conducted to rock cutting testing. Common problem for rock cutting tests are that they can be found in very limited research centres. In this study, a new mobile rock cutting testing equipment, vertical rock cutting rig (VRCR) was introduced. Standard testing procedure was conducted on seven rock samples which were the part of a former study on cutting rocks with another small scale rock cutting test. Results showed that core cutting test can be realized successfully with VRCR with the validation of paired samples t-test.
Plywood Inlays Thourgh CO2 Laser Cutting
NASA Astrophysics Data System (ADS)
Pires, Margarida C.; Araujo, J. L.; Teixeira, M. Ribau; Rodrigues, F. Carvalho
1989-07-01
Furniture with inlays is rather expensive. This is so on two accounts: Firstly, furniture with inlays is generally manufactured with solid wood.Secondly,wood carving and figure cutting are both time consuming and they produce a high rate of rejections. To add to it all the cutting and carving of minute figures requires an outstanding craftmanship. In fact the craftman is in most instance the artist and also the manufacturer. While desiring that the high artistic level is maintained in the industry the search for new method to produce inlays for furniture in not son expensive materials and to produce them in a repetitive and flexible way laser cutting of plywood was found to be quite suitable. This paper presents the charts for CO2 laser cutting of both positive and negatives in several types of plywood. The main problem is not so much the cutting of the positive and negatives pieces but to be able to cut the piece in a way that the fitting is done without any problems caused by the ever present charring effect, which takes palce at the edges of the cut pieces. To minimise this aspect positive and negative pieces have to be cut under stringent focusing conditions and with slight different scales. The condittions for our machine are presented.
Rotary ultrasonic machining of CFRP: a mechanistic predictive model for cutting force.
Cong, W L; Pei, Z J; Sun, X; Zhang, C L
2014-02-01
Cutting force is one of the most important output variables in rotary ultrasonic machining (RUM) of carbon fiber reinforced plastic (CFRP) composites. Many experimental investigations on cutting force in RUM of CFRP have been reported. However, in the literature, there are no cutting force models for RUM of CFRP. This paper develops a mechanistic predictive model for cutting force in RUM of CFRP. The material removal mechanism of CFRP in RUM has been analyzed first. The model is based on the assumption that brittle fracture is the dominant mode of material removal. CFRP micromechanical analysis has been conducted to represent CFRP as an equivalent homogeneous material to obtain the mechanical properties of CFRP from its components. Based on this model, relationships between input variables (including ultrasonic vibration amplitude, tool rotation speed, feedrate, abrasive size, and abrasive concentration) and cutting force can be predicted. The relationships between input variables and important intermediate variables (indentation depth, effective contact time, and maximum impact force of single abrasive grain) have been investigated to explain predicted trends of cutting force. Experiments are conducted to verify the model, and experimental results agree well with predicted trends from this model. Copyright © 2013 Elsevier B.V. All rights reserved.
Scissor Sorcery: Cutting Activities for the Early Childhood Curriculum.
ERIC Educational Resources Information Center
Carpenter, Sharan Bryant
This handbook, designed for use with preschool and elementary age children, provides instructions and instructional materials for the development of proficiency in cutting. Scissor cutting is a critically important activity for young children to practice because, along with coloring and pasting, it is used widely to foster the three R's as well as…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Robert
2005-10-01
Pacific Northwest National Laboratory conducted video-based boat surveys to identify fall Chinook salmon (Oncorhynchus tshawytscha) spawning areas located in deep water (greater than 1 m) downstream of Bonneville Dam in fall 2004. This report documents the number and extent of Chinook salmon spawning near Ives and Pierce Islands of the Columbia River and is the sixth in a series of reports prepared since 1999. The main objectives of this study were to find deepwater spawning locations of fall Chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates ofmore » adult spawners in the surveyed area. The primary search area was adjacent to the upper portion of Pierce Island, and the secondary search zone was downstream of this area near the lower portion of Pierce Island. A secondary objective was to document the occurrence of any chum salmon (O. keta) redds in the deeper sections downstream of Hamilton Creek (slough zone search area). Fall Chinook salmon redd numbers were down slightly from the record number found during 2003. The number of fall Chinook redds found in the Ives-Pierce Island complex (river km 228.5) during 2004 was 293, which does not include the number of shallow water redds found by visual observation by boat by the Oregon Department of Fish and Wildlife. The redds encompassed an area of 14.6 ha occurring adjacent to the lower part of Ives Island and Pierce Island. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 16, 2004. An expanded redd count based on percentage video coverage in the primary and secondary search zones was 3,198 fall Chinook salmon redds at water depths exceeding approximately 1.0 m (approximately 125 kcfs) with an estimated spawning population of 10,800. Fall Chinook salmon redds were found at water depths from 1.07 to 7.6 m and were constructed predominantly of medium cobbles ranging in size
Planting Depth and Source Affect Survival of Planted Green Ash Cuttings
Harvey E. Kennedy
1977-01-01
Horizontally and vertically planted cuttings from 1-0 nursery-grown green ash seedlings sprouted and grew well during the first growing season. Cuttings from 1- and 2-year-old sprouts and older material did not perform satisfactorily. Planted seedlings survived and grew well. Cuttings should be 10 to 15 inches long made from 1-0 seedlings and planted horizontally in...
NASA Astrophysics Data System (ADS)
Xu, Jinyang; El Mansori, Mohamed
2016-10-01
This paper studied the machinability of hybrid CFRP/Ti stack via the numerical approach. To this aim, an original FE model consisting of three fundamental physical constituents, i.e., CFRP phase, interface and Ti phase, was established in the Abaqus Explicit/code to construct the machining behavior of the composite-to-metal alliance. The CFRP phase was modeled as an equivalent homogeneous material (EHM) by considering its anisotropic behavior relative to the fiber orientation (θ) while the Ti alloy phase was assumed to exhibit isotropic and elastic-plastic behavior. The "interface" linking the "CFRP-to-Ti" contact boundary was physically modeled as an intermediate transition region through the concept of cohesive zone (CZ). Different constitutive laws and damage criteria were implemented to simulate the chip separation process of the bi-material system. The key cutting responses including specific cutting energy consumption, induced subsurface damage, and interface delamination were precisely addressed via the comprehensive FE analyses, and several key conclusions were drawn from this study.
Imaging, cutting, and collecting instrument and method
Tench, R.J.; Siekhaus, W.J.; Balooch, M.; Balhorn, R.L.; Allen, M.J.
1995-10-31
Instrumentation and techniques are described to image small objects, such as but not limited to individual human chromosomes, with nanometer resolution. This instrument and method are also used to cut-off identified parts of objects, to move around and manipulate the cut-off parts on the substrate on which they are being imaged to predetermined locations on the substrate, and to remove the cut-off parts from the substrate. This is accomplished using an atomic force microscope (AFM) and by modification of the conventional cantilever stylus assembly of an AFM. The plural cantilevers are used with either sharp-tips or knife-edges. In addition, the invention can be utilized for measuring the hardness of materials. 10 figs.
Twice cutting method reduces tibial cutting error in unicompartmental knee arthroplasty.
Inui, Hiroshi; Taketomi, Shuji; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae
2016-01-01
Bone cutting error can be one of the causes of malalignment in unicompartmental knee arthroplasty (UKA). The amount of cutting error in total knee arthroplasty has been reported. However, none have investigated cutting error in UKA. The purpose of this study was to reveal the amount of cutting error in UKA when open cutting guide was used and clarify whether cutting the tibia horizontally twice using the same cutting guide reduced the cutting errors in UKA. We measured the alignment of the tibial cutting guides, the first-cut cutting surfaces and the second cut cutting surfaces using the navigation system in 50 UKAs. Cutting error was defined as the angular difference between the cutting guide and cutting surface. The mean absolute first-cut cutting error was 1.9° (1.1° varus) in the coronal plane and 1.1° (0.6° anterior slope) in the sagittal plane, whereas the mean absolute second-cut cutting error was 1.1° (0.6° varus) in the coronal plane and 1.1° (0.4° anterior slope) in the sagittal plane. Cutting the tibia horizontally twice reduced the cutting errors in the coronal plane significantly (P<0.05). Our study demonstrated that in UKA, cutting the tibia horizontally twice using the same cutting guide reduced cutting error in the coronal plane. Copyright © 2014 Elsevier B.V. All rights reserved.
Laser cutting: industrial relevance, process optimization, and laser safety
NASA Astrophysics Data System (ADS)
Haferkamp, Heinz; Goede, Martin; von Busse, Alexander; Thuerk, Oliver
1998-09-01
Compared to other technological relevant laser machining processes, up to now laser cutting is the application most frequently used. With respect to the large amount of possible fields of application and the variety of different materials that can be machined, this technology has reached a stable position within the world market of material processing. Reachable machining quality for laser beam cutting is influenced by various laser and process parameters. Process integrated quality techniques have to be applied to ensure high-quality products and a cost effective use of the laser manufacturing plant. Therefore, rugged and versatile online process monitoring techniques at an affordable price would be desirable. Methods for the characterization of single plant components (e.g. laser source and optical path) have to be substituted by an omnivalent control system, capable of process data acquisition and analysis as well as the automatic adaptation of machining and laser parameters to changes in process and ambient conditions. At the Laser Zentrum Hannover eV, locally highly resolved thermographic measurements of the temperature distribution within the processing zone using cost effective measuring devices are performed. Characteristic values for cutting quality and plunge control as well as for the optimization of the surface roughness at the cutting edges can be deducted from the spatial distribution of the temperature field and the measured temperature gradients. Main influencing parameters on the temperature characteristic within the cutting zone are the laser beam intensity and pulse duration in pulse operation mode. For continuous operation mode, the temperature distribution is mainly determined by the laser output power related to the cutting velocity. With higher cutting velocities temperatures at the cutting front increase, reaching their maximum at the optimum cutting velocity. Here absorption of the incident laser radiation is drastically increased due to
NASA Astrophysics Data System (ADS)
Tillmann, W.; Schaak, C.; Biermann, D.; Aßmuth, R.; Goeke, S.
2017-03-01
Cemented carbide (hard metal) cutting tools are the first choice to machine hard materials or to conduct high performance cutting processes. Main advantages of cemented carbide cutting tools are their high wear resistance (hardness) and good high temperature strength. In contrast, cemented carbide cutting tools are characterized by a low toughness and generate higher production costs, especially due to limited resources. Usually, cemented carbide cutting tools are produced by means of powder metallurgical processes. Compared to conventional manufacturing routes, these processes are more expensive and only a limited number of geometries can be realized. Furthermore, post-processing and preparing the cutting edges in order to achieve high performance tools is often required. In the present paper, an alternative method to substitute solid cemented carbide cutting tools is presented. Cutting tools made of conventional high speed steels (HSS) were coated with thick WC-Co (88/12) layers by means of thermal spraying (HVOF). The challenge is to obtain a dense, homogenous, and near-net-shape coating on the flanks and the cutting edge. For this purpose, different coating strategies were realized using an industrial robot. The coating properties were subsequently investigated. After this initial step, the surfaces of the cutting tools were ground and selected cutting edges were prepared by means of wet abrasive jet machining to achieve a smooth and round micro shape. Machining tests were conducted with these coated, ground and prepared cutting tools. The occurring wear phenomena were analyzed and compared to conventional HSS cutting tools. Overall, the results of the experiments proved that the coating withstands mechanical stresses during machining. In the conducted experiments, the coated cutting tools showed less wear than conventional HSS cutting tools. With respect to the initial wear resistance, additional benefits can be obtained by preparing the cutting edge by means
Optimal Design of Magnetic ComponentsinPlasma Cutting Power Supply
NASA Astrophysics Data System (ADS)
Jiang, J. F.; Zhu, B. R.; Zhao, W. N.; Yang, X. J.; Tang, H. J.
2017-10-01
Phase-shifted transformer and DC reactor are usually needed in chopper plasma cutting power supply. Because of high power rate, the loss of magnetic components may reach to several kilowatts, which seriously affects the conversion efficiency. Therefore, it is necessary to research and design low loss magnetic components by means of efficient magnetic materials and optimal design methods. The main task in this paper is to compare the core loss of different magnetic material, to analyze the influence of transformer structure, winding arrangement and wire structure on the characteristics of magnetic component. Then another task is to select suitable magnetic material, structure and wire in order to reduce the loss and volume of magnetic components. Based on the above outcome, the optimization design process of transformer and dc reactor are proposed in chopper plasma cutting power supply with a lot of solutions. These solutions are analyzed and compared before the determination of the optimal solution in order to reduce the volume and power loss of the two magnetic components and improve the conversion efficiency of plasma cutting power supply.
NASA Astrophysics Data System (ADS)
Naik, Deepak kumar; Maity, K. P.
2018-03-01
Plasma arc cutting (PAC) is a high temperature thermal cutting process employed for the cutting of extensively high strength material which are difficult to cut through any other manufacturing process. This process involves high energized plasma arc to cut any conducting material with better dimensional accuracy in lesser time. This research work presents the effect of process parameter on to the dimensional accuracy of PAC process. The input process parameters were selected as arc voltage, standoff distance and cutting speed. A rectangular plate of 304L stainless steel of 10 mm thickness was taken for the experiment as a workpiece. Stainless steel is very extensively used material in manufacturing industries. Linear dimension were measured following Taguchi’s L16 orthogonal array design approach. Three levels were selected to conduct the experiment for each of the process parameter. In all experiments, clockwise cut direction was followed. The result obtained thorough measurement is further analyzed. Analysis of variance (ANOVA) and Analysis of means (ANOM) were performed to evaluate the effect of each process parameter. ANOVA analysis reveals the effect of input process parameter upon leaner dimension in X axis. The results of the work shows that the optimal setting of process parameter values for the leaner dimension on the X axis. The result of the investigations clearly show that the specific range of input process parameter achieved the improved machinability.
NASA Astrophysics Data System (ADS)
Wang, Minghai; Wang, Hujun; Liu, Zhonghai
2011-05-01
Isotropic pyrolyric graphite (IPG) is a new kind of brittle material, it can be used for sealing the aero-engine turbine shaft and the ethylene high-temperature equipment. It not only has the general advantages of ordinal carbonaceous materials such as high temperature resistance, lubrication and abrasion resistance, but also has the advantages of impermeability and machinability that carbon/carbon composite doesn't have. Therefore, it has broad prospects for development. Mechanism of brittle-ductile transition of IPG is the foundation of precision cutting while the plastic deformation of IPG is the essential and the most important mechanical behavior of precision cutting. Using the theory of strain gradient, the mechanism of this material removal during the precision cutting is analyzed. The critical cutting thickness of IPG is calculated for the first time. Furthermore, the cutting process parameters such as cutting depth, feed rate which corresponding to the scale of brittle-ductile transition deformation of IPG are calculated. In the end, based on the theory of micromechanics, the deformation behaviors of IPG such as brittle fracture, plastic deformation and mutual transformation process are all simulated under the Sih.G.C fracture criterion. The condition of the simulation is that the material under the pressure-shear loading conditions .The result shows that the best angle during the IPG precision cutting is -30°. The theoretical analysis and the simulation result are validated by precision cutting experiments.
Laser beam machining of polycrystalline diamond for cutting tool manufacturing
NASA Astrophysics Data System (ADS)
Wyszyński, Dominik; Ostrowski, Robert; Zwolak, Marek; Bryk, Witold
2017-10-01
The paper concerns application of DPSS Nd: YAG 532nm pulse laser source for machining of polycrystalline WC based diamond inserts (PCD). The goal of the research was to determine optimal laser cutting parameters for cutting tool shaping. Basic criteria to reach the goal was cutting edge quality (minimalization of finishing operations), material removal rate (time and cost efficiency), choice of laser beam characteristics (polarization, power, focused beam diameter). The research was planned and realised and analysed according to design of experiment rules (DOE). The analysis of the cutting edge was prepared with use of Alicona Infinite Focus measurement system.
Estimation of the laser cutting operating cost by support vector regression methodology
NASA Astrophysics Data System (ADS)
Jović, Srđan; Radović, Aleksandar; Šarkoćević, Živče; Petković, Dalibor; Alizamir, Meysam
2016-09-01
Laser cutting is a popular manufacturing process utilized to cut various types of materials economically. The operating cost is affected by laser power, cutting speed, assist gas pressure, nozzle diameter and focus point position as well as the workpiece material. In this article, the process factors investigated were: laser power, cutting speed, air pressure and focal point position. The aim of this work is to relate the operating cost to the process parameters mentioned above. CO2 laser cutting of stainless steel of medical grade AISI316L has been investigated. The main goal was to analyze the operating cost through the laser power, cutting speed, air pressure, focal point position and material thickness. Since the laser operating cost is a complex, non-linear task, soft computing optimization algorithms can be used. Intelligent soft computing scheme support vector regression (SVR) was implemented. The performance of the proposed estimator was confirmed with the simulation results. The SVR results are then compared with artificial neural network and genetic programing. According to the results, a greater improvement in estimation accuracy can be achieved through the SVR compared to other soft computing methodologies. The new optimization methods benefit from the soft computing capabilities of global optimization and multiobjective optimization rather than choosing a starting point by trial and error and combining multiple criteria into a single criterion.
Choi, Hong-Kyu; Iandolino, Alberto; da Silva, Francisco Goes; Cook, Douglas R
2013-06-01
Pierce's disease, caused by the bacterium Xylella fastidiosa, is one of the most devastating diseases of cultivated grape, currently restricted to the Americas. To test the long-standing hypothesis that Pierce's disease results from pathogen-induced drought stress, we used the Affymetrix Vitis GeneChip to compare the transcriptional response of Vitis vinifera to Xylella infection, water deficit, or a combination of the two stresses. The results reveal a redirection of gene transcription involving 822 genes with a minimum twofold change (P < 0.05), including the upregulation of transcripts for phenylpropanoid and flavonoid biosynthesis, pathogenesis-related proteins, abscisic acid- and jasmonic acid-responsive biosynthesis, and downregulation of transcripts related to photosynthesis, growth, and nutrition. Although the transcriptional response of plants to Xylella infection was largely distinct from the response of healthy plants to water stress, we find that 138 of the pathogen-induced genes exhibited a significantly stronger transcriptional response when plants were simultaneously exposed to infection and drought stress, suggesting a strong interaction between disease and water deficit. This interaction between drought stress and disease was mirrored in planta at the physiological level for aspects of water relations and photosynthesis and in terms of the severity of disease symptoms and the extent of pathogen colonization, providing a molecular correlate of the classical concept of the disease triangle in which environment impacts disease severity.
Testing Of Choiced Ceramics Cutting Tools At Irregular Interrupted Cut
NASA Astrophysics Data System (ADS)
Kyncl, Ladislav; Malotová, Šárka; Nováček, Pavel; Nicielnik, Henryk; Šoková, Dagmar; Hemžský, Pavel; Pitela, David; Holubjak, Jozef
2015-12-01
This article discusses the test of removable ceramic cutting inserts during machining irregular interrupted cut. Tests were performed on a lathe, with the preparation which simulated us the interrupted cut. By changing the number of plates mounted in a preparation it simulate us a regular or irregular interrupted cut. When with four plates it was regular interrupted cut, the remaining three variants were already irregular cut. It was examined whether it will have the irregular interrupted cutting effect on the insert and possibly how it will change life of inserts during irregular interrupted cut (variable delay between shocks).
Testing of the McMath-Pierce 0.8-Meter East Auxiliary Telescope's Acquisition and Slewing Accuracy
NASA Astrophysics Data System (ADS)
Harshaw, Richard; Ray, Jimmy; Prause, Lori; Douglass, David; Branston, Detrick; Genet, Russell M.
2015-09-01
Following mediocre results with pointing tests of the McMath-Pierce 0.8-meter East Auxiliary Telescope in April 2014, a team of astronomers/engineers met again in May 2014 to test other pointing models and assess the telescope's ability to point with enough accuracy to permit the efficient use of speckle interferometry. Results show that accurate collimation is a pre-requisite for such accuracy. Once attained, the telescope performs extremely well.
NASA Astrophysics Data System (ADS)
Dietrich, Volker; Hartmann, Peter; Kerz, Franca
2015-03-01
Digital cameras are present everywhere in our daily life. Science, business or private life cannot be imagined without digital images. The quality of an image is often rated by its color rendering. In order to obtain a correct color recognition, a near infrared cut (IRC-) filter must be used to alter the sensitivity of imaging sensor. Increasing requirements related to color balance and larger angle of incidence (AOI) enforced the use of new materials as the e.g. BG6X series which substitutes interference coated filters on D263 thin glass. Although the optical properties are the major design criteria, devices have to withstand numerous environmental conditions during use and manufacturing - as e.g. temperature change, humidity, and mechanical shock, as wells as mechanical stress. The new materials show different behavior with respect to all these aspects. They are usually more sensitive against these requirements to a larger or smaller extent. Mechanical strength is especially different. Reliable strength data are of major interest for mobile phone camera applications. As bending strength of a glass component depends not only upon the material itself, but mainly on the surface treatment and test conditions, a single number for the strength might be misleading if the conditions of the test and the samples are not described precisely,. Therefore, Schott started investigations upon the bending strength data of various IRC-filter materials. Different test methods were used to obtain statistical relevant data.
Design and development of a 40 kV pierce electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, D.; Tiwari, R.; Jayaprakash, D., E-mail: dhruva.bhattacharjee@gmail.com
A 40 kV electron gun is designed and developed using the Pierce configuration for the focusing electrode. Simulations were carried out using CST Particle Studio. The Gun is a thermionic type electron gun with indirect heating of the LaB6 cathode. The gun is capable of delivering a beam current of more than 500 mA at 40 kV with a beam size of less than 5 mm. The cathode assembly consists of cups and heat shields made out of Tantalum and Rhenium sheets. The cathode assembly and the electron gun was fabricated, assembled and tested on test bench for cathode conditioning,more » HV conditioning and beam characterization. This paper presents the gun design, particle simulations study, testing of the gun on test bench. (author)« less
NASA Astrophysics Data System (ADS)
Susmitha, M.; Sharan, P.; Jyothi, P. N.
2016-09-01
Friction between work piece-cutting tool-chip generates heat in the machining zone. The heat generated reduces the tool life, increases surface roughness and decreases the dimensional sensitiveness of work material. This can be overcome by using cutting fluids during machining. They are used to provide lubrication and cooling effects between cutting tool and work piece and cutting tool and chip during machining operation. As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. Non-edible vegetable oils have received considerable research attention in the last decades owing to their remarkable improved tribological characteristics and due to increasing attention to environmental issues, have driven the lubricant industry toward eco friendly products from renewable sources. In the present work, different non-edible vegetable oils are used as cutting fluid during drilling of Mild steel work piece. Non-edible vegetable oils, used are Karanja oil (Honge), Neem oil and blend of these two oils. The effect of these cutting fluids on chip formation, surface roughness and cutting force are investigated and the results obtained are compared with results obtained with petroleum based cutting fluids and dry conditions.
Prediction of Cutting Force in Turning Process-an Experimental Approach
NASA Astrophysics Data System (ADS)
Thangarasu, S. K.; Shankar, S.; Thomas, A. Tony; Sridhar, G.
2018-02-01
This Paper deals with a prediction of Cutting forces in a turning process. The turning process with advanced cutting tool has a several advantages over grinding such as short cycle time, process flexibility, compatible surface roughness, high material removal rate and less environment problems without the use of cutting fluid. In this a full bridge dynamometer has been used to measure the cutting forces over mild steel work piece and cemented carbide insert tool for different combination of cutting speed, feed rate and depth of cut. The experiments are planned based on taguchi design and measured cutting forces were compared with the predicted forces in order to validate the feasibility of the proposed design. The percentage contribution of each process parameter had been analyzed using Analysis of Variance (ANOVA). Both the experimental results taken from the lathe tool dynamometer and the designed full bridge dynamometer were analyzed using Taguchi design of experiment and Analysis of Variance.
Micro/nano-particle decorated metal wire for cutting soft matter
NASA Astrophysics Data System (ADS)
Zhang, Wei; Feng, Liang-liang; Wu, Fan; Zhang, Run-run; Wu, Cheng-wei
2016-09-01
To cut soft materials such as biological tissues with minimal damage and reduced positional error is highly desired in medical surgery and biomechanics. After years of natural selection and evolution, mosquitoes have acquired the ability to insert their proboscises into human skin with astonishingly tiny forces. This can be associated with the unique structure of their proboscises, with micro/nano sawteeth, and the distinctive insertion manner: high frequency reciprocating saw cutting. Inspired by these, this communication describes the successful implantation of metal oxide particles onto molybdenum wire surfaces through a sol-calcination process, to form a biomimetic sawblade with a high density of micro/nano saw teeth, where the acidification is essential in terms of generating active anchoring sites on the wire. When used as a sawblade in conjunction with reciprocating action to cut the viscoelastic gel, both the cut-in force and cut-in displacement could be decreased substantially. The cutting speed and frequency of reciprocating action are important operating parameters influencing cut-in force.
Fibre laser cutting stainless steel: Fluid dynamics and cut front morphology
NASA Astrophysics Data System (ADS)
Pocorni, Jetro; Powell, John; Deichsel, Eckard; Frostevarg, Jan; Kaplan, Alexander F. H.
2017-01-01
In this paper the morphology of the laser cut front generated by fibre lasers was investigated by observation of the 'frozen' cut front, additionally high speed imaging (HSI) was employed to study the fluid dynamics on the cut front while cutting. During laser cutting the morphology and flow properties of the melt film on the cut front affect cut quality parameters such as cut edge roughness and dross (residual melt attached to the bottom of the cut edge). HSI observation of melt flow down a laser cutting front using standard cutting parameters is experimentally problematic because the cut front is narrow and surrounded by the kerf walls. To compensate for this, artificial parameters are usually chosen to obtain wide cut fronts which are unrepresentative of the actual industrial process. This paper presents a new experimental cutting geometry which permits HSI of the laser cut front using standard, commercial parameters. These results suggest that the cut front produced when cutting medium section (10 mm thick) stainless steel with a fibre laser and a nitrogen assist gas is covered in humps which themselves are covered by a thin layer of liquid. HSI observation and theoretical analysis reveal that under these conditions the humps move down the cut front at an average speed of approximately 0.4 m/s while the covering liquid flows at an average speed of approximately 1.1 m/s, with an average melt depth at the bottom of the cut zone of approximately 0.17 mm.
TransCut: interactive rendering of translucent cutouts.
Li, Dongping; Sun, Xin; Ren, Zhong; Lin, Stephen; Tong, Yiying; Guo, Baining; Zhou, Kun
2013-03-01
We present TransCut, a technique for interactive rendering of translucent objects undergoing fracturing and cutting operations. As the object is fractured or cut open, the user can directly examine and intuitively understand the complex translucent interior, as well as edit material properties through painting on cross sections and recombining the broken pieces—all with immediate and realistic visual feedback. This new mode of interaction with translucent volumes is made possible with two technical contributions. The first is a novel solver for the diffusion equation (DE) over a tetrahedral mesh that produces high-quality results comparable to the state-of-art finite element method (FEM) of Arbree et al. but at substantially higher speeds. This accuracy and efficiency is obtained by computing the discrete divergences of the diffusion equation and constructing the DE matrix using analytic formulas derived for linear finite elements. The second contribution is a multiresolution algorithm to significantly accelerate our DE solver while adapting to the frequent changes in topological structure of dynamic objects. The entire multiresolution DE solver is highly parallel and easily implemented on the GPU. We believe TransCut provides a novel visual effect for heterogeneous translucent objects undergoing fracturing and cutting operations.
Determination of Optimum Cutting Parameters for Surface Roughness in Turning AL-B4C Composites
NASA Astrophysics Data System (ADS)
Channabasavaraja, H. K.; Nagaraj, P. M.; Srinivasan, D.
2016-09-01
Many materials such as alloys, composites find their applications on the basis of machinability, cost and availability. In the present work, machinability of Aluminium 1100 and Boron carbide (AL+ B4C) composite material is examined by using lathe tool dynometers (BANKA Lathe) by varying the cutting parameters like spindle speed, Depth of cut and Feed rate in 3 levels. Also, surface roughness is measured against the weight % of reinforcement in the composite (0, 4 and 8 %). From the study it is observed that the hardness of a composite material increases with increase in weight % of reinforcement material (B4C) by 26.27 and 66.7 % respectively. The addition of reinforcement materials influences the machinability. The cutting force in both X and Z direction were also found increment with the reinforcement percentage.
“Agility” - Complexity Description in a New Dimension applied for Laser Cutting
NASA Astrophysics Data System (ADS)
Bartels, F.; Suess, B.; Wagner, A.; Hauptmann, J.; Wetzig, A.; Beyer, E.
How to describe or to compare the complexity of industrial upcoming part geometries in laser-cutting? This question is essential for defining machine dynamics or kinematic structures for efficient use of the technological cutting-potential which is given by modern beam sources. Solid-state lasers as well as CO2 lasers offer, especially in thin materials, the opportunity of high cutting velocities. Considering the mean velocity on cutting geometries, it is significantly below the technological limitations. The characterization of cutting geometries by means of the agility as well as the application for laser-cutting will be introduced. The identification of efficient dynamic constellations will be shown as basic principle for designing future machine structures.
NASA Astrophysics Data System (ADS)
Chen, Y.; Huang, X. J.; Kong, J. X.
