Sample records for pig manure vermicompost

  1. Product quality and microbial dynamics during vermicomposting and maturation of compost from pig manure.

    PubMed

    Villar, Iria; Alves, David; Mato, Salustiano

    2017-11-01

    This research evaluates, through microbial dynamics, the use of earthworms Eisenia andrei for maturation of pre-composted pig manure in comparison with maturation under static conditions and with vermicomposting of fresh pig manure. Therefore, two substrates were used (fresh and pre-composted pig manure) and four treatments were developed: fresh manure vermicomposting, control of fresh manure without earthworms, pre-composting followed by vermicomposting and static maturation of pre-composted manure. In order to determine the microbial dynamics, the enzymatic activities and profiles of phospholipid fatty acids (PLFAs) were evaluated over a 112-days period. Physicochemical and biological parameters of the obtained products were also analyzed. The presence of earthworms significantly reduced (p<0.05) microbial biomass and all the microbial groups (Gram+bacteria, Gram-bacteria, and fungi) in both substrates. The enzymatic activities (cellulase, β-glucosidase and acid phosphatase) behaved in a significantly distinctive manner (p<0.05) depending on the treatment. Microbial communities had significant correlations (p<0.05) with hydrolytic activities during static maturation of pre-composted manure. This indicates a direct effect of microbiota evolution on the degradative processes; however, complex earthworm-microbiota interactions were established in the presence of E. andrei. After earthworms' removal from vermicompost of fresh substrate at 70day, an increase in Gram + (4.4 times), Gram - (3.8 times) and fungi (2.8 times) were observed and, although the vermicompost achieved quality values, it is necessary to optimize the vermicompost aging phase period to improve the stability. Static maturation presented stability on microbial dynamics that indicated a slow degradation of organic compounds so that, maturation of pre-composted manure through vermicomposting is better option. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Speciation and transformation of heavy metals during vermicomposting of animal manure.

    PubMed

    Lv, Baoyi; Xing, Meiyan; Yang, Jian

    2016-06-01

    This work was conducted to evaluate the effects of vermicomposting on the speciation and mobility of heavy metals (Zn, Pb, Cr, and Cu) in cattle dung (CD) and pig manure (PM) using tessier sequential extraction method. Results showed that the pH, total organic carbon and C/N ratio were reduced, while the electric conductivity and humic acid increased after 90days vermicomposting. Moreover, the addition of earthworm could accelerate organic stabilization in vermicomposting. The total heavy metals in final vermicompost from CD and PM were higher than the initial values and the control without worms. Sequential extraction indicated that vermicomposting decreased the migration and availability of heavy metals, and the earthworm could reduce the mobile fraction, while increase the stable fraction of heavy metals. Furthermore, these results indicated that vermicomposting played a positive role in stabilizing heavy metals in the treatment of animal manure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Optimization of animal manure vermicomposting based on biomass production of earthworms and higher plants.

    PubMed

    Borges, Yan V; Alves, Luciano; Bianchi, Ivan; Espíndola, Jonas C; Oliveira, Juahil M De; Radetski, Claudemir M; Somensi, Cleder A

    2017-11-02

    The goal of this study was to optimize the mixture of swine manure (SM) and cattle manure (CM) used in the vermicomposting process, seeking to increase the manure biodegradation rate and enhance the biomass production of both earthworms and higher plants. To achieve this goal, physico-chemical parameters were determined to assess the final compost quality after 50 days of vermicomposting. The different manure ratios used to produce the composts (C) were as follows (SM:CM, % m/m basis): C1 100:0, C2 (75:25), C3 (50:50), C4 (25:75), and C5 (0:100). In addition, the earthworm biomass and the phytoproductivity of lettuce (Lactuca sativa L.) plants grown in mixtures (1:1) of natural soil and the most viable vermicomposts were investigated. The C1 and C2 compost compositions were associated with high earthworm mortality rates. The C3 compost provided the highest mineral concentrations and C5 showed the highest lettuce yield (wet biomass). The results verify that stabilized cattle manure is an excellent substrate for the vermicomposting process and that fresh swine manure must be mixed with pre-stabilized cattle manure to ensure an optimized vermicomposting process, which must be controlled in terms of temperature and ammonia levels. It is concluded that small livestock farmers could add value to swine manure by applying the vermicomposting process, without the need for high investments and with a minimal requirement for management of the biodegradation process. These are important technical aspects to be considered when circular economy principles are applied to small farms.

  4. Vermicomposting as manure management strategy for urban small-holder animal farms – Kampala case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalander, Cecilia Helena, E-mail: cecilia.lalander@slu.se; Komakech, Allan John; Department of Agricultural & Bio-systems Engineering, Makerere University, Kampala

    Highlights: • Poor manure management can increase burden of disease and environmental impact. • A low-maintenance vermicompost reactor was set-up in Kampala, Uganda. • High material reduction (45.9%) and waste-to-biomass conversion (3.6% on a TS basis). • Five year return on investment of 275% of system in Uganda. • Technically and economically viable system for improved urban manure management. - Abstract: Inadequate organic waste management can contribute to the spread of diseases and have negative impacts on the environment. Vermicomposting organic waste could have dual beneficial effects by generating an economically viable animal feed protein in the form of wormmore » biomass, while alleviating the negative effects of poor organic waste management. In this study, a low-maintenance vermicomposting system was evaluated as manure and food waste management system for small-holder farmers. A vermicomposting system using the earthworm species Eudrilus eugeniae and treating cow manure and food waste was set up in Kampala, Uganda, and monitored for 172 days. The material degradation and protein production rates were evaluated after 63 days and at the end of the experiment. The material reduction was 45.9% and the waste-to-biomass conversion rate was 3.5% in the vermicomposting process on a total solids basis. A possible increase in the conversion rate could be achieved by increasing the frequency of worm harvesting. Vermicomposting was found to be a viable manure management method in small-scale urban animal agriculture; the return of investment was calculated to be 280% for treating the manure of a 450 kg cow. The vermicompost was not sanitised, although hygiene quality could be improved by introducing a post-stabilisation step in which no fresh material is added. The value of the animal feed protein generated in the process can act as an incentive to improve current manure management strategies.« less

  5. Towards understanding the effects of additives on the vermicomposting of sewage sludge.

    PubMed

    Xing, Meiyan; Lv, Baoyi; Zhao, Chunhui; Yang, Jian

    2015-03-01

    This work evaluated the effects of additives on the chemical properties of the final products (vermicompost) from vermicomposting of sewage sludge and the adaptable characteristics of Eisenia fetida during the process. An experimental design with different ratios of sewage sludge and the additives (cattle dung or pig manure) was conducted. The results showed that the vermicomposting reduced total organic carbon and the quotient of total organic carbon to total nitrogen (C/N ratio) of the initial mixtures and enhanced the stability and agronomical value of the final products. Notably, principal component analysis indicated that the additives had significant effects on the characteristics of the vermicomposts. Moreover, the vermibeds containing cattle dung displayed a better earthworm growth and reproduction than those with pig manure. Additionally, redundancy analysis demonstrated that electrical conductivity (EC), pH, and C/N ratio played crucial roles on earthworm growth and reproduction. In all, the additives with high C/N ratio, pH buffering capacity, and low EC are recommended to be used for vermicomposting of sewage sludge.

  6. Attenuation of veterinary antibiotics in full-scale vermicomposting of swine manure via the housefly larvae (Musca domestica)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijian; Shen, Jianguo; Wang, Hang; Liu, Meng; Wu, Longhua; Ping, Fan; He, Qiang; Li, Hongyi; Zheng, Changfeng; Xu, Xinhua

    2014-10-01

    Animal waste from concentrated swine farms is widely considered to be a source of environmental pollution, and the introduction of veterinary antibiotics in animal manure to ecosystems is rapidly becoming a major public health concern. A housefly larvae (Musca domestica) vermireactor has been increasingly adopted for swine manure value-added bioconversion and pollution control, but few studies have investigated its efficiency on antibiotic attenuation during manure vermicomposting. In this study we explored the capacity and related attenuation mechanisms of antibiotic degradation and its linkage with waste reduction by field sampling during a typical cycle (6 days) of full-scale larvae manure vermicomposting. Nine antibiotics were dramatically removed during the 6-day vermicomposting process, including tetracyclines, sulfonamides, and fluoroquinolones. Of these, oxytetracycline and ciprofloxacin exhibited the greater reduction rate of 23.8 and 32.9 mg m-2, respectively. Environmental temperature, pH, and total phosphorus were negatively linked to the level of residual antibiotics, while organic matter, total Kjeldahl nitrogen, microbial respiration intensity, and moisture exhibited a positive effect. Pyrosequencing data revealed that the dominant phyla related to Firmicutes, Bacteroidetes, and Proteobacteria accelerated manure biodegradation likely through enzyme catalytic reactions, which may enhance antibiotic attenuation during vermicomposting.

  7. Housefly Larva Vermicomposting Efficiently Attenuates Antibiotic Resistance Genes in Swine Manure, with Concomitant Bacterial Population Changes.

    PubMed

    Wang, Hang; Li, Hongyi; Gilbert, Jack A; Li, Haibo; Wu, Longhua; Liu, Meng; Wang, Liling; Zhou, Qiansheng; Yuan, Junxiang; Zhang, Zhijian

    2015-11-01

    Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M), tet(O), tet(Q), and tet(W)] were reduced (P < 0.05), while those of genes encoding sulfonamide resistance (sul1 and sul2) were increased (P < 0.05) when normalized to 16S rRNA. The abundances of tetracycline resistance genes were correlated (P < 0.05) with the changing concentrations of tetracyclines in the manure. The overall diversity and richness of the bacteria significantly decreased during vermicomposting, accompanied by a 100 times increase in the relative abundance of Flavobacteriaceae spp. Variations in the abundances of ARGs were correlated with the changing microbial community structure and the relative abundances of the family Ruminococcaceae, class Bacilli, or phylum Proteobacteria. Vermicomposting, as a waste management practice, can reduce the overall abundance of ARGs. More research is warranted to assess the use of this waste management practice as a measure to attenuate the dissemination of antimicrobial residues and ARGs from livestock production before vermicompost can be safely used as biofertilizer in agroecosystems. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Housefly Larva Vermicomposting Efficiently Attenuates Antibiotic Resistance Genes in Swine Manure, with Concomitant Bacterial Population Changes

    PubMed Central

    Wang, Hang; Li, Hongyi; Gilbert, Jack A.; Li, Haibo; Wu, Longhua; Liu, Meng; Wang, Liling; Zhou, Qiansheng; Yuan, Junxiang

    2015-01-01

    Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M), tet(O), tet(Q), and tet(W)] were reduced (P < 0.05), while those of genes encoding sulfonamide resistance (sul1 and sul2) were increased (P < 0.05) when normalized to 16S rRNA. The abundances of tetracycline resistance genes were correlated (P < 0.05) with the changing concentrations of tetracyclines in the manure. The overall diversity and richness of the bacteria significantly decreased during vermicomposting, accompanied by a 100 times increase in the relative abundance of Flavobacteriaceae spp. Variations in the abundances of ARGs were correlated with the changing microbial community structure and the relative abundances of the family Ruminococcaceae, class Bacilli, or phylum Proteobacteria. Vermicomposting, as a waste management practice, can reduce the overall abundance of ARGs. More research is warranted to assess the use of this waste management practice as a measure to attenuate the dissemination of antimicrobial residues and ARGs from livestock production before vermicompost can be safely used as biofertilizer in agroecosystems. PMID:26296728

  9. Attenuation of veterinary antibiotics in full-scale vermicomposting of swine manure via the housefly larvae (Musca domestica)

    PubMed Central

    Zhang, ZhiJian; Shen, JianGuo; Wang, Hang; Liu, Meng; Wu, LongHua; Ping, Fan; He, Qiang; Li, HongYi; Zheng, ChangFeng; Xu, XinHua

    2014-01-01

    Animal waste from concentrated swine farms is widely considered to be a source of environmental pollution, and the introduction of veterinary antibiotics in animal manure to ecosystems is rapidly becoming a major public health concern. A housefly larvae (Musca domestica) vermireactor has been increasingly adopted for swine manure value-added bioconversion and pollution control, but few studies have investigated its efficiency on antibiotic attenuation during manure vermicomposting. In this study we explored the capacity and related attenuation mechanisms of antibiotic degradation and its linkage with waste reduction by field sampling during a typical cycle (6 days) of full-scale larvae manure vermicomposting. Nine antibiotics were dramatically removed during the 6-day vermicomposting process, including tetracyclines, sulfonamides, and fluoroquinolones. Of these, oxytetracycline and ciprofloxacin exhibited the greater reduction rate of 23.8 and 32.9 mg m−2, respectively. Environmental temperature, pH, and total phosphorus were negatively linked to the level of residual antibiotics, while organic matter, total Kjeldahl nitrogen, microbial respiration intensity, and moisture exhibited a positive effect. Pyrosequencing data revealed that the dominant phyla related to Firmicutes, Bacteroidetes, and Proteobacteria accelerated manure biodegradation likely through enzyme catalytic reactions, which may enhance antibiotic attenuation during vermicomposting. PMID:25354896

  10. Enhancing nutrient recovery and compost maturity of coconut husk by vermicomposting technology.

    PubMed

    Swarnam, T P; Velmurugan, A; Pandey, Sanjay Kumar; Dam Roy, S

    2016-05-01

    Vermicompost was prepared by five different treatments from relatively resistant coconut husk mixed with either pig slurry or poultry manure. The recovery of vermicompost varied from 35% to 43% and it resulted in significant increase in pH, microbial biomass carbon, macro and micro nutrients concentration. Among the treatments highest relative N (1.6) and K (1.3) recovery were observed for 20% feedstock substitution by pig slurry while poultry manure substitution recorded highest P recovery (2.4). Compost maturity parameters significantly differed and well correlated. The characteristics of different treatments established the maturity indices as C/N 15-20; Cw<1.8; Cw/Norg<0.55; Lignin<10-12; CHA/CFA>1.5 and HI>15.0. The manurial value of the coconut husk compost was improved by feedstock substitution with pig slurry (80:20). The results revealed the technical feasibility of converting coconut husk into valuable compost by feedstock substitution with pig slurry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Bio-optimization of the carbon-to-nitrogen ratio for efficient vermicomposting of chicken manure and waste paper using Eisenia fetida.

    PubMed

    Ravindran, B; Mnkeni, P N S

    2016-09-01

    The main objective of the present study was to determine the optimum C/N ratio for converting waste paper and chicken manure to nutrient-rich manure with minimum toxicity. Six treatments of C/N ratio 20, 30, 40, 50, 60, and 70 (T1, T2, T3, T4, T5, and T6, respectively) achieved by mixing chicken manure with shredded paper were used. The study involved a composting stage for 20 days followed by vermicomposting with Eisenia fetida for 7 weeks. The results revealed that 20 days of composting considerably degraded the organic waste mixtures from all treatments and a further 7 weeks of vermiculture significantly improved the bioconversion and nutrient value of all treatments. The C/N ratio of 40 (T3) resulted in the best quality vermicompost compared to the other treatments. Earthworm biomass was highest at T3 and T4 possibly due to a greater reduction of toxic substances in these waste mixtures. The total N, total P, and total K concentrations increased with time while total carbon, C/N ratio, electrical conductivity (EC), and heavy metal content gradually decreased with time during the vermicomposting process. Scanning electron microscopy (SEM) revealed the intrastructural degradation of the chicken manure and shredded paper matrix which confirmed the extent of biodegradation of treatment mixtures as result of the composting and vermicomposting processes. Phytotoxicity evaluation of final vermicomposts using tomato (Lycopersicon esculentum), radish (Raphanus sativus), carrot (Daucus carota), and onion (Allium cepa) as test crops showed the non-phytotoxicity of the vermicomposts to be in the order T3 > T4 > T2 > T1 > T5 > T6. Generally, the results indicated that the combination of composting and vermicomposting processes is a good strategy for the management of chicken manure/paper waste mixtures and that the ideal C/N ratio of the waste mixture is 40 (T3).

  12. Sheep manure vermicompost supplemented with a native diazotrophic bacteria and mycorrhizas for maize cultivation.

    PubMed

    Gutiérrez-Miceli, F A; Moguel-Zamudio, B; Abud-Archila, M; Gutiérrez-Oliva, V F; Dendooven, L

    2008-10-01

    An orthogonal experimental design L9 (3(4)) with 10 repetitions was used to investigate the effect of Glomus claroideum (0, 1 or 2g(-1) plant), G. fasciculatum (0, 1 or 2g plant(-1)), native diazotrophic bacteria (0, 10(3) and 10(5) UFC ml(-1)) and sheep manure vermicompost (0%, 5% and 10% v/v) on maize plant growth, N and P in leaves and mycorrhization percent. Vermicompost explained most of the variation found for leaf number, wet weight, stem height, and diameter. Both mycorrhizas increased the plant wet weight but G. fasciculatum the most. Mycorrhization increased the P content, but not the N content. Mycorrhizal colonization increased when diazotrophic bacteria and vermicompost were added. It was found that weight of maize plants cultivated in peat moss amended with vermicompost increased when supplemented with G. fasciculatum and diazotrophic bacteria.

  13. Urease activity as an index for assessing the maturity of cow manure and wheat residue vermicomposts.

    PubMed

    Sudkolai, Saber Tayebi; Nourbakhsh, Farshid

    2017-06-01

    The establishment of a reliable index is an essential need to assess the degree of stability and maturity of solid wastes vermicomposts. The objective of this study was to investigate the effects of vermicomposting process on some chemical (pH, EC, OC, TN, lignin and C:N ratio) and biochemical properties of the cow manure (CM) and wheat residue (WR). Results demonstrated that during vermicomposting process of CM and WR urease activity was highly correlated with the time of vermicomposting (r=-0.97 ∗∗ for CM and r=-0.99 ∗∗ for WR), and well able to show the stability of organic waste. The urease activity showed significant correlations with the C:N ratio during the vermicomposting of CM and WR (r=0.89 ∗ and r=0.93 ∗∗ respectively) therefore it can be considered as a reliable indicator for determining the maturity and stability of organic wastes during vermicomposting process. Copyright © 2017. Published by Elsevier Ltd.

  14. Biodegradation of Pig Manure by the Housefly, Musca domestica: A Viable Ecological Strategy for Pig Manure Management

    PubMed Central

    Čičková, Helena; Pastor, Berta; Kozánek, Milan; Martínez-Sánchez, Anabel; Rojo, Santos; Takáč, Peter

    2012-01-01

    The technology for biodegradation of pig manure by using houseflies in a pilot plant capable of processing 500–700 kg of pig manure per week is described. A single adult cage loaded with 25,000 pupae produced 177.7±32.0 ml of eggs in a 15-day egg-collection period. With an inoculation ratio of 0.4–1.0 ml eggs/kg of manure, the amount of eggs produced by a single cage can suffice for the biodegradation of 178–444 kg of manure. Larval development varied among four different types of pig manure (centrifuged slurry, fresh manure, manure with sawdust, manure without sawdust). Larval survival ranged from 46.9±2.1%, in manure without sawdust, to 76.8±11.9% in centrifuged slurry. Larval development took 6–11 days, depending on the manure type. Processing of 1 kg of wet manure produced 43.9–74.3 g of housefly pupae and the weight of the residue after biodegradation decreased to 0.18–0.65 kg, with marked differences among manure types. Recommendations for the operation of industrial-scale biodegradation facilities are presented and discussed. PMID:22431982

  15. Pig manure treatment by filtration.

    PubMed

    Kowalski, Zygmunt; Makara, Agnieszka; Matýsek, Dalibor; Hoffmann, Józef; Hoffmann, Krystyna

    2013-01-01

    A study of new pig manure treatment and filtration process was carried out. The advantage of the worked out technology is the method of incorporation of crystalline phase into solid organic part of manure. The obtained new solid phase of manure contains about 50% of crystalline phase forming a filtration aid that enables high effectiveness of manure filtration. The filtration rate of manure separation into solid and liquid fractions with pressure filter may achieve 1300-3000 kg/m(2)/h. The method makes it possible to maintain an overall average pollutant removal performance 90% for the chemical oxygen demand COD, > 99% for the suspended solids SS, to 47% for the total nitrogen content. The obtained results showed that the proposed technology being efficient and simple offers a possible solution to pig manure problems.

  16. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jinzhi; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049; Hu, Zhengyi, E-mail: zhyhu@ucas.ac.cn

    Highlights: • Earthworms significantly decreased emissions of N{sub 2}O and CH{sub 4}, but had a marginal effect on CO{sub 2} emission. • NH{sub 3}, N{sub 2}O, and CH{sub 4} emissions were significantly reduced by reed straw and zeolite, CO{sub 2} emission was increased by reed straw. • Combined pre-composting and vermicomposting with reed straw and zeolite would be recommended for disposal of duck manure. - Abstract: Combined pre-composting and vermicomposting has shown potential for reclamation of solid wastes, which is a significant source of ammonia (NH{sub 3}), and greenhouse gases (GHG), including nitrous oxide (N{sub 2}O), methane (CH{sub 4}), andmore » carbon dioxide (CO{sub 2}). Earthworms and amendments may both affect physico-chemical characteristics that control gas-producing processes, and thus affect NH{sub 3} and GHG emissions. Here, we used two-way ANOVA to test the effects of addition of reed straw and combined addition of reed straw and zeolite on NH{sub 3} and GHG emissions during pre-composting of duck manure, either with or without a follow-up phase of vermicomposting. Results showed that cumulative N{sub 2}O, CH{sub 4}, and CO{sub 2} emissions during pre-composting and vermicomposting ranged from 92.8, 5.8, and 260.6 mg kg{sup −1} DM to 274.2, 30.4, and 314.0 mg kg{sup −1} DM, respectively. Earthworms and amendments significantly decreased N{sub 2}O and CH{sub 4} emissions. Emission of CO{sub 2} was not affected by earthworms, but increased in responses to addition of reed straw. Cumulative NH{sub 3} emission ranged from 3.0 to 8.1 g kg{sup −1} DM, and was significantly decreased by reed straw and zeolite addition. In conclusion, combined pre-composting and vermicomposting with reed straw and zeolite addition would be strongly recommended in mitigating emissions of N{sub 2}O, CH{sub 4}, and NH{sub 3} from duck manure. Moreover, this method also provides nutrient-rich products that can be used as a fertilizer.« less

  17. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure.

    PubMed

    Wang, Jinzhi; Hu, Zhengyi; Xu, Xingkai; Jiang, Xia; Zheng, Binghui; Liu, Xiaoning; Pan, Xubin; Kardol, Paul

    2014-08-01

    Combined pre-composting and vermicomposting has shown potential for reclamation of solid wastes, which is a significant source of ammonia (NH3), and greenhouse gases (GHG), including nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2). Earthworms and amendments may both affect physico-chemical characteristics that control gas-producing processes, and thus affect NH3 and GHG emissions. Here, we used two-way ANOVA to test the effects of addition of reed straw and combined addition of reed straw and zeolite on NH3 and GHG emissions during pre-composting of duck manure, either with or without a follow-up phase of vermicomposting. Results showed that cumulative N2O, CH4, and CO2 emissions during pre-composting and vermicomposting ranged from 92.8, 5.8, and 260.6 mg kg(-)(1) DM to 274.2, 30.4, and 314.0 mg kg(-1) DM, respectively. Earthworms and amendments significantly decreased N2O and CH4 emissions. Emission of CO2 was not affected by earthworms, but increased in responses to addition of reed straw. Cumulative NH3 emission ranged from 3.0 to 8.1 g kg(-1) DM, and was significantly decreased by reed straw and zeolite addition. In conclusion, combined pre-composting and vermicomposting with reed straw and zeolite addition would be strongly recommended in mitigating emissions of N2O, CH4, and NH3 from duck manure. Moreover, this method also provides nutrient-rich products that can be used as a fertilizer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Vermicompost and farmyard manure improves food quality, antioxidant and antibacterial potential of Cajanus cajan (L. Mill sp.) leaves.

    PubMed

    Das, Subhasish; Hussain, Nazneen; Gogoi, Bhaskarjyoti; Buragohain, Alak Kumar; Bhattacharya, Satya Sundar

    2017-02-01

    Pigeon pea (Cajanus cajan) leaves are a good source of nutrition and health benefitting phenolic compounds. However, its importance has not yet been effectively addressed. Recently, a 2-year field experiment was attempted in an alluvial soil to understand the role of various organic and inorganic fertilisers and their combinations not only on soil quality, but also on production of foremost phenolic compounds and imparting antioxidant and antibacterial properties in C. cajan under vermicompost treatments. Notable enhancements in crude protein, soluble carbohydrate, ash content and total flavonoid content were recorded in Cajanus leaves under vermicompost treatments. We detected a significant rise in carlinoside content in C. cajan leaves, which is known to reduce bilirubin concentration in hepatitis affected human blood. Farmyard manure treatments resulted in a high crude fibre content coupled with a substantially high concentration of total phenols, and chlorophyll. In addition, incorporation of vermicompost with or without inorganic fertiliser in the soil had a significant impact on antioxidant and antibacterial properties of C. cajan leaves. Above and beyond, farmyard manure and vermicompost positively influenced the physico-chemical health of the soil. The present nutrient management scheme based on organic input not only induced a higher yield of C. cajan endowed with improved antioxidant and antibacterial properties, but also enhanced the production of various phenolic compounds. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Phosphatase activity and its relationship with physical and chemical parameters during vermicomposting of filter cake and cattle manure.

    PubMed

    Busato, Jader Galba; Papa, Gabriella; Canellas, Luciano Pasqualoto; Adani, Fabrizio; de Oliveira, Aline Lima; Leão, Tairone Paiva

    2016-03-15

    Recycling of phosphorus (P) from organic residues (ORs) is important to develop environmentally friendly agriculture. The use of this P source depends on phosphatase enzymes, which can be affected by a chain of parameters during maturation of ORs. In this study the phosphatase activity levels throughout vermicomposting of filter cake (FC) and cattle manure (CM) were correlated with different physical and chemical parameters in an effort to increase the knowledge about recycling of P from ORs. FC presented higher total nitrogen content (TNC), total organic carbon (TOC), humic acid (HA) content, water-soluble P (WSP), phosphatase activities and nanopore volume than CM during vermicomposting. Decreases in TOC of CM resulted from carbohydrate mineralization, which was not observed for FC. CM showed increased hydrophobic index during vermicomposting while FC showed a slight decrease. Phosphatase activities correlated positively with TOC, pH and WSP and negatively with HA content for both vermicomposts. Nanopore volume was negatively correlated with phosphatase activities for FC but not for CM. No correlations between hydrophobicity and phosphatase activities were found for FC. Increased hydrophobicity throughout vermicomposting of CM could be partially associated with decreases in phosphatase levels. © 2015 Society of Chemical Industry.

  20. Component optimization of dairy manure vermicompost, straw, and peat in seedling compressed substrates using simplex-centroid design.

    PubMed

    Yang, Longyuan; Cao, Hongliang; Yuan, Qiaoxia; Luoa, Shuai; Liu, Zhigang

    2018-03-01

    Vermicomposting is a promising method to disposal dairy manures, and the dairy manure vermicompost (DMV) to replace expensive peat is of high value in the application of seedling compressed substrates. In this research, three main components: DMV, straw, and peat, are conducted in the compressed substrates, and the effect of individual components and the corresponding optimal ratio for the seedling production are significant. To address these issues, the simplex-centroid experimental mixture design is employed, and the cucumber seedling experiment is conducted to evaluate the compressed substrates. Results demonstrated that the mechanical strength and physicochemical properties of compressed substrates for cucumber seedling can be well satisfied with suitable mixture ratio of the components. Moreover, DMV, straw, and peat) could be determined at 0.5917:0.1608:0.2475 when the weight coefficients of the three parameters (shoot length, root dry weight, and aboveground dry weight) were 1:1:1. For different purpose, the optimum ratio can be little changed on the basis of different weight coefficients. Compressed substrate is lump and has certain mechanical strength, produced by application of mechanical pressure to the seedling substrates. It will not harm seedlings when bedding out the seedlings, since the compressed substrate and seedling are bedded out together. However, there is no one using the vermicompost and agricultural waste components of compressed substrate for vegetable seedling production before. Thus, it is important to understand the effect of individual components to seedling production, and to determine the optimal ratio of components.

  1. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum).

    PubMed

    Gutiérrez-Miceli, Federico A; Santiago-Borraz, Jorge; Montes Molina, Joaquín Adolfo; Nafate, Camerino Carlos; Abud-Archila, Miguel; Oliva Llaven, María Angela; Rincón-Rosales, Reiner; Dendooven, Luc

    2007-11-01

    The effects of earthworm-processed sheep-manure (vermicompost) on the growth, productivity and chemical characteristics of tomatoes (Lycopersicum esculentum) (c.v. Rio Grande) were investigated in a greenhouse experiment. Five treatments were applied combining vermicompost and soil in proportions of 0:1, 1:1, 1:2, 1:3, 1:4 and 1:5 (v/v). Growth and yield parameters were measured 85 days and 100 days after transplanting. Addition of vermicompost increased plant heights significantly, but had no significant effect on the numbers of leaves or yields 85 days after transplanting. Yields of tomatoes were significantly greater when the relationship vermicompost:soil was 1:1, 1:2 or 1:3, 100 days after transplanting. Addition of sheep-manure vermicompost decreased soil pH, titratable acidity and increased soluble and insoluble solids, in tomato fruits compared to those harvested from plants cultivated in unamended soil. Sheep-manure vermicompost as a soil supplement increased tomato yields and soluble, insoluble solids and carbohydrate concentrations.

  2. Multivariate Analysis of the Determinants of the End-Product Quality of Manure-Based Composts and Vermicomposts Using Bayesian Network Modelling.

    PubMed

    Faverial, Julie; Cornet, Denis; Paul, Jacky; Sierra, Jorge

    2016-01-01

    Previous studies indicated that the quality of tropical composts is poorer than that of composts produced in temperate regions. The aim of this study was to test the type of manure, the use of co-composting with green waste, and the stabilization method for their ability to improve compost quality in the tropics. We produced 68 composts and vermicomposts that were analysed for their C, lignin and NPK contents throughout the composting process. Bayesian networks were used to assess the mechanisms controlling compost quality. The concentration effect, for C and lignin, and the initial blend quality, for NPK content, were the main factors affecting compost quality. Cattle manure composts presented the highest C and lignin contents, and poultry litter composts exhibited the highest NPK content. Co-composting improved quality by enhancing the concentration effect, which reduced the impact of C and nutrient losses. Vermicomposting did not improve compost quality; co-composting without earthworms thus appears to be a suitable stabilization method under the conditions of this study because it produced high quality composts and is easier to implement.

  3. Multivariate Analysis of the Determinants of the End-Product Quality of Manure-Based Composts and Vermicomposts Using Bayesian Network Modelling

    PubMed Central

    Faverial, Julie; Cornet, Denis; Paul, Jacky

    2016-01-01

    Previous studies indicated that the quality of tropical composts is poorer than that of composts produced in temperate regions. The aim of this study was to test the type of manure, the use of co-composting with green waste, and the stabilization method for their ability to improve compost quality in the tropics. We produced 68 composts and vermicomposts that were analysed for their C, lignin and NPK contents throughout the composting process. Bayesian networks were used to assess the mechanisms controlling compost quality. The concentration effect, for C and lignin, and the initial blend quality, for NPK content, were the main factors affecting compost quality. Cattle manure composts presented the highest C and lignin contents, and poultry litter composts exhibited the highest NPK content. Co-composting improved quality by enhancing the concentration effect, which reduced the impact of C and nutrient losses. Vermicomposting did not improve compost quality; co-composting without earthworms thus appears to be a suitable stabilization method under the conditions of this study because it produced high quality composts and is easier to implement. PMID:27314950

  4. Influence of pig rearing system on animal performance and manure composition.

    PubMed

    Dourmad, J Y; Hassouna, M; Robin, P; Guingand, N; Meunier-Salaün, M C; Lebret, B

    2009-04-01

    A total of 200 crossbred pigs (castrated males and females) were used in five replicates to evaluate the influence of rearing conditions for fattening pigs on growth performance, manure production and gaseous emissions. Approximately at 36 kg body weight (BW), littermates were allocated to either a conventional (fully slatted floor, 0.65 m2/pig, considered as control, CON) or an alternative (sawdust bedding, 1.3 m2/pig, with free access to an outdoor area 1.1 m2/pig, OUT) system, until slaughter at approximately 115 kg BW. Pigs had free access to standard growing and finishing diets. Manure was stored as slurry below the slatted floor in the CON system and as litter, for the inside area, or slurry and liquid, for the outside area, in the OUT system. The amount and composition of manure were determined at the end of each replicate. Ammonia emission from the rooms was measured continuously. Dust and odour concentrations were measured in replicates 1 and 2, and CH4, N2O and CO2 emissions were measured in replicate 3. Compared with the CON, the OUT pigs exhibited a faster growth rate (+8%, P < 0.001) due to their greater feed intake (+0.21 kg/day, P < 0.01), resulting in a heavier BW (+7.3 kg, P < 0.001) and a lower lean meat content (-1.6% points, P < 0.001) at slaughter. The total amount of manure produced per pig was similar in both systems (380 kg/pig), but because of the contribution of sawdust, dry matter (DM) content was higher (P < 0.001) and concentrations in N, P, K, Cu and Zn in DM were lower (P < 0.001) in manure from the OUT than from the CON system. In the OUT system, most of the manure DM (70%) was collected indoor, corresponding mostly to the contribution of the sawdust, and most of the manure water (70%) was collected outdoor. Pigs excreted indoor about 60% and 40% of urine and faeces, respectively. Ammonia emission from the room was lower for the OUT system, whereas total NH3 emissions, including the outdoor area, tended to be higher (12.0 and 14.1 g

  5. Degradation of Tetracyclines in Pig Manure by Composting with Rice Straw

    PubMed Central

    Chai, Rushan; Huang, Lidong; Li, Lingling; Gielen, Gerty; Wang, Hailong; Zhang, Yongsong

    2016-01-01

    A holistic approach was followed for utilizing tetracyclines (TCs)-contaminated pig manure, by composting this with rice straw in a greenhouse for CO2 fertilization and composted residue application. After composting, the composted residues can be applied to cropland as a supplemental source of synthetic fertilizers. The objective of this study was to determine the effect of pig manure-rice straw composting on the degradation of TCs in pig manure. The results showed that greenhouse composting significantly accelerated the degradation of TCs. Contents (150 mg·kg−1) of oxytetracycline (OTC), tetracycline (TC) and chlortetracycline (CTC) in the composting feedstock could be completely removed within 42 days for OTC and TC, and 14 days for CTC. However, in the control samples incubated at 25 °C in the dark, concentrations of OTC, TC and CTC only decreased 64.7%, 66.7% and 73.3%, respectively, after 49 days. The degradation rates of TCs in the composting feedstock were in the order of CTC > TC > OTC. During the composting process, CTC dissipated rapidly with the time required for 50% degradation (DT50) and 90% degradation (DT90) of 2.4 and 7.9 days, but OTC was more persistent with DT50 and DT90 values of 5.5 and 18.4 days. On the basis of the results obtained in this study, it could be concluded that pig manure-rice straw composting in a greenhouse can help to accelerate the degradation of TCs in pig manure and make composted residues safer for field application. This technology could be an acceptable practice for greenhouse farmers to utilize TCs-contaminated pig manure. PMID:26927136

  6. Degradation of Tetracyclines in Pig Manure by Composting with Rice Straw.

    PubMed

    Chai, Rushan; Huang, Lidong; Li, Lingling; Gielen, Gerty; Wang, Hailong; Zhang, Yongsong

    2016-02-24

    A holistic approach was followed for utilizing tetracyclines (TCs)-contaminated pig manure, by composting this with rice straw in a greenhouse for CO₂ fertilization and composted residue application. After composting, the composted residues can be applied to cropland as a supplemental source of synthetic fertilizers. The objective of this study was to determine the effect of pig manure-rice straw composting on the degradation of TCs in pig manure. The results showed that greenhouse composting significantly accelerated the degradation of TCs. Contents (150 mg·kg(-1)) of oxytetracycline (OTC), tetracycline (TC) and chlortetracycline (CTC) in the composting feedstock could be completely removed within 42 days for OTC and TC, and 14 days for CTC. However, in the control samples incubated at 25 °C in the dark, concentrations of OTC, TC and CTC only decreased 64.7%, 66.7% and 73.3%, respectively, after 49 days. The degradation rates of TCs in the composting feedstock were in the order of CTC > TC > OTC. During the composting process, CTC dissipated rapidly with the time required for 50% degradation (DT50) and 90% degradation (DT90) of 2.4 and 7.9 days, but OTC was more persistent with DT50 and DT90 values of 5.5 and 18.4 days. On the basis of the results obtained in this study, it could be concluded that pig manure-rice straw composting in a greenhouse can help to accelerate the degradation of TCs in pig manure and make composted residues safer for field application. This technology could be an acceptable practice for greenhouse farmers to utilize TCs-contaminated pig manure.

  7. Settling characteristics of nursery pig manure and nutrient estimation by the hydrometer method.

    PubMed

    Zhu, Jun; Ndegwa, Pius M; Zhang, Zhijian

    2003-05-01

    The hydrometer method to measure manure specific gravity and subsequently relate it to manure nutrient contents was examined in this study. It was found that this method might be improved in estimation accuracy if only manure from a single growth stage of pigs was used (e.g., nursery pig manure used here). The total solids (TS) content of the test manure was well correlated with the total nitrogen (TN) and total phosphorus (TP) concentrations in the manure, with highly significant correlation coefficients of 0.9944 and 0.9873, respectively. Also observed were good linear correlations between the TN and TP contents and the manure specific gravity (correlation coefficients: 0.9836 and 0.9843, respectively). These correlations were much better than those reported by past researchers, in which lumped data for pigs at different growing stages were used. It may therefore be inferred that developing different linear equations for pigs at different ages should improve the accuracy in manure nutrient estimation using a hydrometer. Also, the error of using the hydrometer method to estimate manure TN and TP was found to increase, from +/- 10% to +/- 50%, with the decrease in TN (from 700 ppm to 100 ppm) and TP (from 130 ppm to 30 ppm) concentrations in the manure. The estimation errors for TN and TP may be larger than 50% if the total solids content is below 0.5%. In addition, the rapid settling of solids has long been considered characteristic of swine manure; however, in this study, the solids settling property appeared to be quite poor for nursery pig manure in that no conspicuous settling occurred after the manure was left statically for 5 hours. This information has not been reported elsewhere in the literature and may need further research to verify.

  8. Feasibility of vermicomposting dairy biosolids using a modified system to avoid earthworm mortality.

    PubMed

    Nogales, R; Elvira, C; Benítez, E; Thompson, R; Gomez, M

    1999-01-01

    A laboratory study was conducted to examine the feasibility of vermicomposting dairy biosolids (dairy sludge), either alone or with either of the bulking agents-cereal straw or wood shavings, using the epigeic earthworm-Eisinea andrei. Earthworms added directly to these three substrates died within 48 hours. A system was developed to overcome the toxic effect of unprocessed dairy biosolids. The substrates were placed over a layer of vermicomposted sheep manure into which the earthworms were inoculated. Within two weeks, all earthworms were within the upper layer of substrate. Compared to sheep manure which is a favourable substrate for vermicomposting, the three substrates containing dairy biosolids were more effective in supporting earthworm growth and reproduction. The final products obtained after 63 days of vermicomposting had 39-53% less organic carbon than the initial substrates. Organic fractionation indicated that vermicomposting increased the stability of the materials to biological decomposition. The vermicomposts obtained from the three substrates with dairy biosolids had low heavy metal contents and electrical conductivities, and did not inhibit plant growth when compared with a commercial vermicompost in a bioassay.

  9. Sewage sludge and liquid pig manure as possible sources of antibiotic resistant bacteria.

    PubMed

    Hölzel, Christina S; Schwaiger, Karin; Harms, Katrin; Küchenhoff, Helmut; Kunz, Anne; Meyer, Karsten; Müller, Christa; Bauer, Johann

    2010-05-01

    Within the last decades, the environmental spread of antibiotic resistant bacteria has become a topic of concern. In this study, liquid pig manure (n=305) and sewage sludge (n=111) - used as agricultural fertilizers between 2002 and 2005 - were investigated for the presence of Escherichia coli, Enterococcus faecalis and Enterococcus faecium. Bacteria were tested for their resistance against 40 chemotherapeutics including several "reserve drugs". E. coli (n=613) from pig manure were at a significantly higher degree resistant to streptomycin, doxycycline, spectinomycin, cotrimoxazole, and chloramphenicol than E. coli (n=116) from sewage sludge. Enterococci (Ent. faecalis, n=387, and Ent. faecium, n=183) from pig manure were significantly more often resistant to high levels of doxycycline, rifampicin, erythromycin, and streptomycin than Ent. faecalis (n=44) and Ent. faecium (n=125) from sewage sludge. Significant differences in enterococcal resistance were also seen for tylosin, chloramphenicol, gentamicin high level, fosfomycin, clindamicin, enrofloxacin, moxifloxacin, nitrofurantoin, and quinupristin/dalfopristin. By contrast, aminopenicillins were more effective in enterococci from pig manure, and mean MIC-values of piperacillin+tazobactam and third generation cefalosporines were significantly lower in E. coli from pig manure than in E. coli from sewage sludge. 13.4% (E. coli) to 25.3% (Ent. faecium) of pig manure isolates were high-level multiresistant to substances from more than three different classes of antimicrobial agents. In sewage sludge, high-level-multiresistance reached from 0% (Ent. faecalis) to 16% (Ent. faecium). High rates of (multi-) resistant bacteria in pig manure emphasize the need for a prudent - cautious - use of antibiotics in farm animals. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Comparative adsorption of Pb2+ and Cd2+ by cow manure and its vermicompost.

    PubMed

    Zhu, Weiqin; Du, Wenhui; Shen, Xuyang; Zhang, Hangjun; Ding, Ying

    2017-08-01

    Organic waste has great potential for use as an amendment to immobilize heavy metals in the environment. Therefore, this study investigates various properties of cow manure (CM) and its derived vermicompost (CV), including the pH, cationic exchangeable capacity (CEC), elemental composition and surface structure, to determine the potential of these waste products to remove Pb 2+ and Cd 2+ from solution. The results demonstrate that CV has a much higher pH, CEC and more irregular pores than CM and is enriched with minerals and ash content but has a lower C, H, O and N content. Adsorption isotherms studies shows that the adsorption of Pb 2+ and Cd 2+ onto either CM or CV follows a Langmuir model and presents maximum Pb 2+ and Cd 2+ adsorption capacities of 102.77 mg g -1 and 38.11 mg g -1 onto CM and 170.65 and 43.01 mg g -1 onto CV, respectively. Kinetic studies show that the adsorption of Pb 2+ onto CM and CV fits an Elovich model, whereas the adsorption of Cd 2+ onto CM and CV fits a pseudo-second-order model. Desorption studies indicate that CV is more effective than CM in removing Pb 2+ and Cd 2+ . FTIR analysis demonstrates that the adsorption of Pb 2+ and Cd 2+ onto CM mainly depends on existed aliphatic alcohol, aromatic acid as well as new produced carbonates, whereas that onto CV may be contributed by the existed aliphatic alcohol, aromatic acids as well as some carbonates and phosphates. Thus, vermicomposting disposal of cow manure with destination mineral addition may broaden the way of its recycle and environmental usage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The antibiotic resistome of swine manure is significantly altered by association with the Musca domestica larvae gut microbiome

    PubMed Central

    Wang, Hang; Sangwan, Naseer; Li, Hong-Yi; Su, Jian-Qiang; Oyang, Wei-Yin; Zhang, Zhi-Jian; Gilbert, Jack A; Zhu, Yong-Guan; Ping, Fan; Zhang, Han-Luo

    2017-01-01

    The overuse of antibiotics as veterinary feed additives is potentially contributing to a significant reservoir of antibiotic resistance in agricultural farmlands via the application of antibiotic-contaminated manure. Vermicomposting of swine manure using housefly larvae is a promising biotechnology for waste reduction and control of antibiotic pollution. To determine how vermicomposting influences antibiotic resistance traits in swine manure, we explored the resistome and associated bacterial community dynamics during larvae gut transit over 6 days of treatment. In total, 94 out of 158 antibiotic resistance genes (ARGs) were significantly attenuated (by 85%), while 23 were significantly enriched (3.9-fold) following vermicomposting. The manure-borne bacterial community showed a decrease in the relative abundance of Bacteroidetes, and an increase in Proteobacteria, specifically Ignatzschineria, following gut transit. ARG attenuation was significantly correlated with changes in microbial community succession, especially reduction in Clostridiales and Bacteroidales. Six genomes were assembled from the manure, vermicompost (final product) and gut samples, including Pseudomonas, Providencia, Enterococcus, Bacteroides and Alcanivorax. Transposon-linked ARGs were more abundant in gut-associated bacteria compared with those from manure and vermicompost. Further, ARG-transposon gene cassettes had a high degree of synteny between metagenomic assemblies from gut and vermicompost samples, highlighting the significant contribution of gut microbiota through horizontal gene transfer to the resistome of vermicompost. In conclusion, the larvae gut microbiome significantly influences manure-borne community succession and the antibiotic resistome during animal manure processing. PMID:27458785

  12. The antibiotic resistome of swine manure is significantly altered by association with the Musca domestica larvae gut microbiome.

    PubMed

    Wang, Hang; Sangwan, Naseer; Li, Hong-Yi; Su, Jian-Qiang; Oyang, Wei-Yin; Zhang, Zhi-Jian; Gilbert, Jack A; Zhu, Yong-Guan; Ping, Fan; Zhang, Han-Luo

    2017-01-01

    The overuse of antibiotics as veterinary feed additives is potentially contributing to a significant reservoir of antibiotic resistance in agricultural farmlands via the application of antibiotic-contaminated manure. Vermicomposting of swine manure using housefly larvae is a promising biotechnology for waste reduction and control of antibiotic pollution. To determine how vermicomposting influences antibiotic resistance traits in swine manure, we explored the resistome and associated bacterial community dynamics during larvae gut transit over 6 days of treatment. In total, 94 out of 158 antibiotic resistance genes (ARGs) were significantly attenuated (by 85%), while 23 were significantly enriched (3.9-fold) following vermicomposting. The manure-borne bacterial community showed a decrease in the relative abundance of Bacteroidetes, and an increase in Proteobacteria, specifically Ignatzschineria, following gut transit. ARG attenuation was significantly correlated with changes in microbial community succession, especially reduction in Clostridiales and Bacteroidales. Six genomes were assembled from the manure, vermicompost (final product) and gut samples, including Pseudomonas, Providencia, Enterococcus, Bacteroides and Alcanivorax. Transposon-linked ARGs were more abundant in gut-associated bacteria compared with those from manure and vermicompost. Further, ARG-transposon gene cassettes had a high degree of synteny between metagenomic assemblies from gut and vermicompost samples, highlighting the significant contribution of gut microbiota through horizontal gene transfer to the resistome of vermicompost. In conclusion, the larvae gut microbiome significantly influences manure-borne community succession and the antibiotic resistome during animal manure processing.

  13. Vermicomposting of winery wastes: a laboratory study.

    PubMed

    Nogales, Rogelio; Cifuentes, Celia; Benítez, Emilio

    2005-01-01

    In Mediterranean countries, millions of tons of wastes from viticulture and winery industries are produced every year. This study describes the ability of the earthworm Eisenia andrei to compost different winery wastes (spent grape marc, vinasse biosolids, lees cakes, and vine shoots) into valuable agricultural products. The evolution of earthworm biomass and enzyme activities was tracked for 16 weeks of vermicomposting, on a laboratory scale. Increases in earthworm biomass for all winery wastes proved lower than in manure. Changes in hydrolytic enzymes and overall microbial activities during the vermicomposting process indicated the biodegradation of the winery wastes. Vermicomposting improved the agronomic value of the winery wastes by reducing the C:N ratio, conductivity and phytotoxicity, while increasing the humic materials, nutrient contents, and pH in all cases. Thus, winery wastes show potential as raw substrates in vermicomposting, although further research is needed to evaluate the feasibility of such wastes in large-scale vermicomposting systems.

  14. Vermicompost derived from different feedstocks as a plant growth medium.

    PubMed

    Warman, P R; Anglopez, M J

    2010-06-01

    This study determined feedstock effects on earthworm populations and the quality of resulting vermicomposts produced from different types of feedstocks using different vermicomposting durations. Feedstock combinations (Kitchen Paper Waste (KPW), Kitchen Yard Waste (KYW), Cattle Manure Yard Waste (CMY)), three durations of vermicomposting (45, 68 or 90 days), and two seed germination methods (with two concentrations of vermicompost) for radish, marigold and upland cress, served as the independent variables. The worms (Eisenia fetida) doubled their weight by day 68 in KPW and CMY vermicomposts and day 90 KPW vermicompost produced the greatest weight of worms. The direct seed germination method (seeding into soil or vermicompost-soil mixtures) indicated that KPW and KYW feedstocks decreased germination compared to the control, even in mature vermicompost. Seed germination was greater in the water extract method; however, most of the vermicompost extracts suppressed germination of the three seed species compared to the water controls. Vermicomposts from all three feedstocks increased leaf area and biomass compared to the control, especially in the 10% vermicompost:soil mix. Thus, seed germination and leaf area or plant biomass for these three species are contrasting vermicompost quality indicators. (c) 2010 Elsevier Ltd. All rights reserved.

  15. Dry anaerobic co-digestion of cow dung with pig manure for methane production.

    PubMed

    Li, Jianzheng; Jha, Ajay Kumar; Bajracharya, Tri Ratna

    2014-07-01

    The performance of dry anaerobic digestions of cow dung, pig manure, and their mixtures into different ratios were evaluated at 35 ± 1 °C in single-stage batch reactors for 63 days. The specific methane yields were 0.33, 0.37, 0.40, 0.38, 0.36, and 0.35 LCH4/gVSr for cow dung to pig manure ratios of 1:0, 4:1, 3:2, 2:3, 1:4, and 0:1, respectively, while volatile solid (VS) and chemical oxygen demand (COD) removal efficiencies were 48.59, 50.79, 53.20, 47.73, 46.10, and 44.88 % and 55.44, 57.96, 60.32, 56.96, 53.32, and 50.86 %, respectively. The experimental results demonstrated that the co-digestions resulted in 5.10-18.01 % higher methane yields, 2.03-12.95 % greater VS removals, 2.98-12.52 % greater COD degradation and so had positive synergism. The various mixtures of pig manure with cow dung might persuade a better nutrient balance and dilution of high ammonia concentration in pig manure and therefore enhanced digester performance efficiency and higher biogas yields. The dry co-digestion of 60 % cow dung and 40 % pig manure achieved the highest methane yield and the greatest organic materials removal efficiency than other mixtures and controls.

  16. Nutrient transformation during aerobic composting of pig manure with biochar prepared at different temperatures.

    PubMed

    Li, Ronghua; Wang, Quan; Zhang, Zengqiang; Zhang, Guangjie; Li, Zhonghong; Wang, Li; Zheng, Jianzhong

    2015-01-01

    The effects of the corn stalk charred biomass (CB) prepared at different pyrolysis temperatures as additives on nutrient transformation during aerobic composting of pig manure were investigated. The results showed that the addition of CB carbonized at different temperatures to pig manure compost significantly influenced the compost temperature, moisture, pH, electrical conductivity, organic matter degradation, total nitrogen, [Formula: see text] and NH3 variations during composting. Compared with control and adding CB charred at lower temperature treatments, the addition of CB prepared over 700°C resulted in higher pH (over 9.2) and NH3 emission and lower potherb mustard seed germination index value during the thermophilic phase. Peak temperatures of composts appeared at 7 days for control and 11 days for CB added treatments. During 90 days composting, the organic matter degradation could be increased over 14.8-29.6% after adding of CB in the compost mixture. The introduction of CB in pig manure could prolong the thermophilic phase, inhibit moisture reduce, facilitate the organic matter decomposition, reduce diethylene triamine pentaacetic acid (DTPA) extractable Zn and Cu contents in pig manure composts and increase ryegrass growth. The study indicated that the corn stalk CB prepared around 500°C was a suitable additive in pig manure composting.

  17. Potential diffusion of doramectin into a soil amended with female pig manure. A field experiment.

    PubMed

    Gil-Díaz, María Del Mar; Pérez-Sanz, Araceli; Martín, Margarita; Lobo, Maria Carmen

    2011-10-12

    Doramectin is a veterinary drug used as an antihelminthic and is excreted mainly in the feces as the nonmetabolized drug. This study investigated the time profile of doramectin excretion in pig feces and the potential transfer and persistence of doramectin in the soil when the pig manure is used as an organic amendment to the soil. The concentration of doramectin in feces peaked at 143.0 ng/g in the dry feces 4 days after treatment. On day 62, the drug was still detected in the pig feces. After the land application of pig manure, the maximum concentration of doramectin in soil (ppb level) was detected 6 days after treatment. Seven months after the manure application, traces of doramectin were detected in the soil from the surface to a depth of 90 cm. Successive applications of manure from pigs treated with doramectin in a specific area could produce an accumulation of this drug in the soil.

  18. Manure sampling procedures and nutrient estimation by the hydrometer method for gestation pigs.

    PubMed

    Zhu, Jun; Ndegwa, Pius M; Zhang, Zhijian

    2004-05-01

    Three manure agitation procedures were examined in this study (vertical mixing, horizontal mixing, and no mixing) to determine the efficacy of producing a representative manure sample. The total solids content for manure from gestation pigs was found to be well correlated with the total nitrogen (TN) and total phosphorus (TP) concentrations in the manure, with highly significant correlation coefficients of 0.988 and 0.994, respectively. Linear correlations were observed between the TN and TP contents and the manure specific gravity (correlation coefficients: 0.991 and 0.987, respectively). Therefore, it may be inferred that the nutrients in pig manure can be estimated with reasonable accuracy by measuring the liquid manure specific gravity. A rapid testing method for manure nutrient contents (TN and TP) using a soil hydrometer was also evaluated. The results showed that the estimating error increased from +/-10% to +/-30% with the decrease in TN (from 1000 to 100 ppm) and TP (from 700 to 50 ppm) concentrations in the manure. Data also showed that the hydrometer readings had to be taken within 10 s after mixing to avoid reading drift in specific gravity due to the settling of manure solids.

  19. Extraction and recovery of phosphorus from pig manure using the quick wash process

    USDA-ARS?s Scientific Manuscript database

    Land disposal of manure is a challenging environmental problem in areas with intense confined pig production. Due to nutrient imbalance, manure applied to soil at optimal nitrogen rates for crop growth can promote soil phosphorus (P) surplus and potential pollution of water resources. Although manur...

  20. Dynamic chemical characteristics of soil solution after pig manure application: a column study.

    PubMed

    Hao, Xiuzhen; Zhou, Dongmei; Sun, Lei; Li, Lianzhen; Zhang, Hailin

    2008-06-01

    When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.

  1. Characterization the potential of biochar from cow and pig manure for geoecology application

    NASA Astrophysics Data System (ADS)

    Gunamantha, I. M.; Widana, G. A. B.

    2018-03-01

    Biochar is a solid product generated from the carbonization of biomass with various potential benefits. The utilisation of biochar should be adapted to its characteristic which is mainly influenced by its feedstock. In this study, cow and pig manure biochar generated by a conventional process, were characterized by its physical and chemical analysis and its potential to be used as soil amendment. For this purpose, several main parameters were analyzed: organic carbon, Nutrient (total-N, available P and K) status, Cation Exchange Capacity (CEC), proximate data analysis (moisture content, ash, volatile matter and fixed carbon) and its ash composition. The comparison between biochar and feedstock will be based on these parameters. The results of this study show that the organic carbon, available P, ash, and fixed carbon content of pig-manure biochar is higher than cow manure-derived biochar; while total-N, available K, CEC and volatile matter is lower. On its ash composition, the pig manure-derived biochar is dominated by SiO2, Al2O3, Fe2O3, P2O5, and CaO while the cow manure-derived biochar is dominated by SiO2, CaO, Al2O3, K2O, and P2O5. However, both biochar show potential for improving soil quality and reducing carbon emission from animal manure.

  2. Management of food industry waste employing vermicomposting technology.

    PubMed

    Garg, V K; Suthar, S; Yadav, Anoop

    2012-12-01

    This paper reports the vermicomposting of food industry sludges (FIS) mixed with different organic wastes employing Eisenia fetida. A total of 10 vermicomposting units containing different wastes combinations were established. After 15 weeks significant increase in total nitrogen (N(total)) (60-214%), total available phosphorous (P(avail)) (35.8-69.6%), total sodium (Na(total)) (39-95%), and total potassium (K(total)) (43.7-74.1%), while decrease in pH (8.45-19.7%), total organic carbon (OC(total)) (28.4-36.1%) and C:N ratio (61.2-77.8%) was recorded. The results indicated that FIS may be converted into good quality manure by vermicomposting if spiked with other organic wastes in appropriate quantities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Anaerobic co-digestion of pig manure and algae: impact of intracellular algal products recovery on co-digestion performance.

    PubMed

    Astals, S; Musenze, R S; Bai, X; Tannock, S; Tait, S; Pratt, S; Jensen, P D

    2015-04-01

    This paper investigates anaerobic co-digestion of pig manure and algae (Scenedesmus sp.) with and without extraction of intracellular algal co-products, with views towards the development of a biorefinery concept for lipid, protein and/or biogas production. Protein and/or lipids were extracted from Scenedesmus sp. using free nitrous acid pre-treatments and solvent-based Soxhlet extraction, respectively. Processing increased algae methane yield between 29% and 37% compared to raw algae (VS basis), but reduced the amount of algae available for digestion. Co-digestion experiments showed a synergy between pig manure and raw algae that increased raw algae methane yield from 0.163 to 0.245 m(3) CH4 kg(-1)VS. No such synergy was observed when algal residues were co-digested with pig manure. Finally, experimental results were used to develop a high-level concept for an integrated biorefinery processing pig manure and onsite cultivated algae, evaluating methane production and co-product recovery per mass of pig manure entering the refinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Agrochemical characterization of vermicomposts produced from residues of Palo Santo (Bursera graveolens) essential oil extraction.

    PubMed

    Carrión-Paladines, Vinicio; Fries, Andreas; Gómez-Muñoz, Beatriz; García-Ruiz, Roberto

    2016-12-01

    Fruits of Palo Santo (Bursera graveolens) are used for essential oil extraction. The extraction process is very efficient, because up to 3% of the fresh fruits can be transformed into essential oil; however, a considerable amount of waste is concurrently produced (>97% of the fresh biomass). Recent developments in Ecuadorian policies to foster environmentally friendly agroforestry and industrial practices have led to widespread interest in reusing the waste. This study evaluated the application of four vermicomposts (VMs), which are produced from the waste of the Palo Santo fruit distillation in combination with other raw materials (kitchen leftovers, pig manure, goat manure, and King Grass), for agrochemical use and for carbon (C) and nitrogen (N) decomposition in two soils with different textures. The results showed that the vermicompost mixtures (VMM) were valuable for agricultural utilisation, because total N (min. 2.63%) was relatively high and the C/N ratio (max. 13.3), as well as the lignin (max. 3.8%) and polyphenol (max. 1.6%) contents were low. In addition, N availability increased for both soil types after the application of the VMM. In contrast, N became immobile during decomposition if the VM of the pure waste was added. This likely occurred because of the relatively low total N (1.16%) content and high C/N ratio (35.0). However, the comparatively low C decomposition of this VM type makes its application highly recommendable as a strategy to increase the levels of organic matter and C, as well as for soil reclamation. Overall, these results suggest that the residues of the Palo Santo essential oil extraction are a potential source for vermicompost production and sustainable agriculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Optimization of anaerobic digestion of a mixture of Zea mays and Miscanthus sacchariflorus silages with various pig manure dosages.

    PubMed

    Bułkowska, K; Pokój, T; Klimiuk, E; Gusiatin, Z M

    2012-12-01

    Digestion of crop silage (Zea mays L. and Miscanthus sacchariflorus) with 0%, 7.5%, 12.5% and 25% pig manure as co-substrate was performed in continuous stirred-tank reactors, for a constant hydraulic retention time of 45 d and organic load rate of 2.1 g L(-1)d(-1). A matrix of correlations between biogas/methane production and parameters of anaerobic digestion was created in order to estimate process stability. The values of the correlation coefficients indicated that the most stable anaerobic digestion was achieved using 7.5% and 12.5% pig manure. In contrast, the positive correlation between ammonium and volatile fatty acids (r=0.8698, p<0.001) at 25% pig manure showed process instability. Compared to crop silage alone, pig manure favored the production of biogas and methane; the highest production rates were obtained with 12.5% pig manure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Enhanced biogas production from anaerobic co-digestion of pig slurry and horse manure with mechanical pre-treatment.

    PubMed

    Lopes, Madalena; Baptista, Patrícia; Duarte, Elizabeth; Moreira, António L N

    2018-01-02

    Enhanced biogas production from anaerobic co-digestion of pig slurry and horse manure with mechanical pre-treatment. In this study, co-digestion of horse manure and pig slurry was investigated in a continuously stirred tank reactor, with a mechanical pre-treatment. Experiments were conducted at 37°C, with hydraulic retention times of 23 days and increasing shares of horse manure, corresponding to different horse manure to pig slurry ratios (HM:PS) equal to 0:100, 10:90, 13:87 and 20:80, in terms of percentage of inlet volatile solids (%VS inlet). The results show that the best synergetic effect between the microbial consortia of pig slurry and the high Carbon to Nitrogen ratio (C/N) of horse manure is obtained for the mixture of 20:80%VS inlet, yielding the highest specific methane production (SMP = 142.6 L kg TCOD -1 ) and the highest soluble chemical oxygen demand (SCOD) reduction (68.5%), due to the high volatile dissolved solids content and soluble chemical oxygen demand to total chemical oxygen demand ratio (SCOD/TCOD). Thus, co-digestion of horse manure and pig slurry is shown to be a promising approach for biogas production and as a waste treatment solution. Furthermore, the analysis provides a methodology for the pre-treatment of these substrates and to investigate into the best combination for improved biogas production.

  7. Impact of imidacloprid residues on the development of Eisenia fetida during vermicomposting of greenhouse plant waste.

    PubMed

    Fernández-Gómez, Manuel J; Romero, Esperanza; Nogales, Rogelio

    2011-09-15

    Pesticide application in agriculture causes residues in post-harvest plant waste at different concentrations. Knowledge concerning how pesticide concentrations in such waste affect earthworms is essential for recycling greenhouse plant debris through vermicomposting. Here, we have evaluated the effects of imidacloprid (IMD) residues on earthworms (Eisenia fetida) during the vermicomposting of plant waste from greenhouse crops in Spain. Before, the effect of different IMD concentrations on earthworms was tested using cattle manure as an optimum waste for worm development. The results after using cattle manure indicate that IMD dose ≥ 5 mg kg(-1) hinders worm growth and even causes death, whereas IMD dose ≤ 2 mg IMD kg(-1) allows worm growth similar to control but impedes reproduction. The results from the vermicomposting of plant waste reveal that IMD inhibits adequate worm growth and increases mortality. Although 89% worms became sexually mature in substrate containing 2 mg IMD kg(-1), they did not produce cocoons. IMD also affected microorganisms harboured in the substrates for vermicomposting, as indicated by the reduction in their dehydrogenase activity. This enzyme activity was restored after vermicomposting. This study provides a sound basis for the vermicomposting of pesticide-contaminated plant waste. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Differential responses of soil nematode community to pig manure application levels in Ferric Acrisols

    NASA Astrophysics Data System (ADS)

    Yang, Yi-Ru; Li, Xiao-Gang; Zhou, Zhi-Gao; Zhang, Tao-Lin; Wang, Xing-Xiang

    2016-10-01

    Excessive pig manure application probably degrades arable soil quality in some intensive pig farming areas. The responses of the nematode community to dosages of pig manure were investigated in Ferric Acrisols under 3-season peanut monoculture. Varying dosages of manure (1.75, 3.5, 7, 14 and 28 t·ha-1·yr-1) in combination with chemical fertilizer were applied to field plots, and chemical fertilizer alone was also applied as a control. With increasing manure application, the abundance of bacterivores and omnivores-predators increased, the abundance of plant parasites decreased, and fungivores abundance exhibited hump-shaped variation. Simpson diversity index and plant parasite index/maturity index of the nematode communities increased to a maximum level at a manure application rate of 3.5 t·ha-1·yr-1 and then sharply decreased. The changes in the soil nematode community were further determined to be correlated with chemical properties; available phosphorus had the strongest quadratic correlation with the two indices, implying that available phosphorus had a better indicative effect than other soil properties to nematode community. Available phosphorus in soil was deduced from 49 to 64 mg·kg-1 with the best nematode communities. Our results emphasized the importance of regular applications of manure in agriculture field to balance nematode diversity and build healthy agro-ecosystems.

  9. Impacts of delayed addition of N-rich and acidic substrates on nitrogen loss and compost quality during pig manure composting.

    PubMed

    Jiang, Jishao; Kang, Kang; Chen, Dan; Liu, Ningning

    2018-02-01

    Delayed addition of Nitrogen (N)-rich and acidic substrates was investigated to evaluate its effects on N loss and compost quality during the composting process. Three different delayed adding methods of N-rich (pig manure) and acidic substrates (phosphate fertilizer and rotten apples) were tested during the pig manure and wheat straw is composting. The results showed that delayed addition of pig manure and acidic materials led two temperature peaks, and the durations of two separate thermophilic phase were closely related to the amount of pig manure. Delayed addition reduced total N loss by up to 14% when using superphosphate as acidic substrates, and by up to 12% when using rotten apples as acidic substrates, which is mainly due to the decreased NH 3 emissions. At the end of composting, delayed the addition of pig manure caused a significant increase in the HS (humus substance) content, and the highest HS content was observed when 70% of the pig manure was applied at day 0 and the remaining 30% was applied on day 27. In the final compost, the GI in all treatments almost reached the maturity requirement by exceeding 80%. The results suggest that delayed addition of animal manure and acidic substrates could prevent the N loss during composting and improve the compost quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of Vermicompost on Nitrate Leaching and Strawberry Growth

    NASA Astrophysics Data System (ADS)

    Broz, A. P.; Verma, P.; Appel, C.; Stubler, C.; Yost, J.; Hurley, S.

    2016-12-01

    The use of vermicompost is suggested as a method to reduce nitrogen losses in crop production; however, it is unclear whether and how vermicompost can affect water quality after a significant irrigation or rainfall event. The objectives of this experiment were to: a) determine the concentration of nitrate-nitrogen in drainage water from vermicompost-amended media planted with strawberry in a greenhouse setting and b) determine vegetative biomass of strawberry grown in vermicompost-amended media. Bare-root strawberry plugs were grown in one-gallon plastic pots. The treatments consisted of two media: 1) a peat:perlite soil-less mix and 2) a fine sand soil with three levels of dairy manure vermicompost addition: 0%, 10%, 25% by weight, and a biweekly synthetic fertilizer treatment of 150 mg N-P-K L-1 evaluated in a full factorial randomized block design. Drainage water from each plant was collected for 18 weeks and analyzed for NO3- concentration. High (1000-5000 mg l-1) amounts of NO3- leaching in vermicompost -amended media were observed during the first two weeks of drainage collection relative to non vermicompost-amended media. Plants grown with vermicompost at 25% with synthetic fertilizer had the highest above-ground vegetative biomass (15.3 g) relative to plants with synthetic fertilizer alone (5.3 g). These data suggest vermicompost addition rates of 10% and 25% by weight promote high vegetative biomass in greenhouse strawberry but may facilitate high nitrate leaching, which can negatively affect water quality and environmental health.

  11. Vermicomposting of sludge from animal wastewater treatment plant mixed with cow dung or swine manure using Eisenia fetida.

    PubMed

    Xie, Dan; Wu, Weibing; Hao, Xiaoxia; Jiang, Dongmei; Li, Xuewei; Bai, Lin

    2016-04-01

    Vermicomposting of animal wastewater treatment plant sludge (S) mixed with cow dung (CD) or swine manure (SM) employing Eisenia fetida was tested. The numbers, weights, clitellum development, and cocoon production were monitored for 60 days at a detecting interval of 15 days. The results indicated that 100 % of the sludge can be the suitable food for growth and fecundity of E. fetida, while addition of CD or SM in sludge significantly (P < 0.05) increased the worm biomass and reproduction. The sludge amended with 40 % SM can be a great medium for the growth of E. fetida, and the sludge amended with 40 % CD can be a suitable medium for the fecundity of E. fetida. The addition of CD in sludge provided a better environment for the fecundity of earthworm than SM did. Moreover, vermicomposts obtained in the study had lower pH value, lower total organic carbon (TOC), lower NH4 (+)-N, lower C/N ratio, higher total available phosphorous (TAP) contents, optimal stability, and maturity. NH4 (+)-N, pH and TAP of the initial mixtures explained high earthworm growth. The results provided the theory basic both for management of animal wastes and the production of earthworm proteins using E. fetida.

  12. Diversity of the Tetracycline Mobilome within a Chinese Pig Manure Sample

    PubMed Central

    Leclercq, Sébastien Olivier; Wang, Chao; Zhu, Yaxin; Wu, Hai; Du, Xiaochen; Liu, Zhipei

    2016-01-01

    ABSTRACT Tetracycline antibiotics are widely used in livestock, and tetracycline resistance genes (TRG) are frequently reported in the manure of farmed animals. However, the diversity of TRG-carrying transposons in manure has still been rarely investigated. Using a culture-free functional metagenomic procedure, combined with large-insert library construction and sequencing, bioinformatic analyses, and functional experiments, we identified 17 distinct TRGs in a single pig manure sample, including two new tet genes: tet(59), encoding a tetracycline efflux pump, and tet(W/N/W), encoding mosaic ribosomal protection. Our study also revealed six new TRG-carrying putative nonconjugative transposons: Tn5706-like transposon Tn6298, IS200/605-related transposon Tn6303, Tn3 family transposon Tn6299, and three ISCR2-related transposons, Tn62300, Tn62301, and Tn62302. IMPORTANCE Fertilization of agricultural fields with animal manure is believed to play a major role in antibiotic resistance dissemination in the environment. There is growing concern for the possible spread of antibiotic resistance from the environment to humans since genetic resistance determinants may be located in transposons and other mobile genetic elements potentially transferable to pathogens. Among the various antibiotic resistance genes found in manure, tetracycline resistance genes (TRGs) are some of the most common. The present study provides a detailed snapshot of the tetracycline mobilome in a single pig manure sample, revealing an unappreciated diversity of TRGs and potential TRG mobility vectors. Our precise identification of the TRG-carrying units will enable us to investigate in more details their mobility effectiveness. PMID:27565618

  13. Diversity of the Tetracycline Mobilome within a Chinese Pig Manure Sample.

    PubMed

    Leclercq, Sébastien Olivier; Wang, Chao; Zhu, Yaxin; Wu, Hai; Du, Xiaochen; Liu, Zhipei; Feng, Jie

    2016-11-01

    Tetracycline antibiotics are widely used in livestock, and tetracycline resistance genes (TRG) are frequently reported in the manure of farmed animals. However, the diversity of TRG-carrying transposons in manure has still been rarely investigated. Using a culture-free functional metagenomic procedure, combined with large-insert library construction and sequencing, bioinformatic analyses, and functional experiments, we identified 17 distinct TRGs in a single pig manure sample, including two new tet genes: tet(59), encoding a tetracycline efflux pump, and tet(W/N/W), encoding mosaic ribosomal protection. Our study also revealed six new TRG-carrying putative nonconjugative transposons: Tn5706-like transposon Tn6298, IS200/605-related transposon Tn6303, Tn3 family transposon Tn6299, and three ISCR2-related transposons, Tn62300, Tn62301, and Tn62302 IMPORTANCE: Fertilization of agricultural fields with animal manure is believed to play a major role in antibiotic resistance dissemination in the environment. There is growing concern for the possible spread of antibiotic resistance from the environment to humans since genetic resistance determinants may be located in transposons and other mobile genetic elements potentially transferable to pathogens. Among the various antibiotic resistance genes found in manure, tetracycline resistance genes (TRGs) are some of the most common. The present study provides a detailed snapshot of the tetracycline mobilome in a single pig manure sample, revealing an unappreciated diversity of TRGs and potential TRG mobility vectors. Our precise identification of the TRG-carrying units will enable us to investigate in more details their mobility effectiveness. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Nitrogen losses and chemical parameters during co-composting of solid wastes and liquid pig manure.