2018-03-01
In this paper, the focused ion beam was used to study the subsurface deformed layer of single crystal copper caused by the nanoscale single-point diamond fly cutting, and the possibility of using nanometer ultra-precision cutting to remove the larger deformation layer caused by traditional rough cutting process was explored. The maximum cutting thickness of single-point diamond cutting was about 146 nm, and the surface of the single-crystal copper after cutting was etched and observed by using the focused ion beam method. It was found that the morphology of the near-surface layer and the intermediate layer of the copper material were larger differences: the near-surface of the material was smaller and more compact, and the intermediate material layer of the material was more coarse sparse. The results showed that the traditional precision cutting would residual significant subsurface deformed layer and the thickness was on micron level. Even more, the subsurface deformed layer was obviously removed from about 12μm to 5μm after single-point diamond fly cutting in this paper. This paper proved that the large-scale subsurface deformed layer caused by traditional cutting process could be removed by nanometer ultra-precision cutting. It was of great significance to further establish the method that control of the deformation of weak rigid components by reducing the depth of the subsurface deformed layers.
Wedge cutting of mild steel by CO 2 laser and cut-quality assessment in relation to normal cutting
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Karatas, C.; Uslan, I.; Keles, O.; Usta, Y.; Yilbas, Z.; Ahsan, M.
2008-10-01
In some applications, laser cutting of wedge surfaces cannot be avoided in sheet metal processing and the quality of the end product defines the applicability of the laser-cutting process in such situations. In the present study, CO 2 laser cutting of the wedge surfaces as well as normal surfaces (normal to laser beam axis) is considered and the end product quality is assessed using the international standards for thermal cutting. The cut surfaces are examined by the optical microscopy and geometric features of the cut edges such as out of flatness and dross height are measured from the micrographs. A neural network is introduced to classify the striation patterns of the cut surfaces. It is found that the dross height and out of flatness are influenced significantly by the laser output power, particularly for wedge-cutting situation. Moreover, the cut quality improves at certain value of the laser power intensity.
Hepatitis B vaccination for injection drug users--Pierce County, Washington, 2000.
2001-05-18
Hepatitis B vaccination has been recommended for injection drug users (IDUs) since 1982, but vaccination coverage of IDUs remains low (1), and outbreaks of hepatitis B among IDUs continue to occur. An outbreak of hepatitis B primarily among IDUs in Pierce County, Washington, detected in April 2000, included 60 cases and resulted in three deaths among IDUs co-infected with hepatitis delta virus. A program to administer hepatitis B vaccine to IDUs was implemented to control the outbreak, and the number of cases identified decreased from 13 per month in May to two cases since November. This report describes a vaccination program during which IDUs accepted hepatitis B vaccination provided free of charge in community-based settings and illustrates how effective hepatitis B vaccination programs targeted at IDUs can be implemented through collaborations between departments of health and corrections and community organizations.
Flow stress model in metal cutting
NASA Technical Reports Server (NTRS)
Black, J. T.
1978-01-01
A model for the plastic deformation that occurs in metal cutting, based on dislocation mechanics, is presented. The model explains the fundamental deformation structure that develops during machining and is based on the well known Cottrell-Stokes Law, wherein the flow stress is partitioned into two parts; an athermal part which occurs in the shear fronts (or shear bands); and a thermal part which occurs in the lamella regions. The deformation envokes the presence of a cellular dislocation distribution which always exists in the material ahead of the shear process. This 'alien' dislocation distribution either exists in the metal prior to cutting or is produced by the compressive stress field which operates in front of the shear process. The magnitude of the flow stress and direction of the shear are shown to be correlated to the stacking fault energy of the metal being cut. The model is tested with respect to energy consumption rates and found to be consistent with observed values.
The use of cutting temperature to evaluate the machinability of titanium alloys.
Kikuchi, Masafumi
2009-02-01
This study investigated the machinability of titanium, two commercial titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb) and free-cutting brass using the cutting temperature. The cutting temperature was estimated by measuring the thermal electromotive force of the tool-workpiece thermocouple during cutting. The thermoelectric power of each metal relative to the tool had previously been determined. The metals were slotted using a milling machine and carbide square end mills under four cutting conditions. The cutting temperatures of Ti-6Al-4V and Ti-6Al-7Nb were significantly higher than that of the titanium, while that of the free-cutting brass was lower. This result coincided with the relationship of the magnitude of the cutting forces measured in a previous study. For each metal, the cutting temperature became higher when the depth of cut or the cutting speed and feed increased. The increase in the cutting speed and feed was more influential on the value than the increase in the depth of cut when two cutting conditions with the same removal rates were compared. The results demonstrated that cutting temperature measurement can be utilized to develop a new material for dental CAD/CAM applications and to optimize the cutting conditions.
Rosin, Zuzanna M.; Tryjanowski, Piotr
2017-01-01
Background The shells of molluscs survive well in many sedimentary contexts and yield information about the diet of prehistoric humans. They also yield evidence of symbolic behaviours through their use as beads for body adornments. Researchers often analyse the location of perforations in shells to make judgements about their use as symbolic objects (e.g., beads), the assumption being that holes attributable to deliberate human behaviour are more likely to exhibit low variability in their anatomical locations, while holes attributable to natural processes yield more random perforations. However, there are non-anthropogenic factors that can cause perforations in shells and these may not be random. The aim of the study is compare the variation in holes in shells from archaeological sites from the Old World with the variation of holes in shells pierced by mollusc predators. Methods Three hundred and sixteen scientific papers were retrieved from online databases by using keywords, (e.g., ‘shell beads’; ‘pierced shells’; ‘drilling predators’); 79 of these publications enabled us to conduct a systematic review to qualitatively assess the location of the holes in the shells described in the published articles. In turn, 54 publications were used to assess the location of the holes in the shells made by non-human predators. Results Almost all archaeological sites described shells with holes in a variety of anatomical locations. High variation of hole-placement was found within the same species from the same site, as well as among sites. These results contrast with research on predatory molluscs, which tend to be more specific in where they attacked their prey. Gastropod and bivalve predators choose similar hole locations to humans. Discussion Based on figures in the analysed articles, variation in hole-location on pierced shells from archaeological sites was similar to variation in the placement of holes created by non-human animals. Importantly, we found that
The effect of cutting conditions on power inputs when machining
NASA Astrophysics Data System (ADS)
Petrushin, S. I.; Gruby, S. V.; Nosirsoda, Sh C.
2016-08-01
Any technological process involving modification of material properties or product form necessitates consumption of a certain power amount. When developing new technologies one should take into account the benefits of their implementation vs. arising power inputs. It is revealed that procedures of edge cutting machining are the most energy-efficient amongst the present day forming procedures such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc, such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc. An expanded formula for calculation of power inputs is deduced, which takes into consideration the mode of cutting together with the tip radius, the form of the replaceable multifaceted insert and its wear. Having taken as an example cutting of graphite iron by the assembled cutting tools with replaceable multifaceted inserts the authors point at better power efficiency of high feeding cutting in comparison with high-speed cutting.
Dental cutting behaviour of mica-based and apatite-based machinable glass-ceramics.
Taira, M; Wakasa, K; Yamaki, M; Matsui, A
1990-09-01
Some recently developed industrial ceramics have excellent machinability properties. The objective of this study was to evaluate the dental cutting behaviour of two machinable glass-ceramics, mica-containing Macor-M and apatite- and diopside-containing Bioram-M, and to compare them with the cutting behaviour of a composite resin typodont tooth enamel and bovine enamel. Weight-load cutting tests were conducted, using a diamond point driven by an air-turbine handpiece, While the transverse load applied on the point was varied, the handpiece speed during cutting and the volume of removal upon cutting were measured. In general, an increase in the applied load caused a decrease in cutting speed and an increase in cutting volume. However, the intensity of this trend was found to differ between four workpieces. Cutting Macor-M resulted in the second-most reduced cutting speed and the maximum cutting volume. Cutting Bioram-M gave the least reduced cutting speed and the minimum cutting volume. It was suggested that two machinable glass-ceramics could be employed as typodont teeth. This study may also contribute to the development of new restorative dental ceramic materials, prepared by machining.
Kikuchi, Masafumi; Okuno, Osamu
2004-12-01
To establish a method of determining the machinability of dental materials for CAD/CAM systems, the machinability of titanium, two titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb), and free-cutting brass was evaluated through cutting force and spindle motor current. The metals were slotted using a milling machine and square end mills at four cutting conditions. Both the static and dynamic components of the cutting force represented well the machinability of the metals tested: the machinability of Ti-6Al-4V and Ti-6Al-7Nb was worse than that of titanium, while that of free-cutting brass was better. On the other hand, the results indicated that the spindle motor current was not sensitive enough to detect the material difference among the titanium and its alloys.
An evaluation of a lathe-cut high-copper amalgam alloy.
Knibbs, P J; Plant, C G; Shovelton, D S; Jones, P A
1987-09-01
Modification of an amalgam alloy may give rise to improved physical properties. The physical properties of a newly formulated, single-composition lathe-cut amalgam alloy were studied and found to be superior to those of a conventional lathe-cut amalgam alloy. However, such modification in formulation may result in changes in the clinical handling properties of the material. The high-copper amalgam alloy was assessed by a panel of general practitioners who found that the general handling properties of the material were similar to those of conventional lathe-cut amalgam alloys. The longer term performance of the high-copper alloy was assessed by means of a blind, controlled clinical trial carried out by two operators. A 1-year assessment of the resulting restorations and tooth replicas could not distinguish between the high-copper alloy and a conventional alloy. The two alloys had both given good clinical results.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Ferrous metal borings, shavings, turnings, or cuttings... Requirements for Certain Material § 148.04-13 Ferrous metal borings, shavings, turnings, or cuttings (excluding... described as ferrous metal borings, shavings, turnings, or cuttings on board vessels (excluding stainless...
Majori, S; Capretta, F; Baldovin, T; Busana, M; Baldo, V; Collaborative Group
2013-03-01
Body piercing (P) and tattoo (T) is a growing social phenomenon over recent years. Nowadays in Italy little is known about the prevalence, the attitude, the medical and social consequences of these activities. The purpose of this study is to examine the prevalence distribution and the attitude towards P and T and the perception of the risk for infections, in a sample of high school students living in the four Provinces of the Veneto Region (Italy). An anonymous, self administrate multiple-choice questionnaire about piercing and tattoo practices was distributed during the 2009-2010 academic year to a sample of randomly extracted grades to obtain information about sociodemographic characteristics, family educational level, personal attitude, prevalence and perception of the importance of the sanitary, technical and artistic competence of the operator. The correctly compiled questionnaires were 2712 (95.4%). Males and females were respectively 46.2% and 53.8% (mean age 17 +/- 1.7 years). The 20.2% and the 6.4% of all the students had already experienced respectively P and T and resulted "very interested" the 46.7% to P and the 57.4% to T. Esthetical motivations are the main ones referred to use body art. The most part of interviewed subjects (81.6%) think that it is possible to have an infection, but only about 50% of students reported to know specific information about transmission of HIV, Viral Hepatitis and skin infections. The parents' educational levels do not influence the perception of the risk of infection. The majority of interviewed subjects (88.0%) prefers to undergo body art practices in a qualified center. Only the 30% of students recur to a medical help to solve problem of infection. The piercing and tattoo prevalence rate in our study (P: 20.2% and T:6.4%) resulted similar to other Italian ones (range reported: P: 20.3-35.1%, T: 4.8-8.6%), showing an increasing trend with age. Since a high rate of interviewed students referred a substantial ignorance
NASA Astrophysics Data System (ADS)
Jennings, Patricia
Entanglement and knots are naturally occurring, where, in the microscopic world, knots in DNA and homopolymers are well characterized. The most complex knots are observed in proteins which are harder to investigate, as proteins are heteropolymers composed of a combination of 20 different amino acids with different individual biophysical properties. As new-knotted topologies and new proteins containing knots continue to be discovered and characterized, the investigation of knots in proteins has gained intense interest. Thus far, the principle focus has been on the evolutionary origin of tying a knot, with questions of how a protein chain `self-ties' into a knot, what the mechanism(s) are that contribute to threading, and the biological relevance and functional implication of a knotted topology in vivo gaining the most insight. Efforts to study the fully untied and unfolded chain indicate that the knot is highly stable, remaining intact in the unfolded state orders of magnitude longer than first anticipated. The persistence of ``stable'' knots in the unfolded state, together with the challenge of defining an unfolded and untied chain from an unfolded and knotted chain, complicates the study of fully untied protein in vitro. Our discovery of a new class of knotted proteins, the Pierced Lassos (PL) loop topology, simplifies the knotting approach. While PLs are not easily recognizable by the naked eye, they have now been identified in many proteins in the PDB through the use of computation tools. PL topologies are diverse proteins found in all kingdoms of life, performing a large variety of biological responses such as cell signaling, immune responses, transporters and inhibitors (http://lassoprot.cent.uw.edu.pl/). Many of these PL topologies are secreted proteins, extracellular proteins, as well as, redox sensors, enzymes and metal and co-factor binding proteins; all of which provide a favorable environment for the formation of the disulphide bridge. In the PL
Influence of shear cutting parameters on the fatigue behavior of a dual-phase steel
NASA Astrophysics Data System (ADS)
Paetzold, I.; Dittmann, F.; Feistle, M.; Golle, R.; Haefele, P.; Hoffmann, H.; Volk, W.
2017-09-01
The influence of the edge condition of car body and chassis components made of steel sheet on fatigue behavior under dynamic loading presents a major challenge for automotive manufacturers and suppliers. The calculated lifetime is based on material data determined by the fatigue testing of specimens with polished edges. Prototype components are often manufactured by milling or laser cutting, whereby in practice, the series components are produced by shear cutting due to its cost-efficiency. Since the fatigue crack in such components usually starts from a shear cut edge, the calculated and experimental determined lifetime will vary due to the different conditions at the shear cut edges. Therefore, the material data determined with polished edges can result in a non-conservative component design. The aim of this study is to understand the relationship between the shear cutting process and the fatigue behavior of a dual-phase steel sheet. The geometry of the shear cut edge as well as the depth and degree of work hardening in the shear affected zone can be adjusted by using specific shear cutting parameters, such as die clearance and cutting edge radius. Stress-controlled fatigue tests of unnotched specimens were carried out to compare the fatigue behavior of different edge conditions. By evaluating the results of the fatigue experiments, influential shear cutting parameters on fatigue behavior were identified. It was possible to assess investigated shear cutting strategies regarding the fatigue behavior of a high-strength steel DP800.
Method for maintaining a cutting blade centered in a kerf
Blaedel, Kenneth L.; Davis, Pete J.; Landram, Charles S.
2002-01-01
A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.
Dental abrasion as a cutting process.
Lucas, Peter W; Wagner, Mark; Al-Fadhalah, Khaled; Almusallam, Abdulwahab S; Michael, Shaji; Thai, Lidia A; Strait, David S; Swain, Michael V; van Casteren, Adam; Renno, Waleed M; Shekeban, Ali; Philip, Swapna M; Saji, Sreeja; Atkins, Anthony G
2016-06-06
A mammalian tooth is abraded when a sliding contact between a particle and the tooth surface leads to an immediate loss of tooth tissue. Over time, these contacts can lead to wear serious enough to impair the oral processing of food. Both anatomical and physiological mechanisms have evolved in mammals to try to prevent wear, indicating its evolutionary importance, but it is still an established survival threat. Here we consider that many wear marks result from a cutting action whereby the contacting tip(s) of such wear particles acts akin to a tool tip. Recent theoretical developments show that it is possible to estimate the toughness of abraded materials via cutting tests. Here, we report experiments intended to establish the wear resistance of enamel in terms of its toughness and how friction varies. Imaging via atomic force microscopy (AFM) was used to assess the damage involved. Damage ranged from pure plastic deformation to fracture with and without lateral microcracks. Grooves cut with a Berkovich diamond were the most consistent, suggesting that the toughness of enamel in cutting is 244 J m(-2), which is very high. Friction was higher in the presence of a polyphenolic compound, indicating that this could increase wear potential.
Toytman, I; Silbergleit, A; Simanovski, D; Palanker, D
2010-10-01
Transparent biological tissues can be precisely dissected with ultrafast lasers using optical breakdown in the tight focal zone. Typically, tissues are cut by sequential application of pulses, each of which produces a single cavitation bubble. We investigate the hydrodynamic interactions between simultaneous cavitation bubbles originating from multiple laser foci. Simultaneous expansion and collapse of cavitation bubbles can enhance the cutting efficiency, by increasing the resulting deformations in tissue, and the associated rupture zone. An analytical model of the flow induced by the bubbles is presented and experimentally verified. The threshold strain of the material rupture is measured in a model tissue. Using the computational model and the experimental value of the threshold strain one can compute the shape of the rupture zone in tissue resulting from application of multiple bubbles. With the threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when applied at the distance 1.35 times greater than that required in sequential approach. Simultaneous focusing of the laser in multiple spots along the line of intended cut can extend this ratio to 1.7. Counterpropagating jets forming during collapse of two bubbles in materials with low viscosity can further extend the cutting zone-up to approximately a factor of 1.5.
ERIC Educational Resources Information Center
Bordelon, Suzanne
2006-01-01
In this article, the author demonstrated how recent histories relied primarily on previous accounts and one textbook to characterize George Pierce Baker's work. This narrow assessment of "The Principles of Argumentation" limits one's understanding of his contribution to argumentation theory and pedagogy. Similarly, one has seen the need for care…
AN EXPERIMENTAL STUDY OF CUTTING FLUID EFFECTS IN DRILLING. (R825370C057)
Experiments were designed and conducted on aluminum alloys and gray cast iron to determine the function of cutting fluid in drilling. The variables examined included speed, feed, hole depth, tool and workpiece material, cutting fluid condition, workpiece temperatures and drill...
Cutting Zone Temperature Identification During Machining of Nickel Alloy Inconel 718
NASA Astrophysics Data System (ADS)
Czán, Andrej; Daniš, Igor; Holubják, Jozef; Zaušková, Lucia; Czánová, Tatiana; Mikloš, Matej; Martikáň, Pavol
2017-12-01
Quality of machined surface is affected by quality of cutting process. There are many parameters, which influence on the quality of the cutting process. The cutting temperature is one of most important parameters that influence the tool life and the quality of machined surfaces. Its identification and determination is key objective in specialized machining processes such as dry machining of hard-to-machine materials. It is well known that maximum temperature is obtained in the tool rake face at the vicinity of the cutting edge. A moderate level of cutting edge temperature and a low thermal shock reduce the tool wear phenomena, and a low temperature gradient in the machined sublayer reduces the risk of high tensile residual stresses. The thermocouple method was used to measure the temperature directly in the cutting zone. An original thermocouple was specially developed for measuring of temperature in the cutting zone, surface and subsurface layers of machined surface. This paper deals with identification of temperature and temperature gradient during dry peripheral milling of Inconel 718. The measurements were used to identification the temperature gradients and to reconstruct the thermal distribution in cutting zone with various cutting conditions.
Finite element analysis when orthogonal cutting of hybrid composite CFRP/Ti
NASA Astrophysics Data System (ADS)
Xu, Jinyang; El Mansori, Mohamed
2015-07-01
Hybrid composite, especially CFRP/Ti stack, is usually considered as an innovative structural configuration for manufacturing the key load-bearing components in modern aerospace industry. This paper originally proposed an FE model to simulate the total chip formation process dominated the hybrid cutting operation. The hybrid composite model was established based on three physical constituents, i.e., Ti constituent, interface and CFRP constituent. Different constitutive models and damage criteria were introduced to replicate the interrelated cutting behaviour of the stack material. The CFRP/Ti interface was modelled as a third phase through the concept of cohesive zone (CZ). Particular attention was made on the comparative studies of the influence of different cutting-sequence strategies on the machining responses induced in hybrid stack cutting. The numerical results emphasized the pivotal role of cutting-sequence strategy on the various machining induced responses including cutting-force generation, machined surface quality and induced interface damage.
Numerical modelling of orthogonal cutting: application to woodworking with a bench plane.
Nairn, John A
2016-06-06
A numerical model for orthogonal cutting using the material point method was applied to woodcutting using a bench plane. The cutting process was modelled by accounting for surface energy associated with wood fracture toughness for crack growth parallel to the grain. By using damping to deal with dynamic crack propagation and modelling all contact between wood and the plane, simulations could initiate chip formation and proceed into steady-state chip propagation including chip curling. Once steady-state conditions were achieved, the cutting forces became constant and could be determined as a function of various simulation variables. The modelling details included a cutting tool, the tool's rake and grinding angles, a chip breaker, a base plate and a mouth opening between the base plate and the tool. The wood was modelled as an anisotropic elastic-plastic material. The simulations were verified by comparison to an analytical model and then used to conduct virtual experiments on wood planing. The virtual experiments showed interactions between depth of cut, chip breaker location and mouth opening. Additional simulations investigated the role of tool grinding angle, tool sharpness and friction.
Mesoplasticity approach to studies of the cutting mechanism in ultra-precision machining
NASA Astrophysics Data System (ADS)
Lee, Rongbin W. B.; Wang, Hao; To, Suet; Cheung, Chi Fai; Chan, Chang Yuen
2014-03-01
There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plasticity and continuum mechanics. Very few attempts, however, have been reported in ultra-precision machining studies. A mesoplasticity approach advocated by Lee and Yang is adopted by the authors and is successfully applied to studies of the micro-cutting mechanisms in ultra-precision machining. Traditionally, the shear angle in metal cutting, as well as the cutting force variation, can only be determined from cutting tests. In the pioneering work of the authors, the use of mesoplasticity theory enables prediction of the fluctuation of the shear angle and micro-cutting force, shear band formation, chip morphology in diamond turning and size effect in nano-indentation. These findings are verified by experiments. The mesoplasticity formulation opens up a new direction of studies to enable how the plastic behaviour of materials and their constitutive representations in deformation processing, such as machining can be predicted, assessed and deduced from the basic properties of the materials measurable at the microscale.
Reviews on laser cutting technology for industrial applications
NASA Astrophysics Data System (ADS)
Muangpool, T.; Pullteap, S.
2018-03-01
In this paper, an overview of the laser technology applied for the industrial has been reviewed. In general, this technology was used in several engineering applications such as industrial, medical, science, research sectors, etc. Focusing on the laser technology in the industrial section, it was, normally, employed for many purposes i.e. target marking, welding, drilling, and also cutting. Consequently, the laser cutting technology was, however, divided into three classifications YAG, CO2, and fiber laser, respectively. Each laser types have different advantages and disadvantages depending on the material type. The advantages by using laser cutting compared with the general cutting machines were exploited in terms of narrow kerf, high cutting speed, low heat-affected zone (HAZ), improve efficiency of the cutting process, high accuracy, etc. However, the main objectives from the technology used were increasing of the products and also decreasing the production cost. In the opposite way, some disadvantages of the technology were summarized by complexity to operate, high maintenance cost, and also high power consumption. In Thailand industry, there were many factories used this technology as a cutting process. Unfortunately, only few researches were published. It might explains that this technology were difficulty to develop, high investment, and also easy to import from aboard. For becoming to the Thailand 4.0 community, the Thailand industry might awareness to reduce the importing machine and boosting some policies to create novel innovative / know-how from the own country.
Wear of Cutting Tool with Excel Geometry in Turning Process of Hardened Steel
NASA Astrophysics Data System (ADS)
Samardžiová, Michaela
2016-09-01
This paper deals with hard turning using a cutting tool with Xcel geometry. This is one of the new geometries, and there is not any information about Xcel wear in comparison to the conventional geometry. It is already known from cutting tools producers that using the Xcel geometry leads to higher quality of machined surface, perticularly surface roughness. It is possible to achieve more than 4 times lower Ra and Rz values after turning than after using conventional geometry with radius. The workpiece material was 100Cr6 hardened steel with hardness of 60 ± 1 HRC. The machine used for the experiment was a lathe with counter spindle DMG CTX alpha 500, which is located in the Centre of Excellence of 5-axis Machining at the Faculty of Materials Science and Technology in Trnava. The cutting tools made by CBN were obtained from Sandvik COROMANT Company. The aim of this paper is to investigate the cutting tool wear in hard turning process by the Xcel cutting tool geometry.
Identification of cutting force coefficients in machining process considering cutter vibration
NASA Astrophysics Data System (ADS)
Yao, Qi; Luo, Ming; Zhang, Dinghua; Wu, Baohai
2018-03-01
Among current cutting force models, cutting force coefficients still are the foundation of predicting calculation combined with consideration of geometry engagement variation, equipment characteristics, material properties and so on. Attached with unimpeachable significance, the traditional and some novel identification methods of cutting force coefficient are still faced with trouble, including repeated onerous work, over ideal measuring condition, variation of value due to material divergence, interference from measuring units. To utilize the large amount of data from real manufacturing section, enlarge data sources and enrich cutting data base for former prediction task, a novel identification method is proposed by considering stiffness properties of the cutter-holder-spindle system in this paper. According to previously proposed studies, the direct result of cutter vibration is the form of dynamic undeformed chip thickness. This fluctuation is considered in two stages of this investigation. Firstly, a cutting force model combined with cutter vibration is established in detailed way. Then, on the foundation of modeling, a novel identification method is developed, in which the dynamic undeformed chip thickness could be obtained by using collected data. In a carefully designed experiment procedure, the reliability of model is validated by comparing predicted and measured results. Under different cutting condition and cutter stiffness, data is collected for the justification of identification method. The results showed divergence in calculated coefficients is acceptable confirming the possibility of accomplishing targets by applying this new method. In discussion, the potential directions of improvement are proposed.
Lum, W.E.; Turney, G.L.
1985-01-01
The Tacoma landfill, located in western Pierce County, Washington, has been used for the disposal of waste since about 1960. Disposal operations are planned to continue at this site until at least 1990. Data were compiled and interpreted to help understand the possible effects of the landfill on water quality in the surrounding area. Data were collected from published and unpublished reports of the U.S. Geological Survey, and from predominantly unpublished data in the files of other government agencies. The Tacoma landfill is underlain by unconsolidated, glacially derived deposits that consist of a wide variety of mixtures of clay to boulder-sized materials. Ground water is mostly the result of rainfall on the land surface, and moves through artesian aquifers (under the landfill) that are tapped for both domestic and municipal use. Hazardous liquid and dissolved wastes are probably present in the landfill, and potential flow paths for waste migration exist. An undetermined number of single-family domestic wells and 18 public-supply wells are within 3 miles of the landfill, three as close as 0.2 miles. There is only limited evidence indicating ground- and surface-water contamination. Further investigations of the geology, hydrology and water quality are needed to characterize the impact the landfill has on ground- and surface-water of the surrounding area. (USGS)
Multiple-objective optimization in precision laser cutting of different thermoplastics
NASA Astrophysics Data System (ADS)
Tamrin, K. F.; Nukman, Y.; Choudhury, I. A.; Shirley, S.
2015-04-01
Thermoplastics are increasingly being used in biomedical, automotive and electronics industries due to their excellent physical and chemical properties. Due to the localized and non-contact process, use of lasers for cutting could result in precise cut with small heat-affected zone (HAZ). Precision laser cutting involving various materials is important in high-volume manufacturing processes to minimize operational cost, error reduction and improve product quality. This study uses grey relational analysis to determine a single optimized set of cutting parameters for three different thermoplastics. The set of the optimized processing parameters is determined based on the highest relational grade and was found at low laser power (200 W), high cutting speed (0.4 m/min) and low compressed air pressure (2.5 bar). The result matches with the objective set in the present study. Analysis of variance (ANOVA) is then carried out to ascertain the relative influence of process parameters on the cutting characteristics. It was found that the laser power has dominant effect on HAZ for all thermoplastics.
Finite element simulation of cutting grey iron HT250 by self-prepared Si3N4 ceramic insert
NASA Astrophysics Data System (ADS)
Wang, Bo; Wang, Li; Zhang, Enguang
2017-04-01
The finite element method has been able to simulate and solve practical machining problems, achieve the required accuracy and the highly reliability. In this paper, the simulation models based on the material properties of the self-prepared Si3N4 insert and HT250 were created. Using these models, the results of cutting force, cutting temperature and tool wear rate were obtained, and tool wear mode was predicted after cutting simulation. These approaches may develop as the new method for testing new cutting-tool materials, shortening development cycle and reducing the cost.
Device for Automated Cutting and Transfer of Plant Shoots
NASA Technical Reports Server (NTRS)
Cipra, Raymond; Das, Hari; Ali, Khaled; Hong, Dennis
2003-01-01
A device that enables the automated cutting and transfer of plant shoots is undergoing development for use in the propagation of plants in a nursery or laboratory. At present, it is standard practice for a human technician to use a knife and forceps to cut, separate, and grasp a plant shoot. The great advantage offered by the present device is that its design and operation are simpler than would be those of a device based on the manual cutting/separation/grasping procedure. [The present device should not be confused with a prior device developed for partly the same purpose and described in Compliant Gripper for a Robotic Manipulator (NPO-21104), NASA Tech Briefs, Vol. 27, No. 3 (March 2003), page 59.]. The device (see figure) includes a circular tube sharpened at its open (lower) end and mounted on a robotic manipulator at its closed (upper) end. The robotic manipulator simply pushes the sharpened open end of the tube down onto a bed of plants and rotates a few degrees clockwise then counterclockwise about the vertical axis, causing the tube to cut a cylindrical plug of plant material. Exploiting the natural friction between the tube and plug, the tube retains the plug, without need for a gripping mechanism and control. The robotic manipulator then retracts the tube, translates it to a new location over a plant-growth tray, and inserts the tube part way into the growth medium at this location in the tray. A short burst of compressed air is admitted to the upper end of the tube to eject the plug of plant material and drive it into the growth medium. A prototype has been tested and verified to function substantially as intended. It is projected that in the fully developed robotic plant-propagation system, the robot control system would include a machine- vision subsystem that would automatically guide the robotic manipulator in choosing the positions from which to cut plugs of plant material. Planned further development efforts also include more testing and
NASA Astrophysics Data System (ADS)
Seon, Sangwoo; Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Kim, Taek-Soo; Lee, Lim; Lee, Jonghwan
2018-07-01
A study was conducted to improve the cutting performance of a 60-mm thick stainless steel plate using a 6-kW fiber laser. Two techniques for improving the initial cutting performance were evaluated by preheating the work piece with a waiting time and step-like cutting speed increase. Both techniques showed improved cutting results compared to constant speed cutting. Among them, the method with a step-like cutting speed increase showed the better result in terms of cutting performance. As a result, a 60-mm thick stainless steel plate was cut at a maximum cutting speed of 72 mm/min with a preheating cutting speed of 24 mm/min. In order to confirm the effect of preheating, an additional experiment was performed to measure the temperature variation during the cutting process. Through this experiment, preheating temperature conditions were found to allow the specimen to be cut. It is expected that the results of this work will contribute to improving the cutting performance of thick metal structures in various industrial fields, as well as the dismantling of nuclear facilities using lasers in the future.
NASA Astrophysics Data System (ADS)
Sundari, E.; Praputri, E.; Marthiana, W.; Jaya, M.
2018-03-01
Inulin, a polysaccharide plant-based nutrient, can be isolated from dahlia flower tubers by liquid-solid extraction processes and is generally carried out in an extractor tank equipped with an agitator. To accelerate the diffusion rate of solute from the solid phase (bulk phase) to the external surface (boundary layer) in order to increase yield of inulin, the size reduction of material is required. The purpose of this research was to design the cutting blade needed for dahlia tuber size reduction and investigate the effect of blade types, agitator speed (350, 700, 1050, and 1400 rpm), and configuration of cutting blade to material fineness at 90 minutes of contacting time. The results showed that higher cutting blade speed results in higher cut material fineness rate. The best conditions was achieved by the configuration of two four-blade turbine combined with one three-blade turbine with fineness rate more than 90% in 30 minutes of contacting time at every variation of agitator speed. The cutting blade designed in this study can be used for size reduction purpose of tubers other than dahlia tubers.
High-speed fiber laser cutting of thick stainless steel for dismantling tasks
NASA Astrophysics Data System (ADS)
Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Seon, Sangwoo; Kim, Taek-Soo; Lee, Lim; Choi, Byung-Seon; Moon, Jei-Kwon
2017-09-01
A high-speed fiber laser cutting technology of thick steels for dismantling tasks was achieved using a 6-kW fiber laser system. At first, a new cutting head for efficient cutting of thick steels was developed, which was composed by a collimator with a focal length of 160 mm and mirror-type focusing objects with a long focal length of 600 mm. The long focal length of the focusing object made it possible for the beam size to be small through the thick cutting material and the cutting efficiency was expected to increase compared with the short focal length. In addition, folding the beam facilitated the compact cutting head with a size of 160 mm (width) × 80 mm (height) × 640 mm (length) and a weight of 6.9 kg. In the cutting experiment, the laser beam was delivered to the cutting head by a 25-m long process fiber with a core diameter of 100 μm. The cutting performances were studied against the thicknesses of stainless steel plates. A maximum cutting speed of 72 mm/min was obtained for the 60-mm thick stainless steel plate cutting and the cut specimen showed an excellent kerf shape and a narrow kerf width. To the best of our knowledge, this cutting speed was higher than other previously reported results when cutting with a 6-kW laser power.
Gilmore, Richard F.
1986-01-01
A remotely operable, portable cutting apparatus detachably secured to the workpiece by laterally spaced clamp assemblies engageable with the workpiece on opposite sides of the intended line of cut. A reciprocal cutter head is mounted between the clamp assemblies and is provided with a traveling abrasive cutting wire adapted to sever the workpiece normal to the longitudinal axis thereof. Dust and debris are withdrawn from the cutting area by a vacuum force through a nozzle mounted on the cutting head.
Gilmore, R.F.
1984-07-17
A remotely operable, portable cutting apparatus detachably secured to the workpiece by laterally spaced clamp assemblies engagable with the workpiece on opposite sides of the intended line of cut. A reciprocal cutter head is mounted between the clamp assemblies and is provided with a traveling abrasive cutting wire adapted to sever the workpiece normal to the longitudinal axis thereof. Dust and debris are withdrawn from the cutting area by a vacuum force through a nozzle mounted on the cutting head.
Gilmore, Richard F.
1986-04-01
A remotely operable, portable cutting apparatus detachably secured to the workpiece by laterally spaced clamp assemblies engageable with the workpiece on opposite sides of the intended line of cut. A reciprocal cutter head is mounted between the clamp assemblies and is provided with a traveling abrasive cutting wire adapted to sever the workpiece normal to the longitudinal axis thereof. Dust and debris are withdrawn from the cutting area by a vacuum force through a nozzle mounted on the cutting head.
A review of virtual cutting methods and technology in deformable objects.
Wang, Monan; Ma, Yuzheng
2018-06-05
Virtual cutting of deformable objects has been a research topic for more than a decade and has been used in many areas, especially in surgery simulation. We refer to the relevant literature and briefly describe the related research. The virtual cutting method is introduced, and we discuss the benefits and limitations of these methods and explore possible research directions. Virtual cutting is a category of object deformation. It needs to represent the deformation of models in real time as accurately, robustly and efficiently as possible. To accurately represent models, the method must be able to: (1) model objects with different material properties; (2) handle collision detection and collision response; and (3) update the geometry and topology of the deformable model that is caused by cutting. Virtual cutting is widely used in surgery simulation, and research of the cutting method is important to the development of surgery simulation. Copyright © 2018 John Wiley & Sons, Ltd.
Biparametric equilibria bifurcations of the Pierce diode: A one-dimensional plasma-filled device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terra, Maisa O.
2011-03-15
The equilibria bifurcations of the biparametric version of the classical Pierce diode, a one-dimensional plasma-filled device, are analyzed in detail. Our investigation reveals that this spatiotemporal model is not structurally stable in relation to a second control parameter, the ratio of the plasma ion density to the injected electron beam density. For the first time, we relate the existence of one-fluid chaotic regions with specific biparametric equilibria bifurcations, identifying the restricted regions in the parametric plane where they occur. We show that the system presents several biparametric scenarios involving codimension-two transcritical bifurcations. Finally, we provide the spatial profile of themore » stable and unstable one-fluid equilibria in order to describe their metamorphoses.« less
Hydromechanical planer with cutting and breaking heads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goris, H.; Gunther, R.; Ogorek, K.
1980-12-16
A hydromatic planer particularly for mining materials in a mining seam is comprised of a planer housing which advantageously has a cutting and breaking head on each end thereof, each of which includes a substantially identical construction. Each cutting head includes a vertically arranged support member which is mounted on the housing of the planer by a parallel linkage so that it may be moved upwardly and downwardly under the control of an adjustment means such as a fluid pressure operated piston and cylinder combination. Each cutting and breaking head also includes a first substantially vertically arranged support member whichmore » is connected by the linkage for upward and downward movement relative to the housing and a second support member which is movable relative to the first and mounted on this first in vertical guides for upward and downward movement. A second fluid pressure operated piston and cylinder combination is connected between first and second support members so that they may be shifted relative to each other. A second support member advantageously carries a cutting and breaking wedge which is oriented to engage the mining seam, for example, on a side thereof, and which may be adjusted relative to a similarly oriented cutting and breaking wedge carried by the first member. In addition, a separate cutting and breaking wedge is carried by the first member and it may be engaged for example against the floor thereof in a plane different from the other two wedges.« less
Fibre laser cutting of polycaprolactone sheet for stents manufacturing: A feasibility study
NASA Astrophysics Data System (ADS)
Guerra, Antonio J.; Farjas, Jordi; Ciurana, Joaquim
2017-10-01
The role of the stent is temporary and it is limited to the intervention and shortly thereafter. Bioresorbable polymer stents were introduced to overcome this problem, making the stent manufacturing process rather difficult considering the complexity of the material. The stent forecast sale makes constant technology development necessary on this field. The adaptation of the laser manufacturing industry to these new materials is costly, thus further studies employing different sorts of lasers are necessary. This paper aims to explore the feasibility of 1.08 μm wavelength fibre laser to cut polycaprolactone sheet, which is especially interesting for long-term implantable devices, such as stents. The laser cut samples were analysed by Differential Scanning Calorimetry (DSC), Tensile Stress Test, and Optical Microscopy in order to study the effects of the laser process over the workpiece. The parameters measured were: taper angle, dimensional precision, material structure changes and mechanical properties changes. Results showed a dimensional precision above 95.75% with a taper angle lower than 0.033°. The laser ablation process has exhibited a minor influence upon material properties. Results exhibit the feasibility of fibre laser to cut polycaprolactone, making the fibre laser an alternative to manufacture stents.
Producing Fe-W-Co-Cr-C Alloy Cutting Tool Material Through Powder Metallurgy Route
NASA Astrophysics Data System (ADS)
Datta Banik, Bibhas; Dutta, Debasish; Ray, Siddhartha
2017-04-01
High speed steel tools can withstand high impact forces as they are tough in nature. But they cannot retain their hardness at elevated temperature i.e. their hot hardness is low. Therefore permissible cutting speed is low and tools wear out easily. Use of lubricants is essential for HSS cutting tools. On the other hand cemented carbide tools can withstand greater compressive force, but due to lower toughness the tool can break easily. Moreover the cost of the tool is comparatively high. To achieve a better machining economy, Fe-W-Co-Cr-C alloys are being used nowadays. Their toughness is as good as HSS tools and hardness is very near to carbide tools. Even, at moderate cutting speeds they can be safely used in old machines having vibration. Moreover it is much cheaper than carbide tools. This paper highlights the Manufacturing Technology of the alloy and studies the comparative tribological properties of the alloy and tungsten mono carbide.
Burd, H J; Wilde, G S
2016-04-01
The use of a femtosecond laser to form planes of cavitation bubbles within the ocular lens has been proposed as a potential treatment for presbyopia. The intended purpose of these planes of cavitation bubbles (referred to in this paper as 'cutting planes') is to increase the compliance of the lens, with a consequential increase in the amplitude of accommodation. The current paper describes a computational modelling study, based on three-dimensional finite element analysis, to investigate the relationship between the geometric arrangement of the cutting planes and the resulting improvement in lens accommodation performance. The study is limited to radial cutting planes. The effectiveness of a variety of cutting plane geometries was investigated by means of modelling studies conducted on a 45-year human lens. The results obtained from the analyses depend on the particular modelling procedures that are employed. When the lens substance is modelled as an incompressible material, radial cutting planes are found to be ineffective. However, when a poroelastic model is employed for the lens substance, radial cuts are shown to cause an increase in the computed accommodation performance of the lens. In this case, radial cuts made in the peripheral regions of the lens have a relatively small influence on the accommodation performance of the lens; the lentotomy process is seen to be more effective when cuts are made near to the polar axis. When the lens substance is modelled as a poroelastic material, the computational results suggest that useful improvements in lens accommodation performance can be achieved, provided that the radial cuts are extended to the polar axis. Radial cuts are ineffective when the lens substance is modelled as an incompressible material. Significant challenges remain in developing a safe and effective surgical procedure based on this lentotomy technique.
Identifying Major Transitions in the Evolution of Lithic Cutting Edge Production Rates
Clarkson, Chris
2016-01-01
The notion that the evolution of core reduction strategies involved increasing efficiency in cutting edge production is prevalent in narratives of hominin technological evolution. Yet a number of studies comparing two different knapping technologies have found no significant differences in edge production. Using digital analysis methods we present an investigation of raw material efficiency in eight core technologies broadly representative of the long-term evolution of lithic technology. These are bipolar, multiplatform, discoidal, biface, Levallois, prismatic blade, punch blade and pressure blade production. Raw material efficiency is assessed by the ratio of cutting edge length to original core mass. We also examine which flake attributes contribute to maximising raw material efficiency, as well as compare the difference between expert and intermediate knappers in terms of cutting edge produced per gram of core. We identify a gradual increase in raw material efficiency over the broad sweep of lithic technological evolution. The results indicate that the most significant transition in efficiency likely took place with the introduction of small foliate biface, Levallois and prismatic blade knapping, all introduced in the Middle Stone Age / Middle Palaeolithic among early Homo sapiens and Neanderthals. This suggests that no difference in raw material efficiency existed between these species. With prismatic blade technology securely dated to the Middle Palaeolithic, by including the more recent punch and pressure blade technology our results dispel the notion that the transition to the Upper Palaeolithic was accompanied by an increase in efficiency. However, further increases in cutting edge efficiency are evident, with pressure blades possessing the highest efficiency in this study, indicating that late/epi-Palaeolithic and Neolithic blade technologies further increased efficiency. PMID:27936135
Identifying Major Transitions in the Evolution of Lithic Cutting Edge Production Rates.
Muller, Antoine; Clarkson, Chris
2016-01-01
The notion that the evolution of core reduction strategies involved increasing efficiency in cutting edge production is prevalent in narratives of hominin technological evolution. Yet a number of studies comparing two different knapping technologies have found no significant differences in edge production. Using digital analysis methods we present an investigation of raw material efficiency in eight core technologies broadly representative of the long-term evolution of lithic technology. These are bipolar, multiplatform, discoidal, biface, Levallois, prismatic blade, punch blade and pressure blade production. Raw material efficiency is assessed by the ratio of cutting edge length to original core mass. We also examine which flake attributes contribute to maximising raw material efficiency, as well as compare the difference between expert and intermediate knappers in terms of cutting edge produced per gram of core. We identify a gradual increase in raw material efficiency over the broad sweep of lithic technological evolution. The results indicate that the most significant transition in efficiency likely took place with the introduction of small foliate biface, Levallois and prismatic blade knapping, all introduced in the Middle Stone Age / Middle Palaeolithic among early Homo sapiens and Neanderthals. This suggests that no difference in raw material efficiency existed between these species. With prismatic blade technology securely dated to the Middle Palaeolithic, by including the more recent punch and pressure blade technology our results dispel the notion that the transition to the Upper Palaeolithic was accompanied by an increase in efficiency. However, further increases in cutting edge efficiency are evident, with pressure blades possessing the highest efficiency in this study, indicating that late/epi-Palaeolithic and Neolithic blade technologies further increased efficiency.
Root dentine and endodontic instrumentation: cutting edge microscopic imaging
2016-01-01
Cutting of the dental hard tissues is an integral part of restorative dentistry. Cutting of the root dentine is also needed in preparation prior to endodontic treatment, with significant commercial investment for the development of flexible cutting instruments based around nickel titanium (NiTi) alloys. This paper describes the evolution of endodontic cutting instruments, both in materials used, e.g. the transition from stainless steel to NiTi, and the design of the actual instruments themselves and their method of activation—by hand or motor driven. We have been examining tooth-cutting interactions microscopically for over 25 years using a variety of microscopic techniques; in particular, video-rate confocal microscopy. This has given a unique insight into how many of the procedures that we take for granted are achieved in clinical practice, by showing microscopic video images of the cutting as it occurs within the tooth. This technology has now been extended to allow imaging of the endodontic instrument and the root canal wall for the first time. We are able to image dentine distortion and crack propagation during endodontic filing of the root canal space. We are also able to visualize the often claimed, but seldom seen action of contemporary endodontic instruments. PMID:27274802
Root dentine and endodontic instrumentation: cutting edge microscopic imaging.
Atmeh, Amre R; Watson, Timothy F
2016-06-06
Cutting of the dental hard tissues is an integral part of restorative dentistry. Cutting of the root dentine is also needed in preparation prior to endodontic treatment, with significant commercial investment for the development of flexible cutting instruments based around nickel titanium (NiTi) alloys. This paper describes the evolution of endodontic cutting instruments, both in materials used, e.g. the transition from stainless steel to NiTi, and the design of the actual instruments themselves and their method of activation-by hand or motor driven. We have been examining tooth-cutting interactions microscopically for over 25 years using a variety of microscopic techniques; in particular, video-rate confocal microscopy. This has given a unique insight into how many of the procedures that we take for granted are achieved in clinical practice, by showing microscopic video images of the cutting as it occurs within the tooth. This technology has now been extended to allow imaging of the endodontic instrument and the root canal wall for the first time. We are able to image dentine distortion and crack propagation during endodontic filing of the root canal space. We are also able to visualize the often claimed, but seldom seen action of contemporary endodontic instruments.
Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining
Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin
2016-01-01
Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing. PMID:27854322
Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining.
Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin
2016-11-16
Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.
Anisotropy of Single-Crystal Silicon in Nanometric Cutting.
Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun
2017-12-01
The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.
Force Modelling in Orthogonal Cutting Considering Flank Wear Effect
NASA Astrophysics Data System (ADS)
Rathod, Kanti Bhikhubhai; Lalwani, Devdas I.
2017-05-01
In the present work, an attempt has been made to provide a predictive cutting force model during orthogonal cutting by combining two different force models, that is, a force model for a perfectly sharp tool plus considering the effect of edge radius and a force model for a worn tool. The first force model is for a perfectly sharp tool that is based on Oxley's predictive machining theory for orthogonal cutting as the Oxley's model is for perfectly sharp tool, the effect of cutting edge radius (hone radius) is added and improve model is presented. The second force model is based on worn tool (flank wear) that was proposed by Waldorf. Further, the developed combined force model is also used to predict flank wear width using inverse approach. The performance of the developed combined total force model is compared with the previously published results for AISI 1045 and AISI 4142 materials and found reasonably good agreement.
Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting.
Goel, Saurav; Luo, Xichun; Reuben, Robert L; Rashid, Waleed Bin
2011-11-11
Cubic silicon carbide (SiC) is an extremely hard and brittle material having unique blend of material properties which makes it suitable candidate for microelectromechanical systems and nanoelectromechanical systems applications. Although, SiC can be machined in ductile regime at nanoscale through single-point diamond turning process, the root cause of the ductile response of SiC has not been understood yet which impedes significant exploitation of this ceramic material. In this paper, molecular dynamics simulation has been carried out to investigate the atomistic aspects of ductile response of SiC during nanometric cutting process. Simulation results show that cubic SiC undergoes sp3-sp2 order-disorder transition resulting in the formation of SiC-graphene-like substance with a growth rate dependent on the cutting conditions. The disorder transition of SiC causes the ductile response during its nanometric cutting operations. It was further found out that the continuous abrasive action between the diamond tool and SiC causes simultaneous sp3-sp2 order-disorder transition of diamond tool which results in graphitization of diamond and consequent tool wear.
Fast femtosecond laser ablation for efficient cutting of sintered alumina substrates
NASA Astrophysics Data System (ADS)
Oosterbeek, Reece N.; Ward, Thomas; Ashforth, Simon; Bodley, Owen; Rodda, Andrew E.; Simpson, M. Cather
2016-09-01
Fast, accurate cutting of technical ceramics is a significant technological challenge because of these materials' typical high mechanical strength and thermal resistance. Femtosecond pulsed lasers offer significant promise for meeting this challenge. Femtosecond pulses can machine nearly any material with small kerf and little to no collateral damage to the surrounding material. The main drawback to femtosecond laser machining of ceramics is slow processing speed. In this work we report on the improvement of femtosecond laser cutting of sintered alumina substrates through optimisation of laser processing parameters. The femtosecond laser ablation thresholds for sintered alumina were measured using the diagonal scan method. Incubation effects were found to fit a defect accumulation model, with Fth,1=6.0 J/cm2 (±0.3) and Fth,∞=2.5 J/cm2 (±0.2). The focal length and depth, laser power, number of passes, and material translation speed were optimised for ablation speed and high quality. Optimal conditions of 500 mW power, 100 mm focal length, 2000 μm/s material translation speed, with 14 passes, produced complete cutting of the alumina substrate at an overall processing speed of 143 μm/s - more than 4 times faster than the maximum reported overall processing speed previously achieved by Wang et al. [1]. This process significantly increases processing speeds of alumina substrates, thereby reducing costs, making femtosecond laser machining a more viable option for industrial users.
The cutting of metals via plastic buckling
Viswanathan, Koushik; Ho, Yeung; Chandrasekar, Srinivasan
2017-01-01
The cutting of metals has long been described as occurring by laminar plastic flow. Here we show that for metals with large strain-hardening capacity, laminar flow mode is unstable and cutting instead occurs by plastic buckling of a thin surface layer. High speed in situ imaging confirms that the buckling results in a small bump on the surface which then evolves into a fold of large amplitude by rotation and stretching. The repeated occurrence of buckling and folding manifests itself at the mesoscopic scale as a new flow mode with significant vortex-like components—sinuous flow. The buckling model is validated by phenomenological observations of flow at the continuum level and microstructural characteristics of grain deformation and measurements of the folding. In addition to predicting the conditions for surface buckling, the model suggests various geometric flow control strategies that can be effectively implemented to promote laminar flow, and suppress sinuous flow in cutting, with implications for industrial manufacturing processes. The observations impinge on the foundations of metal cutting by pointing to the key role of stability of laminar flow in determining the mechanism of material removal, and the need to re-examine long-held notions of large strain deformation at surfaces. PMID:28690406
The cutting of metals via plastic buckling.
Udupa, Anirudh; Viswanathan, Koushik; Ho, Yeung; Chandrasekar, Srinivasan
2017-06-01
The cutting of metals has long been described as occurring by laminar plastic flow. Here we show that for metals with large strain-hardening capacity, laminar flow mode is unstable and cutting instead occurs by plastic buckling of a thin surface layer. High speed in situ imaging confirms that the buckling results in a small bump on the surface which then evolves into a fold of large amplitude by rotation and stretching. The repeated occurrence of buckling and folding manifests itself at the mesoscopic scale as a new flow mode with significant vortex-like components-sinuous flow. The buckling model is validated by phenomenological observations of flow at the continuum level and microstructural characteristics of grain deformation and measurements of the folding. In addition to predicting the conditions for surface buckling, the model suggests various geometric flow control strategies that can be effectively implemented to promote laminar flow, and suppress sinuous flow in cutting, with implications for industrial manufacturing processes. The observations impinge on the foundations of metal cutting by pointing to the key role of stability of laminar flow in determining the mechanism of material removal, and the need to re-examine long-held notions of large strain deformation at surfaces.
The cutting of metals via plastic buckling
NASA Astrophysics Data System (ADS)
Udupa, Anirudh; Viswanathan, Koushik; Ho, Yeung; Chandrasekar, Srinivasan
2017-06-01
The cutting of metals has long been described as occurring by laminar plastic flow. Here we show that for metals with large strain-hardening capacity, laminar flow mode is unstable and cutting instead occurs by plastic buckling of a thin surface layer. High speed in situ imaging confirms that the buckling results in a small bump on the surface which then evolves into a fold of large amplitude by rotation and stretching. The repeated occurrence of buckling and folding manifests itself at the mesoscopic scale as a new flow mode with significant vortex-like components-sinuous flow. The buckling model is validated by phenomenological observations of flow at the continuum level and microstructural characteristics of grain deformation and measurements of the folding. In addition to predicting the conditions for surface buckling, the model suggests various geometric flow control strategies that can be effectively implemented to promote laminar flow, and suppress sinuous flow in cutting, with implications for industrial manufacturing processes. The observations impinge on the foundations of metal cutting by pointing to the key role of stability of laminar flow in determining the mechanism of material removal, and the need to re-examine long-held notions of large strain deformation at surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best, G.; Weikert, N.B.
1984-05-29
A cutting roller for a mining machine, having a substantially conical closure member arranged to face the workings and a tubular body member which has a larger diameter at the end nearer the face working face than at the discharge end. The tubular member carries at least one cutting blade, and the closure member mounts at least one cutting blade; each blade is provided at its edge region with a plurality of bit holders for the attachment of cutter bits. The outer surface of the body member merges into the substantially conical closure member in a smooth, even curve, somore » that the outside diameter of the body member in the region of the working face is substantially greater than the diameter in the region of the discharge end of the cutting roller. The roller is provided with liquid distribution channels on each cutting blade, which channels are connected to a single liquid distribution ring channel in the region of the substantially conical closure member.« less
The Effect of Cutting Speed in Metallic Glass Grinding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serbest, Erdinc; Bakkal, Mustafa; Karipcin, Ilker
2011-01-17
In this paper, the effects of the cutting speed in metallic glass grinding were investigated in dry conditions. The results showed that grinding forces decrease as grinding energy increase with the increasing cutting speeds. The present investigations on ground surface and grinding chips morphologies -shows that material removal and surface formation of the BMG are mainly due to the ductile chip deformation and ploughing as well as brittle fracture of some particles from the edges of the tracks. The roughness values obtained with the Cubic Boron Nitride wheels are acceptable for the grinding operation.
Lane, R.C.; Julich, R.J.; Justin, G.B.
2013-01-01
Hydrographs of groundwater levels for selected wells in and adjacent to the Puyallup River watershed in Pierce and King Counties, Washington, are presented using an interactive Web-based map of the study area to illustrate changes in groundwater levels on a monthly and seasonal basis. The interactive map displays well locations that link to the hydrographs, which in turn link to the U.S. Geological Survey National Water Information System, Groundwater Site Inventory System.
NASA Astrophysics Data System (ADS)
Li, Junye; Meng, Wenqing; Dong, Kun; Zhang, Xinming; Zhao, Weihong
2018-01-01
Abrasive flow polishing plays an important part in modern ultra-precision machining. Ultrafine particles suspended in the medium of abrasive flow removes the material in nanoscale. In this paper, three-dimensional molecular dynamics (MD) simulations are performed to investigate the effect of impacting direction on abrasive cutting process during abrasive flow polishing. The molecular dynamics simulation software Lammps was used to simulate the cutting of single crystal copper with SiC abrasive grains at different cutting angles (0o-45o). At a constant friction coefficient, we found a direct relation between cutting angle and cutting force, which ultimately increases the number of dislocation during abrasive flow machining. Our theoretical study reveal that a small cutting angle is beneficial for improving surface quality and reducing internal defects in the workpiece. However, there is no obvious relationship between cutting angle and friction coefficient.
Li, Junye; Meng, Wenqing; Dong, Kun; Zhang, Xinming; Zhao, Weihong
2018-01-11
Abrasive flow polishing plays an important part in modern ultra-precision machining. Ultrafine particles suspended in the medium of abrasive flow removes the material in nanoscale. In this paper, three-dimensional molecular dynamics (MD) simulations are performed to investigate the effect of impacting direction on abrasive cutting process during abrasive flow polishing. The molecular dynamics simulation software Lammps was used to simulate the cutting of single crystal copper with SiC abrasive grains at different cutting angles (0 o -45 o ). At a constant friction coefficient, we found a direct relation between cutting angle and cutting force, which ultimately increases the number of dislocation during abrasive flow machining. Our theoretical study reveal that a small cutting angle is beneficial for improving surface quality and reducing internal defects in the workpiece. However, there is no obvious relationship between cutting angle and friction coefficient.
Precision machining of advanced materials with waterjets
NASA Astrophysics Data System (ADS)
Liu, H. T.
2017-01-01
Recent advances in abrasive waterjet technology have elevated to the state that it often competes on equal footing with lasers and EDM for precision machining. Under the support of a National Science Foundation SBIR Phase II grant, OMAX has developed and commercialized micro abrasive water technology that is incorporated into a MicroMAX® JetMa- chining® Center. Waterjet technology, combined both abrasive waterjet and micro abrasive waterjet technology, is capable of machining most materials from macro to micro scales for a wide range of part size and thickness. Waterjet technology has technological and manufacturing merits that cannot be matched by most existing tools. As a cold cutting tool that creates no heat-affected zone, for example, waterjet cuts much faster than wire EDM and laser when measures to minimize a heat-affected zone are taken into account. In addition, waterjet is material independent; it cuts materials that cannot be cut or are difficult to cut otherwise. The versatility of waterjet has also demonstrated machining simulated nanomaterials with large gradients of material properties from metal, nonmetal, to anything in between. This paper presents waterjet-machined samples made of a wide range of advanced materials from macro to micro scales.
Portable propellant cutting assembly, and method of cutting propellant with assembly
NASA Technical Reports Server (NTRS)
Sharp, Roger A. (Inventor); Hoskins, Shawn W. (Inventor); Payne, Brett D. (Inventor)
2002-01-01
A propellant cutting assembly and method of using the assembly to cut samples of solid propellant in a repeatable and consistent manner is disclosed. The cutting assembly utilizes two parallel extension beams which are shorter than the diameter of a central bore of an annular solid propellant grain and can be loaded into the central bore. The assembly is equipped with retaining heads at its respective ends and an adjustment mechanism to position and wedge the assembly within the central bore. One end of the assembly is equipped with a cutting blade apparatus which can be extended beyond the end of the extension beams to cut into the solid propellant.
Modeling of Particle Emission During Dry Orthogonal Cutting
NASA Astrophysics Data System (ADS)
Khettabi, Riad; Songmene, Victor; Zaghbani, Imed; Masounave, Jacques
2010-08-01
Because of the risks associated with exposure to metallic particles, efforts are being put into controlling and reducing them during the metal working process. Recent studies by the authors involved in this project have presented the effects of cutting speeds, workpiece material, and tool geometry on particle emission during dry machining; the authors have also proposed a new parameter, named the dust unit ( D u), for use in evaluating the quantity of particle emissions relative to the quantity of chips produced during a machining operation. In this study, a model for predicting the particle emission (dust unit) during orthogonal turning is proposed. This model, which is based on the energy approach combined with the microfriction and the plastic deformation of the material, takes into account the tool geometry, the properties of the worked material, the cutting conditions, and the chip segmentation. The model is validated using experimental results obtained during the orthogonal turning of 6061-T6 aluminum alloy, AISI 1018, AISI 4140 steels, and grey cast iron. A good agreement was found with experimental results. This model can help in designing strategies for reducing particle emission during machining processes, at the source.