    PubMed

    Vázquez, M A; de la Varga, D; Plana, R; Soto, M

    2017-07-04

    The aim of this research was to study nitrogen losses during the treatment of the liquid fraction (LF) of pig manure by co-composting and to establish the best conditions for compost production with higher nitrogen and low heavy metal contents. Windrows were constituted with the solid fraction (SF) of pig manure, different organic waste (SF of pig manure, sawdust and grape bagasse) as co-substrate and Populus spp. wood chips as bulking material and watered intensely with the LF. Results show that nitrogen losses ranged from 30% to 66% of initial nitrogen and were mainly governed by substrate to bulking mass ratio and liquid fraction to substrate (LF/S) ratio, and only secondarily by operational parameters. Nitrogen losses decreased from 55-65% at low LF/S ratios (1.7-1.9 m 3 /t total solids (TS)) to 30-39% at high LF/S ratios (4.4-4.7 m 3 /t TS). Therefore, integrating the LF in the composting process at high LF/S ratios favoured nitrogen recovery and conservation. Nitrogen in the fine fraction (ranging from 27% to 48% of initial nitrogen) was governed by operational parameters, namely pH and temperature. Final compost showed low content in most heavy metals, but Zn was higher than the limits for compost use in agriculture. Zn content in the obtained compost varied from 1863 to 3269 mg/kg dm, depending on several factors. The options for obtaining better quality composts from the LF of pig manure are selecting co-substrates with low heavy metal content and using them instead of the SF of pig manure.

  15. Investigating the efficiency of co-composting and vermicomposting of vinasse with the mixture of cow manure wastes, bagasse, and natural zeolite.

    PubMed

    Alavi, Nadali; Daneshpajou, Monavvar; Shirmardi, Mohammad; Goudarzi, Gholamreza; Neisi, Abdolkazem; Babaei, Ali Akbar

    2017-11-01

    Fermentation of ethanol as a product of sugarcane agro-industry causes the discharge of large amounts of a liquid waste called vinasse into the environment. In this study, co-composting followed by vermicomposting process of the mixtures of vinasse, cow manure, and chopped bagasse was performed for 60days using earthworms of Eisenia fetida species. The results showed that the trend of changes in C/N was decreasing. The pH of the final fertilizer was in alkaline range (8.1-8.4). The total potassium decreased during the process, ranging from 0.062 to 0.15%, while the total phosphorus increased and its values ranged from 0.06 to 0.10%. The germination index (GI) for all samples was 100%, while the cellular respiration maturity index was<2mg C-CO 2 g -1 organic carbon day -1 , confirming a very stable compost. The results of this study indicate that the compost obtained from the co-composting-vermicomposting process could be used as a sound soil amendment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Pig Manure Contamination Marker Selection Based on the Influence of Biological Treatment on the Dominant Fecal Microbial Groups▿

    PubMed Central

    Marti, Romain; Dabert, Patrick; Pourcher, Anne-Marie

    2009-01-01

    The objective of this study was to identify a microbial marker for pig manure contamination. We quantified the persistence of four dominant bacterial groups from the pig intestinal tract throughout manure handling at 10 livestock operations (including aerobic digestion) by using molecular typing. The partial 16S rRNA genes of Bacteroides-Prevotella, Eubacterium-Clostridiaceae, Bacillus-Streptococcus-Lactobacillus (BSL), and Bifidobacterium group isolates were amplified and analyzed by capillary electrophoresis single-strand conformation polymorphism. The most dominant bacterial populations were identified by cloning and sequencing their 16S rRNA genes. The results showed that Bifidobacterium spp. and, to a lesser extent, members of the BSL group, were less affected by the aerobic treatment than either Eubacterium-Clostridiaceae or Bacteroides-Prevotella. Two Bifidobacterium species found in raw manure were still present in manure during land application, suggesting that they can survive outside the pig intestinal tract and also survive aerobic treatment. The 16S-23S rRNA internal transcribed spacer of one species, Bifidobacterium thermacidophilum subsp. porcinum, was sequenced, and a specific pair of primers was designed for its detection in the environment. With this nested PCR assay, this potential marker was not detected in samples from 30 bovine, 30 poultry, and 28 human fecal samples or in 15 urban wastewater effluents. As it was detected in runoff waters after spreading of pig manure, we propose this marker as a suitable microbial indicator of pig manure contamination. PMID:19525269

  17. Pig manure contamination marker selection based on the influence of biological treatment on the dominant fecal microbial groups.

    PubMed

    Marti, Romain; Dabert, Patrick; Pourcher, Anne-Marie

    2009-08-01

    The objective of this study was to identify a microbial marker for pig manure contamination. We quantified the persistence of four dominant bacterial groups from the pig intestinal tract throughout manure handling at 10 livestock operations (including aerobic digestion) by using molecular typing. The partial 16S rRNA genes of Bacteroides-Prevotella, Eubacterium-Clostridiaceae, Bacillus-Streptococcus-Lactobacillus (BSL), and Bifidobacterium group isolates were amplified and analyzed by capillary electrophoresis single-strand conformation polymorphism. The most dominant bacterial populations were identified by cloning and sequencing their 16S rRNA genes. The results showed that Bifidobacterium spp. and, to a lesser extent, members of the BSL group, were less affected by the aerobic treatment than either Eubacterium-Clostridiaceae or Bacteroides-Prevotella. Two Bifidobacterium species found in raw manure were still present in manure during land application, suggesting that they can survive outside the pig intestinal tract and also survive aerobic treatment. The 16S-23S rRNA internal transcribed spacer of one species, Bifidobacterium thermacidophilum subsp. porcinum, was sequenced, and a specific pair of primers was designed for its detection in the environment. With this nested PCR assay, this potential marker was not detected in samples from 30 bovine, 30 poultry, and 28 human fecal samples or in 15 urban wastewater effluents. As it was detected in runoff waters after spreading of pig manure, we propose this marker as a suitable microbial indicator of pig manure contamination.

  18. Anaerobic digestion of glycerol and co-digestion of glycerol and pig manure.

    PubMed

    Nuchdang, Sasikarn; Phalakornkule, Chantaraporn

    2012-06-30

    The potential of glycerol obtained from transesterification of waste cooking oil as a main carbon source for biogas production was investigated. The glycerol was highly contaminated with oils and fats and was pretreated with sulfuric acid. Using a carbon source of glucose as a control, we compared biogas production from the acid-treated glycerol in a synthetic medium and the acid-treated glycerol mixed with pig manure. The anaerobic digestion of acid-treated glycerol with supplement in a synthetic medium was found to be satisfactory at organic loading rates (OLR) between 1.3, 1.6 and 2.6 g chemical oxygen demand (COD) L(-1) d(-1). The maximum methane yield of 0.32 L at Standard temperature and pressure (STP) g(-1) COD removal was achieved at an OLR of 1.6 g COD L(-1) d(-1) and the methane content was 54% on an average. At a higher organic loading rate of 5.4 g COD L(-1) d(-1), the propionic acid to acetic acid ratio was higher than the critical threshold limit for metabolic imbalance. Anaerobic digestion of acid-treated glycerol with pig manure was also investigated at the COD ratio of 80:20 (glycerol:pig manure). The anaerobic digestion of acid-treated glycerol with pig manure was found to be satisfactory at organic loading rates between 1.3, 1.7, 2.9 and 5.0 g COD L(-1) d(-1) in terms of COD reduction (>80%) and methane content of (62% on an average). However, the biogas production rate was found to significantly decrease at the highest load. The maximum methane yield of 0.24 L STP g(-1) COD removal was achieved at an OLR of 1.3 g COD L(-1) d(-1). Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The effects of pig manure application on the spread of tetracycline resistance in bulk and cucumber rhizosphere soils: a greenhouse experiment.

    PubMed

    Kang, Yijun; Hao, Yangyang; Xia, Dan; Shen, Min; Li, Qing; Hu, Jian

    2017-07-01

    It is important to understand the dynamics of tetracycline-resistant bacteria (TRB) and tetracycline resistance genes (TRGs) in bulk and rhizosphere soils for evaluating the spread of TRGs from pig manure to human. In this work, a greenhouse experiment was conducted to investigate the difference in abundance of TRB, tetracycline-resistant Escherichia coli (TRE), tetracycline-resistant Pseudomonas spp. (TRP), and TRGs between bulk and cucumber rhizosphere soils. The application of pig manure resulted in the long-term persistence of TRB, TRE, TRP, and TRGs in bulk soil and rhizosphere of cucumber for at least 65 days. Pig manure application dose was the major driving force in altering the abundances of TRB and TRE, whereas TRP was disturbed mainly by compartment (bulk soil or rhizosphere). Both TRE and the percentage of TRE in bulk and rhizosphere soils increased linearly with an increase in dose of pig manure. The exponential relationships between pig manure dose and TRP along with TRP percentage were also noted. There were significant differences in the relative abundances of TRGs between bulk and cucumber rhizosphere soils, suggesting the use of pig manure exerted a more lasting impact on the spread of TRGs in the rhizosphere than in the bulk soil.

  20. Life cycle assessment of manure management and nutrient recycling from a Chinese pig farm.

    PubMed

    Luo, Yiming; Stichnothe, Heinz; Schuchardt, Frank; Li, Guoxue; Huaitalla, Roxana Mendoza; Xu, Wen

    2014-01-01

    Driven by the growing numbers of intensified pig farms around cities in China, there are problems of nutrient surplus and shortage of arable land for utilising the manure. Hence, sustainable livestock systems with effective manure management are needed. The objective of this study is to compare the existing manure treatment of a typical pig farm in Beijing area (separate collection of faeces; 'Gan qing fen' system) with an alternative system and to identify the nutrients flow of the whole farm in order to quantify environmental burdens and to estimate the arable land required for sustainable nutrients recycling. Life cycle assessment is used for this purpose. Acidification potential (AP), eutrophication potential (EP) and global warming potential (GWP) are analysed in detail; the functional unit is the annual production of the pig farm. The results show that the cropland area demand for sustainable land application of the effluent can be reduced from 238 to 139 ha with the alternative system. It is possible to transfer 29% of total nitrogen, 87% of phosphorus, 34% of potassium and 75% of magnesium to the compost, and to reduce the total AP, EP and GWP of manure management on the farm by 64.1%, 96.7% and 22%, respectively, compared with the current system. Besides an effective manure management system, a full inventory of the regional nutrients flow is needed for sustainable development of livestock systems around big cities in China.

  1. Anaerobic digestion characteristics of pig manures depending on various growth stages and initial substrate concentrations in a scaled pig farm in Southern China.

    PubMed

    Zhang, Wanqin; Lang, Qianqian; Wu, Shubiao; Li, Wei; Bah, Hamidou; Dong, Renjie

    2014-03-01

    The characteristics of anaerobic digestion of pig manure from different growth stages were investigated. According to growth stage, batch experiments were performed using gestating sow manure (GSM), swine nursery with post-weaned piglet manure (SNM), growing fattening manure (GFM) and mixed manure (MM) as substrates at four substrate concentrations (40, 50, 65 and 80gVS/L) under mesophilic conditions. The maximum methane yields of MM, SNM, GSM and GFM were 354.7, 328.7, 282.4 and 263.5mLCH4/gVSadded, respectively. Volatile fatty acids/total inorganic carbon (VFA/TIC) ratio increased from 0.10 to 0.89 when loading increased from 40 to 80gVS/L for GFM. The modified Gompertz model shows a better fit to the experimental results than the first order model with a lower difference between measured and predicted methane yields. The kinetic parameters indicated that the methane production curve on the basis of differences in biodegradability of the pig manure at different growth stages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Effect of pig manure on the chemical composition and microbial diversity during co-composting with spent mushroom substrate and rice husks.

    PubMed

    Meng, Xingyao; Liu, Bin; Xi, Chen; Luo, Xiaosha; Yuan, Xufeng; Wang, Xiaofen; Zhu, Wanbin; Wang, Hongliang; Cui, Zongjun

    2018-03-01

    In this study, the impact of pig manure on the maturity of compost consisting of spent mushroom substrate and rice husks was accessed. The results showed that the addition of pig manure (SMS-PM) reached 50°C 5days earlier and lasted 15days longer than without pig manure (SMS). Furthermore, the addition of pig manure improved nutrition and germination index. High-throughput 16S rRNA pyrosequencing was used to evaluate the bacterial and fungal composition during the composting process of SMS-PM compared to SMS alone. The SMS treatment showed a relatively higher abundance of carbon-degrading microbes (Bacillaceae and Thermomyces) and plant pathogenic fungi (Sordariomycetes_unclassified) at the end of the compost. In contrast, the SMS-PM showed an increased bacterial diversity with anti-pathogen (Pseudomonas). The results indicated that the addition of pig manure improved the decomposition of refractory carbon from the spent mushroom substrate and promoted the maturity and nutritional content of the compost product. Copyright © 2017. Published by Elsevier Ltd.

  3. Pilot project of biogas production from pig manure and urine mixture at ambient temperature in Ventanilla (Lima, Peru).

    PubMed

    Ferrer, I; Gamiz, M; Almeida, M; Ruiz, A

    2009-01-01

    Parque Porcino de Ventanilla has an extension of 840ha with 2200 farmers dedicated to pig production. There is a lack of services in the area (i.e., water supply, electricity, or waste collection). Anaerobic treatment of pig manure would replace current dumping and incineration, reducing environmental pollution and hazards to public health, as well as providing an organic fertilizer and biogas. The objective of the present work was to study the viability of ambient temperature anaerobic digestion of pig manure diluted in urine, by means of on-site pilot scale reactors. The final goal was to establish design parameters for anaerobic digesters to be implemented; since it was part of a project to improve life conditions for the farmers through the incorporation of better management techniques. Experiments were carried out in a low-cost pilot plant, which consists of three anaerobic digesters (225L total volume), without heating or agitation, placed in a greenhouse. The start-up of the digestion process was performed with a mixture of temperature adapted pig manure-sludge and fresh rumen, and showed a good performance regardless of the dilution of pig manure with water or urine, which is a key parameter due to the scarcity of water in the area under study.

  4. Evaluation of degradation of antibiotic tetracycline in pig manure by electron beam irradiation.

    PubMed

    Cho, Jae-Young

    2010-04-01

    This study was carried out to evaluate the degradation efficiency and intermediate products of the tetracycline from artificially contaminated pig manure using of electron beam irradiation as a function of the absorbed dose. The degradation efficiency of tetracycline was 42.77% at 1 kGy, 64.20% at 3 kGy, 77.83% at 5 kGy, and 90.50% at 10 kGy. The initial concentration of tetracycline (300 mg kg(-1)) in pig manure decreased significantly to 24.2 +/- 5.3 mg kg(-1) after electron beam irradiation at 10 kGy. The radiolytic degradation products of tetracycline were 1,4-benzenedicarboxylic acid, hexadecanoic acid, 9-octadecenamide, 11-octadecenamide, and octadecanoic acid.

  5. Phosphorus recovery from pig manure solids prior to land application

    USDA-ARS?s Scientific Manuscript database

    Land disposal of pig manure is an environmental concern due to an imbalance of the nitrogen to phosphorus (N:P) ratio for crop production, leading to excess phosphorus (P) in soils and potential risks of water pollution. A process called “quick wash” was investigated for its feasibility to extract ...

  6. Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2015-01-01

    In the present work bagasse (B) i.e waste of the sugar industry, was fed to Eisenia fetida with cattle dung (CD) support as feed material at various ratios (waste: CD) of 0:100 (B0), 25:75 (B25), 50:50 (B50), 75:25 (B75) and 100:0 (B100) on dry weight basis. Co-composting with cattle dung helped to improve their acceptability for E. fetida and also improved physico-chemical characteristics. Best appropriate ratio for survival, maximum growth and population buildup of E. fetida was determined by observing population buildup, growth rate, biomass, mortality and cocoon formation. Minimum mortality and highest population size of worms was observed in 50:50 (B50) ratio. Increasing concentrations of wastes significantly affected the growth and reproduction of worms. Nutrients like nitrogen, phosphorus and sodium increased from pre-vermicompost to post-vermicompost, while organic carbon, and C:N ratio decreased in all the end products of post-vermicomposting. Heavy metals decreased significantly from initial except zinc, iron and manganese which increased significantly. Scanning electron microscopy (SEM) was used to recognize the changes in texture in the pre and post-vermicomposted samples. The post-vermicomposted ratios in the presence of earthworms validate more surface changes that prove to be good manure. The results observed from the present study indicated that the earthworm E. fetida was able to change bagasse waste into nutrient-rich manure and thus play a major role in industrial waste management.

  7. Effect of composting on the thermal decomposition behavior and kinetic parameters of pig manure-derived solid waste.

    PubMed

    Dhyani, Vaibhav; Kumar Awasthi, Mukesh; Wang, Quan; Kumar, Jitendra; Ren, Xiuna; Zhao, Junchao; Chen, Hongyu; Wang, Meijing; Bhaskar, Thallada; Zhang, Zengqiang

    2018-03-01

    In this work, the influence of composting on the thermal decomposition behavior and decomposition kinetics of pig manure-derived solid wastes was analyzed using thermogravimetry. Wheat straw, biochar, zeolite, and wood vinegar were added to pig manure during composting. The composting was done in the 130 L PVC reactors with 100 L effective volume for 50 days. The activation energy of pyrolysis of samples before and after composting was calculated using Friedman's method, while the pre-exponential factor was calculated using Kissinger's equation. It was observed that composting decreased the volatile content of all the samples. The additives when added together in pig manure lead to a reduction in the activation energy of decomposition, advocating the presence of simpler compounds in the compost material in comparison with the complex feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Yield and fruit quality of four sweet corn hybrids (Zea mays) under conventional and integrated fertilization with vermicompost.

    PubMed

    Lazcano, Cristina; Revilla, Pedro; Malvar, Rosa Ana; Domínguez, Jorge

    2011-05-01

    Vermicompost has been proposed as a valuable fertilizer for sustainable agriculture. The effects of vermicompost on yield and quality of sweet corn were evaluated in this study. In two field trials, sweet corn plants were grown under (i) a conventional fertilization regime with inorganic fertilizer, and integrated fertilization regimes in which 75% of the nutrients were supplied by the inorganic fertilizer and 25% of the nutrients were supplied by either (ii) rabbit manure, or (iii) vermicompost. All three types of fertilization regime were supplied at two doses. Two pairs of nearly isogenic sweet corn hybrids homozygous for sugary1 and shrunken2 mutants were included in the trials to explore fertilizer × genotype interactions. Growth, yield and ear quality of the plants were evaluated in relation to the three fertilization regimes. In general, the integrated regimes yielded the same productivity levels as the conventional treatment. Moreover, both vermicompost and manure produced significant increases in plant growth and marketable yield, and also affected the chemical composition and quality of the marketable ear. Nevertheless, most of the observed effects of the organic fertilizers were genotype-dependent. The results confirm that the use of organic fertilizers such as vermicompost has a positive effect on crop yield and quality. Nevertheless, these effects were not general, indicating the complexity of the organic amendment-plant interactions and the importance of controlling genetic variation when studying the effects of vermicompost on plant growth. Copyright © 2011 Society of Chemical Industry.

  9. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Jingqing; School of Environmental Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275; Li, Dong

    Highlights: • Biogas production was enhanced by co-digestion of rice straw with other materials. • The optimal ratio of kitchen waste, pig manure and rice straw is 0.4:1.6:1. • The maximum biogas yield of 674.4 L/kg VS was obtained. • VFA inhibition occurred when kitchen waste content was more than 26%. • The dominant VFA were propionate and acetate in successful reactors. - Abstract: In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37 ± 1 °C)more » anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.9–70.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others.« less

  10. Effects of long-term pig manure application on antibiotics, abundance of antibiotic resistance genes (ARGs), anammox and denitrification rates in paddy soils.

    PubMed

    Rahman, M Mizanur; Shan, Jun; Yang, Pinpin; Shang, Xiaoxia; Xia, Yongqiu; Yan, Xiaoyuan

    2018-05-09

    Previous studies of long-term manure applications in paddy soil mostly focused on the effects on denitrification, occurrence of antibiotics and antibiotic resistance genes (ARGs) without considering the effects on anaerobic ammonium oxidation (anammox). Here, we investigated the potential rates of anammox and denitrification, occurrence of antibiotics and AGRs in response to three fertilization regimes (C, no fertilizer; N, mineral fertilizer; and NM, N plus pig manure) in six long-term paddy experiment sites across China. The potential rates of anammox (0.11-3.64 nmol N g -1 h -1 ) and denitrification (1.5-29.05 nmol N g -1 h -1 ) were correlated with the abundance of anammox genes (hzsB) and denitrification functional genes (narG, nirK, nirS and nosZ), respectively. The anammox and denitrification rates were affected by soil organic carbon (SOC) and significantly (p < 0.05) increased in NM treatments relative to those in N treatments. Although pig manure application increased antibiotic concentrations and abundance of ARGs compared with N treatments, the increased antibiotics did not directly affect the anammox and denitrification rates. Our results suggested that long-term pig manure application significantly increased antibiotic concentrations, abundance of ARGs, and rates of anammox and denitrification, and that the effects of pig manure-derived antibiotics on anammox and denitrification were marginal. This is the first report that investigates the effects of long-term pig manure application on anammox in paddy soils. More attention should be paid to the potential ecological risk of increased ARGs caused by pig manure application in paddy soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study

    PubMed Central

    Wang, Xin-Xin; Zhao, Fengyan; Zhang, Guoxian; Zhang, Yongyong; Yang, Lijuan

    2017-01-01

    A greenhouse pot test was conducted to study the impacts of replacing mineral fertilizer with organic fertilizers for one full growing period on soil fertility, tomato yield and quality using soils with different tomato planting history. Four types of fertilization regimes were compared: (1) conventional fertilizer with urea, (2) chicken manure compost, (3) vermicompost, and (4) no fertilizer. The effects on plant growth, yield and fruit quality and soil properties (including microbial biomass carbon and nitrogen, NH4+-N, NO3--N, soil water-soluble organic carbon, soil pH and electrical conductivity) were investigated in samples collected from the experimental soils at different tomato growth stages. The main results showed that: (1) vermicompost and chicken manure compost more effectively promoted plant growth, including stem diameter and plant height compared with other fertilizer treatments, in all three types of soil; (2) vermicompost improved fruit quality in each type of soil, and increased the sugar/acid ratio, and decreased nitrate concentration in fresh fruit compared with the CK treatment; (3) vermicompost led to greater improvements in fruit yield (74%), vitamin C (47%), and soluble sugar (71%) in soils with no tomato planting history compared with those in soils with long tomato planting history; and (4) vermicompost led to greater improvements in soil quality than chicken manure compost, including higher pH (averaged 7.37 vs. averaged 7.23) and lower soil electrical conductivity (averaged 204.1 vs. averaged 234.6 μS/cm) at the end of experiment in each type of soil. We conclude that vermicompost can be recommended as a fertilizer to improve tomato fruit quality and yield and soil quality, particularly for soils with no tomato planting history. PMID:29209343

  12. Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study.

    PubMed

    Wang, Xin-Xin; Zhao, Fengyan; Zhang, Guoxian; Zhang, Yongyong; Yang, Lijuan

    2017-01-01

    A greenhouse pot test was conducted to study the impacts of replacing mineral fertilizer with organic fertilizers for one full growing period on soil fertility, tomato yield and quality using soils with different tomato planting history. Four types of fertilization regimes were compared: (1) conventional fertilizer with urea, (2) chicken manure compost, (3) vermicompost, and (4) no fertilizer. The effects on plant growth, yield and fruit quality and soil properties (including microbial biomass carbon and nitrogen, [Formula: see text]-N, [Formula: see text]-N, soil water-soluble organic carbon, soil pH and electrical conductivity) were investigated in samples collected from the experimental soils at different tomato growth stages. The main results showed that: (1) vermicompost and chicken manure compost more effectively promoted plant growth, including stem diameter and plant height compared with other fertilizer treatments, in all three types of soil; (2) vermicompost improved fruit quality in each type of soil, and increased the sugar/acid ratio, and decreased nitrate concentration in fresh fruit compared with the CK treatment; (3) vermicompost led to greater improvements in fruit yield (74%), vitamin C (47%), and soluble sugar (71%) in soils with no tomato planting history compared with those in soils with long tomato planting history; and (4) vermicompost led to greater improvements in soil quality than chicken manure compost, including higher pH (averaged 7.37 vs. averaged 7.23) and lower soil electrical conductivity (averaged 204.1 vs. averaged 234.6 μS/cm) at the end of experiment in each type of soil. We conclude that vermicompost can be recommended as a fertilizer to improve tomato fruit quality and yield and soil quality, particularly for soils with no tomato planting history.

  13. Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: a three year mesocosm experiment.

    PubMed

    Doan, Thuy Thu; Henry-des-Tureaux, Thierry; Rumpel, Cornelia; Janeau, Jean-Louis; Jouquet, Pascal

    2015-05-01

    Compost, vermicompost and biochar amendments are thought to improve soil quality and plant yield. However, little is known about their long-term impact on crop yield and the environment in tropical agro-ecosystems. In this study we investigated the effect of organic amendments (buffalo manure, compost and vermicompost) and biochar (applied alone or with vermicompost) on plant yield, soil fertility, soil erosion and water dynamics in a degraded Acrisol in Vietnam. Maize growth and yield, as well as weed growth, were examined for three years in terrestrial mesocosms under natural rainfall. Maize yield and growth showed high inter-annual variability depending on the organic amendment. Vermicompost improved maize growth and yield but its effect was rather small and was only significant when water availability was limited (year 2). This suggests that vermicompost could be a promising substrate for improving the resistance of agrosystems to water stress. When the vermicompost-biochar mixture was applied, further growth and yield improvements were recorded in some cases. When applied alone, biochar had a positive influence on maize yield and growth, thus confirming its interest for improving long-term soil productivity. All organic amendments reduced water runoff, soil detachment and NH₄(+) and NO₃(-) transfer to water. These effects were more significant with vermicompost than with buffalo manure and compost, highlighting that the beneficial influence of vermicompost is not limited to its influence on plant yield. In addition, this study showed for the first time that the combination of vermicompost and biochar may not only improve plant productivity but also reduce the negative impact of agriculture on water quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Effect of the transit through the gut of earthworm (Eisenia fetida) on fractionation of Cu and Zn in pig manure.

    PubMed

    Li, Lingxiangyu; Wu, Jianyang; Tian, Guangming; Xu, Zhenlan

    2009-08-15

    To investigate the effect of the transit through the gut of earthworm (Eisenia fetida) on the fractionation of Cu and Zn in pig manure, earthworms were reared with pig manure in the greenhouse. Both the pig manure and the earthworm casts were subjected to a five-step sequential extraction of Cu and Zn. The content of Cu bound to organic matter in pig manure increased from 60% to 75% after transit through the gut of earthworm, whereas that of Zn decreased from 50% to 25%. It demonstrated that Cu had a strong affinity towards organic matter. The share of Cu and Zn in the exchangeable fraction was reduced by the transit through the gut of earthworm. Based on these changes, Cu was more bioavailable, whereas Zn was less bioavailable. The factors affecting metal fractionation, like pH, organic matter (OM) and total phosphorous (TP) contents, and total metal concentration, were also affected significantly by the transit through the gut of earthworm. Stepwise multiple regression analysis revealed that the fractionation of Cu in the earthworm casts was influenced by OM, TP and the amount of Cu in the earthworm casts. The total Zn concentration in the earthworm casts was the primary factor that explained most of the variation in Zn fractionation. The present study demonstrated that the digestive activity in the gut of E. fetida played an important role in the fraction redistribution of Cu and Zn in pig manure.

  15. Housefly maggot-treated composting as sustainable option for pig manure management.

    PubMed

    Zhu, Feng-Xiang; Yao, Yan-Lai; Wang, Su-Juan; Du, Rong-Guang; Wang, Wei-Ping; Chen, Xiao-Yang; Hong, Chun-Lai; Qi, Bing; Xue, Zhi-Yong; Yang, Hong-Quan

    2015-01-01

    In traditional composting, large amounts of bulking agents must be added to reduce the moisture of pig manure, which increases the cost of composting and dilutes the N, P and K content in organic fertilizers. In this study, maggot treatment was used in composting instead of bulking agents. In experiment of selecting an optimal inoculum level for composting, the treatment of 0.5% maggot inoculum resulted in the maximum yield of late instar maggots, 11.6% (maggots weight/manure weight). The manure residue became noticeably granular by day 6 and its moisture content was below 60%, which was suitable for further composting without bulking agents. Moreover, in composting experiment with a natural compost without maggot inoculum and maggot-treated compost at 0.5% inoculum level, there were no significant differences in nutrient content between the two organic fertilizers from the two treatments (paired Student's t15=1.0032, P=0.3317). Therefore, maggot culturing did not affect the characteristics of the organic fertilizer. The content of TNPK (total nitrogen+total phosphorus+total potassium) in organic fertilizer from maggot treatment was 10.72% (dry weight), which was far more than that of organic fertilizer made by conventional composting with bulking agents (about 8.0%). Dried maggots as feed meet the national standard (GB/T19164-2003) for commercial fish meal in China, which contained 55.32 ± 1.09% protein; 1.34 ± 0.02% methionine; 4.15 ± 0.10% lysine. This study highlights housefly maggot-treated composting can be considered sustainable alternatives for pig manure management to achieve high-quality organic fertilizer and maggots as feed without bulking agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Anaerobic co-digestion of cyanide containing cassava pulp with pig manure.

    PubMed

    Glanpracha, Naraporn; Annachhatre, Ajit P

    2016-08-01

    Anaerobic co-digestion of cyanide-containing cassava pulp with pig manure was evaluated using laboratory scale mesophilic digester. The digester was operated in a semi-continuous mode with the mixed feedstock having C/N ratio of 35:1. Digester startup was accomplished in 60days with loading of 0.5-1kgVS/m(3)d. Subsequently, the loading to digester was increased step-wise from 2 to 9kgVS/m(3)d. Digester performance was stable at loading between 2 and 6kgVS/m(3)d with an average volatile solid removal and methane yield of 82% and 0.38m(3)/kgVSadded, respectively. However, beyond loading of 7kgVS/m(3)d, solubilization of particulate matter did not take place efficiently. Cyanide present in cassava pulp was successfully degraded indicating that anaerobic sludge in the digester was well acclimatized to cyanide. The results show that cassava pulp can be successfully digested anaerobically with pig manure as co-substrate without any inhibitory effect of cyanide present in the cassava pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Short-Term Effect of Vermicompost Application on Biological Properties of an Alkaline Soil with High Lime Content from Mediterranean Region of Turkey

    PubMed Central

    Uz, Ilker; Tavali, Ismail Emrah

    2014-01-01

    This study was conducted to investigate direct short-term impact of vermicompost on some soil biological properties by monitoring changes after addition of vermicompost as compared to farmyard manure in an alkaline soil with high lime content from semiarid Mediterranean region of Turkey. For this purpose, mixtures of soil and organic fertilizers in different doses were incubated under greenhouse condition. Soil samples collected in regular intervals were analyzed for biological parameters including dehydrogenase, β-glucosidase, urease, alkaline phosphatase activities, and total number of aerobic mesophilic bacteria. Even though soil dehydrogenase activity appeared to be dose-independent based on overall evaluation, organic amendments were found to elevate dehydrogenase activity when sampling periods are evaluated individually. β-glucosidase, urease, alkaline phosphatase activity, and aerobic mesophilic bacterial numbers in vermicompost treatments fluctuated but remained significantly above the control. A slight but statistically significant difference was detected between organic amendments in terms of urease activity. Vermicompost appeared to more significantly increase bacterial number in soil. Clearly, vermicompost has a potential to be used as an alternative to farmyard manure to improve and maintain soil biological activity in alkaline calcareous soils from the Mediterranean region of Turkey. Further studies are needed to assess its full potential for these soils. PMID:25254238

  18. Effect of turning frequency on co-composting pig manure and fungus residue.

    PubMed

    Jiang-Ming, Zhou

    2017-03-01

    Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but also can recycle agricultural wastes and transform them into highly valuable products, such as fertilizers or soil conditioners, for agricultural applications. However, the composting process and final product are easily affected by the limited oxygen supply that results from insufficient aeration, especially in the center of a large-scale windrow. Hence, a pilot-scale experiment was conducted to investigate the effects of the turning frequency on the composting efficiency and compost quality of used pig manure and fungus residue. Physical and chemical characteristics were measured over the course of 63 days of composting. The data indicate that higher temperatures and more rapid moisture removal generally result from a turning treatment of once every 2-4 days than in fewer, or no, turning treatments. The total nitrogen, total phosphorus, and total potassium contents increased in all windrows as the organic matter content decreased, but both the increases and decrease were greater in windrows that were turned more frequently. The reduction of the organic matter mass by 53.7-66.0% for a turning of once every 2-8 days is significantly higher than that for the static windrow (39.1%). Although there is an increase in nitrogen mass loss with an increased turning frequency, lower nitrogen mass losses (12.7-25.7%) in all treatments were noted compared with previous studies. A final compost product with less moisture, less weight, higher nutrient content (N, P, and K), and greater stability was obtained in windrows with turning frequencies of once every 2-4 days, which is recommended when composting pig manure and fungus residue. Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but recycling of agricultural wastes transforms them into highly valuable products, such as fertilizers or soil conditioners, for

  19. Bioremediation and detoxification of industrial wastes by earthworms: Vermicompost as powerful crop nutrient in sustainable agriculture.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Sharanpreet; Singh, Jaswinder; Kumar, Sunil; Bhawana; Vig, Adarsh Pal

    2018-03-01

    Vermicompost is the final product of the vermicomposting process involving the collective action of earthworms and microbes. During this process, the waste is converted into useful manure by reducing the harmful effects of waste. Toxicity of industrial wastes is evaluated by plant bioassays viz. Allium cepa and Vicia faba test. These bioassays are sensitive and cost-effective for the monitoring of environmental contamination. The valorization potential of earthworms and their ability to detoxify heavy metals in industrial wastes is because of their strong metabolic system and involvement of earthworm gut microbes and chloragocyte cells. Most of the studies reported that the vermicompost produced from organic wastes contains higher amounts of humic substances, which plays a major role in growth of plants. The present article discusses the detoxification of industrial wastes by earthworms and the role of final vermicompost in plant growth and development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Increased Abundance and Transferability of Resistance Genes after Field Application of Manure from Sulfadiazine-Treated Pigs

    PubMed Central

    Jechalke, Sven; Kopmann, Christoph; Rosendahl, Ingrid; Groeneweg, Joost; Weichelt, Viola; Krögerrecklenfort, Ellen; Brandes, Nikola; Nordwig, Mathias; Ding, Guo-Chun; Siemens, Jan; Heuer, Holger

    2013-01-01

    Spreading manure containing antibiotics in agriculture is assumed to stimulate the dissemination of antibiotic resistance in soil bacterial populations. Plant roots influencing the soil environment and its microflora by exudation of growth substrates might considerably increase this effect. In this study, the effects of manure from pigs treated with sulfadiazine (SDZ), here called SDZ manure, on the abundance and transferability of sulfonamide resistance genes sul1 and sul2 in the rhizosphere of maize and grass were compared to the effects in bulk soil in a field experiment. In plots that repeatedly received SDZ manure, a significantly higher abundance of both sul genes was detected compared to that in plots where manure from untreated pigs was applied. Significantly lower abundances of sul genes relative to bacterial ribosomal genes were encountered in the rhizosphere than in bulk soil. However, in contrast to results for bulk soil, the sul gene abundance in the SDZ manure-treated rhizosphere constantly deviated from control treatments over a period of 6 weeks after manuring, suggesting ongoing antibiotic selection over this period. Transferability of sulfonamide resistance was analyzed by capturing resistance plasmids from soil communities into Escherichia coli. Increased rates of plasmid capture were observed in samples from SDZ manure-treated bulk soil and the rhizosphere of maize and grass. More than 97% of the captured plasmids belonged to the LowGC type (having low G+C content), giving further evidence for their important contribution to the environmental spread of antibiotic resistance. In conclusion, differences between bulk soil and rhizosphere need to be considered when assessing the risks associated with the spreading of antibiotic resistance. PMID:23315733

  1. Molecular characteristics of humic acids isolated from vermicomposts and their relationship to bioactivity.

    PubMed

    Martinez-Balmori, Dariellys; Spaccini, Riccardo; Aguiar, Natália Oliveira; Novotny, Etelvino Henrique; Olivares, Fábio Lopes; Canellas, Luciano Pasqualoto

    2014-11-26

    Vermitechnology is an effective composting method, which transforms biomass into nutrient-rich organic fertilizer. Mature vermicompost is a renewable organic product containing humic substances with high biological activity. The aim of this study was to assess the chemical characteristics and the bioactivity of humic acids isolated from different vermicomposts produced with either cattle manure, sugar cane bagasse, sunflower cake from seed oil extraction, or filter cake from a sugar cane factory. More than 200 different molecules were found, and it was possible to identify chemical markers on humic acids according to the nature of the organic source. The large hydrophobic character of humic extracts and the preservation of altered lignin derivatives confer to humic acids the ability to induce lateral root emergence in maize seedlings. Humic acid-like substances extracted from plant biomass residues represent an additional valuable product of vermicomposting that can be used as a plant growth promoter.

  2. Vermicomposting of tannery sludge mixed with cattle dung into valuable manure using earthworm Eisenia fetida (Savigny).

    PubMed

    Vig, Adarsh Pal; Singh, Jaswinder; Wani, Shahid Hussain; Singh Dhaliwal, Salwinder

    2011-09-01

    The present study revealed the role of earthworm in converting tannery sludge into a valuable product. Tannery sludge was toxic to earthworm, therefore it was mixed with cattle dung in different proportions viz. 0:100 (T(0)), 10:90 (T(10)), 25:75 (T(25)), 50:50 (T(50)) and 75:25 (T(75)) on dry weight basis. The minimum mortality and highest population buildup of worms was in T(0) mixture. Nitrogen, sodium, phosphorus and pH increased from initial in the range of 7.3-66.6%, 16.90-70.58%, 8.57-44.8% and 2.8-13.65%, respectively. On the other hand potassium, organic carbon and electrical conductivity decreased in the range of 4.34-28.5%, 7.54-22.35% and 32.35-53.12%, respectively. C:N ratio decreased from 20.53% to 47.36% in the final products. Transition metals increased significantly from the initial value and within the permissible limit. The result indicated that vermicomposting with Eisenia fetida is better for changing this sludge into nutrient rich manure in a short period of time. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Vermicomposting of Paper Mill Sludge with Eisenia fetida for its Conversion to Nutrient Using Different Seed Materials

    NASA Astrophysics Data System (ADS)

    Mohan, S. Mariraj

    2017-12-01

    In this study, it was aimed for effective utilization of paper mill sludge through vermicomposting by varying seed proportion with sp. Eisenia fetida. Nine plastic trays were used for the experimental work including control. Different seed proportions of cow dung and cattle dung were tested. The multiplication of earthworms in terms of number was counted at the end of vermicomposting. The N, K, Ca, Na values of the manure in each vermibin were estimated before and after vermicomposting. In this study, it was concluded that tray A2 which has combination of 75% Cow dung (CD) and 25% Paper Mill Sludge (PMS) provided better nitrogen synthesis and lowering C/N ratio, whereas tray A4 (25%CD + 75% PMS) yielded better Calcium recovery. Both the seed materials were found to be suitable for Potassium recovery. From this study, it was inferred that vermicomposting of paper mill sludge with sp. Eisenia fetida along with seed materials can also solve the problem of disposal of this sludge.

  4. Potential risks of copper, zinc, and cadmium pollution due to pig manure application in a soil-rice system under intensive farming: a case study of Nanhu, China.

    PubMed

    Shi, Jiachun; Yu, Xiulin; Zhang, Mingkui; Lu, Shenggao; Wu, Weihong; Wu, Jianjun; Xu, Jianming

    2011-01-01

    Heavy metal (copper [Cu], zinc [Zn], and cadmium [Cd]) pollution of soils from pig manures in soil-rice ( L.) systems under intensive farming was investigated, taking Nanhu, China, as the case study area. Two hundred pig manures and 154 rice straws, brown rice samples, and corresponding surface soil (0-15 cm) samples were collected in paddy fields from 150 farms in 16 major villages within the study area. The mean Cu and Zn concentrations in pig manures consistently exceeded the related standard. About 44 and 60% of soil samples exceed the Chinese Soil Cu and Cd Environmental Quality Standards, respectively. The concentration of Cu, Zn, and Cd in brown rice did not exceed the Chinese Food Hygiene Standard. There was a significant positive correlation between total Cu and Zn contents in soil and application rate of pig manures. Strong correlation was observed between the extractable Cu, Zn, and Cd in soil and the Cu, Zn, and Cd contents in the brown rice. The spatial distribution maps of Cu and Zn concentrations in brown rice, straw, and extractable soil Cu and Zn concentration also showed similar geographical trends. Further analyses on heavy metals loading flux and accumulation rates from pig manure applied suggested that Cu and Cd contents in soil currently have already exceeded the maximum permissible limit, and Zn, if still at current manure application rates, will reach the ceiling concentration limits in 9 yr. This study assists in understanding the risk of heavy metals accumulating from pig manure applications to agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Re-use of invasive plants (water hyacinth) as organic fertilizer through composting and vermicomposting (Extremadura, Spain)

    NASA Astrophysics Data System (ADS)

    Labrador, Juana; Gordillo, Judit; Ruiz, Trinidad; Moreno, Marta M.

    2015-04-01

    The water hyacinth (Eichhornia crassipes) is an invasive plant that is native of the Amazon basin and whose capacity for growth and propagation causes major conservation problems with considerable socioeconomic repercussions. The greatest damage due to its fast expansion has been in the middle reaches of the River Guadiana in the SW Iberian Peninsula, where was detected in the Autumn of 2004. Due to its rapid expansion, mechanical extraction was carried out by the Confederación Hidrográfica del Guadiana (CHG) of Spain's Ministry of the Environment since the affected zone is an important area of irrigation farming and hydraulic works and this alien plant weed provoked acute social alarm (Ruiz et al., 2008). In this work we used composting and vermicomposting techniques as an environmental alternative to assess the possibilities of biotransformation of the water hyacinth biomass removed mechanically from the Guadiana River Basin (Spain). Four compost piles 1.5 x 10 m size, mechanically tumbled and with no forced ventilation (turning windrows system), were constructed outdoor. Each compost pile was considered as a different treatment: CC1: fresh water hyacinth / wheat straw (1:1 vol/vol); CC2: fresh water hyacinth / sheep manure rich in wheat straw (1:1 vol/vol); CC3: fresh water hyacinth / sheep manure rich in wheat straw (2:1 vol/vol) + Bokachi EM Activator (200 g m-2) to favor the composting process; CC4: fresh water hyacinth / sheep manure rich in wheat straw (1:1 vol/vol) + Bokachi EM Activator (200 g m-2). The vermicomposting process was performed on mesh coated wooden boxes (0.34 m3) covered with a shadow mesh with the aim of harmonizing the environmental conditions. The quantities of water hyacinth biomass used were identical in volume (120 l) but with different state or composition: fresh and chopped biomass (VCF); dry and chopped biomass (VCS); fresh and pre-composted biomass with sheep manure rich in wheat straw (VCP). Identical worm density, irrigation

  6. [Vermicomposting of different organic materials and three-dimensional excitation emission matrix fluorescence spectroscopic characterization of their dissolved organic matter].

    PubMed

    Yang, Wei; Wang, Dong-sheng; Liu, Man-qiang; Hu, Feng; Li, Hui-xin; Huang, Zhong-yang; Chang, Yi-jun; Jiao, Jia-guo

    2015-10-01

    In this experiment, different proportions of the cattle manure, tea-leaf, herb and mushroom residues, were used as food for earthworm (Eisenia fetida) to study the growth of the earth-worm. Then the characteristics and transformation of nutrient content and three-dimensional excitation emission matrix fluorescence (3DEEM) of dissolved organic matter (DOM) during vermistabilization were investigated by means of chemical and spectroscopic methods. The result showed that the mixture of different ratios of cattle manure with herb residue, and cattle manure with tea-leaf were conducive to the growth of earthworm, while the materials compounded with mushroom residue inhibited the growth of earthworm. With the increasing time of verimcomposting, the pH in vermicompost tended to be circumneutral and weakly acidic, and there were increases in electrical conductivity, and the contents of total nitrogen, total phosphorus, available nitrogen, and available phosphorus, while the total potassium and available potassium increased first and then decreased, and the organic matter content decreased. 3DEEM and fluorescence regional integration results indicated that, the fluorescence of protein-like fluorescence peaks declined significantly, while the intensity of humic-like fluorescence peak increased significantly in DOM. Vermicomposting process might change the compositions of DOM with elevated concentrations of humic acid and fulvic acid in the organics. In all, this study suggested the suitability of 3DEEM for monitoring the organics transformation and assessing the maturity in the vermicomposting.

  7. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoelzel, Christina S., E-mail: Christina.Hoelzel@wzw.tum.de; Mueller, Christa; Harms, Katrin S.

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, <2.0-26.7 mg lead, <0.01-0.11 mg mercury, 3.1-97.3 mg nickel and 93.0-8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against {beta}-lactams were significantly elevated. By contrast, the presence of mercury was significantly associatedmore » with low antimicrobial resistance rates of Escherichia coli against {beta}-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.« less

  8. Performance evaluation of chicken, cow and pig manure in the production of natural fish food in aquadams stocked with Oreochromis mossambicus

    NASA Astrophysics Data System (ADS)

    Rapatsa, M. M.; Moyo, N. A. G.

    The main objective of this study was to characterize the ecological conditions that prevail after the application of chicken, cow and pig manure. Three treatments, chicken, cow, pig manure and a control were assigned to aquadams in a completely randomized design and each treatment was replicated three times. The aquadams were fertilized 2 weeks before the fish were stocked. One hundred Oreochromis mossambicus (mean weight ±40 g) were stocked in each aquadam. Water physico-chemical parameters (temperature, dissolved oxygen, pH, electrical conductivity, salinity, turbidity, ammonia, nitrite, total alkalinity as calcium carbonate, and phosphorus) were determined once a week for the duration of the experiment. Zooplankton and phytoplankton in the different treatments were enumerated once every 2 weeks. The relationship between phytoplankton communities and the water physico-chemical parameters were evaluated using canonical correspondence analysis (CCA). The CCA indicated that the physico-chemical variables which best explain the distribution of phytoplankton were carbonate alkalinity, pH, phosphate, potassium, nitrogen and dissolved oxygen. Phytoplankton abundance was highest in chicken manure because the optimum nutrient conditions for the growth of phytoplankton were found in this treatment. Zooplankton abundance was also highest in the chicken manure treatment. The control was associated with one phytoplankton taxa, Chlorella. The numerical contribution of the different food items in the stomachs of O. mossambicus was determined. The diet of O. mossambicus was dominated by phytoplankton particularly Microcystis species. Total coliforms and Escherichia coli were used to assess the microbiological quality of the water in the different manure treatments. Chicken manure had the lowest total coliform and E. coli count. However, chicken manure had the highest Bacillus count. The implications of the microbial load in the chicken, cow and pig manure are discussed.

  9. Laboratory testing on the removal of the veterinary antibiotic doxycycline during long-term liquid pig manure and digestate storage.

    PubMed

    Widyasari-Mehta, Arum; Suwito, Hanna Resti Kartika Ayu; Kreuzig, Robert

    2016-04-01

    The veterinary antibiotic doxycycline (DOXY) is today frequently applied in conventional pig husbandry for the control of respiratory diseases. After the treatment, pigs excrete major amounts of DOXY as the unchanged active substance. Thus, DOXY residues were found in liquid manures and digestates of biogas plants at concentrations of mg kg(-1) dry weight. In order to assess the impact of field applications of contaminated manures and digestates on the entry of DOXY residues into arable and grassland soils, thorough information about the removal of DOXY during long-term storage of farm fertilizers is required. Since this aspect has been only less investigated for manures but not for digestates, first long-term storage simulation tests were performed at laboratory scale. Within the 170-d incubation periods under strictly anaerobic conditions, doxycycline was removed in liquid pig manure by 61% and in digestate by 76%. The calculated half-lives of 120 d and 91 d thus emphasized the persistence of doxycycline in both matrices. Due to the substance specific properties of DOXY, this removal was caused neither by mineralization, epimerization nor biotransformation. According to the high affinity of DOXY to manure and digestate solids, however, the formation of non-extractable residues has to be taken into account as the predominant concentration determining process. This was indicated by the sequential extraction procedure applied. Hence, these results confirmed that a full removal capacity for doxycycline cannot be reached through the long-term storage of farm fertilizers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Seasonal variation in methane emission from stored slurry and solid manures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husted, S.

    1994-05-01

    Methane (CH{sub 4}) is an important greenhouse gas and recent inventories have suggested that livestock manure makes a significant contribution to global CH{sub 4} emissions. The emission of CH{sub 4} from stored pig slurry, cattle slurry, pig solid manure, and cattle solid manure was followed during a 1-yr period. Methane emission was determined by dynamic chambers. Emission rates followed a ln-normal distribution for all four manures, Indicating large spatial and seasonal variation& Monthly geometric means for pig slurry, cattle slurry, pig solid manure, and cattle solid manure varied from 0.4 to 35.8, 0.0 to 34.5, 0.4 to 142.1, and 0.1more » to 42.7 g CH{sub 4} m{sup -3} d{sup -1}, respectively. For slurries CH{sub 4} emission rates increased significantly with storage temperatures, the Q{sub 10} value ranging from 14 to 5.7 depending on slurry type. The presence of a natural surface crust reduced CH{sub 4} emission from slurry by a factor of 11 to 12. Surface crust effects declined with increasing slurry temperature. Solid manures stored in dungheaps showed significant heat production. Pig solid manure temperatures were maintained at 30 to 60{degrees}C throughout most of the year, while cattle solid manure temperatures were close to ambient levels until late spring, when heat production was initiated. Methanogenesis in solid manure also increased with increasing temperatures. For pig solid manure, CH{sub 4} emission rates peaked at 35 to 45{degrees}C. No distinct temperature optimum could be detected for cattle solid manure, however, temperatures rarely exceeded 45{degrees}C. The Q{sub 10} values for dungheaps ranged from 2.7 to 10.3 depending on-manure type and Q{sub 10} temperature interval. Annual CH{sub 4} emissions from pig slurry, cattle slurry, pig solid manure, and cattle solid manure were estimated at 8.9, 15.5, 27.3, and 5.3 kg animal{sup -1} yr{sup -1}, respectively. 27 refs., 6 figs., 2 tabs.« less

  11. Dynamics of copper and tetracyclines during composting of water hyacinth biomass amended with peat or pig manure.

    PubMed

    Lu, Xin; Liu, Lizhu; Fan, Ruqin; Luo, Jia; Yan, Shaohua; Rengel, Zed; Zhang, Zhenhua

    2017-10-01

    Composting is one of the post-treatment methods for phytoremediation plants. Due to a high potential of water hyacinth to accumulate pollutants, the physicochemical parameters, microbial activity as well as fates of copper (Cu) and tetracyclines (TCs) were investigated for the different amended water hyacinth biomass harvested from intensive livestock and poultry wastewater, including unamended water hyacinth (W), water hyacinth amended with peat (WP), and water hyacinth amended with pig manure (WPM) during the composting process. Pig manure application accelerated the composting process as evidenced by an increase of temperature, electrical conductivity (EC), NH 4 -N, as well as functional diversity of microbial communities compared to W and WP treatments. Composting process was slowed down by high Cu, but not by TCs. The addition of peat significantly increased the residual fraction of Cu, while pig manure addition increased available Cu concentration in the final compost. Cu could be effectively transformed into low available (oxidizable) and residual fractions after fermentation. In contrast, less than 0.5% of initial concentrations of TCs were determined at the end of 60-day composting for all treatments in the final composts. The dissipation of TCs was accelerated by the high Cu concentration during composting. Therefore, composting is an effective method for the post-treatment and resource utilization of phytoremediation plants containing Cu and/or TCs.

  12. Vermicomposting eliminates the toxicity of Lantana (Lantana camara) and turns it into a plant friendly organic fertilizer.

    PubMed

    Hussain, N; Abbasi, Tasneem; Abbasi, S A

    2015-11-15

    In evidently the first study of its kind, vermicompost derived solely from a weed known to possess plant and animal toxicity was used to assess its impact on the germination and early growth of several plant species. No pre-composting or supplementation of animal manure was done to generate the vermicompost in order to ensure that the impact is clearly attributable to the weed. Whereas the weed used in this study, Lantana (Lantana camara), is known to possess strong negative allelopathy, besides plant/animal toxicity in other forms, its vermicompost was seen to be a good organic fertilizer as it increased germination success and encouraged growth of all the three botanical species explored by the authors - green gram (Vigna radiata), ladies finger (Abelmoschus esculentus) and cucumber (Cucumis sativus). In terms of several physical, chemical and biochemical attributes that were studied, the vermicompost appeared plant-friendly, giving best results in general when employed at concentrations of 1.5% in soil (w/w). Fourier transform infrared spectrometry revealed that the phenols and the sesquiterpene lactones that are responsible for the allelopathic impact of Lantana were largely destroyed in the course of vermicomposting. There is also an indication that lignin content of Lantana was reduced during its vermicomposting. The findings open up the possibility that the billions of tons of phytomass that is generated annually by Lantana and other invasives can be gainfully utilized in generating organic fertilizer via vermicomposting. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Life cycle assessment of segregating fattening pig urine and feces compared to conventional liquid manure management.

    PubMed

    De Vries, Jerke W; Aarnink, André J A; Groot Koerkamp, Peter W G; De Boer, Imke J M

    2013-02-05

    Gaseous emissions from in-house storage of liquid animal manure remain a major contributor to the environmental impact of manure management. Our aim was to assess the life cycle environmental consequences and reduction potential of segregating fattening pig urine and feces with an innovative V-belt system and to compare it to conventional liquid manure management, that is, the reference. Moreover, we aimed at analyzing the uncertainty of the outcomes related to applied emission factors. We compared a reference with two scenarios: segregation with solid, aerobically, stored feces and with liquid, anaerobically, stored feces. Results showed that, compared to the reference, segregation reduced climate change (CC) up to 82%, due to lower methane emission, reduced terrestrial acidification (TA) and particulate matter formation (PMF) up to 49%, through lower ammonia emission, but increased marine eutrophication up to 11% through nitrogen oxide emission from storage and nitrate leaching after field application. Fossil fuel depletion did not change. Segregation with liquid feces revealed lower environmental impact than segregation with solid feces. Uncertainty analysis supported the conclusion that segregating fattening pig urine and feces significantly reduced CC and additionally segregation with liquid feces significantly reduced TA and PMF compared to the reference.

  14. Evaluation of aerobic co-composting of penicillin fermentation fungi residue with pig manure on penicillin degradation, microbial population dynamics and composting maturity.

    PubMed

    Zhang, Zhenhua; Zhao, Juan; Yu, Cigang; Dong, Shanshan; Zhang, Dini; Yu, Ran; Wang, Changyong; Liu, Yan

    2015-12-01

    Improper treatment of penicillin fermentation fungi residue (PFFR), one of the by-products of penicillin production process, may result in environmental pollution due to the high concentration of penicillin. Aerobic co-composting of PFFR with pig manure was determined to degrade penicillin in PFFR. Results showed that co-composting of PFFR with pig manure can significantly reduce the concentration of penicillin in PFFR, make the PFFR-compost safer as organic fertilizer for soil application. More than 99% of penicillin in PFFR were removed after 7-day composting. PFFR did not affect the composting process and even promote the activity of the microorganisms in the compost. Quantitative PCR (qPCR) indicated that the bacteria and actinomycetes number in the AC samples were 40-80% higher than that in the pig-manure compost (CK) samples in the same composting phases. This research indicated that the aerobic co-composting was a feasible PFFR treatment method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Anaerobic digestion of pig and dairy manure under photo-dark fermentation condition.

    PubMed

    Yin, Dongxue; Liu, Wei; Zhai, Ningning; Yang, Gaihe; Wang, Xiaojiao; Feng, Yongzhong; Ren, Guangxin

    2014-08-01

    Anaerobic digestion (AD) with livestock manure is a promising way for biogas production. This work presents the influence of photo-dark fermentation on biogas production of pig manure (PM) and dairy manure (DM). All sets were conducted with temperature 35 ± 2 °C and total solid concentrations 8%: PM₁ and DM₁ in transparent reactor under sunlight for photo-dark fermentation, and PM₂ and DM₂ in non-transparent reactor for dark fermentation. DM₂ had the best cumulative biogas production (CBP) of 15,447.5 mL, followed by PM₁ (15,020 mL) with stable pH and low total ammonium nitrogen (TAN) concentration (1384.99 mg/L), and DM₁ and PM₂. The CBP of DM₂ was 5.77 times as much as PM₂. The relationship between CBP and four factors including volatile fatty acid (VFA), TAN, total alkalinity and pH was analyzed. pH gained the maximum determination coefficient with the CBP among all sets and total alkalinity showed negative correlation with CBP of PM₁ and DM₁. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A determination and comparison of urease activity in feces and fresh manure from pig and cattle in relation to ammonia production and pH changes.

    PubMed

    Dai, Xiaorong; Karring, Henrik

    2014-01-01

    Ammonia emission from animal production is a major environmental problem and has impacts on the animal health and working environment inside production houses. Ammonia is formed in manure by the enzymatic degradation of urinary urea and catalyzed by urease that is present in feces. We have determined and compared the urease activity in feces and manure (a urine and feces mixture) from pigs and cattle at 25°C by using Michaelis-Menten kinetics. To obtain accurate estimates of kinetic parameters Vmax and K'm, we used a 5 min reaction time to determine the initial reaction velocities based on total ammoniacal nitrogen (TAN) concentrations. The resulting Vmax value (mmol urea hydrolyzed per kg wet feces per min) was 2.06±0.08 mmol urea/kg/min and 0.80±0.04 mmol urea/kg/min for pig feces and cattle feces, respectively. The K'm values were 32.59±5.65 mmol urea/l and 15.43±2.94 mmol urea/l for pig feces and cattle feces, respectively. Thus, our results reveal that both the Vmax and K'm values of the urease activity for pig feces are more than 2-fold higher than those for cattle feces. The difference in urea hydrolysis rates between animal species is even more significant in fresh manure. The initial velocities of TAN formation are 1.53 mM/min and 0.33 mM/min for pig and cattle manure, respectively. Furthermore, our investigation shows that the maximum urease activity for pig feces occurs at approximately pH 7, and in cattle feces it is closer to pH 8, indicating that the predominant fecal ureolytic bacteria species differ between animal species. We believe that our study contributes to a better understanding of the urea hydrolysis process in manure and provides a basis for more accurate and animal-specific prediction models for urea hydrolysis rates and ammonia concentration in manures and thus can be used to predict ammonia volatilization rates from animal production.

  17. A Determination and Comparison of Urease Activity in Feces and Fresh Manure from Pig and Cattle in Relation to Ammonia Production and pH Changes

    PubMed Central

    Dai, Xiaorong; Karring, Henrik

    2014-01-01

    Ammonia emission from animal production is a major environmental problem and has impacts on the animal health and working environment inside production houses. Ammonia is formed in manure by the enzymatic degradation of urinary urea and catalyzed by urease that is present in feces. We have determined and compared the urease activity in feces and manure (a urine and feces mixture) from pigs and cattle at 25°C by using Michaelis-Menten kinetics. To obtain accurate estimates of kinetic parameters Vmax and K'm, we used a 5 min reaction time to determine the initial reaction velocities based on total ammoniacal nitrogen (TAN) concentrations. The resulting Vmax value (mmol urea hydrolyzed per kg wet feces per min) was 2.06±0.08 mmol urea/kg/min and 0.80±0.04 mmol urea/kg/min for pig feces and cattle feces, respectively. The K'm values were 32.59±5.65 mmol urea/l and 15.43±2.94 mmol urea/l for pig feces and cattle feces, respectively. Thus, our results reveal that both the Vmax and K'm values of the urease activity for pig feces are more than 2-fold higher than those for cattle feces. The difference in urea hydrolysis rates between animal species is even more significant in fresh manure. The initial velocities of TAN formation are 1.53 mM/min and 0.33 mM/min for pig and cattle manure, respectively. Furthermore, our investigation shows that the maximum urease activity for pig feces occurs at approximately pH 7, and in cattle feces it is closer to pH 8, indicating that the predominant fecal ureolytic bacteria species differ between animal species. We believe that our study contributes to a better understanding of the urea hydrolysis process in manure and provides a basis for more accurate and animal-specific prediction models for urea hydrolysis rates and ammonia concentration in manures and thus can be used to predict ammonia volatilization rates from animal production. PMID:25397404

  18. Characterization of manure from conventional and phytase transgenic pigs by advanced solid-state NMR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Non-point phosphorus (P) pollution from animal manure is becoming a serious global problem. The current solution for the swine industry is including the enzyme phytase as a component of the cereal grain diet. A very real possibility in the future is the production of transgenic pigs that express phy...

  19. Rapid production of maggots as feed supplement and organic fertilizer by the two-stage composting of pig manure.

    PubMed

    Zhu, Feng-Xiang; Wang, Wei-Ping; Hong, Chun-Lai; Feng, Ming-Guang; Xue, Zhi-Yong; Chen, Xiao-Yang; Yao, Yan-Lai; Yu, Man

    2012-07-01

    A two-stage composting experiment was performed to utilize pig manure for producing maggots as feed supplement and organic fertilizer. Seven-day composting of 1.8 ton fresh manure inoculated with 9 kg mixture of housefly neonates and wheat bran produced 193 kg aging maggots, followed by 12 week composting to maturity. Reaching the thermophilic phase and final maturity faster was characteristic of the maggot-treated compost compared with the same-size natural compost. Upon the transit of the maggot-treated compost to the second stage, the composting temperature maintained around 55 °C for 9 days and the moisture decreased to ~40%. Moreover, higher pH, faster detoxification and different activity patterns for some microbial enzymes were observed. There was a strong material loss (35% water-soluble carbon and 16% total nitrogen) caused by the maggot culture in the first stage. Our results highlight a higher economic value of pig manure achieved through the two-stage composting without bulking agents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Effects of co-digestion of cucumber residues to corn stover and pig manure ratio on methane production in solid state anaerobic digestion.

    PubMed

    Wang, Yaya; Li, Guoxue; Chi, Menghao; Sun, Yanbo; Zhang, Jiaxing; Jiang, Shixu; Cui, Zongjun

    2018-02-01

    This study investigated the performance of co-digesting cucumber residues, corn stover, and pig manure at different ratios. Microbial community structure was analyzed to elucidate functional microorganism contributing to methane production during co-digestion. Results show that mixing cucumber residues with pig manure and corn stover could significantly improved methane yields 1.27-3.46 times higher than mono-feedstock. The methane yields decreased with the cucumber residues increasing when the pig manure ratio was fixed at 4 and 3, and was opposite at ratio 5. The optimal mixture ratio was T2 with the highest methane yield (305.4 mL/g VS) and co-digestion performance index (1.97). The main microbiological community in T2 was bacteria of Firmicutes (44.6%), Bacteroidetes (32.5%), Synergistetes (3.8%) and archaea of Methanosaeta (37.1%), Methanospirillum (18.2%). The mixture ratios changed the microbial community structures. The adding proportion of cucumber residues changed the community composition of the archaea, especially the proportion of Methanosaeta. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Psychrophilic anaerobic digestion of guinea pig manure in low-cost tubular digesters at high altitude.

    PubMed

    Garfí, Marianna; Ferrer-Martí, Laia; Villegas, Vidal; Ferrer, Ivet

    2011-05-01

    Guinea pig is one of the most common livestock in rural communities of the Andes. The aim of this research was to study the anaerobic digestion of guinea pig manure in low-cost unheated tubular digesters at high altitude. To this end, the performance of two pilot digesters was monitored during 7 months; and two greenhouse designs were compared. In the dome roof digester the temperature and biogas production were significantly higher than in the shed roof digester. However, the biogas production rate was low (0.04 m(biogas)(3)m(digester)(-3) d(-1)), which is attributed to the low organic loading rate (0.6 kg(VS)m(digester)(-3)d(-1)) and temperature (23°C) of the system, among other factors. In a preliminary fertilization study, the potato yield per hectare was increased by 100% using the effluent as biofertilizer. Improving manure management techniques, increasing the organic loading rate and co digesting other substrates may be considered to enhance the process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Mechanisms and effects of arsanilic acid on antibiotic resistance genes and microbial communities during pig manure digestion.

    PubMed

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Zhang, Li; Guo, Ai-Yun

    2017-06-01

    High concentrations of residual arsanilic acid occur in pig manure due to its use in feed to promote growth and control diseases. This study compared the effects of arsanilic acid at three concentrations (0, 325, and 650mg/kg dry pig manure) on the abundance of antibiotic resistance genes (ARGs) and the microbial community during anaerobic digestion. Addition of 650mg/kg arsanilic acid enhanced the absolute abundances of tetC, sul2, ermB, and gyrA more than twofold in the digestion product. Redundancy analysis indicated that the change in the microbial community structure was the main driver of variation in the ARGs profile. The As resistance gene arsC co-occurred with four ARGs and intI1, possibly causing the increase in ARGs under pressure by arsanilic acid. High arsanilic acid concentrations can increase the risk of ARGs occurring in anaerobic digestion products. The amount of arsanilic acid used as a feed additive should be controlled. Copyright © 2017. Published by Elsevier Ltd.

  3. Growth and reproductive potential of Eisenia foetida (Sav) on various zoo animal dungs after two methods of pre-composting followed by vermicomposting.

    PubMed

    Pérez-Godínez, Edmundo Arturo; Lagunes-Zarate, Jorge; Corona-Hernández, Juan; Barajas-Aceves, Martha

    2017-06-01

    Disposal of animal manure without treatment can be harmful to the environment. In this study, samples of four zoo animal dungs and one horse dung were pre-composted in two ways: (a) traditional composting and (b) bokashi pre-composting for 1month, followed by vermicomposting for 3months. The permanence (PEf) and reproductive potential (RP) of Eisenia foetida as well as the quality of vermicompost were evaluated. The PEf values and RP index of E. foetida were higher for samples pre-composted using the traditional composting method (98.7-88% and 31.85-16.27%, respectively) followed by vermicomposting (92.7-72.7% and 22.96-13.51%, respectively), when compared with those for bokashi pre-composted samples followed by vermicomposting, except for the horse dung sample (100% for both the parameters). The values of electrical conductivity (EC), cation exchange capacity (CEC), organic C, total N, available P, C/N ratio, and pH showed that both treatments achieved the norms of vermicompost (<4mScm -1 , 40cmolkg -1 , 20-50%, 1-4%, ≤20, 5.5-8.5, respectively). However, the maturity indices of vermicompost, namely, organic matter loss, N loss, and CEC/organic carbon (OC) ratio indicated that bokashi pre-composting followed by vermicomposting produced the highest values (98.7-70.7%, 97.67-96.65%, and 2.7-1.97%, respectively), when compared with the other method adapted in this study. Nevertheless, further studies with plants for plant growth evaluation are needed to assess the benefits and limitations of these two pre-composting methods prior to vermicomposting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Speciation of Cu and Zn during composting of pig manure amended with rock phosphate.

    PubMed

    Lu, Duian; Wang, Lixia; Yan, Baixing; Ou, Yang; Guan, Jiunian; Bian, Yu; Zhang, Yubin

    2014-08-01

    Pig manure usually contains a large amount of metals, especially Cu and Zn, which may limit its land application. Rock phosphate has been shown to be effective for immobilizing toxic metals in toxic metals contaminated soils. The aim of this study work was to investigate the effect of rock phosphate on the speciation of Cu and Zn during co-composting of pig manure with rice straw. The results showed that composting process and rock phosphate addition significantly affected the changes of metal species. During co-composting, the exchangeable and reducible fractions of Cu were transformed to organic and residue fractions, thus the bioavailable Cu fractions were decreased. The rock phosphate addition enhanced the metal transformation depending on the level of rock phosphate amendment. Zinc was found in the exchangeable and reducible fractions in the compost. The bioavailable Zn fraction changed a little during the composting process. The composting process converted the exchangeable Zn fraction into reducible fraction. Addition of an appropriate amount (5.0%) of rock phosphate could advance the conversion. Rock phosphate could reduce metal availability through adsorption and complexation of the metal ions on inorganic components. The increase in pH and organic matter degradation could be responsible for the reduction in exchangeable and bioavailable Cu fractions and exchangeable Zn fraction in rock phosphate amended compost. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effect of aeration rate, moisture content and composting period on availability of copper and lead during pig manure composting.

    PubMed

    Shen, Yujun; Zhao, Lixin; Meng, Haibo; Hou, Yueqing; Zhou, Haibin; Wang, Fei; Cheng, Hongsheng; Liu, Hongbin

    2016-06-01

    Pollution by heavy metals, such as copper and lead, has become a limiting factor for the land application of faecal manures, such as pig manure. This study was conducted to investigate the influence of composting process parameters, including aeration rate, moisture content and composting period, on the distribution of heavy metal species during composting, and to select an optimal parameter for copper and lead inactivation. Results showed that the distribution ratios of exchangeable fractions of copper and lead had a bigger decrease under conditions of aeration rate, 0.1 m(3) min(-1) m(-3), an initial moisture content of 65% and composting period of 50 days. Suboptimal composting process conditions could lead to increased availability of heavy metals. Statistical analysis indicated that the aeration rate was the main factor affecting copper and lead inactivation, while the effects of moisture content and composting period were not significant. The rates of reduction of copper-exchangeable fractions and lead-exchangeable fractions were positively correlated with increased pH. The optimal parameters for reducing heavy metal bioavailability during pig manure composting were aeration rate, 0.1 m(3) min(-1) m(-3), initial moisture content, 65%, and composting period, 20 days. © The Author(s) 2016.