Chemical scissors cut phosphorene nanostructures
NASA Astrophysics Data System (ADS)
Peng, Xihong; Wei, Qun
2014-12-01
Phosphorene, a recently fabricated two-dimensional puckered honeycomb structure of phosphorus, showed promising properties for applications in nano-electronics. In this work, we report a chemical scissors effect on phosphorene, using first-principles method. It was found that chemical species, such as H, OH, F, and Cl, can act as scissors to cut phosphorene. Phosphorus nanochains and nanoribbons can be obtained. The scissors effect results from the strong bonding between the chemical species and phosphorus atoms. Other species such as O, S and Se fail to cut phosphorene nanostructures due to their weak bonding with phosphorus. The electronic structures of the produced P-chains reveal that the hydrogenated chain is an insulator while the pristine chain is a one-dimensional Dirac material, in which the charge carriers are massless fermions travelling at an effective speed of light ˜8 × 105 m s-1. The obtained zigzag phosphorene nanoribbons show either metallic or semiconducting behaviors, depending on the treatment of the edge phosphorus atoms.
Automated Cutting And Drilling Of Composite Parts
NASA Technical Reports Server (NTRS)
Warren, Charles W.
1993-01-01
Proposed automated system precisely cuts and drills large, odd-shaped parts made of composite materials. System conceived for manufacturing lightweight composite parts to replace heavier parts in Space Shuttle. Also useful in making large composite parts for other applications. Includes robot locating part to be machined, positions cutter, and positions drill. Gantry-type robot best suited for task.
NASA Astrophysics Data System (ADS)
Gusri, A. I.; Che Hassan, C. H.; Jaharah, A. G.
2011-01-01
The performance of Chemical Vapor Deposition (CVD) carbide insert with ISO designation of CCMT 12 04 04 LF, when turning titanium alloys was investigated. There were four layers of coating materials for this insert i.e.TiN-Al2O3-TiCN-TiN. The insert performance was evaluated based on the insert's edge resistant towards the machining parameters used at high cutting speed range of machining Ti-6Al-4V ELI. Detailed study on the wear mechanism at the cutting edge of CVD carbide tools was carried out at cutting speed of 55-95 m/min, feed rate of 0.15-0.35 mm/rev and depth of cut of 0.10-0.20 mm. Wear mechanisms such as abrasive and adhesive were observed on the flank face. Crater wear due to diffusion was also observed on the rake race. The abrasive wear occurred more at nose radius and the fracture on tool were found at the feed rate of 0.35 mm/rev and the depth of cut of 0.20 mm. The adhesion wear takes place after the removal of the coating or coating delaminating. Therefore, adhesion or welding of titanium alloy onto the flank and rake faces demonstrates a strong bond at the workpiece-tool interface.
NASA Astrophysics Data System (ADS)
Bashir, K.; Alkali, A. U.; Elmunafi, M. H. S.; Yusof, N. M.
2018-04-01
Recent trend in turning hardened materials have gained popularity because of its immense machinability benefits. However, several machining processes like thermal assisted machining and cryogenic machining have reveal superior machinability benefits over conventional dry turning of hardened materials. Various engineering materials have been studied. However, investigations on AISI O1 tool steel have not been widely reported. In this paper, surface finish and surface integrity dominant when hard turning AISI O1 tool steel is analysed. The study is focused on the performance of wiper coated ceramic tool with respect to surface roughness and surface integrity of hardened tool steel. Hard turned tool steel was machined at varying cutting speed of 100, 155 and 210 m/min and feed rate of 0.05, 0.125 and 0.20mm/rev. The depth of cut of 0.2mm was maintained constant throughout the machining trials. Machining was conducted using dry turning on 200E-axis CNC lathe. The experimental study revealed that the surface finish is relatively superior at higher cutting speed of 210m/min. The surface finish increases when cutting speed increases whereas surface finish is generally better at lower feed rate of 0.05mm/rev. The experimental study conducted have revealed that phenomena such as work piece vibration due to poor or improper mounting on the spindle also contributed to higher surface roughness value of 0.66Ra during turning at 0.2mm/rev. Traces of white layer was observed when viewed with optical microscope which shows evidence of cutting effects on the turned work material at feed rate of 0.2 rev/min
Diamond tool machining of materials which react with diamond
Lundin, Ralph L.; Stewart, Delbert D.; Evans, Christopher J.
1992-01-01
Apparatus for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond.
Racki, Daniel J.; Swenson, Clark E.; Bencloski, William A.; Wineman, Arthur L.
1984-01-01
A cutting apparatus includes a support table mounted for movement toward and away from a workpiece and carrying a mirror which directs a cutting laser beam onto the workpiece. A carrier is rotatably and pivotally mounted on the support table between the mirror and workpiece and supports a conduit discharging gas toward the point of impingement of the laser beam on the workpiece. Means are provided for rotating the carrier relative to the support table to place the gas discharging conduit in the proper positions for cuts made in different directions on the workpiece.
Protecting Unrooted Cuttings From Bemisia tabaci (Hemiptera Aleyrodidae) During Propagation
Krauter, Peter C.; Arthurs, Steven
2017-01-01
Abstract In North America, the sweetpotato whitefly, Bemisia tabaci Genn., is an important pest of greenhouse poinsettia. Growers have limited options to control this pest during propagation of cuttings, which are rooted under mist for several weeks. Early establishment of this pest increases the difficulty of managing the whitefly and retaining high aesthetic standard during the remaining crop production phase. We evaluated two neonicotinoids with translaminar activity, thiamethoxam (Flagship 25WG), and acetamiprid (TriStar 70 WSP), for control of B. tabaci pre-infested on unrooted cuttings propagated under mist. In an experimental greenhouse, both materials significantly reduced whitefly populations, providing an average reduction of 87.8% and 61.5% total recovered whitefly stages respectively, compared with controls. In another test, dipping cuttings in thiamethoxam (immersion treatment) did not improve control significantly, when compared with foliar sprays applied at label rate. In a commercial greenhouse operation, immersion treatments of thiamethoxam on pre-infested poinsettia cuttings maintained whiteflies at ≤ 0.02/plant, compared with up to 0.33/plant in untreated cuttings. Our data suggest that treating unrooted cuttings before or at the start of propagation can be part of an overall strategy for growers to manage whiteflies in poinsettia production. PMID:28973486
Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting
2011-01-01
Cubic silicon carbide (SiC) is an extremely hard and brittle material having unique blend of material properties which makes it suitable candidate for microelectromechanical systems and nanoelectromechanical systems applications. Although, SiC can be machined in ductile regime at nanoscale through single-point diamond turning process, the root cause of the ductile response of SiC has not been understood yet which impedes significant exploitation of this ceramic material. In this paper, molecular dynamics simulation has been carried out to investigate the atomistic aspects of ductile response of SiC during nanometric cutting process. Simulation results show that cubic SiC undergoes sp3-sp2 order-disorder transition resulting in the formation of SiC-graphene-like substance with a growth rate dependent on the cutting conditions. The disorder transition of SiC causes the ductile response during its nanometric cutting operations. It was further found out that the continuous abrasive action between the diamond tool and SiC causes simultaneous sp3-sp2 order-disorder transition of diamond tool which results in graphitization of diamond and consequent tool wear. PMID:22078069
Numerical simulation of the shape of laser cut for fiber and CO2 lasers
NASA Astrophysics Data System (ADS)
Zaitsev, A. V.; Ermolaev, G. V.; Polyanskiy, T. A.; Gurin, A. M.
2017-10-01
The results of numerical modeling of steel plate laser cutting with nitrogen as assist gas with consideration of heat transfer into a bulk material are presented. In this work we studied a distribution of absorbed radiation energy inside cut kerf and the difference between CO2 and fiber laser radiation propagation and absorption. The influence of secondary absorption of reflected from the cut front radiation on stability of melt hydrodynamics is discussed for different laser types.
Study on boring hardened materials dryly by ultrasonic vibration cutter
NASA Astrophysics Data System (ADS)
Zhang, Jiangzhong; Zhang, Heng; Zhang, Yue
2011-05-01
It has been one of the difficulties that high-precision hole on hardened materials is machined. The supersonic vibration boring acoustic system in the lathe in which supersonic wave energy is applied on tool is introduced to create pulse power on the cutting process. The separation vibration cutting is achieved by the pulse force. The comparative tests on boring accuracy and surface quality are carried. The quality of surface machined by this method is compared to that by grinding. This cutting is the green cutting. The boring process system is stability. Under the condition that the cutting speed is less than or equal to 1/3 the tool vibration speed, the cutting force is pulse force and the Cutting energy is of high concentration in time, space and direction. The pulse energy effects on the cutting unit in less than one ten-thousandth second. Traditional cutting of irregular movement elastic compression are eliminated. The cutting force is greatly reduced. The cutting temperature is at room temperature. The tool life is greatly increased. Shape precision and surface quality is greatly improved. The regulations of the ultrasonic vibration boring dry cutting of hardened material are also summarized. The test results show that the ultrasonic vibration cutting tool boring is of very superior cutting mechanism and is a high-precision deep-hole machining of hardened materials, efficient cutting methods.
Diamond tool machining of materials which react with diamond
Lundin, R.L.; Stewart, D.D.; Evans, C.J.
1992-04-14
An apparatus is described for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond. 1 figs.
2015-04-10
Carnegie Rupes makes a dramatic sight in this large image mosaic. The giant lobate scarp cuts through Duccio crater. If you were to approach the scarp from the southwest, you would find yourself facing a wall nearly 2 km high! Be sure to zoom in for a closer look! Carnegie Rupes was named after a research vessel launched in 1909. The ship was built almost entirely from wood and other non-magnetic materials to allow sensitive magnetic measurements to be taken for the Carnegie Institution's Department of Terrestrial Magnetism. http://photojournal.jpl.nasa.gov/catalog/PIA19279
Dantas, Stéfani T A; Rossi, Bruna F; Bonsaglia, Erika C R; Castilho, Ivana G; Hernandes, Rodrigo T; Fernandes, Ary; Rall, Vera L M
2018-02-01
Cross-contamination is one of the main factors related to foodborne outbreaks. This study aimed to analyze the cross-contamination process of Salmonella enterica serovar Enteritidis from poultry to cucumbers, on various cutting board surfaces (plastic, wood, and glass) before and after washing and in the presence and absence of biofilm. Thus, 10 strains of Salmonella Enteritidis were used to test cross-contamination from poultry to the cutting boards and from thereon to cucumbers. Moreover, these strains were evaluated as to their capacity to form biofilm on hydrophobic (wood and plastic) and hydrophilic materials (glass). We recovered the 10 isolates from all unwashed boards and from all cucumbers that had contacted them. After washing, the recovery ranged from 10% to 100%, depending on the board material. In the presence of biofilm, the recovery of salmonellae was 100%, even after washing. Biofilm formation occurred more on wood (60%) and plastic (40%) than glass (10%) boards, demonstrating that bacteria adhered more to a hydrophobic material. It was concluded that the cutting boards represent a critical point in cross-contamination, particularly in the presence of biofilm. Salmonella Enteritidis was able to form a biofilm on these three types of cutting boards but glass showed the least formation.
Cutting thread at flexible endoscopy.
Gong, F; Swain, P; Kadirkamanathan, S; Hepworth, C; Laufer, J; Shelton, J; Mills, T
1996-12-01
New thread-cutting techniques were developed for use at flexible endoscopy. A guillotine was designed to follow and cut thread at the endoscope tip. A new method was developed for guiding suture cutters. Efficacy of Nd: YAG laser cutting of threads was studied. Experimental and clinical experience with thread-cutting methods is presented. A 2.4 mm diameter flexible thread-cutting guillotine was constructed featuring two lateral holes with sharp edges through which sutures to be cut are passed. Standard suture cutters were guided by backloading thread through the cutters extracorporeally. A snare cutter was constructed to retrieve objects sewn to tissue. Efficacy and speed of Nd: YAG laser in cutting twelve different threads were studied. The guillotine cut thread faster (p < 0.05) than standard suture cutters. Backloading thread shortened time taken to cut thread (p < 0.001) compared with free-hand cutting. Nd: YAG laser was ineffective in cutting uncolored threads and slower than mechanical cutters. Results of thread cutting in clinical studies using sewing machine (n = 77 cutting episodes in 21 patients), in-vivo experiments (n = 156), and postsurgical cases (n = 15 over 15 years) are presented. New thread-cutting methods are described and their efficacy demonstrated in experimental and clinical studies.
Machining of bone: Analysis of cutting force and surface roughness by turning process.
Noordin, M Y; Jiawkok, N; Ndaruhadi, P Y M W; Kurniawan, D
2015-11-01
There are millions of orthopedic surgeries and dental implantation procedures performed every year globally. Most of them involve machining of bones and cartilage. However, theoretical and analytical study on bone machining is lagging behind its practice and implementation. This study views bone machining as a machining process with bovine bone as the workpiece material. Turning process which makes the basis of the actually used drilling process was experimented. The focus is on evaluating the effects of three machining parameters, that is, cutting speed, feed, and depth of cut, to machining responses, that is, cutting forces and surface roughness resulted by the turning process. Response surface methodology was used to quantify the relation between the machining parameters and the machining responses. The turning process was done at various cutting speeds (29-156 m/min), depths of cut (0.03 -0.37 mm), and feeds (0.023-0.11 mm/rev). Empirical models of the resulted cutting force and surface roughness as the functions of cutting speed, depth of cut, and feed were developed. Observation using the developed empirical models found that within the range of machining parameters evaluated, the most influential machining parameter to the cutting force is depth of cut, followed by feed and cutting speed. The lowest cutting force was obtained at the lowest cutting speed, lowest depth of cut, and highest feed setting. For surface roughness, feed is the most significant machining condition, followed by cutting speed, and with depth of cut showed no effect. The finest surface finish was obtained at the lowest cutting speed and feed setting. © IMechE 2015.
An experimental investigation on orthogonal cutting of hybrid CFRP/Ti stacks
NASA Astrophysics Data System (ADS)
Xu, Jinyang; El Mansori, Mohamed
2016-10-01
Hybrid CFRP/Ti stack has been widely used in the modern aerospace industry owing to its superior mechanical/physical properties and excellent structural functions. Several applications require mechanical machining of these hybrid composite stacks in order to achieve dimensional accuracy and assembly performance. However, machining of such composite-to-metal alliance is usually an extremely challenging task in the manufacturing sectors due to the disparate natures of each stacked constituent and their respective poor machinability. Special issues may arise from the high force/heat generation, severe subsurface damage and rapid tool wear. To study the fundamental mechanisms controlling the bi-material machining, this paper presented an experimental study on orthogonal cutting of hybrid CFRP/Ti stack by using superior polycrystalline diamond (PCD) tipped tools. The utilized cutting parameters for hybrid CFRP/Ti machining were rigorously adopted through a compromise selection due to the disparate machinability behaviors of the CFRP laminate and Ti alloy. The key cutting responses in terms of cutting force generation, machined surface quality and tool wear mechanism were precisely addressed. The experimental results highlighted the involved five stages of CFRP/Ti cutting and the predominant crater wear and edge fracture failure governing the PCD cutting process.
An investigation on co-axial water-jet assisted fiber laser cutting of metal sheets
NASA Astrophysics Data System (ADS)
Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K.
2016-02-01
Water assisted laser cutting has received significant attention in recent times with assurance of many advantages than conventional gas assisted laser cutting. A comparative study between co-axial water-jet and gas-jet assisted laser cutting of thin sheets of mild steel (MS) and titanium (Ti) by fiber laser is presented. Fiber laser (1.07 μm wavelength) was utilised because of its low absorption in water. The cut quality was evaluated in terms of average kerf, projected dross height, heat affected zone (HAZ) and cut surface roughness. It was observed that a broad range process parameter could produce consistent cut quality in MS. However, oxygen assisted cutting could produce better quality only with optimised parameters at high laser power and high cutting speed. In Ti cutting the water-jet assisted laser cutting performed better over the entire range of process parameters compared with gas assisted cutting. The specific energy, defined as the amount of laser energy required to remove unit volume of material was found more in case of water-jet assisted laser cutting process. It is mainly due to various losses associated with water assisted laser processing such as absorption of laser energy in water and scattering at the interaction zone.
An Experimental Study on Micro Clinching of Metal Foils with Cutting by Laser Shock Forming.
Wang, Xiao; Li, Cong; Ma, Youjuan; Shen, Zongbao; Sun, Xianqing; Sha, Chaofei; Gao, Shuai; Li, Liyin; Liu, Huixia
2016-07-13
This paper describes a novel technique for joining similar and dissimilar metal foils, namely micro clinching with cutting by laser shock forming. A series of experiments were conducted to study the deformation behavior of single layer material, during which many important process parameters were determined. The process window of the 1060 pure aluminum foils and annealed copper foils produced by micro clinching with cutting was analyzed. Moreover, similar material combination (annealed copper foils) and dissimilar material combination (1060 pure aluminum foils and 304 stainless steel foils) were successfully achieved. The effect of laser energy on the interlock and minimum thickness of upper foils was investigated. In addition, the mechanical strength of different material combinations joined by micro clinching with cutting was measured in single lap shearing tests. According to the achieved results, this novel technique is more suitable for material combinations where the upper foil is thicker than lower foil. With the increase of laser energy, the interlock increased while the minimum thickness of upper foil decreased gradually. The shear strength of 1060 pure aluminum foils and 304 stainless steel foils combination was three times as large as that of 1060 pure aluminum foils and annealed copper foils combination.
CNC water-jet machining and cutting center
NASA Astrophysics Data System (ADS)
Bartlett, D. C.
1991-09-01
Computer Numerical Control (CNC) water-jet machining was investigated to determine the potential applications and cost-effectiveness that would result by establishing this capability in the engineering shops of Allied-Signal Inc., Kansas City Division (KCD). Both conductive and nonconductive samples were machined at KCD on conventional machining equipment (a three-axis conversational programmed mill and a wire electrical discharge machine) and on two current-technology water-jet machines at outside vendors. These samples were then inspected, photographed, and evaluated. The current-technology water-jet machines were not as accurate as the conventional equipment. The resolution of the water-jet equipment was only +/- 0.005 inch, as compared to +/- 0.0002 inch for the conventional equipment. The principal use for CNC water-jet machining would be as follows: Contouring to near finished shape those items made from 300 and 400 series stainless steels, titanium, Inconel, aluminum, glass, or any material whose fabrication tolerance is less than the machine resolution of +/- 0.005 inch; and contouring to finished shape those items made from Kevlar, rubber, fiberglass, foam, aluminum, or any material whose fabrication specifications allow the use of a machine with +/- 0.005 inch tolerance. Additional applications are possible because there is minimal force generated on the material being cut and because the water-jet cuts without generating dust.
Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting.
Kus, Abdil; Isik, Yahya; Cakir, M Cemal; Coşkun, Salih; Özdemir, Kadir
2015-01-12
In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.
Factors affecting the microbiological condition of the deep tissues of mechanically tenderized beef.
Gill, C O; McGinnis, J C
2005-04-01
Whole or halved top butt prime beef cuts were treated in two types of mechanical tenderizing machines that both pierced the meat with thin blades but that used blades of different forms. Aerobes on meat surfaces and in the deep tissues of cuts after treatments were counted. When cuts were treated at a laboratory using a Lumar machine, the contamination of deep tissues increased significantly (P < 0.01) with increasing numbers of aerobic bacteria on meat surfaces and decreased significantly (P < 0.001) with increasing distance from the incised surface. However, contamination did not increase significantly (P > 0.1) with repeated incising of the meat. When halved cuts were incised one or eight times using a commercially cleaned Ross machine at a retail store, the numbers of aerobes recovered from deep tissues were similar with both treatments. When halved cuts were treated in one or other machine, deep tissue contamination was greater with the Lumar machine than with the Ross machine. Contamination of deep tissues as a result of tenderizing by piercing with thin blades can be minimized if the blades are designed to limit the number of bacteria carried into the meat and the microbiological condition of incised surface is well controlled.
Cutting Efficiency of Instruments with Different Movements: a Comparative Study
Plotino, Gianluca; Al-Sudani, Dina; Rubini, Alessio Giansiracusa; Sannino, Gianpaolo; Piasecki, Lucila; Putortì, Ermanno; Testarelli, Luca; Gambarini, Gianluca
2015-01-01
ABSTRACT Objectives The aim of the present study was to evaluate the cutting efficiency of two new reciprocating instruments, Twisted File Adaptive and WaveOne Primary. Material and Methods 10 new Twisted File Adaptive (TF Adaptive) (SybronEndo, Glendora, CA, USA) and 10 new WaveOne Primary files (Dentsply Maillefer, Ballaigues, Switzerland) were activated using a torque-controlled motor, respectively TFA motor (SybronEndo, Glendora, CA, USA) and Silver motor (VDW, Munich, Germany). The device used for the cutting test consisted on a mainframe to which a mobile plastic support for the hand-piece is connected and a stainless-steel block containing a Plexiglas block against which the cutting efficiency of the instruments was tested. The length of the block cut in 1 minute was measured in a computerized program with a precision of 0.1 mm. Mean and standard deviations of each group were calculated and data were statistically analyzed with one-way ANOVA and Bonferroni t test (P < 0.05). Results TF Adaptive displayed significantly greater maximum penetration depth than WaveOne Primary (P < 0.05). In fact, TF Adaptive instruments (Group 1) cut the Plexiglas block to a mean depth of 8.7 (SD 0.5) mm, while WaveOne Primary instruments cut the Plexiglas block to a mean depth of 6.4 (SD 0.3) mm. Conclusions Twisted File Adaptive instruments demonstrated statistically higher cutting efficiency than WaveOne instruments. PMID:25937877
ERIC Educational Resources Information Center
Nicklin, Julie L.
1992-01-01
Financial pressures brought on by economic recession and increasing costs of academic materials are causing academic libraries to cancel journal subscriptions, reduce book orders, neglect book preservation, cut staff positions, and reduce general services while seeking new revenue sources. Examples of libraries cutting back include those at…
Laser cutting of Kevlar laminates and thermal stress formed at cutting sections
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Akhtar, S. S.
2012-02-01
Laser cutting of Kevlar laminates is carried out and thermal stress field developed in the cutting region is predicted using the finite element code. Temperature predictions are validated through the thermocouple data. The morphological changes in the cutting section are examined by incorporating optical and scanning electron microscopes. It is found that temperature predictions agree well with the thermocouple data. High values of von Mises stress are observed at the cutting edges and at the mid-thickness of the Kevlar laminate due to thermal compression formed in this region. The laser cut edges are free from whiskers; however, striation formation and some small sideways burning is observed at the kerf edges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gusri, A. I.; Che Hassan, C. H.; Jaharah, A. G.
2011-01-17
The performance of Chemical Vapor Deposition (CVD) carbide insert with ISO designation of CCMT 12 04 04 LF, when turning titanium alloys was investigated. There were four layers of coating materials for this insert i.e.TiN-Al2O3-TiCN-TiN. The insert performance was evaluated based on the insert's edge resistant towards the machining parameters used at high cutting speed range of machining Ti-6Al-4V ELI. Detailed study on the wear mechanism at the cutting edge of CVD carbide tools was carried out at cutting speed of 55-95 m/min, feed rate of 0.15-0.35 mm/rev and depth of cut of 0.10-0.20 mm. Wear mechanisms such as abrasivemore » and adhesive were observed on the flank face. Crater wear due to diffusion was also observed on the rake race. The abrasive wear occurred more at nose radius and the fracture on tool were found at the feed rate of 0.35 mm/rev and the depth of cut of 0.20 mm. The adhesion wear takes place after the removal of the coating or coating delaminating. Therefore, adhesion or welding of titanium alloy onto the flank and rake faces demonstrates a strong bond at the workpiece-tool interface.« less
BAW sensor readout circuit based on Pierce oscillator architecture
NASA Astrophysics Data System (ADS)
Gao, Yang; Yin, Xi-Yang; Han, Bin; Wang, Yu-Hang
2017-10-01
Bulk Acoustic Wave Resonators (BAWRs) have been well developed both as filters and as high sensitivity sensors in recent years. In contrast to traditional megahertz quartz resonators, BAWRs offer significant increases in resonant frequency, typically operating in gigahertz regimes. This translates into a potential sensitivity increase of more than three orders of magnitude over traditional QCM (Quartz Crystal Microbalance) devices. Given the micrometer-scale size of BAW sensor-head, read-out circuitry can monolithic integrated with this GHz transducer is urgently needed to produce small, robust, and inexpensive sensor systems. A BAW sensor read-out circuit prototype based on Pierce oscillator architecture is fulfilled in this paper. Based on the differential measurement scheme, two uniform BAWRs are used to constitute two BAW oscillators as a reference and a measurement branch respectively. The resonant frequency shift caused by the measurand is obtained by mixing and filtering the two oscillator signals. Then, the intermediate signal is amplified, shaped and converted to a digital one. And a FPGA is used for frequency detection. Taking 2 GHz BAW mass sensor as a case study, deign procedure are given in details. Simulation and experimental results reveal a 0-99 MHz frequency shift measurement range. Main factors affecting phase noise of the BAW oscillator (i.e. mainly frequency stability of the BAW sensor readout circuit) are also discussed for further optimizations.
Study of optimal laser parameters for cutting QFN packages by Taguchi's matrix method
NASA Astrophysics Data System (ADS)
Li, Chen-Hao; Tsai, Ming-Jong; Yang, Ciann-Dong
2007-06-01
This paper reports the study of optimal laser parameters for cutting QFN (Quad Flat No-lead) packages by using a diode pumped solid-state laser system (DPSSL). The QFN cutting path includes two different materials, which are the encapsulated epoxy and a copper lead frame substrate. The Taguchi's experimental method with orthogonal array of L 9(3 4) is employed to obtain optimal combinatorial parameters. A quantified mechanism was proposed for examining the laser cutting quality of a QFN package. The influences of the various factors such as laser current, laser frequency, and cutting speed on the laser cutting quality is also examined. From the experimental results, the factors on the cutting quality in the order of decreasing significance are found to be (a) laser frequency, (b) cutting speed, and (c) laser driving current. The optimal parameters were obtained at the laser frequency of 2 kHz, the cutting speed of 2 mm/s, and the driving current of 29 A. Besides identifying this sequence of dominance, matrix experiment also determines the best level for each control factor. The verification experiment confirms that the application of laser cutting technology to QFN is very successfully by using the optimal laser parameters predicted from matrix experiments.
Tailor cutting of crystalline solar cells by laser micro jet
NASA Astrophysics Data System (ADS)
Bruckert, F.; Pilat, E.; Piron, P.; Torres, P.; Carron, B.; Richerzhagen, B.; Pirot, M.; Monna, R.
2012-03-01
Coupling a laser into a hair thin water micro jet (Laser Micro Jet, LMJ) for cutting applications offers a wide range of processes that are quite unique. As the laser beam is guided by internal reflections inside of a liquid cylinder, the cuts are naturally straight and do not reflect any divergence as otherwise occurs with an unguided laser beam. Furthermore, having a liquid media at the point of contact ensures a fast removal of heat and eventual debris ensuring clean cuts, which are free of any burrs. Many applications have indeed been developed for a large variety of materials, which are as different as e.g. diamond, silicon, aluminum, ceramic and hard metals. The photovoltaic industry has enjoyed in the last decades tremendous growth rates, which are still projected into the future. We focus here on the segment of Building Integrated PV (BIPV), which requests tailored solutions to actual buildings and not-one-fits-it-all standardized modules. Having the option to tailor cut solar cells opens a new field of BIPV applications. For the first time, finished crystalline solar cells have been LMJ cut into predetermined shapes. First results show that the cut is clean and neat. Preliminary solar performance measurements are positive. This opens a new avenue of tailored made modules instead of having to rely on the one-fits-alloy approach used so far.
Langasite, langanite, and langatate bulk-wave Y-cut resonators.
Smythe, R C; Helmbold, R C; Hague, G E; Snow, K A
2000-01-01
Materials in the langasite family are of current interest for both bulk wave and surface wave devices. Piano-convex Y-cut bulk wave resonators have been built and tested on overtones 1 through 9 using LGS (langasite; La(3)Ga(5)SiO(14)), LGN (langanite; La(3)Ga(5.5)Nb(0.5)O(14)), and LGT (langatate; La(3)Ga(5.5)Ta(5.5)O(14)). Frequencies and motional inductances are compared with calculated values, with good agreement except for the motional inductance of LGT. For all three materials, frequency variation is an essentially parabolic function of temperature. For LGN and LGT, reported values of the Q-frequency product are significantly above the classical limit for AT-cut quartz. A maximum 4 f value of 25.6x10(6), where frequency is in megahertz;, was observed for an LGT resonator; for an unplated resonator, 29.2x10(6) was measured. Still higher values are believed possible.
Höhner, Gesche; Teismann, Tobias; Willutzki, Ulrike
2014-02-01
Do women suffering from borderline symptomatology differ from women without these symptoms regarding their motives for body modifications?A sample of 289 women with body modifications were questioned about their tattoos, piercings and motives for body modifications as well as about symptoms of borderline personality disorder. Women with borderline symptomatology were compared to women without borderline symptomatology concerning the extent of and motives for body modification.The 2 groups showed no differences in regard to amount and extent of body modifications. The "borderline"-group considered individuality, coping and management of negative life-events to be more crucial reasons for body modification than the non-borderline females.The degree of a person's body modification is not a feasible indicator for psychopathological strain. Though, for people with borderline tendency body modification may serve as a coping strategy similar to self-injury. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Nur, Rusdi; Suyuti, Muhammad Arsyad; Susanto, Tri Agus
2017-06-01
Aluminum is widely utilized in the industrial sector. There are several advantages of aluminum, i.e. good flexibility and formability, high corrosion resistance and electrical conductivity, and high heat. Despite of these characteristics, however, pure aluminum is rarely used because of its lacks of strength. Thus, most of the aluminum used in the industrial sectors was in the form of alloy form. Sustainable machining can be considered to link with the transformation of input materials and energy/power demand into finished goods. Machining processes are responsible for environmental effects accepting to their power consumption. The cutting conditions have been optimized to minimize the cutting power, which is the power consumed for cutting. This paper presents an experimental study of sustainable machining of Al-11%Si base alloy that was operated without any cooling system to assess the capacity in reducing power consumption. The cutting force was measured and the cutting power was calculated. Both of cutting force and cutting power were analyzed and modeled by using the central composite design (CCD). The result of this study indicated that the cutting speed has an effect on machining performance and that optimum cutting conditions have to be determined, while sustainable machining can be followed in terms of minimizing power consumption and cutting force. The model developed from this study can be used for evaluation process and optimization to determine optimal cutting conditions for the performance of the whole process.
The Dynamics of Plant Cell-Wall Polysaccharide Decomposition in Leaf-Cutting Ant Fungus Gardens
Harholt, Jesper; Willats, William G. T.; Boomsma, Jacobus J.
2011-01-01
The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus degrades cellulose have hampered our understanding of the selection forces that induced large scale herbivory and of the ensuing ecological footprint of these ants. Here we use a recently established technique, based on polysaccharide microarrays probed with antibodies and carbohydrate binding modules, to map the occurrence of cell wall polymers in consecutive sections of the fungus garden of the leaf-cutting ant Acromyrmex echinatior. We show that pectin, xyloglucan and some xylan epitopes are degraded, whereas more highly substituted xylan and cellulose epitopes remain as residuals in the waste material that the ants remove from their fungus garden. These results demonstrate that biomass entering leaf-cutting ant fungus gardens is only partially utilized and explain why disproportionally large amounts of plant material are needed to sustain colony growth. They also explain why substantial communities of microbial and invertebrate symbionts have evolved associations with the dump material from leaf-cutting ant nests, to exploit decomposition niches that the ant garden-fungus does not utilize. Our approach thus provides detailed insight into the nutritional benefits and shortcomings associated with fungus-farming in ants. PMID:21423735
Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting
Kus, Abdil; Isik, Yahya; Cakir, M. Cemal; Coşkun, Salih; Özdemir, Kadir
2015-01-01
In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining. PMID:25587976
An Experimental Study on Micro Clinching of Metal Foils with Cutting by Laser Shock Forming
Wang, Xiao; Li, Cong; Ma, Youjuan; Shen, Zongbao; Sun, Xianqing; Sha, Chaofei; Gao, Shuai; Li, Liyin; Liu, Huixia
2016-01-01
This paper describes a novel technique for joining similar and dissimilar metal foils, namely micro clinching with cutting by laser shock forming. A series of experiments were conducted to study the deformation behavior of single layer material, during which many important process parameters were determined. The process window of the 1060 pure aluminum foils and annealed copper foils produced by micro clinching with cutting was analyzed. Moreover, similar material combination (annealed copper foils) and dissimilar material combination (1060 pure aluminum foils and 304 stainless steel foils) were successfully achieved. The effect of laser energy on the interlock and minimum thickness of upper foils was investigated. In addition, the mechanical strength of different material combinations joined by micro clinching with cutting was measured in single lap shearing tests. According to the achieved results, this novel technique is more suitable for material combinations where the upper foil is thicker than lower foil. With the increase of laser energy, the interlock increased while the minimum thickness of upper foil decreased gradually. The shear strength of 1060 pure aluminum foils and 304 stainless steel foils combination was three times as large as that of 1060 pure aluminum foils and annealed copper foils combination. PMID:28773692
NASA Astrophysics Data System (ADS)
Coogan, J. C.; Decelles, P. G.
2007-12-01
Palinspastic reconstruction of Mesozoic thrust sheets provides the main constraint for an estimated 47 km of Cenozoic extensional displacement along the Sevier Desert detachment (SDD) in the central Sevier Desert Basin. Hanging wall and footwall piercing points indicate that the SDD accommodated a minimum of 35 km of extensional displacement in the narrower southern part of the basin. The piercing points for the SDD are defined by the intersection of the SDD, the Canyon Range thrust (CRT), and a regional early Cenozoic erosion surface (ES). The hanging wall piercing point lies immediately northeast of the Cricket Mountains, where the SDD-CRT- ES intersection is narrowly defined by intersecting structure maps derived from published seismic reflection data. The footwall piercing point lies in the southern foothills of the Canyon Range, where the SDD breakaway plane is well constrained by an industry seismic line that lies within 2 km of the exposed intersection of the CRT with the base of the Oligocene Oak City Formation. Timing of extension in the southern Sevier Desert basin is constrained by a kinematic reconstruction of detachment and imbricate fault displacement, footwall uplift, and supradetachment sedimentation for Oligocene, Miocene, and Plio-Pleistocene seismic sequences. The reconstruction is centered on a seismic reflection and gravity interpretation along the published Pan Canadian profiles 2 and 3 that is tied to dated intervals in six industry wells. Fault restoration indicates that Oligocene and Miocene phases of slip each accounted for about 40 percent of the total displacement. Simultaneous backstripping of the Oligocene, Miocene, and Plio-Pleistocene supradetachment sequences records hanging wall subsidence simultaneous with footwall uplift, with a footwall burial history that is consistent with published Miocene apatite and zircon fission-track ages of footwall samples. The geometric evolution of the southern SDD extensional system is consistent
NASA Astrophysics Data System (ADS)
El Bouami, Souhail; Habak, Malek; Franz, Gérald; Velasco, Raphaël; Vantomme, Pascal
2016-10-01
Composite materials are increasingly used for structural parts in the aeronautic industries. Carbon Fiber-Reinforced Plastics (CFRP) are often used in combination with metallic materials, mostly aluminium alloys. This raises new problems in aircraft assembly. Delamination is one of these problems. In this study, CFRP/Al-Li stacks is used as experimental material for investigation effect of interaction of cutting parameters (cutting speed and feed rate) and tool geometry on delamination and thrust forces in drilling operation. A plan of experiments, based on Taguchi design method, was employed to investigate the influence of tool geometry and in particular the point angle and cutting parameters on delamination and axial effort. The experimental results demonstrate that the feed rate is the major parameter and the importance of tool point angle in delamination and thrust forces in the stacks were shown.
Apparatus for preparing cornea material for tabbed (sutureless) transplantation
Collins, Joseph Patrick
1997-01-01
A tool and a method for preparing a donor material used in sutureless corneal transplants uses a first cutting portion to prepare a donor blank having tabbed portions extending outwardly radially. A second cutting portion is used to cut the central portion of the blank. The tool is used as a guide member for the second cutting portion. In one embodiment the tool has slits laterally defined therethrough which allow the tabbed portions of the donor material to be thinned to a desired thickness using a scalpel. In an another embodiment the second cutting portion is a round trephine which is used to simultaneously trim each of the tabbed portions.
Applications of optical sensing for laser cutting and drilling.
Fox, Mahlen D T; French, Paul; Peters, Chris; Hand, Duncan P; Jones, Julian D C
2002-08-20
Any reliable automated production system must include process control and monitoring techniques. Two laser processing techniques potentially lending themselves to automation are percussion drilling and cutting. For drilling we investigate the performance of a modification of a nonintrusive optical focus control system we previously developed for laser welding, which exploits the chromatic aberrations of the processing optics to determine focal error. We further developed this focus control system for closed-loop control of laser cutting. We show that an extension of the technique can detect deterioration in cut quality, and we describe practical trials carried out on different materials using both oxygen and nitrogen assist gas. We base our techniques on monitoring the light generated by the process, captured nonintrusively by the effector optics and processed remotely from the workpiece. We describe the relationship between the temporal and the chromatic modulation of the detected light and process quality and show how the information can be used as the basis of a process control system.
The Deformations of Carbon Nanotubes under Cutting.
Deng, Jue; Wang, Chao; Guan, Guozhen; Wu, Hao; Sun, Hong; Qiu, Longbin; Chen, Peining; Pan, Zhiyong; Sun, Hao; Zhang, Bo; Che, Renchao; Peng, Huisheng
2017-08-22
The determination of structural evolution at the atomic level is essential to understanding the intrinsic physics and chemistries of nanomaterials. Mechanochemistry represents a promising method to trace structural evolution, but conventional mechanical tension generates random breaking points, which makes it unavailable for effective analysis. It remains difficult to find an appropriate model to study shear deformations. Here, we synthesize high-modulus carbon nanotubes that can be cut precisely, and the structural evolution is efficiently investigated through a combination of geometry phase analysis and first-principles calculations. The lattice fluctuation depends on the anisotropy, chirality, curvature, and slicing rate. The strain distribution further reveals a plastic breaking mechanism for the conjugated carbon atoms under cutting. The resulting sliced carbon nanotubes with controllable sizes and open ends are promising for various applications, for example, as an anode material for lithium-ion batteries.
Depth-of-Interaction Compensation Using a Focused-Cut Scintillator for a Pinhole Gamma Camera.
Alhassen, Fares; Kudrolli, Haris; Singh, Bipin; Kim, Sangtaek; Seo, Youngho; Gould, Robert G; Nagarkar, Vivek V
2011-06-01
Preclinical SPECT offers a powerful means to understand the molecular pathways of drug interactions in animal models by discovering and testing new pharmaceuticals and therapies for potential clinical applications. A combination of high spatial resolution and sensitivity are required in order to map radiotracer uptake within small animals. Pinhole collimators have been investigated, as they offer high resolution by means of image magnification. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the detection scintillator at steep angles, introducing parallax errors due to variable depth-of-interaction in scintillator material, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut (FC) scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus improve the system resolution. We performed the first experimental evaluation of a newly developed focused-cut scintillator. We scanned a Tc-99m source across the field of view of pinhole gamma camera with a continuous scintillator, a conventional "straight-cut" (SC) pixellated scintillator, and a focused-cut scintillator, each coupled to an electron-multiplying charge coupled device (EMCCD) detector by a fiber-optic taper, and compared the measured full-width half-maximum (FWHM) values. We show that the FWHMs of the focused-cut scintillator projections are comparable to the FWHMs of the thinner SC scintillator, indicating the effectiveness of the focused-cut scintillator in compensating parallax errors.
Mechanical specific energy versus depth of cut in rock cutting and drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yaneng; Zhang, Wu; Gamwo, Isaac
The relationship between Mechanical Specific Energy (MSE) and the Rate of Penetration (ROP), or equivalently the depth of cut per revolution, provides an important measure for strategizing a drilling operation. This study explores how MSE evolves with depth of cut, and presents a concerted effort that encompasses analytical, computational and experimental approaches. A simple model for the relationship between MSE and cutting depth is first derived with consideration of the wear progression of a circular cutter. This is an extension of Detournay and Defourny's phenomenological cutting model. Wear is modeled as a flat contact area at the bottom of amore » cutter referred to as a wear flat, and that wear flat in the past is often considered to be fixed during cutting. But during a drilling operation by a full bit that consists of multiple circular cutters, the wear flat length may increase because of various wear mechanisms involved. The wear progression of cutters generally results in reduced efficiency with either increased MSE or decreased ROP. Also, an accurate estimate of removed rock volume is found important for the evaluation of MSE. The derived model is compared with experiment results from a single circular cutter, for cutting soft rock under ambient pressure with actual depth measured through a micrometer, and for cutting high strength rock under high pressure with actual cutting area measured by a confocal microscope. Lastly, the model is employed to interpret the evolution of MSE with depth of cut for a full drilling bit under confining pressure. The general form of equation of the developed model is found to describe well the experiment data and can be applied to interpret the drilling data for a full bit.« less
Mechanical specific energy versus depth of cut in rock cutting and drilling
Zhou, Yaneng; Zhang, Wu; Gamwo, Isaac; ...
2017-12-07
The relationship between Mechanical Specific Energy (MSE) and the Rate of Penetration (ROP), or equivalently the depth of cut per revolution, provides an important measure for strategizing a drilling operation. This study explores how MSE evolves with depth of cut, and presents a concerted effort that encompasses analytical, computational and experimental approaches. A simple model for the relationship between MSE and cutting depth is first derived with consideration of the wear progression of a circular cutter. This is an extension of Detournay and Defourny's phenomenological cutting model. Wear is modeled as a flat contact area at the bottom of amore » cutter referred to as a wear flat, and that wear flat in the past is often considered to be fixed during cutting. But during a drilling operation by a full bit that consists of multiple circular cutters, the wear flat length may increase because of various wear mechanisms involved. The wear progression of cutters generally results in reduced efficiency with either increased MSE or decreased ROP. Also, an accurate estimate of removed rock volume is found important for the evaluation of MSE. The derived model is compared with experiment results from a single circular cutter, for cutting soft rock under ambient pressure with actual depth measured through a micrometer, and for cutting high strength rock under high pressure with actual cutting area measured by a confocal microscope. Lastly, the model is employed to interpret the evolution of MSE with depth of cut for a full drilling bit under confining pressure. The general form of equation of the developed model is found to describe well the experiment data and can be applied to interpret the drilling data for a full bit.« less
A new device to test cutting efficiency of mechanical endodontic instruments
Rubini, Alessio Giansiracusa; Plotino, Gianluca; Al-Sudani, Dina; Grande, Nicola M.; Putorti, Ermanno; Sonnino, GianPaolo; Cotti, Elisabetta; Testarelli, Luca; Gambarini, Gianluca
2014-01-01
Background The purpose of the present study was to introduce a new device specifically designed to evaluate the cutting efficiency of mechanically driven endodontic instruments. Material/Methods Twenty new Reciproc R25 (VDW, Munich, Germany) files were used to be investigated in the new device developed to test the cutting ability of endodontic instruments. The device consists of a main frame to which a mobile plastic support for the hand-piece is connected and a stainless-steel block containing a Plexiglas block against which the cutting efficiency of the instruments was tested. The length of the block cut in 1 minute was measured in a computerized program with a precision of 0.1mm. The instruments were activated by using a torque-controlled motor (Silver Reciproc; VDW, Munich, Germany) in a reciprocating movement by the “Reciproc ALL” program (Group 1) and in counter-clockwise rotation at 300 rpm (Group 2). Mean and standard deviations of each group were calculated and data were statistically analyzed with a one-way ANOVA test (P<0.05). Results Reciproc in reciprocation (Group 1) mean cut in the Plexiglas block was 8.6 mm (SD=0.6 mm), while Reciproc in rotation mean cut was 8.9 mm (SD=0.7 mm). There was no statistically significant difference between the 2 groups investigated (P>0.05). Conclusions The cutting testing device evaluated in the present study was reliable and easy to use and may be effectively used to test cutting efficiency of both rotary and reciprocating mechanical endodontic instruments. PMID:24603777
Microstructure Evolution in Cut Metal Chips of Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Dong, L.; Schneider, J. A.
2008-01-01
The microstructural evolution following metal cutting was investigated within metal chips of Ti-6Al-4V. Metal cutting was used to impose a high strain rate on the order of approx.10(exp 5)/s within the primary shear zone as the metal was removed from the workpiece. The initial microstructure of the parent material (PM) was composed of a bi-modal microstructure with coarse prior beta grains and equiaxed primary alpha located at the boundaries. After metal cutting, the microstructure of the metal chips showed coarsening of the equiaxed primary alpha grains and beta lamellar. These metallographic findings suggest that the metal chips experienced high temperatures which remained below the beta transus temperature.
Ke, Peifeng; Liu, Jiawei; Chao, Yan; Wu, Xiaobin; Xiong, Yujuan; Lin, Li; Wan, Zemin; Wu, Xinzhong; Xu, Jianhua; Zhuang, Junhua; Huang, Xianzhang
2017-01-01
Introduction Thalassemia could interfere with some assays for haemoglobin A1c (HbA1c) measurement, therefore, it is useful to be able to screen for thalassemia while measuring HbA1c. We used Capillarys 2 Flex Piercing (Capillarys 2FP) HbA1c programme to simultaneously measure HbA1c and screen for thalassemia. Materials and methods Samples from 498 normal controls and 175 thalassemia patients were analysed by Capillarys 2FP HbA1c programme (Sebia, France). For method comparison, HbA1c was quantified by Premier Hb9210 (Trinity Biotech, Ireland) in 98 thalassaemia patients samples. For verification, HbA1c from eight thalassaemia patients was confirmed by IFCC reference method. Results Among 98 thalassaemia samples, Capillarys 2FP did not provide an HbA1c result in three samples with HbH due to the overlapping of HbBart’s with HbA1c fraction; for the remaining 95 thalassaemia samples, Bland-Altman plot showed 0.00 ± 0.35% absolute bias between two systems, and a significant positive bias above 7% was observed only in two HbH samples. The HbA1c values obtained by Capillarys 2FP were consistent with the IFCC targets (relative bias below ± 6%) in all of the eight samples tested by both methods. For screening samples with alpha (α-) thalassaemia silent/trait or beta (β-) thalassemia trait, the optimal HbA2 cut-off values were ≤ 2.2% and > 2.8%, respectively. Conclusions Our results demonstrated the Capillarys 2FP HbA1c system could report an accurate HbA1c value in thalassemia silent/trait, and HbA2 value (≤ 2.2% for α-thalassaemia silent/trait and > 2.8% for β-thalassemia trait) and abnormal bands (HbH and/or HbBart’s for HbH disease, HbF for β-thalassemia) may provide valuable information for screening. PMID:28900367
Improving Pathogen Reduction by Chlorine Wash Prior to Cutting in Fresh-Cut Processing
USDA-ARS?s Scientific Manuscript database
Introduction: Currently, most fresh-cut processing facilities in the United States use chlorinated water or other sanitizer solutions for microbial reduction after lettuce is cut. Freshly cut lettuce releases significant amounts of organic matter that negatively impacts the effectiveness of chlorine...
Steady flow past a vertical surface-piercing circular cylinder
NASA Astrophysics Data System (ADS)
Chaplin, J. R.; Teigen, P.
2003-09-01
This paper describes experiments in which a vertical surface-piercing circular cylinder with a large draught was towed at steady speeds through water initially at rest. The cylinder diameter d was 210mm, and measurements were made of pressures around its circumference at elevations between 2.4d below still water level to 0.7d above, at Froude numbers (based on d) up to 1.67. The tests were carried out at a constant ratio of Reynolds number to Froude number of 2.79×105. The total resistance coefficient reached a maximum at a Froude number of about 1, when that part of the loading that can be attributed to the presence of the free surface was equivalent to the submerged form drag on a length of cylinder of about 0.9d. Measurements are also presented of the run-up on the front of the cylinder and of the depth of the depression at the back. Previous measurements by Hay (Flow about Semi-submerged Cylinders of Finite Length. Princeton University Report, Princeton, NJ, 1947) for the case of a cylinder with a submerged free end, and by Hsieh (Proc. Am. Soc. Civil Eng. 90 (1964) 161) of forces on cylinders standing on the floor of an open channel, are reanalysed. In most respects these results are found to be compatible with the present data for a cylinder of large draught.
NASA Astrophysics Data System (ADS)
Ersöz, Timur; Topal, Tamer
2017-04-01
Rocks containing pore spaces, fractures, joints, bedding planes and faults are prone to weathering due to temperature differences, wetting-drying, chemistry of solutions absorbed, and other physical and chemical agents. Especially cut slopes are very sensitive to weathering activities because of disturbed rock mass and topographical condition by excavation. During and right after an excavation process of a cut slope, weathering and erosion may act on this newly exposed rock material. These acting on the material may degrade and change its properties and the stability of the cut slope in its engineering lifetime. In this study, the effect of physical and chemical weathering agents on shear strength parameters of the rocks are investigated in order to observe the differences between weathered and unweathered rocks. Also, slope stability assessment of cut slopes affected by these weathering agents which may disturb the parameters like strength, cohesion, internal friction angle, unit weight, water absorption and porosity are studied. In order to compare the condition of the rock materials and analyze the slope stability, the parameters of weathered and fresh rock materials are found with in-situ tests such as Schmidt hammer and laboratory tests like uniaxial compressive strength, point load and direct shear. Moreover, slake durability and methylene blue tests are applied to investigate the response of the rock to weathering and presence of clays in rock materials, respectively. In addition to these studies, both rock strength parameters and any kind of failure mechanism are determined by probabilistic approach with the help of SSPC system. With these observations, the performances of the weathered and fresh zones of the cut slopes are evaluated and 2-D slope stability analysis are modeled with further recommendations for the cut slopes. Keywords: 2-D Modeling, Rock Strength, Slope Stability, SSPC, Weathering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Robert
2004-10-01
Pacific Northwest National Laboratory conducted video-based boat surveys in fall 2003 to identify spawning areas for fall Chinook salmon (Oncorhynchus tshawytscha) in deep water (>1 m) downstream of Bonneville Dam. This report documents the number and extent of Chinook salmon spawning near Ives and Pierce islands of the Columbia River, and is the fifth in a series of reports prepared since 1999. The primary objective of this study was to find deepwater spawning locations of fall Chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawnersmore » in the surveyed area. The secondary objective was to document the occurrence of any chum salmon (O. keta) redds in the deeper sections near below Hamilton Creek. Results from the 2003 study show a continuing trend upward in the number of fall Chinook salmon redds found within the survey zones. The number of fall Chinook redds found in the Ives Pierce Island complex (river km 228.5) has increased by a factor of five since the surveys began in 1999. The total number of redds found during 2003 was 336, which compares to 192 in 2002, 43 in 2001, 76 in 2000, and 64 in 1999. The redds encompassed an area of 13.7 ha occurring adjacent to the lower part of Ives Island and Pierce Island. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 24, 2003. An expanded redd count based on percentage of video coverage in the primary and secondary search zones was 3,218 fall Chinook salmon redds in water exceeding 1 m deep and flowing at about 125 kcfs. Fall Chinook salmon redds were found at water depths from 1.07 to 7.6 m and were constructed predominantly of medium cobbles ranging from 7.6 to 15.2 cm in diameter. Two chum salmon redds were found in a small location downstream from Hamilton Creek in water depths of approximately 1 m. No salmon redds were found in other areas searched
NASA Astrophysics Data System (ADS)
Lin, Jieqiong; Guan, Liang; Lu, Mingming; Han, Jinguo; Kan, Yudi
2017-12-01
In traditional diamond cutting, the cutting force is usually large and it will affect tool life and machining quality. Elliptical vibration cutting (EVC) as one of the ultra-precision machining technologies has a lot of advantages, such as reduces cutting force, extend tool life and so on. It's difficult to predict the transient cutting force of EVC due to its unique elliptical motion trajectory. Study on chip formation will helpfully to predict cutting force. The geometric feature of chip has important effects on cutting force, however, few scholars have studied the chip formation. In order to investigate the time-varying cutting force of EVC, the geometric feature model of chip is established based on analysis of chip formation, and the effects of cutting parameters on the geometric feature of chip are analyzed. To predict transient force quickly and effectively, the geometric feature of chip is introduced into the cutting force model. The calculated results show that the error between the predicted cutting force in this paper and that in the literature is less than 2%, which proves its feasibility.
NASA Astrophysics Data System (ADS)
Nor Khairusshima, M. K.; Hafiz Zakwan, B. Muhammad; Suhaily, M.; Sharifah, I. S. S.; Shaffiar, N. M.; Rashid, M. A. N.
2018-01-01
Carbon Fibre Reinforced Plastic (CFRP) composite has become one of famous materials in industry, such as automotive, aeronautics, aerospace and aircraft. CFRP is attractive due to its properties, which promising better strength and high specification of mechanical properties other than its high resistance to corrosion. Other than being abrasive material due to the carbon nature, CFRP is an anisotropic material, which the knowledge of machining metal and steel cannot be applied during machining CFRP. The improper technique and parameters used to machine CFRP may result in high tool wear. This paper is to study the tool wear of 8 mm diameter carbide cutting tool during milling CFRP. To predict the suitable cutting parameters within range of 3500-6220 (rev/min), 200-245 (mm/min), and 0.4-1.8 (mm) for cutting speed, speed, feed rate and depth of cut respectively, which produce optimized result (less tool wear), Response Surface Methodology (RSM) has been used. Based on the developed mathematical model, feed rate was identified as the primary significant item that influenced tool wear. The optimized cutting parameters are cutting speed, feed and depth of cut of 3500 rev/min, 200 mm/min and 0.5 mm, respectively, with tool wear of 0.0267 mm. It is also can be observed that as the cutting speed and feed rate increased the tool wear is increasing.
Multi-well sample plate cover penetration system
Beer, Neil Reginald [Pleasanton, CA
2011-12-27
An apparatus for penetrating a cover over a multi-well sample plate containing at least one individual sample well includes a cutting head, a cutter extending from the cutting head, and a robot. The cutting head is connected to the robot wherein the robot moves the cutting head and cutter so that the cutter penetrates the cover over the multi-well sample plate providing access to the individual sample well. When the cutting head is moved downward the foil is pierced by the cutter that splits, opens, and folds the foil inward toward the well. The well is then open for sample aspiration but has been protected from cross contamination.
NASA Technical Reports Server (NTRS)
Lewis, E. V.
1985-01-01
Aft end of auger, like forward, face-piercing end, equipped with hard cutting bits such as diamonds. As auger breaks face, pulls broken coal lumps into jaws and forces them into hardened throat section. There, cutting bits chew up lumps: Clearance between throat and auger shaft sets maximum size for coal particles that pass through. Auger motion pushes coal particles into mixing chamber, where paddles combine them with water.
Simulation of the Groundwater-Flow System in Pierce, Polk, and St. Croix Counties, Wisconsin
Juckem, Paul F.
2009-01-01
Groundwater is the sole source of residential water supply in Pierce, Polk, and St. Croix Counties, Wisconsin. A regional three-dimensional groundwater-flow model and three associated demonstration inset models were developed to simulate the groundwater-flow systems in the three-county area. The models were developed by the U.S. Geological Survey in cooperation with the three county governments. The objectives of the regional model of Pierce, Polk, and St. Croix Counties were to improve understanding of the groundwaterflow system and to develop a tool suitable for evaluating the effects of potential water-management programs. The regional groundwater-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, groundwater/surface-water interactions, and groundwater withdrawals from high-capacity wells. Results from the regional model indicate that about 82 percent of groundwater in the three counties is from recharge within the counties; 15 percent is from surface-water sources, consisting primarily of recirculated groundwater seepage in areas with abrupt surface-water-level changes, such as near waterfalls, dams, and the downgradient side of reservoirs and lakes; and 4 percent is from inflow across the county boundaries. Groundwater flow out of the counties is to streams (85 percent), outflow across county boundaries (14 percent), and pumping wells (1 percent). These results demonstrate that the primary source of groundwater withdrawn by pumping wells is water that recharges within the counties and would otherwise discharge to local streams and lakes. Under current conditions, the St. Croix and Mississippi Rivers are groundwater discharge locations (gaining reaches) and appear to function as 'fully penetrating' hydraulic boundaries such that groundwater does not cross between Wisconsin and Minnesota beneath them. Being hydraulic boundaries, however, they can change in response to
Apparatus for preparing cornea material for tabbed (sutureless) transplantation
Collins, J.P.
1997-07-22
A tool and a method for preparing a donor material used in sutureless corneal transplants uses a first cutting portion to prepare a donor blank having tabbed portions extending outwardly radially. A second cutting portion is used to cut the central portion of the blank. The tool is used as a guide member for the second cutting portion. In one embodiment the tool has slits laterally defined therethrough which allow the tabbed portions of the donor material to be thinned to a desired thickness using a scalpel. In an another embodiment the second cutting portion is a round trephine which is used to simultaneously trim each of the tabbed portions. 26 figs.
INFLUENCE OF MICROWAVE STERILIZATION ON THE CUTTING CAPACITY OF CARBIDE BURS
Fais, Laiza Maria Grassi; Pinelli, Lígia Antunes Pereira; Adabo, Gelson Luis; da Silva, Regina Helena Barbosa Tavares; Marcelo, Caroline Canhizares; Guaglianoni, Dalton Geraldo
2009-01-01
Objective: This study compared the cutting capacity of carbide burs sterilized with microwaves and traditional sterilization methods. Material and Methods: Sixty burs were divided into 5 groups according to the sterilization methods: dry heat (G1), autoclave (G2), microwave irradiation (G3), glutaraldehyde (G4) or control – no sterilization (G5). The burs were used to cut glass plates in a cutting machine set for twelve 2.5-min periods and, after each period, they were sterilized (except G5) following the protocol established for each group. The cutting capacity of the burs was determined by a weight-loss method. Data were analyzed statistically by Kruskal-Wallis and Dunn's test. Results: The means of the cutting amount performed by each group after the 12 periods were G1 = 0.2167 ± 0.0627 g; G2 = 0.2077 ± 0.0231 g; G3 = 0.1980 ± 0.0326 g; G4 = 0.1203 ± 0.0459 g; G5 = 0.2642 ± 0.0359 g. There were statistically significant differences among the groups (p<0.05); only dry heat sterilization was similar to the control. Conclusion: Sterilization by dry heat was the method that least affected the cutting capacity of the carbide burs and microwave sterilization was not better than traditional sterilization methods. PMID:20027431
Muránsky, Ondrej; Hamelin, Cory J.; Hosseinzadeh, F.; ...