  6. Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock (Hermetia illucens L.).

    PubMed

    Rehman, Kashif Ur; Cai, Minmin; Xiao, Xiaopeng; Zheng, Longyu; Wang, Hui; Soomro, Abdul Aziz; Zhou, Yusha; Li, Wu; Yu, Ziniu; Zhang, Jibin

    2017-07-01

    World trends toward the modern dairies intensification on large production units cause massive animal manure production and accumulation. Improper handling of manure produced by industrial farm operation greatly deteriorates the major environmental media including air, water and soil. The black soldier fly utilizes organic waste and converts it into larvae biomass to be used as livestock feed and into residues to be used as bio-fertilizer. However, due to the high ratio of cellulose, hemicellulose and lignin in dairy manure, this conversion is difficult. Therefore, dairy manure treated with chicken manure was digested by Hermetia illucens. In this paper, we found that the co-digestion process significantly enhanced the larval production, waste mass reduction, rate of larvae conversion, feed conversion ratio, nutrient reduction and fibers utilization. Whereas 40% dairy manure and 60% chicken manure group show better results than other manure mixtures and had a significantly increased the cellulose consumption by 61.19%, hemicellulose consumption by 53.22% and lignin consumption by 42.23% compared with 49.89%, 49.77% and 31.95%, respectively, in the dairy-only manure group. Finally, scanning electron microscopy was used to analyze the structural changes of dairy manure, chicken manure and their co-digestion mixtures. The scan electron microscopy showed the deterioration in the structure of dairy and chicken manure fibers by Hermetia illucens. Moreover, the carbon-nitrogen ratio was decreased in all end products of post vermicomposting. The results suggest that the co-digestion of 40% dairy manure with 60% chicken manure is an appropriate proportion for dairy manure management with the black soldier fly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effect of microscale ZVI/magnetite on methane production and bioavailability of heavy metals during anaerobic digestion of diluted pig manure.

    PubMed

    Liang, Yue-Gan; Li, Xiu-Juan; Zhang, Jin; Zhang, Li-Gan; Cheng, Beijiu

    2017-05-01

    Low methane production and high levels of heavy metal in pig slurries limit the feasibility of anaerobic digestion of pig manure. In this study, changes in the methane production and bioavailability of heavy metals in the anaerobic digestion of diluted pig manure were evaluated using single and combined action of microscale zero-valence iron (ZVI) and magnetite. After 30 days of anaerobic digestion, the methane yield ranged from 246.9 to 334.5 mL/g VS added, which increased by 20-26% in the group added with microscale ZVI and/or magnetite relative to that in the control group. Results of the first-order kinetic model revealed that addition of microscale ZVI and/or magnetite increased the biogas production potential, rather than the biogas production rate constant. These treatments also changed the distribution of chemical fractions for heavy metal. The addition of ZVI decreased the bioavailability of Cu and Zn in the solid digested residues. Moreover, a better performance was observed in the combined action of microscale ZVI and magnetite, and the ZVI anaerobic corrosion end-product, magnetite, might help enhance methane production through direct interspecies electron transfer in ZVI-anaerobic digestion process.

  8. Metabolism and excretion kinetics of {sup 14}C-labeled and non-labeled difloxacin in pigs after oral administration, and antimicrobial activity of manure containing difloxacin and its metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukul, Premasis; Lamshoeft, Marc; Kusari, Souvik

    2009-04-15

    Fluoroquinolones are amongst the most important antibiotics used in veterinary medicine. On this account the behavior of difloxacin (DIF) and its metabolites was investigated by administering the {sup 14}C-labeled and non-labeled veterinary drug to fattening pigs. The excretion kinetics were determined after daily collection of manure. Sarafloxacin (SAR) was found to be the major metabolite, three further trace metabolites were also recovered, applying high-resolution (HR) mass spectrometric technique. The identification of DIF and SAR was confirmed by comparison with the spectroscopic and chromatographic data of the authentic references. The identification of the three trace metabolites was performed by HR-MS/MS. Onlymore » 8.1% of the administered radioactivity remained in the pig after 10 days and DIF accounted for 95.9% of the radioactivity excreted. More than 99% of the labeled compounds were detected and identified in the manure. The mean recoveries for all single electrolytes were {>=}94%. Linearity was established over concentration range 10-10,000 {mu}g/kg manure with a correlation coefficient {>=}0.99. By using in vitro antimicrobial activity tests against a group of standard pathogenic control strains, the results showed that the residual antibiotic concentrations in the manure of pigs are high enough to exhibit antibacterial activity.« less

  9. Short term effects of copper, sulfadiazine and difloxacin on the anaerobic digestion of pig manure at low organic loading rates.

    PubMed

    Guo, Jianbin; Ostermann, Anne; Siemens, Jan; Dong, Renjie; Clemens, Joachim

    2012-01-01

    Antibiotics of inorganic and organic origin in pig manure can inhibit the anaerobic process in biogas plants. The influence of three frequently used antibiotics, copper dosed as CuSO(4), sulfadiazine (SDZ), and difloxacin (DIF), on the anaerobic digestion process of pig manure was studied in semi-continuous experiments. Biogas production recovered after every Cu dosage up to a sum of 12.94g Cukg(-1) organic dry matter (ODM), probably due to Cu precipitation following the formation of sulphide from sulphate. Complete inhibition was found at the very high Cu concentration of 19.40g Cukg(-1) ODM. Inhibitory effect of SDZ and DIF was observed at concentrations as high as 2.70gkg(-1) ODM and 0.54gkg(-1) ODM, respectively. It seems very unlikely that the antibiotics tested would inhibit the anaerobic process in a full-scale biogas plant. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Marble waste and pig manure amendments decrease metal availability, increase soil quality and facilitate vegetation development in bare mine soils

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Faz, Ángel; Martínez-Martínez, Silvia; Acosta, José A.; Gómez, M. Dolores; Ángeles Muñoz, M.

    2013-04-01

    In order to bring out a functional and sustainable land use in a highly contaminated mine tailing, firstly environmental risks have to be reduced or eliminated by suitable reclamation activities. Tailing ponds pose environmental hazards, such as acidity and toxic metals reaching to waters through wind and water erosions and leaching. As a consequence, soils have no vegetation and low soil organic matter and nutrients. Various physicochemical and biochemical properties, together with exchangeable metals were measured before, 6 months and 12 months after the application of marble waste and pigs manure as reclamation strategy in a tailing pond from SE Spain to reduce hazards for environment and human health. Three months after the last addition of amendments, eight different native shrub species where planted for phytostabilization. Results showed the pH increased up to neutrality. Aggregates stability, organic carbon, total nitrogen, cation exchange capacity, bioavailable phosphorus and potassium, microbial biomass and microbial activity increased with the application of the amendments, while exchangeable metals drastically decreased (~90%). After one year of plantation, only 20% planted species died, with a high growth of survivals reaching flowering and fructification. This study confirms the high effectiveness of initial applications of marble wastes together with pig manure and plantation of shrub species to initialize the recovery of the ecosystem in bare mine soils under Mediterranean semiarid conditions. Key Words: pig manure, marble waste, heavy metals, mine soil. Acknowledgements This work has been funded by the European Union LIFE+ project MIPOLARE (LIFE09 ENV/ES/000439). J.A. Acosta acknowledges a "Saavedra Fajardo" contract from Comunidad Autónoma de Murcia (Spain)

  11. Variation of the microbial community in thermophilic anaerobic digestion of pig manure mixed with different ratios of rice straw.

    PubMed

    Zhou, Sheng; Nikolausz, Marcell; Zhang, Jining; Riya, Shohei; Terada, Akihiko; Hosomi, Masaaki

    2016-09-01

    The effect of pig manure mixed with rice straw on methane yield and the microbial community involved in a thermophilic (55°C) anaerobic digestion process was investigated. Three substrates composed of mixed pig manure and rice straw at different ratios (95:5; 78:22 and 65:35 w/w, which resulted in C/N ratios of 10:1, 20:1 and 30:1) were used for the experiment. The substrate type had a major influence on the total bacterial community, while the methanogens were less affected. The members of the class Clostridia (phylum Firmicutes) were predominant regardless of mixture ratio (C/N ratio), but at species level there was a major difference between the low and high C/N ratio samples. The hydrogenotrophic methanogenic genus of Methanothermobacter was predominant in all samples but higher C/N ratio sequences affiliated to the genus Methanosarcina were also detected. The appearance of Methanosarcina sp. is most likely due to the less inhibition of ammonia during the anaerobic digestion. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Vertical nutrient and trace element migration in cambisoils after application of residues from anaerobic digestion of pig manure

    NASA Astrophysics Data System (ADS)

    Sager, Manfred; Unterfrauner, Hans

    2013-04-01

    Cambisols sampled in alpine pastures were packed into soil columns in order to monitor downward migration of nutrient and trace elements, applied within the residue from anaerobic digestion of a pig manure. 2 rain events per week were simulated. The manure added substantial amounts of K, ammonium, Na, Ca, P, S, Cl, B, Zn and Cu to the soil, whereas Mg, Mn, Ni, Cr, Pb, Cd and V were at the same level. In the eluates, total elemental composition as well as nitrate and ammonium were monitored. Addition of soluble Fe (at 1000 mg/l as FeCl3) decreased the release of soluble sulphate, but had no significant effect on the release of Fe and P. During subsequent rain events, exchangeable K remained enriched in the topsoil, wheras total sulfur moved to deeper layers. After 8 weeks, the columns were dismantled and analyzed for quasi-total and mobile fractions. Both in topsoils and subsoils, manure addition finally increased soil pH in case of low P soils, but decreased soil pH in case of high pH soils. Effects of manure applications on groundwater formation processes will be discussed.

  13. Detection of hepatitis E virus (HEV) through the different stages of pig manure composting plants

    PubMed Central

    García, M; Fernández-Barredo, S; Pérez-Gracia, M T

    2014-01-01

    Hepatitis E virus (HEV) is an increasing cause of acute hepatitis in industrialized countries. The aim of this study was to evaluate the presence of HEV in pig manure composting plants located in Spain. For this purpose, a total of 594 samples were taken in 54 sampling sessions from the different stages of composting treatment in these plants as follows: slurry reception ponds, anaerobic ponds, aerobic ponds, fermentation zone and composting final products. HEV was detected by reverse transcription polymerase chain reaction (RT-nested PCR) in four (80%) of five plants studied, mainly in the first stages of the process. HEV was not detected in any final product (compost) sample, destined to be commercialized as a soil fertilizer, suggesting that composting is a suitable method to eliminate HEV and thus, to reduce the transmission of HEV from pigs to humans. PMID:24206540

  14. Low-temperature anaerobic digestion of swine manure in a plug-flow reactor.

    PubMed

    Massé, Daniel I; Gilbert, Yan; Saady, N M C; Liu, Charle

    2013-01-01

    A low-temperature (25 degrees C) anaerobic eight-compartment (PF01 to PF08) cascade reactor simulating a plug-flow reactor (PFR) treating pig manure was monitored for a year. The bioreactor was fed at an average loading rate of 2.4 +/- 0.2 g of total chemical oxygen demand (TCOD) per litre of reactor per day for a theoretical hydraulic retention time (HRT) of 67 +/- 7 d. An average of 79% of TCOD was removed from pig manure (converted into biogas and in sediments), whereas specific methane yields ranging from 397 to 482 NL CH4 kg(-1) VS (148.6 to 171.4 NL CH4 kg(-1) TCOD) were obtained. After 150 d, fluctuating performances of the process were observed, associated with solids accumulation in the upstream compartments, preventing the complete anaerobic digestion of swine manure in the compartments PF01 to PF04. Low-temperature anaerobic PFR represents an interesting alternative for the treatment of pig manure and recovery of green energy. Further investigations regarding a modified design, with better accumulating solids management, are needed to optimize the performance of this low-temperature PFR treating pig manure.

  15. Impact of narasin on manure composition, microbial ecology, and gas emissions from finishing pigs fed either a corn-soybean meal or a corn-soybean meal-dried distillers grains with solubles diets.

    PubMed

    Kerr, Brian J; Trabue, Steven L; van Weelden, Mark B; Andersen, Daniel S; Pepple, Laura M

    2018-04-14

    An experiment was conducted to determine the effect of feeding finishing pigs a corn-soybean (CSBM) diet or a CSBM diet supplemented with 30% dried distillers grains with solubles (DDGS), in combination with or without a growth-promoting ionophore (0 or 30 mg narasin/kg of diet), has on manure composition, microbial ecology, and gas emissions. Two separate groups of 24 gilts (initial BW = 145.1 kg, SD = 7.8 kg) were allotted to individual metabolism crates that allowed for total but separate collection of feces and urine during the 48-d collection period. After each of the twice-daily feedings, feces and urine from each crate was collected and added to its assigned enclosed manure storage tank. Each tank contained an individual fan system that pulled a constant stream of air over the manure surface for 2 wk prior to air (day 52) and manure sampling (day 53). After manure sampling, the manure in the tanks was dumped and the tanks cleaned for the second group of pigs. Except for total manure Ca and P output as a percent of intake and for manure methane product rate and biochemical methane potential (P ≤ 0.08), there were no interactions between diet composition and narasin supplementation. Narasin supplementation resulted in increased manure C (P = 0.05), increased manure DM, C, S, Ca, and phosphorus as a percent of animal intake (P ≤ 0.07), and increased manure volatile solids and foaming capacity (P ≤ 0.09). No effect of narasin supplementation was noted on manure VFA concentrations or any of the gas emission parameters measured (P ≥ 0.29). In contrast, feeding finishing pigs a diet containing DDGS dramatically affected manure composition as indicated by increased concentration of DM, C, ammonia, N, and total and volatile solids (P = 0.01), increased manure DM, N, and C as a percent of animal intake (P = 0.01), increased manure total VFA and phenols (P ≤ 0.05), decreased gas emissions of ammonia and volatile sulfur compounds (VSC; P = 0.01), increased

  16. Effects of woody peat and superphosphate on compost maturity and gaseous emissions during pig manure composting.

    PubMed

    Zhang, Difang; Luo, Wenhai; Yuan, Jing; Li, Guoxue; Luo, Yuan

    2017-10-01

    This study investigated the effect of calcium superphosphate on compost maturity and gaseous emissions during pig manure composting with woody peat as the bulking agent. Two treatments were conducted with or without the addition of calcium superphosphate (10% dry weight of the composting mass), which were denoted as the control and superphosphate-amended treatment, respectively. Results show that the composting temperature of both treatments was higher than 50°C for more than 5days, which is typically required for pathogen destruction during manure composting. Compared to the control treatment, the superphosphate-amended treatment increased the emission of nitrogen oxide, but reduced the emission of methane, ammonia and hydrogen sulfide by approximately 35.5%, 37.9% and 65.5%, respectively. As a result, the total greenhouse gas (GHG) emission during manure composting was reduced by nearly 34.7% with the addition of calcium superphosphate. The addition of calcium superphosphate increased the content of humic acid (indicated by E 4 /E 6 ratio). Nevertheless, the superphosphate-amended treatment postponed the biological degradation of organic matter and produced the mature compost with a higher electrical conductivity in comparison with the control treatment. Copyright © 2017. Published by Elsevier Ltd.

  17. Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting.

    PubMed

    Wang, Quan; Wang, Zhen; Awasthi, Mukesh Kumar; Jiang, Yahui; Li, Ronghua; Ren, Xiuna; Zhao, Junchao; Shen, Feng; Wang, Meijing; Zhang, Zengqiang

    2016-11-01

    The purpose of this research was to evaluate the effect of medical stone (MS) on nitrogen conservation and improving the compost quality during the pig manure (PM) composting. Five treatments were designed with different concentrations of MS0%, 2.5%, 5%, 7.5% and 10% (on dry weight of pig manure basis) mixed with initial feed stock and then composted for 60days. The results showed that MS amendment obviously (p<0.05) promoted the organic waste degradation and prolonged the thermophilic phase as well as enhanced the immobilization of heavy metals Cu and Zn. With increasing the amount of MS, the NH3 loss and N2O emission were significantly reduced by 27.9-48.8% and by 46.6-85.3%, respectively. Meanwhile, the MS amendment could reduce the NO2(-)-N formation and increase the NO3(-)-N content. Finally our results suggested that 10%MS addition could significantly reduce the nitrogen conservation as well as improve the quality of compost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Biodegradation of Garden Waste, Market Waste Using Eisenia fetida and Eudrilus eugenia and Assessment of Manure Quality on Tomato

    NASA Astrophysics Data System (ADS)

    Mohan, S. Mariraj

    2014-06-01

    Comparative study was performed to evaluate the vermicomposting efficiency of two earthworm species Eisenia fetida, Eudrilus eugenia from the garden wastes, vegetable market wastes. Three different experimental works were conducted. For each experiment three plastic vermibins were used. Experiment (1) mentioned for control without earthworms. Experiment (2) bedded with Eudrilus eugenia, Experiment (3) comprised of bedding with Eisenia fetida. Pre composting was allowed for 10 days after that Eudrilus eugenia, Eisenia fetida were added in respective vermibins. The multiplication of earthworms in terms of number was calculated at the end of vermicomposting. The N, P, K value of the manure in each vermibin was estimated before and after the completion of the experiment. High N, P, K value was obtained in Experiment (2) and Experiment (3) compared to control. Among the solid wastes, the vegetable wastes were degraded quickly by Eudrilus eugenia and also it has the best quality of manure. Eudrilus eugenia was found to be efficient for quick degradation of both garden wastes and vegetable wastes. After manure production, field trials were conducted using different fertilizers to assess the manure quality in the growth and yield of tomato plants. Six types of experimental trial pots were prepared where one was kept as control and five others were treated with different category of fertilizers. The treatment pots (P3) showed better growth parameters (leaf numbers, stem diameter, plant height) than the rest of the trial.

  19. Microbial community dynamics and biogas production from manure fractions in sludge bed anaerobic digestion.

    PubMed

    Nordgård, A S R; Bergland, W H; Bakke, R; Vadstein, O; Østgaard, K; Bakke, I

    2015-12-01

    To elucidate how granular sludge inoculum and particle-rich organic loading affect the structure of the microbial communities and process performance in upflow anaerobic sludge bed (UASB) reactors. We investigated four reactors run on dairy manure filtrate and four on pig manure supernatant for three months achieving similar methane yields. The reactors fed with less particle rich pig manure stabilized faster and had highest capacity. Microbial community dynamics analysed by a PCR/denaturing gradient gel electrophoresis approach showed that influent was a major determinant for the composition of the reactor communities. Comparisons of pre- and non-adapted inoculum in the reactors run on pig manure supernatant showed that the community structure of the nonadapted inoculum adapted in approximately two months. Microbiota variance partitioning analysis revealed that running time, organic loading rate and inoculum together explained 26 and 31% of the variance in bacterial and archaeal communities respectively. The microbial communities of UASBs adapted to the reactor conditions in treatment of particle rich manure fractions, obtaining high capacity, especially on pig manure supernatant. These findings provide relevant insight into the microbial community dynamics in startup and operation of sludge bed reactors for methane production from slurry fractions, a major potential source of biogas. © 2015 The Society for Applied Microbiology.

  20. The dynamic changes and interactional networks of prokaryotic community between co-digestion and mono-digestions of corn stalk and pig manure.

    PubMed

    Wang, Min; Zhang, Xueying; Zhou, Jun; Yuan, Yuexiang; Dai, Yumei; Li, Dong; Li, Zhidong; Liu, Xiaofeng; Yan, Zhiying

    2017-02-01

    Anaerobic co-digestion is considered to be an efficient way to improve the biogas production. The abundance, dynamic and interactional networks of prokaryotic community were investigated between co-digestion and mono-digestions of corn stalk and pig manure in mesophilic batch test. Co-digestion showed higher methane production, and contributed to suitable microenvironment as well as stable prokaryotic community structure. The highest methane production was achieved with the highest relative abundance of Methanosaeta. Prokaryotic community in mono-digestions might inhibited by FA or FVFA. The functional modules in co-digestion and mono-digestion of pig manure clustered together with bigger size and higher degree, and the connections of metabolic functions were better-organized, which means high-efficient utilization of substrate and prevention of the two digestion systems crash. The partial mantel tests showed the functional modules were significantly affected by environmental factors. These results further explained that why co-digestion was more efficient than mono-digestion owing to suitable microenvironment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Influence of bulking agents on CH4, N2O, and NH3 emissions during rapid composting of pig manure from the Chinese Ganqinfen system*

    PubMed Central

    Sun, Xiang-ping; Lu, Peng; Jiang, Tao; Schuchardt, Frank; Li, Guo-xue

    2014-01-01

    Mismanagement of the composting process can result in emissions of CH4, N2O, and NH3, which have caused severe environmental problems. This study was aimed at determining whether CH4, N2O, and NH3 emissions from composting are affected by bulking agents during rapid composting of pig manure from the Chinese Ganqinfen system. Three bulking agents, corn stalks, spent mushroom compost, and sawdust, were used in composting with pig manure in 60 L reactors with forced aeration for more than a month. Gas emissions were measured continuously, and detailed gas emission patterns were obtained. Concentrations of NH3 and N2O from the composting pig manure mixed with corn stalks or sawdust were higher than those from the spent mushroom compost treatment, especially the sawdust treatment, which had the highest total nitrogen loss among the three runs. Most of the nitrogen was lost in the form of NH3, which accounts for 11.16% to 35.69% of the initial nitrogen. One-way analysis of variance for NH3 emission showed no significant differences between the corn stalk and sawdust treatments, but a significant difference was noted between the spent mushroom compost and sawdust treatments. The introduction of sawdust reduced CH4 emission more than the corn stalks and spent mushroom compost. However, there were no significant differences among the three runs for total carbon loss. All treatments were matured after 30 d. PMID:24711356

  2. Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure.

    PubMed

    Murto, M; Björnsson, L; Mattiasson, B

    2004-02-01

    The performance of an anaerobic digestion process is much dependent on the type and the composition of the material to be digested. The effects on the degradation process of co-digesting different types of waste were examined in two laboratory-scale studies. In the first investigation, sewage sludge was co-digested with industrial waste from potato processing. The co-digestion resulted in a low buffered system and when the fraction of starch-rich waste was increased, the result was a more sensitive process, with process overload occurring at a lower organic loading rate (OLR). In the second investigation, pig manure, slaughterhouse waste, vegetable waste and various kinds of industrial waste were digested. This resulted in a highly buffered system as the manure contributed to high amounts of ammonia. However, it is important to note that ammonia might be toxic to the micro-organisms. Although the conversion of volatile fatty acids was incomplete the processes worked well with high gas yields, 0.8-1.0 m3 kg(-1) VS.

  3. Vermicomposting of source-separated human faeces for nutrient recycling.

    PubMed

    Yadav, Kunwar D; Tare, Vinod; Ahammed, M Mansoor

    2010-01-01

    The present study examined the suitability of vermicomposting technology for processing source-separated human faeces. Since the earthworm species Eisenia fetida could not survive in fresh faeces, modification in the physical characteristics of faeces was necessary before earthworms could be introduced to faeces. A preliminary study with six different combinations of faeces, soil and bulking material (vermicompost) in different layers was conducted to find out the best condition for biomass growth and reproduction of earthworms. The results indicated that SVFV combination (soil, vermicompost, faeces and vermicompost - bottom to top layers) was the best for earthworm biomass growth indicating the positive role of soil layer in earthworm biomass growth. Further studies with SVFV and VFV combinations, however, showed that soil layer did not enhance vermicompost production rate. Year-long study conducted with VFV combination to assess the quality and quantity of vermicompost produced showed an average vermicompost production rate of 0.30kg-cast/kg-worm/day. The vermicompost produced was mature as indicated by low dissolved organic carbon (2.4+/-0.43mg/g) and low oxygen uptake rate (0.15+/-0.09mg O(2)/g VS/h). Complete inactivation of total coliforms was noted during the study, which is one of the important objectives of human faeces processing. Results of the study thus indicated the potential of vermicomposting for processing of source-separated human faeces.

  4. Hygienic aspects of livestock manure management and biogas systems operated by small-scale pig farmers in Vietnam.

    PubMed

    Huong, Luu Quynh; Madsen, Henry; Anh, Le Xuan; Ngoc, Pham Thi; Dalsgaard, Anders

    2014-02-01

    Biogas digesters are widely promoted and increasingly used to treat and generate gas from pig slurry worldwide. The objective of this study was to describe manure management practices with focus on biogas digestion among small scale pig farmers in Hue (50 farmers) and Hanoi (96 farmers) and to assess fecal contamination levels in biogas effluent. Results showed that 84% of the farmers in Hanoi and 42% in Hue used both pig slurry and human excreta for biogas production. Biogas digestion only reduced E. coli concentrations by 1 to 2 log units to 3.70 ± 0.84 Escherichia coli (log10) cfu/ml on average in effluent as compared with raw slurry. Biogas effluent was commonly used to fertilize vegetables or discharged directly into the garden or aquatic recipients. Reduced problems with bad smells and flies were reported as main reasons for establishing a biogas digester. Further studies are needed to assess human and animal health hazards associated with the discharge and use of biogas effluent from small-scale biogas systems. © 2013.

  5. Impact of narasin on manure composition and microbial ecology, and gas emissions from finishing pigs fed either a corn-soybean meal or a corn-soybean meal-dried distillers grains with solubles diets

    USDA-ARS?s Scientific Manuscript database

    An experiment was conducted to determine the effect of feeding finishing pigs either a corn-soybean (CSBM) diet or a CSBM diet supplemented with 30.34% distillers dried grains with solubles (DDGS), in combination with either 0 or 30 mg narasin/kg of diet, on subsequent manure composition, manure mic...

  6. The behavior of antibiotic resistance genes and arsenic influenced by biochar during different manure composting.

    PubMed

    Cui, Erping; Wu, Ying; Jiao, Yanan; Zuo, Yiru; Rensing, Christopher; Chen, Hong

    2017-06-01

    The effect of two different biochar types, rice straw biochar (RSB) and mushroom biochar (MB), on chicken manure composting was previously examined by monitoring the fate of antibiotic resistance genes (ARGs) and arsenic. The behavior of ARGs and arsenic in other kinds of manure composting with the same biochar types had not been examined. In this study, we added either RSB or MB to pig and duck manure composts to study the behavior of ARGs (tet genes, sul genes, and chloramphenicol resistance genes) and arsenic under the same experimental condition. The results showed that the average removal values of selected ARGs were respectively 2.56 and 2.09 log units in duck and pig manure compost without the addition of biochar. The effect of biochar addition on the average removal value of ARGs depended on the type of biochar and manure. For instance, in pig manure compost, MB addition increased the average removal value of ARGs, while RSB addition decreased. And both biochar additions had a negative influence on the average removal value of ARGs in duck manure compost. Analytical results also demonstrated that MB addition reduced total arsenic and the percentage of bioavailable arsenic more than RSB.

  7. Phenotypic and genotypic bacterial antimicrobial resistance in liquid pig manure is variously associated with contents of tetracyclines and sulfonamides.

    PubMed

    Hölzel, C S; Harms, K S; Küchenhoff, H; Kunz, A; Müller, C; Meyer, K; Schwaiger, K; Bauer, J

    2010-05-01

    Antibiotic residues as well as antibiotic-resistant bacteria in environmental samples might pose a risk to human health. This study aimed to investigate the association between antibiotic residues and bacterial antimicrobial resistance in liquid pig manure used as fertilizer. Concentrations of tetracyclines (TETs) and sulfonamides (SULs) were determined by liquid chromatography-mass spectrometry in 305 pig manure samples; antibiotic contents were correlated to the phenotypic resistance of Escherichia coli (n = 613) and enterococci (n = 564) towards up to 24 antibiotics. In 121 samples, the concentration of the TET resistance genes tet(M), tet(O) and tet(B) was quantified by real-time-PCR. TETs were found in 54% of the samples. The median sum concentration of all investigated TETs in the positive samples was 0.73 mg kg(-1). SULs were found with a similar frequency (51%) and a median sum concentration of 0.15 mg kg(-1) in the positive samples. Associated with the detection of TETs and/or SULs, resistance rates were significantly elevated for several substances - some of them not used in farm animals, e.g. chloramphenicol and synercid. In addition, multiresistant isolates were found more often in samples containing antibiotics. Analysis of the resistance genes tet(M) and tet(O) already showed a significant increase in their concentrations - but not in tet(B) - in the lowest range of total TET concentration. Mean tet(M) concentrations increased by the factor of 4.5 in the TET concentration range of 0.1-1 mg kg(-1), compared to negative manure samples. Antibiotic contamination of manure seems to be associated with a variety of changes in bacterial resistance, calling for a prudent use of antibiotics in farm animals. This study provides an interdisciplinary approach to assess antimicrobial resistance by combining the microbiological analysis of bacterial resistance with high quality chemical analysis of antibiotic residues in a representative number of environmental

  8. Vermicomposting of food waste: assessing the stability and maturity

    PubMed Central

    2012-01-01

    The vermicompost using earthworms (Eisenia Fetida) was produced from food waste and chemical parameters (EC, pH, carbon to nitrogen contents (C/N)) and germination bioassay was examined in order to assess the stability and maturity indicators during the vermicomposting process. The seed used in the germination bioassay was cress. The ranges of EC, pH, C/N and germination index were 7.5-4.9 mS/cm, 5.6-7.53, 30.13-14.32% and 12.8-58.4%, respectively. The germination index (GI) value revealed that vermicompost rendered as moderate phytotoxic to cress seed. Pearson correlation coefficient was used to evaluate the relationship between the parameters. High statistically significant correlation coefficient was calculated between the GI value and EC in the vermicompost at the 99% confidence level. The C/N value showed that the vermicompost was stable. As a result of these observations, stability test alone, was not able to ensure high vermicompost quality. Therefore, it appears that determining vermicompost quality requires a simultaneous use of maturity and stability tests. PMID:23369642

  9. Influence of farmyard manure on some morphological and biochemical parameters of cowpea (Vigna unguiculata) seedling grown in cadmium-treated soil.

    PubMed

    Asagba, Samuel Ogheneovo; Ezedom, Theresa; Kadiri, Helen

    2017-10-01

    The present study aims to assess the effects of the two kinds of farmyard manure (poultry and pig manures) as amendments for soil on cadmium (Cd) toxicity in plants using cowpea seedlings as plant model. Cd toxicity was evaluated by assessing the effect of the metal on the growth rate and antioxidant status as well as the ability of the plant to metabolise xenobiotic. There was a significantly (p < 0.05) increased concentration of Cd in the root, stem and leaves of cowpea seedlings grown in all the treated soils relative to control. Addition of poultry manure to the soil significantly (p < 0.05) decreased the level of Cd in these component parts of the seedlings and their corresponding bioaccumulation factor in a dose-dependent manner as compared with treatments with Cd pollution without manure addition and Cd pollution with pig manure addition. There was restoration of Cd-induced effect on growth rate parameters to levels comparable to controls in cowpea seedlings grown in Cd-treated soil augmented with poultry manure but not in cowpea seedlings in cadmium-treated soil with pig manure amendments. Similarly, augmentation of Cd-treated soil with pig manure did not alter the Cd-induced effect on the levels of superoxide dismutase (SOD) and lipid peroxidation (LPO) in leaf, stem and roots, as SOD remained significantly (p < 0.05) decreased and LPO increased relative to control. On the other hand, the levels of SOD and LPO in these parts of cowpea seedlings grown in Cd-treated soils amended with poultry manure were restored to a level not significantly (p > 0.05) different from control. Like in the case of SOD, the Cd-induced inhibition of the activity of xenobiotic metabolising enzymes, aldehyde oxidase and sulphite oxidase remained significantly (p < 0.05) decreased in the organs of seedling grown in Cd-treated soil amended with pig manure. Conversely, the Cd-induced effect on the activities of these enzymes was reversed in the organs of seedlings exposed

  10. Nitrous oxide and methane emissions following application of animal manures to grassland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chadwick, D.R.; Pain, B.F.; Brookman, S.K.E.

    2000-02-01

    Nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) emissions were measured from grassland following manure applications at three times of the year. Pig (Sus scrofa) slurry and dairy cow (Bos taurus) slurry were applied in April, at equal rates of ammoniacal-N (NH{sub 4}{sup +}-N), and in July, at equal volumetric rates (50 m{sup 3}ha{sup {minus}1}). In October, five manure types were applied to grassland plots at typical application rates: pig slurry, dilute diary cow effluent, pig farm yard manure (FYM), beef FYM and layer manure. Emissions were measured for 20, 22, and 24 d, respectively. In April, greater cumulative emissionsmore » of N{sub 2}O-N were measured following application of dairy cow slurry (1.51 kg ha{sup {minus}1}) than pig slurry (90.77 kg ha{sup {minus}1}). Cumulative CH{sub 4} emissions following application in April were significantly greater from the dairy cow slurry treatment (0.58 kg ha{sup {minus}1}) than the pig slurry treatment (0.13 kg ha{sup {minus}1}) (P < 0.05). In July, significantly greater N{sub 2}O-N emissions resulted from pig slurry-treated plots (0.57 kg ha{sup {minus}1}) than dairy cow slurry-treated plots (0.34 kg ha{sup {minus}1}). Cumulative net CH{sub 4} emissions were very low following July applications (<10 g ha{sup {minus}1}). In October, the lowest N{sub 2}O-N emission resulted from application of dilute dairy effluent, 0.15 kg ha{sup {minus}1}, with the greatest net emission from the application of pig slurry, 0.74 kg ha{sup {minus}1}. Methane emissions were greatest from the plots that received pig FYM, resulting in a mean cumulative net emission of 2.39 kg ha{sup {minus}1}.« less

  11. High rate manure supernatant digestion.

    PubMed

    Bergland, Wenche Hennie; Dinamarca, Carlos; Toradzadegan, Mehrdad; Nordgård, Anna Synnøve Røstad; Bakke, Ingrid; Bakke, Rune

    2015-06-01

    The study shows that high rate anaerobic digestion may be an efficient way to obtain sustainable energy recovery from slurries such as pig manure. High process capacity and robustness to 5% daily load increases are observed in the 370 mL sludge bed AD reactors investigated. The supernatant from partly settled, stored pig manure was fed at rates giving hydraulic retention times, HRT, gradually decreased from 42 to 1.7 h imposing a maximum organic load of 400 g COD L(-1) reactor d(-1). The reactors reached a biogas production rate of 97 g COD L(-1) reactor d(-1) at the highest load at which process stress signs were apparent. The yield was ∼0.47 g COD methane g(-1) CODT feed at HRT above 17 h, gradually decreasing to 0.24 at the lowest HRT (0.166 NL CH4 g(-1) CODT feed decreasing to 0.086). Reactor pH was innately stable at 8.0 ± 0.1 at all HRTs with alkalinity between 9 and 11 g L(-1). The first stress symptom occurred as reduced methane yield when HRT dropped below 17 h. When HRT dropped below 4 h the propionate removal stopped. The yield from acetate removal was constant at 0.17 g COD acetate removed per g CODT substrate. This robust methanogenesis implies that pig manure supernatant, and probably other similar slurries, can be digested for methane production in compact and effective sludge bed reactors. Denaturing gradient gel electrophoresis (DGGE) analysis indicated a relatively fast adaptation of the microbial communities to manure and implies that non-adapted granular sludge can be used to start such sludge bed bioreactors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. [Anaerobic co-digestion of corn stalk and vermicompost].

    PubMed

    Chen, Guang-yin; Zheng, Zheng; Zou, Xing-xing; Fang, Cai-xia; Luo, Yan

    2010-02-01

    The characteristics of corn stalk digested alone at different total solid (TS) loading rates and co-digestion of various proportions of corn stalk and vermicompost were investigated by batch model at 35 degrees C +/- 1 degrees C. The organic loading rates (OLRs) studied were in the range of 1.2%-6.0% TS and increasing proportions of vermicompost from 20% to 80% TS. A maximum methane yield of corn stalk digested alone was 217.60 mL/g obtained at the TS loading rate of 4.8%. However, when the TS loading rate was 6.0%, the anaerobic system was acidified and the lowest pH value was 5.10 obtained on day 4 and the biogas productivity decreased. Furthermore, co-digestion of vermicompost and corn stalk in varying proportions were investigated at constant of 6.0% TS. Co-digestion with vermicompost improved the biodegradability of corn stalk and the methane yield was improved by 4.42%-58.61%, and led to higher pH values, higher volatile fatty acids (VFAs) concentration and lower alkalinity content compared with corn stalk digested alone. The maximum biogas yield and methane yield of 410.30 mL/g and 259. 35 mL/g were obtained for 40% vermicompost and 60% corn stalk respectively. Compared with corn stalk digested alone, co-digested with vermicompost didn' t affect methane content and the fermentation type, but promoted the destruction of crystalline of cellulose and the highest destruction rate was 29.36% for 40% vermicompost and 60% corn stalk. Therefore, adding vermicompost was beneficial for the decomposition and increasing the biotransformation rate of corn stalk.

  13. Nutrient changes and biodynamics of Eisenia fetida during vermicomposting of water lettuce (Pistia sp.) biomass: a noxious weed of aquatic system.

    PubMed

    Suthar, Surindra; Pandey, Bhawna; Gusain, Rita; Gaur, Rubia Zahid; Kumar, Kapil

    2017-01-01

    This paper reports the results of vermicomposting of water lettuce biomass (WL) spiked with cow dung at ratios of 20, 40, 60, and 80 % employing Eisenia fetida. A total of four treatments were established and changes in chemical properties of mixtures were observed. Vermicomposting caused a decrease in pH, TOC, volatile solids, and C/N ratio by 1.01-1.08-fold, 0.85-0.92-fold, 0.94-0.96-fold, 0.56-0.70-fold, respectively, but increase in EC, tot N, tot P, tot K, tot Ca, tot Zn, tot Fe, and tot Cu, by 1.19-1.42-fold, 1.33-1.68-fold, 1.38-1.69-fold, 1.13-1.24-fold, 1.04-1.11-fold, 1.16-1.37-fold, 1.05-1.113-fold, 1.10-1.27-fold, respectively. Overall, the treatment with 60-80 % of WL showed the maximum decomposition and mineralization rates. The earthworm showed the growth and reproduction rate in considerable ranges in all treatment setups but setups with 60-80 % WL proportion exhibited the optimum results. Results reveal that biomass of water lettuce can be utilized effectively for production of valuable manure through vermicomposting system.

  14. Effects of oxytetracycline on archaeal community, and tetracycline resistance genes in anaerobic co-digestion of pig manure and wheat straw.

    PubMed

    Wang, Xiaojuan; Pan, Hongjia; Gu, Jie; Qian, Xun; Gao, Hua; Qin, Qingjun

    2016-12-01

    In this study, the effects of different concentrations of oxytetracycline (OTC) on biogas production, archaeal community structure, and the levels of tetracycline resistance genes (TRGs) were investigated in the anaerobic co-digestion products of pig manure and wheat straw. PCR denaturing gradient gel electrophoresis analysis and real-time quantitative polymerase chain reaction (RT-qPCR) (PCR) were used to detect the archaeal community structure and the levels of four TRGs: tet(M), tet(Q), tet(W), and tet(C). The results showed that anaerobic co-digestion with OTC at concentrations of 60, 100, and 140 mg/kg (dry weight of pig manure) reduced the cumulative biogas production levels by 9.9%, 10.4%, and 14.1%, respectively, compared with that produced by the control, which lacked the antibiotic. The addition of OTC substantially modified the structure of the archaeal community. Two orders were identified by phylogenetic analysis, that is, Pseudomonadales and Methanomicrobiales, and the methanogen present during anaerobic co-digestion with OTC may have been resistant to OTC. The abundances of tet(Q) and tet(W) genes increased as the OTC concentration increased, whereas the abundances of tet(M) and tet(C) genes decreased as the OTC concentration increased.

  15. Soil bacterial consortia and previous exposure enhance the biodegradation of sulfonamides from pig manure.

    PubMed

    Islas-Espinoza, Marina; Reid, Brian J; Wexler, Margaret; Bond, Philip L

    2012-07-01

    Persistence or degradation of synthetic antibiotics in soil is crucial in assessing their environmental risks. Microbial catabolic activity in a sandy loamy soil with pig manure using 12C- and 14C-labelled sulfamethazine (SMZ) respirometry showed that SMZ was not readily degradable. But after 100 days, degradation in sulfadiazine-exposed manure was 9.2%, far greater than soil and organic manure (0.5% and 0.11%, respectively, p < 0.05). Abiotic degradation was not detected suggesting microbial catabolism as main degradation mechanism. Terminal restriction fragment length polymorphism showed biodiversity increases within 1 day of SMZ spiking and especially after 200 days, although some species plummeted. A clone library from the treatment with highest degradation showed that most bacteria belonged to α, β and γ classes of Proteobacteria, Firmicutes, Bacteroidetes and Acidobacteria. Proteobacteria (α, β and γ), Firmicutes and Bacteroidetes which were the most abundant classes on day 1 also decreased most following prolonged exposure. From the matrix showing the highest degradation rate, 17 SMZ-resistant isolates biodegraded low levels of 14C-labelled SMZ when each species was incubated separately (0.2-1.5%) but biodegradation was enhanced when the four isolates with the highest biodegradation were incubated in a consortium (Bacillus licheniformis, Pseudomonas putida, Alcaligenes sp. and Aquamicrobium defluvium as per 16S rRNA gene sequencing), removing up to 7.8% of SMZ after 20 days. One of these species (B. licheniformis) was a known livestock and occasional human pathogen. Despite an environmental role of these species in sulfonamide bioremediation, the possibility of horizontal transfer of pathogenicity and resistance genes should caution against an indiscriminate use of these species as sulfonamide degraders.

  16. Insight into the effects of biochar on manure composting: evidence supporting the relationship between N2O emission and denitrifying community.

    PubMed

    Wang, Cheng; Lu, Haohao; Dong, Da; Deng, Hui; Strong, P J; Wang, Hailong; Wu, Weixiang

    2013-07-02

    Although nitrous oxide (N2O) emissions from composting contribute to the accelerated greenhouse effect, it is difficult to implement practical methods to mitigate these emissions. In this study, the effects of biochar amendment during pig manure composting were investigated to evaluate the inter-relationships between N2O emission and the abundance of denitrifying bacteria. Analytical results from two pilot composting treatments with (PWSB, pig manure + wood chips + sawdust + biochar) or without (PWS, pig manure + wood chips + sawdust) biochar (3% w/w) demonstrated that biochar amendment not only lowered NO2(-)-N concentrations but also lowered the total N2O emissions from pig manure composting, especially during the later stages. Quantification of functional genes involved in denitrification and Spearman rank correlations matrix revealed that the N2O emission rates correlated with the abundance of nosZ, nirK, and nirS genes. Biochar-amended pig manure had a higher pH and a lower moisture content. Biochar amendment altered the abundance of denitrifying bacteria significantly; less N2O-producing and more N2O-consuming bacteria were present in the PWSB, and this significantly lowered N2O emissions in the maturation phase. Together, the results demonstrate that biochar amendment could be a novel greenhouse gas mitigation strategy during pig manure composting.

  17. Prevalence of sulfonamide resistance genes in bacterial isolates from manured agricultural soils and pig slurry in the United Kingdom.

    PubMed

    Byrne-Bailey, K G; Gaze, W H; Kay, P; Boxall, A B A; Hawkey, P M; Wellington, E M H

    2009-02-01

    The prevalences of three sulfonamide resistance genes, sul1, sul2, and sul3 and sulfachloropyridazine (SCP) resistance were determined in bacteria isolated from manured agricultural clay soils and slurry samples in the United Kingdom over a 2-year period. Slurry from tylosin-fed pigs amended with SCP and oxytetracycline was used for manuring. Isolates positive for sul genes were further screened for the presence of class 1 and 2 integrons. Phenotypic resistance to SCP was significantly higher in isolates from pig slurry and postapplication soil than in those from preapplication soil. Of 531 isolates, 23% carried sul1, 18% sul2, and 9% sul3 only. Two percent of isolates contained all three sul genes. Class 1 and class 2 integrons were identified in 5% and 11.7%, respectively, of sul-positive isolates. In previous reports, sul1 was linked to class 1 integrons, but in this study only 8% of sul1-positive isolates carried the intI1 gene. Sulfonamide-resistant pathogens, including Shigella flexneri, Aerococcus spp., and Acinetobacter baumannii, were identified in slurry-amended soil and soil leachate, suggesting a potential environmental reservoir. Sulfonamide resistance in Psychrobacter, Enterococcus, and Bacillus spp. is reported for the first time, and this study also provides the first description of the genotypes sul1, sul2, and sul3 outside the Enterobacteriaceae and in the soil environment.

  18. Prevalence of Sulfonamide Resistance Genes in Bacterial Isolates from Manured Agricultural Soils and Pig Slurry in the United Kingdom▿

    PubMed Central

    Byrne-Bailey, K. G.; Gaze, W. H.; Kay, P.; Boxall, A. B. A.; Hawkey, P. M.; Wellington, E. M. H.

    2009-01-01

    The prevalences of three sulfonamide resistance genes, sul1, sul2, and sul3 and sulfachloropyridazine (SCP) resistance were determined in bacteria isolated from manured agricultural clay soils and slurry samples in the United Kingdom over a 2-year period. Slurry from tylosin-fed pigs amended with SCP and oxytetracycline was used for manuring. Isolates positive for sul genes were further screened for the presence of class 1 and 2 integrons. Phenotypic resistance to SCP was significantly higher in isolates from pig slurry and postapplication soil than in those from preapplication soil. Of 531 isolates, 23% carried sul1, 18% sul2, and 9% sul3 only. Two percent of isolates contained all three sul genes. Class 1 and class 2 integrons were identified in 5% and 11.7%, respectively, of sul-positive isolates. In previous reports, sul1 was linked to class 1 integrons, but in this study only 8% of sul1-positive isolates carried the intI1 gene. Sulfonamide-resistant pathogens, including Shigella flexneri, Aerococcus spp., and Acinetobacter baumannii, were identified in slurry-amended soil and soil leachate, suggesting a potential environmental reservoir. Sulfonamide resistance in Psychrobacter, Enterococcus, and Bacillus spp. is reported for the first time, and this study also provides the first description of the genotypes sul1, sul2, and sul3 outside the Enterobacteriaceae and in the soil environment. PMID:19064898

  19. Nutrient recovery from apple pomace waste by vermicomposting technology.

    PubMed

    Hanc, Ales; Chadimova, Zuzana

    2014-09-01

    The present work was focused on vermicomposting apple pomace waste and its mixtures with straw in volume proportions of 25%, 50%, and 75%. The feasibility was evaluated on the basis of agrochemical properties and earthworm biomass. Vermicomposting was able to reduce the weight and volume of the feedstock by 65% and 85%, respectively. The resulting vermicomposts were characterized by slightly acidic to neutral pH (5.9-6.9), and optimal EC (1.6-4.4mS/cm) and C:N ratios (13-14). The total content of nutrients increased during vermicomposting for all of the treatments with the following average final values: N=2.8%, P=0.85%, K=2.3%, and Mg=0.38%. The addition of straw to apple pomace did not enhance earthworm biomass, but did increase the available content of nutrients during vermicomposting. The data reveals that vermicomposting is a suitable technology for the decomposition of apple pomace waste into a value added product. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. [Effects of long-term application of pig manure containing residual tetracycline on the formation of drug-resistant bacteria and resistance genes].

    PubMed

    Zhang, Jun; Yang, Xiao-Hong; Ge, Feng; Wang, Na; Jiao, Shao-Jun; Jiao, Shao-Jun

    2014-06-01

    The effect of residual veterinary tetracycline on the formation of drug-resistant bacteria and corresponding resistance genes was investigated. During the research, the soil with long-term application of pig manure containing residual tetracycline was collected in autumn and summer respectively in the farmland around a certain pig farm in Shuyang City, Huang Huai area, north of Jiangsu province. At the same time, soils without application of pig manure in the farmland of this area were collected as the reference sample. Composition of drug-resistant bacteria in all soil samples was analyzed and three common tetracycline-resistance genes (tetA, tetC, tetE) were studied by PCR as well. During the research, 59 drug-resistant bacteria belonging to 13 bacterial genus respectively were separated from the soil sample collected in autumn while 35 drug- resistant bacteria belonging to 10 bacterial genus respectively were separated from the soil sample collected in summer and as for the reference sample, 3 drug-resistant bacteria belonging to 1 bacterial genus (Streptomyces) were separated with pathogenic bacteria up to 38.14% of total drug-resistant bacteria. PCR result showed that resistance genes were detected in all drug-resistant bacteria and tetC accounted for the most. At the same time, the residual tetracycline in the soil which was in a range of 41.1-61.9 microg x kg(-1) correlated with the amount of resistance genes (4.63 x 10(5)-37.42 x 10(5) copies x g(-1)). Besides, the climate was found accelerating the formation of drug-resistant bacteria and resistance genes.

  1. Concentrations of Trace Elements in Organic Fertilizers and Animal Manures and Feeds and Cadmium Contamination in Herbal Tea (Gynostemma pentaphyllum Makino).

    PubMed

    Nookabkaew, Sumontha; Rangkadilok, Nuchanart; Prachoom, Norratouch; Satayavivad, Jutamaad

    2016-04-27

    Thailand is predominantly an agriculture-based country. Organic farming is enlisted as an important national agenda to promote food safety and international export. The present study aimed to determine the concentrations of trace elements in commercial organic fertilizers (fermented and nonfermented) composed of pig and cattle manures available in Thailand. Pig and cattle manures as well as animal feeds were also collected from either animal farms or markets. The results were compared to the literature data from other countries. Fermented fertilizer composed of pig manure contained higher concentrations of nitrogen (N) and phosphorus (P) than fertilizer composed of cattle manure. High concentrations of copper (Cu) and zinc (Zn) were also found in fertilizers and manures. Some organic fertilizers had high concentrations of arsenic (As), cadmium (Cd), and lead (Pb). The range of As concentration in these fertilizers was 0.50-24.4 mg/kg, whereas the ranges of Cd and Pb were 0.10-11.4 and 1.13-126 mg/kg, respectively. Moreover, pig manure contained As and Cd (15.7 and 4.59 mg/kg, respectively), higher than their levels in cattle manure (1.95 and 0.16 mg/kg, respectively). The use of pig manure as soil supplement also resulted in high Cd contamination in herbal tea (Gynostemma pentaphyllum Makino; GP). The Cd concentration in GP plants positively correlated with the Cd concentration in the soil. Therefore, the application of some organic fertilizers or animal manures to agricultural soil could increase some potentially toxic elements in soil, which may be absorbed by plants and, thus, increase the risk of contamination in agricultural products.

  2. Manipulation of dietary protein and nonstarch polysaccharide to control swine manure emissions.

    PubMed

    Clark, O Grant; Moehn, Soenke; Edeogu, Ike; Price, Jason; Leonard, Jeremy

    2005-01-01

    Odor and greenhouse gas (GHG) emissions from stored pig (Sus scrofa) manure were monitored for response to changes in the crude protein level (168 or 139 g kg(-1), as-fed basis) and nonstarch polysaccharide (NSP) content [i.e., control, or modified with beet pulp (Beta vulgaris L.), cornstarch, or xylanase] of diets fed to pigs in a production setting. Each diet was fed to one of eight pens of pigs according to a 2 x 4, full-factorial design, replicated over three time blocks with different groups of animals and random assignment of diets. Manure from each treatment was characterized and stored in a separate, ventilated, 200-L vessel. Repeated measurements of odor, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions from the vessels were taken every two weeks for eight weeks. Manure from high-protein diets had higher sulfur concentration and pH (P < or = 0.05). High-NSP (beet pulp) diets resulted in lower manure nitrogen and ammonia concentrations and pH (P < or = 0.05). Odor level and hedonic tone of exhaust air from the storage vessel headspaces were unaffected by the dietary treatments. Mean CO2 and CH4 emissions (1400 and 42 g d(-1) m(-3) manure, respectively) increased with lower dietary protein (P < or = 0.05). The addition of xylanase to high-protein diets caused a decrease in manure CO2 emissions, but an increase when added to low-protein diets (P < or = 0.05). Nitrous oxide emissions were negligible. Contrary to other studies, these results do not support the use of dietary protein reduction to reduce emissions from stored swine manure.

  3. Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting.

    PubMed

    Qian, Xun; Gu, Jie; Sun, Wei; Wang, Xiao-Juan; Su, Jian-Qiang; Stedfeld, Robert

    2018-02-15

    Aerobic composting is used widely for animal manure recycling, and it may reduce the amount of antibiotic resistance genes (ARGs) that enter the environment. We sampled three types of animal (bovine, chicken, and pig) manure and the corresponding composts from 12 large-scale farms, and tested multiple ARGs and mobile genetic elements (MGEs) by high-throughput qPCR. A total of 109 ARGs were detected in the manure and compost samples, thereby demonstrating that both are important ARG reservoirs. The diversity and abundance of ARGs were significantly higher in chicken and pig manure than bovine manure, but industrial composting was more efficient at reducing the ARGs in chicken manure than pig and bovine manure. Composting universally reduced some ARGs, but inconsistently influenced other ARGs from different types of animal manures. Network analysis detected the widespread co-occurrence of ARGs and MGEs. floR, ermF, catB3, aac(6')-lb(akaaacA4), and aadA were identified as suitable indicator genes for estimating the total abundance of ARGs. Our results suggest that different animal species had significant effects on the diversity, abundance, and persistence of ARGs, where the abundance of transposons, heavy metal concentration, total nitrogen level, and the dosage and duration of exposure to antibiotics may explain these differences. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Impact of manure-related DOM on sulfonamide transport in arable soils

    NASA Astrophysics Data System (ADS)

    Zhou, Dan; Thiele-Bruhn, Sören; Arenz-Leufen, Martina Gesine; Jacques, Diederik; Lichtner, Peter; Engelhardt, Irina

    2016-09-01

    Field application of livestock manure introduces colloids and veterinary antibiotics, e.g. sulfonamides (SAs), into farmland. The presence of manure colloids may potentially intensify the SAs-pollution to soils and groundwater by colloid-facilitated transport. Transport of three SAs, sulfadiazine (SDZ), sulfamethoxypyridazine (SMPD), and sulfamoxole (SMOX), was investigated in saturated soil columns with and without manure colloids from sows and farrows, weaners, and fattening pigs. Experimental results showed that colloid-facilitated transport of SMOX was significant in the presence of manure colloids from fattening pigs with low C/N ratio, high SUVA280 nm and protein C, while manure colloids from sows and farrows and weaners had little effect on SMOX transport. In contrast, only retardation was observed for SDZ and SMPD when manure colloids were present. Breakthrough curves (BTCs) of colloids and SAs were replicated well by a newly developed numerical model that considers colloid-filtration theory, competitive kinetic sorption, and co-transport processes. Model results demonstrate that mobile colloids act as carriers for SMOX, while immobile colloids block SMOX from sorbing onto the soil. The low affinity of SMOX to sorb on immobile colloids prevents aggregation and also promotes SMOX's colloid-facilitated transport. Conversely, the high affinity of SDZ and SMPD to sorb on all types of immobile colloids retarded their transport. Thus, manure properties play a fundamental role in increasing the leaching risk of hydrophobic sulfonamides.

  5. The use of vermicompost in organic farming: overview, effects on soil and economics.

    PubMed

    Lim, Su Lin; Wu, Ta Yeong; Lim, Pei Nie; Shak, Katrina Pui Yee

    2015-04-01

    Vermicomposting is a process in which earthworms are used to convert organic materials into humus-like material known as vermicompost. A number of researchers throughout the world have found that the nutrient profile in vermicompost is generally higher than traditional compost. In fact, vermicompost can enhance soil fertility physically, chemically and biologically. Physically, vermicompost-treated soil has better aeration, porosity, bulk density and water retention. Chemical properties such as pH, electrical conductivity and organic matter content are also improved for better crop yield. Nevertheless, enhanced plant growth could not be satisfactorily explained by improvements in the nutrient content of the soil, which means that other plant growth-influencing materials are available in vermicomposts. Although vermicomposts have been shown to improve plant growth significantly, the application of vermicomposts at high concentrations could impede growth due to the high concentrations of soluble salts available in vermicomposts. Therefore, vermicomposts should be applied at moderate concentrations in order to obtain maximum plant yield. This review paper discusses in detail the effects of vermicompost on soil fertility physically, chemically and biologically. Future prospects and economy on the use of organic fertilizers in the agricultural sector are also examined. © 2014 Society of Chemical Industry.

  6. Effects of psychrophilic storage on manures as substrate for anaerobic digestion.

    PubMed

    Bergland, Wenche; Dinamarca, Carlos; Bakke, Rune

    2014-01-01

    The idea that storage can enhance manure quality as substrate for anaerobic digestion (AD) to recover more methane is evaluated by studying storage time and temperature effects on manure composition. Volatile fatty acids (VFA) and total dissolved organics (CODs) were measured in full scale pig manure storage for a year and in multiple flasks at fixed temperatures, mainly relevant for colder climates. The CODs generation, influenced by the source of the pig manure, was highest initially (0.3 g COD L(-1)d(-1)) gradually dropping for 3 months towards a level of COD loss by methane production at 15°C. Methane emission was low (<0.01 g COD L(-1)d(-1)) after a brief initial peak. Significant CODs generation was obtained during the warmer season (T > 10°C) in the full scale storage and almost no generation at lower temperatures (4-6°C). CODs consisted mainly of VFA, especially acetate. All VFAs were present at almost constant ratios. The naturally separated manure middle layer without sediment and coarser particles is suitable for sludge bed AD and improved further during an optimal storage time of 1-3 month(s). This implies that high rate AD can be integrated with regular manure slurry handling systems to obtain efficient biogas generation.

  7. Lead sorption-desorption from organic residues.

    PubMed

    Duarte Zaragoza, Victor M; Carrillo, Rogelio; Gutierrez Castorena, Carmen M

    2011-01-01

    Sorption and desorption are mechanisms involved in the reduction of metal mobility and bioavailability in organic materials. Metal release from substrates is controlled by desorption. The capacity of coffee husk and pulp residues, vermicompost and cow manure to adsorb Pb2+ was evaluated. The mechanisms involved in the sorption process were also studied. Organic materials retained high concentrations of lead (up to 36,000 mg L(-1)); however, the mechanisms of sorption varied according to the characteristics of each material: degree of decomposition, pH, cation exchange capacity and percentage of organic matter. Vermicompost and manure removed 98% of the Pb from solution. Lead precipitated in manure and vermicompost, forming lead oxide (PbO) and lead ferrite (PbFe4O7). Adsorption isotherms did not fit to the typical Freundlich and Langmuir equations. Not only specific and non-specific adsorption was observed, but also precipitation and coprecipitation. Lead desorption from vermicompost and cow manure was less than 2%. For remediation of Pb-polluted sites, the application of vermicompost and manure is recommended in places with alkaline soils because Pb precipitation can be induced, whereas coffee pulp residue is recommended for acidic soils where Pb is adsorbed.

  8. Excessive application of pig manure increases the risk of P loss in calcic cinnamon soil in China.

    PubMed

    Yang, Yanju; Zhang, Haipeng; Qian, Xiaoqing; Duan, Jiannan; Wang, Gailan

    2017-12-31

    Soil phosphorus (P) is a critical factor affecting crop yields and water environmental quality. To investigate the degree of loss risk and forms of soil P in calcic cinnamon soil, the P fraction activities in soils were analysed using chemical methods, combined with an in situ field experiment. Seven treatments were set in this study, including control (unfertilized), no P fertilizer (No-P), mineral P fertilizer (Min-P), low (L-Man) and high (H-Man) quantities of pig manure, Min-P+L-Man, and Min-P+H-Man. The results showed that manure fertilizer could not only significantly increase maize yield but could also enhance the accumulation of soil P in organic and inorganic forms. After 23years of repeated fertilization, the soil Olsen-P contents respectively showed 64.7-, 43.7- and 31.9-fold increases in the Min-P+H-Man, Min-P+L-Man and H-Man treatments, while the soil Olsen-P in Min-P treatment only increased 23.7-fold. The soil Olsen-P thresholds ranged from 22.59 to 32.48mgkg -1 in calcic cinnamon soil to maintain a higher maize yield as well as a lower risk of P loss. Therefore, long-term excessive manure application could obviously raise the content of soil Olsen-P and increase the risk of P loss in calcic cinnamon soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Waste recycling: utilization of coffee grounds and kitchen waste in vermicomposting.

    PubMed

    Adi, A J; Noor, Z M

    2009-01-01

    Vermicomposting using Lumbricus rubellus for 49 days was conducted after 21 days of pre-composting. Three different combination of treatments were prepared with eight replicates for each treatment namely cow dung: kitchen waste in 30:70 ratio (T(1)), cow dung: coffee grounds in 30:70 ratio (T(2)), and cow dung: kitchen waste: coffee grounds in 30:35:35 ratio (T(3)). The multiplication of earthworms in terms of numbers and weight were measured at the end of vermicomposting. Consequently, only T(2) showed significant increase (from it initial stage) compared to other treatments. The presence of coffee grounds in T(2) and T(3) showed higher percentage of nutrient elements in vermicompost produced. The data reveal that coffee grounds can be decomposed through vermicomposting and help to enhance the quality of vermicompost produced rather than sole use of kitchen waste in vermicomposting.

  10. Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes: anaerobic digestion residue, pig manure and chicken manure.

    PubMed

    Song, Caihong; Li, Mingxiao; Jia, Xuan; Wei, Zimin; Zhao, Yue; Xi, Beidou; Zhu, Chaowei; Liu, Dongming

    2014-09-01

    This study investigated the impact of composting substrate types on the bacterial community structure and dynamics during composting processes. To this end, pig manure (PM), chicken manure (CM), a mixture of PM and CM (PM + CM), and a mixture of PM, CM and anaerobic digestion residue (ADR) (PM + CM + ADR) were selected for thermophilic composting. The bacterial community structure and dynamics during the composting process were detected and analysed by polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) coupled with a statistic analysis. The physical-chemical analyses indicated that compared to single-material composting (PM, CM), co-composting (PM + CM, PM + CM + ADR) could promote the degradation of organic matter and strengthen the ability of conserving nitrogen. A DGGE profile and statistical analysis demonstrated that co-composting, especially PM + CM + ADR, could improve the bacterial community structure and functional diversity, even in the thermophilic stage. Therefore, co-composting could weaken the screening effect of high temperature on bacterial communities. Dominant sequencing analyses indicated a dramatic shift in the dominant bacterial communities from single-material composting to co-composting. Notably, compared with PM, PM + CM increased the quantity of xylan-degrading bacteria and reduced the quantity of human pathogens. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes: anaerobic digestion residue, pig manure and chicken manure

    PubMed Central

    Song, Caihong; Li, Mingxiao; Jia, Xuan; Wei, Zimin; Zhao, Yue; Xi, Beidou; Zhu, Chaowei; Liu, Dongming

    2014-01-01

    This study investigated the impact of composting substrate types on the bacterial community structure and dynamics during composting processes. To this end, pig manure (PM), chicken manure (CM), a mixture of PM and CM (PM + CM), and a mixture of PM, CM and anaerobic digestion residue (ADR) (PM + CM + ADR) were selected for thermophilic composting. The bacterial community structure and dynamics during the composting process were detected and analysed by polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) coupled with a statistic analysis. The physical-chemical analyses indicated that compared to single-material composting (PM, CM), co-composting (PM + CM, PM + CM + ADR) could promote the degradation of organic matter and strengthen the ability of conserving nitrogen. A DGGE profile and statistical analysis demonstrated that co-composting, especially PM + CM + ADR, could improve the bacterial community structure and functional diversity, even in the thermophilic stage. Therefore, co-composting could weaken the screening effect of high temperature on bacterial communities. Dominant sequencing analyses indicated a dramatic shift in the dominant bacterial communities from single-material composting to co-composting. Notably, compared with PM, PM + CM increased the quantity of xylan-degrading bacteria and reduced the quantity of human pathogens. PMID:24963997

  12. [Anaerobic digestion of animal manure contaminated by tetracyclines].

    PubMed

    Tong, Zi-Lin; Liu, Yuan-Lu; Hu, Zhen-Hu; Yuan, Shou-Jun

    2012-03-01

    Anaerobic digestion of pig manure spiked with tetracycline (TC) and chlortetracycline (CTC) and the degradation of the two antibiotics during the anaerobic digestion at 35 degrees C were investigated. The results indicate that propionate was the main volatile fatty acid produced during the anaerobic digestion followed by acetate. Compared with the CTC addition, TC + CTC addition showed obvious inhibitory effect on the hydrolysis and acidification of easily digestible organic components of pig manure. The cumulative methane production of TC, CTC, TC + CTC and CK2 during anaerobic digestion was 386.4 mL, 406.0 mL, 412.1 mL and 464.6 mL, respectively. Degradation of TC and CTC followed the first-order kinetic equation. The half-life of TC and CTC was 14-18 days and 10 days, respectively. After the treatment of 45-day anaerobic digestion, the degradation efficiency of TC was 88.6%-91.6% with 97.7%-98.2% of CTC. Therefore, anaerobic digestion shows the benefit on the management of animal manures contaminated by tetracyclines.

  13. Comparison of oxytetracycline degradation behavior in pig manure with different antibiotic addition methods.

    PubMed

    Wang, Yan; Chen, Guixiu; Liang, Juanboo; Zou, Yongde; Wen, Xin; Liao, Xindi; Wu, Yinbao

    2015-12-01

    Using manure collected from swine fed with diet containing antibiotics and antibiotic-free swine manure spiked with antibiotics are the two common methods of studying the degradation behavior of veterinary antibiotic in manure in the environment. However, few studies had been conducted to co-compare these two different antibiotic addition methods. This study used oxytetracycline (OTC) as a model antibiotic to study antibiotic degradation behavior in manure under the above two OTC addition methods. In addition, the role of microorganisms present in the manure on degradation behavior was also examined. The results showed that degradation half-life of OTC in manure from swine fed OTC (9.04 days) was significantly shorter than that of the manure directly treated with OTC (9.65 days). Concentration of 4-epi-OTC in manure from swine fed OTC peaked earlier than that in manure spiked with OTC, and the degradation rates of 4-epi-OTC and α-apo-OTC in the manure from swine fed OTC were faster, but the peak concentrations were lower, than those in manure spiked with OTC. Bacterial diversity and relative abundance of Bacillus cereus data demonstrated that sterilization of the manure before experiment significantly decreased OTC degradation rate in both of the addition methods. Results of the present study demonstrated that the presence of the metabolites (especially 4-epi-OTC) and microorganisms had significant influence on OTC degradation.

  14. The potential reuse of biodegradable municipal solid wastes (MSW) as feedstocks in vermicomposting.

    PubMed

    Sim, Edwin Yih Shyang; Wu, Ta Yeong

    2010-10-01

    There is an urgent need globally to find alternative sustainable steps to treat municipal solid wastes (MSW) originated from mismanagement of urban wastes with increasing disposal cost. Furthermore, a conglomeration of ever-increasing population and consumerist lifestyle is contributing towards the generation of more MSW. In this context, vermicomposting offers excellent potential to promote safe, hygienic and sustainable management of biodegradable MSW. It has been demonstrated that, through vermicomposting, MSW such as city garbage, household and kitchen wastes, vegetable wastes, paper wastes, human faeces and others could be sustainably transformed into organic fertiliser or vermicompost that provides great benefits to agricultural soil and plants. Generally, earthworms are sensitive to their environment and require temperature, moisture content, pH and sometimes ventilation at proper levels for the optimum vermicomposting process. Apart from setting the optimum operational conditions for the vermicomposting process, other approaches such as pre-composting, inoculating micro-organisms into MSW and redesigning the conventional vermireactor could be introduced to further enhance the vermicomposting of MSW. Thus the present mini-review discusses the potential of introducing vermicomposting in MSW management, the benefits of vermicomposted MSW to plants, suggestions on how to enhance the vermicomposting of MSW as well as risk management in the vermicomposting of MSW. Copyright © 2010 Society of Chemical Industry.

  15. Impact of manure-related DOM on sulfonamide transport in arable soils.

    PubMed

    Zhou, Dan; Thiele-Bruhn, Sören; Arenz-Leufen, Martina Gesine; Jacques, Diederik; Lichtner, Peter; Engelhardt, Irina

    2016-09-01

    Field application of livestock manure introduces colloids and veterinary antibiotics, e.g. sulfonamides (SAs), into farmland. The presence of manure colloids may potentially intensify the SAs-pollution to soils and groundwater by colloid-facilitated transport. Transport of three SAs, sulfadiazine (SDZ), sulfamethoxypyridazine (SMPD), and sulfamoxole (SMOX), was investigated in saturated soil columns with and without manure colloids from sows and farrows, weaners, and fattening pigs. Experimental results showed that colloid-facilitated transport of SMOX was significant in the presence of manure colloids from fattening pigs with low C/N ratio, high SUVA280nm and protein C, while manure colloids from sows and farrows and weaners had little effect on SMOX transport. In contrast, only retardation was observed for SDZ and SMPD when manure colloids were present. Breakthrough curves (BTCs) of colloids and SAs were replicated well by a newly developed numerical model that considers colloid-filtration theory, competitive kinetic sorption, and co-transport processes. Model results demonstrate that mobile colloids act as carriers for SMOX, while immobile colloids block SMOX from sorbing onto the soil. The low affinity of SMOX to sorb on immobile colloids prevents aggregation and also promotes SMOX's colloid-facilitated transport. Conversely, the high affinity of SDZ and SMPD to sorb on all types of immobile colloids retarded their transport. Thus, manure properties play a fundamental role in increasing the leaching risk of hydrophobic sulfonamides. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Vermicomposting transforms allelopathic parthenium into a benign organic fertilizer.

    PubMed

    Hussain, Naseer; Abbasi, Tasneem; Abbasi, S A

    2016-09-15

    Vermicompost, which had been derived solely by the action of the epigeic earthworm Eisenia fetida on parthenium (Parthenium hysterophorus), was tested for its impact on the germination and early growth of green gram (Vigna radiata), ladies finger (Abelmoschus esculentus) and cucumber (Cucumis sativus). Seedlings were germinated and grown in soil amended with 0 (control), 0.75, 1.5, 2, 4, 8, 20 and 40% (by weight) parthenium vermicompost. Even though parthenium is known to possess strong negative allelopathy, as also plant/animal toxicity in other forms, its vermicompost (VC) manifested none of these attributes. Rather the VC enhanced germination success, introduced plant-friendly physical features in the container media, increased biomass carbon, and was seen to promote early growth as reflected in several morphological and biochemical characteristics in plants which had received parthenium VC in comparison to those which had not. All these effects were statistically significant. Fourier Transform Infrared (FTIR) Spectrometry revealed that the phenols and the sesquiterpene lactones that are responsible for the negative allelopathic impact of parthenium were largely destroyed in the course of vermicomposting. FTIR spectra also indicated that lignin content of parthenium was reduced during its vermicomposting. The findings open up the possibility that several other invasives known for their negative allelopathy and toxicity may also produce vermicompost which may be plant-friendly and soil-friendly. It also makes it appear possible that the huge quantities of phytomass that is generated annually by parthenium can be gainfully utilized in producing organic fertilizer via vermicomposting, thereby providing a means of exercising some control over parthenium's rampant growth and invasion. Copyright © 2016. Published by Elsevier Ltd.

  17. Effects of Psychrophilic Storage on Manures as Substrate for Anaerobic Digestion

    PubMed Central

    Bergland, Wenche; Dinamarca, Carlos

    2014-01-01

    The idea that storage can enhance manure quality as substrate for anaerobic digestion (AD) to recover more methane is evaluated by studying storage time and temperature effects on manure composition. Volatile fatty acids (VFA) and total dissolved organics (CODs) were measured in full scale pig manure storage for a year and in multiple flasks at fixed temperatures, mainly relevant for colder climates. The CODs generation, influenced by the source of the pig manure, was highest initially (0.3 g COD L−1d−1) gradually dropping for 3 months towards a level of COD loss by methane production at 15°C. Methane emission was low (<0.01 g COD L−1d−1) after a brief initial peak. Significant CODs generation was obtained during the warmer season (T > 10°C) in the full scale storage and almost no generation at lower temperatures (4–6°C). CODs consisted mainly of VFA, especially acetate. All VFAs were present at almost constant ratios. The naturally separated manure middle layer without sediment and coarser particles is suitable for sludge bed AD and improved further during an optimal storage time of 1–3 month(s). This implies that high rate AD can be integrated with regular manure slurry handling systems to obtain efficient biogas generation. PMID:25165712

  18. Impacts of supplementing chemical fertilizers with organic fertilizers manufactured using pig manure as a substrate on the spread of tetracycline resistance genes in soil.

    PubMed

    Kang, Yijun; Hao, Yangyang; Shen, Min; Zhao, Qingxin; Li, Qing; Hu, Jian

    2016-08-01

    Using pig manure (PM) compost as a partial substitute for the conventional chemical fertilizers (CFs) is considered an effective approach in sustainable agricultural systems. This study aimed to analyze the impacts of supplementing CF with organic fertilizers (OFs) manufactured using pig manure as a substrate on the spread of tetracycline resistance genes (TRGs) as well as the community structures and diversities of tetracycline-resistant bacteria (TRB) in bulk and cucumber rhizosphere soils. In this study, three organic fertilizers manufactured using the PM as a substrate, namely fresh PM, common OF, and bio-organic fertilizer (BF), were supplemented with a CF. Composted manures combined with a CF did not significantly increase TRB compared with the CF alone, but PM treatment resulted in the long-term survival of TRB in soil. The use of CF+PM also increased the risk of spreading TRGs in soil. As beneficial microorganisms in BF may function as reservoirs for the spread of antibiotic resistance genes, care should be taken when adding them to the OF matrix. The PM treatment significantly altered the community structures and increased the species diversity of TRB, especially in the rhizosphere soil. BF treatment caused insignificant changes in the community structure of TRB compared with CF treatment, yet it reduced the species diversities of TRB in soil. Thus, the partial use of fresh PM as a substitute for CF could increase the risk of spread of TRGs. Apart from plant growth promotion, BF was a promising fertilizer owing to its potential ability to control TRGs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. [Effects of combined applications of pig manure and chemical fertilizers on CH4 and N2O emissions and their global warming potentials in paddy fields with double-rice cropping].

    PubMed

    Wang, Cong; Shen, Jian-Lin; Zheng, Liang; Liu, Jie-Yun; Qin, Hong-Ling; Li, Yong; Wu, Jin-Shui

    2014-08-01

    A field experiment was carried out to study the effects of combined applications of pig manure and chemical fertilizers on CH4 and N2O emissions, which were measured using the static chamber/gas chromatography method, and their global warming potentials in typical paddy fields with double-rice cropping in Hunan province. The results showed that the combined applications of pig manure and chemical fertilizers did not change the seasonal patterns of CH4 and N2O emissions from paddy soils, but significantly changed the magnitudes of CH4 and N2O fluxes in rice growing seasons as compared with sole application of chemical fertilizers. During the two rice growing seasons, the cumulative CH4 emissions for the pig manure and chemical nitrogen (N) fertilizer each contributing to 50% of the total applied N (1/2N + PM) treatment were higher than those for the treatments of no N fertilizer (ON), half amount of chemical N fertilizer (1/2N) and 100% chemical N fertilizer (N) by 54.83%, 33.85% and 43.30%, respectively (P < 0.05), whilst the cumulative N2O emissions for the 1/2N + PM treatment were decreased by 67.50% compared with N treatment, but increased by 129.43% and 119.23% compared with ON and 1/2N treatments, respectively (P < 0.05). CH4 was the dominant contributor to the global warming potential (GWP) in both rice growing seasons, which contributed more than 99% to the integrated GWP of CH4 and N2O emissions for all the four treatments. Both GWP and yield-scaled GWP for the treatment of 1/2N + PM were significantly higher than the other three treatments. The yield-scaled GWP for the treatment of 1/2N + PM was higher than those for the N, 1/2N and ON treatments by 58.21%, 26.82% and 20. 63%, respectively. Therefore, combined applications of pig manure and chemical fertilizers in paddy fields would increase the GWP of CH4 and N2O emissions during rice growing seasons and this effect should be considered in regional greenhouse gases emissions inventory.

  20. Effects of mix ratio, moisture content and aeration rate on sulfur odor emissions during pig manure composting.

    PubMed

    Zang, Bing; Li, Shuyan; Michel, Frederick; Li, Guoxue; Luo, Yuan; Zhang, Difang; Li, Yangyang

    2016-10-01

    Sulfur compounds in swine manure can cause odor emissions during composting if conditions are not conducive to their rapid oxidation and degradation. In this study, the effects of controllable composting process variables on sulfur odor emissions were investigated. These included pig manure to corn stalk mix ratio (0.7:1, 1.5:1 and 2.2:1dw basis), initial moisture content (60%, 65%, 70% and 75%) and aeration rate (1.0, 2.0, 3.0 and 4.0m(3)m(-3)h(-1)). The compounds measured were carbonyl sulfide, carbon disulfide, hydrogen sulfide, methyl mercaptan, ethyl mercaptan, diethyl sulfide, dimethyl sulfide (Me2S) and dimethyl disulfide (Me2SS). The results showed that total sulfur losses ranged from 3.9% to 18.3% after 26days of composting. Me2S and Me2SS were the primary (>59.61%) sulfur compounds released during this period. After turning, emission rates of both Me2S and Me2SS increased. Emissions of the other six sulfur compounds were low and inconsistent during composting. Within the compost, feedstock mix ratio significantly influenced the concentration of Me2SS, while aeration rate significantly affected Me2S concentration (p<0.05). Moisture content did not have a significant effect on the concentrations of either of these two compounds. Concentrations of sulfur odor compounds were the lowest at the highest aeration rate. Therefore, high aeration rates during the thermophilic phase, especially after turning, are recommended to minimize sulfur odors produced during swine manure composting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Vermicomposting of source-separated human faeces by Eisenia fetida: effect of stocking density on feed consumption rate, growth characteristics and vermicompost production.

    PubMed

    Yadav, Kunwar D; Tare, Vinod; Ahammed, M Mansoor

    2011-06-01

    The main objective of the present study was to determine the optimum stocking density for feed consumption rate, biomass growth and reproduction of earthworm Eisenia fetida as well as determining and characterising vermicompost quantity and product, respectively, during vermicomposting of source-separated human faeces. For this, a number of experiments spanning up to 3 months were conducted using soil and vermicompost as support materials. Stocking density in the range of 0.25-5.00 kg/m(2) was employed in different tests. The results showed that 0.40-0.45 kg-feed/kg-worm/day was the maximum feed consumption rate by E. fetida in human faeces. The optimum stocking densities were 3.00 kg/m(2) for bioconversion of human faeces to vermicompost, and 0.50 kg/m(2) for earthworm biomass growth and reproduction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Global Cryptosporidium Loads from Livestock Manure

    PubMed Central

    2017-01-01

    Understanding the environmental pathways of Cryptosporidium is essential for effective management of human and animal cryptosporidiosis. In this paper we aim to quantify livestock Cryptosporidium spp. loads to land on a global scale using spatially explicit process-based modeling, and to explore the effect of manure storage and treatment on oocyst loads using scenario analysis. Our model GloWPa-Crypto L1 calculates a total global Cryptosporidium spp. load from livestock manure of 3.2 × 1023 oocysts per year. Cattle, especially calves, are the largest contributors, followed by chickens and pigs. Spatial differences are linked to animal spatial distributions. North America, Europe, and Oceania together account for nearly a quarter of the total oocyst load, meaning that the developing world accounts for the largest share. GloWPa-Crypto L1 is most sensitive to oocyst excretion rates, due to large variation reported in literature. We compared the current situation to four alternative management scenarios. We find that although manure storage halves oocyst loads, manure treatment, especially of cattle manure and particularly at elevated temperatures, has a larger load reduction potential than manure storage (up to 4.6 log units). Regions with high reduction potential include India, Bangladesh, western Europe, China, several countries in Africa, and New Zealand. PMID:28654242

  3. Global Cryptosporidium Loads from Livestock Manure.

    PubMed

    Vermeulen, Lucie C; Benders, Jorien; Medema, Gertjan; Hofstra, Nynke

    2017-08-01

    Understanding the environmental pathways of Cryptosporidium is essential for effective management of human and animal cryptosporidiosis. In this paper we aim to quantify livestock Cryptosporidium spp. loads to land on a global scale using spatially explicit process-based modeling, and to explore the effect of manure storage and treatment on oocyst loads using scenario analysis. Our model GloWPa-Crypto L1 calculates a total global Cryptosporidium spp. load from livestock manure of 3.2 × 10 23 oocysts per year. Cattle, especially calves, are the largest contributors, followed by chickens and pigs. Spatial differences are linked to animal spatial distributions. North America, Europe, and Oceania together account for nearly a quarter of the total oocyst load, meaning that the developing world accounts for the largest share. GloWPa-Crypto L1 is most sensitive to oocyst excretion rates, due to large variation reported in literature. We compared the current situation to four alternative management scenarios. We find that although manure storage halves oocyst loads, manure treatment, especially of cattle manure and particularly at elevated temperatures, has a larger load reduction potential than manure storage (up to 4.6 log units). Regions with high reduction potential include India, Bangladesh, western Europe, China, several countries in Africa, and New Zealand.

  4. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost.

    PubMed

    Scaglia, Barbara; Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira; Tambone, Fulvia; Adani, Fabrizio

    2016-08-15

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100-6000mgcarbonL(-1). (13)C CPMAS-NMR and GC-MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS (13)CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R(2)=-0.85; p<0.01, n=6). Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Sources and fate of antimicrobials in integrated fish-pig and non-integrated tilapia farms.

    PubMed

    Li, Kang; Liu, Liping; Zhan, Jia; Scippo, Marie-Louise; Hvidtfeldt, Kristian; Liu, Yuan; Dalsgaard, Anders

    2017-10-01

    Antimicrobial contamination in aquaculture products constitutes a food safety hazard, but little is known about the introduction and accumulation of antimicrobials in integrated fish-pig aquaculture. This study, conducted in 2013, aimed to determine the residues of 11 types of antimicrobials by UPLC-MS/MS analysis in fish feed (n=37), pig feed (n=9), pig manure (n=9), pond sediment (n=20), fish skin (n=20) and muscle tissue (n=20) sampled from integrated tilapia-pig farms, non-integrated tilapia farms and fish feed supply shops. There was a higher occurrence of antimicrobial residues in fish skin from both integrated and non-integrated farms, and in pig manure. Enrofloxacin (3.9-129.3μg/kg) and sulfadiazine (0.7-7.8μg/kg) were commonly detected in fish skin and muscle, pig manure and pond sediment from integrated farms, with different types of antimicrobials found in pig manure and tilapia samples. In non-integrated farms, sulfadiazine (2.5-89.9μg/kg) was the predominant antimicrobial detected in fish skin and muscle, fish feed and pond sediment. In general, antimicrobials seemed not to be commonly transmitted from pig to fish in tilapia-pig integrated farms, and fish feed, pig feed and pond sediment did not seem as important sources of the antimicrobials found in fish from both systems. The frequent findings of antimicrobial residues in fish skin compared with fish muscle was probably due to different pharmacokinetics in different tissue types, which have practical food safety implications since antimicrobial residues monitoring is usually performed analyzing mixed skin and fish muscle samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Neem leaves as a source of fertilizer-cum-pesticide vermicompost.

    PubMed

    Gajalakshmi, S; Abbasi, S A

    2004-05-01

    Vermicomposting of neem (Azadirachta indica A. Juss) was accomplished in "high-rate" reactors operated at the earthworm (Eudrilus eugeniae) densities of 62.5 and 75 animals per litre of reactor volume. Contrary to the fears that neem--a powerful nematicide--might not be palatable to the annelids, the earthworms fed voraciously on the neem compost, converting upto 7% of the feed into vermicompost per day. Indeed the worms grew faster and reproduced more rapidly in the neem-fed vermireactors than in the reactors fed with mango leaf litter earlier studied by the authors (Gajalakshmi et al., 2003). Another set of experiments on the growth, flowering, and fruition of brinjal (Solanum melongena) plants with and without fertilization with vermicompost, revealed that the vermicompost had a significantly beneficial impact.

  7. Performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation in pig manure composting.

    PubMed

    Li, Yun; Luo, Wenhai; Li, Guoxue; Wang, Kun; Gong, Xiaoyan

    2018-02-01

    This study investigated the performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation during pig manure composting with cornstalk as the bulking agent. Results show that phosphogypsum increased nitrous oxide (N 2 O) emission, but significantly reduced ammonia (NH 3 ) emission and thus enhanced the mineral and total nitrogen (TN) contents in compost. Although N 2 O emission could be reduced by adding calcium magnesium phosphate fertilizer, NH 3 emission was considerably increased, resulting in an increase in TN loss during composting. By blending these two additives, both NH 3 and N 2 O emissions could be mitigated, achieving effective nitrogen conservation in composting. More importantly, with the addition of 20% TN of the mixed composting materials, these two additives could synergistically improve the compost maturity and quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Detection of Manure-Derived Organic Compounds in Rivers Draining Agricultural Areas of Intensive Manure Spreading

    NASA Astrophysics Data System (ADS)

    Jardé, E.; Gruau, G.

    2006-12-01

    This study presents the potentiality of organic markers to trace the impact of animal manure in soils and rivers draining agricultural watersheds. As described by Gruau et al. (in this session), the analysis of long term records of dissolved organic matter (DOM) in five watersheds in Brittany (western of France) shows divergent trends which can not be explained solely by global changes. One alternative explanation could be that long- term records of DOM in rivers are controlled by human activities, and notably by agricultural practices. In Brittany, the agricultural intensification led to an over-application of animal manures to soils. This practice can strongly increase the amount of soil-water extractable organic matter, thereby leading to an increase of organic matter fluxes in agricultural landscapes and then to a contamination of river waters. Such an hypothesis deserves consideration in view of the massive manure fluxes that are disposed on agricultural land in many parts of the world. In this goal, our study aimed at determining potential sources of organic matter and molecular markers or specific distributions in rivers draining agricultural watersheds. In this study we focused on the analysis of pig slurries because of the importance of pig production in Brittany. The analysis of pig slurry evidenced the presence of coprostanol (5β) as a specific marker, originating from the bio- hydrogenation of cholesterol by anaerobic bacteria. The difference with other animal or human wastes has been evidenced by two ratios: 5β/C27 and C29/C27. After the validation of the ability of coprostanol to be a molecular marker of pig slurry, our analysis has been focused on the OM of watersheds in Brittany showing divergent evolutions. The results show a systematic relation between the C29/C27 and 5β/C27 ratios and the type of animal breeding in each watershed. This study allows us to evidence the impact of animal breeding activities in the analysed rivers. Such a study

  9. Humification process in different kinds of organic residue by composting and vermicomposting: have microbioreactors really accelerated the process?

    PubMed

    Dores-Silva, Paulo R; Landgraf, Maria D; Rezende, Maria O O

    2018-04-15

    The organic matter existing in nature presents as a complex system of various substances. The humic fraction refers to the humic substances (HS) and consists of humic acids (HA), fulvic acids (FA), and humins, according to solubility in aqueous solution. The physical and chemical characteristics of HA, FA, and humins depend on many factors, among which is the type of original organic material. Two processes for the stabilization of organic materials are known worldwide: composting and vermicomposting. Cattle manure, rice straw, sugarcane bagasse, and vegetable wastes from leaves were the organic residues chosen for the composting and vermicomposting processes. In this study, the differences between the HS extracted from such composted and vermicomposted residues were evaluated. The so-extracted HS were evaluated by spectroscopy in the regions of infrared and ultraviolet-visible, and pyrolysis coupled with gas chromatography with mass spectrometric detection is applied. Thus, we expect that the results obtained here indicate which of the two processes is more efficient in the biotransformation of organic residues in a short period with respect to the HS content. It was also observed that the basic units of the humic fractions generated (although they presented different degrees of maturation) are the same. Altogether, the data reported here bring to light that the structures of the HS are very similar, differing in quantities. These results can still be extrapolated to several other raw materials, since the most variable organic matrices were used here to allow this data extrapolation. In addition, the process seems to lead to the formation of more aliphatic substances, counterpoising what is found in the literature.

  10. Adaptability comparison of E. fetida in vermicomposting against sludge from livestock wastewater treatment plant based on their several growth stages.

    PubMed

    Hao, Xiaoxia; Hu, Hongwen; Li, Xuewei; Jiang, Dongmei; Zhu, Li; Bai, Lin

    2016-08-01

    Vermicomposting is a low-cost, eco-efficient process to deal with organic wastes. Mixtures of swine manure (SM), cow dung (CD), and animal wastewater treatment plant sludge (S) were applied as feeds, and Eisenia fetida was employed in this study to investigate the vermicomposting efficiency based on their several growth stages. The hatching test resulted in a 100 % hatching rate in S60SM40 (60 % S + 40 % SM) mixture, while 4.40 hatchlings per cocoon were observed. The growth of infancy performed best in 0-20 % CD mixtures (0.05 ± 0.002 g), followed by in SM + CD (0.04 ± 0.003 g). The highest growth rate of young and adult E. fetida was noticed in CD + S mixtures (11.14 ± 0.01 and 6.00 ± 0.02 mg/d/worm, respectively), while the higher cocoon production of adults was noticed in S + SM mixtures especially in S40SM60 (537 ± 5 worms). Moreover, the conversion of solids; the modified pH value; the reduction in total organic carbon (TOC); total Kjeldahl nitrogen (TKN), NH4-N, NO3-N, and C:N ratio; and the rich in total available phosphorus (TAP) and total potassium (TK) content by young and adult E. fetida were related to the growth of worms. Such work would benefit understanding and to increase the efficiency of vermicompost processing of different wastes.

  11. Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine.

    PubMed

    Heuer, Holger; Solehati, Qodiah; Zimmerling, Ute; Kleineidam, Kristina; Schloter, Michael; Müller, Tanja; Focks, Andreas; Thiele-Bruhn, Sören; Smalla, Kornelia

    2011-04-01

    Two soils were amended three times with pig manure. The abundance of sulfonamide resistance genes was determined by quantitative PCR 2 months after each application. In both soils treated with sulfadiazine-containing manure, the numbers of copies of sul1 and sul2 significantly increased compared to numbers after treatments with antibiotic-free manure or a control and accumulated with repeated applications.

  12. Fate of Escherichia coli O157: H7 in agricultural soils amended with different organic fertilizers.

    PubMed

    Yao, Zhiyuan; Yang, Li; Wang, Haizhen; Wu, Jianjun; Xu, Jianming

    2015-10-15

    Five organic fertilizers (vermicompost, pig manure, chicken manure, peat and oil residue) were applied to agricultural soils to study their effects on the survival of Escherichia coli O157:H7 (E. coli O157:H7). Results showed that E. coli O157:H7 survival changed greatly after organic fertilizers application, with shorter td values (survival time needed to reach the detection limit of 100 CFU g(-1)) (12.57±6.57 days) in soils amended with chicken manure and the longest (25.65±7.12 days) in soils amended with pig manure. Soil pH, EC and free Fe/Al (hydro) oxides were significant explanatory factors for E. coli O157:H7 survival in the original soils. Soil constituents (minerals and organic matter) and changes in their surface charges with pH increased the effect of soil pH on E. coli O157:H7 survival. However, electrical conductivity played a more important role in regulating E. coli O157:H7 survival in fertilizer-amended soils. This study highlighted the importance of choosing appropriate organic fertilizers in the preharvest environment to reduce food-borne bacterial contamination. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy--a life cycle perspective.

    PubMed

    De Vries, J W; Vinken, T M W J; Hamelin, L; De Boer, I J M

    2012-12-01

    The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co-substrates for anaerobic digestion. Environmental impact categories considered were climate change, terrestrial acidification, marine and freshwater eutrophication, particulate matter formation, land use, and fossil fuel depletion. Six scenarios were evaluated: mono-digestion of manure, co-digestion with: maize silage, maize silage and glycerin, beet tails, wheat yeast concentrate (WYC), and roadside grass. Mono-digestion reduced most impacts, but represented a limited source for bio-energy. Co-digestion with maize silage, beet tails, and WYC (competing with animal feed), and glycerin increased bio-energy production (up to 568%), but at expense of increasing climate change (through LUC), marine eutrophication, and land use. Co-digestion with wastes or residues like roadside grass gave the best environmental performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The decreasing of corn root biomembrane penetration for acetochlor with vermicompost amendment

    NASA Astrophysics Data System (ADS)

    Sytnyk, Svitlana; Wiche, Oliver

    2016-04-01

    One of the topical environmental security issues is management and control of anthropogenic (artificially synthesized) chemical agents usage and utilization. Protection systems development against toxic effects of herbicides should be based on studies of biological indication mechanisms for identification of stressors effect in organisms. Lipid degradation is non-specific reaction to exogenous chemical agents effects. Therefore it is important to study responses of lipid components depending on the stressor type. We studied physiological and biochemical characteristics of lipid metabolism under action of herbicides of chloracetamide group. Corn at different stages of ontogenesis was used as testing object during model laboratory and microfield experiments. Cattle manure treated with earth worms Essenia Foetida was used as compost fertilizer to add to chain: chernozem (black soil) -corn system. It was found several acetochlor actions as following: -decreasing of sterols, phospholipids, phosphatidylcholines and phosphatidylethanolamines content; -increasing pool of available fatty acids and phosphatidic acids associated with intensification of hydrolysis processes; -lypase activity stimulation under effect of stressor in low concentrations; -lypase activity inhibition under effect of high stressor level; -decreasing of polyenoic free fatty acids indicating biomembrane degradation; -accumulation of phospholipids degradation products (phosphatidic acids); -decreasing of high-molecular compounds (phosphatidylcholin and phosphatidylinositol) concentrations; -change in the index of unsaturated and saturated free fatty acids ratio in biomembranes structure; It was established that incorporation of vermicompost in dose 0.4 kg/m2 in black soil lead to corn roots biomembrane restoration. It was fixed the decreasing roots biomembrane penetration for acetochlor in trial with vermicompost. Second compost substances antidote effect is the soil microorganism's activation

  15. Using natural clinoptilolite zeolite as an amendment in vermicomposting of food waste.

    PubMed

    Zarrabi, Mansur; Mohammadi, Ali Akbar; Al-Musawi, Tariq J; Najafi Saleh, Hossein

    2018-06-02

    The effect of adding different proportions of natural clinoptilolite zeolite (5 and 10%) to food waste vermicomposting was investigated by assessing the physicochemical characteristics, worms' growth, and maturation time of finished vermicompost in comparison with the vermicompost prepared with no amendment (control). Vermicomposting was performed in 18 plastic containers for 70 days. The experimental results showed that the carbon-to-nitrogen (C/N) ratios were 15.85, 10.75, and 8.94 for 5 and 10% zeolite concentration and control after 70 days, respectively. The addition of zeolite could facilitate organic matter degradation and increase the total nitrogen content by adsorption of ammonium ions. Increasing the proportion of zeolite from 0% (control) to 10% decreased the ammonia escape by 25% in the final vermicompost. The natural zeolite significantly reduced the electrical conductivity (EC). At the end of the process, salinity uptake efficiency was 39.23% for 5% zeolite treatment and 45.23% for 10% zeolite treatment. The pH values at 5 and 10% zeolite-amended treatments were 7.31 and 7.57, respectively, in comparison to 7.10 in the control. The maturation time at the end of vermicomposting decreased with increasing zeolite concentration. The vermicompost containing 5 and 10% zeolite matured in 49 and 42 days, respectively, in comparison to 56 days for the control. With the use of an initial ten immature Eisenia fetida worms, the number of mature worms in the 10% zeolite treatment was 26 more than that in the 5% zeolite treatment (21 worms) and 9 more than that in the control treatment (17 worms). Significantly, natural zeolite showed a beneficial effect on the characteristics of the end-product when used in the vermicomposting of food waste.

  16. Effect of pretreatments on biogas production from microalgae biomass grown in pig manure treatment plants.

    PubMed

    Martín Juárez, Judit; Riol Pastor, Elena; Fernández Sevilla, José M; Muñoz Torre, Raúl; García-Encina, Pedro A; Bolado Rodríguez, Silvia

    2018-06-01

    Methane production from pretreated and raw mixed microalgae biomass grown in pig manure was evaluated. Acid and basic pretreatments provided the highest volatile solids solubilisation (up to 81%) followed by alkaline-peroxide and ultrasounds (23%). Bead milling and steam explosion remarkably increased the methane production rate, although the highest yield (377 mL CH 4 /g SV) was achieved by alkali pretreatment. Nevertheless, some pretreatments inhibited biogas production and resulted in lag phases of 7-9 days. Hence, experiments using only the pretreated solid phase were performed, which resulted in a decrease in the lag phase to 2-3 days for the alkali pretreatment and slightly increased biomass biodegradability of few samples. The limiting step during the BMP test (hydrolysis or microbial inhibition) for each pretreatment was elucidated using the goodness of fitting to a first order or a Gompertz model. Finally, the use of digestate as biofertilizer was evaluated applying a biorefinery concept. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Changes in labile phosphorus forms during maturation of vermicompost enriched with phosphorus-solubilizing and diazotrophic bacteria.

    PubMed

    Busato, Jader G; Lima, Lívia S; Aguiar, Natália O; Canellas, Luciano P; Olivares, Fábio L

    2012-04-01

    The aim of this study was to assess the effect of N(2)-fixing and P-solubilizing bacteria during maturation of vermicompost on phosphorus availability. A bacterial suspension containing Burkholderia silvatlantica, Burkholderia spp. and Herbaspirillum seropedicae was applied at the initial stage of vermicomposting. At the end of the incubation time (120days), the nitrogen content had increased by18% compared to uninoculated vermicompost. Water-soluble P was 106% higher in inoculated vermicompost while resin-extractable P increased during the initial vermicomposting stage and was 21% higher at 60days, but was the same in inoculated and uninoculated mature compost. The activity of acid phosphatase was 43% higher in inoculated than uninoculated vermicompost. These data suggest that the introduction of the mixed culture had beneficial effects on vermicompost maturation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Transformation of toxic and allelopathic lantana into a benign organic fertilizer through vermicomposting

    NASA Astrophysics Data System (ADS)

    Hussain, Naseer; Abbasi, Tasneem; Abbasi, S. A.

    2016-06-01

    In a first study of its kind, the composition of vermicompost derived solely from the toxic and allelopathic weed lantana has been investigated using UV-visible and Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TG) and differential scanning calorimetry (DSC), gas chromatography-mass spectometry (GC-MS), and scanning electron microscopy (SEM). The studies reveal that a sharp reduction in humification index, substantial mineralization of organic matter and degradation of complex aromatics such as lignin and polyphenols into simpler carbohydrates and lipids occur in the course of vermicomposting. GC-MS analysis shows significant fragmentation, bio-oxidation and molecular rearrangements of chemical compounds in vermicompost in comparison to those in lantana. SEM micrographs of vermicompost reflect strong disaggregation of material compared to the much better formed lantana matrices. The phenols and sesquiterpene lactones which are specifically responsible for the toxicity and allelopathy of lantana are seen to get significantly degraded in the course of vermicomposting - turning it into a plant-friendly organic fertilizer. The study leads to the possibility that the millions of tons of phytomass that is generated annually by lantana can be gainfully utilized in producing organic fertilizer via vermicomposting.

  19. The effect of anaerobic digestion and storage on indicator microorganisms in swine and dairy manure.

    PubMed

    Costa, Annamaria; Gusmara, Claudia; Gardoni, Davide; Zaninelli, Mauro; Tambone, Fulvia; Sala, Vittorio; Guarino, Marcella

    2017-11-01

    The aim of this experimental study was to evaluate the influence of anaerobic digestion and storage on indicator microorganisms in swine and dairy excreta. Samples were collected every 90 days for 15 months at eight farms, four pig, and four dairy farms, four of them having a biogas plant. Moreover, to evaluate storage effects on samples, 20 l of manure and slurry taken at each farm (digested manure only in farms with a biogas plant) were stored in a controlled climatic chamber at 18 °C, for 6 months. The bacterial load and the chemical-physical characteristics of excreta were evaluated at each sampling time, stored slurry, and manure were sampled and analyzed every 2 months. A high variability of the concentration of bacteria in the different excreta types was observed during the experiment, mainly depending on the type and time of treatment. No sample revealed either the presence of Escherichia coli O157:H7 or of Salmonella, usually linked to the temporary rearing of infected animals in facilities. Anaerobic digestion and storage affected in a significant way the reduction of indicator bacteria like lactobacilli, coliforms, and streptococci. Anaerobic digestion lowered coliforms in pig slurry (- 2.80 log, P < 0.05), streptococci in dairy manure (- 2.44 log, P < 0.001) and in pig slurry (- 1.43 log, P < 0.05), and lactobacilli in pig slurry (- 3.03 log, P < 0.05). Storage lowered coliforms and the other indicators counts, in particular in fresh wastes, while clostridia did not show a reduction in concentration.

  20. Pollution characteristics of 23 veterinary antibiotics in livestock manure and manure-amended soils in Jiangsu province, China.

    PubMed

    Guo, Xin Y; Hao, Li J; Qiu, Pan Z; Chen, Rong; Xu, Jing; Kong, Xiang J; Shan, Zheng J; Wang, Na

    2016-01-01

    The aim of this study was to investigate the pollution characteristics of typical veterinary antibiotics in manure and soil of livestock farms in Jiangsu province. This investigation employed solid-phase extraction (SPE) coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A total of 53 manure and 50 amended soil samples from 16 livestock farms in Jiangsu province were collected for analysis. In the manure samples, the highest detected frequencies and concentrations were those of tetracyclines (TCs, 54.1 ± 5775.6 μgkg(-1)), followed by fluoroquinolones (FQs, 8.4 ± 435.6 μgkg(-1)), sulphonamides (SAs, 3.2 ± 5.2 μgkg(-1)) and macrolides (MACs, 0.4 ± 110.5 μgkg(-1)). Statistical analysis was used to illuminate the pollution characteristics of 23 veterinary antibiotics for various animal types and different regions in Jiangsu province. The results showed that the pollution level in cow manure was relatively lower compared with pig and chicken manure due to the relative restriction of medication. Furthermore, contamination was serious in amended soil from chicken farms. The pollution level in manure among different regions was higher to the south and north compared with the centre of the region. The same outcome was found for soil. Antibiotic residues in organic fertilizer were also investigated in this study. We found that although the detected concentration was lower in organic fertilizer than in fresh manure, detection frequencies (10-90%) were high, especially for roxithromycin (90%) in MACs (30-90%). This finding suggests attention should be paid to the pollution levels in organic fertilizer. This study is the first extensive investigation of the occurrence and distribution of many kinds of typical veterinary antibiotics in manure and soil from livestock farms of Jiangsu province. This investigation systematically assesses veterinary antibiotics usage and related emissions in southeast China.

  1. Preliminary evaluation of pathogenic bacteria loading on organic Municipal Solid Waste compost and vermicompost.

    PubMed

    Soobhany, Nuhaa

    2018-01-15

    The use of composts or vermicomposts derived from organic fraction of Municipal Solid Waste (OFMSW) brought about certain disagreement in terms of high level of bacterial pathogens, thereby surpassing the legal restrictions. This preliminary study was undertaken to compare the evolution of pathogenic bacteria on OFMSW compost against vermicompost (generated by Eudrilus eugeniae) with promises of achieving sanitation goals. Analysis to quality data showed that OFMSW vermicomposting caused a moderately higher reduction in total coliforms in contrast to composting. E. coli in OFMSW composts was found to be in the range of 4.72-4.96 log 10  CFU g -1 whilst on a clear contrary, E. coli was undetectable in the final vermicomposts (6.01-6.14 logs of reduction) which might be explained by the involvement of the digestive processes in worms' guts. Both OFMSW composts and vermicomposts generated Salmonella-free products which were acceptable for agricultural usage and soil improvement. In comparison to compost, the analysis of this research indicated that earthworm activity can effectively destroy bacterial pathogenic load in OFMSW vermicomposts. But still, this study necessitates extra research in order to comprehend the factors that direct pathogenic bacteria in vermicomposting and earthworm-free decomposition systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. [Effects of interaction between vermicompost and probiotics on soil nronerty, yield and quality of tomato].

    PubMed

    Shen, Fei; Zhu, Tong-bin; Teng, Ming-jiao; Chen, Yue; Liu, Man-qiang; Hu, Feng; Li, Hui-xin

    2016-02-01

    In this study, we investigated the effects of two strains of probiotic bacteria (Bacillus megaterium BM and Bacillus amyloliquefaciens BA) combined with chemical fertilizers and vermicompost on the soil property, the yield and quality of tomato. The results showed that under the same nutrient level, vermicompost significantly increased the yield, soluble sugar and protein contents of fruit, the soil pH and available phosphorus when compared with chemical fertilizers. Vermicompost combined with probiotics not only increased the tomato yield, soluble sugar, protein and vitamin C contents, sugar/acid ratio of fruit, and reduced the organic acid and nitrate nitrogen contents of fruit, also increased the soil pH and nitrate nitrogen content, and reduced soil electric conductivity when compared with vermicompost treatment. This improved efficiency was better than that by chemical fertilizers combined with probiotics. For BA and BM applied with chemical fertilizers or vermicompost, both stains had no significant effect on tomato quality. When co-applied with vermicompost, BA and BM showed significant difference in tomato yield. High soil available phosphorus content was determined when BM was combined with chemical fertilizers, while high soil available potassium content was obtained when BA was combined with vermicompost. Our results suggested that probiotics and vermicompost could be used as alternatives of chemical fertilizers in tomato production and soil fertility improvement.

  3. Vermicompost affects soil properties and spinach growth, physiology, and nutritional value

    USDA-ARS?s Scientific Manuscript database

    The use of vermicompost to improve soil fertility and enhance crop yield has gained considerable momentum due to its contribution to agroecological sustainability. Short-term (35-days after transplanting) effects of vermicompost, applied either as a soil amendment (5% and 10%, v/v), or a drench (40 ...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hang; Li, Hongyi; Gilbert, Jack A.

    Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M),tet(O),tet(Q), andtet(W)] were reduced (P< 0.05), while those of genes encodingmore » sulfonamide resistance (sul1andsul2) were increased (P< 0.05) when normalized to 16S rRNA. The abundances of tetracycline resistance genes were correlated (P< 0.05) with the changing concentrations of tetracyclines in the manure. The overall diversity and richness of the bacteria significantly decreased during vermicomposting, accompanied by a 100 times increase in the relative abundance ofFlavobacteriaceaespp. Variations in the abundances of ARGs were correlated with the changing microbial community structure and the relative abundances of the familyRuminococcaceae, classBacilli, or phylumProteobacteria. Vermicomposting, as a waste management practice, can reduce the overall abundance of ARGs. More research is warranted to assess the use of this waste management practice as a measure to attenuate the dissemination of antimicrobial residues and ARGs from livestock production before vermicompost can be safely used as biofertilizer in agroecosystems.« less

  5. Spent mushroom substrate biochar as a potential amendment in pig manure and rice straw composting processes.

    PubMed

    Chang, Ken-Lin; Chen, Xi-Mei; Sun, Jian; Liu, Jing-Yong; Sun, Shui-Yu; Yang, Zuo-Yi; Wang, Yin

    2017-07-01

    Spent mushroom substrate (SMS) is a bulky waste byproduct of commercial mushroom production, which can cause serious environmental problems and, therefore, poses a significant barrier to future expansion of the mushroom industry. In the present study, we explored the use of SMS as a biochar to improve the quality of bio-fertilizer. Specifically, we performed a series of experiments using composting reactors to investigate the effects of SMS biochar on the physio-chemical properties of bio-fertilizer. Biochar was derived from dry SMS pyrolysed at 500°C and mixed with pig manure and rice straw. Results from this study demonstrate that the addition of biochar significantly reduced electrical conductivity and loss of organic matter in compost material. Nutrient analysis revealed that the SMS-derived biochar is rich in fertilizer nutrients such as P, K, Na, and N. All of these findings suggest that SMS biochar could be an excellent medium for compost.

  6. Value added product recovery from sludge generated during gum arabic refining process by vermicomposting.

    PubMed

    Das, Veena; Satyanarayan, Sanjeev; Satyanarayan, Shanta

    2016-09-01

    Gum arabic is multifunctional and used in food products, pharmaceutical, confectionery, cosmetic, printing and textile industry. Gum arabic has an excellent market and its production is being increased to meet the market demand. In the process, huge quantity of solid waste is generated during its refining process. An attempt has been made to vermicompost this organic waste using Eudrilus eugeniae. This research work is first of its kind. Literature on this substrate has not been reported anywhere else for vermicomposting. Results were excellent with volatile solid reduction of 51.34 %; C/N ratio reduced to 16.31 % indicating efficient loss of carbon as carbon dioxide during vermicomposting period. Manurial value, i.e. nitrogen, phosphorus and potassium content in the range, required for the plants also increased. Porosity of 67.74 % and water holding capacity of 65.75 % were observed. The maturity of the vermicompost was evaluated through scanning electron microscopy wherein the complete conversion of large raw material particles into finer particles forming a uniform matrix with more surface area was observed indicating its efficient conversion. Microbial quality of vermicompost was also studied. The final vermicompost is free of fungal cells and pathogenic bacteria.

  7. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential.

    PubMed

    Pathma, Jayakumar; Sakthivel, Natarajan

    2012-01-01

    Vermicomposting is a non-thermophilic, boioxidative process that involves earthworms and associated microbes. This biological organic waste decomposition process yields the biofertilizer namely the vermicompost. Vermicompost is a finely divided, peat like material with high porosity, good aeration, drainage, water holding capacity, microbial activity, excellent nutrient status and buffering capacity thereby resulting the required physiochemical characters congenial for soil fertility and plant growth. Vermicompost enhances soil biodiversity by promoting the beneficial microbes which inturn enhances plant growth directly by production of plant growth-regulating hormones and enzymes and indirectly by controlling plant pathogens, nematodes and other pests, thereby enhancing plant health and minimizing the yield loss. Due to its innate biological, biochemical and physiochemical properties, vermicompost may be used to promote sustainable agriculture and also for the safe management of agricultural, industrial, domestic and hospital wastes which may otherwise pose serious threat to life and environment.

  8. [Effects of different organic manure sources and their combinations with chemical fertilization on soil nematode community structure in a paddy field of East China].

    PubMed

    Liu, Ting; Ye, Cheng-Long; Chen, Xiao-Yun; Ran, Wei; Shen, Qi-Rong; Hu, Feng; Li, Hui-Xin

    2013-12-01

    A comparative study was conducted to investigate the effects of different fertilization modes on the soil nematode community structure in a paddy field with paddy rice and wheat rotation in Jintan County (31 degrees 39'41.8" N, 119 degrees 28'23.5" E) of Jiangsu Province, East China. Six treatments were installed, i. e., no fertilization (CK), 100% chemical NPK fertilization (F), pig manure compost plus 50% chemical fertilization (PF), straw returning plus 100% chemical fertilization (SF), pig manure compost and straw returning plus 50% chemical fertilization (PSF), and application of commercial pig manure-inorganic complex fertilizer (PMF). The soil samples were collected from the field after the paddy rice harvested in autumn. The two continuous years study showed that the soil nematode community structure varied with fertilization treatments and years. The combined application of chemical fertilizers and organic manures increased the total number of soil nematodes, decreased the abundance of soil bacterivorous nematodes, and made the abundance of predator- and omnivore nematodes increased significantly. No significant differences were observed in the abundance of soil fungivorous nematodes among all the treatments. Chemical fertilization alone and the application of commercial pig manure-inorganic complex fertilizer had no obvious suppression effect on the soil phytophagous nematodes. The abundance of soil bacteriavorous nematodes under the combined application of chemical fertilizers and organic manures was relatively increased in the second year, as compared with that in the first year, while the abundance of soil phytophagous nematodes (Hirschmanniella) was relatively decreased in the second year. From the aspect of nematode ecological indices, the Margalef diversity index (H) under the combined application of chemical fertilizers and organic manures in the second year had an increasing trend, while the NCR index had less change. The Wasilewka index had a

  9. Dynamics of a vertical-flow windrow vermicomposting system.

    PubMed

    Hanc, Ales; Castkova, Tereza; Kuzel, Stanislav; Cajthaml, Tomas

    2017-11-01

    Large-scale vermicomposting under outdoor conditions may differ from small-scale procedures in the laboratory. The present study evaluated changes in selected properties of a large-scale vertical-flow windrow vermicomposting system with continuous feeding with household biowaste. The windrow profile was divided into five layers of differing thickness and age after more than 12 months of vermicomposting. The top layer (0-30 cm, age <3 months) was characterised by partially decomposed organic matter with a high pH value and an elevated carbon/nitrogen (C/N) ratio. The earthworm biomass was 15 g kg -1 with a population density of 125 earthworms per kilogram predominantly found in clusters. The greatest amount of fungi (3.5 µg g -1 dw) and bacteria (62 µg g -1 dw) (expressed as phospholipid fatty acid analysis) was found in this layer. Thus, the top layer could be used for an additional cycle of windrow vermicomposting and for the preparation of aqueous extracts to protect plants against diseases. The lower layers (graduated by 30 cm and by 3 months of age) were mature as reflected by the low content of ammonia nitrogen, ratio of ammonia to nitrate nitrogen and dissolved organic carbon, and high ion-exchange capacity and its ratio to carbon. These layers were characterised by elevated values for electrical conductivity, total content of nutrients, available magnesium content, and a relatively large bacterial/fungal ratio. On the basis of the observed properties, the bottom layers were predetermined as effective fertilisers.

  10. Contamination and Risk Assessment of Estrogens in Livestock Manure: A Case Study in Jiangsu Province, China

    PubMed Central

    Xu, Pengcheng; Zhou, Xian; Xu, Defu; Xiang, Yanbing; Ling, Wanting; Chen, Mindong

    2018-01-01

    This study investigated the occurrence and contamination risk of estrogens in livestock manure in Jiangsu Province, China. Four estrogens—estriol (E3), 17β-estradiol (17β-E2), bisphenol A (BPA), and 17α-ethinyloestradiol (EE2)—were detected in livestock manure from hens, ducks, swine, and cows. The respective mean concentrations of each estrogen found in these manures were 289.8, 334.1, 330.3, and 33.7 μg/kg for E3; 38.6, 10.9, 52.9, and 38.8 μg/kg for 17β-E2; 63.6, 48.7, 51.9, and 11.7 μg/kg for BPA; and 14.3, 11.3, 25.1, and 21.8 μg/kg for EE2. Estrogens were most frequently detected at high concentrations in the manure of finishing pigs, followed by the manure of growing pigs and piglets. Estrogens can be partially degraded after banking up for seven days; yet, great quantities of estrogens remain in livestock manure. The total estradiol equivalent quantity (EEQt) estimated to be present in aquatic environments but originating from livestock waste was 10.5 ng/L, which was greater than the hazard baseline value (1 ng/L) and also higher than the proposed lowest observable effect concentration (10 ng/L) of E2 in aquatic environments. The results of our study demonstrate that livestock waste is an important source of estrogens, which may potentially affect the hormonal metabolism of aquatic organisms. PMID:29329262

  11. Contamination and Risk Assessment of Estrogens in Livestock Manure: A Case Study in Jiangsu Province, China.

    PubMed

    Xu, Pengcheng; Zhou, Xian; Xu, Defu; Xiang, Yanbing; Ling, Wanting; Chen, Mindong

    2018-01-12

    This study investigated the occurrence and contamination risk of estrogens in livestock manure in Jiangsu Province, China. Four estrogens-estriol (E3), 17β-estradiol (17β-E2), bisphenol A (BPA), and 17α-ethinyloestradiol (EE2)-were detected in livestock manure from hens, ducks, swine, and cows. The respective mean concentrations of each estrogen found in these manures were 289.8, 334.1, 330.3, and 33.7 μg/kg for E3; 38.6, 10.9, 52.9, and 38.8 μg/kg for 17β-E2; 63.6, 48.7, 51.9, and 11.7 μg/kg for BPA; and 14.3, 11.3, 25.1, and 21.8 μg/kg for EE2. Estrogens were most frequently detected at high concentrations in the manure of finishing pigs, followed by the manure of growing pigs and piglets. Estrogens can be partially degraded after banking up for seven days; yet, great quantities of estrogens remain in livestock manure. The total estradiol equivalent quantity (EEQ t ) estimated to be present in aquatic environments but originating from livestock waste was 10.5 ng/L, which was greater than the hazard baseline value (1 ng/L) and also higher than the proposed lowest observable effect concentration (10 ng/L) of E2 in aquatic environments. The results of our study demonstrate that livestock waste is an important source of estrogens, which may potentially affect the hormonal metabolism of aquatic organisms.

  12. Effect of vermicompost on growth, yield and nutrition status of tomato (Lycopersicum esculentum).

    PubMed

    Azarmi, Rasool; Ziveh, Parviz Sharifi; Satari, Mohammad Reza

    2008-07-15

    An experiment was conducted to determine the effects of vermicompost on growth, yield and fruit quality of tomato (Lycopersicum esculentum var. Super Beta) in a field condition. The experiment was a randomized complete block design with four replications. The different rates of vermicompost (0, 5, 10 and 15 t ha(-1)) was incorporated into the top 15 cm of soil. During experiment period, fruits were harvested twice in a week and total yield were recorded for two months. At the end of experiment, growth characteristics such as leaf number, leaf area and shoot dry weights were determined. The results revealed that addition of vermicompost at rate of 15 t ha(-1) significantly (at p < 0.05) increased growth and yield compared to control. Vermicompost with rate of 15 t ha(-1) increased EC of fruit juice and percentage of fruit dry matter up to 30 and 24%, respectively. The content of K, P, Fe and Zn in the plant tissue increased 55, 73, 32 and 36% compared to untreated plots respectively. The result of our experiment showed addition of vermicompost had significant (p < 0.05) positive effects on growth, yield and elemental content of plant as compared to control.

  13. Potential utilization of guar gum industrial waste in vermicompost production.

    PubMed

    Suthar, Surendra

    2006-12-01

    Recycling of guar gum industrial waste through vermitechnology was studied under laboratory conditions by using composting earthworm Perionyx excavatus (Perrier). Three different combination of guar gum industrial waste namely guar gum industrial waste:cow dung:saw dust in 40:30:30 ratio (T1), guar gum industrial waste:cow dung:saw dust in 60:20:20 ratio (T2), and guar gum industrial waste:cow dung:saw dust in 75:15:10 ratio (T3) were used for vermicomposting experiments. Chemical changes during vermicomposting were measured and comparatively T2 showed great increase (from its initial level) for total N (25.4%), phosphorus (72.8%) and potassium (20.9%) than the other treatments. T2 also showed higher vermicomposting coefficient (VC), higher mean biomass for P. excavatus (146.68 mg) and higher cocoon production (about 21.9% and 645.5% more than the T1 and T3, respectively). Maximum earthworm mortality during vermicomposting was recorded with T3 treatment while zero mortality was recorded for T2 treatment after 150 days. Overall, T2 treatment appeared to be an ideal combination for enhancing maximum biopotential of earthworms to management guar gum industrial waste as well as for earthworm biomass and cocoon production.

  14. Effects of Rhamnolipid and Microbial Inoculants on the Vermicomposting of Green Waste with Eisenia fetida.

    PubMed

    Gong, Xiaoqiang; Wei, Le; Yu, Xin; Li, Suyan; Sun, Xiangyang; Wang, Xinyu

    2017-01-01

    The effects of adding the biosurfactant rhamnolipid, the lignolytic and cellulolytic fungus Phanerochete chrysosporium, and the free-living nitrogen-fixing bacterium Azotobacter chrococcum on vermicomposting of green waste with Eisenia fetida was investigated. The addition of rhamnolipid and/or either microorganism alone or in all combinations significantly increased E. fetida growth rate, the number of E. fetida juveniles and cocoons, the population densities of cellulolytic fungi and Azotobacter bacteria, and cellulase and urease activities in the vermicomposts. The quality of the final vermicompost (in terms of electrical conductivity, nutrient content, C/N ratio, humic acid content, lignin and cellulose contents, and phytotoxicity to germinating seeds) was enhanced by addition of rhamnolipid and/or microorganisms. The physical characteristics of vermicomposts produced with rhamnolipid and/or microorganisms were acceptable for agricultural application. The best quality vermicompost was obtained with the combined addition of P. chrysosporium, A. chrococcum, and rhamnolipid.

  15. Effects of Rhamnolipid and Microbial Inoculants on the Vermicomposting of Green Waste with Eisenia fetida

    PubMed Central

    Yu, Xin; Li, Suyan; Sun, Xiangyang; Wang, Xinyu

    2017-01-01

    The effects of adding the biosurfactant rhamnolipid, the lignolytic and cellulolytic fungus Phanerochete chrysosporium, and the free-living nitrogen-fixing bacterium Azotobacter chrococcum on vermicomposting of green waste with Eisenia fetida was investigated. The addition of rhamnolipid and/or either microorganism alone or in all combinations significantly increased E. fetida growth rate, the number of E. fetida juveniles and cocoons, the population densities of cellulolytic fungi and Azotobacter bacteria, and cellulase and urease activities in the vermicomposts. The quality of the final vermicompost (in terms of electrical conductivity, nutrient content, C/N ratio, humic acid content, lignin and cellulose contents, and phytotoxicity to germinating seeds) was enhanced by addition of rhamnolipid and/or microorganisms. The physical characteristics of vermicomposts produced with rhamnolipid and/or microorganisms were acceptable for agricultural application. The best quality vermicompost was obtained with the combined addition of P. chrysosporium, A. chrococcum, and rhamnolipid. PMID:28122059

  16. The effect of shade and vermicompost application on yield and flavonoid levels of Tempuyung (Sonchus arvensis)

    NASA Astrophysics Data System (ADS)

    Putri, D. P.; Widyastuti, Y.; Dewi, W. S.; Yunus, A.

    2018-03-01

    This study aims to determine the effect of shade and vermicompost on yield and level of flavonoids in Tempuyung (Sonchus arvensis). The study was conducted in May- August 2016, in Tegal Gede Village, Kab. Karanganyar. Secondary metabolite content analysis was performed in B2P2TOOT laboratory, Tawangmangu. This study used a Completely Randomized Design (CRD) arranged in a split plot. Treatment consists of shade as main plot and the dose of vermicompost as sub plot. Shade treatments are 0% (without shade), 50% and 75%. The dose of vermicompost are 0 g / polybag (control), 250 g / polybag, 500 g / polybag and 750 g / polybag. Each treatment was repeated 3 times and each in experimental unit consist of 2 sample plants. The results showed that the higher levels of shade tend to decrease vegetative growth of plants. Moreover, vermicompost give significant effect on leaf weight, l number, wet and dry weight. The combination of 0% shade and 750 gram vermicompost gave the highest value (P <0.05) to leaf weight ± 186.68 g, wet weight ± 252.08 g and dry weight ± 30,76 gTempuyung. The combination of 50% shade with 0 g vermicompost and 75% shade with 250 g vermicompost show to increasing the content of flavonoid compounds.

  17. Effects of pig slurry on the sorption of sulfonamide antibiotics in soil.

    PubMed

    Thiele-Bruhn, S; Aust, M O

    2004-07-01

    Sorption of p-aminobenzoic acid (pABA) and five sulfonamide antibiotics to loess Chernozem topsoil amended with varied additions of pig slurry was investigated in batch trials. In unfertilized soil, partition coefficients (Kd) of sulfonamides ranged from 0.3 to 2.0. Strong sorption nonlinearity (1/n = 0.5 to 0.8) was best fitted by the Freundlich isotherm (R2 = 0.7 to 1.0) and was indicative for specific sorption mechanisms. Adsorption to pig slurry was much stronger, and nondesorbable portions were increased compared with soil. However, in a mixture of soil and slurry (50:1 w/w), sorption of the antibiotics was significantly decreased at a lower concentration range of pABA and the sulfonamides. This was attributed to competitive adsorption of dissolved organic matter (DOM) constituents from manure. An increase in pig slurry amendment resulted in increased total organic matter, DOM concentration, and ionic strength, but pH decreased. As a result, the nonadsorbed portions of pABA, sulfanilamide, and sulfadiazine (logD(ow) < -0.4) ranged from 47% to 82% of the applied concentration in the differently manured substrates. Dissolved fractions of the antibiotics reached a maximum at a soil-slurry ratio of 9:1 and decreased with further addition of manure. This decrease was related to the formation of less-effective DOM associates in solution. The adsorbed and desorbed portions of the less-polar substances--sulfadimidine, sulfadimethoxine, and sulfapyridine (logD(ow) > 0.1)--remained nearly constant in the presence of increased manure input. The pH changes caused by manure amendment strongly affected ionisation status of the latter compounds, thus resulting in increased adsorption, which compensated the mobilizing effect of DOM. It is suggested that the effect of manure be considered in test methods to determine the soil retention of pharmaceutical substances.

  18. Microbial community and chemical characteristics of swine manure during maturation

    USDA-ARS?s Scientific Manuscript database

    Standardizing diet formulation studies that are designed to lower emission is needed for properly evaluating the impact diets have on emissions. Three groups of 12 pigs (84 kg initial BW) were feed a standard corn-soybean mean diet over a 13 wk period to determine how the length of manure storage af...

  19. High-rate composting-vermicomposting of water hyacinth (Eichhornia crassipes, Mart. Solms).

    PubMed

    Gajalakshmi, S; Ramasamy, E V; Abbasi, S A

    2002-07-01

    In an attempt to develop a system with which the aquatic weed water hyacinth (Eichhornia crassipes, Mart. Solms) can be economically processed to generate vermicompost in large quantities, the weed was first composted by a 'high-rate' method and then subjected to vermicomposting in reactors operating at much larger densities of earthworm than recommended hitherto: 50, 62.5, 75, 87.5, 100, 112.5, 125, 137.5, and 150 adults of Eudrilus eugeniae Kinberg per litre of digester volume. The composting step was accomplished in 20 days and the composted weed was found to be vermicomposted three times as rapidly as uncomposted water hyacinth [Bioresource Technology 76 (2001) 177]. The studies substantiated the feasibility of high-rate composting-vermicomposting systems, as all reactors yielded consistent vermicast output during seven months of operation. There was no earthworm mortality during the first four months in spite of the high animal densities in the reactors. In the subsequent three months a total of 79 worms died out of 1650, representing less than 1.6% mortality per month. The results also indicated that an increase in the surface-to-volume ratio of the reactors might further improve their efficiency.

  20. Effects of genetically modified cotton stalks on antibiotic resistance genes, intI1, and intI2 during pig manure composting.

    PubMed

    Duan, Manli; Gu, Jie; Wang, Xiaojuan; Li, Yang; Zhang, Sheqi; Yin, Yanan; Zhang, Ranran

    2018-01-01

    Genetically modified (GM) cotton production generates a large yield of stalks and their disposal is difficult. In order to study the feasibility of using GM cotton stalks for composting and the changes that occur in antibiotic resistance genes (ARGs) during composting, we supplemented pig manure with GM or non-GM cotton stalks during composting and we compared their effects on the absolute abundances (AA) of intI1, intI2, and ARGs under the two treatments. The compost was mature after processing based on the germination index and C/N ratio. After composting, the AAs of ARGs, intI1, and intI2 were reduced by 41.7% and 45.0% in the non-GM and GM treatments, respectively. The ARG profiles were affected significantly by temperature and ammonia nitrogen. In addition, excluding tetC, GM cotton stalks had no significant effects on ARGs, intI1, and intI2 compared with the non-GM treatment (p < 0.05). Thus, similar to non-GM cotton stalks, GM cotton stalks can be used for aerobic composting with livestock manure, and the AAs of ARGs can be reduced. Furthermore, the results of this study provide a theoretical basis for the harmless utilization of GM cotton stalks. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Bamboo biochar amendment improves the growth and reproduction of Eisenia fetida and the quality of green waste vermicompost.

    PubMed

    Gong, Xiaoqiang; Cai, Linlin; Li, Suyan; Chang, Scott X; Sun, Xiangyang; An, Zhengfeng

    2018-07-30

    Vermicomposting is a promising method for reusing urban green waste. However, high lignin content in the green waste could hinder the development of earthworm and microorganisms and the vermicomposting process, resulting in a low-quality vermicompost product. The objective of this study was to evaluate the effect of bamboo biochar addition (at 0%, 3%, and 6% on a dry w/w basis) on the activity of Eisenia fetida and the obtained vermicompost. Biochar addition increased (P < 0.05) earthworm biomass, juvenile and cocoon numbers of Eisenia fetida, as well as the activities of dehydrogenase, cellulase, urease and alkaline phosphatase. Compared to the control, lignin degradation rate was enhanced up to 13.89% by biochar addition. Biochar addition also improved the vermicompost quality in terms of cation exchange capacity (CEC), dissolved organic carbon (DOC) degradation, humification, nitrogen transformation, toxicity to germinating seeds (Brassica rapa L., Chinensis group) and heavy metals concentrations. The 6% bamboo biochar addition rate achieved maturity after 60 days of vermicomposting and resulted in the highest quality vermicompost based on parameters such as CEC, DOC, NH 4 + -N/NO 3 - -N ratio, germination index and heavy metal concentration. We conclude that 6% biochar addition promoted earthworm growth and the vermicomposting of green waste. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. An overview of the environmental applicability of vermicompost: from wastewater treatment to the development of sensitive analytical methods.

    PubMed

    Pereira, Madson de Godoi; Neta, Lourdes Cardoso de Souza; Fontes, Maurício Paulo Ferreira; Souza, Adriana Nascimento; Matos, Thaionara Carvalho; Sachdev, Raquel de Lima; dos Santos, Arnaud Victor; da Guarda Souza, Marluce Oliveira; de Andrade, Marta Valéria Almeida Santana; Paulo, Gabriela Marinho Maciel; Ribeiro, Joselito Nardy; Ribeiro, Araceli Verónica Flores Nardy

    2014-01-01

    The use of vermicompost (humified material) for treating wastewaters, remediating polluted soils, improving agricultural productivity, protecting crop production, and developing sensitive analytical methods is reviewed here, covering the past 17 years. The main advantages of vermicompost, considering all applications covered in this paper, comprise (i) easy acquisition, (ii) low costs, (iii) structural, chemical, and biological characteristics responsible for exceptional adsorptive capacities as well as pollutant degradation, and (iv) the promotion of biocontrol. Specifically, for wastewater decontamination, a considerable number of works have verified the adsorption of toxic metals, but the application of vermicompost is still scarce for the retention of organic compounds. Problems related to the final disposal of enriched vermicompost (after treatment steps) are often found, in spite of some successful destinations such as organic fertilizer. For decontaminating soils, the use of vermicompost is quite scarce, mainly for inorganic pollutants. In agricultural productivity and biocontrol, vermicompost imparts remarkable benefits regarding soil aggregation, plant nutrition, and the development of beneficial microorganisms against phytopathogens. Finally, the use of vermicompost in sensitive analytical methods for quantifying toxic metals is the newest application of this adsorbent.

  3. Feasibility of utilization of horse dung spiked filter cake in vermicomposters using exotic earthworm Eisenia foetida.

    PubMed

    Sangwan, Pritam; Kaushik, C P; Garg, V K

    2008-05-01

    This contribution reports the potential of vermicomposting technology in the management of horse dung (HD) spiked sugar mill filter cake (SMFC) using an epigeic earthworm Eisenia foetida under laboratory conditions. A total of six vermicomposters filled with different ratios of HD and SMFC were maintained for this study. The growth and fecundity of E. foetida was monitored for 12 weeks. Maximum growth was recorded in 90% HD+10% SMFC feed mixture containing vermicomposter. Earthworms' biomass gain and reproduction was favorably up to 50% HD+50% SMFC feed composition. Maximum cocoons were also recorded in 90% HD+10% SMFC feed mixtures, however increasing proportions of SMFC in different vermicomposters affected the growth and fecundity of worms. A significant decrease in C:N ratio and increase in total kjeldahl nitrogen, total available phosphorus and calcium contents was recorded. The heavy metals content was higher in the vermicompost obtained in all the reactors than initial feed substrates. Based on investigations it is concluded that vermicomposting could be an alternative technology for the management of filter cake if it is mixed in 1:1 ratio with horse dung.

  4. Earthworm Effects without Earthworms: Inoculation of Raw Organic Matter with Worm-Worked Substrates Alters Microbial Community Functioning

    PubMed Central

    Aira, Manuel; Domínguez, Jorge

    2011-01-01

    Background Earthworms are key organisms in organic matter decomposition because of the interactions they establish with soil microorganisms. They enhance decomposition rates through the joint action of direct effects (i.e. effects due to direct earthworm activity such as digestion, burrowing, etc) and indirect effects (i.e. effects derived from earthworm activities such as cast ageing). Here we test whether indirect earthworm effects affect microbial community functioning in the substrate, as when earthworms are present (i. e., direct effects). Methodology/Principal Findings To address these questions we inoculated fresh organic matter (pig manure) with worm-worked substrates (vermicompost) produced by three different earthworm species. Two doses of each vermicompost were used (2.5 and 10%). We hypothesized that the presence of worm-worked material in the fresh organic matter will result in an inoculum of different microorganisms and nutrients. This inoculum should interact with microbial communities in fresh organic matter, thus promoting modifications similar to those found when earthworms are present. Inoculation of worm-worked substrates provoked significant increases in microbial biomass and enzyme activities (β-glucosidase, cellulase, phosphatase and protease). These indirect effects were similar to, although lower than, those obtained in pig manure with earthworms (direct and indirect earthworm effects). In general, the effects were not dose-dependent, suggesting the existence of a threshold at which they were triggered. Conclusion/Significance Our data reveal that the relationships between earthworms and microorganisms are far from being understood, and suggest the existence of several positive feedbacks during earthworm activity as a result of the interactions between direct and indirect effects, since their combination produces stronger modifications to microbial biomass and enzyme activity. PMID:21298016

  5. Pilot-scale study of efficient vermicomposting of agro-industrial wastes.

    PubMed

    Kumar, Vaidyanathan Vinoth; Shanmugaprakash, M; Aravind, J; Namasivayam, S Karthick Raja

    2012-01-01

    Pilot-scale vermicomposting was explored using Eudrilus eugeniae for 90 days with 45 days preliminary decomposition using different agro-industrial wastes as substrates. Spent wash and pressmud were mixed together (referred to as PS) and then combined with cow dung (CD) at five different ratios of PS:CD, namely, 25:75 (T1), 50:50 (T2), 75:25 (T3), 85:15 (T4) and 100 (T5), with two replicates for each treatment. All vermibeds expressed a significant decrease in pH (11.4-14.8%), organic carbon (4.2-30.5%) and an increase in total nitrogen (6-29%), AP (5-29%), exchangeable potash (6-21%) and turnover rate (52-66%). Maximum mortality (18.10%) of worms was recorded in T5 treatment. A high manurial value and a matured product was achieved in T3 treatment. The data reveal that pressmud mixed with spent wash can be decomposed through vermicomposting and can help to enhance the quality of vermicompost.

  6. An Overview of the Environmental Applicability of Vermicompost: From Wastewater Treatment to the Development of Sensitive Analytical Methods

    PubMed Central

    Pereira, Madson de Godoi; Cardoso de Souza Neta, Lourdes; Fontes, Maurício Paulo Ferreira; Souza, Adriana Nascimento; Carvalho Matos, Thaionara; de Lima Sachdev, Raquel; dos Santos, Arnaud Victor; Oliveira da Guarda Souza, Marluce; de Andrade, Marta Valéria Almeida Santana; Marinho Maciel Paulo, Gabriela; Ribeiro, Joselito Nardy; Verónica Flores Nardy Ribeiro, Araceli

    2014-01-01

    The use of vermicompost (humified material) for treating wastewaters, remediating polluted soils, improving agricultural productivity, protecting crop production, and developing sensitive analytical methods is reviewed here, covering the past 17 years. The main advantages of vermicompost, considering all applications covered in this paper, comprise (i) easy acquisition, (ii) low costs, (iii) structural, chemical, and biological characteristics responsible for exceptional adsorptive capacities as well as pollutant degradation, and (iv) the promotion of biocontrol. Specifically, for wastewater decontamination, a considerable number of works have verified the adsorption of toxic metals, but the application of vermicompost is still scarce for the retention of organic compounds. Problems related to the final disposal of enriched vermicompost (after treatment steps) are often found, in spite of some successful destinations such as organic fertilizer. For decontaminating soils, the use of vermicompost is quite scarce, mainly for inorganic pollutants. In agricultural productivity and biocontrol, vermicompost imparts remarkable benefits regarding soil aggregation, plant nutrition, and the development of beneficial microorganisms against phytopathogens. Finally, the use of vermicompost in sensitive analytical methods for quantifying toxic metals is the newest application of this adsorbent. PMID:24578668

  7. Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure.

    PubMed

    Zhou, Jun; Zhang, Rui; Liu, Fenwu; Yong, Xiaoyu; Wu, Xiayuan; Zheng, Tao; Jiang, Min; Jia, Honghua

    2016-10-01

    Laboratory-scale reactors, in which the pH could be auto-adjusted, were employed to investigate the mesophilic methane fermentation with pig manure (7.8% total solids) at pH 6.0, 7.0, and 8.0. Results showed that the performance of anaerobic digestion was strongly dependent on pH value. Biogas production and methane content at neutral pH 7.0 were significantly higher (16,607mL, 51.81%) than those at pH 6.0 (6916mL, 42.9%) and 8.0 (9739mL, 35.6%). Denaturing gradient gel electrophoresis fingerprinting and Shannon's index indicated that the samples contained highly diverse microbial communities. The major genus at pH 7.0 was Methanocorpusculum, compared with that was Methanosarcina at both pH 6.0 and 8.0. Our research revealed that cultures maintained at pH 7.0 could support increased biogas production, which has significant implications for the scale-up biogas engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Using pig manure to promote fermentation of sugarcane molasses alcohol wastewater and its effects on microbial community structure.

    PubMed

    Shen, Peihong; Han, Fei; Su, Shuquan; Zhang, Junya; Chen, Zhineng; Li, Junfang; Gan, Jiayi; Feng, Bin; Wu, Bo

    2014-03-01

    Molasses alcohol wastewater (MAW) is difficult to be bio-treated and converted into biogas. In this study, MAW mixed with pig manure (PM) in different ratios was co-digested. Biogas production, chemical oxygen demand (COD) removal and the structure of microbial communities were monitored in the process. Our results showed that under the optimal COD ratio of PM:MAW (1.0:1.5), CODremoval and biogas yield were the highest. And in fermentation tanks with different PM to MAW ratios, the structure and composition of bacterial communities varied in the early and late stage. Furthermore, the type of main bacterial operational taxonomic units (OTUs) have no differences, yet the relative abundance of OTUs varied. The current research showed that there was a good potential to the use of PM as a co-digested material to anaerobic treatment of MAW and provided references for further improving bio-treatment of MAW. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Estimation of Methane Emissions from Slurry Pits below Pig and Cattle Confinements

    PubMed Central

    Petersen, Søren O.; Olsen, Anne B.; Elsgaard, Lars; Triolo, Jin Mi; Sommer, Sven G.

    2016-01-01

    Quantifying in-house emissions of methane (CH4) from liquid manure (slurry) is difficult due to high background emissions from enteric processes, yet of great importance for correct estimation of CH4 emissions from manure management and effects of treatment technologies such as anaerobic digestion. In this study CH4 production rates were determined in 20 pig slurry and 11 cattle slurry samples collected beneath slatted floors on six representative farms; rates were determined within 24 h at temperatures close to the temperature in slurry pits at the time of collection. Methane production rates in pig and cattle slurry differed significantly at 0.030 and 0.011 kg CH4 kg-1 VS (volatile solids). Current estimates of CH4 emissions from pig and cattle manure management correspond to 0.032 and 0.015 kg CH4 kg-1, respectively, indicating that slurry pits under animal confinements are a significant source. Fractions of degradable volatile solids (VSd, kg kg-1 VS) were estimated using an aerobic biodegradability assay and total organic C analyses. The VSd in pig and cattle slurry averaged 0.51 and 0.33 kg kg-1 VS, and it was estimated that on average 43 and 28% of VSd in fresh excreta from pigs and cattle, respectively, had been lost at the time of sampling. An empirical model of CH4 emissions from slurry was reparameterised based on experimental results. A sensitivity analysis indicated that predicted CH4 emissions were highly sensitive to uncertainties in the value of lnA of the Arrhenius equation, but much less sensitive to uncertainties in VSd or slurry temperature. A model application indicated that losses of carbon in VS as CO2 may be much greater than losses as CH4. Implications of these results for the correct estimation of CH4 emissions from manure management, and for the mitigation potential of treatments such as anaerobic digestion, are discussed. PMID:27529692

  10. Fate of metal resistance genes in arable soil after manure application in a microcosm study.

    PubMed

    Xiong, Wenguang; Zeng, Zhenling; Zhang, Yiming; Ding, Xueyao; Sun, Yongxue

    2015-03-01

    Manure application contributes to the spread and persistence of metal resistance genes (MRGs) in the environment. We investigated the fate of copper (Cu) and zinc (Zn) resistance genes (pcoA, pcoD and zntA) in arable soil after Cu/Zn-containing manure application. Manure with or without addition of metals (Cu/Zn) was added in a soil microcosm over 2 months. Soil samples were collected for analysis on day 0, 30 and 60. The abundances of all MRGs (pcoA, pcoD and zntA) in manure group were significantly higher than those in untreated soil and manure+metals groups. All MRGs dissipated 1.2-1.3 times faster in manure group (from -90 ± 8% to -93 ± 7%) than those in manure+metals group (from -68 ± 8% to -78 ± 5%). The results indicated that manure from healthy pigs contributed to the occurrence of metals (Cu/Zn) and MRGs (pcoA, pcoD and zntA) in arable soil. The significant effects of manure application on the accumulation of pcoA, pcoD and zntA lasted for 1-2 months. Cu/Zn can slow down the dissipation of pcoA, pcoD and zntA after manure application. This is the first report to investigate the fate of MRGs in soil after manure application. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Odor and odorous compound emissions from manure of swine fed standard and dried distillers grains with soluble (DDGS) supplemented diets

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to determine the impact diets containing dried distillers grains with soluble (DDGS) have on emissions of odor and odorous compounds from swine manure storage. Twenty-four pigs were fed either a corn-soybean meal (CSBM) diet or a CSBM diet containing 35% DDGS. Pigs were fed ...