2017-04-06
An assessment of cutting-induced plasticity (CIP) is performed, by finite element (FE) prediction of the plastic strain accumulation along the cut tip when the EDM wire sections the NeT TG4 weld benchmark specimen along two cutting directions. The first direction corresponds to a conventional (C) cutting strategy, whereby the EDM wire cuts through the thickness of the weld specimen and travels in a direction transverse to the weld. The second direction corresponds to a self-equilibrating cutting (SE) strategy, whereby the EDM wire cuts across the transverse direction of the weld specimens and travels through the thickness of the plate. Themore » cutting thus progresses simultaneously through the compression-tension-compression regions of present weld residual stress (WRS) field. This type of cutting strategy is believed to minimize the CIP by minimising residual stress redistribution during cutting, due to stress equilibration across the sectioned material. The simulated cutting procedures are conducted under a range of clamping conditions to assess whether mechanical restraint has a primary or secondary influence on CIP accumulation. Both predictions of CIP and the resultant back-calculated WRS demonstrate that (i) mechanical restraint is the primary variable influencing CIP development, and (ii) under no circumstance does a self-equilibrating cutting strategy perform significantly better than a conventional cutting approach. Furthermore, the reason that self-equilibrating cuts are not effective is illustrated by calculating the Mode I (K I) stress intensity factor (SIF) along the cut tip, and correlating trends in K I to CIP development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muránsky, Ondrej; Hamelin, Cory J.; Hosseinzadeh, F.
An assessment of cutting-induced plasticity (CIP) is performed, by finite element (FE) prediction of the plastic strain accumulation along the cut tip when the EDM wire sections the NeT TG4 weld benchmark specimen along two cutting directions. The first direction corresponds to a conventional (C) cutting strategy, whereby the EDM wire cuts through the thickness of the weld specimen and travels in a direction transverse to the weld. The second direction corresponds to a self-equilibrating cutting (SE) strategy, whereby the EDM wire cuts across the transverse direction of the weld specimens and travels through the thickness of the plate. Themore » cutting thus progresses simultaneously through the compression-tension-compression regions of present weld residual stress (WRS) field. This type of cutting strategy is believed to minimize the CIP by minimising residual stress redistribution during cutting, due to stress equilibration across the sectioned material. The simulated cutting procedures are conducted under a range of clamping conditions to assess whether mechanical restraint has a primary or secondary influence on CIP accumulation. Both predictions of CIP and the resultant back-calculated WRS demonstrate that (i) mechanical restraint is the primary variable influencing CIP development, and (ii) under no circumstance does a self-equilibrating cutting strategy perform significantly better than a conventional cutting approach. Furthermore, the reason that self-equilibrating cuts are not effective is illustrated by calculating the Mode I (K I) stress intensity factor (SIF) along the cut tip, and correlating trends in K I to CIP development.« less
Effect of Cutting Velocity / Stem Size on the Efficiency of NRCRI Cassave Stem Cutting Machine
NASA Astrophysics Data System (ADS)
Ikejiofor, M. C.
2012-11-01
The developed NRCRI (National Root Crops Research Institute) cassava stem cutting machine was evaluated. The cassava stems from the variety TME 419 were used. The sizes of the stem used were 1.8, 2.0, 2.3 and 2.6cm. Also, different cutting velocities of 1.20, 1.23 and 1.32m/s were used. The stakes produced has length of 2.5cm. Analysis of variance in RCBD was used to evaluate the effect of the cutting velocity and the stem size on the efficiency of the cutting machine. The result of the analysis showed that the cutting velocity had very highly significant effect, while the stem size had no significant effect at 5% level on the efficiency of the cutting machine. The data obtained also showed that the highest and least cutting efficiencies of 99.42 and 94.71% were obtained with the machine cutting velocities of 1.2 and 1.32m/s respectively.
NASA Astrophysics Data System (ADS)
Yue, Xiaobin; Xu, Min; Du, Wenhao; Chu, Chong
2017-09-01
Transparent magnesium aluminate spinel (MgAl2O4) ceramic is one of an important optical materials. However, due to its pronounced hardness and brittleness, the optical machining of this material is very difficult. Diamond turning has advantages over the grinding process in flexibility and material removal rate. However, there is a lack of research that could support the use of diamond turning technology in the machining of MgAl2O4 spinel ceramic. Using brittle-ductile transition theory of brittle material machining, this work provides critical information that may help to realize ductile-regime turning of MgAl2O4 spinel ceramic. A characterization method of determination the cutting edge radius is introduced here. Suitable diamond tools were measured for sharpness and then chosen from a large number of candidate tools. The influence of rounded cutting edges on surface roughness of the MgAl2O4 spinel ceramic is also investigated. These results indicate that surface quality of MgAl2O4 spinel is relate to the radius of diamond tool's cutting edge, cutting speed, and feed rate. Sharp diamond tools (small radius of cutting edge) facilitated ductile-regime turning of MgAl2O4 spinel and shows great potential to reduce surface roughness and produce smoother final surface.
Recycling stabilised/solidified drill cuttings for forage production in acidic soils.
Kogbara, Reginald B; Dumkhana, Bernard B; Ayotamuno, Josiah M; Okparanma, Reuben N
2017-10-01
Stabilisation/solidification (S/S), which involves fixation and immobilisation of contaminants using cementitious materials, is one method of treating drill cuttings before final fate. This work considers reuse of stabilised/solidified drill cuttings for forage production in acidic soils. It sought to improve the sustainability of S/S technique through supplementation with the phytoremediation potential of plants, eliminate the need for landfill disposal and reduce soil acidity for better plant growth. Drill cuttings with an initial total petroleum hydrocarbon (TPH) concentration of 17,125 mg kg -1 and low concentrations of metals were treated with 5%, 10%, and 20% cement dosages. The treated drill cuttings were reused in granular form for growing a forage, elephant grass (Pennisetum purpureum), after mixing with uncontaminated soil. The grasses were also grown in uncontaminated soil. The phytoremediation and growth potential of the plants was assessed over a 12-week period. A mix ratio of one part drill cuttings to three parts uncontaminated soil was required for active plant growth. The phytoremediation ability of elephant grass (alongside abiotic losses) reduced the TPH level (up to 8795 mg kg -1 ) in the soil-treated-drill cuttings mixtures below regulatory (1000 mg kg -1 ) levels. There were also decreased concentrations of metals. The grass showed better heights and leaf lengths in soil containing drill cuttings treated with 5% cement dosage than in uncontaminated soil. The results suggest that recycling S/S treated drill cuttings for forage production may be a potential end use of the treated waste. Copyright © 2017 Elsevier Ltd. All rights reserved.
Erosion-resistant composite material
Finch, C.B.; Tennery, V.J.; Curlee, R.M.
A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.
NASA Astrophysics Data System (ADS)
Venkata Subbaiah, K.; Raju, Ch.; Suresh, Ch.
2017-08-01
The present study aims to compare the conventional cutting inserts with wiper cutting inserts during the hard turning of AISI 4340 steel at different workpiece hardness. Type of insert, hardness, cutting speed, feed, and depth of cut are taken as process parameters. Taguchi’s L18 orthogonal array was used to conduct the experimental tests. Parametric analysis carried in order to know the influence of each process parameter on the three important Surface Roughness Characteristics (Ra, Rz, and Rt) and Material Removal Rate. Taguchi based Grey Relational Analysis (GRA) used to optimize the process parameters for individual response and multi-response outputs. Additionally, the analysis of variance (ANOVA) is also applied to identify the most significant factor.
NASA Astrophysics Data System (ADS)
Pratama, S. P.; Yunus, A.; Purwanto, E.; Widyastuti, Y.
2018-03-01
Graptophyllum pictum is one of medical plants which has important chemical content to treat diseases. Leaf, bark and flower can be used to facilitate menstruation, treat hemorrhoid, constipation, ulcers, ulcers, swelling, and earache. G. pictum is difficult to propagated by seedling due to the long duration of seed formation, thusvegetative propagation is done by stem cutting. The aims of this study are to obtain optimum combination of cutting origin and organic plant growth regulator in various consentration for the growth of Daun Ungu through stem cutting method. This research was conducted at Research center for Medicinal Plant and Traditional DrugTanjungsari, Tegal Gede, Karanganyar in June to August 2016. Origin of cuttings and organic plant growth regulator were used as treatments factor. A completely randomized design (RAL) is used and data were analyzed by F test (ANOVA) with a confidence level of 95%. Any significant differences among treatment followed with Duncan test at a = 5%. The research indicates that longest root was resulted from the treatment of 0,5 ml/l of organic plant growth regulator. The treatment of 1 ml/l is able to increase the fresh and dry weight of root, treatment of 1,5 ml/l of organic plant growth regulator was able to increase the percentage of growing shoots. Treatment of base part as origin of cuttings increases the length, fresh weight and and dry weight of shoot, increase the number of leaves. Interaction treatment between 1 ml/l consentration of organic plant growth regulator and central part origin of cuttings is capable of increasing the leaf area, whereas treatment without organic plant growth regulator and base part as planting material affects the smallest leaf area.
A micro-scale cutting model for UD CFRP composites with thermo-mechanical coupling
Cheng, Hui; Gao, Jiaying; Kafka, Orion Landauer; ...
2017-09-23
Cutting a unidirectional carbon fiber-reinforced polymer (UD CFRP) structure is the basic unit for CFRP machining, which is a complex thermal-mechanically coupled process. To reveal the deformation mechanism and predict cutting force in UD CFRP micro cutting, a micro-scale fracture model for UD CFRP cutting with thermal-mechanical coupling is demonstrated in this paper, which captures the failure modes for fibers, matrix and the interface based on a micro-level RVE using a relatively simple damage based fracture method. The thermal-mechanical coupling model at the micro scale is developed on the basis of the plastic energy dissipation and frictional heating during cutting.more » Failure models for the fiber, matrix and interface region are applied depending on the material properties of each of these three phases. Numerical simulations based on the above model with different fiber orientations were performed to predict the deformation and forces of different components in UD CFRP. Cutting experiments with the same fiber orientations as considered in the simulations were carried out to validate the force and deformation results. The predicted force and deformation patterns match well with evidence from our experiments. In general, the cutting force is larger than the thrust force regardless of fiber orientation. The cutting force reaches a maximum as the fiber orientation approaches 90 , but thrust forces do not vary substantially across cases. When the fiber orientation is acute, the deformation of fibers is much smaller than when the cutting angle is obtuse. Surface roughness follows the same trend with cutting angle as fiber deformation.« less
A micro-scale cutting model for UD CFRP composites with thermo-mechanical coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Hui; Gao, Jiaying; Kafka, Orion Landauer
Cutting a unidirectional carbon fiber-reinforced polymer (UD CFRP) structure is the basic unit for CFRP machining, which is a complex thermal-mechanically coupled process. To reveal the deformation mechanism and predict cutting force in UD CFRP micro cutting, a micro-scale fracture model for UD CFRP cutting with thermal-mechanical coupling is demonstrated in this paper, which captures the failure modes for fibers, matrix and the interface based on a micro-level RVE using a relatively simple damage based fracture method. The thermal-mechanical coupling model at the micro scale is developed on the basis of the plastic energy dissipation and frictional heating during cutting.more » Failure models for the fiber, matrix and interface region are applied depending on the material properties of each of these three phases. Numerical simulations based on the above model with different fiber orientations were performed to predict the deformation and forces of different components in UD CFRP. Cutting experiments with the same fiber orientations as considered in the simulations were carried out to validate the force and deformation results. The predicted force and deformation patterns match well with evidence from our experiments. In general, the cutting force is larger than the thrust force regardless of fiber orientation. The cutting force reaches a maximum as the fiber orientation approaches 90 , but thrust forces do not vary substantially across cases. When the fiber orientation is acute, the deformation of fibers is much smaller than when the cutting angle is obtuse. Surface roughness follows the same trend with cutting angle as fiber deformation.« less
Multilayer composition coatings for cutting tools: formation and performance properties
NASA Astrophysics Data System (ADS)
Tabakov, Vladimir P.; Vereschaka, Anatoly S.; Vereschaka, Alexey A.
2018-03-01
The paper considers the concept of a multi-layer architecture of the coating in which each layer has a predetermined functionality. Latest generation of coatings with multi-layered architecture for cutting tools secure a dual nature of the coating, in which coatings should not only improve the mechanical and physical characteristics of the cutting tool material, but also reduce the thermo-mechanical effect on the cutting tool determining wear intensity. Here are presented the results of the development of combined methods of forming multi-layer coatings with improved properties. Combined method of forming coatings using a pulsed laser allowed reducing excessively high levels of compressive residual stress and increasing micro hardness of the multilayered coatings. The results in testing coated HSS tools showed that the use of additional pulse of laser processing increases tool life up to 3 times. Using filtered cathodic vacuum arc deposition for the generation of multilayer coatings based on TiAlN compound has increased the wear-resistance of carbide tools by 2 fold compared with tool life of cutting tool with commercial TiN coatings. The aim of this study was to develop an innovative methodological approach to the deposition of multilayer coatings for cutting tools with functional architectural selection, properties and parameters of the coating based on sound knowledge of coating failure in machining process.
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Akhtar, S. S.; Karatas, C.
2017-11-01
A Kevlar laminate has negative thermal expansion coefficient, which makes it difficult to machine at room temperaures using the conventional cutting tools. Contararily, laser machining of a Kevlar laminate provides advantages over the conventional methods because of the non-mechanical contact between the cutting tool and the workpiece. In the present study, laser circular cutting of Kevlar laminate is considered. The experiment is carried out to examine and evaluate the cutting sections. Temperature and stress fields formed in the cutting section are simulated in line with the experimental study. The influence of hole diameters on temperature and stress fields are investigated incorporating two different hole diameters. It is found that the Kevlar laminate cutting section is free from large size asperities such as large scale sideways burnings and attachemnt of charred residues. The maximum temperature along the cutting circumference remains higher for the large diameter hole than that of the small diameter hole. Temperature decay is sharp around the cutting section in the region where the cutting terminates. This, in turn, results in high temperature gradients and the thermal strain in the cutting region. von Mises stress remains high in the region where temperature gradients are high. von Mises stress follows similar to the trend of temperature decay around the cutting edges.
Seed Germination and Cuttings Growth of Piper Aduncum
NASA Astrophysics Data System (ADS)
Susanto, D.; Sudrajat; Suwinarti, W.; Amirta, R.
2018-04-01
Sirih hutan (Piper aduncum L) is one of group shurbs tropical species, has potential to be developed as raw material of biomass based electricity. The aim of this research was to know seed germination and cuttings growth of P. aduncum plant as the first step in cultivation of this plant. Observation of flowers and fruits were done in secondary forest, while seed germination and growth of shoot cuttings were done in the laboratory. The results showed that P. aduncum seeds can be germinated in a relatively short time of 17 to 25 days with a fairly high germination percentage of 90 ± 8.16% and germination rate of 4.7 ± 0.34%. The growth of seedlings at 2 months old was 4.78 ± 0.42 cm, plant height 3.97 ± 0.27 cm, and relative growth rate 0.33 ± 0.14%. The treatment of synthetic growth regulator had significant effect on shoot growth and root number on the plant stem cuttings. Preparation of seedlings ready to plant in a generative and vegetative for cultivation of these plants in the experimental plot.
Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei
2015-10-02
The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals.
Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei
2015-01-01
The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals. PMID:28793597
Laser cutting: influence on morphological and physicochemical properties of polyhydroxybutyrate.
Lootz, D; Behrend, D; Kramer, S; Freier, T; Haubold, A; Benkiesser, G; Schmitz, K P; Becher, B
2001-09-01
Polyhydroxybutyrate (PHB) is a biocompatible and resorbable implant material. For these reasons, it has been used for the fabrication of temporary stents, bone plates, nails and screws (Peng et al. Biomaterials 1996;17:685). In some cases, the brittle mechanical properties of PHB homopolymer limit its application. A typical plasticizer, triethylcitrate (TEC), was used to overcome such limitations by making the material more pliable. In the past few years, CO2-laser cutting of PHB was used in the manufacturing of small medical devices such as stents. Embrittlement of plasticized PHB tubes has been observed, after laser machining. Consequently, the physicochemical and morphological properties of laser-processed surfaces and cut edges of plasticized polymer samples were examined to determine the extent of changes in polymer properties as a result of laser machining. These studies included determination of the depth of the laser-induced heat affected zone by polariscopy of thin polymer sections. Molecular weight changes and changes in the TEC content as a function of distance from the laser-cut edge were determined. In a preliminary test, the cellular response to the processed material was investigated by cell culture study of L929 mouse fibroblasts on laser-machined surfaces. The heat-affected zone was readily classified into four different regions with a total depth of about 60 to 100 microm (Klamp, Master Thesis, University of Rostock, 1998). These results correspond well with the chemical analysis and molecular weight measurements. Furthermore, it was found that cells grew preferentially on the laser-machined area. These findings have significant implications for the manufacture of medical implants from PHB by laser machining.
Mechanisms and FEM Simulation of Chip Formation in Orthogonal Cutting In-Situ TiB₂/7050Al MMC.
Xiong, Yifeng; Wang, Wenhu; Jiang, Ruisong; Lin, Kunyang; Shao, Mingwei
2018-04-15
The in-situ TiB₂/7050Al composite is a new kind of Al-based metal matrix composite (MMC) with super properties, such as low density, improved strength, and wear resistance. This paper, for a deep insight into its cutting performance, involves a study of the chip formation process and finite element simulation during orthogonal cutting in-situ TiB₂/7050Al MMC. With chips, material properties, cutting forces, and tool geometry parameters, the Johnson-Cook (J-C) constitutive equation of in-situ TiB₂/7050Al composite was established. Then, the cutting simulation model was established by applying the Abaqus-Explicit method, and the serrated chip, shear plane, strain rate, and temperature were analyzed. The experimental and simulation results showed that the obtained material's constitutive equation was of high reliability, and the saw-tooth chips occurred commonly under either low or high cutting speed and small or large feed rate. From result analysis, it was found that the mechanisms of chip formation included plastic deformation, adiabatic shear, shearing slip, and crack extension. In addition, it was found that the existence of small, hard particles reduced the ductility of the MMC and resulted in segmental chips.
Masiulionis, Virginia E; Weber, Roland Ws; Pagnocca, Fernando C
2013-12-01
It is generally accepted that material collected by leaf-cutting ants of the genus Acromyrmex consists solely of plant matter, which is used in the nest as substrate for a symbiotic fungus providing nutrition to the ants. There is only one previous report of any leaf-cutting ant foraging directly on fungal basidiocarps. Basidiocarps of Psilocybe coprophila growing on cow dung were actively collected by workers of Acromyrmex lobicornis in Santa Fé province, Argentina. During this behaviour the ants displayed typical signals of recognition and continuously recruited other foragers to the task. Basidiocarps of different stages of maturity were being transported into the nest by particular groups of workers, while other workers collected plant material. The collection of mature basidiocarps with viable spores by leaf-cutting ants in nature adds substance to theories relating to the origin of fungiculture in these highly specialized social insects.
Lepper-Blilie, A N; Berg, E P; Germolus, A J; Buchanan, D S; Berg, P T
2014-01-01
The objectives of this study were to educate consumers about value-added beef cuts and evaluate their palatability responses of a value cut and three traditional cuts. Three hundred and twenty-two individuals participated in the beef value cut education seminar series presented by trained beef industry educators. Seminar participants evaluated tenderness, juiciness, flavor, and overall like of four samples, bottom round, top sirloin, ribeye, and a value cut (Delmonico or Denver), on a 9-point scale. The ribeye and the value cut were found to be similar in all four attributes and differed from the top sirloin and bottom round. Correlations and regression analysis found that flavor was the largest influencing factor for overall like for the ribeye, value cut, and top sirloin. The value cut is comparable to the ribeye and can be a less expensive replacement. © 2013.
Depth-of-Interaction Compensation Using a Focused-Cut Scintillator for a Pinhole Gamma Camera
Alhassen, Fares; Kudrolli, Haris; Singh, Bipin; Kim, Sangtaek; Seo, Youngho; Gould, Robert G.; Nagarkar, Vivek V.
2011-01-01
Preclinical SPECT offers a powerful means to understand the molecular pathways of drug interactions in animal models by discovering and testing new pharmaceuticals and therapies for potential clinical applications. A combination of high spatial resolution and sensitivity are required in order to map radiotracer uptake within small animals. Pinhole collimators have been investigated, as they offer high resolution by means of image magnification. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the detection scintillator at steep angles, introducing parallax errors due to variable depth-of-interaction in scintillator material, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut (FC) scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus improve the system resolution. We performed the first experimental evaluation of a newly developed focused-cut scintillator. We scanned a Tc-99m source across the field of view of pinhole gamma camera with a continuous scintillator, a conventional “straight-cut” (SC) pixellated scintillator, and a focused-cut scintillator, each coupled to an electron-multiplying charge coupled device (EMCCD) detector by a fiber-optic taper, and compared the measured full-width half-maximum (FWHM) values. We show that the FWHMs of the focused-cut scintillator projections are comparable to the FWHMs of the thinner SC scintillator, indicating the effectiveness of the focused-cut scintillator in compensating parallax errors. PMID:21731108
Depth-of-Interaction Compensation Using a Focused-Cut Scintillator for a Pinhole Gamma Camera
NASA Astrophysics Data System (ADS)
Alhassen, Fares; Kudrolli, Haris; Singh, Bipin; Kim, Sangtaek; Seo, Youngho; Gould, Robert G.; Nagarkar, Vivek V.
2011-06-01
Preclinical SPECT offers a powerful means to understand the molecular pathways of drug interactions in animal models by discovering and testing new pharmaceuticals and therapies for potential clinical applications. A combination of high spatial resolution and sensitivity are required in order to map radiotracer uptake within small animals. Pinhole collimators have been investigated, as they offer high resolution by means of image magnification. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the detection scintillator at steep angles, introducing parallax errors due to variable depth-of-interaction in scintillator material, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut (FC) scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus improve the system resolution. We performed the first experimental evaluation of a newly developed focused-cut scintillator. We scanned a Tc-99 m source across the field of view of pinhole gamma camera with a continuous scintillator, a conventional “straight-cut” (SC) pixellated scintillator, and a focused-cut scintillator, each coupled to an electron-multiplying charge coupled device (EMCCD) detector by a fiber-optic taper, and compared the measured full-width half-maximum (FWHM) values. We show that the FWHMs of the focused-cut scintillator projections are comparable to the FWHMs of the thinner SC scintillator, indicating the effectiveness of the focused-cut scintillator in compensating parallax errors.
NASA Astrophysics Data System (ADS)
Lee, Dongkyoung; Mazumder, Jyotirmoy
2018-02-01
One of the challenges of the lithium-ion battery manufacturing process is the sizing of electrodes with good cut surface quality. Poor cut surface quality results in internal short circuits in the cells and significant heat generation. One of the solutions that may improve the cut quality with a high cutting speed is laser cutting due to its high energy concentration, fast processing time, high precision, small heat affected zone, flexible range of laser power and contact free process. In order to utilize the advantages of laser electrode cutting, understanding the physical phenomena for each material is crucial. Thus, this study focuses on the laser cutting of current collectors, such as pure copper and aluminum. A 3D self-consistent mathematical model for the laser cutting, including fluid flow, heat transfer, recoil pressure, multiple reflections, capillary and thermo-capillary forces, and phase changes, is presented and solved numerically. Simulation results for the laser cutting are analyzed in terms of penetration time, depth, width, and absorptivity, based on these selected laser parameters. In addition, melt pool flow, melt pool geometry and temperature distribution are investigated.
Szewczyk, Mariusz; Jesionek–Kupnicka, Dorota; Lipinski, Piotr; Różański, Waldemar
2014-01-01
Introduction The aim of this study is to compare the changes in the incision line of prostatic adenoma using a monopolar cutting electrode and holmium laser, as well as the assessment of associated tissue mass and volume loss of benign prostatic hyperplasia (BPH). Material and methods The material used in this study consisted of 74 preparations of prostatic adenoma obtained via open retropubic adenomectomy, with an average volume of 120.7 ml. The material obtained cut in vitro before fixation in formaldehyde. One lobe was cut using holmium laser, the other using a monopolar cutting electrode. After the incision was made, tissue mass and volume loss were evaluated. Thermocoagulation changes in the incision line were examinedunder light microscope. Results In the case of the holmium laser incision, the average tissue mass loss was 1.73 g, tissue volume loss 3.57 ml and the depth of thermocoagulation was 1.17 mm. When the monopolar cutting electrode was used average tissue mass loss was 0.807 g, tissue volume loss 2.48 ml and the depth of thermocoagulation was 0.19 mm. Conclusions Where holmium laser was used, it was observed that the layer of tissue with thermocoagulation changes was deeper than in the case of the monopolar cutting electrode. Moreover, it was noticed that holmium laser caused bigger tissue mass and volume loss than the cutting electrode. PMID:25247088
NASA Astrophysics Data System (ADS)
San Juan, M.; de la Iglesia, J. M.; Martín, O.; Santos, F. J.
2009-11-01
In despite of the important progresses achieved in the knowledge of cutting processes, the study of certain aspects has undergone the very limitations of the experimental means: temperature gradients, frictions, contact, etc… Therefore, the development of numerical models is a valid tool as a first approach to study of those problems. In the present work, a calculation model under Abaqus Explicit code is developed to represent the orthogonal cutting of AISI 4140 steel. A bidimensional simulation under plane strain conditions, which is considered as adiabatic due to the high speed of the material flow, is chosen. The chip separation is defined by means of a fracture law that allows complex simulations of tool penetration in the workpiece. The strong influence of friction on cutting is proved, therefore a very good definition of materials behaviour laws could be obtained, but an erroneous value of friction coefficient could notably reduce the reliability. Considering the difficulty of checking the friction models used in the simulation, from the tests carried out habitually, the most efficacious way to characterize the friction would be to combine simulation models with cutting tests.
Mechanical joining of materials with limited ductility: Analysis of process-induced defects
NASA Astrophysics Data System (ADS)
Jäckel, M.; Coppieters, S.; Hofmann, M.; Vandermeiren, N.; Landgrebe, D.; Debruyne, D.; Wallmersberger, T.; Faes, K.
2017-10-01
The paper shows experimental and numerical analyses of the clinching process of 6xxx series aluminum sheets in T6 condition and the self-pierce riveting process of an aluminum die casting. In the experimental investigations the damage behavior of the materials when using different tool parameters is analyzed. The focus of the numerical investigations is the damage prediction by a comparison of different damage criteria. Moreover, strength-and fatigue tests were carried out to investigate the influence of the joining process-induced damages on the strength properties of the joints.
Distribution of contact loads over the flank-land of the cutter with a rounded cutting edge
NASA Astrophysics Data System (ADS)
Kozlov, V.; Gerasimov, A.; Kim, A.
2016-04-01
In this paper, contact conditions between a tool and a workpiece material for wear-simulating turning by a cutter with a sharp-cornered edge and with a rounded cutting edge are analysed. The results of the experimental study of specific contact load distribution over the artificial flank wear-land of the cutter in free orthogonal turning of the disk from titanium alloy (Ti6Al2Mo2Cr), ductile (63Cu) and brittle (57Cu1Al3Mn) brasses are described. Investigations were carried out by the method of ‘split cutter’ and by the method of the artificial flank-land of variable width. The experiments with a variable feed rate and a cutting speed show that in titanium alloy machining with a sharp-cornered cutting edge the highest normal contact load (σh max = 3400…2200 MPa) is observed immediately at the cutting edge, and the curve has a horizontal region with the length of 0.2… 0.6 mm. At a distance from the cutting edge, the value of specific normal contact load is dramatically reduced to 1100…500 MPa. The character of normal contact load for a rounded cutting edge is different -it is uniform, and its value is approximately 2 times smaller compared to machining with a sharp-cornered cutting edge. In author’s opinion it is connected with generation of a seizure zone in a chip formation region and explains the capacity of highly worn-out cutting tools for titanium alloys machining. The paper analyses the distribution of tangential contact loads over the flank land, which pattern differs considerably for machining with a sharp-cornered edge and with a rounded cutting edge. Abbreviation and symbols: m/s - meter per second (cutting speed v); mm/r - millimeter per revolution (feed rate f); MPa - mega Pascal (specific contact load as a stress σ or τ) hf - the width of the flank wear land (chamfer) of the cutting tool, flank wear land can be natural or artificial like the one in this paper [mm]; xh - distance from the cutting edge on the surface of the flank-land [mm
Multi-stage FE simulation of hot ring rolling
NASA Astrophysics Data System (ADS)
Wang, C.; Geijselaers, H. J. M.; van den Boogaard, A. H.
2013-05-01
As a unique and important member of the metal forming family, ring rolling provides a cost effective process route to manufacture seamless rings. Applications of ring rolling cover a wide range of products in aerospace, automotive and civil engineering industries [1]. Above the recrystallization temperature of the material, hot ring rolling begins with the upsetting of the billet cut from raw stock. Next a punch pierces the hot upset billet to form a hole through the billet. This billet, referred to as preform, is then rolled by the ring rolling mill. For an accurate simulation of hot ring rolling, it is crucial to include the deformations, stresses and strains from the upsetting and piercing process as initial conditions for the rolling stage. In this work, multi-stage FE simulations of hot ring rolling process were performed by mapping the local deformation state of the workpiece from one step to the next one. The simulations of upsetting and piercing stages were carried out by 2D axisymmetric models using adaptive remeshing and element erosion. The workpiece for the ring rolling stage was subsequently obtained after performing a 2D to 3D mapping. The commercial FE package LS-DYNA was used for the study and user defined subroutines were implemented to complete the control algorithm. The simulation results were analyzed and also compared with those from the single-stage FE model of hot ring rolling.