  12. Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.).

    PubMed

    Sharma, Kavita; Garg, V K

    2018-02-01

    Present study was undertaken to investigate the vermicomposting of two different organic wastes (rice straw and paper waste) employing, Eisenia fetida. Nine feedstocks were prepared with different ratios of wastes using cow dung as bulking substrate. After pre-composting, worms were allowed to feed on different feedstocks for 105 days under laboratory conditions. The results showed that NPK content was higher in the vermicompost. Heavy metal content was also higher in the vermicomposts. Whereas total organic carbon and C:N ratio were lower after vermicomposting, by 17.38-58.04% and 19-102% respectively. SEM images revealed changes in the morphology of vermicompost. Earthworm growth and reproduction was significant in different feedstocks except one containing 50% rice straw depicting that this ratio is not suitable for the earthworms. Results further demonstrated that proportion of bulking substrate affect the earthworm growth and reproduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Optimization of cow dung spiked pre-consumer processing vegetable waste for vermicomposting using Eisenia fetida.

    PubMed

    Garg, V K; Gupta, Renuka

    2011-01-01

    This paper reports the optimization of cow dung (CD) spiked pre-consumer processing vegetable waste (PPVW) for vermicomposting using Eisenia fetida in a laboratory scale study. Vermicomposting process decreased carbon and organic matter concentration and increased N, P and K content in the vermicompost. The C:N ratio was decreased by 45-69% in different vermireactors indicating stabilization of the waste. The heavy metal content was within permissible limits of their application in agricultural soils. It has been concluded from the results that addition of PPVW up to 40% with CD can produce a good quality vermicompost. Whereas, growth and fecundity of E. fetida was best when reared in 20% PPVW+80% CD feed mixture. However, higher percentages of PPVW in different vermireactors significantly affected the growth and fecundity of worms. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Pyrosequencing reveals bacterial community differences in composting and vermicomposting on the stabilization of mixed sewage sludge and cattle dung.

    PubMed

    Lv, Baoyi; Xing, Meiyan; Yang, Jian; Zhang, Liangbo

    2015-12-01

    This study aimed to compare the microbial community structures and compositions in composting and vermicomposting processes. We applied 454 high-throughput pyrosequencing to analyze the 16S rRNA gene of bacteria obtained from bio-stabilization of sewage sludge and cattle dung. Results demonstrated that vermicomposting process presented higher operational taxonomic units and bacterial diversity than the composting. Analysis using weighted UniFrac indicated that composting exhibited higher effects on shaping microbial community structure than the vermicomposting. The succession of dominant bacteria was also detected during composting. Firmicutes was the dominant bacteria in the thermophilic phase of composting and shifted to Actinomycetes in the maturing stage. By contrast, Proteobacteria accounted for the highest proportions in the whole process of the vermicomposting. Furthermore, vermicomposting contained more uncultured and unidentified bacteria at the taxonomy level of genus than the composting. In summary, the bacterial community during composting significantly differed from that during vermicomposting. These two techniques played different roles in changing the diversity and composition of microbial communities.

  15. Animal manure application and soil organic carbon stocks: a meta-analysis.

    PubMed

    Maillard, Émilie; Angers, Denis A

    2014-02-01

    The impact of animal manure application on soil organic carbon (SOC) stock changes is of interest for both agronomic and environmental purposes. There is a specific need to quantify SOC change for use in national greenhouse gas (GHG) emission inventories. We quantified the response of SOC stocks to manure application from a large worldwide pool of individual studies and determined the impact of explanatory factors such as climate, soil properties, land use and manure characteristics. Our study is based on a meta-analysis of 42 research articles totaling 49 sites and 130 observations in the world. A dominant effect of cumulative manure-C input on SOC response was observed as this factor explained at least 53% of the variability in SOC stock differences compared to mineral fertilized or unfertilized reference treatments. However, the effects of other determining factors were not evident from our data set. From the linear regression relating cumulative C inputs and SOC stock difference, a global manure-C retention coefficient of 12% ± 4 (95% Confidence Interval, CI) could be estimated for an average study duration of 18 years. Following an approach comparable to the Intergovernmental Panel on Climate Change, we estimated a relative SOC change factor of 1.26 ± 0.14 (95% CI) which was also related to cumulative manure-C input. Our results offer some scope for the refinement of manure retention coefficients used in crop management guidelines and for the improvement of SOC change factors for national GHG inventories by taking into account manure-C input. Finally, this study emphasizes the need to further document the long-term impact of manure characteristics such as animal species, especially pig and poultry, and manure management systems, in particular liquid vs. solid storage.

  16. Application of a set of complementary techniques to understand how varying the proportion of two wastes affects humic acids produced by vermicomposting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández-Gómez, Manuel J., E-mail: manuelj.fernandez@eez.csic.es; Nogales, Rogelio; Plante, Alain

    2015-01-15

    Highlights: • A set of techniques was used to characterize humic acids content of vermicomposts. • The properties of the humic acids produced from different waste mixtures were similar. • This set of techniques allowed distinguishing the humic acids of each vermicomposts. • Increasing humic acid contents in initial mixtures would produce richer vermicomposts. - Abstract: A better understanding of how varying the proportion of different organic wastes affects humic acid (HA) formation during vermicomposting would be useful in producing vermicomposts enriched in HAs. With the aim of improving the knowledge about this issue, a variety of analytical techniques [UV–visiblemore » spectroscopic, Fourier transform infrared, fluorescence spectra, solid-state cross-polarization magic-angle spinning (CPMAS) {sup 13}C nuclear magnetic resonance (NMR) spectra, and thermal analysis] was used in the present study to characterize HAs isolated from two mixtures at two different ratios (2:1 and 1:1) of tomato-plant debris (TD) and paper-mill sludge (PS) before and after vermicomposting. The results suggest that vermicomposting increased the HA content in the TD/PS 2:1 and 1:1 mixtures (15.9% and 16.2%, respectively), but the vermicompost produced from the mixture with a higher amount of TD had a greater proportion (24%) of HAs. Both vermicomposting processes caused equal modifications in the humic precursors contained in the different mixtures of TD and PS, and consequently, the HAs in the vermicomposts produced from different waste mixtures exhibited analogous characteristics. Only the set of analytical techniques used in this research was able to detect differences between the HAs isolated from each type of vermicompost. In conclusion, varying the proportion of different wastes may have a stronger influence on the amount of HAs in vermicomposts than on the properties of HAs.« less

  17. Effect of magnetite powder on anaerobic co-digestion of pig manure and wheat straw.

    PubMed

    Wang, Yanzi; Ren, Guangxin; Zhang, Tong; Zou, Shuzhen; Mao, Chunlan; Wang, Xiaojiao

    2017-08-01

    This study investigated the effects of different amounts of magnetite powder (i.e., 0g, 1.5g, 3g, 4.5g, 6g) on the anaerobic co-digestion of pig manure (PM) and wheat straw (WS). The variations in pH, alkalinity, cellulase activity (CEA), dehydrogenase activity (DHA) and methane production, were analyzed by phases. Correlation of the activities of the two enzymes with methane production was also analyzed, and the Gompertz model was used to evaluate the efficiency of anaerobic digestion (AD) with the addition of magnetite powder. The results showed that magnetite powder had significant effects on the anaerobic co-digestion of PM and WS. The maximum total methane production with the addition of 3g of magnetite powder was 195mL/g total solids (TS), an increase of 72.1%. The CEA and DHA increased with magnetite powder in the ranges of 1.5-4.5g, 1.5-6g, respectively, while the methane production showed a better correlation with DHA than with CEA. Using the Gompertz model, the efficiency of AD was optimal when adding 3g magnetite powder, with higher methane production potential (206mL/g TS), shorter lag-phase time (14.9d) and shorter AD period (44d). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Comparison of vermicompost characteristics produced from sewage sludge of wood and paper industry and household solid wastes.

    PubMed

    Amouei, A I; Yousefi, Z; Khosravi, T

    2017-01-01

    The aim of this study was to determine the potential of produced compost from the sludge of wastewater treatment plant using earthworms and compare it with the vermicompost produced from household solid waste. In the current study, three treatments with the same conditions in terms of organic wastes type were prepared to produce vermicompost from household solid waste and sewage sludges using earthworms. The standard methods were used to determine the physical and chemical parameters in the different produced vermicomposts. The mean of C/N in the household solid waste, raw biological and chemical sludges was 32, 22.5, and 26.5, respectively. These levels were 16.5, 14.5, and 15 in the vermicomposts. The mean of nitrogen and phosphorus percentages in the vermicompost of solid waste, biological and chemical sludges was 2.2%, 2.6%, 2.3% and 0.72%, 0.54%, and 0.56%, respectively. The mean percentages of organic matters in the initial substrates and vermicomposts of solid waste, biological and chemical sludges were 97.2%, 90%, 80.5% and 65.8%, 67.8% and 63% respectively. The concentrations of heavy metals decreased in all vermicomposts. The EC levels in solid waste, biological and chemical sludges were 1459, 1041, and 1487 μs/cm, respectively. These levels were 544, 385 and 635 μs/cm in the produced compost. Eisenia fetida can convert household solid waste, and biological and chemical sludges produced from wastewater treatment plant into a high-quality and acceptable compost.

  19. Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles.

    PubMed

    Formentini, Thiago Augusto; Legros, Samuel; Fernandes, Cristovão Vicente Scapulatempo; Pinheiro, Adilson; Le Bars, Maureen; Levard, Clément; Mallmann, Fábio Joel Kochem; da Veiga, Milton; Doelsch, Emmanuel

    2017-03-01

    Spreading livestock manure as fertilizer on farmlands is a widespread practice. It represents the major source of heavy metal(loid)s (HM) input in agricultural soils. Since zinc (Zn) is present at high concentrations in manure, it poses special environmental concerns related to phytotoxicity, groundwater contamination, and introduction in the food chain. Therefore, investigations on the fate and behavior of manure-borne Zn, when it enters the soil environment, are necessary to predict the environmental effects. Nevertheless, long-term field studies assessing Zn speciation in the organic waste matrix, as well as within the soil after manure application, are lacking. This study was designed to fill this gap. Using SEM-EDS and XAS analysis, we reported the following new results: (i) ZnS made up 100% of the Zn speciation in the pig slurry (the highest proportion of ZnS ever observed in organic waste); and (ii) ZnS aggregates were about 1-μm diameter (the smallest particle size ever reported in pig slurry). Moreover, the pig slurry containing ZnS was spread on the soil over an 11-year period, totaling 22 applications, and the resulting Zn speciation within the amended soil was analyzed. Surprisingly, ZnS, i.e. the only species responsible for a nearly 2-fold increase in the Zn concentration within the amended soil, was not detected in this soil. Based on SEM-EDS and XAS observations, we put forward the hypothesis that Zn in the pig slurry consisted of nano-sized ZnS crystallites that further aggregated. The low stability of ZnS nanoparticles within oxic and complex environments such as the studied soil was the key explanation for the radical change in pig slurry-borne Zn speciation after long-term amendments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Is it efficient to co-compost and co-vermicompost green waste with biochar and/or clay to reduce CO2 emissions? A short-term laboratory experiment on (vermi)composts with additives.

    NASA Astrophysics Data System (ADS)

    Barthod, Justine; Rumpel, Cornélia; Paradelo, Remigio; Dignac, Marie-France

    2016-04-01

    Intensive farming practices can lead to a depletion of soil organic matter, negatively impacting important soil properties such as structural stability, fertility and C storage. The addition of organic amendments such as compost and vermicompost, rich in carbon, helps maintaining soil organic matter levels or restoring degraded soils. Composting and vermicomposting are based on stabilization of organic matter through the mineralization of easily decomposable organic matter compounds, therefore releasing greenhouse gases, including CO2. The aim of this study was to evaluate the global potential reduction of such emissions by the use of additives (2:1 clay and/or biochar): during (vermi)composting processes and after use of the final products as soil amendments. We hypothesized that the interactions between the additives and organic matter may lead to carbon stabilization and that such interactions may be enhanced by the presence of worms (Eisenia). We added in different proportions clay (25% or 50%), biochar (10%) and a mixture of biochar (10%) with clay (25%) to pre-composted green waste. The CO2 emissions of the composting and vermicomposting processes were measured during 21 days. After that, the amendments were added to a loamy cambisol soil and the CO2 emissions were monitored during 30 days of a laboratory experiment. The most efficient treatments in terms of reducing global CO2 emissions were the co-vermicomposting process with 25% clay followed by co-composting with 50% clay and with 10% biochar plus 25% clay. In this treatment (vermicompost with 25% clay), the carbon emissions were decreased by up to 44% compared to regular compost. Addition of biochar reduced CO2 emissions only during composting. Co-composting with biochar could be a promising avenue to limit global CO2 emissions whereas in presence of worms clay additions are better suited. These findings suggest that the presence of worms increased the formation of organo-mineral associations and thus C

  1. Vermicomposting potentiality of Perionyx excavatus for recycling of waste biomass of Java citronella--an aromatic oil yielding plant.

    PubMed

    Deka, H; Deka, S; Baruah, C K; Das, J; Hoque, S; Sarma, H; Sarma, N S

    2011-12-01

    Laboratory investigation on vermicomposting efficacy of Perionyx excavatus for recycling of distillation waste biomass of java citronella (Cymbopogon winterianus Jowitt) was carried out in two seasonal trials i.e. summer and winter periods. The experiment was conducted in earthen pots using a mixture of citronella waste material and cowdung in the proportion of 5:1. A control treatment without earthworms was setup for comparison of the results. The vermicompost had shown 5.8 folds reduction in C/N ratio and 5.6 folds enhancement in ash content. The nutrient contents (N, P, K, Ca and Mg) in the vermicompost had increase in the range of 1.2 - 4.1 fold than the initial level. The FT-IR spectra of the vermicompost confirmed increase in nitrogen rich compounds and decrease in aliphatic/aromatic compounds as compared to the initial level of the biowaste materials. The vermicomposting process is influenced by seasonal variation and summer was more productive than winter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Influence of organic and inorganic sources of nutrients on the functional diversity of microbial communities in the vegetable cropping system of the Indo-Gangetic plains.

    PubMed

    Manjunath, Mallappa; Kumar, Upendra; Yadava, Raj Bahadur; Rai, Awadhesh Bahadur; Singh, Bijendra

    2018-05-31

    The aim of the present study was to assess the effects of different organic and inorganic fertilizers on the functional diversity of soil microbial community under a vegetable production system. The Biolog ® Eco-plate technique and indices, such as average well-colour development (AWCD), McIntosh and Shannon diversity were employed to study the diversity of soil microorganisms. The AWCD, i.e. overall utilization of carbon sources, suggested that different organic treatments had a significant impact on the metabolic activity of soil microorganisms. After 120h, the highest AWCD values were observed in poultry manure (2.5 t·ha -1 )+vermicompost (3.5 t·ha -1 ) (0.63) and farm yard manure (FYM) (10 t·ha -1 )+vermicompost (3.5 t·ha -1 ) (0.61). After 72h, the highest value of the McIntosh diversity index was recorded in poultry manure (2.5 t·ha -1 )+vermicompost (3.5 t·ha -1 ) (3.87), followed by poultry manure (2.5 t·ha -1 )+vermicompost (3.5 t·ha -1 )+biofertilizers (Azotobacter 500 g·ha -1 applied as seed treatment) (3.12). In the case of the Shannon diversity index, the highest values were noticed in organic treatments; however, there was no significant differences between organic and inorganic treatments. Biplot analysis showed a clear differentiation of organic treatments from the inorganic control. The amino acids, phenolics and polymer utilizing microorganisms were dominant in organic treatments. Inorganic control recorded the lowest values of the microbial diversity indices. Through this study, we have identified the best combination of organic nutrients, i.e. poultry manure (2.5 t·ha -1 )+vermicompost (3.5 t·ha -1 ) for the stimulation of metabolically active soil microbial communities. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  3. Vermicompost as a natural adsorbent: evaluation of simultaneous metals (Pb, Cd) and tetracycline adsorption by sewage sludge-derived vermicompost.

    PubMed

    He, Xin; Zhang, Yaxin; Shen, Maocai; Tian, Ye; Zheng, Kaixuan; Zeng, Guangming

    2017-03-01

    The simultaneous adsorption of heavy metals (Pb, Cd) and organic pollutant (tetracycline (TC)) by a sewage sludge-derived vermicompost was investigated. The maximal adsorption capacity for Pb, Cd, and TC in a single adsorptive system calculated from Langmuir equation was 12.80, 85.20, and 42.94 mg L -1 , while for mixed substances, the adsorption amount was 2.99, 13.46, and 20.89 mg L -1 , respectively. The adsorption kinetics fitted well to the pseudo-second-order model, implying chemical interaction between adsorbates and functional groups, such as -COOH, -OH, -NH, and -CO, as well as the formation of organo-metal complexes. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) specific surface area measurement were adopted to gain insight into the structural changes and a better understanding of the adsorption mechanism. The sewage sludge-derived vermicompost can be a low cost and environmental benign eco-material for high efficient wastewater remediation.

  4. Comparison of anaerobic digestion characteristics and kinetics of four livestock manures with different substrate concentrations.

    PubMed

    Li, Kun; Liu, Ronghou; Sun, Chen

    2015-12-01

    Anaerobic digestions of pig manure (PM), dairy manure (DM), chicken manure (CM) and rabbit manure (RM) at initial volatile solid loading (VSL) of 8 g VS/L, 16 g VS/L, 32 g VS/L, 64 g VS/L were investigated under mesophilic conditions. The maximum methane yields of 410, 270, 377 and 323 mL CH4/g VSadded for PM, DM, CM and RM were all obtained at initial VSL of 8 g VS/L, respectively. The improvement of substrate concentration to 64 g VS/L not only decreased the methane yield and biodegradability both by 22.4%, 37.3%, 49.1% and 34.6% for PM, DM, CM and RM respectively, but also reduced the methane content in final biogas production. The Cone model (R(2): 0.9910-0.9974) showed a better fit to the experiment data and the calculated parameters indicated that anaerobic digestion of manures at higher loading has longer lag phase and lower hydrolysis rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effects of chlortetracycline amended feed on anaerobic sequencing batch reactor performance of swine manure digestion.

    PubMed

    Dreher, Teal M; Mott, Henry V; Lupo, Christopher D; Oswald, Aaron S; Clay, Sharon A; Stone, James J

    2012-12-01

    The effects of antimicrobial chlortetracycline (CTC) on the anaerobic digestion (AD) of swine manure slurry using anaerobic sequencing batch reactors (ASBRs) was investigated. Reactors were loaded with manure collected from pigs receiving CTC and no-antimicrobial amended diets at 2.5 g/L/d. The slurry was intermittently fed to four 9.5L lab-scale anaerobic sequencing batch reactors, two with no-antimicrobial manure, and two with CTC-amended manure, and four 28 day ASBR cycles were completed. The CTC concentration within the manure was 2 8 mg/L immediately after collection and 1.02 mg/L after dilution and 250 days of storage. CTC did not inhibit ASBR biogas production extent, however the volumetric composition of methane was significantly less (approximately 13% and 15% for cycles 1 and 2, respectively) than the no-antimicrobial through 56 d. CTC decreased soluble chemical oxygen demand and acetic acid utilization through 56 d, after which acclimation to CTC was apparent for the duration of the experiment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Monitoring the Perturbation of Soil and Groundwater Microbial Communities Due to Pig Production Activities

    PubMed Central

    Hong, Pei-Ying; Yannarell, Anthony C.; Dai, Qinghua; Ekizoglu, Melike

    2013-01-01

    This study aimed to determine if biotic contaminants originating from pig production farms are disseminated into soil and groundwater microbial communities. A spatial and temporal sampling of soil and groundwater in proximity to pig production farms was conducted, and quantitative PCR (Q-PCR) was utilized to determine the abundances of tetracycline resistance genes (i.e., tetQ and tetZ) and integrase genes (i.e., intI1 and intI2). We observed that the abundances of tetZ, tetQ, intI1, and intI2 in the soils increased at least 6-fold after manure application, and their abundances remained elevated above the background for up to 16 months. Q-PCR further determined total abundances of up to 5.88 × 109 copies/ng DNA for tetZ, tetQ, intI1, and intI2 in some of the groundwater wells that were situated next to the manure lagoon and in the facility well used to supply water for one of the farms. We further utilized 16S rRNA-based pyrosequencing to assess the microbial communities, and our comparative analyses suggest that most of the soil samples collected before and after manure application did not change significantly, sharing a high Bray-Curtis similarity of 78.5%. In contrast, an increase in Bacteroidetes and sulfur-oxidizing bacterial populations was observed in the groundwaters collected from lagoon-associated groundwater wells. Genera associated with opportunistic human and animal pathogens, such as Acinetobacter, Arcobacter, Yersinia, and Coxiella, were detected in some of the manure-treated soils and affected groundwater wells. Feces-associated bacteria such as Streptococcus, Erysipelothrix, and Bacteroides were detected in the manure, soil, and groundwater ecosystems, suggesting a perturbation of the soil and groundwater environments by invader species from pig production activities. PMID:23396341

  7. Chemical and microbiological changes during vermicomposting of coffee pulp using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis) species.

    PubMed

    Raphael, Kurian; Velmourougane, K

    2011-06-01

    Coffee pulp is the main solid residue from the wet processing of coffee berries. Due to presence of anti-physiological and anti-nutritional factors, coffee pulp is not considered as adequate substrate for bioconversion process by coffee farmers. Recent stringent measures by Pollution Control authorities, made it mandatory to treat all the solid and liquid waste emanating from the coffee farms. A study was conducted to evaluate the efficiency of an exotic (Eudrilus eugeniae) and a native earthworm (Perionyx ceylanesis) from coffee farm for decomposition of coffee pulp into valuable vermicompost. Exotic earthworms were found to degrade the coffee pulp faster (112 days) as compared to the native worms (165 days) and the vermicomposting efficiency (77.9%) and vermicompost yield (389 kg) were found to significantly higher with native worms. The multiplication rate of earthworms (280%) and worm yield (3.78 kg) recorded significantly higher with the exotic earthworms. The percentage of nitrogen, phosphorous, potassium, calcium and magnesium in vermicompost was found to increase while C:N ratio, pH and total organic carbon declined as a function of the vermicomposting. The plant nutrients, nitrogen (80.6%), phosphorus (292%) and potassium (550%) content found to increase significantly in the vermicompost produced using native earthworms as compared to the initial values, while the calcium (85.7%) and magnesium (210%) content found to increase significantly in compost produced utilizing exotic worms. Vermicompost and vermicasts from native earthworms recorded significantly higher functional microbial group's population as compared to the exotic worms. The study reveals that coffee pulp can be very well used as substrate for vermicomposting using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis).

  8. Application of a set of complementary techniques to understand how varying the proportion of two wastes affects humic acids produced by vermicomposting.

    PubMed

    Fernández-Gómez, Manuel J; Nogales, Rogelio; Plante, Alain; Plaza, César; Fernández, José M

    2015-01-01

    A better understanding of how varying the proportion of different organic wastes affects humic acid (HA) formation during vermicomposting would be useful in producing vermicomposts enriched in HAs. With the aim of improving the knowledge about this issue, a variety of analytical techniques [UV-visible spectroscopic, Fourier transform infrared, fluorescence spectra, solid-state cross-polarization magic-angle spinning (CPMAS) (13)C nuclear magnetic resonance (NMR) spectra, and thermal analysis] was used in the present study to characterize HAs isolated from two mixtures at two different ratios (2:1 and 1:1) of tomato-plant debris (TD) and paper-mill sludge (PS) before and after vermicomposting. The results suggest that vermicomposting increased the HA content in the TD/PS 2:1 and 1:1 mixtures (15.9% and 16.2%, respectively), but the vermicompost produced from the mixture with a higher amount of TD had a greater proportion (24%) of HAs. Both vermicomposting processes caused equal modifications in the humic precursors contained in the different mixtures of TD and PS, and consequently, the HAs in the vermicomposts produced from different waste mixtures exhibited analogous characteristics. Only the set of analytical techniques used in this research was able to detect differences between the HAs isolated from each type of vermicompost. In conclusion, varying the proportion of different wastes may have a stronger influence on the amount of HAs in vermicomposts than on the properties of HAs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. [The stratification of moisture content and its dynamics in co-composting of sewage sludge and pig manure].

    PubMed

    Luo, Wei; Chen, Tong-bin; Gao, Ding; Zheng, Yu-qi; Zheng, Guo-di

    2004-03-01

    The experiment of co-composting of sewage sludge and pig manure was studied. The moisture contents were 50.82%-60.87% at the stage of temperature rising and 38.7%-52.17% at the stage of thermophilic fermentation, and the stratification of moisture content were not obvious for both stages because the door, the internal wall and the depth of the composting bay had little effect on the stratification. At the stage of cooling, the moisture content was 24.54%-49.39%, and the stratification of moisture content was remarkable as the door, the internal wall and the depth of the composting bay had great influence on it. At the stage of maturity, the moisture content was 19.18%-49.34%, and the stratification of moisture weakened, for which the door and the internal wall were mainly responsible. At the different composting stage, the degree of difference of moisture content on the profiles of the pile was of the order: maturity stage > cooling stage > thermophilic stage = temperature rising stage, and the moisture content in the pile was as follows: the lower > the middle > the upper. The relation between moisture content and composting time meeted with two-order kinetics equation.

  10. Vermicomposting as an advanced biological treatment for industrial waste from the leather industry.

    PubMed

    Nunes, Ramom R; Bontempi, Rhaissa M; Mendonça, Giovane; Galetti, Gustavo; Rezende, Maria Olímpia O

    2016-01-01

    The leather industry (tanneries) generates high amounts of toxic wastes, including solid and liquid effluents that are rich in organic matter and mineral content. Vermicomposting was studied as an alternative method of treating the wastes from tanneries. Vermicompost was produced from the following tannery residues: tanned chips of wet-blue leather, sludge from a liquid residue treatment station, and a mixture of both. Five hundred earthworms (Eisenia fetida) were added to each barrel. During the following 135 days the following parameters were evaluated: pH, total organic carbon (TOC), organic matter (OM), cation exchange capacity (CEC), C:N ratio, and chromium content as Cr (III) and Cr (VI). The results for pH, TOC and OM contents showed decreases in their values during the composting process, whereas values for CEC and total nitrogen rose, indicating that the vermicompost reached maturity. For chromium, at 135 days, all values of Cr (VI) were below the detectable level. Therefore, the Cr (VI) content had probably been biologically transformed into Cr (III), confirming the use of this technique as an advanced biological treatment. The study reinforces the idea that vermicomposting could be introduced as an effective technology for the treatment of industrial tannery waste and the production of agricultural inputs.

  11. Comparison of biochar, zeolite and their mixture amendment for aiding organic matter transformation and nitrogen conservation during pig manure composting.

    PubMed

    Wang, Quan; Awasthi, Mukesh Kumar; Ren, Xiuna; Zhao, Junchao; Li, Ronghua; Wang, Zhen; Chen, Hongyu; Wang, Meijing; Zhang, Zengqiang

    2017-12-01

    The aim of this work was to compare the impact of biochar, zeolite and their mixture on nitrogen conservation and organic matter transformation during pig manure (PM) composting. Four treatments were set-up from PM mixed with wheat straw and then applied 10% biochar (B), 10% zeolite (Z) and 10% biochar+10% zeolite (B+Z) into composting mixtures (dry weight basis), while treatment without additives applied used as control. Results indicated that adding B, Z and B+Z could obviously (p<0.05) improve the organic matter degradation and decrease the nitrogen loss. And combined addition of B and Z further promoted the organic matter humification and reduced the heavy metals mobility. Meanwhile the highest mitigation of ammonia (63.40%) and nitrogen dioxide (78.13%) emissions was observed in B+Z added treatment. Comparison of organic matter transformation, nitrogen conservation and compost quality indicated that the combined use of biochar and zeolite could be more useful for PM composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. ANIMAL MANURES AS FEEDSTUFFS: CATTLE MANURE FEEDING TRIALS

    EPA Science Inventory

    The utilization of 'as-collected' and processed beef cattle and dairy cow manure, manure screenings and anaerobically digested cattle manures was evaluated on the basis of the results of feeding trials reported in the literature. The maximum level of incorporating these manures i...

  13. Surface runoff and transport of sulfonamide antibiotics and tracers on manured grassland.

    PubMed

    Burkhardt, Michael; Stamm, Christian; Waul, Christopher; Singer, Heinz; Müller, Stephan

    2005-01-01

    Despite their common use in animal production the environmental fate of the veterinary sulfonamide antibiotics after excretion is only poorly understood. We performed irrigation experiments to investigate the transport of these substances with surface runoff on grassland. Liquid manure from pigs treated with sulfadimidine was spiked with sulfadiazine, sulfathiazole, the herbicide atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine), and the conservative tracer bromide and spread onto eight plots. Four plots received the same amounts of the spiked substances in aqueous solution (controls). Apart from the application matrix we varied the time between application and irrigation. Manure increased the runoff volume up to six times compared with the controls. It seemed that manure enhanced the runoff by sealing the soil surface. On manured plots the relative antibiotic concentrations in runoff were higher than on the controls, reaching an average of 0.3% (sulfadiazine), 0.8% (sulfathiazole), and 1.4% (sulfadimidine) of the input concentrations after a 1-d contact time. The corresponding values on the controls were 0.16% for sulfadiazine and 0.08% for sulfathiazole. After 3 d, the maximum values on the manured plots were even higher, whereas they had fallen below the limit of quantification on the controls. As a consequence, the sulfonamide losses were 10 to 40 times larger on the manured plots. The relative mobility of the sulfonamides on the control plots followed the trend expected from their chromatographic separation but the opposite was found on the manured plots. Hence it is important to consider explicitly the physical and chemical effects of manure when assessing the environmental fate of sulfonamides.

  14. Critical tests for determination of microbiological quality and biological activity in commercial vermicompost samples of different origins.

    PubMed

    Grantina-Ievina, Lelde; Andersone, Una; Berkolde-Pīre, Dace; Nikolajeva, Vizma; Ievinsh, Gederts

    2013-12-01

    The aim of the present paper was to show that differences in biological activity among commercially produced vermicompost samples can be found by using a relatively simple test system consisting of microorganism tests on six microbiological media and soilless seedling growth tests with four vegetable crop species. Significant differences in biological properties among analyzed samples were evident both at the level of microbial load as well as plant growth-affecting activity. These differences were mostly manufacturer- and feedstock-associated, but also resulted from storage conditions of vermicompost samples. A mature vermicompost sample that was produced from sewage sludge still contained considerable number of Escherichia coli. Samples from all producers contained several potentially pathogenic fungal species such as Aspergillus fumigatus, Pseudallescheria boidii, Pseudallescheria fimeti, Pseudallescheria minutispora, Scedosporium apiospermum, Scedosporium prolificans, Scopulariopsis brevicaulis, Stachybotrys chartarum, Geotrichum spp., Aphanoascus terreus, and Doratomyces columnaris. In addition, samples from all producers contained plant growth-promoting fungi from the genera Trichoderma and Mortierella. The described system can be useful both for functional studies aiming at understanding of factors affecting quality characteristics of vermicompost preparations and for routine testing of microbiological quality and biological activity of organic waste-derived composts and vermicomposts.

  15. Modulation of flyash-induced genotoxicity in Vicia faba by vermicomposting.

    PubMed

    Jain, Kavindra; Singh, Jitendra; Chauhan, L K S; Murthy, R C; Gupta, S K

    2004-09-01

    Cytogenetic effects of pre- and postvermicomposted flyash samples were evaluated on the root meristem cells of Vicia faba. Seedlings of V. faba were directly sown in flyash and cow dung-soil mixtures (20%, 40%, 60%, and 80%) and the lateral roots grown in these test mixtures were sampled at 5 days. Negative control was run parallel in cow dung-soil (CS) mixture alone. One set of flyash-cow dung-soil (FCS) mixture was subjected to vermicomposting by introducing Eisenia foetida species of earthworms for 30 days and the cytogenetic effects were reinvestigated through V. faba root meristems. Chemical analysis carried out prior to vermicomposting revealed high concentrations of heavy metals such as Cr, Cu, Pb, Zn, and Ni in FCS samples. CS samples also showed the presence of these metals. Cytogenetic examinations of root meristems exposed to the FCS mixtures showed significant inhibition of mitotic index (MI), induction of chromosome aberrations (CA), and a significantly increased frequency of mitotic aberrations (MA). The increase of the aberrations was dependent on the flyash concentrations. Roots grown in CS samples also showed chromosomal and MAs; however, the percentage was lower than that observed with FCS and also statistically nonsignificant. Cytogenetic analysis of vermicomposted samples of FCS revealed a 15-45% decline in the aberration frequencies whereas chemical analysis showed a 10-50% decline in the metal concentrations, viz. Cr, Cu, Pb, Zn, and Ni, which indicates E. foetida a potential accumulator of heavy metals and the decline in metal concentrations may be the cause of the decrease in aberration frequencies. The present study indicates the genotoxicity potential of flyash and also the feasibility of vermicomposting for cleanup of metal-contaminated soil to mitigate the toxicity/genotoxicity. Copyright 2004 Elsevier Inc.

  16. Optimal growth condition of earthworms and their vermicompost features during recycling of five different fresh fruit and vegetable wastes.

    PubMed

    Huang, Kui; Xia, Hui; Li, Fusheng; Wei, Yongfen; Cui, Guangyu; Fu, Xiaoyong; Chen, Xuemin

    2016-07-01

    This study aimed to promote vermicomposting performance for recycling fresh fruit and vegetable wastes (FVWs) and to assess microbial population and community of final products. Five fresh FVWs including banana peels, cabbage, lettuce, potato, and watermelon peels were chosen as earthworms' food. The fate test of earthworms showed that 30 g fresh FVWs/day was the optimal loading and the banana peels was harmful for the survival of Eisenia fetida. The followed vermicomposting test revealed lower contents of total carbon and weaker microbial activity in final vermicomposts, relative to those in compared systems without earthworms worked. The leachate from FVWs carried away great amounts of nutrients from reactors. Additionally, different fresh FVWs displayed dissimilar stabilization process. Molecular biological approaches revealed that earthworms could broaden bacterial diversity in their products, with significant greater populations of actinobacteria and ammonia oxidizing bacteria than in control. This study evidences that vermicomposting efficiency differs with the types and loadings of fresh FVWs and vermicomposts are rich in agricultural probiotics.

  17. Energy use in pig production: an examination of current Iowa systems.

    PubMed

    Lammers, P J; Kenealy, M D; Kliebenstein, J B; Harmon, J D; Helmers, M J; Honeyman, M S

    2012-03-01

    This paper compares energy use for different pig production systems in Iowa, a leader in US swine production. Pig production systems include not only the growth and performance of the pigs, but also the supporting infrastructure of pig production. This supporting infrastructure includes swine housing, facility management, feedstuff provision, swine diets, and manure management. Six different facility type × diet formulation × cropping sequence scenarios were modeled and compared. The baseline system examined produces 15,600 pigs annually using confinement facilities and a corn-soybean cropping sequence. Diet formulations for the baseline system were corn-soybean meal diets that included the synthetic AA l-lysine and exogenous phytase. The baseline system represents the majority of current US pork production in the Upper Midwest, where most US swine are produced. This system was found to require 744.6 MJ per 136-kg market pig. An alternative system that uses bedded hoop barns for grow-finish pigs and gestating sows would require 3% less (720.8 MJ) energy per 136-kg market pig. When swine production systems were assessed, diet type and feed ingredient processing were the major influences on energy use, accounting for 61 and 79% of total energy in conventional and hoop barn-based systems, respectively. Improving feed efficiency and better matching the diet formulation with the thermal environment and genetic potential are thus key aspects of reducing energy use by pig production, particularly in a hoop barn-based system. The most energy-intensive aspect of provisioning pig feed is the production of synthetic N for crop production; thus, effectively recycling manure nutrients to cropland is another important avenue for future research. Almost 25% of energy use by a conventional farrow-to-finish pig production system is attributable to operation of the swine buildings. Developing strategies to minimize energy use for heating and ventilation of swine buildings while

  18. 2004 Methane and Nitrous Oxide Emissions from Manure Management in South Africa

    PubMed Central

    Moeletsi, Mokhele Edmond; Tongwane, Mphethe Isaac

    2015-01-01

    Simple Summary Livestock manure management is one of the main sources of greenhouse gas (GHG) emissions in South Africa producing mainly methane and nitrous oxide. The emissions from this sub-category are dependent on how manure is stored. Liquid-stored manure predominantly produces methane while dry-based manure enhances mainly production of nitrous oxide. Intergovernmental Panel on Climate Change (IPCC) guidelines were utilized at different tier levels in estimating GHG emissions from manure management. The results show that methane emissions are relatively higher than nitrous oxide emissions with 3104 Gg and 2272 Gg respectively in carbon dioxide global warming equivalent. Abstract Manure management in livestock makes a significant contribution towards greenhouse gas emissions in the Agriculture; Forestry and Other Land Use category in South Africa. Methane and nitrous oxide emissions are prevalent in contrasting manure management systems; promoting anaerobic and aerobic conditions respectively. In this paper; both Tier 1 and modified Tier 2 approaches of the IPCC guidelines are utilized to estimate the emissions from South African livestock manure management. Activity data (animal population, animal weights, manure management systems, etc.) were sourced from various resources for estimation of both emissions factors and emissions of methane and nitrous oxide. The results show relatively high methane emissions factors from manure management for mature female dairy cattle (40.98 kg/year/animal), sows (25.23 kg/year/animal) and boars (25.23 kg/year/animal). Hence, contributions for pig farming and dairy cattle are the highest at 54.50 Gg and 32.01 Gg respectively, with total emissions of 134.97 Gg (3104 Gg CO2 Equivalent). Total nitrous oxide emissions are estimated at 7.10 Gg (2272 Gg CO2 Equivalent) and the three main contributors are commercial beef cattle; poultry and small-scale beef farming at 1.80 Gg; 1.72 Gg and 1.69 Gg respectively. Mitigation options

  19. Changes in the chemical characteristics of water-extracted organic matter from vermicomposting of sewage sludge and cow dung.

    PubMed

    Xing, Meiyan; Li, Xiaowei; Yang, Jian; Huang, Zhidong; Lu, Yongsen

    2012-02-29

    The chemical changes of water-extractable organic matter (WEOM) from five different substrates of sewage sludge enriched with different proportions of cow dung after vermicomposting with Eisenia fetida were investigated using various analytical approaches. Results showed that dissolved organic carbon, chemical oxygen demand, and C/N ratio of the substrates decreased significantly after vermicomposting process. The aromaticity of WEOM from the substrates enhanced considerably, and the amount of volatile fatty acids declined markedly, especially for the cow dung substrate. Gel filtration chromatography analysis showed that the molecular weight fraction between 10(3) and 10(6) Da became the main part of WEOM in the final product. 1H nuclear magnetic resonance spectra revealed that the proportion of H moieties in the area of 0.00-3.00 ppm decreased, while increasing at 3.00-4.25 ppm after vermicomposting. Fluorescence spectra indicated that vermicomposting caused the degradation of protein-like groups, and the formation of fulvic and humic acid-like compounds in the WEOM of the substrates. Overall results indicate clearly that vermicomposting promoted the degradation and transformation of liable WEOM into biological stable substances in sewage sludge and cow dung alone, as well as in mixtures of both materials, and testing the WEOM might be an effective way to evaluate the biological maturity and chemical stability of vermicompost. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Effect of phosphate additive on the nitrogen transformation during pig manure composting.

    PubMed

    Wu, Juan; He, Shengzhou; Liang, Ying; Li, Guoxue; Li, Song; Chen, Shili; Nadeem, Faisal; Hu, Jingwei

    2017-07-01

    Previous studies revealed that phosphate, as an additive to composting, could significantly reduce NH 3 emission and nitrogen loss through change of pH and nitrogen fixation to form ammonium phosphate. However, few studies have explored the influence of pH change and phosphate additive on NO x - -N, NH 4 + -N, NH 3 , and N 2 O, which are dominate forms of nitrogen in composting. In this study, the equimolar H 3 PO 4 , H 2 SO 4 , and K 2 HPO 4 were added into pig manure composting to evaluate the effect of H + and PO 4 3- on nitrogen transformation. As a result, we reached the conclusion that pH displays significant influence on adsorption from PO 4 3- to NH 4 + . The NH 4 + -N concentration in H 3 PO 4 treatment kept over 3 g kg -1 DM (dry matter) which is obviously higher than that in H 2 SO 4 treatment, and NH 4 + -N concentration in K 2 HPO 4 treatment (pH>8.5) is lower than 0.5 g kg -1 DM because adsorption capacity of PO 4 3- is greatly weakened and NH 4 + -N rapidly transformed to NH 3 -N influenced by high pH value. The N 2 O emission of composting is significantly correlated with incomplete denitrification of NO x - -N, and PO 4 3- addition could raise NO x - -N contents to restrict denitrification and further to promote N 2 O emission. The study reveals the influence mechanism of phosphate additive to nitrogen transformation during composting, presents theoretical basis for additive selection in nitrogen fixation, and lays foundation for study about nitrogen circulation mechanism during composting.

  1. Composting of pig manure and forest green waste amended with industrial sludge.

    PubMed

    Arias, O; Viña, S; Uzal, M; Soto, M

    2017-05-15

    The aim of this research was to study the composting of chestnut forest green waste (FGW) from short rotation chestnut stands amended with sludge resulting from the manufacture of Medium Density Fibreboard (MDFS) and pig manure (PM). Both FGW and MDFS presented low biodegradation potential but different characteristics in granulometry and bulk density that make its mixture of interest to achieve high composting temperatures. PM decreased the C/N ratio of the mixture and increased its moisture content (MC). Three mixtures of MDFS:FGW at volume ratios of 1:1.3 (M2), 1:2.4 (M3) and 0:1 (M4) were composted after increasing its MC to about 70% with PM. A control with food waste (OFW) and FGW (1:2.4 in volume) (M1) was run in parallel. Watering ratios reached 0.25 (M1), 1.08 (M2) 1.56 (M3) and 4.35 (M4) L PM/kg TS of added solids wastes. Treatments M2 and M3 reached a thermophilic phase shorter than M1, whilst M4 remained in the mesophilic range. After 48days of composting, temperature gradients in respect to ambient temperature were reduced, but the mineralization process continued for around 8months. Final reduction in total organic carbon reached 35-56%, depending mainly on the content in MDFS. MDFS addition to composting matrices largely reduced nitrogen losses, which range from 22% (M2) to 37% (M3) and 53% (M4). Final products had high nutrient content, low electrical conductivity and low heavy metal content which make it a valuable product for soil fertilization, right to amend in the chestnut forests and as a pillar of their sustainable management. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Vermicomposting of a lignocellulosic waste from olive oil industry: a pilot scale study.

    PubMed

    Benítez, E; Sainz, H; Melgar, R; Nogales, R

    2002-04-01

    The vermicomposting with Eisenia andrei of dry olive cake, a lignocellulosic waste produced during the extraction of olive oil, either alone or mixed with municipal biosolids, was studied in a nine-month pilot scale experiment. Number and biomass of earthworms and enzyme activities were periodically monitored and relevant properties of the final products were determined. In the assayed substrates, the total biomass of earthworms increased at the end of the experimental period between 9 and 12-fold respectively in comparison with the earthworm biomass initially inoculated. The increase in hydrolytic enzymes and overall microbial activity during the vermicomposting process indicated the biodegradation of the olive cake and resulted in the disappearance of the initial phytotoxicity of the substrate. However, the recalcitrant lignocellulosic nature of the dry olive cake prevented suitable humification during the vermicomposting process. For this reason, in addition to organic amendments, other management procedures should be considered.

  3. Effects of vermicomposts produced from food waste on the growth and yields of greenhouse peppers.

    PubMed

    Arancon, Norman Q; Edwards, Clive A; Atiyeh, Rola; Metzger, James D

    2004-06-01

    Vermicomposts, produced commercially from food wastes, were substituted at a range of different concentrations into a soil-less commercial bedding plant container medium, Metro-Mix 360 (MM360), to evaluate their effects on the growth and yields of peppers in the greenhouse. Six-week-old peppers (Capsicum annum L. var. California) were transplanted into 100%, 80%, 60%, 40%, 20% or 10% MM360 substituted with 0%, 10%, 20%, 40%, 60%, 80% and 100% vermicompost. All plants were watered three times weekly with 200 ppm Peter's Nutrient Solution from the time of transplanting up to 107 days. Peppers grown in potting mixtures containing 40% food waste vermicomposts and 60% MM360 yielded 45% more fruit weights and had 17% greater mean number of fruits than those grown in MM360 only. The mean heights, numbers of buds and numbers of flowers of peppers grown in potting mixtures containing 10-80% vermicompost although greater did not differ significantly from those of peppers grown in MM360. There were no positive correlations between the increases in pepper yields, and the amounts of mineral-N and microbial biomass-N in the potting mixtures, or the concentrations of nitrogen in the shoot tissues of peppers. Factors such as: an improvement of the physical structure of the potting medium, increases in populations of beneficial microorganisms and the potential availability of plant growth-influencing-substances produced by microorganisms in vermicomposts, could have contributed to the increased pepper yields obtained. Copyright 2003 Elsevier Ltd.

  4. Performance and microbial community dynamics in a two-phase anaerobic co-digestion system using cassava dregs and pig manure.

    PubMed

    Ren, Jiwei; Yuan, Xufeng; Li, Jie; Ma, Xuguang; Zhao, Ye; Zhu, Wanbing; Wang, Xiaofen; Cui, Zongjun

    2014-03-01

    The two-phase anaerobic co-digestion of cassava dregs (CD) with pig manure (PM) was evaluated using four sequencing batch reactors (SBRs) and a continuously stirred tank reactor (CSTR). The effect of seven different PM to CD volatile solid ratios (10:0, 8:2, 6:4, 5:5, 4:6, 2:8 and 0:10) on the acidification phase was investigated. Results indicated the concentrations of soluble chemical oxygen demand, NH4-N and volatile fatty acids increased substantially at seven ratios. Co-acidification of PM and CD performed well. Methanogenic fermentation of the acidification products at seven ratios was steady in CSTR. The highest methane yield and VS removal of 0.352m(3)/kg VSadded and 68.5% were achieved at PM:CD (4:6). The microbial population in CSTR was analyzed using molecular methods. Findings revealed that bacteria such as Firmicutes and Bacteroidetes, archaea such as Methanobacteriales and Methanomicrobiales were advantageous populations. Co-digestion of PM and CD supported higher quantity and diversity of methanogens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Manure derived biochar can successfully replace phosphate rock amendment in peatland restoration.

    PubMed

    Pouliot, Rémy; Hugron, Sandrine; Rochefort, Line; Godbout, Stéphane; Palacios, Joahnn H; Groeneveld, Elisabeth; Jarry, Isabelle

    2015-07-01

    Phosphate rock fertilization is commonly used in peatland restoration to promote the growth of Polytrichum strictum, a nurse plant which aids the establishment of Sphagnum mosses. The present study tested whether 1) phosphorus fertilization facilitates the germination of P. strictum spores and 2) biochar derived from local pig manure can replace imported phosphate rock currently used in peatland restoration. Various doses of biochar were compared to phosphate rock to test its effect directly on P. strictum stem regeneration (in Petri dishes in a growth chamber) and in a simulation of peatland restoration with the moss layer transfer technique (in mesocoms in a greenhouse). Phosphorus fertilization promoted the germination of P. strictum spores as well as vegetative stem development. Biochar can effectively replace phosphate rock in peatland restoration giving a new waste management option for rural regions with phosphorus surpluses. As more available phosphorus was present in biochar, an addition of only 3-9 g m(-2) of pig manure biochar is recommended during the peatland restoration process, which is less than the standard dose of phosphate rock (15 g m(-2)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Anaerobic co-digestion of kitchen waste and pig manure with different mixing ratios.

    PubMed

    Tian, Hailin; Duan, Na; Lin, Cong; Li, Xue; Zhong, Mingzhu

    2015-07-01

    Anaerobic co-digestion of kitchen waste (KW) and pig manure (PM) with seven different PM to KW total solids (TS) ratios of 1:0, 5:1, 3:1, 1:1, 1:3, 1:5 and 0:1 was conducted at mesophilic temperature (35 ± 1 °C) to investigate the feasibility and process performance. The co-digestion of PM and KW was found to be an available way to enhance methane production compared with solo-digestion of PM or KW. The ratio of PM to KW of 1:1 got the highest biodegradability (BDA) of 85.03% and a methane yield of 409.5 mL/gVS. For the co-digestion of KW and PM, there was no obvious inhibition of ammonia nitrogen because it was in an acceptable range from 1380 mg/L to 2020 mg/L in the whole process. However, severe methane inhibition and long lag phase due to the accumulation of volatile fatty acids (VFAs) was observed while the KW content was over 50%, and in the lag phase, propionic acid and butyric acid made up the major constituents of the total VFAs. The technical digestion time (T80: the time it takes to produce 80% of the digester's maximum gas production) of the above 7 ratios was 15, 21, 22, 27, 49, 62 and 61 days, respectively. In this study, a mixing ratio of 1:1 for PM and KW was found to maximize BDA and methane yield, provided a short digestion time and stable digestion performance and was therefore recommended for further study and engineering application. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Effect of different sulfadimidine addition methods on its degradation behaviour in swine manure.

    PubMed

    Ren, Tian-Tian; Li, Xiao-Yang; Wang, Yan; Zou, Yong-De; Liao, Xin-Di; Liang, Juan-Boo; Wu, Yin-Bao

    2017-03-01

    Sulfadimidine (SM2) is commonly used in the swine industry and enters the environment via faeces. In recent years, advances in the ecotoxicology of SM2 have become a popular research interest with two common research methods including swine manure collection from swine fed with a diet containing SM2 and directly adding SM2. The purpose of this experiment was to compare SM2 degradation behaviour in pig manure with two different SM2 addition methods. The results showed that the degradation half-lives of SM2 in manure from SM2-fed swine treatment were 33.2 and 32.0 days at the initial addition level of SM2 at 32.1 and 64.3 mg/kg, respectively. This was significantly longer than that in manure directly adding SM2 treatment with the half-lives of 21.4 and 14.8 days. The metabolite of SM2 N 4 -acetyl-sulfamethazine occurred in manure from SM2-fed swine treatment but was not detected in directly adding SM2 treatment. The pH in manure from SM2-fed swine treatment was significantly lower than that in directly adding SM2 treatment, but the values of organic carbon, total nitrogen, and electrical conductivity in manure from SM2-fed swine treatment were significantly higher than those in manure directly adding SM2 treatment. Meanwhile, although the copy number of bacteria had no significant difference between two treatments, there was a significant difference in bacteria diversity. Results of the present study demonstrated that the presence of the metabolites, chemical property, and microbial diversity might be the reason for different SM2 degradation behaviours on different addition methods. Thus, the method using manure with SM2 collected from swine could obtain more accurate results for the ecotoxicological study of SM2.

  8. Changes in organic - C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes under liming and microbial inoculants.

    PubMed

    Pramanik, P; Ghosh, G K; Ghosal, P K; Banik, P

    2007-09-01

    The aim of this work was to study the effect of different organic wastes, viz. cow dung, grass, aquatic weeds and municipal solid waste with lime and microbial inoculants on chemical and biochemical properties of vermicompost. Cow dung was the best substrate for vermicomposting. Application of lime (5 g/kg) and inoculation of microorganisms increased the nutrient content in vermicompost and also phosphatases and urease activities. Bacillus polymyxa, the free-living N-fixer, increased N-content of vermicompost significantly (p < or = 0.01) as compared to other inoculants.

  9. Escherichia coli Probiotic Strain ED1a in Pigs Has a Limited Impact on the Gut Carriage of Extended-Spectrum-β-Lactamase-Producing E. coli

    PubMed Central

    Mourand, G.; Paboeuf, F.; Fleury, M. A.; Jouy, E.; Bougeard, S.; Denamur, E.

    2016-01-01

    ABSTRACT Four trials were conducted to evaluate the impact of Escherichia coli probiotic strain ED1a administration to pigs on the gut carriage or survival in manure of extended-spectrum-β-lactamase-producing E. coli. Groups of pigs were orally inoculated with strain E. coli M63 carrying the blaCTX-M-1 gene (n = 84) or used as a control (n = 26). In the first two trials, 24 of 40 E. coli M63-inoculated pigs were given E. coli ED1a orally for 6 days starting 8 days after oral inoculation. In the third trial, 10 E. coli M63-inoculated pigs were given either E. coli ED1a or probiotic E. coli Nissle 1917 for 5 days. In the fourth trial, E. coli ED1a was given to a sow and its 12 piglets, and these 12 piglets plus 12 piglets that had not received E. coli ED1a were then inoculated with E. coli M63. Fecal shedding of cefotaxime-resistant Enterobacteriaceae (CTX-RE) was studied by culture, and blaCTX-M-1 genes were quantified by PCR. The persistence of CTX-RE in manure samples from inoculated pigs or manure samples inoculated in vitro with E. coli M63 with or without probiotics was studied. The results showed that E. coli M63 and ED1a were good gut colonizers. The reduction in the level of fecal excretion of CTX-RE in E. coli ED1a-treated pigs compared to that in nontreated pigs was usually less than 1 log10 CFU and was mainly observed during the probiotic administration period. The results obtained with E. coli Nissle 1917 did not differ significantly from those obtained with E. coli ED1a. CTX-RE survival did not differ significantly in manure samples with or without probiotic treatment. In conclusion, under our experimental conditions, E. coli ED1a and E. coli Nissle 1917 could not durably prevent CTX-RE colonization of the pig gut. PMID:27795372

  10. Escherichia coli Probiotic Strain ED1a in Pigs Has a Limited Impact on the Gut Carriage of Extended-Spectrum-β-Lactamase-Producing E. coli.

    PubMed

    Mourand, G; Paboeuf, F; Fleury, M A; Jouy, E; Bougeard, S; Denamur, E; Kempf, I

    2017-01-01

    Four trials were conducted to evaluate the impact of Escherichia coli probiotic strain ED1a administration to pigs on the gut carriage or survival in manure of extended-spectrum-β-lactamase-producing E. coli Groups of pigs were orally inoculated with strain E. coli M63 carrying the bla CTX-M-1 gene (n = 84) or used as a control (n = 26). In the first two trials, 24 of 40 E. coli M63-inoculated pigs were given E. coli ED1a orally for 6 days starting 8 days after oral inoculation. In the third trial, 10 E. coli M63-inoculated pigs were given either E. coli ED1a or probiotic E. coli Nissle 1917 for 5 days. In the fourth trial, E. coli ED1a was given to a sow and its 12 piglets, and these 12 piglets plus 12 piglets that had not received E. coli ED1a were then inoculated with E. coli M63. Fecal shedding of cefotaxime-resistant Enterobacteriaceae (CTX-RE) was studied by culture, and bla CTX-M-1 genes were quantified by PCR. The persistence of CTX-RE in manure samples from inoculated pigs or manure samples inoculated in vitro with E. coli M63 with or without probiotics was studied. The results showed that E. coli M63 and ED1a were good gut colonizers. The reduction in the level of fecal excretion of CTX-RE in E. coli ED1a-treated pigs compared to that in nontreated pigs was usually less than 1 log 10 CFU and was mainly observed during the probiotic administration period. The results obtained with E. coli Nissle 1917 did not differ significantly from those obtained with E. coli ED1a. CTX-RE survival did not differ significantly in manure samples with or without probiotic treatment. In conclusion, under our experimental conditions, E. coli ED1a and E. coli Nissle 1917 could not durably prevent CTX-RE colonization of the pig gut. Copyright © 2016 American Society for Microbiology.

  11. Vermicomposting of sugar industry waste (press mud) mixed with cow dung employing an epigeic earthworm Eisenia fetida.

    PubMed

    Sangwan, P; Kaushik, C P; Garg, V K

    2010-01-01

    In India, millions of tons of press mud (PM) are generated by sugar mills every year. This paper reports the potential of vermitechnology to convert sugar industry waste PM mixed with cow dung (CD) into vermicompost, employing an epigeic earthworm Eisenia fetida. A total of six different reactors were established having different ratios of PM and CD including one control (CD only). The growth and fecundity of E. fetida was monitored for 13 weeks. Maximum growth was recorded in 100% CD, but earthworms grew and reproduced favourably up to 1:1 PM and CD feed composition. However, greater percentages of PM in different reactors significantly affected the growth and fecundity of worms. Vermicomposting resulted in a decrease in carbon concentration and an increase in nitrogen, phosphorus and calcium concentrations of the vermicompost. Investigations indicated that vermicomposting could be an alternative technology for the management of PM into useful fertilizing material, if mixed at maximum 50% with CD.

  12. Improved retention of imidacloprid (Confidor) in soils by adding vermicompost from spent grape marc.

    PubMed

    Fernández-Bayo, Jesús D; Nogales, Rogelio; Romero, Esperanza

    2007-05-25

    Batch sorption experiments of the insecticide imidacloprid by ten widely different Spanish soils were carried out. The sorption was studied for the active ingredient and its registered formulation Confidor. The temperature effect was studied at 15 degrees C and 25 degrees C. The addition of a vermicompost from spent grape marc (natural and ground), containing 344 g kg(-1) organic carbon, on the sorption of imidacloprid by two selected soils, a sandy loam and a silty clay loam, having organic carbon content of 3.6 g kg(-1) and 9.3 g kg(-1), respectively, was evaluated. Prior to the addition of this vermicompost, desorption isotherms with both selected soils, were also performed. The apparent hysteresis index (AHI) parameter was used to quantify sorption-desorption hysteresis. Sorption coefficients, K(d) and K(f), for the active ingredient and Confidor(R) in the different soils were similar. Sorption decreased with increasing temperature, this fact has special interest in greenhouse systems. A significant correlation (R(2)=0.965; P<0.01) between K(f) values and the organic carbon (OC) content was found, but some soils showed higher sorption coefficients than that expected from their OC values. The normalized sorption coefficients with the soil organic carbon content (K(oc)) were dispersed and low, implying that other characteristics of soils could contribute to the retention capacity as well. The spent grape marc vermicompost was an effective sorbent of this insecticide (K(f)=149). The sorption of imidacloprid increased significantly in soils amended with this vermicompost. The most pronounced effect was found in the sandy loam soil with low OC content, where the addition of 5% and 10% of vermicompost increased K(f) values by 8- and 15-fold, respectively. Soil desorption of imidacloprid was slower for the soil with the higher OC and clay content.

  13. Multi-component analysis of tetracyclines, sulfonamides and tylosin in swine manure by liquid chromatography-tandem mass spectrometry.

    PubMed

    Jacobsen, Anne Marie; Halling-Sørensen, Bent

    2006-03-01

    A multi-component method focussing on thorough sample preparation has been developed for simultaneous analysis of swine manure for three classes of antibiotic-tetracyclines, sulfonamides, and tylosin. Liquid manure was initially freeze-dried and homogenised by pulverization before extraction by pressurised liquid extraction. The extraction was performed at 75 degrees C and 2,500 psig in three steps using two cycles with 0.2 mol L(-1) citric acid buffer (pH 4.7) and one cycle with a mixture of 80% methanol with 0.2 mol L(-1) citric acid (pH 3). After liquid-liquid extraction with heptane to remove lipids, the pH of the manure was adjusted to 3 with formic acid and the sample was vacuum-filtered through 0.6 mum glass-fibre filters. Finally the samples were pre-concentrated by tandem SPE (SAX-HLB). Recoveries were determined for manure samples spiked at three concentrations (50-5,000 microg kg(-1) dry matter); quantification was achieved by matrix-matched calibration. Recoveries were >70% except for oxytetracycline (42-54%), sulfadiazine (59-73%), and tylosin (9-35%) and did not vary with concentration or from day-to-day. Limits of quantification (LOQ) for all compounds, determined as a signal-to-noise ratio of 10, were in the range 10-100 microg kg(-1) dry matter. The suitability of the method was assessed by analysis of swine manure samples from six different pig-production sites, e.g. finishing pigs, sows, or mixed production. Residues of antibiotics were detected in all samples. The largest amounts were found for tetracyclines (up to 30 mg kg(-1) dry matter for the sum of CTC and ECTC). Sulfonamides were detected at concentrations up to 2 mg kg(-1) dry matter (SDZ); tylosin was not detected in any samples.

  14. Production of Bio-Energy from Pig Manure: A Focus on the Dynamics Change of Four Parameters under Sunlight-Dark Conditions

    PubMed Central

    Yin, Dongxue; Liu, Wei; Zhai, Ningning; Feng, Yongzhong; Yang, Gaihe; Wang, Xiaojiao; Han, Xinhui

    2015-01-01

    This study investigated the effect of sunlight-dark conditions on volatile fatty acids (VFAs), total ammonium nitrogen (TAN), total alkalinity (TA) and pH during pig manure (PM) digestion and then the subsequent influence on biogas yield of PM. PM1 and PM2 were performed in a transparent reactor and a non-transparent reactor, respectively. Two sets of experiments were conducted with a temperature of 35.0±2.0 °C and a total solid concentration of 8.0% to the digestion material. The dynamic change of the four parameters in response to sunlight-dark conditions resulted in variations of the physiological properties in the digester and affected the cumulative biogas production (CBP). PM1 obtained higher CBP (15020.0 mL) with a more stable pH and a lower TAN concentration (1414.5 mg/L) compared to PM2 (2675.0 mL and 1670.0 mg/L, respectively). The direct path coefficients and indirect path coefficients between the four parameters and CBP were also analyzed. PMID:25970266

  15. Production of Bio-Energy from Pig Manure: A Focus on the Dynamics Change of Four Parameters under Sunlight-Dark Conditions.

    PubMed

    Yin, Dongxue; Liu, Wei; Zhai, Ningning; Feng, Yongzhong; Yang, Gaihe; Wang, Xiaojiao; Han, Xinhui

    2015-01-01

    This study investigated the effect of sunlight-dark conditions on volatile fatty acids (VFAs), total ammonium nitrogen (TAN), total alkalinity (TA) and pH during pig manure (PM) digestion and then the subsequent influence on biogas yield of PM. PM1 and PM2 were performed in a transparent reactor and a non-transparent reactor, respectively. Two sets of experiments were conducted with a temperature of 35.0±2.0 °C and a total solid concentration of 8.0% to the digestion material. The dynamic change of the four parameters in response to sunlight-dark conditions resulted in variations of the physiological properties in the digester and affected the cumulative biogas production (CBP). PM1 obtained higher CBP (15020.0 mL) with a more stable pH and a lower TAN concentration (1414.5 mg/L) compared to PM2 (2675.0 mL and 1670.0 mg/L, respectively). The direct path coefficients and indirect path coefficients between the four parameters and CBP were also analyzed.

  16. Vermicomposting of sewage sludge: a new technology for Mexico.

    PubMed

    Vigueros, L Cardosa; Ramírez Camperos, E

    2002-01-01

    In Mexico 31% of the treatment plants have a flow less than 60 l/s. This study offers a simple and economical alternative through vermicomposting to resolve the management of sewage sludge and water hyacinth for these small treatment plants. This study was developed with laboratory and pilot scale systems. In the laboratory Eisenia foetida survival was quantified. They were fed three doses of sludge and water hyacinth and different percentages of humidity were applied. The production of worm cocoons was quantified as biomass production and the reduction in the TV/STS ratio as an indicator of stability. To install the pilot system the mixture with the highest cocoon production was chosen. In the pilot test the effect of the worm population density on the waste degradation was observed, the experiment was divided into five modules, four with densities from 2.5 to 15 kg/m2 and one module without worms that served as a blank test. the best mixture was 70% sewage sludge and 30% water hyacinth, with 80% humidity and an average production of 298 cocoons/kg of vermicompost. There were no significant differences in the TVS/TS reduction between the different modules with worms, but in the blank test module there was no reduction. The Type A vermicompost obtained, with non-restricted use, 900 fecal coliforms NMP/g, 0.0 helminth ova/g, highly organic (60% M.O.), high concentration of total nitrogen (2.5%), phosphorus (0.96%) and cationic exchange capacity (60.2 meq/100 g), which indicates that soil fertility would increase if used in agriculture.

  17. Effect of Thiobacillus, sulfur, and vermicompost on the water-soluble phosphorus of hard rock phosphate.

    PubMed

    Aria, Marzieh Mohammady; Lakzian, Amir; Haghnia, Gholam Hosain; Berenji, Ali Reza; Besharati, Hosein; Fotovat, Amir

    2010-01-01

    Sulfur, organic matter, and inoculation with sulfur-oxidizing bacteria are considered as amendments to increase the availability of phosphorus from rock phosphate. The present study was conducted to evaluate the best combination of sulfur, vermicompost, and Thiobacillus thiooxidans inoculation with rock phosphate from Yazd province for direct application to agricultural lands in Iran. For such study, an experiment was carried out in a completely randomized design with factorial arrangement: Elemental sulfur originated from Sarakhs mine at three rates, 0% (S1), 10% (S2), 20% (S3), vermicompost at two rates, 0% (V1), 15% (V2), and inoculation without (B1) and with (B2) T. thiooxidans, in three replications. The results showed that water-soluble phosphorus (WSP) content was significantly higher in inoculated treatments compared to non-inoculated treatments. Sulfur had a significant effect on WSP. The highest solubility rate of rock phosphate was obtained in 20% of sulfur (S3) treatments and it was 2.4 times more than S1 treatments. Vermicompost also had a significant and positive effect on WSP of rock phosphate dissolution. The results also revealed that the highest concentration of WSP, sulfate and the lowest pH were obtained in treatments with 20% sulfur, 15% vermicompost inoculated with T. thiooxidans (B2S3V2).

  18. Developing methodologies for estimation of manure across livestock systems using agricultural census data

    NASA Astrophysics Data System (ADS)

    Khalil, Mohammad I.; Muldowney, John; Osborne, Bruce

    2017-04-01

    Livestock production and management-induced emissions of greenhouse gases (GHGs), comprising 18% of total global anthropogenic emissions together with air pollutants, have major atmospheric and ecosystem-related impacts. Identification of categorical/sub-categorical hotspots associated with these emissions and the estimation of emissions factors (EFs), including the use of the Intergovernmental Panel on Climate Change defaults (Tier 1), are key objectives in the preparation of reasonable, and transparent national reporting inventories (Tier 2). They also provide a basis for assessment of technological/management approaches for emissions reduction. For this, data on manure (solid/FYM and slurry/liquid) production across livestock categories, housing types and periods, storage types and application methodologies are required. However, relevant agricultural activity data are not sufficient to quantify the proportion and timing of the amounts of manure applied to major land use types and for different seasons. We have used the recent Census of Agriculture survey data 2010, collected by the Central Statistics Office, Ireland. Based on the compiled datasheets, several steps have been taken to generate missing information (e.g., number of individual livestock categories/subcategories) and to develop methodologies for calculating the proportion of slurry and manure production and application across farm categories. Among livestock categories, the proportion (%) of slurry over solids was higher for pigs (99:1) than the proportion derived from cattle (61:39). Solid manure production from other livestock systems derived mostly from loose-bedded houses. There were large differences between the proportions estimated using the number of farms and the livestock population. A major proportion of the slurry was applied to grassland (97 vs. 73) and the amounts applied in spring and summer were similar (40-42 vs. 36-39), but significantly higher than the autumn application (18 vs. 24

  19. Comparative characterization of digestate versus pig slurry and cow manure - Chemical composition and effects on soil microbial activity.

    PubMed

    Risberg, Kajsa; Cederlund, Harald; Pell, Mikael; Arthurson, Veronica; Schnürer, Anna

    2017-03-01

    The growing number of biogas plants in Europe has resulted in increased production of nutrient-rich digestate with great potential as fertilizer for arable land. The nutrient composition of digestate varies with the substrate treated in the biogas plant and may contain compounds that stimulate or inhibit soil microbial activity. This study compared 20 digestates (D) with 10 pig slurries (PS) and 10 cow manures (CM) regarding their chemical content and their effect on soil microbial activities, i.e. potential ammonia oxidation rate (PAO) and soil respiration. The results showed no significant differences within the D group when divided based on substrate type. i.e. manure dominated vs. other organic waste materials in any of the tests. In general D contained significantly higher concentrations of ammonium while the concentrations of total carbon and volatile fatty acids were higher in PS and CM than in D. The D showed both stimulating and inhibiting effects on PAO, while all CM and all PS except one showed inhibiting effects on PAO. However, PAO activity was negatively correlated with the content of volatile fatty acids in the residues indicating that these compounds may be the cause of the inhibition. The maximum respiration activity (h peakmax ) was lower and the time point for the maximum respiration activity (t peakmax ) occurred earlier for D compared with CM and PS. This earlier peak time could be indicative of a high proportion of easily degradable carbon in D compared with PS and CM. However, the utilization rate of carbon, i.e. the proportion of added organic C converted to CO 2 -C during 12days, did not differ significantly between D, PS and CM, indicating that overall carbon quality in the different fertilizers was still roughly comparable. In short, our results suggest that digestates were different compared with PS and CM but without posing a higher risk with respect to their impact on soil microbial activity. Copyright © 2016 The Author(s). Published

  20. Semi-continuous anaerobic co-digestion of sugar beet byproduct and pig manure: Effect of the organic loading rate (OLR) on process performance.

    PubMed

    Aboudi, Kaoutar; Álvarez-Gallego, Carlos José; Romero-García, Luis Isidoro

    2015-10-01

    Anaerobic co-digestion of dried pellet of exhausted sugar beet cossettes (ESBC-DP) with pig manure (PM) was investigated in a semi-continuous stirred tank reactor (SSTR) under mesophilic conditions. Seven hydraulic retention times (HRT) from 20 to 5 days were tested with the aim to evaluate the methane productivities and volatile solids (VS) removal. The corresponding organic loading rates (OLR) ranged from 4.2 to 12.8 gVS/L(reactor) d. The findings revealed that highest system efficiency was achieved at an OLR of 11.2 gVS/L(reactor) d (6 days-HRT) with a methane production rate (MPR) and volatile solids (VS) reduction of 2.91 LCH4/L(reactor) d and 57.5%, respectively. The HRT of 5 days was found critical for the studied process, which leads to volatile fatty acids (VFA) accumulation and sharp drop in pH. However, the increase of HRT permits the recovery of system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Optimization of the anaerobic co-digestion of pasteurized slaughterhouse waste, pig slurry and glycerine.