Zhang, Lu; Oh, Youngjoo; Li, Hongyu; Baldwin, Ian T.; Galis, Ivan
2012-01-01
The role of the alternative respiratory pathway in the protection of plants against biotic stress was examined in transgenic tobacco (Nicotiana attenuata) plants (irAOX) silenced in the expression of ALTERNATIVE OXIDASE (AOX) gene. Wild-type and irAOX plants were independently challenged with (1) chewing herbivores (Manduca sexta), (2) piercing-sucking insects (Empoasca spp.), and (3) bacterial pathogens (Pseudomonas syringae pv tomato DC3000), showing that all these treatments can strongly elicit accumulation of AOX gene transcripts in wild-type plants. When N. attenuata chemical defenses and resistance were examined, irAOX plants showed wild-type levels of defense-related phytohormones, secondary metabolites, and resistance to M. sexta. In contrast, piercing-sucking leafhoppers (Empoasca spp.) caused more leaf damage and induced significantly higher salicylic acid levels in irAOX compared with wild-type plants in the field and/or glasshouse. Subsequently, irAOX plants accumulated lower levels of defense metabolites, 17-hydroxygeranyllinalool diterpene glycosides, caffeoylputrescine, and nicotine compared with wild-type plants under prolonged attack of Empoasca spp. in the glasshouse. Finally, an accelerated cell death phenotype was observed in irAOX plants infected with P. syringae, which correlated with higher levels of salicylic acid and hydrogen peroxide levels in pathogen-infected irAOX compared with wild-type leaves. Overall, the AOX-associated changes in phytohormone and/or redox levels appear to support the resistance of N. attenuata plants against cell piercing-sucking insects and modulate the progression of cell death in pathogen-infected tissues but are not effective against rapidly feeding specialist herbivore M. sexta. PMID:22961128
Optoacoustic monitoring of cutting efficiency and thermal damage during laser ablation.
Bay, Erwin; Douplik, Alexandre; Razansky, Daniel
2014-05-01
Successful laser surgery is characterized by a precise cut and effective hemostasis with minimal collateral thermal damage to the adjacent tissues. Consequently, the surgeon needs to control several parameters, such as power, pulse repetition rate, and velocity of movements. In this study we propose utilizing optoacoustics for providing the necessary real-time feedback of cutting efficiency and collateral thermal damage. Laser ablation was performed on a bovine meat slab using a Q-switched Nd-YAG laser (532 nm, 4 kHz, 18 W). Due to the short pulse duration of 7.6 ns, the same laser has also been used for generation of optoacoustic signals. Both the shockwaves, generated due to tissue removal, as well as the normal optoacoustic responses from the surrounding tissue were detected using a single broadband piezoelectric transducer. It has been observed that the rapid reduction in the shockwave amplitude occurs as more material is being removed, indicating decrease in cutting efficiency, whereas gradual decrease in the optoacoustic signal likely corresponds to coagulation around the ablation crater. Further heating of the surrounding tissue leads to carbonization accompanied by a significant shift in the optoacoustic spectra. Our results hold promise for real-time monitoring of cutting efficiency and collateral thermal damage during laser surgery. In practice, this could eventually facilitate development of automatic cut-off mechanisms that will guarantee an optimal tradeoff between cutting and heating while avoiding severe thermal damage to the surrounding tissues.
Hodges, Mary K.V.; Davis, Linda C.; Bartholomay, Roy C.
2018-01-30
In 1990, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy Idaho Operations Office, established the Lithologic Core Storage Library at the Idaho National Laboratory (INL). The facility was established to consolidate, catalog, and permanently store nonradioactive drill cores and cuttings from subsurface investigations conducted at the INL, and to provide a location for researchers to examine, sample, and test these materials.The facility is open by appointment to researchers for examination, sampling, and testing of cores and cuttings. This report describes the facility and cores and cuttings stored at the facility. Descriptions of cores and cuttings include the corehole names, corehole locations, and depth intervals available.Most cores and cuttings stored at the facility were drilled at or near the INL, on the eastern Snake River Plain; however, two cores drilled on the western Snake River Plain are stored for comparative studies. Basalt, rhyolite, sedimentary interbeds, and surficial sediments compose most cores and cuttings, most of which are continuous from land surface to their total depth. The deepest continuously drilled core stored at the facility was drilled to 5,000 feet below land surface. This report describes procedures and researchers' responsibilities for access to the facility and for examination, sampling, and return of materials.
Evaluating optical hazards from plasma arc cutting.
Glassford, Eric; Burr, Gregory
2018-01-01
The Health Hazard Evaluation Program of the National Institute for Occupational Safety and Health evaluated a steel building materials manufacturer. The employer requested the evaluation because of concerns about optical radiation hazards from a plasma arc cutting system and the need to clarify eye protection requirements for plasma operators, other employees, and visitors. The strength of the ultraviolet radiation, visible radiation (light), and infrared radiation generated by the plasma arc cutter was measured at various distances from the source and at different operating amperages. Investigators also observed employees performing the plasma arc cutting. Optical radiation above safe levels for the unprotected eyes in the ultraviolet-C, ultraviolet-B, and visible light ranges were found during plasma arc cutting. In contrast, infrared and ultraviolet-A radiation levels during plasma arc cutting were similar to background levels. The highest non-ionizing radiation exposures occurred when no welding curtains were used. A plasma arc welding curtain in place did not eliminate optical radiation hazards to the plasma arc operator or to nearby employees. In most instances, the measured intensities for visible light, UV-C, and UV-B resulted in welding shade lens numbers that were lower than those stipulated in the OSHA Filter Lenses for Protection Against Radiant Energy table in 29 CFR 1910.133(a)(5). [1] Investigators recommended using a welding curtain that enclosed the plasma arc, posting optical radiation warning signs in the plasma arc cutter area, installing audible or visual warning cues when the plasma arc cutter was operating, and using welding shades that covered the plasma arc cutter operator's face to protect skin from ultraviolet radiation hazards.
The effect of cutting parameters on the performance of ZTA-MgO cutting tool
NASA Astrophysics Data System (ADS)
Ali, A. M.; Hamidon, N. E.; Zaki, N. K. M.; Mokhtar, S.; Azhar, A. Z. A.; Bahar, R.; Ahmad, Z. A.
2018-01-01
The effect of cutting parameters on the performances of ZTA-MgO ceramic cutting tool investigated. The aim of this project is to discover the effect of cutting speed and feedrate on the performance of the ZTA-MgO cutting tool via wear and surface roughness measurement. CNC turning machining performed using the cutting speed, Vc range from 354 to 471 m/min and the feed rate, f 0.1, 0.3 and 0.5 mm/rev while the depth of cut, d is kept constant at 0.2 mm. The flank wear, crater wear, and chipping were measured accordingly using optical microscope, Matlab programming and SEM. Surface roughness of machined stainless steel 316L surface were measured using the surface roughness tester (Mitutoyo MTR097-8. The result showing the increment trend of flank wear with increment of cutting speed and feed rate with the lowest value of flank wear, 0.061 mm achieved at Vc = 354 m/min and f = 0.1 mm/rev while the highest flank wear is 0.480 mm at Vc = 471 m/min and f = 0.5 mm/rev. The increasing pattern also observed in the crater wear results. The lowest area of crater wear is 2.2736 mm2 at Vc = 354 m/min and f = 0.1 mm/rev while the highest value is 4.8524 mm2 at Vc = 471 m/min and f = 0.5 mm/rev. As for the surface roughness, the higher the cutting speed, the lower the average roughness (Ra) value. Cutting speed, Vc = 471 m/min with f = 0.1 mm/rev has the lowest value of Ra which is 0.72µm.
Effect of cutting parameters on strain hardening of nickel–titanium shape memory alloy
NASA Astrophysics Data System (ADS)
Wang, Guijie; Liu, Zhanqiang; Ai, Xing; Huang, Weimin; Niu, Jintao
2018-07-01
Nickel–titanium shape memory alloy (SMA) has been widely used as implant materials due to its good biocompatibility, shape memory property and super-elasticity. However, the severe strain hardening is a main challenge due to cutting force and temperature caused by machining. An orthogonal experiment of nickel–titanium SMA with different milling parameters conditions was conducted in this paper. On the one hand, the effect of cutting parameters on work hardening is obtained. It is found that the cutting speed has the most important effect on work hardening. The depth of machining induced layer and the degree of hardening become smaller with the increase of cutting speed when the cutting speed is less than 200 m min‑1 and then get larger with further increase of cutting speed. The relative intensity of diffraction peak increases as the cutting speed increase. In addition, all of the depth of machining induced layer, the degree of hardening and the relative intensity of diffraction peak increase when the feed rate increases. On the other hand, it is found that the depth of machining induced layer is closely related with the degree of hardening and phase transition. The higher the content of austenite in the machined surface is, the higher the degree of hardening will be. The depth of the machining induced layer increases with the degree of hardening increasing.
Li, Chen; Habler, Gerlinde; Baldwin, Lisa C; Abart, Rainer
2018-01-01
Focused ion beam (FIB) sample preparation technique in plan-view geometry allows direct correlations of the atomic structure study via transmission electron microscopy with micrometer-scale property measurements. However, one main technical difficulty is that a large amount of material must be removed underneath the specimen. Furthermore, directly monitoring the milling process is difficult unless very large material volumes surrounding the TEM specimen site are removed. In this paper, a new cutting geometry is introduced for FIB lift-out sample preparation with plan-view geometry. Firstly, an "isolated" cuboid shaped specimen is cut out, leaving a "bridge" connecting it with the bulk material. Subsequently the two long sides of the "isolated" cuboid are wedged, forming a triangular prism shape. A micromanipulator needle is used for in-situ transfer of the specimen to a FIB TEM grid, which has been mounted parallel with the specimen surface using a simple custom-made sample slit. Finally, the grid is transferred to the standard FIB grid holder for final thinning with standard procedures. This new cutting geometry provides clear viewing angles for monitoring the milling process, which solves the difficulty of judging whether the specimen has been entirely detached from the bulk material, with the least possible damage to the surrounding materials. With an improved success rate and efficiency, this plan-view FIB lift-out specimen preparation technique should have a wide application for material science. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
CUTS FOR MTR EXCAVATION ILLUSTRATE SEDIMENTARY MANTLE OF SOIL AND ...
CUTS FOR MTR EXCAVATION ILLUSTRATE SEDIMENTARY MANTLE OF SOIL AND GRAVEL OVERLAYING LAVA ROCK FIFTY FEET BELOW. SAGEBRUSH HAS BEEN SCOURED FROM REST OF SITE. CAMERA PROBABLY FACES SOUTHWEST. INL NEGATIVE NO. 67. Unknown Photographer, 6/4/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Cutting process simulation of flat drill
NASA Astrophysics Data System (ADS)
Tamura, Shoichi; Matsumura, Takashi
2018-05-01
Flat drills at a point angle of 180 deg. have recently been developed for drilling of automobile parts with the inclination of the workpiece surfaces. The paper studies the cutting processes of the flat drills in the analytical simulation. A predictive force model is applied to simulation of the cutting force with the chip flow direction. The chip flow model is piled up with orthogonal cuttings in the plane containing the cutting velocities and the chip flow velocities, in which the chip flow direction is determined to minimize the cutting energy. Then, the cutting force is predicted in the determined in the chip flow model. The typical cutting force of the flat drill is discussed with comparing to that of the standard drill. The typical differences are confirmed in the cutting force change during the tool engagement and disengagement. The cutting force, then, is simulated in drilling for an inclined workpiece with a flat drill. The horizontal components in the cutting forces are simulated with changing the inclination angle of the plate. The horizontal force component in the flat drilling is stable to be controlled in terms of the machining accuracy and the tool breakage.
Conceptual models of the formation of acid-rock drainage at road cuts in Tennessee
Bradley, Michael W.; Worland, Scott; Byl, Tom
2015-01-01
Pyrite and other minerals containing sulfur and trace metals occur in several rock formations throughout Middle and East Tennessee. Pyrite (FeS2) weathers in the presence of oxygen and water to form iron hydroxides and sulfuric acid. The weathering and interaction of the acid on the rocks and other minerals at road cuts can result in drainage with low pH (< 4) and high concentrations of trace metals. Acid-rock drainage can cause environmental problems and damage transportation infrastructure. The formation and remediation of acid-drainage from roads cuts has not been researched as thoroughly as acid-mine drainage. The U.S Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to better understand the geologic, hydrologic, and biogeochemical factors that control acid formation at road cuts. Road cuts with the potential for acid-rock drainage were identifed and evaluated in Middle and East Tennessee. The pyrite-bearing formations evaluated were the Chattanooga Shale (Devonian black shale), the Fentress Formation (coal-bearing), and the Precambrian Anakeesta Formation and similar Precambrian rocks. Conceptual models of the formation and transport of acid-rock drainage (ARD) from road cuts were developed based on the results of a literature review, site reconnaissance, and the initial rock and water sampling. The formation of ARD requires a combination of hydrologic, geochemical, and microbial interactions which affect drainage from the site, acidity of the water, and trace metal concentrations. The basic modes of ARD formation from road cuts are; 1 - seeps and springs from pyrite-bearing formations and 2 - runoff over the face of a road cut in a pyrite-bearing formation. Depending on site conditions at road cuts, the basic modes of ARD formation can be altered and the additional modes of ARD formation are; 3 - runoff over and through piles of pyrite-bearing material, either from construction or breakdown
NASA Astrophysics Data System (ADS)
Byeon, J. H.; Ahmed, F.; Ko, T. J.; lee, D. K.; Kim, J. S.
2018-03-01
As the industry develops, miniaturization and refinement of products are important issues. Precise machining is required for cutting, which is a typical method of machining a product. The factor determining the workability of the cutting process is the material of the tool. Tool materials include carbon tool steel, alloy tool steel, high-speed steel, cemented carbide, and ceramics. In the case of a carbide material, the smaller the particle size, the better the mechanical properties with higher hardness, strength and toughness. The specific heat, density, and thermal diffusivity are also changed through finer particle size of the material. In this study, finite element analysis was performed to investigate the change of heat generation and cutting power depending on the physical properties (specific heat, density, thermal diffusivity) of tool material. The thermal conductivity coefficient was obtained by measuring the thermal diffusivity, specific heat, and density of the material (180 nm) in which the particle size was finer and the particle material (0.05 μm) in the conventional size. The coefficient of thermal conductivity was calculated as 61.33 for 180nm class material and 46.13 for 0.05μm class material. As a result of finite element analysis using this value, the average temperature of exothermic heat of micronized particle material (180nm) was 532.75 °C and the temperature of existing material (0.05μm) was 572.75 °C. Cutting power was also compared but not significant. Therefore, if the thermal conductivity is increased through particle refinement, the surface power can be improved and the tool life can be prolonged by lowering the temperature generated in the tool during machining without giving a great influence to the cutting power.
NASA Astrophysics Data System (ADS)
Wada, Tadahiro; Hanyu, Hiroyuki
2017-11-01
Polycrystalline cubic boron nitride compact (cBN) is effective tool material for cutting hardened steel. In addition to coated high speed steel and coated cemented carbide that has long been used for cutting materials, more recently, coated cBN has also been used. In this study, to verify the effectiveness of the (Ti,Al)N-coated cBN, which is formed on the substrate of cBN by the physical vapor deposition method, the hardened steel was turned with the (Ti,Al)N-coated cBN tool at a cutting speed of 3.33, 5.00 m/s, a feed rate of 0.3 mm/rev and a depth of cut of 0.1 mm. Furthermore, the uncoated cBN, which was the substrate of the (Ti,Al)N-coated, was also used. The tool wear of the cBN tools was experimentally investigated. The following results were obtained: (1) The contact area between the rake face and the chip of the (Ti,.Al)N-coated cBN tool was smaller than that of the uncoated cBN tool. (2) The tool wear of the (Ti,Al)N-coated cBN was smaller than that of uncoated cBN. (3) The wear progress of the (Ti,Al)N-coated cBN with the main element phase of the TiCN-Al, was slower than that of the (Ti,Al)N-coated cBN with the main element phase of the TiN-Al. (4) In the case of the high cutting speed of 5.00 m/s, the tool wear of the (Ti,Al)N-coated cBN was also smaller than that of uncoated cBN. The above results clarify that the (Ti,Al)N-coated cBN can be used as a tool material in high feed cutting of hardened steel.
Simulation of Temperature Field Distribution for Cutting the Temperated Glass by Ultraviolet Laser
NASA Astrophysics Data System (ADS)
Yang, B. J.; He, Y. C.; Dai, F.; Lin, X. C.
2017-03-01
The finite element software ANSYS was adopted to simulate the temperature field distribution for laser cutting tempered glass, and the influence of different process parameters, including laser power, glass thickness and cutting speed, on temperature field distribution was studied in detail. The results show that the laser power has a greater influence on temperature field distribution than other paremeters, and when the laser power gets to 60W, the highest temperature reaches 749°C, which is higher than the glass softening temperature. It reflects the material near the laser spot is melted and the molten slag is removed by the high-energy water beam quickly. Finally, through the water guided laser cutting tempered glass experiment the FEM theoretical analysis was verified.
Volatile compound in cut and un-cut flowers of tetraploid Freesia hybrida.
Ao, Man; Liu, Baofeng; Wang, Li
2013-01-01
The flower volatile compounds (FVCs) of two tetraploid Freesia hybrida (pink-yellow and yellow) cultivars and their cut flowers were analysed by headspace solid-phase microextraction combined with gas chromatography-mass spectrometry. Twelve FVCs were identified in the pink-yellow cultivar, with linalool as the major compound; 30 FVCs were identified in the yellow cultivar, with linalool and terpineol as the two major compounds. The FVCs (>1%) of the two cut flower cultivars were very similar to that of the un-cut flowers, and no significant difference was observed.
ADVANCED CUTTINGS TRANSPORT STUDY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefan Miska; Troy Reed; Ergun Kuru
2004-09-30
The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimizationmore » of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured
Periodic domain inversion in x-cut single-crystal lithium niobate thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackwitz, P., E-mail: peterm@mail.upb.de; Rüsing, M.; Berth, G.
2016-04-11
We report the fabrication of periodically poled domain patterns in x-cut lithium niobate thin-film. Here, thin films on insulator have drawn particular attention due to their intrinsic waveguiding properties offering high mode confinement and smaller devices compared to in-diffused waveguides in bulk material. In contrast to z-cut thin film lithium niobate, the x-cut geometry does not require back electrodes for poling. Further, the x-cut geometry grants direct access to the largest nonlinear and electro-optical tensor element, which overall promises smaller devices. The domain inversion was realized via electric field poling utilizing deposited aluminum top electrodes on a stack of LNmore » thin film/SiO{sub 2} layer/Bulk LN, which were patterned by optical lithography. The periodic domain inversion was verified by non-invasive confocal second harmonic microscopy. Our results show domain patterns in accordance to the electrode mask layout. The second harmonic signatures can be interpreted in terms of spatially, overlapping domain filaments which start their growth on the +z side.« less
Ercoli, Carlo; Rotella, Mario; Funkenbusch, Paul D; Russell, Scott; Feng, Changyong
2009-04-01
Standards to test the cutting efficiency of dental rotary cutting instruments are either nonexistent or inappropriate, and knowledge of the factors that affect their cutting performance is limited. Therefore, rotary cutting instruments for crown preparation are generally marketed with weak or unsupported claims of superior performance. The purpose of this study was to examine the cutting behavior of a wide selection of rotary cutting instruments under carefully controlled and reproducible conditions with an air-turbine handpiece. Ten groups of rotary cutting instruments (n=30) designed for tooth preparation were selected: 9 diamond rotary cutting instruments (7 multi-use, 2 disposable) and 1 carbide bur. One bur per group was imaged with a scanning electron microscope (SEM) at different magnifications. Macor blocks (n=75) were used as a substrate, and 4 cuts were made on each specimen, using a new rotary cutting instrument each time, for a total of 300 cuts. The cuts were performed with an air-turbine handpiece (Midwest Quiet Air). A computer-controlled, custom-made testing apparatus was used to monitor all sensors and control the cutting action. The data were analyzed to compare the correlation of rotary cutting instrument type, grit, amount of pressure, cutting rate, revolutions per minute (rpm), temperature, and type of handpiece, using 1-way ANOVA and Tukey's Studentized Range test (alpha=.05). Compared to the baseline temperature, all rotary cutting instruments showed a reduction of temperature in the simulated pulp chamber. The Great White Ultra (carbide bur) showed a significantly higher rate of advancement (0.15 mm/s) and lower applied load (106.46 g) and rpm (304,375.97). Tooth preparation with an adequate water flow does not cause harmful temperature changes in the pulp chamber, regardless of rotary cutting instrument type. The tested carbide bur showed greater cutting efficiency than all diamond rotary cutting instruments.
NASA Astrophysics Data System (ADS)
Azmi, A. I.; Syahmi, A. Z.; Naquib, M.; Lih, T. C.; Mansor, A. F.; Khalil, A. N. M.
2017-10-01
This article presents an approach to evaluate the effects of different machining conditions on the specific cutting energy of carbon fibre reinforced polymer composites (CFRP). Although research works in the machinability of CFRP composites have been very substantial, the present literature rarely discussed the topic of energy consumption and the specific cutting energy. A series of turning experiments were carried out on two different CFRP composites in order to determine the power and specific energy constants and eventually evaluate their effects due to the changes in machining conditions. A good agreement between the power and material removal rate using a simple linear relationship. Further analyses revealed that a power law function is best to describe the effect of feed rate on the changes in the specific cutting energy. At lower feed rate, the specific cutting energy increases exponentially due to the nature of finishing operation, whereas at higher feed rate, the changes in specific cutting energy is minimal due to the nature of roughing operation.
Kasahara, Yusuke; Kawana, Hiromasa; Usuda, Shin; Ohnishi, Kouhei
2012-01-01
Background Drilling is used in the medical field, especially in oral surgery and orthopaedics. In recent years, oral surgery involving dental implants has become more common. However, the risky drilling process causes serious accidents. To prevent these accidents, supporting systems such as robotic drilling systems are required. Methods A telerobotic-assisted drilling system is proposed. An acceleration-based four-channel bilateral control system is implemented in linear actuators in a master–slave system for drill feeding. A reaction force observer is used instead of a force sensor for measuring cutting force. Cutting force transmits from a cutting material to a surgeon, who may feel a static cutting resistance force and vigorous cutting vibrations, via the master–slave system. Moreover, position scaling and force scaling are achieved. Scaling functions are used to achieve precise drilling and hazard detection via force sensation. Results Cutting accuracy and reproducibility of the cutting force were evaluated by angular velocity/position error and frequency analysis of the cutting force, respectively, and errors were > 2.0 rpm and > 0.2 mm, respectively. Spectrum peaks of the cutting vibration were at the theoretical vibration frequencies of 30, 60 and 90 Hz. Conclusions The proposed telerobotic-assisted drilling system achieved precise manipulation of the drill feed and vivid feedback from the cutting force. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22271710
Formative Evaluation Information from Scripts, Scratch Tracks, and Rough Cuts: A Comparison.
ERIC Educational Resources Information Center
Burton, John K.; Aversa, Frances M.
1979-01-01
To assess how early in the development of content materials for a televised course learner review should occur, data were gathered from adult students who reviewed either the script, scratch track audiotape, or rough cut videotape for a course on Japan. (Author/JEG)
Influence of cutting data on surface quality when machining 17-4 PH stainless steel
NASA Astrophysics Data System (ADS)
Popovici, T. D.; Dijmărescu, M. R.
2017-08-01
The aim of the research presented in this paper is to analyse the cutting data influence upon surface quality for 17-4 PH stainless steel milling machining. The cutting regime parameters considered for the experiments were established using cutting regimes from experimental researches or from industrial conditions as basis, within the recommended ranges. The experimental program structure was determined by taking into account compatibility and orthogonality conditions, minimal use of material and labour. The machined surface roughness was determined by measuring the Ra roughness parameter, followed by surface profile registration in the form of graphics which were saved on a computer with MarSurf PS1Explorer software. Based on Ra roughness parameter, maximum values were extracted from these graphics and the influence charts of the cutting regime parameters upon surface roughness were traced using Microsoft Excel software. After a thorough analysis of the resulting data, relevant conclusions were drawn, presenting the interdependence between the surface roughness of the machined 17-4 PH samples and the cutting data variation.
On the Gas Dynamics of Inert-Gas-Assisted Laser Cutting of Steel Plate
NASA Astrophysics Data System (ADS)
Brandt, A. D.; Settles, G. S.; Scroggs, S. D.
1996-11-01
Laser beam cutting of sheet metal requires an assist gas to blow away the molten material. Since the assist-gas dynamics influences the quality and speed of the cut, the orientation of the gas nozzle with respect to the kerf is also expected to be important. A 1 kW cw CO2 laser with nitrogen assist gas was used to cut mild steel sheet of 1 to 4 mm thickness, using a sonic coaxial nozzle as a baseline. Off-axis nozzles were oriented from 20 deg to 60 deg from normal with exit Mach numbers from 1 to 2.4. Results showed maximum cutting speed at a 40 deg nozzle orientation. Shadowgrams of a geometrically-similar model kerf then revealed a separated shock wave-boundary layer interaction within the kerf for the (untilted) coaxial nozzle case. This was alleviated, resulting in a uniform supersonic flow throughout the kerf and consequent higher cutting speeds, by tilting the nozzle between 20 deg and 45 deg from the normal. This result did not depend upon the exit Mach number of the nozzle. (Research supported by NSF Grant DMI-9400119.)
NASA Astrophysics Data System (ADS)
Zeqiri, F.; Alkan, M.; Kaya, B.; Toros, S.
2018-01-01
In this paper, the effects of cutting parameters on cutting forces and surface roughness based on Taguchi experimental design method are determined. Taguchi L9 orthogonal array is used to investigate the effects of machining parameters. Optimal cutting conditions are determined using the signal/noise (S/N) ratio which is calculated by average surface roughness and cutting force. Using results of analysis, effects of parameters on both average surface roughness and cutting forces are calculated on Minitab 17 using ANOVA method. The material that was investigated is Inconel 625 steel for two cases with heat treatment and without heat treatment. The predicted and calculated values with measurement are very close to each other. Confirmation test of results showed that the Taguchi method was very successful in the optimization of machining parameters for maximum surface roughness and cutting forces in the CNC turning process.
Cutting efficiency of four different rotary nickel: Titanium instruments
Cecchin, Doglas; de Sousa-Neto, Manoel Damião; Pécora, Jesus Djalma; Gariba-Silva, Ricardo
2011-01-01
Aim: The aim of this study was to evaluate the cutting efficiency of rotary nickel-titanium (NiTi) instruments K3, NiTi Tee, Profile, and Quantec with taper size 04/25. Materials and Methods: The number of samples was 10 for each group (n = 10). The cutting efficiency was measured by the mass loss from each acrylic resin block after instrumentation of a simulated canal using the Crown-down technique. Results: The analysis of variance (ANOVA) showed that there was a statistically significant difference among the studied groups. The Tukey's test showed that the acrylic resin blocks prepared with instruments K3 (0.00369 ± 0.00022), NiTi Tee (0.00368 ± 0.00023), and Profile (0.00351 ± 0.00026) presented the greatest mass loss, showing no statistically significant difference among them (P < 0.05). The lowest mass loss was found in the blocks prepared with Quantec instruments (0.00311 ± 0.0003) (P < 0.05). Conclusions: It could be concluded that the K3, NiTi Tee, and Profile instruments presented a greater cutting efficiency than the Quantec instruments. PMID:21814349
NASA Technical Reports Server (NTRS)
Mcsmith, D. D.; Richardson, J. I. (Inventor)
1984-01-01
A hand held hydraulic cutting tool was developed which is particularly useful in deactivating ejection seats in military aircraft rescue operations. The tool consists primarily of a hydraulic system composed of a fluid reservoir, a pumping piston, and an actuator piston. Mechanical cutting jaws are attached to the actuator piston rod. The hydraulic system is controlled by a pump handle. As the pump handle is operated the actuator piston rod is forced outward and thus the cutting jaws are forced together. The frame of the device is a flexible metal tubing which permits easy positioning of the tool cutting jaws in remote and normally inaccessible locations. Bifurcated cutting edges ensure removal of a section of the tubing or cable to thereby reduce the possibility of accidental reactivation of the tubing or cable being severed.
Method and device for stand-off laser drilling and cutting
Copley, John A.; Kwok, Hoi S.; Domankevitz, Yacov
1989-09-26
A device for perforating material and a method of stand-off drilling using a laser. In its basic form a free-running laser beam creates a melt on the target and then a Q-switched short duration pulse is used to remove the material through the creation of a laser detonation wave. The advantage is a drilling/cutting method capable of working a target at lengthy stand-off distance. The device may employ 2 lasers or a single one operated in a free-running/Q-switched dual mode.
Granular rheology: measuring boundary forces with laser-cut leaf springs
NASA Astrophysics Data System (ADS)
Tang, Zhu; Brzinski, Theodore A.; Daniels, Karen E.