    PubMed

    Rodríguez-Abalde, Ángela; Flotats, Xavier; Fernández, Belén

    2017-03-01

    The feasibility of co-digestion of blends of two different animal by-products (pig manure and pasteurized slaughterhouse waste) and recovered glycerine was studied in mesophilic conditions. Experiments were performed in a lab-scale CSTR along 490days, with a hydraulic retention time of 21-33days and with a step-wise increased organic loading rate, by adding and/or changing the wastes ratio, from 0.8 to 3.2kg COD m -3 d -1 . The best methane production rate (0.64Nm 3 CH4 m -3 d -1 ) represented an increment of 2.9-fold the initial one (0.22Nm 3 CH4 m -3 d -1 with pig manure solely). It was attained with a ternary mixture composed, in terms of inlet volatile solids, by 35% pig slurry, 47% pasteurized slaughterhouse waste and 18% glycerine. This blend was obtained through a stepwise C/N adjustment: this strategy led to a more balanced biodegradation due to unstressed bacterial populations through the performance, showed by the VFA-related indicators. Besides this, an improved methane yield (+153%) and an organic matter removal efficiency (+83%), regarding the digestion of solely pig slurry, were attained when the C/N ratio was adjusted to 10.3. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Trace elements in feed, manure, and manured soils.

    PubMed

    Sheppard, S C; Sanipelli, B

    2012-01-01

    Modern animal feeds often include nutritional mineral supplements, especially elements such as Cu, P, Se, and Zn. Other sources of trace elements also occur in livestock systems, such as pharmaceutical use of As and Zn to control gut flora, Bi in dairy for mastitis control, and Cu as hoof dips. Additionally, potential exists for inadvertent inclusion of trace elements in feeds or manures. There is concern about long-term accumulation of trace elements in manured soil that may even exceed guideline "safe" concentrations. This project measured ∼60 elements in 124 manure samples from broiler, layer, turkey, swine grower, swine nursery, sow, dairy, and beef operations. The corresponding feeds were also analyzed. In general, concentrations in manure were two- to fivefold higher than those in feed: the manure/feed concentration ratios were relatively consistent for all the animal-essential elements and were numerically similar for many of the non-nutrient elements. To confirm the potential for accumulation in soil, total trace element concentrations were measured in the profiles of 10 manured and 10 adjacent unmanured soils. Concentrations of several elements were found to be elevated in the manured soils, with Zn (and P) the most common. One soil from a dairy standing yard had concentrations of B that exceeded soil health guideline concentrations. Given that the Cu/P and Zn/P ratios found in manure were greater than typically reported in harvested crop materials, these elements will accumulate in soil even if manure application rates are managed to prevent accumulation of P in soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Sustainable reuse of rice residues as feedstocks in vermicomposting for organic fertilizer production.

    PubMed

    Shak, Katrina Pui Yee; Wu, Ta Yeong; Lim, Su Lin; Lee, Chieh Ai

    2014-01-01

    Over the past decade, rice (Oryza sativa or Oryza glaberrima) cultivation has increased in many rice-growing countries due to the increasing export demand and population growth and led to a copious amount of rice residues, consisting mainly of rice straw (RS) and rice husk (RH), being generated during and after harvesting. In this study, Eudrilus eugeniae was used to decompose rice residues alone and rice residues amended with cow dung (CD) for bio-transformation of wastes into organic fertilizer. Generally, the final vermicomposts showed increases in macronutrients, namely, calcium (11.4-34.2%), magnesium (1.3-40.8%), phosphorus (1.2-57.3%), and potassium (1.1-345.6%) and a decrease in C/N ratio (26.8-80.0%) as well as increases in heavy metal content for iron (17-108%), copper (14-120%), and manganese (6-60%) after 60 days of vermicomposting. RS as a feedstock was observed to support healthier growth and reproduction of earthworms as compared to RH, with maximum adult worm biomass of 0.66 g/worm (RS) at 60 days, 31 cocoons (1RS:2CD), and 23 hatchlings (1RS:1CD). Vermicomposting of RS yielded better results than RH among all of the treatments investigated. RS that was mixed with two parts of CD (1RS:2CD) showed the best combination of nutrient results as well as the growth of E. eugeniae. In conclusion, vermicomposting could be used as a green technology to bio-convert rice residues into nutrient-rich organic fertilizers if the residues are mixed with CD in the appropriate ratio.

  4. Compositional and functional features of humic acid-like fractions from vermicomposting of sewage sludge and cow dung.

    PubMed

    Li, Xiaowei; Xing, Meiyan; Yang, Jian; Huang, Zhidong

    2011-01-30

    The chemical changes occurring in five different substrates of sewage sludge spiked with different proportions of cow dung after vermicomposting with Eisenia foetida for 90 days were investigated. Their humic acid-like (HAL) fractions were isolated to determine the elemental and functional composition, and structural and functional characteristics using ultraviolet/visible, Fourier transform infrared (FT-IR) and fluorescence spectroscopies and scanning electron microscopy. After vermicomposting, the total organic C and C/N ratio decreased, and the total extractable C and humic acid (HA) C increased in all substrates. In the HAL fractions, the C and H contents, C/N and C/O and aliphatic structures, proteinaceous components and carbohydrates decreased, while the O and N and acidic functional group contents and C/H ratio, aromaticity and polycondensation structures increased. Further, the results suggest that the addition of cow dung to sewage sludge could improve the quality of organic matter humification of the substrates. The structures of HAL fractions in vermicomposts resembled those typical of soil HA, especially the vermicompost of cow dung alone. Scanning electron microscopy showed the microstructure of HAL fraction in final product became close-grained and lumpy. Overall results indicate that vermicomposting was an efficient technology for promoting organic matter (OM) humification in sewage sludge and cow dung alone, as well as in mixtures of both materials, improving their quality and environmental safety as a soil OM resource for utilization as soil amendments. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Mass loading of typical artificial sweeteners in a pig farm and their dissipation and uptake by plants in neighboring farmland.

    PubMed

    Ma, Ling; Liu, Yarui; Xu, Jiayao; Sun, Hongwen; Chen, Hao; Yao, Yiming; Zhang, Peng; Shen, Fengju; Alder, Aldredo C

    2017-12-15

    Pig farm is an important potential source for artificial sweeteners (ASs) in the environment due to their wide use as additives in pig feed. The objective of this study was to evaluate the fate of typical ASs in pig farm and neighboring farmland. For this purpose, the levels of four typical artificial ASs, i.e. saccharin (SAC), cyclamate (CYC), acesulfame (ACE) and sucralose (SUC), in pig feed and manure from a pig farm and water samples from an on-farm wastewater treatment plant (WWTP) in Tianjin, China were measured and the mass loadings and removal efficiencies were assessed. Moreover, the levels of ASs in different layers of soil and vegetables in neighboring farmland that received manure fertilizers and wastewater from the farm were consecutively monitored for 60-80days. The SAC, CYC and ACE were widely determined in all kinds of the samples, while SUC was only found in few soil samples. The mass loadings of the ASs in pig feed were estimated up to 311kg/year for SAC, 59.1kg/year for CYC, and 17.1kg/year for ACE, respectively. The fractions of the total mass of ASs excreted via manure were estimated to be 36.0% for SAC, 59.4% for CYC, and 36.7% for ACE as compared to those in pig feed. High removal efficiencies (>90%) of ASs in the on-farm WWTP was achieved. In greenhouse soils, CYC, SAC, ACE, and SUC were degraded quickly, with half-lives of 4.3-5.9 d, 2.7-4.2 d, 8.4-12.3 d, and 7.3-10.8 d, respectively. Lower levels of ASs were found in deeper soil layer (20-30cm). The ASs were considerably absorbed by plants when the ASs' concentrations were high in soil. This study presents the first comprehensive overview of ASs fate from a pig farm to the neighboring agricultural ecosystem. Copyright © 2017. Published by Elsevier B.V.

  6. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure as influenced by three swine management systems

    USDA-ARS?s Scientific Manuscript database

    The environmental influence of farm management in concentrated animal feeding operations (CAFO) can yield vastly different microbial constituents in both the pig and the manure lagoons used to treat the fecal waste of the operation. While some of these changes may not be negative, it is possible th...

  7. Optimizing the vermicomposting of organic wastes amended with inorganic materials for production of nutrient-rich organic fertilizers: a review.

    PubMed

    Mupambwa, Hupenyu Allan; Mnkeni, Pearson Nyari Stephano

    2018-04-01

    Vermicomposting is a bio-oxidative process that involves the action of mainly epigeic earthworm species and different micro-organisms to accelerate the biodegradation and stabilization of organic materials. There has been a growing realization that the process of vermicomposting can be used to greatly improve the fertilizer value of different organic materials, thus, creating an opportunity for their enhanced use as organic fertilizers in agriculture. The link between earthworms and micro-organisms creates a window of opportunity to optimize the vermi-degradation process for effective waste biodegradation, stabilization, and nutrient mineralization. In this review, we look at up-to-date research work that has been done on vermicomposting with the intention of highlighting research gaps on how further research can optimize vermi-degradation. Though several researchers have studied the vermicomposting process, critical parameters that drive this earthworm-microbe-driven process which are C/N and C/P ratios; substrate biodegradation fraction, earthworm species, and stocking density have yet to be adequately optimized. This review highlights that optimizing the vermicomposting process of composts amended with nutrient-rich inorganic materials such as fly ash and rock phosphate and inoculated with microbial inoculants can enable the development of commercially acceptable organic fertilizers, thus, improving their utilization in agriculture.

  8. Prospects of using Metarhizium anisopliae to check the breeding of insect pest, Oryctes rhinoceros L. in coconut leaf vermicomposting sites.

    PubMed

    Gopal, Murali; Gupta, Alka; Thomas, George V

    2006-10-01

    During vermicomposting of coconut leaves by the earthworm Eudrilus sp., Oryctes rhinoceros L. (rhinoceros beetle), an insect pest of palms, was found to breed in the decomposing organic material. Metarhizium anisopliae var. major was tried as a biocontrol agent for management of this pest. The effect of pathogen at spore loads of 10(3), 10(4) and 10(5) per 10 g of substrate was tested in laboratory on Eudrilus sp. kept with O. rhinoceros grubs and on Eudrilus sp. alone for the pathogenic capability of the fungus on the pest and its possible toxicity towards the vermin. The efficacy of the entomopathogen was also tested in the field in vermicomposting tanks. In laboratory bioassay, 100% mycosis of O. rhinoceros grubs could be obtained while the entomopathogen had no toxic effect on the earthworms. There was a positive change in the number and weight of the earthworms on treatment with M. anisopliae. In the field, application of M. anisopliae reduced O. rhinoceros grubs in the vermicomposting tanks upto an extent of 72%. In conclusion, M. anisopliae could effectively control O. rhinoceros in vermicomposting sites and was non-hazardous to the vermicomposting process as well as the Eudrilus sp.

  9. [Optimization of vermicomposting of organics enriched with phosphorites with participation of phosphate-mobilizing microorganisms].

    PubMed

    Hatsenko, M V; Volkohon, V V

    2010-01-01

    Active strains of microorganisms capable to mobilize phosphorus from poorly soluble compounds were isolated from the vermicompost. Representatives of Pseudomonas genus dominate in assemblages of phosphate-mobilizing humus microbiota. The strains Pseudomonas sp. 17 and Pseudomonas sp. 22, which promote liberation of the greatest quantity of water-soluble phosphorus were selected under vermicomposting of organics enriched with phosphorites with participation of active phosphate-mobilizing microorganisms. The use of compost derived with participation of Pseudomonas sp. 17 in cucumbers growth technologies makes the plants development better and raises the cultures productivity.

  10. Mitigating Greenhouse Gas and Ammonia Emissions from Swine Manure Management: A System Analysis.

    PubMed

    Wang, Yue; Dong, Hongmin; Zhu, Zhiping; Gerber, Pierre J; Xin, Hongwei; Smith, Pete; Opio, Carolyn; Steinfeld, Henning; Chadwick, Dave

    2017-04-18

    Gaseous emissions from animal manure are considerable contributor to global ammonia (NH 3 ) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH 3 , methane (CH 4 ), and nitrous oxide (N 2 O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH 3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH 3 emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH 3 emissions is equivalent to 40% of the total NH 3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.

  11. A simple method to identify areas of environmental risk due to manure application.

    PubMed

    Flores, Héctor; Arumí, José Luis; Rivera, Diego; Lagos, L Octavio

    2012-06-01

    The management of swine manure is becoming an important environmental issue in Chile. One option for the final disposal of manure is to use it as a biofertilizer, but this practice could impact the surrounding environment. To assess the potential environmental impacts of the use of swine manure as a biofertilizer, we propose a method to identify zones of environmental risk through indices. The method considers two processes: nutrient runoff and solute leaching, and uses available information about soils, crops and management practices (irrigation, fertilization, and rotation). We applied the method to qualitatively assess the environmental risk associated with the use of swine manure as a biofertilizer in an 8,000-pig farm located in Central Chile. Results showed that the farm has a moderate environmental risk, but some specific locations have high environmental risks, especially those associated with impacts on areas surrounding water resources. This information could assist the definition of better farm-level management practices, as well as the preservation of riparian vegetation acting as buffer strips. The main advantage of our approach is that it combines qualitative and quantitative information, including particular situations or field features based on expert knowledge. The method is flexible, simple, and can be easily extended or adapted to other processes.

  12. AFO Manure Management - Michigan: Manure Transfer Requirements

    EPA Pesticide Factsheets

    Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.

  13. Impact of fiber source and feed particle size on swine manure properties related to spontaneous foam formation during anaerobic decomposition.

    PubMed

    Van Weelden, M B; Andersen, D S; Kerr, B J; Trabue, S L; Pepple, L M

    2016-02-01

    Foam accumulation in deep-pit manure storage facilities is of concern for swine producers because of the logistical and safety-related problems it creates. A feeding trial was performed to evaluate the impact of feed grind size, fiber source, and manure inoculation on foaming characteristics. Animals were fed: (1) C-SBM (corn-soybean meal): (2) C-DDGS (corn-dried distiller grains with solubles); and (3) C-Soybean Hull (corn-soybean meal with soybean hulls) with each diet ground to either fine (374 μm) or coarse (631 μm) particle size. Two sets of 24 pigs were fed and their manure collected. Factors that decreased feed digestibility (larger grind size and increased fiber content) resulted in increased solids loading to the manure, greater foaming characteristics, more particles in the critical particle size range (2-25 μm), and a greater biological activity/potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China.

    PubMed

    Zhao, Ling; Dong, Yuan Hua; Wang, Hui

    2010-02-01

    The residue levels of selected fluoroquinolones, sulfonamides and tetracyclines in 143 animal dung samples collected in 2007 from large-scale livestock and poultry feedlots in 8 provinces were determined by using ultrasonic extraction and liquid chromatography. Recoveries from spiked pig dung samples (spike level=1mg/kg) ranged from 73.9 to 102.0% for fluoroquinolones, from 81.6 to 92.3% for sulfonamides, and from 57.2 to 72.6% for tetracyclines. Relative standard deviations of the recoveries were less than 10% within the same day. Method quantification limits were measured from 0.031 to 0.150 mg/kg for fluoroquinolones, from 0.023 to 0.082 mg/kg for sulfonamides, and 0.091 to 0.182 mg/kg for tetracyclines in spiked pig manure samples. Analysis of 61 pig, 54 chicken and 28 cow dung samples collected in China revealed that in pig and cow dung, up to 33.98 and 29.59 mg/kg ciprofloxacin, 33.26 and 46.70 mg/kg enrofloxacin, 59.06 and 59.59 mg/kg oxytetracycline, and 21.06 and 27.59 mg/kg chlortetracycline could be detected, respectively. A maximum concentration of 99.43 mg/kg fleroxacin, 225.45 mg/kg norfloxacin, 45.59 mg/kg ciprofloxacin and 1420.76 mg/kg enrofloxacin could be detected in chicken dung. No appreciable sulfonamide antibiotic concentrations (less than 10mg/kg) were found in any animal dung, and only sulfadimidine was observed, at a maximum concentration of 6.04 mg/kg, in chicken dung. Both enrofloxacin and chlortetracycline were detected with a very high occurrence in three animal manure samples. The residue levels for most antibiotics showed significant statistical differences among the sampling districts and the animal species. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: A review.

    PubMed

    Soobhany, Nuhaa; Mohee, Romeela; Garg, Vinod Kumar

    2017-06-01

    Waste management strategies for organic residues, such as composting and vermicomposting, have been implemented in some developed and developing countries to solve the problem of organic solid waste (OSW). Yet, these biological treatment technologies do not always result in good quality compost or vermicompost with regards to sanitation capacity owing to the presence of bacterial pathogenic substances in objectionable concentrations. The presence of pathogens in soil conditioners poses a potential health hazard and their occurrence is of particular significance in composts and/or vermicomposts produced from organic materials. Past and present researches demonstrated a high-degree of agreement that various pathogens survive after the composting of certain OSW but whether similar changes in bacterial pathogenic loads arise during vermitechnology has not been thoroughly elucidated. This review garners information regarding the status of various pathogenic bacteria which survived or diffused after the composting process compared to the status of these pathogens after the vermicomposting of OSW with the aim of achieving sanitation goals. This work is also indispensable for the specification of compost quality guidelines concerning pathogen loads which would be specific to treatment technology. It was hypothesized that vermicomposting process for OSW can be efficacious in sustaining the existence of pathogenic organisms most specifically; human pathogens under safety levels. In summary, earthworms can be regarded as a way of obliterating pathogenic bacteria from OSW in a manner equivalent to earthworm gut transit mechanism which classifies vermicomposting as a promising sanitation technique in comparison to composting processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of manure under different nitrogen application rates on winter wheat production and soil fertility in dryland

    NASA Astrophysics Data System (ADS)

    Zhang, H. Q.; Yu, X. Y.; Zhai, B. N.; Jin, Z. Y.; Wang, Z. H.

    2016-08-01

    Exploring an effective fertilization practice is crucial for achieving a sustainable dryland winter wheat cropping system. Following a split-plot design, this study was conducted to investigate the combined effect of manure (-M or +M; main plot) and various rates of nitrogen (N) fertilizer (0, 75, 150, 225, and 300 kg N ha-1; sub plot) on grain yield, water and N use efficiencies of winter wheat, and soil nutrients. The results showed that the treatments with manure improved the grain yield by 8%, and WUE by 10% relative to that without manure throughout the study years. The highest winter wheat yield and WUE were both recorded in the M+N225 treatment, which were not significantly different from those for M+N75 and M+N150 treatment. In contrast, high levels of N fertilizer (> 150 kg N ha-1) combined with manure not only caused a reduction in the N use efficiency (NUE), but it also caused an increase in the soil residual nitrate-N (from 43.7 to 188.9 kg ha-1) relative to without manure. After three years of continuous cropping, the treatment combining manure with 150 kg N ha-1 fertilizer had the highest SOM, available P and available K, which was 24%, 379% and 102% higher than that for unfertilized treatment (CK), and 10%, 267%, and 55% higher than that for without manure, respectively. Thus, the combination of manure (17.5 t ha-1 poultry or 30 t ha-1 pig manure) with 75-150 kg N ha-1 N fertilizer is recommended for improving winter wheat yield, water and N use efficiencies, and reducing soil nitrate-N residue as well.

  17. Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and pig manure.

    PubMed

    Li, Dong; Liu, Shengchu; Mi, Li; Li, Zhidong; Yuan, Yuexiang; Yan, Zhiying; Liu, Xiaofeng

    2015-01-01

    In order to investigate the effects of feedstock ratio and organic loading rate (OLR) on the anaerobic mesophilic co-digestion of rice straw (RS) and pig manure (PM), batch bottle tests (2.5L) were carried out at volatile solid (VS) ratios of 0:1, 1:2, 1:1, 2:1, and 1:0 (RS/PM), and continuous bench experiments (40L) were carried out at OLRs of 3.0, 3.6, 4.2, 4.8, 6.0, 8.0, and 12.0kg VS/(m(3)d) with optimal VS ratio. The results showed that the optimal ratio was 1:1 in terms of biogas yield. Stable biogas production with an average specific biogas production of 413L/kg VS was obtained at an OLR of 3-8kg VS/(m(3)d). Anaerobic co-digestion was severely inhibited by the accumulation of volatile fatty acids when the OLR was 12kg VS/(m(3)d). Further, light and serious foaming were observed at OLR of 8 and 12kg VS/(m(3)d), respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of organic loading rate on anaerobic co-digestion of rice straw and pig manure with or without biological pretreatment.

    PubMed

    Shen, Fei; Li, Hanguang; Wu, Xiaoyu; Wang, Yuanxiu; Zhang, Qinghua

    2018-02-01

    In this study, rice straw (RS) and pig manure (PM) mixtures with or without bio-pretreatment were used as the substrates and digested in a 9 L of anaerobic reactor at Organic loading rates (OLRs) of 0.4-3.1 kg COD/(m 3  d). The volumetric methane production rate (VMPR), methane yield and anaerobic stability were comparatively investigated. The results showed the co-anaerobic digestion processes of RS and PM mixture after biological pretreatment were very stable at OLRs of 0.4-2.5 kg COD/(m 3  d), and its optimal VMPR and methane yield could reach 0.64 L CH 4 /(L d) and 0.4557 L CH 4 /g COD removed at OLR of 2.5 kg COD/(m 3  d), which were 62.4% and 37.8% higher than those of the control under the same OLR condition. This study indicated the biological pretreatment with a cellulolytic microbial consortium own great potential in improving the methane yield and productivity of RS and PM wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Shading and vermicompost effect on growth and flavonoid content of Tapak Liman (Elephantopus scaber L.)

    NASA Astrophysics Data System (ADS)

    Dawiyah, R. Y. A.; Yunus, A.; Samanhudi; Widiyastuti, Y.; Widodo

    2018-03-01

    Tapak Liman (Elephantopus scaber L) is one of Indonesian medicinal plants which is well known as weed. In Thailand, Tapak Limanthis plant is use for traditional medicine due to its flavonoids contains. Flavonoid is compound with red, yellow, purple and blue pigments, used for cancer, aphrodiasiac and anti-radical treatments. One obstacle of Tapak liman cultivation is the effort to increase its flavonoids compound. There is a bridge between flavonoids compound with growth and yield of Tapak Liman. For that, this research aims to find out the effect of shade intensity combined with vermicompost dosage on Tapak Liman growth and yield. This research was conducted in Mei to August 2016 at Medicinal Plantation of BPTO, Tanjungsari Village, Tegal Gede, Karanganyar. Complete Randomized Design compiled with split plot and two factors: shade intensity (0%, 50%, 75%) and vermicompost dosage per plant (0 g, 250 g, 500 g, 750 g) used as the experimental design. The variables observed are leaves number,leaves length, canopy diameter, fresh weight, dry weight, root length, chlorophyl analysis and flavonoid identification. Data were analyzed using ANOVA, any significant treatments followed with Duncan’s Multiple Range Test (DMRT) at α = 10%. Result showed that 75% shade intesity and 750 g of vermicompost has gave highest yield of leaf and total simplicia of Tapak Liman. Shade intensity of 50% with 250 g of and 500 g/plant of vermicompost dosage showed highest flavonoid rendement (Rf 0,5) with highly contrasting spot colors.

  20. Fate and effect of imidacloprid on vermicompost-amended soils under dissimilar conditions: Risk for soil functions, structure, and bacterial abundance.

    PubMed

    Castillo Diaz, Jean Manuel; Martin-Laurent, Fabrice; Beguet, Jérèmie; Nogales, Rogelio; Romero, Esperanza

    2017-02-01

    The fate and impact of pesticide on soil depend partly on the agricultural practices, such as prior treatment with pesticide and/or organic amendments. As a means of determining how the previous soil conditions can affect the fate of imidacloprid (IMI) and its effect on soil functions, experiments were made with soil samples, double-amended or not with either vine-shoot (W) or olive cake (O) vermicompost or contaminated or not with IMI. These soil samples, incubated for 3months, were placed in two microcosms (M1 with the pre-amended soils and M2 with the pre-exposed soils), treated with IMI and amended with vermicomposts and then incubated for 3months. The IMI distribution on soil fractions, sorption processes, dissipation kinetics, and biochemical as well as genetic structure and bacterial abundance were determined to assess the fate and impact of IMI on the soil. The addition of W vermicompost to the soil reduced the IMI availability. The dissipation kinetic in soils from M1 and M2 followed, respectively, a single first-order and a double first-order in parallel models. The lowest IMI persistence corresponded to the soil from M2 amended with O-vermicompost with DT50 and DT90 values of 67d and 265d, while in the other soils 90% dissipation required >512d. The vermicomposts-amended contaminated soils increased the dehydrogenase activity by 2- and 4-fold respect the control soils. However, the urease activity decreased due to the IMI influence. The changes in the bacterial community in the contaminated soil amended with O-vermicompost during incubation were correlated with the dissipation rate constant of IMI, suggesting a better tolerance of microorganisms to IMI. Thus, in the soil contaminated with IMI, the amendment with the vermicompost from olive cake can mitigate the impact of this insecticide on soil functions and promote its depuration capability while minimizing environmental risks. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effect of spent mushroom substrate as a bulking agent on gaseous emissions and compost quality during pig manure composting.

    PubMed

    Li, Shuyan; Li, Danyang; Li, Jijin; Li, Yangyang; Li, Guoxue; Zang, Bing; Li, Yun

    2018-05-01

    The aim of this study was to investigate the gaseous emissions (CH 4 , N 2 O, and NH 3 ) and compost quality during the pig manure composting by adding spent mushroom substrate (SMS) as a bulking agent. The control treatment was also studied using corn stalk (CS) as a bulking agent. The experiment was conducted in a pilot scale composting reactor under aerobic condition with the initial C/N ratio of 20. Results showed that bulking agents significantly affected gaseous emissions and compost quality. Using SMS as a bulking agent improved composting efficiency by shortening the time for maturity. SMS increased germination index and humic acid of the final compost (by 13.44 and 41.94%, respectively) compared with CS. Furthermore, composting with SMS as a bulking agent could reduce nitrogen loss, NH 3 , and N 2 O emissions (by 13.57, 35.56, and 46.48%, respectively) compared with the control. SMS slightly increased CH 4 emission about 1.1 times of the CS. However, a 33.95% decrease in the global warming potential of CH 4 and N 2 O was obtained by adding SMS treatment. These results indicate that SMS is a favorable bulking agent for reducing gaseous emissions and increasing compost quality.

  2. Energy and nutrient cycling in pig production systems

    NASA Astrophysics Data System (ADS)

    Lammers, Peter J.

    United States pig production is centered in Iowa and is a major influence on the economic and ecological condition of that community. A pig production system includes buildings, equipment, production of feed ingredients, feed processing, and nutrient management. Although feed is the largest single input into a pig production system, nearly 30% of the non-solar energy use of a conventional--mechanically ventilated buildings with liquid manure handling--pig production system is associated with constructing and operating the pig facility. Using bedded hoop barns for gestating sows and grow-finish pigs reduces construction resource use and construction costs of pig production systems. The hoop based systems also requires approximately 40% less non-solar energy to operate as the conventional system although hoop barn-based systems may require more feed. The total non-solar energy input associated with one 136 kg pig produced in a conventional farrow-to-finish system in Iowa and fed a typical corn-soybean meal diet that includes synthetic lysine and exogenous phytase is 967.9 MJ. Consuming the non-solar energy results in emissions of 79.8 kg CO2 equivalents. Alternatively producing the same pig in a system using bedded hoop barns for gestating sows and grow-finish pigs requires 939.8 MJ/pig and results in emission of 70.2 kg CO2 equivalents, a reduction of 3 and 12% respectively. Hoop barn-based swine production systems can be managed to use similar or less resources than conventional confinement systems. As we strive to optimally allocate non-solar energy reserves and limited resources, support for examining and improving alternative systems is warranted.

  3. Co-digestion of manure with grass silage and pulp and paper mill sludge using nutrient additions.

    PubMed

    Hagelqvist, Alina; Granström, Karin

    2016-08-01

    There is an increasing worldwide demand for biogas. Anaerobic co-digestion involves the treatment of different substrates with the aim of improving the production of biogas and the stability of the process. This study evaluates how methane production is affected by the co-digestion of pig and dairy manure with grass silage and pulp and paper mill sludge and assesses whether methane production is affected by factors other than nutrient deficiency, low buffering capacity, inadequate dilution, and an insufficient activity and amount of microorganism culture. Anaerobic digestion was performed in batch reactors under mesophilic conditions for 20 days. The season of grass silage and manure collection proved to be an important factor affecting methane production. Spring grass silage produced a maximum of 250 mL/VSadded and spring manure 150 mL/VSadded, whereas autumn grass silage produced at most 140 ml/VSadded and autumn manure 45 mL/VSadded. The pulp mill sludge used is comprised of both primary and secondary sludge and produced at most 50 mL/VSadded regardless of season; this substrate benefitted most from co-digestion.

  4. Greenhouse Gas and Ammonia Emissions from Different Stages of Liquid Manure Management Chains: Abatement Options and Emission Interactions.

    PubMed

    Mohankumar Sajeev, Erangu Purath; Winiwarter, Wilfried; Amon, Barbara

    2018-01-01

    Farm livestock manure is an important source of ammonia and greenhouse gases. Concerns over the environmental impact of emissions from manure management have resulted in research efforts focusing on emission abatement. However, questions regarding the successful abatement of manure-related emissions remain. This study uses a meta-analytical approach comprising 89 peer-reviewed studies to quantify emission reduction potentials of abatement options for liquid manure management chains from cattle and pigs. Analyses of emission reductions highlight the importance of accounting for interactions between emissions. Only three out of the eight abatement options considered (frequent removal of manure, anaerobic digesters, and manure acidification) reduced ammonia (3-60%), nitrous oxide (21-55%), and methane (29-74%) emissions simultaneously, whereas in all other cases, tradeoffs were identified. The results demonstrate that a shift from single-stage emission abatement options towards a whole-chain perspective is vital in reducing overall emissions along the manure management chain. The study also identifies some key elements like proper clustering, reporting of influencing factors, and explicitly describing assumptions associated with abatement options that can reduce variability in emission reduction estimates. Prioritization of abatement options according to their functioning can help to determine low-risk emission reduction options, specifically options that alter manure characteristics (e.g., reduced protein diets, anaerobic digestion, or slurry acidification). These insights supported by comprehensive emission measurement studies can help improve the effectiveness of emission abatement and harmonize strategies aimed at reducing air pollution and climate change simultaneously. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Does manure management affect the latent greenhouse gas emitting potential of livestock manures?

    PubMed

    Pratt, Chris; Redding, Matthew; Hill, Jaye; Jensen, Paul D

    2015-12-01

    With livestock manures being increasingly sought as alternatives to costly synthetic fertilisers, it is imperative that we understand and manage their associated greenhouse gas (GHG) emissions. Here we provide the first dedicated assessment into how the GHG emitting potential of various manures responds to the different stages of the manure management continuum (e.g., from feed pen surface vs stockpiled). The research is important from the perspective of manure application to agricultural soils. Manures studied included: manure from beef feedpen surfaces and stockpiles; poultry broiler litter (8-week batch); fresh and composted egg layer litter; and fresh and composted piggery litter. Gases assessed were methane (CH4) and nitrous oxide (N2O), the two principal agricultural GHGs. We employed proven protocols to determine the manures' ultimate CH4 producing potential. We also devised a novel incubation experiment to elucidate their N2O emitting potential; a measure for which no established methods exist. We found lower CH4 potentials in manures from later stages in their management sequence compared with earlier stages, but only by a factor of 0.65×. Moreover, for the beef manures this decrease was not significant (P<0.05). Nitrous oxide emission potential was significantly positively (P<0.05) correlated with C/N ratios yet showed no obvious relationship with manure management stage. Indeed, N2O emissions from the composted egg manure were considerably (13×) and significantly (P<0.05) higher than that of the fresh egg manure. Our study demonstrates that manures from all stages of the manure management continuum potentially entail significant GHG risk when applied to arable landscapes. Efforts to harness manure resources need to account for this. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Enhanced methane production from pig slurry with pulsed electric field pre-treatment.

    PubMed

    Safavi, Seyedeh Masoumeh; Unnthorsson, Runar

    2018-02-01

    Intensive amount of manure produced in pig breeding sectors represents negative impact on the environment and requires optimal management. Anaerobic digestion as a well-known manure management process was optimized in this experimental study by pulsed electric field (PEF) pre-treatment. The effect of PEF on methane production was investigated at three different intensities (15, 30 and 50 kWh/m 3 ). The results indicate that the methane production and chemical oxygen demand (COD) removal was improved by continuous escalation of applied intensity, up to 50 kWh/m 3 . In comparison with untreated slurry, methane production and COD removal were increased up to 58% and 44%, respectively.

  7. Feeding on microbiomes: effects of detritivory on the taxonomic and phylogenetic bacterial composition of animal manures.

    PubMed

    Aira, Manuel; Bybee, Seth; Pérez-Losada, Marcos; Domínguez, Jorge

    2015-11-01

    Earthworms play a key role in nutrient cycling by interacting with microorganisms thus accelerating organic matter turnover in soil systems. As detritivores, some earthworm types ingest and digest a mixture of dead organic matter and microorganisms, like animal manures (i.e. animal gut microbiomes). Here we described the earthworm cast microbiome and the role ingested bacteria play on its composition. We fed Eisenia andrei with cow, horse and pig manures and determined the taxonomic and phylogenetic composition of the these manures before and after passage through the earthworm gut. Earthworm cast microbiomes showed a smaller diversity than the manure they fed on. Manures strongly differed in their taxonomic and phylogenetic composition, but these differences were markedly reduced once transformed into earthworm cast microbiomes after passage through the earthworm gut. The core earthworm cast microbiome comprised 30 OTUs (2.6% of OTUs from cast samples), of which 10 are possibly native to the earthworm gut. Most of the core cast microbiome OTUs belonged to phyla Actinobacteria and Proteobacteria, as opposed to already described animal core gut microbiomes, which are composed mainly of Firmicutes and Bacteroidetes. Our results suggest that earthworms build up their cast microbiome by selecting from the pool of ingested bacteria. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Kinetics of Methane Production from Swine Manure and Buffalo Manure.

    PubMed

    Sun, Chen; Cao, Weixing; Liu, Ronghou

    2015-10-01

    The degradation kinetics of swine and buffalo manure for methane production was investigated. Six kinetic models were employed to describe the corresponding experimental data. These models were evaluated by two statistical measurements, which were root mean square prediction error (RMSPE) and Akaike's information criterion (AIC). The results showed that the logistic and Fitzhugh models could predict the experimental data very well for the digestion of swine and buffalo manure, respectively. The predicted methane yield potential for swine and buffalo manure was 487.9 and 340.4 mL CH4/g volatile solid (VS), respectively, which was close to experimental values, when the digestion temperature was 36 ± 1 °C in the biochemical methane potential assays. Besides, the rate constant revealed that swine manure had a much faster methane production rate than buffalo manure.

  9. Stocking Density Optimization for Enhanced Bioconversion of Fly Ash Enriched Vermicompost.

    PubMed

    Mupambwa, Hupenyu A; Mnkeni, Pearson N S

    2016-05-01

    Although it is widely agreed that stocking density critically affects the rate of vermicomposting, there is no established stocking density for mixtures of fly ash and other waste materials. This study sought to optimize (Savigny, 1826) stocking density for effective biodegradation and nutrient release in a fly ash-cow dung-waste paper (FCP) mixture. Four stocking densities of 0, 12.5, 25, and 37.5 g worms kg were evaluated. Although the 12.5, 25, and 37.5 g worms kg treatments all resulted in a mature vermicompost, stocking densities of 25 and 37.5 g worms kg resulted in faster maturity, higher humification parameters, and a significantly lower final C/N ratio (range 11.1-10.4). The activity of β-glucosidase and fluorescein diacetate hydrolysis enzymes showed faster stabilization at stocking densities of 25 and 37.5 g worms kg, indicating compost stability and maturity. Similarly, a stocking density of 25 g worms kg resulted in the highest release of Olsen-extractable P and (NO + NO)-N contents. The 0-, 12.5-, 25-, and 37.5-g treatments resulted in net Olsen P increases of 16.3, 38.9, 61.0, and 53.0%, respectively, after 10 wk. Although compost maturity could be attained at stocking densities of 12.5 g worms kg, for faster production of humified and nutrient-rich FCP vermicompost, a stocking density of 25 g worms kg seems most appropriate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Water extractable phosphorus in animal manure and manure compost: quantities, characteristics, and temporal changes

    USDA-ARS?s Scientific Manuscript database

    Water extractable phosphorus (WEP) in manure and manure compost is widely used as an indicator of P release to runoff from manures and composts that are land applied. A survey of 600 manures and composts was conducted to assess trends in WEP related to manure and compost types from sources in Pennsy...

  11. Changes in pig production in China and their effects on nitrogen and phosphorus use and losses.

    PubMed

    Bai, Z H; Ma, L; Qin, W; Chen, Q; Oenema, O; Zhang, F S

    2014-11-04

    China's pig production has increased manifold in the past 50 years, and this has greatly affected the nitrogen and phosphorus use and losses in the pig production sector. However, the magnitude of these changes are not well-known. Here, we provide an in-depth account of the changes in pig production--N and P use and total N and P losses in the whole pig production chain during the period 1960-2010--through simulation modeling and using data from national statistics and farm surveys. For the period of 2010-2030, we explored possible effects of technological and managerial measures aimed at improving the performances of pig production via scenario analysis. We used and further developed the NUtrient flows in Food chains, Environment and Resources use (NUFER) model to calculate the feed requirement and consumption, and N and P losses in different pig production systems for all the years. Between 1960 and 2010, pig production has largely shifted from the so-called backyard system to landless systems. The N use efficiencies at fattener level increased from 18 to 28%, due to the increased animal productivity. However, the N use efficiencies at the whole-system level decreased from 46 to 11% during this period, mainly due to the increase of landless pig farms, which rely on imported feed and have no land-base for manure disposal. The total N and P losses were 5289 and 829 Gg in 2010, which is 30 and 95 times higher than in 1960. In the business as usual scenario, the total N and P losses were projected to increase by 25 and 55% between 2010 and 2030, respectively. Analyses of other scenarios indicate that packages of technological and managerial measures can decrease total N and P losses by 64 and 95%, respectively. Such improvements require major transition in the pig production sector, notably, in manure management, herd management, and feeding practices.

  12. Vermicomposting of herbal pharmaceutical industry waste: earthworm growth, plant-available nutrient and microbial quality of end materials.

    PubMed

    Singh, Deepika; Suthar, Surindra

    2012-05-01

    Efforts were made to decompose herbal pharmaceutical industrial waste (HPIW) spiked with cow dung (CD) using Eisenia fetida. A total of five vermibeds: T(1) - HPIW (0%+CD 100%, control), T(2) - HPIW (25%), T(3) - HPIW (50%), T(4) - HPIW (75%) and T(5) - HPIW (100%) were used for vermicomposting. The changes in biology and chemistry of vermibeds were measured after ten days interval. E. fetida showed high growth and cocoon production rate in all vermibeds. The vermicomposted material contained great population of fungi 6.0-40.6 (CFU × 10(5)g(-1)), bacteria 220-1276.0 (CFU × 10(8)g(-1)) and actinomycetes 410.0-2962.0 (CFU × 10(5)g(-1)) than initial material. Vermicomposted material was rich in plant-available forms of nutrients (N-NO(3)(-),PO(4)(3-),available K and SO(4)(-2)). Results suggested that noxious industrial waste can be converted into valuable product for sustainable soil fertility programme. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Effect of fertilising with pig slurry and chicken manure on GHG emissions from Mediterranean paddies.

    PubMed

    Maris, S C; Teira-Esmatges, M R; Bosch-Serra, A D; Moreno-García, B; Català, M M

    2016-11-01

    Soil fertilisation affects greenhouse gas emissions. The objective of this study was to compare the effect of different fertilisation strategies on N2O, CH4 emissions and on ecosystem respiration (CO2 emissions), during different periods of rice cultivation (rice crop, postharvest period, and seedling) under Mediterranean climate. Emissions were quantified weekly by the photoacoustic technique at two sites. At Site 1 (2011 and 2012), background treatments were 2 doses of chicken manure (CM): 90 and 170kgNH4(+)-Nha(-1) (CM-90, CM-170), urea (U, 150kgNha(-1)) and no-N (control). Fifty kilogram N ha(-1) ammonium sulphate (AS) were topdress applied to all of them. At Site 2 (2012), background treatments were 2 doses of pig slurry (PS): 91 and 152kgNH4(+)-Nha(-1) (PS-91, PS-152) and ammonium sulphate (AS) at 120kgNH4(+)-Nha(-1) and no-N (control). Sixty kilogram NH4(+)-Nha(-1) as AS were topdress applied to AS and PS-91. During seedling, global warming potential (GWP) was ~3.5-17% of that of the whole rice crop for the CM treatments. The postharvest period was a net sink for CH4, and CO2 emissions only increased for the CM-170 treatment (up to 2MgCO2ha(-1)). The GWP of the entire rice crop reached 17Mg CO2-eqha(-1) for U, and was 14 for CM-170, and 37 for CM-90. The application of PS at agronomic doses (~170kgNha(-1)) allowed high yields (~7.4Mgha(-1)), the control of GWP (~6.5MgCO2-eqha(-1)), and a 13% reduction in greenhouse gas intensity (GHGI) to 0.89kgCO2-eqkg(-1) when compared to AS (1.02kgCO2-eqkg(-1)). Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Microbiological community analysis of vermicompost tea and its influence on the growth of vegetables and cereals.

    PubMed

    Fritz, J I; Franke-Whittle, I H; Haindl, S; Insam, H; Braun, R

    2012-07-01

    Vermicompost, the digestion product of organic material by earthworms, has been widely reported to have a more positive effect on plant growth and plant health than conventional compost. A study was conducted to investigate the effects of different vermicompost elutriates (aerated compost teas) on soils and plant growth. The teas were analyzed by chemical, microbiological, and molecular methods accompanied by plant growth tests at laboratory and field scale. The number of microorganisms in the teas increased during the extraction process and was affected by substrate addition. The vermicompost tea found to increase plant growth best under laboratory tests was applied to cereals (wheat and barley) and vegetables (Raphanus sativus, Rucola selvatica, and Pisum sativum) in a field study. The results revealed no effects of tea application on plant yield; however, sensoric tests indicated an improvement in crop quality. The soils from laboratory and field studies were investigated to detect possible microbial or chemical changes. The results indicated that minor changes to the soil microbial community occurred following tea application by foliar spray in both the laboratory-scale and field-scale experiments.

  15. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw.

    PubMed

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency.

  16. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw

    PubMed Central

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency. PMID:26609436

  17. Process dominance analysis for fate modeling of flubendazole and fenbendazole in liquid manure and manured soil.

    PubMed

    Moenickes, Sylvia; Höltge, Sibylla; Kreuzig, Robert; Richter, Otto

    2011-12-01

    Fate monitoring data on anaerobic transformation of the benzimidazole anthelmintics flubendazole (FLU) and fenbendazole (FEN) in liquid pig manure and aerobic transformation and sorption in soil and manured soil under laboratory conditions were used for corresponding fate modeling. Processes considered were reversible and irreversible sequestration, mineralization, and metabolization, from which a set of up to 50 different models, both nested and concurrent, was assembled. Five selection criteria served for model selection after parameter fitting: the coefficient of determination, modeling efficiency, a likelihood ratio test, an information criterion, and a determinability measure. From the set of models selected, processes were classified as essential or sufficient. This strategy to identify process dominance was corroborated through application to data from analogous experiments for sulfadiazine and a comparison with established fate models for this substance. For both, FLU and FEN, model selection performance was fine, including indication of weak data support where observed. For FLU reversible and irreversible sequestration in a nonextractable fraction was determined. In particular, both the extractable and the nonextractable fraction were equally sufficient sources for irreversible sequestration. For FEN generally reversible formation of the extractable sulfoxide metabolite and reversible sequestration of both the parent and the metabolite were dominant. Similar to FLU, irreversible sequestration in the nonextractable fraction was determined for which both the extractable or the nonextractable fraction were equally sufficient sources. Formation of the sulfone metabolite was determined as irreversible, originating from the first metabolite. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Combination of anaerobic effluent and lignocellulosic bacterial consortium to reduce vermicomposting time

    USDA-ARS?s Scientific Manuscript database

    Utilization of solid bio-fertilizers is an alternative to avoid chemical degradation of soil. Anaerobic biodigestor effluents/digestates have been used effectively as fertilizers. However, they may have several risk factors such as the presence of pathogens and heavy metals. Vermicomposting could he...

  19. Microbial pollution in wildlife: Linking agricultural manuring and bacterial antibiotic resistance in red-billed choughs.

    PubMed

    Blanco, Guillermo; Lemus, Jesús A; Grande, Javier

    2009-05-01

    The spread of pathogens in the environment due to human activities (pathogen pollution) may be involved in the emergence of many diseases in humans, livestock and wildlife. When manure from medicated livestock and urban effluents is spread onto agricultural land, both residues of antibiotics and bacteria carrying antibiotic resistance may be introduced into the environment. The transmission of bacterial resistance from livestock and humans to wildlife remains poorly understood even while wild animals may act as reservoirs of resistance that may be amplified and spread in the environment. We determined bacterial resistance to antibiotics in wildlife using the red-billed chough Pyrrhocorax pyrrhocorax as a potential bioindicator of soil health, and evaluated the role of agricultural manuring with waste of different origins in the acquisition and characteristics of such resistance. Agricultural manure was found to harbor high levels of bacterial resistance to multiple antibiotics. Choughs from areas where manure landspreading is a common agricultural practice harbor a high bacterial resistance to multiple antibiotics, resembling the resistance profile found in the waste (pig slurry and sewage sludge) used in each area. The transfer of bacterial resistance to wildlife should be considered as an important risk for environmental health when agricultural manuring involves fecal material containing multiresistant enteric bacteria including pathogens from livestock operations and urban areas. The assessment of bacterial resistance in wild animals may be valuable for the monitoring of environmental health and for the management of emergent infectious diseases influenced by the impact of different human activities in the environment.

  20. Functional Response of Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae) to Aphis gossypii Glover (Hemiptera: Aphididae): Effects of Vermicompost and Host Plant Cultivar.

    PubMed

    Mottaghinia, L; Hassanpour, M; Razmjou, J; Hosseini, M; Chamani, E

    2016-02-01

    Interactions between natural enemies and herbivores may be affected by application of fertilizers and different cultivars. We investigated the functional response of the predatory gall midge, Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae) larvae to the nymphs of the melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae), reared on two commonly grown cucumber cultivars in Iran (Khasib and Karim) treated with different vermicompost/soil ratios (0:100, 10:90, 20:80, and 30:70%). Based on logistic regression analysis, A. aphidimyza revealed a type II functional response to the aphid in all treatments. Attack rates and handling times of A. aphidimyza larvae on different vermicompost/soil ratios ranged from 0.076 to 0.140 h(-1) and 0.969 to 1.164 h on Khasib and from 0.092 to 0.123 h(-1) and 0.905 to 1.229 h on Karim, respectively. Furthermore, increasing the density of the melon aphid on both cultivars amended with vermicompost/soil ratios resulted in increased prey consumption by the predator. Density of trichomes increased when plants received higher concentrations of vermicompost. So, trichomes may be responsible for different attack rates and handling times of A. aphidimyza on both cultivars.

  1. Humic acid batteries derived from vermicomposts at different C/N ratios

    NASA Astrophysics Data System (ADS)

    Shamsuddin, R. M.; Borhan, A.; Lim, W. K.

    2017-06-01

    Humic acid is a known fertilizer derived from decomposed organic matters. Organic wastes are normally landfilled for disposal which had contributed negatively to the environment. From waste-to-wealth perspective, such wastes are potential precursors for compost fertilizers. When worms are added into a composting process, the process is termed as vermicomposting. In this work, humic acid from vermicompost derived from campus green wastes was developed into a battery. This adds value proposition to compost instead of being traditionally used solely as soil improver. This research work aimed to study the correlation between electrical potential generated by humic acid at different Carbon to Nitrogen (C/N) ratios of vermicompost at 20, 25, 30 and 35. The temperature and pH profiles of composting revealed that the compost was ready after 55 days. The humic acid was extracted from compost via alkaline extraction followed by precipitation in a strong acid. The extracted humic acid together with other additives were packed into a compartment and termed as vermibattery. Another set of battery running only on the additives was also prepared as a control. The net voltage produced by a single vermibattery cell with Zn and PbO electrodes was in the range of 0.31 to 0.44 V with compost at C/N ratio of 30 gave the highest voltage. The battery can be connected in series to increase the voltage generation. Quality assessment on the compost revealed that the final carbon content is between 16 to 23 wt%, nitrogen content of 0.4 to 0.5 wt%, humic acid yield of 0.7 to 1.5 wt% and final compost mass reduction of 10 to 35 wt%. Composting campus green wastes carries multi-fold benefits of reducing labour requirement, generating fertilizer for campus greenery and green battery construction.

  2. Residues and potential ecological risks of veterinary antibiotics in manures and composts associated with protected vegetable farming.

    PubMed

    Zhang, Haibo; Luo, Yongming; Wu, Longhua; Huang, Yujuan; Christie, Peter

    2015-04-01

    Veterinary antibiotics (VAs) are emerging contaminants and enter into soil principally by agricultural application of organic fertilizer. A total of 33 solid animal manures and 17 compost samples from protected vegetable farms in nine areas of China were analyzed for the antibiotic classes of tetracyclines, fluoroquinolones, sulfonamides, and macrolides (17 substances in total). Oxytetracycline was found as a dominant compound in the samples, and its highest concentration reached 416.8 mg kg(-1) in a chicken manure sample from Shouguang, Shandong Province. Among the samples, animal manures (especially pig manure) contained higher VA residues than composts. However, fluoroquinolones exhibited higher persistence in the compost samples than other antibiotic classes. This is particularly the case in the rice husk compost, which contained the highest level of ofloxacin and ciprofloxacin (1334.5 and 1717.4 μg kg(-1) on average, respectively). The veterinary antibiotic profile in the risk husk compost had a good relationship with that in the corresponding manures. The refined commercial compost had the lowest VA residues among the compost samples in general. This implied that composting process might be important to reduce the antibiotic residue. High residue of antibiotics in soil was assumed to be a hazard to ecosystem. This is especially noticeable under current application rates (150 t ha(-1) a(-1)) in protected vegetable farming because over half of the samples exhibited a risk quotient (RQ) >1 for one or more antibiotics.

  3. Investigation on paper cup waste degradation by bacterial consortium and Eudrillus eugeinea through vermicomposting.

    PubMed

    Arumugam, Karthika; Renganathan, Seenivasagan; Babalola, Olubukola Oluranti; Muthunarayanan, Vasanthy

    2018-04-01

    Disposable Paper cups are a threat to the environment and are composed of 90% high strength paper with 5% thin coating of polyethylene. This polyethylene prevents the paper cup from undergoing degradation in the soil. Hence, in the present study two different approaches towards the management of paper cup waste through vermicomposting technology has been presented. The experimental setup includes 2 plastic reactors namely Vermicompost (VC) (Cow dung + Paper cup waste + Earthworm (Eudrillus eugeinea)) and Vermicompost with bacterial consortium (VCB) (Cow dung + Paper cup waste + Eudrillus eugeinea + Microbial consortia such as Bacillus anthracis, B. endophyticus, B. funiculus, B. thuringiensis, B. cereus, B. toyonensis, Virigibacillius chiquenigi, Acinetobacter baumanni and Lactobacillus pantheries). After treatment the physicochemical parameters were analysed. The results showed that the values of TOC (26.52 and 37.47%), TOM (36.01 and 33.13%) and C/N (15.02 and 11.92%) ratio are reduced in both VC and VCB whereas, the values of pH (8.01 and 7.56), EC (1.2-1.9 µs -1 and 1.4-1.9 µs -1 ), TP (46.1 and 51%), TMg (50.52 and 64.3%), TCa (50 and 64%), TNa (1.39 and 1.75%) and TK (1.75 and 1.86%) have increased. This study substantiates the addition of the microbial consortia augmenting the degradation in VCB reactor by reducing the period of process from 19 to 12 weeks. Further the characterisation of the vermicompost prepared from paper cup with FT-IR shows high degradation of carboxylic and aliphatic group; SEM analysis shows the disaggregation of cellulose and lignin; XRD shows the degradation of cellulose. All these analyses endorse the degradation of the paper cup waste faster with microbes (VCB). Thus, this present study high lights management of the paper cup waste in a relatively short period of time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Synergism and effect of high initial volatile fatty acid concentrations during food waste and pig manure anaerobic co-digestion.

    PubMed

    Dennehy, Conor; Lawlor, Peadar G; Croize, Thomas; Jiang, Yan; Morrison, Liam; Gardiner, Gillian E; Zhan, Xinmin

    2016-10-01

    Anaerobic co-digestion of food waste (FW) and pig manure (PM) was undertaken in batch mode at 37°C in order to identify and quantify the synergistic effects of co-digestion on the specific methane yield (SMY) and reaction kinetics. The effects of the high initial volatile fatty acid (VFA) concentrations in PM on synergy observed during co-digestion, and on kinetic modelling were investigated. PM to FW mixing ratios of 1/0, 4/1, 3/2, 2/3, 1/4 and 0/1 (VS basis) were examined. No VFA or ammonia inhibition was observed. The highest SMY of 521±29ml CH4/gVS was achieved at a PM/FW mixing ratio of 1/4. Synergy in terms of both reaction kinetics and SMY occurred at PM/FW mixing ratios of 3/2, 2/3 and 1/4. Initial VFA concentrations did not explain the synergy observed. Throughout the study the conversion of butyric acid was inhibited. Due to the high initial VFA content of PM, conventional first order and Gompertz models were inappropriate for determining reaction kinetics. A dual pooled first order model was found to provide the best fit for the data generated in this study. The optimal mixing ratio in terms of both reaction kinetics and SMY was found at a PM/FW mixing ratio of 1/4. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Assessing anaerobic co-digestion of pig manure with agroindustrial wastes: the link between environmental impacts and operational parameters.

    PubMed

    Rodriguez-Verde, Ivan; Regueiro, Leticia; Carballa, Marta; Hospido, Almudena; Lema, Juan M

    2014-11-01

    Anaerobic co-digestion (AcoD) is established as a techno-economic profitable process by incrementing biogas yield (increased cost-efficiency) and improving the nutrient balance (better quality digestate) in comparison to mono-digestion of livestock wastes. However, few data are available on the environmental consequences of AcoD and most of them are mainly related to the use of energy crops as co-substrates. This work analysed the environmental impact of the AcoD of pig manure (PM) with several agroindustrial wastes (molasses, fish, biodiesel and vinasses residues) using life cycle assessment (LCA) methodology. For comparative purposes, mono digestion of PM has also been evaluated. Four out of six selected categories (acidification, eutrophication, global warming and photochemical oxidation potentials) showed environmental impacts in all the scenarios assessed, whereas the other two (abiotic depletion and ozone layer depletion potentials) showed environmental credits, remarking the benefit of replacing fossil fuels by biogas. This was also confirmed by the sensitivity analysis applied to the PM quality (i.e. organic matter content) and the avoided energy source demonstrating the importance of the energy recovery step. The influence of the type of co-substrate could not be discerned; however, a link between the environmental performance and the hydraulic retention time, the organic loading rate and the nutrient content in the digestate could be established. Therefore, LCA results were successfully correlated to process variables involved in AcoD, going a step further in the combination of techno-economic and environmental feasibilities. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Antibiotic losses from unprotected manure stockpiles.

    PubMed

    Dolliver, Holly A S; Gupta, Satish C

    2008-01-01

    Manure management is a major concern in livestock production systems. Although historically the primary concerns have been nutrients and pathogens, manure is also a source of emerging contaminants, such as antibiotics, to the environment. There is a growing concern that antibiotics in manure are reaching surface and ground waters and contributing to the development and spread of antibiotic resistance in the environment. One such pathway is through leaching and runoff from manure stockpiles. In this study, we quantified chlortetracycline, monensin, and tylosin losses in runoff from beef manure stockpiles during two separate but consecutive experiments representing different weather conditions (i.e., temperature and precipitation amount and form). Concentrations of chlortetracycline, monensin, and tylosin in runoff were positively correlated with initial concentrations of antibiotics in manure. The highest concentrations of chlortetracycline, monensin, and tylosin in runoff were 210, 3175, and 2544 microg L(-1), respectively. Relative antibiotic losses were primarily a function of water losses. In the experiment that had higher runoff water losses, antibiotic losses ranged from 1.2 to 1.8% of total extractable antibiotics in manure. In the experiment with lower runoff water losses, antibiotic losses varied from 0.2 to 0.6% of the total extractable antibiotics in manure. Manure analysis over time suggests that in situ degradation is an important mechanism for antibiotic losses. Degradation losses during manure stockpiling may exceed cumulative losses from runoff events. Storing manure in protected (i.e., covered) facilities could reduce the risk of aquatic contamination associated with manure stockpiling and other outdoor manure management practices.

  7. Vermistabilization of sugar beet (Beta vulgaris L) waste produced from sugar factory using earthworm Eisenia fetida: Genotoxic assessment by Allium cepa test.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2015-08-01

    In the present study, sugar beet mud (SBM) and pulp (SBP) produced as a waste by-products of the sugar industry were mixed with cattle dung (CD) at different ratios on dry weight basis for vermicomposting with Eisenia fetida. Minimum mortality and highest population of worms were observed in 20:80 (SBM20) mixture of SBM and 10:90 (SBP10) ratios. However, increased percentages of wastes significantly affected the growth and fecundity of worms. Nutrients like nitrogen, phosphorus, sodium, increased from initial feed mixture to final products (i.e., vermicompost), while organic carbon (OC), C:N ratio and electrical conductivity (EC) declined in all the products of vermicomposting. Although there was an increase in the contents of all the heavy metals except copper, chromium, and iron in SBM, the contents were less than the international standards for compost which indicates that the vermicompost can be used in the fields without any ill effects on the soil. Allium cepa root chromosomal aberration assay was used to evaluate the genotoxicity of pre- and post-vermicomposted SBM to understand the effect of vermicomposting on the reduction of toxicity. Genotoxicity analysis of post-vermicomposted samples of SBM revealed 18-75% decline in the aberration frequencies. Scanning electron microscopy (SEM) was recorded to identify the changes in texture in the control and vermicomposted samples. The vermicomposted mixtures in the presence of earthworms confirm more numerous surface irregularities that prove to be good manure.

  8. Sulfonamide-Resistant Bacteria and Their Resistance Genes in Soils Fertilized with Manures from Jiangsu Province, Southeastern China

    PubMed Central

    Jiao, Shaojun; Zhang, Jun; Ye, Boping; Gao, Shixiang

    2014-01-01

    Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of antibiotic resistance genes (ARGs) increasingly in the soil. The frequency of sulfonamide resistance genes was sul1 > sul2 > sul3 in pig-manured soil DNA and sul2 > sul1 > sul3 in chicken-manured soil DNA. Further analysis suggested that the frequency distribution of the sul genes in the genomic DNA and plasmids of the SR isolates from manured soil was sul2 > sul1 > sul3 overall (p<0.05). The combination of sul1 and sul2 was the most frequent, and the co-existence of sul1 and sul3 was not found either in the genomic DNA or plasmids. The sample type, animal type and sampling time can influence the prevalence and distribution pattern of sulfonamide resistance genes. The present study also indicated that Bacillus, Pseudomonas and Shigella were the most prevalent sul-positive genera in the soil, suggesting a potential human health risk. The above results could be important in the evaluation of antibiotic-resistant bacteria and genes from manure as sources of agricultural soil pollution; the results also demonstrate the necessity and urgency of the regulation and supervision of veterinary antibiotics in China. PMID:25405870

  9. Sulfonamide-resistant bacteria and their resistance genes in soils fertilized with manures from Jiangsu Province, Southeastern China.

    PubMed

    Wang, Na; Yang, Xiaohong; Jiao, Shaojun; Zhang, Jun; Ye, Boping; Gao, Shixiang

    2014-01-01

    Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of antibiotic resistance genes (ARGs) increasingly in the soil. The frequency of sulfonamide resistance genes was sul1 > sul2 > sul3 in pig-manured soil DNA and sul2 > sul1 > sul3 in chicken-manured soil DNA. Further analysis suggested that the frequency distribution of the sul genes in the genomic DNA and plasmids of the SR isolates from manured soil was sul2 > sul1 > sul3 overall (p<0.05). The combination of sul1 and sul2 was the most frequent, and the co-existence of sul1 and sul3 was not found either in the genomic DNA or plasmids. The sample type, animal type and sampling time can influence the prevalence and distribution pattern of sulfonamide resistance genes. The present study also indicated that Bacillus, Pseudomonas and Shigella were the most prevalent sul-positive genera in the soil, suggesting a potential human health risk. The above results could be important in the evaluation of antibiotic-resistant bacteria and genes from manure as sources of agricultural soil pollution; the results also demonstrate the necessity and urgency of the regulation and supervision of veterinary antibiotics in China.

  10. Effects of manure storage additivies on manure composition and greenhouse gas and ammonia emissions

    USDA-ARS?s Scientific Manuscript database

    Abstract: Storage of dairy manure slurry allows for flexibility in the timing of land application of manure to reduce environmental impacts related to water quality. Yet, manure storage can increase greenhouse gas (GHG) and ammonia emissions and cause operational issues due to the buildup of slurry ...

  11. Assessment of the Contribution of Poultry and Pig Production to Greenhouse Gas Emissions in South Korea Over the Last 10 Years (2005 through 2014).

    PubMed

    Boontiam, Waewaree; Shin, Yongjin; Choi, Hong Lim; Kumari, Priyanka

    2016-12-01

    The goal of this study was to estimate the emissions of greenhouse gases (GHG), namely methane (CH 4 ), nitrous oxide (N 2 O), and carbon dioxide (CO 2 ) from poultry and pig production in South Korea over the last 10 years (2005 through 2014). The calculations of GHG emissions were based on Intergovernmental Panel on Climate Change (IPCC) guidelines. Over the study period, the CH 4 emission from manure management decreased in layer chickens, nursery to finishing pigs and gestating to lactating sows, but there was a gradual increase in CH 4 emission from broiler chickens and male breeding pigs. Both sows and nursery to finishing pigs were associated with greater emissions from enteric fermentation than the boars, especially in 2009. Layer chickens produced lower direct and indirect N 2 O emissions from 2009 to 2014, whereas the average direct and indirect N 2 O emissions from manure management for broiler chickens were 12.48 and 4.93 Gg CO 2 -eq/yr, respectively. Annual direct and indirect N 2 O emissions for broiler chickens tended to decrease in 2014. Average CO 2 emission from direct on-farm energy uses for broiler and layer chickens were 46.62 and 136.56 Gg CO 2 -eq/yr, respectively. For pig sectors, the N 2 O emission from direct and indirect sources gradually increased, but they decreased for breeding pigs. Carbon dioxide emission from direct on-farm energy uses reached a maximum of 53.93 Gg CO 2 -eq/yr in 2009, but this total gradually declined in 2010 and 2011. For boars, the greatest CO 2 emission occurred in 2012 and was 9.44 Gg CO 2 -eq/yr. Indirect N 2 O emission was the largest component of GHG emissions in broilers. In layer chickens, the largest contributing factor to GHG emissions was CO 2 from direct on-farm energy uses. For pig production, the largest component of GHG emissions was CH 4 from manure management, followed by CO 2 emission from direct on-farm energy use and CH 4 enteric fermentation emission, which accounted for 8.47, 2.85, and 2

  12. Assessment of the Contribution of Poultry and Pig Production to Greenhouse Gas Emissions in South Korea Over the Last 10 Years (2005 through 2014)

    PubMed Central

    Boontiam, Waewaree; Shin, Yongjin; Choi, Hong Lim; Kumari, Priyanka

    2016-01-01

    The goal of this study was to estimate the emissions of greenhouse gases (GHG), namely methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) from poultry and pig production in South Korea over the last 10 years (2005 through 2014). The calculations of GHG emissions were based on Intergovernmental Panel on Climate Change (IPCC) guidelines. Over the study period, the CH4 emission from manure management decreased in layer chickens, nursery to finishing pigs and gestating to lactating sows, but there was a gradual increase in CH4 emission from broiler chickens and male breeding pigs. Both sows and nursery to finishing pigs were associated with greater emissions from enteric fermentation than the boars, especially in 2009. Layer chickens produced lower direct and indirect N2O emissions from 2009 to 2014, whereas the average direct and indirect N2O emissions from manure management for broiler chickens were 12.48 and 4.93 Gg CO2-eq/yr, respectively. Annual direct and indirect N2O emissions for broiler chickens tended to decrease in 2014. Average CO2 emission from direct on-farm energy uses for broiler and layer chickens were 46.62 and 136.56 Gg CO2-eq/yr, respectively. For pig sectors, the N2O emission from direct and indirect sources gradually increased, but they decreased for breeding pigs. Carbon dioxide emission from direct on-farm energy uses reached a maximum of 53.93 Gg CO2-eq/yr in 2009, but this total gradually declined in 2010 and 2011. For boars, the greatest CO2 emission occurred in 2012 and was 9.44 Gg CO2-eq/yr. Indirect N2O emission was the largest component of GHG emissions in broilers. In layer chickens, the largest contributing factor to GHG emissions was CO2 from direct on-farm energy uses. For pig production, the largest component of GHG emissions was CH4 from manure management, followed by CO2 emission from direct on-farm energy use and CH4 enteric fermentation emission, which accounted for 8.47, 2.85, and 2.82 Gg-CO2/yr, respectively. The

  13. Belt separation system under slat in fattening pig housing: effect of belt type and extraction frequency.

    PubMed

    Alonso, F; Vázquez, J; Ovejero, I; Garcimartín, M A; Mateos, A; Sánchez, E

    2010-08-01

    The efficiency of manure separation by a conveyor belt under a partially slatted floor for fattening pigs was determined for two types of belts, a flat belt with an incline of up to 6 degrees transversely and a concave belt with an incline of up to 1 degrees longitudinally. A 31.20% and 23.75% dry matter content of the solid fraction was obtained for the flat and concave belt, respectively. The flat belt was more efficient at 6 degrees than other slope angles. The residence time of the manure on the two belt types influenced the separation efficiency from a live weight of 63.00 kg upwards. The quantity of residue produced with this system was reduced to 25-40% with respect to a pit system under slat. This could mean a remarkable reduction in costs of storage, transport and application of manure. (c) 2010 Elsevier Ltd. All rights reserved.

  14. An Electronic Worker Service System of the Pig House Based on ATmega16

    NASA Astrophysics Data System (ADS)

    Li, Liu-An; Jin, Tian-Ming; Yu, Ya-Ping; Zhang, Guo-Qiang; Hong, Tao

    Pork is very important for people in daily life. Quality of livestock environment is closely related to the growth of animals. To improve environmental quality, the paper designed an electronic worker service system of the pig house based on ATmega16, which consisted of 6 detection modules, wireless data collecting, GSM, time circuit, display, anti-th alarm and music player, etc. A small LAN was constructed by wireless transceiver module to test and collect data of temperature, humidity and harmful gas concentration in the pig house. If one detection point exists that harmful pollutant gases concentration exceeds the standard value, GSM module took a message for livestock farmers, so that farmers can promptly arrive at the pig house to ventilate or deal with manure in the pig house, which can effectively prevent from bad things. Time of pyroelectric detector deployment can be freely set, and intrusion information was timely sent to the users. The anti-th alarm function was achieved by the auxiliary light. The music playing module is open by timer module in order to soothing pigs' life state. All are suitable for small farms and can save human resources.

  15. Environmental chemistry of animal manure

    USDA-ARS?s Scientific Manuscript database

    Animal manure is traditionally regarded as a valuable resource of plant nutrients. However, there is an increasing environmental concern associated with animal manure utilization due to high and locally concentrated volumes of manure produced in modern intensified animal production. Although conside...

  16. Interactions between phosphorus feeding strategies for pigs and dairy cows and separation efficiency of slurry.

    PubMed

    Sommer, S G; Maahn, M; Poulsen, H D; Hjorth, M; Sehested, J

    2008-01-01

    Phosphorus (P) in manure is a nutrient source for plants, but surplus P amended to fields represents a risk to the environment. This study examines the interactions between low-P diets for pigs and dairy cows and the separation of animal slurry into a solid P fraction and a liquid fraction. Replacing inorganic phosphates with phytase in pig feed reduced the concentration of P in slurry by 35%, but supplementing concentrates to dairy cows did not affect the P concentration in cattle slurry. Particle-size fractions of the slurry were not affected by these dietary changes. The amount of dry matter (DM) in the < 0.025 mm fraction was greater in pig slurry than in cattle slurry, but the relative amounts of P and nitrogen (N) were larger in the > 0.025 mm fraction. Replacing feed phosphate, in the form of mono-calcium phosphate, with phytase in the pig diet reduced the separation index (efficiency) of P from 80% to 60%.

  17. Coupling Cover Crops with Alternative Swine Manure Application Strategies: Manure-15N Tracer Studies

    USDA-ARS?s Scientific Manuscript database

    Integration of rye cover crops with alternative liquid swine (Sus scrofa L.) manure application strategies may enhance retention of manure N in corn (Zea mays L.) - soybean [Glycine max (L.) Merr] cropping systems. The objective of this study was to quantify uptake of manure derived-N by a rye (Seca...

  18. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants.

    PubMed

    Goswami, Linee; Nath, Anil; Sutradhar, Sweety; Bhattacharya, Satya Sundar; Kalamdhad, Ajay; Vellingiri, Kowsalya; Kim, Ki-Hyun

    2017-09-15

    Utilization of different types of solid wastes through composting is important for environmental sustainability and restoring soil quality. Although drum composting is an efficient technology, the possibility of heavy metal contamination restricts its large-scale use. In this research, a field experiment was conducted to evaluate the impact of water hyacinth drum compost (DC) and traditional vermicompost (VC) on soil quality and crop growth in an agro-ecosystem cultivated intensively with tomato and cabbage as test crops. A substantial improvement in soil health was observed with respect to nutrient availability, physical stability, and microbial diversity due to the application of drum compost and traditional vermicompost. Moreover, soil organic carbon was enriched through increased humic and fulvic acid carbon. Interestingly, heavy metal contamination was less significant in vermicompost-treated soils than in those receiving the other treatments. The use of VC and DC in combination with recommended chemical fertilization effectively stimulated crop growth, yield, product quality, and storage longevity for both tomato and cabbage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Distribution of antibiotic-resistant bacteria in chicken manure and manure-fertilized vegetables.

    PubMed

    Yang, Qingxiang; Ren, Siwei; Niu, Tianqi; Guo, Yuhui; Qi, Shiyue; Han, Xinkuan; Liu, Dong; Pan, Feng

    2014-01-01

    Veterinary manure is an important pollution reservoir of antibiotics and antibiotic-resistant bacteria (ARB). However, little is known of the distribution of ARB in plant endophytic bacteria and the number/types of ARB in chicken manure. In this study, 454-pyrosequencing was used to investigate the distribution and composition of ARBs in chicken manure and fertilized vegetables. The prevalence of ARB in the samples of the chicken manure compost recovered from farms on which amoxicillin, kanamycin, gentamicin, and cephalexin were used was 20.91-65.9% for ARBs and 8.24-20.63% simultaneously resistant to two or more antibiotics (multiple antibiotic resistant bacteria (MARB)). Antibiotic-resistant endophytic bacteria were widely detected in celery, pakchoi, and cucumber with the highest rate of resistance to cephalexin. The pyrosequencing indicated that the chicken manure dominantly harbored Firmicutes, Bacteroidetes, Synergistetes, and Proteobacteria and that Bacteroidetes was significantly enhanced in farms utilizing antibiotics. In the total cultivable colonies, 62.58-89.43% ARBs and 95.29% MARB were clustered in Bacteroidetes with the dominant species (Myroides ordoratimimus and Spningobacterium spp., respectively) related to human clinical opportunistic pathogens.

  20. Management of fresh water weeds (macrophytes) by vermicomposting using Eisenia fetida.

    PubMed

    Najar, Ishtiyaq Ahmed; Khan, Anisa B

    2013-09-01

    In the present study, potential of Eisenia fetida to recycle the different types of fresh water weeds (macrophytes) used as substrate in different reactors (Azolla pinnata reactor, Trapa natans reactor, Ceratophyllum demersum reactor, free-floating macrophytes mixture reactor, and submerged macrophytes mixture reactor) during 2 months experiment is investigated. E. fetida showed significant variation in number and weight among the reactors and during the different fortnights (P <0.05) with maximum in A. pinnata reactor (number 343.3 ± 10.23 %; weight 98.62 ± 4.23 % ) and minimum in submerged macrophytes mixture reactor (number 105 ± 5.77 %; weight 41.07 ± 3.97 % ). ANOVA showed significant variation in cocoon production (F4 = 15.67, P <0.05) and mean body weight (F4 = 13.49, P <0.05) among different reactors whereas growth rate (F3 = 23.62, P <0.05) and relative growth rate (F3 = 4.91, P <0.05) exhibited significant variation during different fortnights. Reactors showed significant variation (P <0.05) in pH, Electrical conductivity (EC), Organic carbon (OC), Organic nitrogen (ON), and C/N ratio during different fortnights with increase in pH, EC, N, and K whereas decrease in OC and C/N ratio. Hierarchical cluster analysis grouped five substrates (weeds) into three clusters-poor vermicompost substrates, moderate vermicompost substrate, and excellent vermicompost substrate. Two principal components (PCs) have been identified by factor analysis with a cumulative variance of 90.43 %. PC1 accounts for 47.17 % of the total variance represents "reproduction factor" and PC2 explaining 43.26 % variance representing "growth factor." Thus, the nature of macrophyte affects the growth and reproduction pattern of E. fetida among the different reactors, further the addition of A. pinnata in other macrophytes reactors can improve their recycling by E. fetida.

  1. Comparative assessment of heavy metals content during the composting and vermicomposting of Municipal Solid Waste employing Eudrilus eugeniae.

    PubMed

    Soobhany, Nuhaa; Mohee, Romeela; Garg, Vinod Kumar

    2015-05-01

    This study was undertaken to have comparative assessment of heavy metals content during composting and vermicomposting processing of Municipal Solid Waste (MSW). Six scenarios were set up in which three experiments were for composting (controls) denoted as S1 for food waste, S2 for paper waste and S3 for yard waste and the corresponding replicates for vermicomposting processes were S4, S5 and S6. Vermicomposting caused significant reduction in Cd (43.3-73.5%), Cr (11.3-52.8%), Cu (18.9-62.5%), Co (21.4-47.6%), Zn (34.6%) and Ni (19.9-49.6%) compared to composting which showed a progressive increase. Addition of worms did not show any effect on Fe and Mn, most probably from the genesis of organic-bound complexes. The efficacy of utilizing Eudrilus eugeniae was indicated by the high values of bioconcentration factors (BCFs) which were in the order of Cd>Ni>Cu>Co>Cr>Zn and the increase amount of these metals in the earthworms' tissue after the vermicomposting processes. Different values of BCFs were obtained for different heavy metals and this accounted that earthworms exert different metabolic mechanisms. Regression analysis of the reduction percentages (R) in relation to BCF showed that RCdtot.S6, RCrtot.S5 and RCutot.S6 were significantly correlated with BCFCd.S6, BCFCr.S5 and BCFCu.S6 respectively. Thus, in comparison to simple composting processes, data analysis suggested the feasibility of inoculating E. eugeniae to MSW in order to mitigate the content of toxic heavy metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Complete genome sequence of Peptoniphilus sp. strain ING2-D1G isolated from a mesophilic lab-scale completely stirred tank reactor utilizing maize silage in co-digestion with pig and cattle manure for biomethanation.

    PubMed

    Tomazetto, Geizecler; Hahnke, Sarah; Maus, Irena; Wibberg, Daniel; Pühler, Alfred; Schlüter, Andreas; Klocke, Michael

    2014-12-20

    The bacterium Peptoniphilus sp. strain ING2-D1G (DSM 28672), a mesophilic and obligate anaerobic bacterium belonging to the order Clostridiales was isolated from a biogas-producing lab-scale completely stirred tank reactor (CSTR) optimized for anaerobic digestion of maize silage in co-fermentation with pig and cattle manure. In this study, the whole genome sequence of Peptoniphilus sp. strain ING2-D1G, a new isolate potentially involved in protein breakdown and acidogenesis during biomass degradation, is reported. The chromosome of this strain is 1.6Mb in size and encodes genes predicted to be involved in the production of acetate, lactate and butyrate specifying the acidogenic metabolism of the isolate. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Performance evaluation of a completely stirred anaerobic reactor treating pig manure at a low range of mesophilic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jianbin, E-mail: jianbinguo@gmail.com; Dong, Renjie; Clemens, Joachim

    Highlights: • The biogas process can run stably at 20 °C at extremely low OLR after long-term acclimation of bacteria. • A biogas plant running at 28 °C seems as efficient as that operated at 38 °C at low OLR of 1.3 g ODM L{sup −1} d{sup −1}. • Lower temperature operation is inadvisable for the commercial biogas plant running at rather high OLR. • The estimated sludge yield at 28 °C is higher than that at 38 °C. - Abstract: Many Chinese biogas plants run in the lower range of mesophilic conditions. This study evaluated the performance of amore » completely stirred anaerobic reactor treating pig manure at different temperatures (20, 28 and 38 °C). The start-up phase of the reactor at 20 °C was very long and extremely poor performance was observed with increasing organic loading rate (OLR). At an OLR of 4.3 g ODM L{sup −1} d{sup −1}, methane production at 28 °C was comparable (3% less) with that at 38 °C, but the risk of acidification was high at 28 °C. At low OLR (1.3 g ODM L{sup −1} d{sup −1}), the biogas process appeared stable at 28 °C and gave same methane yields as compared to the reactor operating at 38 °C. The estimated sludge yield at 28 °C was 0.065 g VSS g{sup −1} COD{sub removed,} which was higher than that at 38 °C (0.016 g VSS g{sup −1} COD{sub removed})« less

  4. Study on shrimp waste water and vermicompost as a nutrient source for bell peppers

    USDA-ARS?s Scientific Manuscript database

    The aquaculture industry generates significant nutrient-rich wastewater that is released into streams and rivers causing environmental concern. The objective of this controlled environment study was to evaluate the effect of waste shrimp water (SW), vermicompost (VC), at rates of 10%, 20%, 40%, and ...

  5. Enzymatic dynamics into the Eisenia fetida (Savigny, 1826) gut during vermicomposting of coffee husk and market waste in a tropical environment.

    PubMed

    Ordoñez-Arévalo, Berenice; Guillén-Navarro, Karina; Huerta, Esperanza; Cuevas, Raúl; Calixto-Romo, M Angeles

    2018-01-01

    Epigeic worms modify microbial communities through their digestive processes, thereby influencing the decomposition of organic matter in vermicomposting systems. Nevertheless, the enzyme dynamics within the gut of tropically adapted earthworms is unknown, and the enzymes involved have not been simultaneously studied. The activities of 19 hydrolytic enzymes within three different sections of the intestine of Eisenia fetida were determined over a fasting period and at 24 h and 30, 60, and 90 days of vermicomposting, and data were evaluated by multivariate analyses. There were found positive correlations between the maximal activity of glycosyl hydrolases and one esterase with the anterior intestine (coincident with the reduction of hemicellulose in the substrate) and the activity of the protease α-chymotrypsin with posterior intestine. The results suggest that activities of enzymes change in a coordinated manner within each gut section, probably influenced by selective microbial enzyme enrichment and by the availability of nutrients throughout vermicomposting.

  6. Dynamics of biological and chemical parameters during vermicomposting of solid textile mill sludge mixed with cow dung and agricultural residues.

    PubMed

    Kaushik, Priya; Garg, V K

    2004-09-01

    In India, thousands of tons of textile mill sludge are produced every year. We studied the ability of epigeic earthworm Eisenia foetida to transform textile mill sludge mixed with cow dung and/or agricultural residues into value added product, i.e., vermicompost. The growth, maturation, mortality, cocoon production, hatching success and the number of hatchlings were monitored in a range of different feed mixtures for 11 weeks in the laboratory under controlled environmental conditions. The maximum growth and reproduction was obtained in 100% cow dung, but worms grew and reproduced favorably in 80% cow dung + 20% solid textile mill sludge and 70% cow dung + 30% solid textile mill sludge also. Addition of agricultural residues had adverse effects on growth and reproduction of worms. Vermicomposting resulted in significant reduction in C:N ratio and increase in TKN, TP, TK and TCa after 77 days of worm activity in all the feeds. Vermicomposting can be an alternate technology for the management of textile mill sludge if mixed with cow dung in appropriate quantities. Copyright 2003 Elsevier Ltd.

  7. Farm-scale testing of soybean peroxidase and calcium peroxide for surficial swine manure treatment and mitigation of odorous VOCs, ammonia and hydrogen sulfide emissions

    NASA Astrophysics Data System (ADS)

    Maurer, Devin L.; Koziel, Jacek A.; Bruning, Kelsey; Parker, David B.

    2017-10-01

    The swine industry, regulatory agencies, and the public are interested in farm-tested methods for controlling gaseous emissions from swine barns. In earlier lab- and pilot-scale studies, a renewable catalyst consisting of soybean peroxidase (SBP) mixed with calcium peroxide (CaO2) was found to be effective in mitigating gaseous emissions from swine manure. Thus, a farm-scale experiment was conducted at the university's 178-pig, shallow-pit, mechanically-ventilated swine barn to evaluate SBP/CaO2 as a surficial manure pit additive under field conditions. The SBP was applied once at the beginning of the 42-day experiment at an application rate of 2.28 kg m-2 with 4.2% CaO2 added by weight. Gas samples were collected from the primary barn exhaust fans. As compared to the control, significant reductions in gaseous emissions were observed for ammonia (NH3, 21.7%), hydrogen sulfide (H2S, 79.7%), n-butyric acid (37.2%), valeric acid (47.7%), isovaleric acid (39.3%), indole (31.2%), and skatole (43.5%). Emissions of dimethyl disulfide/methanethiol (DMDS/MT) increased by 30.6%. Emissions of p-cresol were reduced by 14.4% but were not statistically significant. There were no significant changes to the greenhouse gas (GHG) emissions of methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O). The total (material + labor) treatment cost was 2.62 per marketed pig, equivalent to 1.5% of the pig market price. The cost of CaO2 catalyst was ∼60% of materials cost. The cost of soybean hulls (SBP source) was 0.60 per marketed pig, i.e., only 40% of materials cost.

  8. Validation and Recommendation of Methods to Measure Biogas Production Potential of Animal Manure

    PubMed Central

    Pham, C. H.; Triolo, J. M.; Cu, T. T. T.; Pedersen, L.; Sommer, S. G.

    2013-01-01

    In developing countries, biogas energy production is seen as a technology that can provide clean energy in poor regions and reduce pollution caused by animal manure. Laboratories in these countries have little access to advanced gas measuring equipment, which may limit research aimed at improving local adapted biogas production. They may also be unable to produce valid estimates of an international standard that can be used for articles published in international peer-reviewed science journals. This study tested and validated methods for measuring total biogas and methane (CH4) production using batch fermentation and for characterizing the biomass. The biochemical methane potential (BMP) (CH4 NL kg−1 VS) of pig manure, cow manure and cellulose determined with the Moller and VDI methods was not significantly different in this test (p>0.05). The biodegradability using a ratio of BMP and theoretical BMP (TBMP) was slightly higher using the Hansen method, but differences were not significant. Degradation rate assessed by methane formation rate showed wide variation within the batch method tested. The first-order kinetics constant k for the cumulative methane production curve was highest when two animal manures were fermented using the VDI 4630 method, indicating that this method was able to reach steady conditions in a shorter time, reducing fermentation duration. In precision tests, the repeatability of the relative standard deviation (RSDr) for all batch methods was very low (4.8 to 8.1%), while the reproducibility of the relative standard deviation (RSDR) varied widely, from 7.3 to 19.8%. In determination of biomethane concentration, the values obtained using the liquid replacement method (LRM) were comparable to those obtained using gas chromatography (GC). This indicates that the LRM method could be used to determine biomethane concentration in biogas in laboratories with limited access to GC. PMID:25049861

  9. Winery vermicomposts to control the leaching of diuron, imidacloprid and their metabolites: role of dissolved organic carbon content.

    PubMed

    Fernández-Bayo, Jesús D; Nogales, Rogelio; Romero, Esperanza

    2015-01-01

    Soil organic amendment addition is an effective practice in Mediterranean areas due to its associated high agricultural benefits and its potential to reduce the pesticide impact on water resources. However, their metabolites have received scarce attention, even when they may pose more risk than their parent compounds. Two winery vermicomposts obtained from spent grape marc (V1) and the mixture vine shoot-biosolid vinasses (V2) have been investigated as low cost organic amendments to minimize the leaching of diuron, imidacloprid and their metabolites in columns packed with a sandy loam (S1) and a silty-clay loam soil (S2) under steady state flow conditions. In the unamended soil columns, leached amounts of diuron were 75% and 53% in S1 and S2, respectively. Its metabolites (3-(3,4-dichlorophenyl)-1-methylurea, DPMU; and 3,4-dichlorophenylurea, DPU) percolated less than 35% of the total applied amount. The amount of the metabolite 3,4-dichloroaniline (DCA) was 2% and 30% for S1 and S2, respectively. Leaching of imidacloprid was 79% and 96% for S1 and S2, respectively, while its metabolite 6-chloronicotinic acid (CNA) was entirely leached. In the vermicompost-amended columns, the leaching of diuron was reduced 2 to 3-fold. DPMU and DPU were also significantly reduced (more than 6-fold). DCA did not appear in any of the leachates of the amended soil columns. Imidacloprid leaching was reduced 1 to 2-folds in the amended columns. The amendments did not affect the transport of CNA. The dissolved organic carbon (DOC) from the vermicomposts did not enhance pesticide transport throughout the soil in any case. This qualitative study presents these vermicomposts as an effective potential low-cost tool in reducing pesticide and metabolite leaching. The next step would be to test them under more realistic conditions.

  10. Manure incorporation reduces environmental nitrogen loss while sustaining crop productivity in the subtropical wheat-maize rotation system: A comprehensive study of nitrogen cycling and balance

    NASA Astrophysics Data System (ADS)

    Zhou, Minghua; Zhu, Bo; Butterbach-Bahl, klaus; Brüggemann, Nicolas

    2016-04-01

    Balancing nitrogen (N) budgets of agricultural systems is essential for sustaining yields at lower environmental costs. The knowledge, however, of total N budgets of agricultural systems including all N fluxes is still rare in the literature. Here, we applied a combination of monitoring in situ N fluxes and field 15N tracer and 15N isotope dilution techniques to investigate the effects of different N fertilizers (control, synthetic fertilizer, 60% synthetic fertilizer N plus 40% pig manure N, pig manure only applied at the same N rate 280 kg N ha-1 yr-1) on N pools, cycling processes, fluxes and total N balances in a subtropical wheat-maize rotation system of China. Nitrate leaching and NH3 volatilization were main hydrological and gaseous N loss pathways, respectively. The warm and wet maize season was associated with significantly larger environmental N losses than the cooler and drier wheat season. The field 15N tracing experiment showed that the wheat system had high N retention capacity (˜50% of 15N application) but with short residence time. I.e. 90% of soil residual 15N labelled fertilizer in the wheat system were utilized by plants or lost to the environment in the subsequent maize season. Our annual total N balances of the different treatments revealed that combined synthetic and organic fertilization or manure only maintained the same level of yields and led to significantly lower N losses and higher N retention, even though larger NH3 volatilization losses were caused by manure incorporation. Thus, our study suggests that a combination of synthetic and organic N fertilizers is suitable for sustaining agricultural productivity while reducing environmental N losses through fostering interactions between the soil C and N cycle.

  11. Use of agave bagasse for production of an organic fertilizer by pretreatment with Bjerkandera adusta and vermicomposting with Eisenia fetida.

    PubMed

    Moran-Salazar, Rene G; Marino-Marmolejo, Erika N; Rodriguez-Campos, Jacobo; Davila-Vazquez, Gustavo; Contreras-Ramos, Silvia M

    2016-01-01

    Agave tequilana Weber is used in tequila and fructans production, with agave bagasse generated as a solid waste. The main use of bagasse is to produce compost in tequila factories with a long traditional composting that lasts 6-8 months. The aim of this study was to evaluate the degradation of agave bagasse by combining a pretreatment with fungi and vermicomposting. Experiments were carried out with fractionated or whole bagasse, sterilized or not, subjecting it to a pretreatment with Bjerkandera adusta alone or combined with native fungi, or only with native bagasse fungi (non-sterilized), for 45 days. This was followed by a vermicomposting with Eisenia fetida and sewage sludge, for another 45 days. Physicochemical parameters, lignocellulose degradation, stability and maturity changes were measured. The results indicated that up to 90% of the residual sugars in bagasse were eliminated after 30 days in all treatments. The highest degradation rate in pretreatment was observed in non-sterilized, fractionated bagasse with native fungi plus B. adusta (BNFns) (71% hemicellulose, 43% cellulose and 71% lignin) at 45 days. The highest total degradation rates after vermicomposting were in fractionated bagasse pre-treated with native fungi (94% hemicellulose, 86% cellulose and 91% lignin). However, the treatment BNFns showed better maturity and stability parameters compared to that reported for traditional composts. Thus, it seems that a process involving vermicomposting and pretreatment with B. adusta could reduce the degradation time of bagasse to 3 months, compared to the traditional composting process, which requires from 6 to 8 months.

  12. Substitution of pig feed preparation using firewood with biogas in Samosir Island: transforming an environmental catastrophe into environmental, social, economic benefits

    NASA Astrophysics Data System (ADS)

    Ginting, N.

    2018-02-01

    In Samosir Island, Indonesia pigs care was not environmentally friendly as people were used firewood in pig feed preparation. A series of research has been conducted from March until September 2017 which was preceded by survey. It was found that people cut tree for firewood. As Samosir Island was under Toba Go Green Project which was a tree planting project so feed pig preparation was in contrast to the project. More over, Indonesia has been committed to reduce its green house gases (GHG) by 26% in 2020, any mitigation on GHG was strongly recommended. One way of mitigation in Samosir was by installing biogas for pig feed preparation. 5 biodigesters 500 liters capacity each were installed in Parbaba Village, Samosir Island and biodigester input were pig manure, water hyacinth. Research design was Randomized Completely Design. Parameters were gas production, pH, temperature and C/N ratio. Biogas than used to cook feed pig. It was known that to cook for 5 finisher pigs, 3 kg firewood could be substituted by 250 liters of biogas.

  13. Economic benefits comparison of two pig breeding cycle modes -- Taking Liaoning Province as an example

    NASA Astrophysics Data System (ADS)

    Xue, Yunan; Wang, Hui; Ma, Yu

    2018-01-01

    Pig breeding pollution has become one of the important sources of environmental pollution, and the circular economy has provided an effective way to alleviate the pollution of pig breeding. In this paper, the “Three-in-one” and “Four-in-one” mode of circular economy with methane as link were constructed, and taking Liaoning Province as the research area, the economic benefits of different pig breeding modes were compared and analyzed. The results show that: (1) The modes of circular economy use the pig manure waste as raw materials through the digesters, solar greenhouse to generate new resources, compared with the traditional farming methods, created considerable economic benefits and also alleviated the pressure of pollution, is an effective way to control the pollution of pig breeding. (2) The economic benefit of the “Four-in-one” mode in Liaoning was much higher than the “Three-in-one” mode. The economic benefits of biogas digesters were higher than the “Three-in-one” mode of 125 million yuan, while the solar greenhouse would introduce the planting industry into the recycling chain, with a net profit of about 38.64*108 yuan.

  14. Combining biochar, zeolite and wood vinegar for composting of pig manure: The effect on greenhouse gas emission and nitrogen conservation.

    PubMed

    Wang, Quan; Awasthi, Mukesh Kumar; Ren, Xiuna; Zhao, Junchao; Li, Ronghua; Wang, Zhen; Wang, Meijing; Chen, Hongyu; Zhang, Zengqiang

    2018-04-01

    The effect of enhancing wood vinegar (WV) with a mixture of biochar (B) and zeolite (Z) to compost pig manure (PM) in a 130 L reactor was evaluated to determine the levels of greenhouse gas (GHG) and ammonia emissions. Six treatments were prepared in a 2:1 ratio of PM mixed with wheat straw (WS; dry weight basis): PM + WS (control), PM + WS + 10%B, PM + WS + 10%B + 10%Z, and PM + WS with 0.5%, 1.0% and 2.0%WV combined with 10%B + 10%Z. These were composted for 50 days, and the results indicated that the combined use of B, Z, and WV could shorten the thermophilic phase and improve the maturity of compost compared to the control treatment. In addition, WV mixed with B and Z could reduce ammonia loss by 64.45-74.32% and decrease CO 2 , CH 4 , and N 2 O emissions by 33.90-46.98%, 50.39-61.15%, and 79.51-81.10%, respectively. Furthermore, compared to treatments in which B and B + Z were added, adding WV was more efficient to reduce the nitrogen and carbon loss, and the 10%B + 10%Z + 2%WV treatment presented the lowest loss of carbon (9.16%) and nitrogen (0.75%). Based on the maturity indexes used, nitrogen conservation, and efficiency of GHG emissions reduction, the treatment 10%B + 10%Z + 2%WV is suggested for efficient PM composting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Effect of temperature on continuous dry fermentation of swine manure.

    PubMed

    Deng, Liangwei; Chen, Chuang; Zheng, Dan; Yang, Hongnan; Liu, Yi; Chen, Ziai

    2016-07-15

    Laboratory-scale experiments were performed on the dry digestion of solid swine manure in a semi-continuous mode using 4.5 L down plug-flow anaerobic reactors with an organic loading rate of 3.46 kg volatile solids (VS) m(-3) d(-1) to evaluate the effects of temperature (15, 25 and 35 °C). At 15 °C, biogas production was the poorest due to organic overload and acidification, with a methane yield of 0.036 L CH4 g(-1) VS added and a volumetric methane production rate of 0.125 L CH4 L(-1) d(-1). The methane yield and volumetric methane production rate at 25 °C (0.226 L CH4 g(-1) VS added and 0.783 L CH4 L(-1) d(-1), respectively) were 6.24 times higher than those at 15 °C. However, the methane yield (0.237 L CH4 g(-1) VS added) and the volumetric methane production rate (0.821 L CH4 L(-1) d(-1)) at 35 °C were only 4.86% higher than those at 25 °C, which indicated similar results were obtained at 25 °C and 35 °C. The lower biogas production at 35 °C in dry digestion compared with that in wet digestion could be attributed to ammonia inhibition. For a single pig farm, digestion of solid manure is accomplished in small-scale domestic or small-farm bioreactors, for which operating temperatures of 35 °C are sometimes difficult to achieve. Considering biogas production, ammonia inhibition and net energy recovery, an optimum temperature for dry digestion of solid swine manure is 25 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Decline in extractable antibiotics in manure-based composts during composting.

    PubMed

    Kim, K-R; Owens, G; Ok, Y S; Park, W-K; Lee, D B; Kwon, S-I

    2012-01-01

    A wide variety of antibiotics have been detected in natural water samples and this is of potential concern because of the adverse environmental effects of such antibiotic residues. One of the main sources of antibiotics effluence to the surrounding environment is livestock manures which often contain elevated concentrations of veterinary antibiotics (VAs) which survive digestion in the animal stomach following application in animal husbandry practices. In Korea, livestock manures are normally used for compost production indicating that there is potential for antibiotic release to the environment through compost application to agricultural lands. Therefore, reduction of the amount of VAs in composts is crucial. The purpose of this study was to understand the influence of the composting process and the components of the compost on the levels of three common classes of antibiotics (tetracyclines, sulfonamides, and macrolides). Composted materials at different stages of composting were collected from compost manufacturing plants and the variation in antibiotic concentrations was determined. Three different antibiotics, chlortetracycline (CTC), sulfamethazine (SMZ), and tylosin (TYL) at three different concentrations (2, 10, and 20mgkg(-1)) were also applied to a mixture of pig manure and sawdust and the mixtures incubated using a laboratory scale composting apparatus to monitor the changes in antibiotic concentrations during composting together with the physicochemical properties of the composts. During composting, in both field and lab-scale investigations, the concentrations of all three different antibiotics declined below the relevant Korean guideline values (0.8mgkg(-1) for tetracyclines, 0.2mgkg(-1) for sulfonamides and 1.0mgkg(-1) for macrolides). The decline of tetracycline and sulfonamide concentrations was highly dependent on the presence of sawdust while there was no influence of sawdust on TYL decline. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Substitute fluid examinations for liquid manure

    NASA Astrophysics Data System (ADS)

    Schrader, Kevin; Riedel, Marco; Eichert, Helmut

    For the farming industry it is essential to use liquid manure as natural fertilizer. Through new agricultural regulation 2015 in Germany the industry must develop new liquid manure spreader systems because the ammonia and methane emission are limited. In a research project the University of Applied Sciences Zwickau and some other industry partners will develop such a new innovative liquid manure spreader. The new liquid manure spreader should use pulsating air to distribute the liquid manure exactly. The pulsating air, which flows through the pipelines, should be analysed at a test station. For examinations at this test station it is important to find another substitute fluid because liquid manure smells strong, is not transparent and is also not homogeneous enough for scientific investigations. Furthermore it is important to ensure that the substitute fluid is, like liquid manure, a non-Newtonian fluid. The substitute fluid must be a shear-thinning substance - this means the viscosity decrease at higher shear rate. Many different samples like soap-water-farragoes, jelly-water-farragoes, agar-water-farragoes, soap-ethanol-farragoes and more are, for the project, examined in regard of their physical properties to find the best substitute fluid. The samples are examined at the rotational viscometer for viscosity at various shear rates and then compared with the viscosity values of liquid manure.

  18. Brewery and liquid manure wastewaters as potential feedstocks for microbial fuel cells: a performance study.

    PubMed

    Angosto, J M; Fernández-López, J A; Godínez, C

    2015-01-01

    This work aims at the comparison of the electrical and chemical performance of microbial fuel cells (MFCs) fed with several types of brewery and manure industrial wastewaters. Experiments were conducted in a single-cell MFC with the cathode exposed to air operated in batch and fed-batch modes. In fed-batch mode, after 4 days of operation, a standard MFC was refilled with crude wastewater to regenerate the biofilm and recreate initial feeding conditions. Brewery wastewater (CV1) mixed with pig-farm liquid manure (PU sample) gave the highest voltage (199.8 mV) and power density (340 mW/m3) outputs than non-mixed brewery waste water. Also, coulombic efficiency is much larger in the mixture (11%) than in the others (2-3%). However, in terms of chemical oxygen demand removal, the performance showed to be poorer (53%) for the mixed sample than in the pure brewery sample (93%). Fed-batch operation showed to be a good alternate for quasi-continuous operation, with equivalent electrical and chemical yields as compared with normal batchwise operation.

  19. [Effect of application of cow manure and green manure on corn yield and soil physical-chemical properties in land restoration area].

    PubMed

    Xu, Da Bing; Deng, Jian Qiang; Peng, Wu Xing; Si, Guo Han; Peng, Cheng Lin; Yuan, Jia Fu; Zhao, Shu Jun; Wang, Rui

    2017-03-18

    The effects of cow manure and green manure on maize yield, soil respiration and soil physical-chemical properties in land restoration area was evaluated through field experiments. The results indicated that the maize yield and thousand-grain mass with cow manure were increased by 7.2%-29.9% and 2.5%-18.2%, respectively compared with the application of chemical fertilizer (CF), while the soil active organic carbon and organic matter contents of cow manure were 5.3%-34.6% and 8.0%-17.6% higher than that obtained in CF. The maize yield and thousand-grain mass were increased by 10.8%-15.6% and 4.5%-8.4% with application of green manure, respectively compared with CF. The content of active organic carbon in green manure was 14.1%-48.6% higher than that detected in CF. In the second year, the content of organic matter in green manure treatment was 7.2% higher than that of CF. The soil respiration rates under cow manure and green manure treatments increased by 20.0%-69.3% compared with CF. CF and green manure could improve the soil bulk density and increase the aggregate ratios of <0.01 mm and 0.05-1 mm fractions, respectively. On the other hand, the cow manure and green manure could decrease the soil total porosity and the capillary porosity. In conclusion, the application of cow manure and green manure in land restoration region could increase maize yield during the two consecutive seasons, which showed a positive response to improvement of soil physical-chemical properties.

  20. [Analysis on the impact of composting with different proportions of corn stalks and pig manure on humic acid fractions and IR spectral feature].

    PubMed

    Sun, Xiang-Ping; Li, Guo-Xue; Xiao, Ai-Ping; Shi, Hong; Wang, Yi-Ming; Li, Yang-Yang

    2014-09-01

    Using pig manure and corn straw as raw materials for high-temperature composting, setting three different treat- ments: C/N 15, C/N 25, and C/N 35. Composting period is 120 days, which contains 30 days for ventilation cycle by forced continuous ventilation. Sampled on 0, 22, 30, 60, 90, 120th days, they were analyzed by elemental analysis and IR spectroscopy to study effect of different lignin content on compost humic acid (HA) composition and molecular structure. The results showed that the change in composting humic acid C focused on the first 30 days, while after composting, the O/C of compost HA increased, H/C decreased, and N content increased. Low C/N (15) and higher C/N ratio (35) had higher degree of oxidation than the C/N 25 in compost HA. FTIR indicated that the infrared spectrum shapes with different lignin content treatment are similar during the composting process, but the peak intensity is obviously different. Research results proved that the composting stage is more conducive to enhanced aromatic in compost HA. After composting, C/N 15 had less polysaccharide and fat ingredients and more aromatic structural components in compost HA, compared with C/N 25 and 35. In addition, compost HA of C/N 15 had higher degree of humification and its structure was more stable.

  1. Organic cultivation of Ashwagandha with improved biomass and high content of active Withanolides: Use of Vermicompost

    PubMed Central

    Kaur, Amandeep; Singh, Baldev; Ohri, Puja; Wang, Jia; Wadhwa, Renu; Pati, Pratap Kumar; Kaur, Arvinder

    2018-01-01

    Withania somnifera (Ashwagandha) has recently been studied extensively for its health-supplementing and therapeutic activities against a variety of ailments. Several independent studies have experimentally demonstrated pharmaceutical potential of its active Withanolides, Withaferin A (Wi-A), Withanone (Wi-N) and Withanolide A (Wil-A). However, to promote its use in herbal industry, an environmentally sustainable cultivation and high yield are warranted. In modern agriculture strategies, there has been indiscriminate use of chemical fertilizers to boost the crop-yield, however the practice largely ignored its adverse effect on the quality of soil and the environment. In view of these, we attempted to recruit Vermicompost (Vcom, 20–100%) as an organic fertilizer of choice during the sowing and growing phases of Ashwagandha plants. We report that (i) pre-soaking of seeds for 12 h in Vermicompost leachate (Vcom-L) and Vermicompost tea (Vcom-T) led to higher germination, (ii) binary combination of pre-soaking of seeds and cultivation in Vcom (up to 80%) resulted in further improvement both in germination and seedling growth, (iii) cultivated plants in the presence of Vcom+Vcom-L showed higher leaf and root mass, earlier onset of flowering and fruiting and (iv) leaves from the Vcom+Vcom-L cultivated plants showed higher level of active Withanolides, Withanone (Wi-N), Withanolide A (Wil-A) and Withaferin A (Wi-A) and showed anticancer activities in cell culture assays. Taken together, we report a simple and inexpensive method for improving the yield and pharmaceutical components of Ashwagandha leaves. PMID:29659590

  2. Organic cultivation of Ashwagandha with improved biomass and high content of active Withanolides: Use of Vermicompost.

    PubMed

    Kaur, Amandeep; Singh, Baldev; Ohri, Puja; Wang, Jia; Wadhwa, Renu; Kaul, Sunil C; Pati, Pratap Kumar; Kaur, Arvinder

    2018-01-01

    Withania somnifera (Ashwagandha) has recently been studied extensively for its health-supplementing and therapeutic activities against a variety of ailments. Several independent studies have experimentally demonstrated pharmaceutical potential of its active Withanolides, Withaferin A (Wi-A), Withanone (Wi-N) and Withanolide A (Wil-A). However, to promote its use in herbal industry, an environmentally sustainable cultivation and high yield are warranted. In modern agriculture strategies, there has been indiscriminate use of chemical fertilizers to boost the crop-yield, however the practice largely ignored its adverse effect on the quality of soil and the environment. In view of these, we attempted to recruit Vermicompost (Vcom, 20-100%) as an organic fertilizer of choice during the sowing and growing phases of Ashwagandha plants. We report that (i) pre-soaking of seeds for 12 h in Vermicompost leachate (Vcom-L) and Vermicompost tea (Vcom-T) led to higher germination, (ii) binary combination of pre-soaking of seeds and cultivation in Vcom (up to 80%) resulted in further improvement both in germination and seedling growth, (iii) cultivated plants in the presence of Vcom+Vcom-L showed higher leaf and root mass, earlier onset of flowering and fruiting and (iv) leaves from the Vcom+Vcom-L cultivated plants showed higher level of active Withanolides, Withanone (Wi-N), Withanolide A (Wil-A) and Withaferin A (Wi-A) and showed anticancer activities in cell culture assays. Taken together, we report a simple and inexpensive method for improving the yield and pharmaceutical components of Ashwagandha leaves.

  3. Biogas production from vietnamese animal manure, plant residues and organic waste: influence of biomass composition on methane yield.

    PubMed

    Cu, T T T; Nguyen, T X; Triolo, J M; Pedersen, L; Le, V D; Le, P D; Sommer, S G

    2015-02-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg(-1) volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg(-1) VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

  4. Biogas Production from Vietnamese Animal Manure, Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield

    PubMed Central

    Cu, T. T. T.; Nguyen, T. X.; Triolo, J. M.; Pedersen, L.; Le, V. D.; Le, P. D.; Sommer, S. G.

    2015-01-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg−1 volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg−1 VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam. PMID:25557826

  5. Efficient use of animal manure on cropland--economic analysis.

    PubMed

    Araji, A A; Abdo, Z O; Joyce, P

    2001-09-01

    Manure contains all the macro- and microelements needed for plant growth; however, it represents one of the most underutilized resources in the US. The major problem with the use of manure on cropland is the direct effect of its composition on application cost. This cost is a function of the mineralization process of organic matter. The mineralization process is influenced by the properties of the manure, properties of the soil, moisture, and temperature. This study evaluates the simultaneous effect of these variables on the optimal use of manure on cropland. The results show that the properties of manure and soil significantly affect the mineralization of organic nitrogen and thus the optimal quantity of manure required to satisfy the nutrient requirement of crops in a given rotation system. Manure application costs range from a low of 18% of the cost of commercial fertilizer for chicken manure applied to one type of soil, to a high of 125% of the cost of commercial fertilizer for cow manure applied to another type of soil. The maximum distance to transfer manure to the field, that will equate its application cost to the cost of commercial fertilizer, ranges from a high of 35 km (22 miles) for chicken manure applied to one type of soil, to a low of 1 km (0.62 miles) for cow manure applied to another type of soil. For rotation system 2, manure application costs range from a low of 37% of the cost of commercial fertilizer for chicken manure applied to one type of soil, to a high of 136% of the cost of commercial fertilizer for cow manure applied to another type of soil. The maximum distance to transfer manure to the field, that will equate its cost to the cost of commercial fertilizer, ranges from a high of 20 km (12.5 miles) for chicken manure applied to one type of soil, to a low of 0 km (0 miles) for cow manure applied to another type of soil.

  6. Effect of vermicomposting on calcium, sulphur and some heavy metal content of different biodegradable organic wastes under liming and microbial inoculation.

    PubMed

    Das, Debabrata; Bhattacharyya, Pradip; Ghosh, B C; Banik, Pabitra

    2012-01-01

    A study was conducted to evaluate the changes in total calcium and sulphur and some heavy metal (Zn, Cu, and Pb) concentration of different organic wastes affected by liming and microorganism inoculation. Vermicomposting was an effective technology for disposal of organic substrates like municipal solid wastes (MSW), possessing comparatively higher concentration of heavy metals. The addition of lime in initial organic substrates significantly (P ≤ 0.05) increased total calcium and total sulphur content of vermicomposts. Inoculation of microorganisms significantly (P ≤ 0.05) reduced the heavy metal content of final products as compared to control. Fungal strains were comparatively more effective in detoxification of heavy metals than B. polymyxa.

  7. Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: effects of phosphorus nature and soil property.

    PubMed

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Xu, Xiaoyun; Harris, Willie

    2014-07-01

    Land application of animal manure often risks excessive phosphorus (P) release into the surrounding water. The aim of this study was to convert the dairy manure into biochar, followed by their application into soil, and then to investigate P release from the manure and its derived biochar as well as from the manure- and biochar-amended soil. The results showed that P release was reduced when the manure was converted into biochar due to formation of less-soluble whitlockite [(Ca, Mg)(PO)]. The cumulative P released from biochar over 240 h was 0.26 g kg, a 76% reduction of that from the manure (1.07 g kg). The kinetic release of P from the manure was determined by the fast desorption process and was better fitted to Elovich equation, whereas P release from biochar was initially controlled by the diffusion process and then by slow but steady dissolution of (Ca,Mg)(PO), following the parabolic diffusion and linear models, respectively. When the manure or biochar was incorporated into the soil, P release in the CaCl and simulated acid rain water extraction from biochar-amended soil was consistently lower than that from the manure-amended soil during 210-d incubation. The lower P release in the biochar-amended soil was determined by stable P form (Ca, Mg)(PO) in the biochar itself, but less from the soil property effect. Results indicated that initial high P release from manure can be mitigated by converting the manure into biochar. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Enhancing pesticide degradation using indigenous microorganisms isolated under high pesticide load in bioremediation systems with vermicomposts.

    PubMed

    Castillo Diaz, Jean Manuel; Delgado-Moreno, Laura; Núñez, Rafael; Nogales, Rogelio; Romero, Esperanza

    2016-08-01

    In biobed bioremediation systems (BBSs) with vermicomposts exposed to a high load of pesticides, 6 bacteria and 4 fungus strains were isolated, identified, and investigated to enhance the removal of pesticides. Three different mixtures of BBSs composed of vermicomposts made from greenhouse (GM), olive-mill (OM) and winery (WM) wastes were contaminated, inoculated, and incubated for one month (GMI, OMI and WMI). The inoculums maintenance was evaluated by DGGE and Q-PCR. Pesticides were monitored by HPLC-DAD. The highest bacterial and fungal abundance was observed in WMI and OMI respectively. In WMI, the consortia improved the removal of tebuconazole, metalaxyl, and oxyfluorfen by 1.6-, 3.8-, and 7.7-fold, respectively. The dissipation of oxyfluorfen was also accelerated in OMI, with less than 30% remaining after 30d. One metabolite for metalaxyl and 4 for oxyfluorfen were identified by GC-MS. The isolates could be suitable to improve the efficiency of bioremediation systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of housing conditions (clean vs. dirty) on growth performance and feeding behavior in growing pigs in a tropical climate.

    PubMed

    Renaudeau, D

    2009-04-01

    The effect of bad sanitary conditions on growth performance and feeding behaviour were studied on a total of 48 Large White pigs between 95 and 130 d of age. This experiment carried out during the hot season in a tropical humid climate. Two groups of 12 pigs each were housed in a clean environment in which the pens were disinfected thoroughly prior to stocking and maintained in a clean state by daily washing the pens and by weekly emptying the manure stored beneath the partial concrete floor. The dirty environment was achieved by not cleaning the pens prior to stocking or throughout the experiment and by storing the manure beneath the floor slats throughout the experimental period. The microbial pressure was increased by introducing 5 additional non experimental pigs near each experimental dirty pen. Feeding behaviour parameters were measured using automatic feed dispensers. Pigs housed in a clean environment consumed more feed (2.283 vs. 1.953 kg/d; P < 0.001) and grew faster (871 vs. 780 g/d; P < 0.05) than those housed in the dirty environment. No significant effect on treatment was reported for the feed conversion efficiency (2.70 kg/kg on average). The reduced average daily feed intake in dirty pens was associated with a reduction of the meal size (334 vs. 282 g/meal; P = 0.10) whereas the meal frequency was not affected by treatment (7.5 meals/d on average). The rate of feed intake was significantly higher in the clean than in the dirty environment (34.0 vs. 29.9 g/min; P < 0.05).

  10. Dairy manure biochar as a phosphorus fertilizer

    USDA-ARS?s Scientific Manuscript database

    Future manure management practices will need to remove large amounts of organic waste as well as harness energy to generate value-added products. Manures can be processed using thermochemical conversion technologies to generate a solid product called biochar. Dairy manure biochars contain sufficient...

  11. Genotoxic assessment and optimization of pressmud with the help of exotic earthworm Eisenia fetida.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2014-01-01

    Genotoxicity of pressmud (PM) to Allium cepa was investigated to assess its toxic potential and to elucidate the effect of vermicomposting to reduce its toxicity. The PM produced as a waste by product of the sugar cane industry was mixed with cow dung (CD) at different ratios of 0:100 (V₀), 25:75 (V₂₅), 50:50 (V₅₀), 75:25 (V₇₅) and 100:0 (V100) (PM:CD) on a dry weight basis for vermicomposting with Eisenia fetida. Different concentrations of 100% PM sludge extract (10%, 20%, 40%, 60%, 80% and 100%) and negative control (distilled water) and positive control (maleic hydrazide) were analyzed with A. cepa assay to evaluate frequency of chromosomal aberrations before and after vermicomposting. Percent aberration was greatest (30.8%) after exposure to 100% PM extract after 6 h but was reduced to 20.3% after vermicomposting. Exposure to the extract induced c-mitosis, delayed anaphase, laggards, stickiness and vagrant aberrations. Microscopic examination of root meristem exposed to PM sludge extract showed significant inhibition of mitotic index. Also, the mitotic index decreased with increase in concentration of PM sludge extract. After vermicomposting the mitotic index was increased. However, increasing percentages of PM significantly affected the growth and fecundity of the worms and maximum population size was reached in the 25:75 (PM:CD) feed mixture. Nitrogen, phosphorus, sodium, electrical conductivity (EC) and pH increased from initial feed mixture to the final products (i.e., vermicompost), while organic carbon, C/N ratio and potassium declined in all products of vermicomposting. Scanning electron microscopy (SEM) was recorded to identify the changes in texture with numerous surface irregularities and high porosity that proves to be good vermicompost manure. It could be concluded that vermicomposting could be an important tool to reduce the toxicity of PM as evidenced by the results of genotoxicity.

  12. Accounting for uncertainty in the quantification of the environmental impacts of Canadian pig farming systems.

    PubMed

    Mackenzie, S G; Leinonen, I; Ferguson, N; Kyriazakis, I

    2015-06-01

    The objective of the study was to develop a life cycle assessment (LCA) for pig farming systems that would account for uncertainty and variability in input data and allow systematic environmental impact comparisons between production systems. The environmental impacts of commercial pig production for 2 regions in Canada (Eastern and Western) were compared using a cradle-to-farm gate LCA. These systems had important contrasting characteristics such as typical feed ingredients used, herd performance, and expected emission factors from manure management. The study used detailed production data supplied by the industry and incorporated uncertainty/variation in all major aspects of the system including life cycle inventory data for feed ingredients, animal performance, energy inputs, and emission factors. The impacts were defined using 5 metrics-global warming potential, acidification potential, eutrophication potential (EP), abiotic resource use, and nonrenewable energy use-and were expressed per kilogram carcass weight at farm gate. Eutrophication potential was further separated into marine EP (MEP) and freshwater EP (FEP). Uncertainties in the model inputs were separated into 2 types: uncertainty in the data used to describe the system (α uncertainties) and uncertainty in impact calculations or background data that affects all systems equally (β uncertainties). The impacts of pig production in the 2 regions were systematically compared based on the differences in the systems (α uncertainties). The method of ascribing uncertainty influenced the outcomes. In eastern systems, EP, MEP, and FEP were lower (P < 0.05) when assuming that all uncertainty in the emission factors for leaching from manure application was β. This was mainly due to increased EP resulting from field emissions for typical ingredients in western diets. When uncertainty in these emission factors was assumed to be α, only FEP was lower in eastern systems (P < 0.05). The environmental impacts for

  13. Degradation of foot-and-mouth disease virus during composting of infected pig carcasses

    PubMed Central

    Guan, J.; Chan, M.; Grenier, C.; Brooks, B.W.; Spencer, J.L.; Kranendonk, C.; Copps, J.; Clavijo, A.

    2010-01-01

    The objective of this study was to investigate the inactivation and degradation of foot-and-mouth disease (FMD) virus during composting of infected pig carcasses as measured by virus isolation in tissue culture and by real-time reverse transcriptase polymerase chain reaction (RRT-PCR). Three FMD-infected pig carcasses were composted in a mixture of chicken manure and wood shavings in a biocontainment level 3 facility. Compost temperatures had reached 50°C and 70°C by days 10 and 19, respectively. Under these conditions, FMD virus was inactivated in specimens in compost by day 10 and the viral RNA was degraded in skin and internal organ tissues by day 21. In comparison, at ambient temperatures close to 20°C, FMD virus survived to day 10 in the skin tissue specimen from the pig that had the highest initial level of viral RNA in its tissues and the viral RNA persisted to day 21. Similarly, beta-actin mRNA, tested as a PCR control, persisted to day 21 in specimens held at ambient temperatures, but it was degraded in the remnants of tissues recovered from compost on day 21. Results from this study provide evidence that composting could be used for safe disposal of pig carcasses infected with FMD virus. PMID:20357957

  14. Nitrification of leachates from manure composting under field conditions and their use in horticulture.

    PubMed

    Cáceres, Rafaela; Magrí, Albert; Marfà, Oriol

    2015-10-01

    This work aimed to demonstrate the feasibility of nitrification applied to the treatment of leachates formed during composting of cattle and pig manure in order to promote their further use as liquid fertilizer in horticulture. Nitrification trials were successfully conducted in summer and winter seasons under Mediterranean climate conditions. Subsequently, effect of using the nitrified effluents as nutritive solution in the fertigation of lettuce (Lactuca sativa L.) was assessed in terms of productivity and nutrient uptake. Similar productivities were obtained when using the nitrified effluents and a standard nutritive solution. However, results also evidenced high nutrient uptake, which indicates that dosage should be adjusted to culture requirements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Recovery of proteins and phosphorus from manure

    USDA-ARS?s Scientific Manuscript database

    The recovery of phosphorus and proteins from manure could be advantageous to both offset costs and to improve and lessen the environmental impacts of manure storage and treatment. Phosphorous in manure can contaminate rivers, lakes, and bays through runoff, if applied onto a cropland excessively. Th...

  16. ALTERNATE METHODS OF MANURE HANDLING

    EPA Science Inventory

    The objectives of this research project were to (a) construct an inexpensive storage facility for solid dairy cow manure, (b) evaluate its performance and the extent of pollutants in runoff from storage facilities, and (c) determine current manure handling practices in Vermont an...

  17. Effects of Animal Diet, Manure Application Rate, and Tillage on Transport of Microorganisms from Manure-Amended Fields ▿

    PubMed Central

    Durso, Lisa M.; Gilley, John E.; Marx, David B.; Woodbury, Bryan L.

    2011-01-01

    Manure from cattle fed distillers' grain or corn diets was applied to fields, and the fields were subjected to rainfall simulation tests. Manure was added at three rates on till and no-till plots. Correlations between microbial transport and runoff characteristics were identified. Results indicate that diet affects phage but not bacterial transport from manure-amended fields. PMID:21803913

  18. Growth of bacterial phytopathogens in animal manures.

    PubMed

    Sledz, Wojciech; Zoledowska, Sabina; Motyka, Agata; Kadziński, Leszek; Banecki, Bogdan

    2017-01-01

    Animal manures are routinely applied to agricultural lands to improve crop yield, but the possibility to spread bacterial phytopathogens through field fertilization has not been considered yet. We monitored 49 cattle, horse, swine, sheep or chicken manure samples collected in 14 Polish voivodeships for the most important plant pathogenic bacteria - Ralstonia solanacearum (Rsol), Xanthomonas campestris pv. campestris (Xcc), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pectobacterium atrosepticum (Pba), Erwinia amylovora (Eam), Clavibacter michiganensis subsp. sepedonicus (Cms) and Dickeya sp. (Dsp). All of the tested animal fertilizers were free of these pathogens. Subsequently, the growth dynamics of Pba, Pcc, Rsol, and Xcc in cattle, horse, swine, sheep and chicken manures sterilized either by autoclaving or filtration was evaluated. The investigated phytopathogens did not exhibit any growth in the poultry manure. However, the manure filtrates originating from other animals were suitable for microbial growth, which resulted in the optical density change of 0.03-0.22 reached within 26 h (48 h Rsol, 120 h Xcc), depending on bacterial species and the manure source. Pcc and Pba multiplied most efficiently in the cattle manure filtrate. These bacteria grew faster than Rsol and Xcc in all the tested manure samples, both the filtrates and the autoclaved semi-solid ones. Though the growth dynamics of investigated strains in different animal fertilizers was unequal, all of the tested bacterial plant pathogens were proven to use cattle, horse, swine and sheep manures as the sources of nutrients. These findings may contribute to further research on the alternative routes of spread of bacterial phytopathogens, especially because of the fact that the control of pectionolytic bacteria is only based on preventive methods.

  19. Examination of Salmonella and Escherichia coli translocation from hog manure to forage, soil, and cattle grazed on the hog manure-treated pasture.

    PubMed

    Holley, Richard; Walkty, Joël; Blank, Gregory; Tenuta, Mario; Ominski, Kimberly; Krause, Denis; Ng, Lai-King

    2008-01-01

    Use of hog (Sus scrofa) manure as a fertilizer is a practical solution for waste re-utilization, however, it may serve as a vehicle for environmental and domestic animal contamination. Work was conducted to determine whether pathogens, naturally present in hog manure could be detected in cattle (Bos taurus) grazed on the manure-treated pasture, and whether forage contamination occurred. During two 3 mo summer trials manure was applied to yield < or = 124 kg available N per hectare in a single spring or split spring and fall application. Samples of hog manure, forage, soil, and cattle feces were analyzed for naturally occurring Salmonella, Yersinia enterocolitica, and Escherichia coli. To follow movement of Salmonella in the environment isolates were identified to serovar and serotyped. Transfer of E. coli from hog manure to soil and cattle was examined by randomly amplified polymorphic DNA (RAPD) analysis of >600 E. coli isolates. While Y. enterocolitica was absent from all samples, in both years S. enterica Derby and S. enterica Krefeld were found in most hog manure samples, but were only on forage samples in the second year. Salmonella enterica Typhimurium, absent from hog manure was present on some forage in the first year. Cattle feces and soil samples were consistently Salmonella negative. These contaminations could not be traced to manure application. During this study, Salmonella and E. coli found in hog manure had different RAPD genomic profiles from those found in the feces of cattle grazing on manure-treated pasture.

  20. Environmental transport of endogenous dairy manure estrogens.

    PubMed

    Popova, Inna E; Morra, Matthew J

    2017-11-02

    Although estrogens originating from dairy manure applied to agricultural soils as a fertilizer can potentially contaminate surface water and groundwater, the variables that control transport are poorly understood. Our objective was to assess the potential for off-site movement of endogenous dairy cattle estrogens when manure is applied on fields at agronomically relevant fertilization rates. Estrone (E1), 17α-estradiol (α-E2), and 17β-estradiol (β-E2) were used in laboratory sorption, desorption, and transformation incubations with both manure and an agriculturally relevant soil. Sorption on manure containing 44% organic carbon exceeded sorption on soil containing 0.8% organic carbon by 20 to 150 times, following the pattern of β-E2 > α-E2 > E1. Approximately 20% of E1 and 17% of α-E2 were desorbed from manure, whereas only about 4% of β-E2 was desorbed. Thirty to seventy percent of α-E2 and β-E2 were converted to E1 in soil and manure, making it imperative that transformation reactions be considered when predicting transport and potential biological effects in the environment. Overall results indicate that high organic carbon concentrations and relatively low amounts of desorption inhibit the potential for off-site transport of endogenous dairy manure estrogens.

  1. AFO Manure Management - Minnesota: Feedlot Registration

    EPA Pesticide Factsheets

    Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.

  2. Pig manure vermicompost (PMVC) can improve phytoremediation of Cd and PAHs co-contaminated soil by Sedum alfredii

    USDA-ARS?s Scientific Manuscript database

    Purpose Main challenge of phytoremediation of co-contaminated soils is developing strategies for efficient and simultaneous removal of multiple pollutants. A pot experiment was conducted to investigate the potential for enhanced phytoextraction of cadmium (Cd) by Sedum alfredii and dissipation of po...

  3. A direct plating method for estimating populations of Escherichia coli O157 in bovine manure and manure-based materials.

    PubMed

    Berry, Elaine D; Wells, James E

    2008-11-01

    Escherichia coli O157:H7 outbreaks associated with produce consumption have brought attention to livestock manures and manure-based soil amendments as potential sources of pathogens for the contamination of these crops. Procedures for enumeration of E. coli O157:H7 are needed to assess the risks of transmission from these manures and their by-products. A direct plating method employing spiral plating onto CHROMagar O157 was investigated for enumeration of E. coli O157:H7 in feedlot surface material, aged bovine manure, bovine manure compost, and manure-amended soil. In studies utilizing samples spiked with a five-strain cocktail of E. coli O157:H7 at levels ranging from 102 to 10(5) CFU/g of sample, there were strong correlations between the observed and predicted levels of this pathogen. Although the addition of 2.5 mg/liter potassium tellurite and 5 mg/liter novobiocin made the medium more restrictive, these amendments enhanced the ability to identify and enumerate E. coli O157:H7 in feedlot surface material, which contained a higher proportion of fresh feces than did the other three sample types and therefore higher levels of interfering bacterial microflora. The spiral plating method was further assessed to determine its ability to enumerate E. coli O157:H7 in naturally contaminated feedlot surface material. Comparison of E. coli O157:H7 counts in feedlot surface material obtained by the spiral plating method and a most probable number technique were well correlated. We conclude that direct spiral plating onto CHROMagar O157 is effective for estimating E. coli O157:H7 levels in a variety of manures and manure-containing sample types to a lower detection limit of 200 CFU/g. The method has application for determining E. coli O157:H7 concentrations in manures and composts before their sale and use as soil amendments and for measuring the effectiveness of manure treatment processes to reduce or inactivate this pathogen.

  4. Applied and environmental chemistry of animal manure: A review

    USDA-ARS?s Scientific Manuscript database

    Animal manure consists of predominantly urine and feces, but also may contain bedding materials, dropped feed, scurf and other farming wastes. The estimated amount of manure produced in 12 major livestock producing countries is 9 x109 Mg of manure annually. Manures are rich in plant nutrients. Howev...

  5. Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia).

    PubMed

    Chan, Yiu C; Sinha, Rajiv K; Weijin Wang

    2011-05-01

    This study investigated greenhouse gas (GHG) emissions from three different home waste treatment methods in Brisbane, Australia. Gas samples were taken monthly from 34 backyard composting bins from January to April 2009. Averaged over the study period, the aerobic composting bins released lower amounts of CH(4) (2.2 mg m(- 2) h(-1)) than the anaerobic digestion bins (9.5 mg m(-2) h(-1)) and the vermicomposting bins (4.8 mg m(-2) h( -1)). The vermicomposting bins had lower N(2)O emission rates (1.2 mg m(-2) h(- 1)) than the others (1.5-1.6 mg m(-2) h( -1)). Total GHG emissions including both N(2)O and CH(4) were 463, 504 and 694 mg CO(2)-e m(- 2) h(-1) for vermicomposting, aerobic composting and anaerobic digestion, respectively, with N(2)O contributing >80% in the total budget. The GHG emissions varied substantially with time and were regulated by temperature, moisture content and the waste properties, indicating the potential to mitigate GHG emission through proper management of the composting systems. In comparison with other mainstream municipal waste management options including centralized composting and anaerobic digestion facilities, landfilling and incineration, home composting has the potential to reduce GHG emissions through both lower on-site emissions and the minimal need for transportation and processing. On account of the lower cost, the present results suggest that home composting provides an effective and feasible supplementary waste management method to a centralized facility in particular for cities with lower population density such as the Australian cities.

  6. Mixing rare earth elements with manures to control phosphorus loss in runoff and track manure fate

    USDA-ARS?s Scientific Manuscript database

    Concern over the enrichment of agricultural runoff with phosphorus (P) from land applied livestock manures has prompted the development of manure amendments that minimize P solubility. We evaluated the effect of mixing two rare earth chlorides, lanthanum chloride and ytterbium chloride, with poultr...

  7. Recovery of amino acids and phosphorus from manure

    USDA-ARS?s Scientific Manuscript database

    Background & Objectives: The recovery of phosphorus and proteins from manure could be advantageous to both offset costs and to improve and lessen the environmental impacts of manure. Phosphorous in manure can contaminate rivers, lakes, and bays through runoff, if applied onto a cropland excessively....

  8. [Effect of different organic fertilizers on bioavailability of soil Cd and Zn].

    PubMed

    Xie, Yun-he; Ji, Xiong-hui; Wu, Jia-mei; Huang, Juan; Guan, Di; Zhu, Jian

    2015-03-01

    The active effect of soil Cd and Zn and their interaction was studied in typical paddy field in south China by monitoring the contents of Cd and Zn in soil and rice in rice fields applied with pig manure, chicken manure or rice straw for 4 years continuously. The results showed that applying pig manure, chicken manure or rice straw had no significant impact on the soil total Cd content, soil available Cd content and soil Cd activity, but tended to increase the soil total Cd content and increased the soil total Zn content, soil available Zn content and Zn activity significantly. Applications of pig manure, chicken manure and rice straw all reduced the Cd content of brown rice, in order of pig manure > chicken manure > rice straw. The Cd contents of brown rice, stem and leaf in the treatment applied with pig manure were lower than in the control by 37.5%, 44.0% and 36.4%, respectively; the Cd contents of brown rice, stem and leaf in the treatment applied with chicken manure were lower than in the control by 22.5%, 33.8%, and 22.7%, respectively; the Cd content of brown rice in the treatment applied with rice straw was lower than in the control by 7.5% but its contents in stem and leaf increased by 8.2% and 22.7% , respectively. The reduction in the brown rice Cd content was mainly due to the reduction of Cd enrichment from soil to brown rice after application of pig or chicken manure, but mainly due to the reduction of Cd transportation from stem to brown rice after straw application. Applications of pig manure, chicken manure and rice straw increased Zn contents in rice stem by 53.4%, 53.4% and 13.9%, respectively, but all had no significant effect on brown rice and leaf' s Zn contents. Zn and Cd had the significant antagonistic effects in the soil and rice stem. The increase of Zn content in soil and rice stem inhibited the adsorption and accumulation of Cd in the brown rice, stem and leaf significantly, and with the increase of the proportion of Zn/Cd, the

  9. Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest.

    PubMed

    Tien, Yuan-Ching; Li, Bing; Zhang, Tong; Scott, Andrew; Murray, Roger; Sabourin, Lyne; Marti, Romain; Topp, Edward

    2017-03-01

    Manuring ground used for crop production is an important agricultural practice. Should antibiotic-resistant enteric bacteria carried in the manure be transferred to crops that are consumed raw, their consumption by humans or animals will represent a route of exposure to antibiotic resistance genes. Treatment of manures prior to land application is a potential management option to reduce the abundance of antibiotic resistance genes entrained with manure application. In this study, dairy manure that was untreated, anaerobically digested, mechanically dewatered or composted was applied to field plots that were then cropped to lettuce, carrots and radishes. The impact of treatment on manure composition, persistence of antibiotic resistance gene targets in soil following application, and distribution of antibiotic resistance genes and bacteria on vegetables at harvest was determined. Composted manure had the lowest abundance of antibiotic resistance gene targets compared to the other manures. There was no significant difference in the persistence characteristics of antibiotic resistance genes following land application of the various manures. Compared to unmanured soil, antibiotic resistance genes were detected more frequently in soil receiving raw or digested manure, whereas they were not in soil receiving composted manure. The present study suggests that vegetables grown in ground receiving raw or digested manure are at risk of contamination with manure-borne antibiotic resistant bacteria, whereas vegetables grown in ground receiving composted manure are less so. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  10. Immobilization of tetracyclines in manure and manure-amended soils using aluminum-based drinking water treatment residuals.

    PubMed

    Punamiya, Pravin; Sarkar, Dibyendu; Rakshit, Sudipta; Elzinga, Evert J; Datta, Rupali

    2016-02-01

    Veterinary antibiotics (VAs) are emerging contaminants of concern in the environment, mainly due to the potential for development of antibiotic-resistant bacteria and effect on microbiota that could interfere with crucial ecosystem functions such as nutrient cycling and decomposition. High levels of VAs such as tetracyclines (TCs) have been reported in agricultural soils amended with manure, which also has the potential to cause surface and groundwater contamination. Several recent studies have focused on developing methods to immobilize VAs such as composting with straw, hardwood chips, commercial biochar, aeration, mixing, heat treatment, etc. The major shortcomings of these methods include high cost and limited effectiveness. In the current study, we assessed the effectiveness of aluminum-based drinking water treatment residuals (Al-WTR) as a "green" sorbent to immobilize TCs in manure and manure-applied soils with varying physicochemical properties by laboratory incubation study. Results show that Al-WTR is very effective in immobilizing tetracycline (TTC) and oxytetracycline (OTC). The presence of phosphate resulted in significant (p < 0.01) decrease in TTC/OTC sorption by Al-WTR, but the presence of sulfate did not. attenuated total reflection (ATR)-FTIR spectroscopy indicate that TTC and OTC likely forming surface complexes via inner-sphere-type bonds in soils, manure, and manure-applied soils amended with Al-WTR.

  11. Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish

    PubMed Central

    Chen, Wenyan; Cai, Qiang; Zhao, Yuan; Zheng, Guojuan; Liang, Yuting

    2014-01-01

    Biogas slurry has become a serious pollution problem and anaerobic digestion is widely applied to pig manure treatment for environmental protection and energy recovery. To evaluate environmental risk of the emission of biogas slurry, luminescent bacteria (Vibrio fischeri), larvae and embryos of zebrafish (Danio rerio) were used to detect the acute and development toxicity of digested and post-treated slurry. Then the ability of treatment process was evaluated. The results showed that digested slurry displayed strong toxicity to both zebrafish and luminescent bacteria, while the EC50 for luminescent bacteria and the LC50 for larvae were only 6.81% (v/v) and 1.95% (v/v) respectively, and embryonic development was inhibited at just 1% (v/v). Slurry still maintained a high level of toxicity although it had been treated by membrane bioreactor (MBR), while the LC50 of larvae was 75.23% (v/v) and there was a little effect on the development of embryos and V. fischeri; the results also revealed that the zebrafish larvae are more sensitive than embryos and luminescent bacteria to pig slurry. Finally, we also found the toxicity removal rate was higher than 90% after the treatment of MBR according to toxicity tests. In conclusion, further treatment should be used in pig slurry disposal or reused of final effluent. PMID:24995598

  12. Field experiment with liquid manure and enhanced biochar

    NASA Astrophysics Data System (ADS)

    Dunst, Gerald

    2017-04-01

    Field experiments with low amounts of various liquid manure enhanced biochars. In 2016 a new machine was developed to inject liquid biochar based fertilizer directly into the crop root zone. A large-scale field experiment with corn and oil seed pumpkin was set-up on 42 hectares on 15 different fields in the south East of Austria. Three treatments were compared: (1) surface spreading of liquid manure as control (common practice), (2) 20 cm deep root zone injection with same amount of liquid manure, and (3) 20 cm deep root zone injection with same amount of liquid manure mixed with 1 to 2 tons of various nutrient enhanced biochars. The biochar were quenched with the liquid phase from a separated digestate from a biogas plant (feedstock: cow manure). From May to October nitrate and ammonium content was analyzed monthly from 0-30cm and 30-60cm soil horizons. At the end of the growing season the yield was determined. The root zone injection of the liquid manure reduced the nitrate content during the first two months at 13-16% compared to the control. When the liquid manure was blended with biochar, Nitrate soil content was lowest (reduction 40-47%). On average the root zone injection of manure-biochar increased the yield by 7% compared to the surface applied control and 3% compared to the root zone injected manure without biochar. The results shows, that biochar is able to reduce the Nitrate load in soils and increase the yield of corn at the same time. The nutrient efficiency of organic liquid fertilizers can be increased.

  13. 9 CFR 93.514 - Manure from quarantined swine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Manure from quarantined swine. 93.514... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Swine § 93.514 Manure from quarantined swine. No manure shall be removed from the quarantine premises until the release of the swine producing same. ...

  14. 9 CFR 93.514 - Manure from quarantined swine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Manure from quarantined swine. 93.514... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Swine § 93.514 Manure from quarantined swine. No manure shall be removed from the quarantine premises until the release of the swine producing same. ...

  15. 9 CFR 93.514 - Manure from quarantined swine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Manure from quarantined swine. 93.514... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Swine § 93.514 Manure from quarantined swine. No manure shall be removed from the quarantine premises until the release of the swine producing same. ...

  16. 9 CFR 93.514 - Manure from quarantined swine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Manure from quarantined swine. 93.514... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Swine § 93.514 Manure from quarantined swine. No manure shall be removed from the quarantine premises until the release of the swine producing same. ...

  17. 9 CFR 93.514 - Manure from quarantined swine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Manure from quarantined swine. 93.514... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Swine § 93.514 Manure from quarantined swine. No manure shall be removed from the quarantine premises until the release of the swine producing same. ...

  18. 9 CFR 93.312 - Manure from quarantined horses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Manure from quarantined horses. 93.312... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Horses § 93.312 Manure from quarantined horses. No manure shall be removed from the quarantine premises until the release of the horses producing same. ...

  19. ANIMAL MANURES AS FEEDSTUFFS: NUTRIENT CHARACTERISTICS

    EPA Science Inventory

    This study critically evaluates the potential value of animal manure as feedstuffs for livestock and poultry using information in the published literature. The paper provides an assessment of the nutrient and economic value of manures as a function of their composition when compa...

  20. Exploring metal detoxification and accumulation potential during vermicomposting of Tea factory coal ash: sequential extraction and fluorescence probe analysis

    NASA Astrophysics Data System (ADS)

    Goswami, Linee; Pratihar, Sanjay; Dasgupta, Suman; Bhattacharyya, Pradip; Mudoi, Pronab; Bora, Jayanta; Bhattacharya, Satya Sundar; Kim, Ki Hyun

    2016-07-01

    Metal contamination from coal ashes (CAs) is widely recognized as a significant environmental concern. To learn more about metal detoxification and accumulation potential of earthworm species, metal-rich tea factory coal ashes (TFCA) were fed to Eisenia fetida and Lampito mauritii by employing a fluorescent tag detection method. Fascinatingly, on feeding fluorescence probed Zn and Cd along with cow dung to Eisenia fetida, the detection of the gut-proteins with a molecular mass higher than 100 kDa was a distinct evidence of metal binding. Significant increases were observed in the content of humified organic C [humic acid (HAC) and fulvic acid C (FAC)] and degree of humification during vermicomposting. Concurrently, considerably large amount of toxic metals (Cr, Cd, Pb, and Zn) was transformed from exchangeable to recalcitrant (organic matter and mineral bound) fractions. Moreover, total metal concentrations were reduced with high removal efficiency upon vermicomposting.

  1. Exploring metal detoxification and accumulation potential during vermicomposting of Tea factory coal ash: sequential extraction and fluorescence probe analysis

    PubMed Central

    Goswami, Linee; Pratihar, Sanjay; Dasgupta, Suman; Bhattacharyya, Pradip; Mudoi, Pronab; Bora, Jayanta; Bhattacharya, Satya Sundar; Kim, Ki Hyun

    2016-01-01

    Metal contamination from coal ashes (CAs) is widely recognized as a significant environmental concern. To learn more about metal detoxification and accumulation potential of earthworm species, metal-rich tea factory coal ashes (TFCA) were fed to Eisenia fetida and Lampito mauritii by employing a fluorescent tag detection method. Fascinatingly, on feeding fluorescence probed Zn and Cd along with cow dung to Eisenia fetida, the detection of the gut-proteins with a molecular mass higher than 100 kDa was a distinct evidence of metal binding. Significant increases were observed in the content of humified organic C [humic acid (HAC) and fulvic acid C (FAC)] and degree of humification during vermicomposting. Concurrently, considerably large amount of toxic metals (Cr, Cd, Pb, and Zn) was transformed from exchangeable to recalcitrant (organic matter and mineral bound) fractions. Moreover, total metal concentrations were reduced with high removal efficiency upon vermicomposting. PMID:27456167

  2. Size distributions of manure particles released under simulated rainfall.

    PubMed

    Pachepsky, Yakov A; Guber, Andrey K; Shelton, Daniel R; McCarty, Gregory W

    2009-03-01

    Manure and animal waste deposited on cropland and grazing lands serve as a source of microorganisms, some of which may be pathogenic. These microorganisms are released along with particles of dissolved manure during rainfall events. Relatively little if anything is known about the amounts and sizes of manure particles released during rainfall, that subsequently may serve as carriers, abode, and nutritional source for microorganisms. The objective of this work was to obtain and present the first experimental data on sizes of bovine manure particles released to runoff during simulated rainfall and leached through soil during subsequent infiltration. Experiments were conducted using 200 cm long boxes containing turfgrass soil sod; the boxes were designed so that rates of manure dissolution and subsequent infiltration and runoff could be monitored independently. Dairy manure was applied on the upper portion of boxes. Simulated rainfall (ca. 32.4 mm h(-1)) was applied for 90 min on boxes with stands of either live or dead grass. Electrical conductivity, turbidity, and particle size distributions obtained from laser diffractometry were determined in manure runoff and soil leachate samples. Turbidity of leachates and manure runoff samples decreased exponentially. Turbidity of manure runoff samples was on average 20% less than turbidity of soil leachate samples. Turbidity of leachate samples from boxes with dead grass was on average 30% less than from boxes with live grass. Particle size distributions in manure runoff and leachate suspensions remained remarkably stable after 15 min of runoff initiation, although the turbidity continued to decrease. Particles had the median diameter of 3.8 microm, and 90% of particles were between 0.6 and 17.8 microm. The particle size distributions were not affected by the grass status. Because manure particles are known to affect transport and retention of microbial pathogens in soil, more information needs to be collected about the

  3. [Form tendency and bio-availability dynamics of Cu and Zn in different farm soils after application of organic fertilizer of livestock and poultry manures].