2017-06-01
In granular physics experiments, it is a persistent challenge to obtain the boundary stress measurements necessary to provide full a rheological characterization of the dynamics. Here, we describe a new technique by which the outer boundary of a 2D Couette cell both confines the granular material and provides spatially- and temporally- resolved stress measurements. This key advance is enabled by desktop laser-cutting technology, which allows us to design and cut linearly-deformable walls with a specified spring constant. By tracking the position of each segment of the wall, we measure both the normal and tangential stress throughout the experiment. This permits us to calculate the amount of shear stress provided by basal friction, and thereby determine accurate values of μ(I).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Curb-cut. 910.57 Section 910... DEVELOPMENT AREA Glossary of Terms § 910.57 Curb-cut. Curb-cut means that portion of the curb and sidewalk over which vehicular access is allowed. The number of access lanes for each curb-cut shall be specified...
Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun
2015-12-01
Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.
CUTTING AND WEDGING JACKET REMOVER
Freedman, M.; Raynor, S.
1959-04-01
A tool is presented for stripping cladded jackets from fissionable fuel elements. The tool is a tube which fits closely around the jacket and which has two cutting edges at opposite sides of one end. These cutting edges are adjusted to penetrate only the jacket so that by moving the edges downward the jacket is cut into two pieces.
NASA Astrophysics Data System (ADS)
Kovacs, S.; Beier, T.; Woestmann, S.
2017-09-01
The demands on materials for automotive applications are steadily increasing. For chassis components, the trend is towards thinner and higher strength materials for weight and cost reduction. In view of attainable strengths of up to 1200 MPa for hot rolled materials, certain aspects need to be analysed and evaluated in advance in the development process using these materials. Collars in particular, for example in control arms, have been in focus for part and process design. Issues concerning edge and surface cracks are observed due to improper geometry and process layout. The hole expansion capability of the chosen material grade has direct influence on the achievable collar height. In general, shear cutting reduces the residual formability of blank edges and the hole expansion capability. In this paper, using the example of the complex phase steel CP-W® 800 of thyssenkrupp, it is shown how a suitable geometry of a collar and optimum shear cutting parameters can be chosen.
Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter; Boomsma, Jacobus J
2010-12-31
Leaf-cutting (attine) ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth. We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in Acromyrmex echinatior leaf-cutting ants. Seven (21%) of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade. Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by Acromyrmex leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to those normally found in phytopathogens.
Laser Cutting of Multilayered Kevlar Plates
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Al-Sulaiman, F.; Karakas, C.; Ahsan, M.
2007-12-01
Laser cutting of Kevlar plates, consisting of multilayered laminates, with different thicknesses are carried out. A mathematical model is developed to predict the kerf width, thermal efficiency, and specific energy requirements during cutting. Optical microscopy and Scanning Electron Microscopy (SEM) are employed to obtain the micrographs of the cutting sections. The kerf width size is measured and compared with the predictions. A factorial analysis is carried out to assess the affecting parameters on the mean kerf width and dimensionless damage sizes. It is found that the kerf width and damage sizes changes sharply when increasing cutting speed from 0.03 to 0.08 m/s. Thermal efficiency of the cutting process increases with increasing thickness and cutting speed while specific energy reduces with increasing thickness. The main effects of cutting parameters are found to be significant on the mean kerf width and dimensionless damage sizes, which is more pronounced for the workpiece bottom surface, where locally distributed char formation and sideways burning are observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dougherty, Thomas J
A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.
Corner-cutting mining assembly
Bradley, John A.
1983-01-01
A mining assembly includes a primary rotary cutter mounted on one end of a support shaft and four secondary rotary cutters carried on the same support shaft and positioned behind the primary cutters for cutting corners in the hole cut by the latter.
ALPS yield optimization cutting program
P. Klinkhachorn; J.P. Franklin; Charles W. McMillin; H.A. Huber
1989-01-01
This paper reports ongoing work on a series of computer programs developed to automate hardwood lumber processing in a furniture roughmill. The program computes the placement of cuttings on lumber, based on a description of each board in terms of shape and defect location, and a cutting bill. These results are suitable for use with a high-power laser to cut the parts...
Bae, Jin-Hyuk; Yi, Jaeyoung; Kim, Sungtae; Shim, June-Sung; Lee, Keun-Woo
2014-01-01
Cutting efficiency is one of the most important factors to consider when a specific dental diamond rotary instrument is selected. However, the selection of a dental diamond rotary instrument is based on clinical experience rather than any scientific evidence. The purpose of this study was to identify how the cutting efficiency of different types of dental diamond rotary instrument changed with repeated cuts and disinfection. Four types of diamond rotary instrument from 2 dental manufacturers (Shofu, Jin Dental) were investigated with a high-speed air-turbine handpiece. The groups were as follows: S cham group (n=10): chamfer design from Shofu; J cham group (n=10): chamfer design from Jin Dental; S thin group (n=10): thin tapered design from Shofu; J thin group (n=10): thin tapered design from Jin Dental. Changes in the cutting efficiency of diamond rotary instruments on glass ceramic blocks were measured after repeated cuts. Changes in cutting efficiency also were measured for 30 diamond rotary instruments, the same type as those used in group J cham after disinfection with ethylene oxide gas, immersion in solution, or autoclaving. One-way ANOVA, 2-way ANOVA, and repeated-measures ANOVA were used to identify differences in cutting efficiency, in total cutting efficiency, and change trend in cutting efficiency (α=.05). The Tukey honestly significant difference method was used for the post hoc tests. The principal metal components of the diamond rotary instruments were detected with x-ray spectrometry. The mean (standard deviation [SD]) total cutting efficiency after 10 cuts in the 4 groups was in the following order: J cham group (0.210 ± 0.064 g/min) > S cham group (0.170 ± 0.064 g/min) > J thin group (0.130 ± 0.042 g/min) > S thin group (0.010 ± 0.040 g/min) (P<.05).The decrease in the cutting efficiency was greatest after the first cut. The cutting efficiency was not influenced by repeated disinfection. The cutting efficiencies of diamond rotary instruments
NASA Astrophysics Data System (ADS)
Zhang, G. Q.; To, S.
2014-08-01
Cutting force and its power spectrum analysis was thought to be an effective method monitoring tool wear in many cutting processes and a significant body of research has been conducted on this research area. However, relative little similar research was found in ultra-precision fly cutting. In this paper, a group of experiments were carried out to investigate the cutting forces and its power spectrum characteristics under different tool wear stages. Result reveals that the cutting force increases with the progress of tool wear. The cutting force signals under different tool wear stages were analyzed using power spectrum analysis. The analysis indicates that a characteristic frequency does exist in the power spectrum of the cutting force, whose power spectral density increases with the increasing of tool wear level, this characteristic frequency could be adopted to monitor diamond tool wear in ultra-precision fly cutting.
A Cut-and-Paste Approach to 3D Graphene-Oxide-Based Architectures.
Luo, Chong; Yeh, Che-Ning; Baltazar, Jesus M Lopez; Tsai, Chao-Lin; Huang, Jiaxing
2018-04-01
Properly cut sheets can be converted into complex 3D structures by three basic operations including folding, bending, and pasting to render new functions. Folding and bending are extensively employed in crumpling, origami, and pop-up fabrications for 3D structures. Pasting joins different parts of a material together, and can create new geometries that are fundamentally unattainable by folding and bending. However, it has been much less explored, likely due to limited choice of weldable thin film materials and residue-free glues. Here it is shown that graphene oxide (GO) paper is one such suitable material. Stacked GO sheets can be readily loosened up and even redispersed in water, which upon drying, restack to form solid structures. Therefore, water can be utilized to heal local damage, glue separated pieces, and release internal stress in bent GO papers to fix their shapes. Complex and dynamic 3D GO architectures can thus be fabricated by a cut-and-paste approach, which is also applicable to GO-based hybrid with carbon nanotubes or clay sheets. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wei, J.; Ye, Y.; Sun, Z.; Liu, L.; Zou, G.
2016-05-01
Femtosecond laser beam cutting is becoming widely used to meet demands for increasing accuracy in micro-machining. In this paper, the effects of processing parameters in femtosecond laser beam cutting on the kerf size and microstructure in Inconel 738 have been investigated. The defocus, pulse width and scanning speed were selected to study the controllability of the cutting process. Adjusting and matching the processing parameters was a basic enhancement method to acquire well defined kerf size and the high-quality ablation of microstructures, which has contributed to the intensity clamping effect. The morphology and chemical compositions of these microstructures on the cut surface have been characterized by a scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Additionally, the material removal mechanism and oxidation mechanism on the Inconel 738 cut surface have also been discussed on the basis of the femtosecond laser induced normal vaporization or phase explosion, and trapping effect of the dangling bonds.
Possibilities of Laser Processing of Paper Materials
NASA Astrophysics Data System (ADS)
Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi
Nowadays, lasers are applied in many industrial processes: the most developed technologies include such processes as laser welding, hybrid welding, laser cutting of steel, etc. In addition to laser processing of metallic materials, there are also many industrial applications of laser processing of non-metallic materials, like laser welding of polymers, laser marking of glass and laser cutting of wood-based materials. It is commonly known that laser beam is suitable for cutting of paper materials as well as all natural wood-fiber based materials. This study reveals the potential and gives overview of laser application in processing of paper materials. In 1990's laser technology increased its volume in papermaking industry; lasers at paper industry gained acceptance for different perforating and scoring applications. Nowadays, with reduction in the cost of equipment and development of laser technology (especially development of CO2 technology), laser processing of paper material has started to become more widely used and more efficient. However, there exists quite little published research results and reviews about laser processing of paper materials. In addition, forest industry products with pulp and paper products in particular are among major contributors for the Finnish economy with 20% share of total exports in the year 2013. This has been the standpoint of view and motivation for writing this literature review article: when there exists more published research work, knowledge of laser technology can be increased to apply it for processing of paper materials.
Performance analysis of cutting graphite-epoxy composite using a 90,000psi abrasive waterjet
NASA Astrophysics Data System (ADS)
Choppali, Aiswarya
Graphite-epoxy composites are being widely used in many aerospace and structural applications because of their properties: which include lighter weight, higher strength to weight ratio and a greater flexibility in design. However, the inherent anisotropy of these composites makes it difficult to machine them using conventional methods. To overcome the major issues that develop with conventional machining such as fiber pull out, delamination, heat generation and high tooling costs, an effort is herein made to study abrasive waterjet machining of composites. An abrasive waterjet is used to cut 1" thick graphite epoxy composites based on baseline data obtained from the cutting of ¼" thick material. The objective of this project is to study the surface roughness of the cut surface with a focus on demonstrating the benefits of using higher pressures for cutting composites. The effects of major cutting parameters: jet pressure, traverse speed, abrasive feed rate and cutting head size are studied at different levels. Statistical analysis of the experimental data provides an understanding of the effect of the process parameters on surface roughness. Additionally, the effect of these parameters on the taper angle of the cut is studied. The data is analyzed to obtain a set of process parameters that optimize the cutting of 1" thick graphite-epoxy composite. The statistical analysis is used to validate the experimental data. Costs involved in the cutting process are investigated in term of abrasive consumed to better understand and illustrate the practical benefits of using higher pressures. It is demonstrated that, as pressure increased, ultra-high pressure waterjets produced a better surface quality at a faster traverse rate with lower costs.
NASA Astrophysics Data System (ADS)
Hiremath, Vijaykumar; Badiger, Pradeep; Auradi, V.; Dundur, S. T.; Kori, S. A.
2016-02-01
Amongst advanced materials, metal matrix composites (MMC) are gaining importance as materials for structural applications in particular, particulate reinforced aluminium MMCs have received considerable attention due to their superior properties such as high strength to weight ratio, excellent low-temperature performance, high wear resistance, high thermal conductivity. The present study aims at studying and comparing the machinability aspects of B4Cp reinforced 6061Al alloy metal matrix composites reinforced with 37μm and 88μm particulates produced by stir casting method. The micro structural characterization of the prepared composites is done using Scanning Electron Microscopy equipped with EDX analysis (Hitachi Su-1500 model) to identify morphology and distribution of B4C particles in the 6061Al matrix. The specimens are turned on a conventional lathe machine using a Polly crystalline Diamond (PCD) tool to study the effect of particle size on the cutting forces and the surface roughness under varying machinability parameters viz., Cutting speed (29-45 m/min.), Feed rate (0.11-0.33 mm/rev.) and depth of cut (0.5-1mm). Results of micro structural characterization revealed fairly uniform distribution of B4C particles (in both cases i.e., 37μm and 88μm) in 6061Al matrix. The surface roughness of the composite is influenced by cutting speed. The feed rate and depth of cut have a negative influence on surface roughness. The cutting forces decreased with increase in cutting speed whereas cutting forces increased with increase in feed and depth of cut. Higher cutting forces are noticed while machining Al6061 base alloy compared to reinforced composites. Surface finish is high during turning of the 6061Al base alloy and surface roughness is high with 88μm size particle reinforced composites. As the particle size increases Surface roughness also increases.
Vongboot, Monnapat; Suesoonthon, Monrudee
2015-01-01
Polyurethane foam (PUF) mini-column was used to eliminate copper and iron for the determination of nickel in pierced rings. The PUF mini-column was connected to FIA system for on-line sorption of copper and iron in complexes form of CuSCN(+) and FeSCN(2+). For this season, the acid solution containing a mixture of Ni(II), Fe(III), Cu(II) and SCN(-) ions was firstly flew into the PUF column. Then, the percolated solution which Fe(III) and Cu(II) ions is separated from analysis was injected into FIA system to react with 4-(2-pyridylazo) resorcinol (PAR) reagent in basic condition which this method is called pH gradient technique. The Ni-PAR complexes obtained were measured theirs absorbance at 500 nm by UV visible spectrophotometer. In this study, it was found that Cu(II) and Fe(III) were completely to form complexes with 400 mmol/L KSCN and entirely to eliminate in acidic condition at pH 3.0. In the optimum condition of these experiments, the method provided the linear relationship between absorbance and the concentration of Ni(II) in the range from 5.00 to 30.00 mg/L. Linear equation is y=0.0134x+0.0033 (R(2)=0.9948). Precision, assessed in the term of the relative standard deviation, RSD, and accuracy for multiple determinations obtained in values of 0.77-1.73% and 97.4%, respectively. The level of an average amount of Ni(II) in six piercing rings was evaluated to be 14.78 mg/g. Copyright © 2014 Elsevier B.V. All rights reserved.
Pinsornsak, Piya; Harnroongroj, Thos
2016-11-01
The specialized instrument system used in minimally invasive surgery (MIS) has been developed for reducing soft tissue trauma in total knee arthroplasty (TKA). Compared with front-cutting MIS instruments, side-cutting quadriceps sparing MIS instruments have the advantage of creating a smaller incision and causing fewer traumas to the quadriceps tendon. However, the accuracy of side-cutting instruments concerns surgeons in prosthesis malalignment. To compare the accuracy of side-cutting quadriceps sparing instruments versus front-cutting instruments in MIS-TKA. In this prospective randomized controlled study, we compared the accuracy of side-cutting quadriceps sparing instruments versus the front-cutting instruments used in MIS-TKA. Sixty knees were included in the study, with 30 knees in each group. All the operations were performed by single surgeon. Coronal alignment (tibiofemoral angle, lateral distal femoral angle, and medial proximal tibial angle), and sagittal alignment (femoral component flexion and tibial posterior slope) were measured and compared. Tibiofemoral angle, lateral distal femoral angle, and medial proximal tibial angle, all of which are considered in the assessment of acceptable coronal radiographic alignment, were not different between groups (p = 0.353, 0.500, and 0.177, respectively). However, side-cutting quadriceps sparing instruments produced less acceptable sagittal radiographic alignment, femoral component flexion (63% vs. 93%, p = 0.005), and tibial posterior slope (73% vs. 93%, p = 0.04). Side-cutting quadriceps sparing MIS-TKA instruments had similar accuracy to front-cutting MIS-TKA instruments for coronal alignment but is less accurate for sagittal alignment.
High Energy Cutting and Stripping Utilizing Liquid Nitrogen
NASA Technical Reports Server (NTRS)
Hume, Howard; Noah, Donald E.; Hayes, Paul W.
2005-01-01
The Aerospace Industry has endeavored for decades to develop hybrid materials that withstand the rigors of mechanized flight both within our atmosphere and beyond. The development of these high performance materials has led to the need for environmentally friendly technologies for material re-work and removal. The NitroJet(TM) is a fluid jet technology that represents an evolution of the widely used, large-scale water jet fluid jet technology. It involves the amalgamation of fluid jet technology and cryogenics technology to create a new capability that is applicable where water jet or abrasive jet (water jet plus entrained abrasive) are not suitable or acceptable because of technical constraints such as process or materials compatibility, environmental concerns and aesthetic or legal requirements. The NitroJet(TM) uses ultra high-pressure nitrogen to cut materials, strip numerous types of coatings such as paint or powder coating, clean surfaces and profile metals. Liquid nitrogen (LN2) is used as the feed stream and is pressurized in two stages. The first stage pressurizes sub cooled LN2 to an intermediate pressure of between 15,000 and 20,000 psi at which point the temperature of the LN2 is about -250 F. The discharge from this stage is then introduced as feed to a dual intensifier system, which boosts the pressure from 15,000 - 20,000 psi up to the maximum operating pressure of 55,000 psi. A temperature of about -220 F is achieved at which point the nitrogen is supercritical. In this condition the nitrogen cuts, strips and abrades much like ultra high-pressure water would but without any residual liquid to collect, remove or be contaminated. Once the nitrogen has performed its function it harmlessly flashes back into the atmosphere as pure nitrogen gas. The system uses heat exchangers to control and modify the temperature of the various intake and discharge nitrogen streams. Since the system is hydraulically operated, discharge pressures can be easily varied over
ERIC Educational Resources Information Center
Admire, Myron; Maricle, Gary
This guide contains instructor's materials for teaching a secondary agricultural construction course consisting of instructional units on oxy-gas and other cutting and welding processes (10 lessons), woodworking (6 lessons), metals (10 lessons), and finishing (4 lessons). The materials for each unit include student objectives, a list of…
An evaluation of dental operative simulation materials.
He, Li-Hong; Foster Page, Lyndie; Purton, David
2012-01-01
The study was to evaluate the performance of different materials used in dental operative simulation and compare them with those of natural teeth. Three typical phantom teeth materials were compared with extracted permanent teeth by a nanoindentation system and evaluated by students and registered dentists on the drilling sensation of the materials. Moreover, the tool life (machinability) of new cylindrical diamond burs on cutting the sample materials was tested and the burs were observed. Although student and dentist evaluations were scattered and inconclusive, it was found that elastic modulus (E) and hardness (H) were not the main factors in determining the drilling sensation of the materials. The sensation of drilling is a reflection of cutting force and power consumption.An ideal material for dental simulation should be able to generate similar drilling resistance to that of natural tooth, which is the machinability of the material.
Microstructural Evolution of Ti-6Al-4V during High Strain Rate Conditions of Metal Cutting
NASA Technical Reports Server (NTRS)
Dong, Lei; Schneider, Judy
2009-01-01
The microstructural evolution following metal cutting was investigated within the metal chips of Ti-6Al-4V. Metal cutting was used to impose a high strain rate on the order of approx.10(exp 5)/s within the primary shear zone as the metal was removed from the workpiece. The initial microstructure of the parent material (PM) was composed of a bi-modal microstructure with coarse prior grains and equiaxed primary located at the boundaries. After metal cutting, the microstructure of the metal chips showed coarsening of the equiaxed primary grains and lamellar. These metallographic findings suggest that the metal chips experienced high temperatures which remained below the transus temperature.
Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing
NASA Astrophysics Data System (ADS)
Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.
2015-08-01
A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz-100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10-273 ps for DC voltages and 189-813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250-2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115-1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.
Handpiece coolant flow rates and dental cutting.
von Fraunhofer, J A; Siegel, S C; Feldman, S
2000-01-01
High-speed handpieces incorporate water coolant sprays to remove cutting debris and minimize thermal insult to the pulp. Little data exists on optimal coolant flow rates during clinical procedures. This study compared the effect of different coolant flow rates on diamond stone cutting efficiency. Cutting studies were performed on Macor machinable ceramic using a previously developed test regimen--a KaVo high-speed handpiece at a cutting force of 91.5 g (0.9 N). Cutting was performed with round end tapered medium grit diamond stones under cooling water flow rates of 15, 20, 25, 30 and 44 ml/min, with cutting rates determined as the time to transect the 13 mm square cross-section of the Macor bar. Each bur was used for five cuts, with six burs used for each flow rate, for a total of 150 measurements. The data were analyzed by one-way ANOVA with a post hoc Scheffé test. The cutting studies indicated that diamond stone cutting rates increased with higher coolant flow rates over the range of 15-44 ml/min. The data suggest that higher coolant flow rates promote cutting efficiency.
Strength of the San Andreas Fault Zone: Insight From SAFOD Cuttings and Core
NASA Astrophysics Data System (ADS)
Tembe, S.; Lockner, D. A.; Solum, J. G.; Morrow, C. A.; Wong, T.; Moore, D. E.
2005-12-01
Cuttings acquired during drilling of the SAFOD scientific hole near Parkfield, California offer a continuous physical record of the lithology across the San Andreas fault (SAF) zone and provide the only complete set of samples available for laboratory testing. Guided by XRD clay mineral analysis and velocity and gamma logs, we selected washed cuttings from depths spanning the main hole from 1.85 to 3.0 km true vertical depth. Cuttings were chosen to represent primary lithologic units as well as significant shear zones, including candidates for the currently active SAF. To determine frictional properties triaxial sliding tests were conducted on cylindrical granite blocks containing sawcuts inclined at 30° and filled with 1 mm-thick sample gouge layers. Tests were run at constant effective normal stresses of 10 and 40 MPa and constant pore pressure of 1 MPa. Samples were sheared up to 10.4 mm at room temperature and velocities of 1, 0.1 and 0.01 μm/s. Stable sliding behavior and overall strain hardening were observed in all tests. The coefficient of friction typically showed a modest decrease with increasing effective normal stress and mostly velocity strengthening was observed. Preliminary results yield coefficients of friction, μ, which generally fell into two clusters spanning the range of 0.45 to 0.8. The higher values of friction (~0.7 - 0.8) corresponded to quartzofeldspathic samples derived from granodiorites and arkoses encountered in the drill hole. Lower values of friction (0.45 - 0.55) were observed at depth intervals interpreted as shear zones based on enriched clay content, reduced seismic velocities and increased gamma radiation. Arguments for a weak SAF suggest coseismic frictional strength of μ = 0.1 to 0.2 yet the actual fault zone materials studied here appear consistently stronger. At least two important limitations exist for inferring in-situ fault strength from cuttings. (1) Clays and weak minerals are preferentially lost during drilling and
Cutting moments and grip forces in meat cutting operations and the effect of knife sharpness.
McGorry, Raymond W; Dowd, Peter C; Dempsey, Patrick G
2003-07-01
The force exposure associated with meat cutting operations and the effect of knife sharpness on performance and productivity have not been well documented. Specialized hardware was used to measure grip force and reactive moments with 15 professional meat cutters performing lamb shoulder boning, beef rib trimming and beef loin trim operations in a field study conducted in two meat packing plants. A system for measuring relative blade sharpness was developed for this study. Mean and peak cutting moments observed for the meat cutting operations, averaged across subjects were 4.7 and 17.2 Nm for the shoulder boning, 3.5 and 12.9 Nm for the rib trim, and 2.3 and 10.6 Nm for the loin trim, respectively. Expressed as percent of MVC, mean grip forces of 28.3% and peak grip forces of 72.6% were observed overall. Blade sharpness was found to effect grip forces, cutting moments and cutting time, with sharper blades requiring statistically significantly lower peak and mean cutting moments, and grip forces than dull knives. Efforts aimed at providing and maintaining sharp blades could have a significant impact on force exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Shawn X., E-mail: xingshan@math.ucsb.edu; Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052; Freedman, Michael H., E-mail: michaelf@microsoft.com
2016-06-15
The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts ofmore » the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.« less
NASA Astrophysics Data System (ADS)
Cui, Shawn X.; Freedman, Michael H.; Sattath, Or; Stong, Richard; Minton, Greg
2016-06-01
The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts of the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.
ERIC Educational Resources Information Center
Taylor, Lewis A., III
2012-01-01
An accessible business school population of undergraduate students was investigated in three independent, but related studies to determine effects on grades due to cutting class and failing to take advantage of optional reviews and study quizzes. It was hypothesized that cutting classes harms exam scores, attending preexam reviews helps exam…
Mathematical modeling of laser based potato cutting and peeling.
Ferraz, A Carlos O; Mittal, Gauri S; Bilanski, Walter K; Abdullah, Hussein A
2007-01-01
A mathematical model is developed and validated to predict the depth of cut in potato tuber slabs as a function of laser power and travel speed. The model considers laser processing parameters such as input power, spot size and exposure time as well as the properties of the material being cut such as specific heat, thermal conductivity, surface reflectance, etc. The model also considers the phase change of water in potato and the ignition temperature of the solid portion. The composition of the potato tuber is assumed to be of water and solid. The model also assumes that the ablation process is accomplished through ejection of liquid water, debris and water vapour, and combustion of solid. A CO(2) laser operating in c.w. mode was chosen for the experimental work because water absorbs laser energy highly at 10.6 microm, and CO(2) laser units with relatively high output power are available. Slabs of potato tuber were chosen to be laser processed since potato contains high moisture and large amounts of relatively homogeneous tissue. The results of the preliminary calculations and experiments concluded that the model is able to predict the depth of cut in potato tuber parenchyma when subjected to a CO(2) laser beam.
NASA Astrophysics Data System (ADS)
Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta
2016-06-01
With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.
Chen, Wei; Deng, Da
2014-11-11
We report a new, low-cost and simple top-down approach, "sodium-cutting", to cut and open nanostructures deposited on a nonplanar surface on a large scale. The feasibility of sodium-cutting was demonstrated with the successfully cutting open of ∼100% carbon nanospheres into nanobowls on a large scale from Sn@C nanospheres for the first time.
Siegel, Sharon C; Patel, Tejas
2016-10-01
This study compared different diamond burs and different water flow rates on the cutting efficiency of sectioning through lithium disilicate glass ceramic. The authors used a standardized cutting regimen with 4 brands of diamond burs to section through lithium disilicate glass ceramic blocks. Twelve diamonds of each brand cut through the blocks in randomized order. In the first part of the study, the authors recorded sectioning rates in millimeters per minute for each diamond bur as a measure of cutting efficiency. In the second part of the study, the authors compared sectioning rates using only 1 brand of diamond bur, with 3 different water flow rates. The authors averaged and compared cutting rates of each brand of diamond bur and the cutting rates for each flow rate using an analysis of variance and determined the differences with a Tukey honest significant difference test. One diamond bur cut significantly slower than the other 3, and one diamond bur cut significantly faster than 2 of the others. The diamond bur cutting efficiency through lithium disilicate glass ceramic with a 20 mL/min water flow rate was significantly higher than 15 mL/min. There are differences in cutting efficiency between diamond burs when sectioning lithium disilicate glass ceramic. Use a minimum of 20 mL/min of water coolant flow when sectioning lithium disilicate glass ceramic with dental diamond burs to maximize cutting efficiency. Recommendations for specific diamond burs with a coarse grit and water flow rate of 20 mL/min can be made when removing or adjusting restorations made from lithium disilicate glass ceramic. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.
Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, N.; Department of Electrical and Computer Engineering, MSC01 1100, University of New Mexico, Albuquerque, New Mexico 87131-0001; Branch, D. W.
2015-08-15
A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO{sub 3}) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5more » μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.« less
Comparative study of 0° X-cut and Y+36°-cut lithium niobate high-voltage sensing
Patel, N.; Branch, D. W.; Schamiloglu, E.; ...
2015-08-11
A comparison study between Y+36° and 0° X-cut lithium niobate (LiNbO 3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y+36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses tomore » both crystals, the voltage-induced shift scaled linearly with voltage. For the Y+36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y+36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y+36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. Furthermore, when the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.« less
Salkin, J A; Stuchin, S A; Kummer, F J; Reininger, R
1995-11-01
Five types of commercial glove liners (within double latex gloves) were compared to single and double latex gloves for cut and puncture resistance and for relative manual dexterity and degree of sensibility. An apparatus was constructed to test glove-pseudofinger constructs in either a cutting or puncture mode. Cutting forces, cutting speed, and type of blade (serrated or scalpel blade) were varied and the time to cut-through measured by an electrical conductivity circuit. Penetration forces were similarly determined with a scalpel blade and a suture needle using a spring scale loading apparatus. Dexterity was measured with an object placement task among a group of orthopedic surgeons. Sensibility was assessed with Semmes-Weinstein monofilaments, two-point discrimination, and vibrametry using standard techniques and rating scales. A subjective evaluation was performed at the end of testing. Time to cut-through for the liners ranged from 2 to 30 seconds for a rapid oscillating scalpel and 4 to 40 seconds for a rapid oscillating serrated knife under minimal loads. When a 1 kg load was added, times to cut-through ranged from 0.4 to 1.0 second. In most cases, the liners were superior to double latex. On average, 100% more force was required to penetrate the liners with a scalpel and 50% more force was required to penetrate the liners with a suture needle compared to double latex. Object placement task times were not significantly liners compared to double latex gloves. Semmes-Weinstein monofilaments, two-point discrimination, and vibrametry showed no difference in sensibility among the various liners and double latex gloves. Subjects felt that the liners were minimally to moderately impairing. An acclimation period may be required for their effective use.