    PubMed

    Shang, He-ping; Li, Yang; Zhang, Tao; Su, De-chun

    2015-01-01

    Soil incubation experiments were conducted with different sources of manures containing heavy metals to evaluate the bioavailability of heavy metals (Cu and Zn) and their form transformation in different soils. This study may assist in developing strategies to ascertain the loads of heavy metals which entered into soils together with manures, and promote policies to evaluate the ecological risk in agriculture soils. The results showed that, during the six months of soil incubation, the pH value of acidic soil increased and the pH value of calcareous soil reduced. After adding chicken manures, the contents of available Cu in both calcareous and acid soils were significant lower than those in the equivalent inorganic salt treatments, but there was no significant difference between the treatments in the contents of available Zn in both calcareous and acid soils. Furthermore, there were also no significant differences between pig matures and the equivalent inorganic salt treatments in the contents of available Cu and Zn in both calcareous and acid soils. The results of form tendency showed that the main forms of Cu and Zn in both calcareous and acid soils, which entered into soils together with manures, were exchangeable, carbonate, Fe-Mn oxides, and organic. And the proportions of different heavy metals species in calcareous and acid soils were different with different manures sources. After six months of incubation, the contents of exchangeable and Fe-Mn oxides Cu, Zn were lower than those in the equivalent inorganic salt treatments, the contents of organics Cu and Zn were higher than those in the equivalent inorganic salt treatments, and other Cu and Zn forms in soils showed no difference with inorganic salt treatments.

  4. An Investigation into the Physico-chemical Factors Affecting the Abundance and Diversity of Aquatic Insects in Organically Manured Aquadams and Their Utilization by Oreochromis mossambicus (Perciformes: Cichlidae).

    PubMed

    Rapatsa, M M; Moyo, N A G

    2015-08-01

    The interaction between the fish Oreochromis mossambicus (Percifomes: Cichlidae) and aquatic insects after application of chicken, cow, and pig manure was studied in 7,000-liter plastic aquadams. Principal component analysis showed that most of the variation in water quality after application of manure was accounted for by potassium, nitrogen, dissolved oxygen, phosphate, and alkalinity. Canonical correspondence analysis showed that Gyrinidae, Elminidae, Hydrophilidae, Hydraenidae, and Athericidae were associated with high nutrient levels (nitrogen, phosphorus, and potassium) characteristic of the chicken manure. However, the most abundant aquatic insects Gerridae, Notonectidae, and Culicidae were close to the centre of the ordination and not defined by any nutrient gradient. The Shannon-Wiener diversity was highest in the aquadams treated with chicken manure. The most frequently occurring aquatic insects in the diet of O. mossambicus were culicid mosquitoes in all the treatments. However, in the laboratory, Chironomidae were the most preferred because they lacked refuge. Notonectidae and Gerridae were not recorded in the diet of O. mossambicus despite their abundance. This may be because of their anti-predation strategies. Laboratory experiments showed that Notonectidae, Gyrinidae, and Gerridae fed on Chironomidae and Culicidae. This implies that aquatic predatory insects competed for food with O. mossambicus. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Evaluation of organic amendment on the effect of cadmium bioavailability in contaminated soils using the DGT technique and traditional methods.

    PubMed

    Yao, Yu; Sun, Qin; Wang, Chao; Wang, Pei-Fang; Ding, Shi-Ming

    2017-03-01

    Organic amendments have been widely proposed as a remediation technology for metal-contaminated soils, but there exist controversial results on their effectiveness. In this study, the effect of pig manure addition on cadmium (Cd) bioavailability in Cd-contaminated soils was systematically evaluated by one dynamic, in situ technique of diffusive gradients in thin films (DGT) and four traditional methods based on the equilibrium theory (soil solution concentration and the three commonly used extractants, i.e., acetic acid (HAc), ethylenediamine tetraacetic acid (EDTA), and calcium chloride (CaCl 2 ). Wheat and maize were selected for measurement of plant Cd uptake. The results showed that pig manure addition could promote the growth of two plants, accompanied by increasing biomasses of shoots and roots with increasing doses of pig manure addition. Correspondingly, increasing additions of pig manure reduced plant Cd uptake and accumulation, as indicated by the decreases of Cd concentrations in shoots and roots. The bioavailable concentrations of Cd in Cd-contaminated soils reflected by the DGT technique obviously decreased with increasing doses of pig manure addition, following the same changing trend as plant Cd uptake. Changes in soil solution Cd concentration and extractable Cd by HAc, EDTA, and CaCl 2 in soils were similar to DGT measurement. Meanwhile, the capability of Cd resupply from solid phase to soil solution decreased with increasing additions of pig manure, as reflected by the decreases in the ratio (R) value of C DGT to C sol . Positive correlations were observed between various bioavailable indicators of Cd in soils and Cd concentrations in the tissues of the two plants. These findings provide stronger evidence that pig manure amendment is effective in reducing Cd mobility and bioavailability in soils and it is an ideal organic material for remediation of Cd-contaminated soils.

  6. Applied manure research—looking forward to the benign roles of animal manure in agriculture and the environment

    USDA-ARS?s Scientific Manuscript database

    By definition, animal manure is discarded animal excreta and bedding materials usually applied to soils as a fertilizer for agricultural production. However, the impact of manure generation and disposal is far more than the role of organic fertilizers, even though the fertilizer function of animal m...

  7. Persistence of Mycobacterium avium subsp. paratuberculosis and Other Zoonotic Pathogens during Simulated Composting, Manure Packing, and Liquid Storage of Dairy Manure

    PubMed Central

    Grewal, Sukhbir K.; Rajeev, Sreekumari; Sreevatsan, Srinand; Michel, Frederick C.

    2006-01-01

    Livestock manures contain numerous microorganisms which can infect humans and/or animals, such as Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., and Mycobacterium avium subsp. paratuberculosis (Mycobacterium paratuberculosis). The effects of commonly used manure treatments on the persistence of these pathogens have rarely been compared. The objective of this study was to compare the persistence of artificially inoculated M. paratuberculosis, as well as other naturally occurring pathogens, during the treatment of dairy manure under conditions that simulate three commonly used manure management methods: thermophilic composting at 55°C, manure packing at 25°C (or low-temperature composting), and liquid lagoon storage. Straw and sawdust amendments used for composting and packing were also compared. Manure was obtained from a large Ohio free-stall dairy herd and was inoculated with M. paratuberculosis at 106 CFU/g in the final mixes. For compost and pack treatments, this manure was amended with sawdust or straw to provide an optimal moisture content (60%) for composting for 56 days. To simulate liquid storage, water was added to the manure (to simulate liquid flushing and storage) and the slurry was placed in triplicate covered 4-liter Erlenmeyer flasks, incubated under ambient conditions for 175 days. The treatments were sampled on days 0, 3, 7, 14, 28, and 56 for the detection of pathogens. The persistence of M. paratuberculosis was also assessed by a PCR hybridization assay. After 56 days of composting, from 45 to 60% of the carbon in the compost treatments was converted to CO2, while no significant change in carbon content was observed in the liquid slurry. Escherichia coli, Salmonella, and Listeria were all detected in the manure and all of the treatments on day 0. After 3 days of composting at 55°C, none of these organisms were detectable. In liquid manure and pack treatments, some of these microorganisms were detectable up to 28 days. M

  8. Bioremediation of distillery sludge into soil-enriching material through vermicomposting with the help of Eisenia fetida.

    PubMed

    Singh, Jaswinder; Kaur, Arvinder; Vig, Adarsh Pal

    2014-10-01

    The aim of the present study was bioremediation of distillery sludge into a soil-enriching material. It was mixed with a complementary waste, cattle dung, and subjected to vermicomposting with (V) and without (T, control) Eisenia fetida in the ratio of 0:100 % (V1, T1), 10:90 (V2, T2), 25:75 (V3, T3), 50:50 (V4, T4), 75:25 (V5, T5) and 100:0 % (V6, T6), respectively. Survival rate, growth rate, onset of maturity, cocoon production and population build-up increased with increasing ratio of cattle dung. Maximum mortality of earthworm was observed in V6 mixture. On the basis of response surface design, the concentration of sludge giving highest number of worms, cocoons and hatchlings came out to be 21.11, 24.51 and 17.19 %, respectively. Nitrogen, phosphorus, sodium and pH increased during vermicomposting but decreased in the products without earthworm and there was increase in the contents of transition metals in the products of both the techniques. However, organic carbon, electrical conductivity and potassium showed an opposite trend.

  9. Ecotoxicity of arsenic contaminated sludge after mixing with soils and addition into composting and vermicomposting processes.

    PubMed

    Vašíčková, Jana; Maňáková, Blanka; Šudoma, Marek; Hofman, Jakub

    2016-11-05

    Sludge coming from remediation of groundwater contaminated by industry is usually managed as hazardous waste despite it might be considered for further processing as a source of nutrients. The ecotoxicity of phosphorus rich sludge contaminated with arsenic was evaluated after mixing with soil and cultivation with Sinapis alba, and supplementation into composting and vermicomposting processes. The Enchytraeus crypticus and Folsomia candida reproduction tests and the Lactuca sativa root growth test were used. Invertebrate bioassays reacted sensitively to arsenic presence in soil-sludge mixtures. The root elongation of L. sativa was not sensitive and showed variable results. In general, the relationship between invertebrate tests results and arsenic mobile concentration was indicated in majority endpoints. Nevertheless, significant portion of the results still cannot be satisfactorily explained by As chemistry data. Composted and vermicomposted sludge mixtures showed surprisingly high toxicity on all three tested organisms despite the decrease in arsenic mobility, probably due to toxic metabolites of bacteria and earthworms produced during these processes. The results from the study indicated the inability of chemical methods to predict the effects of complex mixtures on living organisms with respect to ecotoxicity bioassays. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Brazilian beef cattle feedlot manure management: a country survey.

    PubMed

    Costa, C; Goulart, R S; Albertini, T Z; Feigl, B J; Cerri, C E P; Vasconcelos, J T; Bernoux, M; Lanna, D P D; Cerri, C C

    2013-04-01

    No information regarding the management of manure from beef cattle feedlots is available for Brazil. To fill this knowledge gap, a survey of 73 feedlots was conducted in 7 Brazilian states. In this survey, questions were asked regarding animal characteristics, their diets, and manure handling management from generation to disposal. These feedlots finished 831,450 animals in 2010. The predominant breed fed was Nellore, with average feeding periods of 60 to 135 d. Corn was the primary source of grain used in the feedlot diets (76% of surveyed animals) with concentrate inclusion levels ranging from 81 to 90% (38% of surveyed animals). The most representative manure management practice was the removal of manure from pens only at the end of the feeding period. Subsequently, the manure was stored in mounds before being applied to crop and pasture lands. Runoff, mainly from rainwater, was collected in retention ponds and used for agriculture. However, the quantity of runoff was not known. Manure was composted for only 20% of the animals in the survey and was treated in anaerobic digesters for only 1% of the animals. Manure from 59% of the cattle surveyed was used as fertilizer, providing a cost savings over the use of synthetic fertilizers. Overall, chemical analysis of the manure before application to fields was conducted for the manure of 56% of the surveyed animals, but the exact quantity applied (per hectare) was unknown for 48%. Feedlots representing 48% of the surveyed animals noted similar or greater crop and pasture yields when using manure, rather than synthetic fertilizers. In addition, 32% mentioned an increase in soil organic matter. Feedlots representing 88% of the surveyed cattle indicated that information concerning management practices that improve manure use efficiency is lacking. Feedlots representing 93% of the animals in the survey reported having basic information regarding the generation of energy and fertilizer with anaerobic digesters. However

  11. Co-digestion of cattle manure with food waste and sludge to increase biogas production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maranon, E., E-mail: emara@uniovi.es; Castrillon, L.; Quiroga, G.

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Small increase in methane production was observed applying sonication pretreatment. Black-Right-Pointing-Pointer Biogas productions between 720 and 1100 mL/Lreactor day were achieved. Black-Right-Pointing-Pointer Volatile solids removal efficiencies ranged between 53% and 60%. Black-Right-Pointing-Pointer Lower methane yields were obtained when operating under thermophilic conditions. Black-Right-Pointing-Pointer Optimum OLR in lab-scale CSTR was 1.2-1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogasmore » yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH{sub 4}/kg VS{sub feed} for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 Degree-Sign C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55 Degree-Sign C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.« less

  12. Screening of four species of detritivorous (humus-former) earthworms for sustainable vermicomposting of paper waste.

    PubMed

    Gajalakshmi, S; Ramasamy, E V; Abbasi, S A

    2001-06-01

    Four specices of detritivorous (humus-former) earthworms were tested for their ability to vermicompost paper waste blended with cowdung in 6:1 (w/w) ratio. The anecic Lampito mauritii, Kinberg and the epigeic Eudrilus eugeniae, Kinberg were the most effective of the four species employed; 20 animals of each of these species generated castings amounting to about 52% of the feed mass (75 g) per fortnight. The performance of these two species was followed by the anecic Drawida willsi, Michaelsen and the epigeic Perionyx excavatus, Perrier; they achieved approximately 46% vermiconversion in comparable settings. The vermireactors were sustainable as the animals have remained consistently healthy and reproductive over a period of six months, and are continuing to remain so, turning in a steadily rising vermicast output. During this period E. eugeniae have grown to 2.3 times their original weight while the other three species have more than trebled their weights. The studies establish the feasibility of vermicomposting as a viable process for the gainful utilization of paper waste in an environmentally clean manner. They also indicate that all the four species of the worms screened by us are suitable for the process, with L. mauritii and E. eugeniae a shade more efficient than the other two species.

  13. Pathogen reduction in minimally managed composting of bovine manure.

    PubMed

    Millner, Patricia; Ingram, David; Mulbry, Walter; Arikan, Osman A

    2014-11-01

    Spread of manure pathogens is of considerable concern due to use of manure for land application. In this study, the effects of four static pile treatment options for bovine manure on die-off of a generic Escherichia coli, E. coli O157:H7 surrogate, Salmonella Senftenberg, Salm. Typhimurium, and Listeria monocytogenes were evaluated. Bovine manure spiked with these bacteria were placed in cassettes at the top, middle, and bottom sections of four static pile treatments that reflect minimal changes in pile construction with and without straw. Temperatures were monitored continuously during the 28 day self-heating period. E. coli and salmonellae were reduced from 8 to 9 log10 CFU g(-1) to undetectable levels (<1.77 log10 MPN g(-1)) at 25-30 cm depths within 7 days in all pile sections except for the manure-only pile in which 3-4 logs of reduction were obtained. No L. monocytogenes initially present at 6.62 log10 CFU g(-1) were recovered from straw-amended piles after 14 days, in contrast with manure-only treatment in which this pathogen was recovered even at 28 days. Decline of target bacterial populations corresponded to exposure to temperatures above 45°C for more than 3 days and amendments of manure with straw to increase thermophilic zones. Use of straw to increase aeration, self-heating capacity, and heat retention in manure piles provides producers a minimal management option for composting that enhances pathogen die-off and thereby reduces risk of environmental spread when manure is applied to land. Published by Elsevier Ltd.

  14. Tracing heavy metals in 'swine manure - maggot - chicken' production chain.

    PubMed

    Wang, Wanqiang; Zhang, Wenjuan; Wang, Xiaoping; Lei, Chaoliang; Tang, Rui; Zhang, Feng; Yang, Qizhi; Zhu, Fen

    2017-08-21

    With the development of large-scale livestock farming, manure pollution has drawn much attention. Conversion by insects is a rapid and cost-effective new method for manure management. Swine manure conversion with maggots (Musca domestica larvae) has developed, and the harvested maggots are often used as animal feed. However, the flow of heavy metals from manure to downstream processes cannot be ignored, and therefore, heavy metal content was measured in untreated raw manure, maggot-treated manure, harvested maggots and maggot-eating chickens (chest muscle and liver) to evaluate potential heavy metal risks. The levels of zinc, copper, chromium, selenium, cadmium and lead had significant differences between untreated raw manure and maggot-treated manure. The concentrations of all detected heavy metals, except for cadmium and selenium, in maggots met the limits established by the feed or feed additive standards of many countries. The bioaccumulation factor (BAF) of heavy metals decreased with the increase of the maggot instar, indicating that heavy metals were discharged from the bodies of maggots with the growth of maggots. Also, the contents of overall heavy metals in chickens fed harvested maggots met the standards for food. In conclusion, regarding heavy metals, it is eco-safe to use maggots in manure management.

  15. Leaching of viruses and other microorganisms naturally occurring in pig slurry to tile drains on a well-structured loamy field in Denmark

    NASA Astrophysics Data System (ADS)

    Krog, Jesper S.; Forslund, Anita; Larsen, Lars E.; Dalsgaard, Anders; Kjaer, Jeanne; Olsen, Preben; Schultz, Anna Charlotte

    2017-06-01

    The amount of animal manure used in modern agriculture is increasing due to the increase in global animal production. Pig slurry is known to contain zoonotic bacteria such as E. coli, Salmonella spp. and Campylobacter spp., and viruses such as hepatitis E virus and group A rotavirus. Coliform bacteria, present in manure, have previously been shown to leach into tile drains. This poses a potential threat to aquatic environments and may also influence the quality of drinking water. As knowledge is especially scarce about the fate of viruses when applied to fields in natural settings, this project sets out to investigate the leaching potential of six different microorganisms: E. coli and Enterococcus spp. (detected by colony assay), somatic coliphages (using plaque assays), and hepatitis E virus, porcine circovirus type 2, and group A rotavirus (by real-time polymerase chain reaction). All six microorganisms leached through the soil entering the tile drains situated at 1-m depth the first day following pig slurry application. The leaching pattern of group A rotavirus differed substantially from the pattern for somatic coliphages, which are otherwise used as indicators for virus contamination. Furthermore, group A rotavirus was detected in monitoring wells at 3.5-m depth up to 2 months after pig slurry application. The detection of viral genomic material in drainage water and shallow groundwater signifies a potential hazard to human health that needs to be investigated further, as water reservoirs used for recreational use and drinking water are potentially contaminated with zoonotic pathogens.

  16. Potential of filter-vermicomposter for household wastewater pre-treatment and sludge sanitisation on site.

    PubMed

    Gajurel, D; Deegener, S; Shalabi, M; Otterpohl, R

    2007-01-01

    Septic tank systems have been widely used to separate and digest solid matter in the household wastewater for a long time. However, they contaminate groundwater with pathogens and nutrients and deprive agriculture of valuable nutrients and soil conditioner from human excreta. Compared with septic tank systems the filter-composter (Rottebehaelter), which usually consists of an underground monolithic concrete tank having two filter beds at its bottom or two filter bags that are hung side by side and used alternately at intervals of 6-12 months, is an efficient component for solid-liquid separation, pre-treatment and collection/storage of solid matter in household wastewater. The solids are retained and decompose in the filter bags or on the filter bed while the liquid filters through. However, because of the high moisture content of the retained solids decomposition is slow. Therefore, secondary treatment of the retained solids is required for sanitisation. The breakthrough was the combination of vermicomposting with the filter-composter system. Relatively dry and stable retained materials were obtained in the filter bags in about 3 months only. No secondary treatment is required as the human excreta will be converted to vermicastings, which are hygienically safe and can be reused as soil conditioner. Therefore, further development of the filter-composter with vermicomposting is worthwhile, especially the aspects of sanitisation of the faecal matter and its reuse as a soil conditioner.

  17. Transport of microorganisms in the presence and absence of manure suspensions

    NASA Astrophysics Data System (ADS)

    Bradford, S. A.; Tadassa, Y.; Bettahar, M.

    2004-12-01

    Wash water and storm water runoff from Concentrated Animal Feeding Operations (CAFOs) frequently contain manure and a variety of viral, bacterial, and protozoan parasite pathogens. Column experiments were conducted to elucidate the transport behavior of representative microbes (coliphage, Escherichia coli O157:H7, and Giardia cysts) through several aquifer sands in the presence and absence of manure suspensions. Specific factors that were considered include the soil grain size distribution, the presence and absence of manure suspensions, and manure size distribution. Effluent concentration curves and the final spatial distributions of microorganisms and manure particles were measured. Increasing the microbe size and decreasing the median grain size of the sand resulted in low effluent concentrations and increased retention of the microbes, especially in the sand near the column inlet. Similar transport trends were observed for the manure suspensions in these sands. The spatial distributions of retained microbes and manure were generally not consistent with predictions from conventional attachment, detachment, and blocking models; but rather with straining. The transport potential of the microbes was sometimes enhanced in the presence of manure suspensions. This observation, as well transport and retention data for manure suspensions, suggest that manure components filled straining sites and inhibited microbe retention. Differences in the surface charge properties of clean and manure equilibrated microbes (presumably due to adsorption of organic components from the suspension) may also influence transport behavior.

  18. PigGIS: Pig Genomic Informatics System

    PubMed Central

    Ruan, Jue; Guo, Yiran; Li, Heng; Hu, Yafeng; Song, Fei; Huang, Xin; Kristiensen, Karsten; Bolund, Lars; Wang, Jun

    2007-01-01

    Pig Genomic Information System (PigGIS) is a web-based depository of pig (Sus scrofa) genomic learning mainly engineered for biomedical research to locate pig genes from their human homologs and position single nucleotide polymorphisms (SNPs) in different pig populations. It utilizes a variety of sequence data, including whole genome shotgun (WGS) reads and expressed sequence tags (ESTs), and achieves a successful mapping solution to the low-coverage genome problem. With the data presently available, we have identified a total of 15 700 pig consensus sequences covering 18.5 Mb of the homologous human exons. We have also recovered 18 700 SNPs and 20 800 unique 60mer oligonucleotide probes for future pig genome analyses. PigGIS can be freely accessed via the web at and . PMID:17090590

  19. Methane Recovery from Animal Manures The Current Opportunities Casebook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lusk, P.

    1998-09-22

    Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only helps prevent pollution but can also convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially viable conversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewablemore » fuel for livestock production operations. This casebook examines some of the current opportunities for recovering methane from anaerobic digestion animal manures.« less

  20. Simulated management effects on ammonia emissions from field applied manure.

    PubMed

    Smith, E; Gordon, R; Bourque, C; Campbell, A; Génermont, S; Rochette, P; Mkhabela, M

    2009-06-01

    A need exists to improve the utilization of manure nutrients by minimizing NH(3) emissions from land application of manure. Management strategies to reduce NH(3) emissions are available; however, few have been validated under Canadian conditions. A well tested and accurate simulation model, however, can help overcome this challenge by determining appropriate management strategies for a given set of field conditions. The Volt'Air simulation model was utilized to estimate NH(3) volatilization from manure spreading for various manure spreading considerations under a range of atmospheric conditions typically encountered in eastern Canada. Considerations included: (i) soil liming, (ii) time of day of manure spreading, (iii) rainfall (timing and amount) and (iv) manure incorporation (timing, depth and manure coverage). Results demonstrated that liming to increase soil pH, increased NH(3) emissions by 3.3 kg ha(-1) for each increment of 0.1 pH (up to a 1.5 total increase), over no liming at 34.6 kg ha(-1). For each hour delay in manure spreading past 0800 h, NH(3) losses were reduced by 1.5 kg ha(-1). Rainfall (10mm) at least 20 h after manure application reduced losses, with increased reductions at higher rainfall amounts. Incorporation soon (1h) after application was best for NH(3) mitigation. Increasing the depth of incorporation by 5c m reduced NH(3) emissions by 4.4 kg ha(-1); also increasing manure coverage by incorporation reduced losses by 2 kg ha(-1) for each 10% increase in coverage, compared to surface application at 34.6 kg ha(-1). This investigation using Volt'Air yielded valuable information about simulating manure management strategies and the magnitude of their effects on NH(3) emissions.

  1. Survival of Salmonella typhimurium and Escherichia coli O157:H7 in poultry manure and manure slurry at sublethal temperatures.

    PubMed

    Himathongkham, S; Riemann, H; Bahari, S; Nuanualsuwan, S; Kass, P; Cliver, D O

    2000-01-01

    Exponential inactivation was observed for Salmonella typhimurium and Escherichia coli O157:H7 in poultry manure with decimal reduction times ranging from half a day at 37 C to 1-2 wk at 4 C. There was no material difference in inactivation rates between S. typhimurium and E. coli O157:H7. Inactivation was slower in slurries made by mixing two parts of water with one part of manure; decimal reduction times (time required for 90% destruction) ranged from 1-2 days at 37 C to 6-22 wk at 4 C. Escherichia coli O157:H7 consistently exhibited slightly slower inactivation than S. typhimurium. Log decimal reduction time for both strains was a linear function of storage temperature for manure and slurries. Chemical analysis indicated that accumulation of free ammonia in poultry manure was an important factor in inactivation of the pathogens. This finding was experimentally confirmed for S. typhimurium by adding ammonia directly to peptone water or to bovine manure, which was naturally low in ammonia, and adjusting pH to achieve predetermined levels of free ammonia.

  2. Optimizing the Logistics of Anaerobic Digestion of Manure

    NASA Astrophysics Data System (ADS)

    Ghafoori, Emad; Flynn, Peter C.

    Electrical power production from the combustion of biogas from anaerobic digestion (AD) of manure is a means of recovering energy from animal waste. We evaluate the lowest cost method of moving material to and from centralized AD plants serving multiple confined feeding operations. Two areas are modeled, Lethbridge County, Alberta, Canada, an area of concentrated beef cattle feedlots, and Red Deer County, Alberta, a mixed-farming area with hog, dairy, chicken and beef cattle farms, and feedlots. We evaluate two types of AD plant: ones that return digestate to the source confined feeding operation for land spreading (current technology), and ones that process digestate to produce solid fertilizer and a dischargeable water stream (technology under development). We evaluate manure and digestate trucking, trucking of manure with return of digestate by pipelines, and pipelining of manure plus digestate. We compare the overall cost of power from these scenarios to farm or feedlot-based AD units. For a centralized AD plant with digestate return for land spreading the most economical transport option for manure plus digestate is by truck for the mixed-farming area and by pipelines for the concentrated feedlot area. For a centralized AD plant with digestate processing, the most economical transport option is trucking of manure for both cases.

  3. Mercury in Animal Manures and Impacts on Environmental Health

    USDA-ARS?s Scientific Manuscript database

    Animal manure is widely used as a cheap source of fertilizer all over the world, and is also used as animal feed. In industrialized countries, tons of animal manures per hectare each year are applied to agricultural lands as an easy means of disposal. Analysis of these manures shows low Hg concentra...

  4. [Interaction Between Sulfonamide Antibiotics Fates and Chicken Manure Composting].

    PubMed

    Lin, Hui; Wang, Jian-mei; Sun, Wan-chun; Fu, Jian-rong; Chen, Hong-jin; Ma, Jun-wei

    2016-05-15

    Based on aerobic manure composting with or without the addition of a mixture of sulfadimethoxine SM2 and sulfamonomethoxine SMM (1:1, m/m), changes in the physic-chemical properties of manure compost, the microbial community physiological profiles, the antibiotics concentration and the abundances of five antibiotic resistance genes (ARGs) during the composting were tracked. The results indicated that the introduction of sulfonamide antibiotics led to inhibition on the basal respiration of manure compost during the early composting period, delayed the formation of thermophilic temperature and reduced the conversion of nutrients such as organic matter, ammonia nitrogen and nitrate nitrogen. Meanwhile, the introduction of sulfonamide antibiotics dramatically affected the physiological profile of microbial community in manure in the middle stage of composting. HPLC-MS/MS results showed that both SMM and SM2 in manure were completely degraded within 14 days, while the degradation rate of SMM was faster than that of SM2. For both composting treatments with or without addition of exogenous antibiotics, the relative abundance of sull and sul2 showed an initial decline in the first 14 or 21 days and a slight increase thereafter. The addition of exogenous antibiotics showed insignificant enhancement on increasing the relative abundance of sul1 and IntI1 in manure, but resulted in an apparent increase in sul2 relative abundance. Although the fates of tetQ and tetW during composting were different from that of sulfonamide ARGs, the introduction of sulfonamide antibiotics into manure increased the relative abundance of tetracycline ARGs. Redundancy analysis indicated that composting temperature correlated negatively with sul1, sul2 and IntI1 relative abundance in manure but had no obvious relationship with tetQ and tetW relative abundance. All the ARGs detected in this work correlated negatively with C/N ratio and the nitrate nitrogen concentration of manure compost but

  5. Fate and transport of antimicrobials and antimicrobial resistance genes in soil and runoff following land application of swine manure slurry.

    PubMed

    Joy, Stacey R; Bartelt-Hunt, Shannon L; Snow, Daniel D; Gilley, John E; Woodbury, Bryan L; Parker, David B; Marx, David B; Li, Xu

    2013-01-01

    Due to the use of antimicrobials in livestock production, residual antimicrobials and antimicrobial resistance genes (ARGs) could enter the environment following the land application of animal wastes and could further contaminate surface and groundwater. The objective of this study was to determine the effect of various manure land application methods on the fate and transport of antimicrobials and ARGs in soil and runoff following land application of swine manure slurry. Swine manure slurries were obtained from facilities housing pigs that were fed chlortetracyline, tylosin or bacitracin and were land applied via broadcast, incorporation, and injection methods. Three rainfall simulation tests were then performed on amended and control plots. Results show that land application methods had no statistically significant effect on the aqueous concentrations of antimicrobials in runoff. However, among the three application methods tested broadcast resulted in the highest total mass loading of antimicrobials in runoff from the three rainfall simulation tests. The aqueous concentrations of chlortetracyline and tylosin in runoff decreased in consecutive rainfall events, although the trend was only statistically significant for tylosin. For ARGs, broadcast resulted in significantly higher erm genes in runoff than did incorporation and injection methods. In soil, the effects of land application methods on the fate of antimicrobials in top soil were compound specific. No clear trend was observed in the ARG levels in soil, likely because different host cells may respond differently to the soil environments created by various land application methods.

  6. Survival of Salmonella spp. and fecal indicator bacteria in Vietnamese biogas digesters receiving pig slurry.

    PubMed

    Huong, Luu Quynh; Forslund, Anita; Madsen, Henry; Dalsgaard, Anders

    2014-09-01

    Small-scale biogas digesters are widely promoted worldwide as a sustainable technology to manage livestock manure. In Vietnam, pig slurry is commonly applied to biogas digesters for production of gas for electricity and cooking with the effluent being used to fertilize field crops, vegetables and fish ponds. Slurry may contain a variety of zoonotic pathogens, e.g. Salmonella spp., which are able to cause disease in humans either through direct contact with slurry or by fecal contamination of water and foods. The objective of this study was to evaluate the survival of Salmonella spp. and the fecal indicator bacteria, enterococci, E. coli, and spores of Clostridium perfringens in biogas digesters operated by small-scale Vietnamese pig farmers. The serovar and antimicrobial susceptibility of the Salmonella spp. isolated were also established. The study was conducted in 12 farms (6 farms with and 6 farms without toilet connected) located in Hanam province, Vietnam. Sampling of pig slurry and biogas effluent was done during two seasons. Results showed that the concentration of enterococci, E. coli, and Clostridium perfringens spores was overall reduced by only 1-2 log10-units in the biogas digesters when comparing raw slurry and biogas effluent. Salmonella spp. was found in both raw slurry and biogas effluent. A total of 19 Salmonella serovars were identified, with the main serovars being Salmonella Typhimurium (55/138), Salmonella enterica serovar 4,[5],12:i:- (19/138), Salmonella Weltevreden (9/138) and Salmonella Rissen (9/138). The Salmonella serovars showed similar antimicrobial resistance patterns to those previously reported from Vietnam. When promoting biogas, farmers should be made aware that effluent should only be used as fertilizer for crops not consumed raw and that indiscriminate discharge of effluent are likely to contaminate water recipients, e.g. drinking water sources, with pathogens. Relevant authorities should promote safe animal manure management

  7. Testing of Co-Fermentation of Poultry Manure and Corn Silage

    NASA Astrophysics Data System (ADS)

    Jędrczak, Andrzej; Królik, Dariusz; Sądecka, Zofia; Myszograj, Sylwia; Suchowska-Kisielewicz, Monika; Bojarski, Jacek

    2014-12-01

    The development of the production of poultry meat is connected with an increase in the quantity of the manure. The chemical characteristics predisposes this waste to processing by methane fermentation method. This study investigated the influence of ammonia and volatile fat acids on mesophilic anaerobic digestion of poultry manure. The aim of the studies was: to determine the degree of biodegradation of the poultry manure as well as manure and corn silage mixed in various proportions in the process of mesophilic fermentation, to evaluate the impact of mineral nitrogen and volatile fat acids on the course of fermentation, and to establish optimum proportions of these types of waste. The tests confirmed the positive effect of co-fermentation of poultry manure with corn silage. The most favourable ratio for mixing the substrates is the equal percentage of their dry matter in the mixture. With such waste mixing proportions, the degree of degradation of organic substances contained in the manure amounted to 61.8% and was higher than in the mono-digestion of manure and corn silage.

  8. Inhibition of phosphorus sorption on calcite by dairy manure-sourced DOC.

    PubMed

    Weyers, Eva; Strawn, Daniel G; Peak, Derek; Baker, Leslie L

    2017-10-01

    In confined animal feeding operations, such as dairies, manure is amended to soils at high rates leading to increases in P and organic matter in the soils. Phosphorus reacts with soil-Ca to form Ca-P minerals, which controls P availability for leaching and transport through the watershed. In this research, the effects of manure sourced dissolved organic matter (DOM) on P sorption on calcite were measured at different reaction times and concentrations. Reactions were monitored in 1% and 10% manure-to-water extract solutions spiked with P. When manure-DOM was present, a significant reduction in P sorption occurred (2-90% absolute decrease) compared to samples without manure-DOM. The greatest decrease occurred in the samples reacted in the 10% manure solution. XANES spectroscopic analysis showed that at 1% manure solution, a Ca-P phase similar to hydroxyapatite formed. In the calcite samples reacted in the 10% manure solution, K-edge XANES spectroscopy revealed that P occurred as a Ca-Mg-P phase instead of the less soluble hydroxyapatite-like phase. Results from this study suggest that in manure-amended calcareous soils, increased DOM from manure will decrease P sorption capacity and increase the overall P concentration in solution, which will increase the mobility of P and subsequently pose greater risks for impairment of surface water quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [Regional differences and development tendency of livestock manure pollution in China].

    PubMed

    Qiu, Huan-Guang; Liao, Shao-Pan; Jing, Yue; Luan, Jiang

    2013-07-01

    The rapid development of livestock production in China has brought livestock manure pollution as a serious environment problem, even threatens China's agriculture sustainable development. On the basis of public statistical data and field research data, this paper analyzed the magnitude of livestock manure excretion and pollution of China and different provinces in 2010, and predicted development tendencies of livestock manure excretion and pollution in 2020 through the Decision Support System for China's Agricultural Sustainable Development (CHINAGRO). The result shows that total livestock manure excretion of China in 2010 is 1 900 million tons, and livestock manure pollution is 227 million tons, while per hectare arable land of livestock manure pollution is 1.86 tons. Provinces in the southeast China, such as Guangdong and Fujian, are areas with high pressure of livestock manure pollution. Model simulation shows that China's total amount of livestock manure pollution will increase to 298 million tons in 2020 without government intervention. The pressure of livestock manure pollution will become higher in most regions of China, especially in east and south regions. The situation in central and western region is better than that in east regions although the pollution pressure will also increase in those areas. Policy intervention such as taxes and subsidies should be adopted to reduce the discharge of livestock manure pollution, and encourage livestock production transfer from eastern areas to the central and western regions.

  10. A model for phosphorus transformation and runoff loss for surface-applied manures.

    PubMed

    Vadas, P A; Gburek, W J; Sharpley, A N; Kleinman, P J A; Moore, P A; Cabrera, M L; Harmel, R D

    2007-01-01

    Agricultural P transport in runoff is an environmental concern. An important source of P runoff is surface-applied, unincorporated manures, but computer models used to assess P transport do not adequately simulate P release and transport from surface manures. We developed a model to address this limitation. The model operates on a daily basis and simulates manure application to the soil surface, letting 60% of manure P infiltrate into soil if manure slurry with less than 15% solids is applied. The model divides manure P into four pools, water-extractable inorganic and organic P, and stable inorganic and organic P. The model simulates manure dry matter decomposition, and manure stable P transformation to water-extractable P. Manure dry matter and P are assimilated into soil to simulate bioturbation. Water-extractable P is leached from manure when it rains, and a portion of leached P can be transferred to surface runoff. Eighty percent of manure P leached into soil by rain remains in the top 2 cm, while 20% leaches deeper. This 2-cm soil layer contributes P to runoff via desorption. We used data from field studies in Texas, Pennsylvania, Georgia, and Arkansas to build and validate the model. Validation results show the model accurately predicted cumulative P loads in runoff, reflecting successful simulation of the dynamics of manure dry matter, manure and soil P pools, and storm-event runoff P concentrations. Predicted runoff P concentrations were significantly related to (r2=0.57) but slightly less than measured concentrations. Our model thus represents an important modification for field or watershed scale models that assess P loss from manured soils.

  11. Dairy manure applications and soil health implications

    USDA-ARS?s Scientific Manuscript database

    Dairy manure applications can potentially improve soil health by adding organic matter (OM) to the soil. However, intensive dairy manure applications can cause salt accumulations on arid, irrigated soils, impairing soil health, which can reduce crop growth and yield. Soil organic matter, a major c...

  12. AFO Manure Management - Nevada: CAFO Drainage Collection Requirements

    EPA Pesticide Factsheets

    Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.

  13. AFO Manure Management - Virginia: Nutrient Management Inspector Qualifications

    EPA Pesticide Factsheets

    Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.

  14. AFO Manure Management - California: Implementing TMDL Wasteload Allocations

    EPA Pesticide Factsheets

    Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.

  15. Determination of the performance of vermicomposting process applied to sewage sludge by monitoring of the compost quality and immune responses in three earthworm species: Eisenia fetida, Eisenia andrei and Dendrobaena veneta.

    PubMed

    Suleiman, Hanine; Rorat, Agnieszka; Grobelak, Anna; Grosser, Anna; Milczarek, Marcin; Płytycz, Barbara; Kacprzak, Małgorzata; Vandenbulcke, Franck

    2017-10-01

    The aim of this study was to assess the effectiveness of vermicomposting process applied on three different sewage sludge (precomposted with grass clippings, sawdust and municipal solid wastes) using three different earthworm species. Selected immune parameters, namely biomarkers of stress and metal body burdens, have been used to biomonitor the vermicomposting process and to assess the impact of contaminants on earthworm's physiology. Biotic and abiotic parameters were also used in order to monitor the process and the quality of the final product. Dendrobaena veneta exhibited much lower resistance in all experimental conditions, as the bodyweight and the total number of circulating immune cells decreased in the most contaminated conditions. All earthworm species accumulated heavy metals as follows Cd>Co>Cu>Zn>Ni>Pb>Cr: Eisenia sp. worms exhibited the highest ability to accumulate several heavy metals. Vermicompost obtained after 45days was acceptable according to agronomic parameters and to compost quality norms in France and Poland. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. An assessment of nitrogen-based manure application rates on 39 U.S. swine operations.

    PubMed

    Lory, John A; Massey, Raymond E; Zulovich, Joseph M; Hoehne, John A; Schmidt, Amy M; Carlson, Marcia S; Fulhage, Charles D

    2004-01-01

    Water quality concerns and revised regulations are changing how confined animal feeding operations manage manure. Devising acceptable and feasible changes in manure practices requires a full understanding of the forces shaping current manure management decisions. Previous theoretical models have shown that a wide range of factors influence the lowest cost solution for manure management. We used a mechanistic model to characterize the manure management practices on 39 swine operations (20 unagitated lagoon and 19 slurry operations) in five states (Iowa, Missouri, North Carolina, Oklahoma, and Pennsylvania). Information was collected from each operation about animal numbers, feed and water use, manure handling and storage characteristics, field locations, crop rotation, fertilizer need, and equipment inventory and usage. Collected data were used as input and to validate results from a mechanistic model that determined acres required for manure application, manure application rate, time required for manure application, value of manure, and costs of manure management. The 39 farms had a mean of 984 animal units (AU) per operation, 18.2 AU ha(-1) (7.4 AU acre(-1)), and manure application costs of dollar 10.49 AU(-1) yr(-1). Significant factors affecting manure management included operation size, manure handling system, state, and ownership structure. Larger operations had lower manure management costs (r2 = 0.32). Manure value potentially exceeded manure application costs on 58% of slurry and 15% of lagoon operations. But 38% of slurry operations needed to apply manure off the farm whereas all lagoon operations had sufficient land for N-based manure management. Manure management was a higher percentage of gross income on contract operations compared with independents (P < 0.01). This research emphasized the importance of site-specific factors affecting manure management decisions and the economics of U.S. swine operations.

  17. Impact of Parthenium weeds on earthworms (Eudrilus eugeniae) during vermicomposting.

    PubMed

    Rajiv, P; Rajeshwari, Sivaraj; Rajendran, Venckatesh

    2014-11-01

    The aim of this work is to evaluate the effect of Parthenium-mediated compost on Eudrilus eugeniae during the process of vermicomposting. Nine different concentrations of Parthenium hysterophorus and cow dung mixtures were used to assess toxicity. The earthworms' growth, fecundity and antioxidant enzyme levels were analysed every 15 days. The antioxidant activities of enzymes [superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)], considered as biomarkers, indicate the biochemical and oxidative stresses due to the toxin from Parthenium weeds. The earthworms' growth, biomass gain, cocoon production and antioxidant enzymes were in a low level in a high concentration of P. hysterophorus (without cow dung). The results clearly indicated that appropriate mixing of P. hysterophorus quantity is an essential factor for the survival of earthworms without causing any harm.

  18. Ammonia emissions from land application of manures

    USDA-ARS?s Scientific Manuscript database

    Ammonia volatilization can be a major nitrogen (N) loss process for surface-applied manures. There is concern that current manure management practices are contributing to ammonia losses in the Mid-Atlantic region with subsequent reductions in air quality and increases in N losses to streams and est...

  19. Greenhouse gas emissions from liquid dairy manure: Prediction and mitigation.

    PubMed

    Petersen, Søren O

    2017-12-07

    The handling and use of manure on livestock farms contributes to emissions of the greenhouse gases (GHG) CH 4 and N 2 O, especially with liquid manure management. Dairy farms are diverse with respect to manure management, with practices ranging from daily spreading to long-term storage for more efficient recycling of manure nutrients for crop production. Opportunities for GHG mitigation will depend on the baseline situation with respect to handling and storage, and therefore prediction and mitigation at the farm level requires a dynamic description of housing systems and storage conditions, and use of treatment technologies. Also, effects of treatment and handling on the properties of field-applied manure must be taken into account. Storage conditions and manure composition importantly define carbon and nitrogen transformations, and the resulting emissions of CH 4 and N 2 O, as well as CO 2 and NH 3 , which are all important for the GHG balance. Currently, inventories for CH 4 and N 2 O emissions from manure are based on emission factors for a limited number of production systems, together with average annual temperature, but the inherent uncertainty of this approach is a barrier toward prediction and mitigation. Although more representative emission factors may be determined at country level, this is both challenging and costly, and effects of management changes for GHG mitigation are not easily quantified. An empirical model of CH 4 emissions during storage is discussed that is based on daily time steps, and a parameterization based on measurements. A distinction between emissions from manure in barns and outside storage facilities is important for assessing effects of treatment technologies, such as anaerobic digestion, where only posttreatment emissions are affected. Upon field application, manure and soil together define the equilibrium distribution of labile carbon and nitrogen between bulk soil and manure hotspots. This introduces heterogeneity with respect

  20. Overview of the advances in environmental chemistry of animal manure

    USDA-ARS?s Scientific Manuscript database

    There is an increasing environmental concern over animal manure due to the volumes produced in modern intensified animal production. However, animal manure is traditionally regarded as a valuable resource of plant nutrients. Although research on environmental impacts of animal manure and associated...

  1. Evaluation of the slurry management strategy and the integration of the composting technology in a pig farm - Agronomical and environmental implications.

    PubMed

    Sáez, José A; Clemente, Rafael; Bustamante, M Ángeles; Yañez, David; Bernal, M Pilar

    2017-05-01

    The changes in livestock production systems towards intensification frequently lead to an excess of manure generation with respect to the agricultural land available for its soil application. However, treatment technologies can help in the management of manures, especially in N-surplus areas. An integrated slurry treatment system based on solid-liquid separation, aerobic treatment of the liquid and composting the solid fraction was evaluated in a pig farm (sows and piglets) in the South of Spain. Solid fraction separation using a filter band connected to a screw press had low efficiency (38%), which was greatly improved incorporating a rotatory sieve (61%). The depuration system was very efficient for the liquid, with total removal of 84% total solids, 87% volatile solids, and 98% phosphorus. Two composting systems were tested through mechanical turning of: 1- a mixture of solid fraction stored for 1 month after solid-liquid separation and cereal straw; 2- recently-separated solid fraction mixed with cotton gin waste. System 2 was recommended for the farm, as it exhibited a fast temperature rise and a long thermophilic phase to ensure compost sanitisation, and high recovery of nutrients (TN 77%, P and K > 85%) and organic matter (45%). The composts obtained were mature, stable and showed a high degree of humification of their organic matter, absence of phytotoxicity and concentrations of nutrients similar to other composts from pig manure or separated slurry solids. However, the introduction of slurry from piglets into the solid-liquid separation system should be avoided in order to reduce the content of Zn in the compost, which lowers its quality. The slurry separation followed by composting of the solid fraction using a passive windrow system, and aeration of the liquid phase, was the most recommendable procedure for the reduction of GHG emissions on the farm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Potential for reduction of odorous compounds in swine manure through diet modification.

    PubMed

    Sutton, A L; Kephart, K B; Verstegen, M W; Canh, T T; Hobbs, P J

    1999-02-01

    Recent public concern about air pollution from pork production units has prompted more research to develop methods to reduce and control odors. Masking agents, enzymes and bacterial preparations, feed additives, chemicals, oxidation processes, air scrubbers, biofilters, and new ventilation systems have been studied. Research relating the effects of the swine diet on manure odors has been scarce. Introducing feed additives to bind ammonia, change digesta pH, affect specific enzyme activity, and mask odors has been either costly or not consistently successful. Recent research emphasis has focused on manipulating the diet 1) to increase the nutrient utilization of the diet to reduce excretion products, 2) to enhance microbial metabolism in the lower digestive tract to reduce excretion of odor-causing compounds, and 3) to change the physical characteristics of urine and feces to reduce odor emissions. Primary odor-causing compounds evolve from excess degradable proteins and lack of specific fermentable carbohydrates during microbial fermentation. Reductions in ammonia emissions by 28 to 79% through diet modifications have been reported. Limited research on reduction of other odorous volatile organic compounds through diet modifications is promising. Use of synthetic amino acids with reduced intact protein levels in diets significantly reduces nitrogen excretions and odor production. Addition of nonstarch polysaccharides and specific oligosaccharides further alters the pathway of nitrogen excretion and reduces odor emission. Continued nutritional and microbial research to incorporate protein degradation products, especially sulfur-containing organics, with fermentable carbohydrates in the lower gastrointestinal tract of pigs will further control odors from manure.

  3. Nutrient Recovery and Emissions of Ammonia, Nitrous Oxide, and Methane from Animal Manure in Europe: Effects of Manure Treatment Technologies.

    PubMed

    Hou, Yong; Velthof, Gerard L; Lesschen, Jan Peter; Staritsky, Igor G; Oenema, Oene

    2017-01-03

    Animal manure contributes considerably to ammonia (NH 3 ) and greenhouse gas (GHG) emissions in Europe. Various treatment technologies have been implemented to reduce emissions and to facilitate its use as fertilizer, but a systematic analysis of these technologies has not yet been carried out. This study presents an integrated assessment of manure treatment effects on NH 3 , nitrous oxide (N 2 O) and methane (CH 4 ) emissions from manure management chains in all countries of EU-27 in 2010 using the MITERRA-Europe model. Effects of implementing 12 treatment technologies on emissions and nutrient recovery were further explored through scenario analyses; the level of implementation corresponded to levels currently achieved by forerunner countries. Manure treatment decreased GHG emissions from manures in EU countries by 0-17% in 2010, with the largest contribution from anaerobic digestion; the effects on NH 3 emissions were small. Scenario analyses indicate that increased use of slurry acidification, thermal drying, incineration and pyrolysis may decrease NH 3 (9-11%) and GHG (11-18%) emissions; nitrification-denitrification treatment decreased NH 3 emissions, but increased GHG emissions. The nitrogen recovery (% of nitrogen excreted in housings that is applied to land) would increase from a mean of 57% (in 2010) to 61% by acidification, but would decrease to 48% by incineration. Promoting optimized manure treatment technologies can greatly contribute to achieving NH 3 and GHG emission targets set in EU environmental policies.

  4. Bio-Product Recovery from Lignocellulosic Materials Derived from Poultry Manure

    ERIC Educational Resources Information Center

    Champagne, Pascale; Li, Caijian

    2008-01-01

    This study examines the hydrolysis of lignocellulose extracted from poultry manure for the purpose of investigating low-cost feedstocks for ethanol production while providing an alternative solid waste management strategy for agricultural livestock manures. Poultry manure underwent various pretreatments to enhance subsequent enzymatic hydrolysis…

  5. Centrifuge separation effect on bacterial indicator reduction in dairy manure.

    PubMed

    Liu, Zong; Carroll, Zachary S; Long, Sharon C; Roa-Espinosa, Aicardo; Runge, Troy

    2017-04-15

    Centrifugation is a commonly applied separation method for manure processing on large farms to separate solids and nutrients. Pathogen reduction is also an important consideration for managing manure. Appropriate treatment reduces risks from pathogen exposure when manure is used as soil amendments or the processed liquid stream is recycled to flush the barn. This study investigated the effects of centrifugation and polymer addition on bacterial indicator removal from the liquid fraction of manure slurries. Farm samples were taken from a manure centrifuge processing system. There were negligible changes of quantified pathogen indicator concentrations in the low-solids centrate compared to the influent slurry. To study if possible improvements could be made to the system, lab scale experiments were performed investigating a range of g-forces and flocculating polymer addition. The results demonstrated that polymer addition had a negligible effect on the indicator bacteria levels when centrifuged at high g forces. However, the higher g force centrifugation was capable of reducing bacterial indicator levels up to two-log 10 in the liquid stream of the manure, although at speeds higher than typical centrifuge operations currently used for manure processing applications. This study suggests manure centrifuge equipment could be redesigned to provide pathogen reduction to meet emerging issues, such as zoonotic pathogen control. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Horse manure as feedstock for anaerobic digestion.

    PubMed

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible. Copyright © 2016. Published by Elsevier Ltd.

  7. Biodiesel synthesis using chicken manure biochar and waste cooking oil.

    PubMed

    Jung, Jong-Min; Lee, Sang-Ryong; Lee, Jechan; Lee, Taewoo; Tsang, Daniel C W; Kwon, Eilhann E

    2017-11-01

    This study laid an emphasis on the possible employment of biochar generated from pyrolysis of chicken manure to establish a green platform for producing biodiesel. To this end, the pseudo-catalytic transesterification reaction using chicken manure biochar and waste cooking oil was investigated. Compared with a commercial porous material (SiO 2 ), chicken manure biochar generated from 350°C showed better performance, resulting in 95.6% of the FAME yield at 350°C. The Ca species in chicken manure biochar imparted strong catalytic capability by providing the basicity for transesterification. The identified catalytic effect also led to the thermal cracking of unsaturated FAMEs, which decreased the overall FAME yield. For example, 40-60% of converted FAMEs were thermally degraded. To avoid undesirable thermal cracking arising from the high content of the Ca species in chicken manure biochar, the fabrication of chicken manure biochar at temperatures ≥350°C was highly recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils.

    PubMed

    Fang, Hua; Han, Lingxi; Zhang, Houpu; Long, Zhengnan; Cai, Lin; Yu, Yunlong

    2018-05-29

    The dissemination of antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and antibiotic-resistant HPB (ARHPB) from animal feedlot to nearby environment poses a potentially high risk to environmental ecology and public health. Here, a metagenomic analysis was employed to explore the dissemination of ARGs, HPB, and ARHPB from a pig feedlot to surrounding stream and agricultural soils. In total, not detectable (ND)-1,628.4 μg/kg of antibiotic residues, 18 types of ARGs, 48 HPB species, and 216 ARB isolates were detected in all samples. Antibiotic residues from pig feedlot mainly migrated into stream sediments and greenhouse soil. The dominant ARGs and HPB species from pig feedlot spread into stream sediments (tetracycline resistance genes, Clostridium difficile, and Mycobacterium tuberculosis), stream water (multidrug resistance (MDR) genes, Shigella flexneri, and Bordetella pertussis), and greenhouse soil (MDR genes, Bacillus anthracis, and Brucella melitensis). It is concerning that 54.4% of 216 ARB isolates from all samples were potential ARHPB species, and genome sequencing and functional annotation of 4 MDR HPB isolates showed 9 ARG types. Our findings revealed the potential migration and dissemination of antibiotic residues, ARGs, HPB, and ARHPB from pig feedlot to surrounding stream and agricultural soils via pig sewage discharge and manure fertilization. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Partitioning washoff of manure-borne fecal indicators (Escherichia coli and stanols) into splash and hydraulic components: field rainfall simulations in a tropical agro-ecosystem.

    NASA Astrophysics Data System (ADS)

    Ribolzi, Olivier; Rochelle-Newall, Emma J.; Janeau, Jean-Louis; Viguier, Marion; Jardé, Emilie; Latsachack, Keooudone; Henri-Des-Tureaux, Thierry; Thammahacksac, Chanthamousone; Mugler, Claude; Valentin, Christian; Sengtaheuanghoung, Oloth

    2017-04-01

    Overland flow from manured fields and pastures is known to be an important mechanism by which organisms of faecal origin are transferred to streams in rural watersheds. In the tropical montane areas of South-East Asia, recent changes in land use have induced increased runoff, soil erosion, in-stream suspended sediment loads resulting in increased microbial pathogen dissemination and contamination of stream waters. The majority of enteric and environmental bacteria in aquatic systems are associated with particles such as sediments which can strongly influence their survival and transport characteristics. Escherichia coli (E. coli) has emerged as one of the most appropriate microbial indicators of faecal contamination of natural waters, with the presence of E. coli indicating that faecal contamination is present. In association with E. coli, faecal stanols can also be used as microbial source tracking tool for the identification of the origin of the faecal contamination (e.g. livestock, human, etc). Field rain simulations were used to examine how E.coli and stanols are exported from the surface of upland, agricultural soils during overland flow events. The objectives were to characterize the loss dynamics of these indicators from agricultural soils contaminated with livestock waste, and to partition total detachment into the splash and hydraulic components. Nine 1m2 microplots were divided in triplicated treatment groups: (a) controls with no amendments, (b) amended with pig manure or (c) poultry manure. Each plot was divided into two 0.5m2 rectangular subplots. For each simulation, one subplot was designated as a rain splash treatment; the other was covered with 2-mm grid size wire screen 10 cm above the soil surface to break the raindrops into fine droplets, thus drastically reducing their kinetic energy. E. coli concentrations in overland flow were estimated for both the attached and free living fractions and stanols were measured on the particulate matter washed

  10. Managing manure nutrients through multi-crop forage production.

    PubMed

    Newton, G L; Bernard, J K; Hubbard, R K; Allison, J R; Lowrance, R R; Gascho, G J; Gates, R N; Vellidis, G

    2003-06-01

    Concentrated sources of dairy manure represent significant water pollution potential. The southern United States may be more vulnerable to water quality problems than some other regions because of climate, typical farm size, and cropping practices. Dairy manure can be an effective source of plant nutrients and large quantities of nutrients can be recycled through forage production, especially when multi-cropping systems are utilized. Linking forage production with manure utilization is an environmentally sound approach for addressing both of these problems. Review of two triple-crop systems revealed greater N and P recoveries for a corn silage-bermudagrass hay-rye haylage system, whereas forage yields and quality were greater for a corn silage-corn silage-rye haylage system, when manure was applied at rates to supply N. Nutrient uptake was lower than application during the autumn-winter period, and bermudagrass utilized more of the remaining excess than a second crop of corn silage. Economic comparison of these systems suggests that the added value of the two corn silage crop system was not enough to off-set its increased production cost. Therefore, the system that included bermudagrass demonstrated both environmental and economic advantages. Review of the N and P uptake and calculated crop value of various single, double, and triple crop forage systems indicated that the per hectare economic value as well as the N and P uptakes tended to follow DM yields, and grasses tended to out-perform broadleaf forages. Taken across all systems, systems that included bermudagrass tended to have some of the highest economic values and uptakes of N and P. Manure applied at rates to supply N results in application of excess P, and production will not supply adequate quantities of forage to meet the herd's needs. Systems that lower manure application and supply supplemental N to produce all necessary forage under manure application will likely be less economically attractive due

  11. Bacterial mobilization and transport through manure enriched soils: Experiment and modeling.

    PubMed

    Sepehrnia, N; Memarianfard, L; Moosavi, A A; Bachmann, J; Guggenberger, G; Rezanezhad, F

    2017-10-01

    A precise evaluation of bacteria transport and mathematical investigations are useful for best management practices in agroecosystems. In this study, using laboratory experiments and modeling approaches, we assess the transport of bacteria released from three types of manure (cow, sheep, and poultry) to find the importance of the common manures in agricultural activities in soil and water pollution. Thirty six intact soil columns with different textures (sandy, loamy, and silty clay loam) were sampled. Fecal coliform leaching from layers of the manures on the soil surface was conducted under steady-state saturated flow conditions at 20 °C for up to four Pore Volumes (PVs). Separate leaching experiments were conducted to obtain the initial concentrations of bacteria released from the manures (Co). Influent (Co) and effluent (C) bacteria concentrations were measured by the plate-count method and the normalized concentrations (C/C0) were plotted versus PV representing the breakthrough curves (BTCs). Transport parameters were predicted using the attachment/detachment model (two-kinetic site) in HYDRUS-1D. Simulations fitted well the experimental data (R 2  = 0.50-0.96). The attachment, detachment, and straining coefficients of bacteria were more influenced by the soils treated with cow manure compared to the sheep and poultry manures. Influent curves of fecal coliforms from the manures (leached without soil) illustrated that the poultry manure had the highest potential to pollute the effluent water from the soils in term of concentration, but the BTCs and simulated data related to the treated soils illustrated that the physical shape of cow manure was more important to both straining and detachment of bacteria back into the soil solution. Detachment trends of bacteria were observed through loam and silty clay loam soils treated with cow manure compared to the cow manure enriched sandy soil. We conclude that management strategies must specifically minimize the

  12. Manure Refinement Affects Apple Rhizosphere Bacterial Community Structure: A Study in Sandy Soil

    PubMed Central

    Zhang, Qiang; Sun, Jian; Liu, Songzhong; Wei, Qinping

    2013-01-01

    We used DNA-based pyrosequencing to characterize the bacterial community structure of the sandy soil of an apple orchard with different manure ratios. Five manure percentages (5%, 10%, 15%, 20% and 25%) were examined. More than 10,000 valid reads were obtained for each replicate. The communities were composed of five dominant groups (Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria and Bacteroidetes), of which Proteobacteria content gradually decreased from 41.38% to 37.29% as manure ratio increased from 0% to 25%, respectively. Redundancy analysis showed that 37 classes were highly correlated with manure ratio, 18 of which were positively correlated. Clustering revealed that the rhizosphere samples were grouped into three components: low manure (control, 5%) treatment, medium manure (10%, 15%) treatment and high manure (20%, 25%) treatment. Venn analysis of species types of these three groups revealed that the bacteria community difference was primarily reflected by quantity ratio rather than species variety. Although greater manure content led to higher soil organic matter content, the medium manure improved soil showed the highest urease activity and saccharase activity, while 5% to 20% manure ratio improvement also resulted in higher bacteria diversity than control and 25% manure ratio treatment. Our experimental results suggest that the use of a proper manure ratio results in significantly higher soil enzyme activity and different bacteria community patterns, whereas the use of excessive manure amounts has negative effect on soil quality. PMID:24155909

  13. Diverse Antibiotic Resistance Genes in Dairy Cow Manure

    PubMed Central

    Wichmann, Fabienne; Udikovic-Kolic, Nikolina; Andrew, Sheila; Handelsman, Jo

    2014-01-01

    ABSTRACT Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. PMID:24757214

  14. Valorization of horse manure through catalytic supercritical water gasification.

    PubMed

    Nanda, Sonil; Dalai, Ajay K; Gökalp, Iskender; Kozinski, Janusz A

    2016-06-01

    The organic wastes such as lignocellulosic biomass, municipal solid waste, sewage sludge and livestock manure have attracted attention as alternative sources of energy. Cattle manure, a waste generated in surplus amounts from the feedlot, has always been a chief environmental concern. This study is focused on identifying the candidacy of horse manure as a next generation feedstock for biofuel production through supercritical water gasification. The horse manure was gasified in supercritical water to examine the effects of temperature (400-600°C), biomass-to-water ratio (1:5 and 1:10) and reaction time (15-45min) at a pressure range of 23-25MPa. The horse manure and resulting biochar were characterized through carbon-hydrogen-nitrogen-sulfur (CHNS), inductively coupled plasma-mass spectrometry (ICP-MS), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and scanning electron microscopy (SEM). The effects of alkali catalysts such as NaOH, Na2CO3 and K2CO3 at variable concentrations (1-2wt%) were investigated to maximize the hydrogen yields. Supercritical water gasification of horse manure with 2wt% Na2CO3 at 600°C and 1:10 biomass-to-water ratio for 45min revealed maximum hydrogen yields (5.31mmol/g), total gas yields (20.8mmol/g) with greater carbon conversion efficiency (43.1%) and enhanced lower heating value of gas products (2920kJ/Nm(3)). The manure-derived biochars generated at temperatures higher than 500°C also demonstrated higher thermal stability (weight loss <34%) and larger carbon content (>70wt%) suggesting their application in enhancing soil fertility and carbon sequestration. The results propose that supercritical water gasification could be a proficient remediation technology for horse manure to generate hydrogen-rich gas products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Occurrence and diversity of tetracycline resistance genes in the agricultural soils of South Korea.

    PubMed

    Kim, Song Yeob; Kuppusamy, Saranya; Kim, Jang Hwan; Yoon, Young-Eun; Kim, Kwon-Rae; Lee, Yong Bok

    2016-11-01

    Reports on the occurrence and diversity of antibiotic-resistant bacteria and genes, which are considered to be emerging pollutants worldwide, have, to date, not been published on South Korean agricultural soils. This is the first study to investigate the persistence of tetracycline (oxytetracycline, tetracycline, and chlortetracycline)-resistant bacterial community and genes in natural and long-term fertilized (NPK, pig, and cattle manure composts) agricultural soils in South Korea. The results showed that oxytetracycline and chlortetracycline could be the dominant residues in animal manures; regular fertilization of manures, particularly pig manures, may be the prime cause for the spread and abundance of tetracycline resistance in South Korean agricultural soils. Both the country's natural and agricultural soils are reservoirs of antibiotic-resistant species. Of the 113 tetracycline-resistant isolates identified (19 typical bacterial genera and 36 distinct species), approximately 40 to 99 % belonged to Gram-positive bacteria and Bacillus constituted the predominant genera. Of the 24 tet genes targeted, tetG, tetH, tetK, tetY, tetO, tetS, tetW, and tetQ were detected in all soil samples, highlighting their predominance and robust adaptability in soils. Meanwhile, it is suggested that tetC, tetE, tetZ, tetM, tetT, and tetP(B) are the common residues in pig manures, and furthermore, the treatment of soils with pig manures may wield a different impact on the tet gene resistome in agricultural soils. This study thus highlights the necessity for regulating the usage of tetracyclines in South Korean animal farming. This must be followed by proper monitoring of the subsequent usage of animal manures especially that derived from pig farms located in agricultural soils.

  16. Effect of vermicompost on soil fertility and crop productivity--beans (Phaseolus vulgaris).

    PubMed

    Manivannan, S; Balamurugan, M; Parthasarathi, K; Gunasekaran, G; Ranganathan, L S

    2009-03-01

    Field experiments were conducted at Sivapuri, Chidambaram, Tamil Nadu to evaluate the efficacy of vermicompost, in comparison to inorganic fertilizers-NPK, on the physio-chemical and biological characteristics of the soils--clay loam soil (CLS) and sandy loam soil (SLS) and on the growth, yield and nutrient content of beans--Phaseolus vulgaris. Results showed that the application of vermicompost @ 5 tonnes ha(-1) had enhanced significantly the pore space (1.09 and 1.02 times), water holding capacity (1.1 and 1.3 times), cation exchange capacity (1.2 and 1.2 times). It reduced particles (1.2 and 1.2 times), and bulk density (1.2 and 1.2 times), pH (1 and 1.02 times) and electrical conductivity (1.4 and 1.2 times) and increased organic carbon (37 and 47 times), micro (Ca 3.07 and 1.9 times, Mg 1.6 and 1.6 times, Na 2.4 and 3.8 times, Fe 7 and 7.6 times, Mn 8.2 and 10.6 times, Zn 50 and 52 times and Cu 14 and 22 times) and macro (N 1.6 and 1.7 times, P 1.5 and 1.7 times, K 1.5 and 1.4 times) nutrients and microbial activity (1.4 and 1.5 times) in both soil types, particularly more in CLS. The growth, yield (1.6 times) and quality (protein (1.05 times) and sugar (1.01 times) content in seed) of bean were enhanced in CLS than SLS. On the other hand, the application of inorganic fertilizers @ 20:80:40 kg ha(-1) has resulted in reduced porosity (1.03 and 1.01 times), organic carbon (1.04 and 9.5 times) and microbial activity (1.02 and 1.03 times) in both soil types.

  17. [Isolation and antimicrobial activities of actinomycetes from vermicompost].

    PubMed

    Wang, Xue-jun; Yan, Shuang-lin; Min, Chang-li; Yang, Yan

    2015-02-01

    In this paper, actinomycetes were isolated from vermicompost by tablet coating method. Antimicrobial activities of actinomycetes were measured by the agar block method. Strains with high activity were identified based on morphology and biochemical characteristics, as well as 16S rDNA gene sequence analysis. The results showed that 26 strains of actinomycetes were isolated, 16 of them had antimicrobial activities to the test strains which accounts for 61.54% of all strains. Among the 16 strains, the strain QYF12 and QYF22 had higher antimicrobial activity to Micrococcus luteus, with a formed inhibition zone of 27 mm and 31 mm, respectively. While the strain QYF26 had higher antimicrobial activity to Bacillus subtilis, and the inhibition zone diameter was 21 mm. Based on the identification of strains with high activity, the strain QYF12 was identified as Streptomyces chartreusis, the strain QYF22 was S. ossamyceticus and the strain QYF26 was S. gancidicus. This study provided a theoretical basis for further separate antibacterial product used for biological control.

  18. Soil-based treatment of partially treated liquid swine manure.

    PubMed

    Yang, H; Xiao, J; El-Din, M Gamal; Buchanan, I D; Bromley, D; Ikehata, K

    2007-01-01

    A soil-column system was tested for the removal of soluble organics and nutrients from partially treated liquid swine manure. The liquid manure was applied to the 900 mm deep (300 mm of local topsoil and 600 mm of local subsoil) soil columns continuously for an eight-week period, and leachate as well as soil samples were analysed. An effective liquid manure application rate of 17 mm d(-1) was determined based on a preliminary liquid manure soil-based treatment experiment. It was found that more than 90% of five-day biochemical oxygen demand, chemical oxygen demand, total Kjeldahl and ammonia nitrogen, and total phosphorus could be effectively removed from the liquid manure by the soil system. Nitrogen contents accumulated in the soil matrix mostly within the 0 to 300 mm depth, while no significant increase was observed in sub soils. Soil analyses indicated the occurrence of nitrification and denitrification in the soil columns. Nitrogen balance showed that about 42% of the applied nitrogen was lost from the system during the liquid manure soil-based treatment experiment, suggesting the emission of ammonia and other gaseous nitrogen generated through nitrification and denitrification. The leachate of the soil treatment system was used to irrigate Bermuda grass. No negative effect of leachate was observed on the plant growth.

  19. Dairy manure and tillage effects on soil fertility and corn yields.

    PubMed

    Khan, Anwar U H; Iqbal, M; Islam, K R

    2007-07-01

    Organic amendments have received renewed attention to improve soil fertility for crop production. A randomized complete block split plot experiment was conducted to evaluate the dairy manure (DM) amendments of soil for corn (Zea mays L. cv. Monsanto 919) production under different tillage systems. Main plot treatments were no-till (NT), conventional tillage (CT), and deep tillage (DT), and subplot treatments were chemical fertilization (DM(0)), and DM at 10Mgha(-1)yr(-1) (DM(10)) and 20Mgha(-1)yr(-1) (DM(20)) with supplemental chemical fertilization. Results show that tillage and DM had significantly reduced bulk density (rho(b)) with greater porosity (f(t)) and hydraulic conductivity (K(fs)) than soils under NT and DM(0). Manuring was effective to improve soil physical properties in all tillage treatments. While manure significantly increased C sequestration, the N concentration was influenced by both tillage and manure with significant interaction. The CT significantly increased P as did the addition of manure. However, with manure, K was significantly increased in all tillage treatments. While tilled soils produced taller plants with higher grain yields, and water-use efficiency than NT soils, manuring, in contrast, increased corn harvest index. Manure exerted significant quadratic effect on corn biomass N and K uptake. The variable effects of tillage and dairy manuring on soil properties and corn growth are most probably related to "transitional period" in which soil ecosystems may have adjusting to a new equilibrium.

  20. Collection of mammal manure and other Debris by nesting Burrowing Owls

    USGS Publications Warehouse

    Smith, M.D.; Conway, C.J.

    2011-01-01

    Burrowing Owls (Athene cunicularia) routinely collect and scatter dry manure of mammals around their nesting burrows. Recent studies have suggested this behavior attracts insect prey to the nesting burrow. However, some Burrowing Owls do not use manure, but instead, collect and scatter other materials (e.g., grass, moss, paper, plastic) around their nesting burrow in a similar fashion. Use of these materials seemingly contradicts the prey-attraction hypothesis. Using observational and experimental methods, we tested whether Burrowing Owls preferred manure to other materials commonly found at nesting burrows in eastern Washington. We found a wide variety of materials at nests, but grass and manure were the most common materials. The amount of manure present at nests was negatively correlated with the amount of other materials, and with the distance to the nearest source of manure. Burrowing Owls showed no preference between horse manure and grass divots at experimental supply stations that we placed near nesting burrows. They did prefer these two materials to carpet pieces and aluminum foil (both materials that are often found at Burrowing Owl nests). Our results did not support the premise that Burrowing Owls specifically seek out manure when lining their nesting burrows. The unusual behavior of collecting and scattering mammal manure and other debris at Burrowing Owl nests may serve functions other than (or in addition to) prey attraction and alternative hypotheses need further testing before the function of this behavior is certain. ?? 2011 The Raptor Research Foundation, Inc.

  1. Inoculum and zeolite synergistic effect on anaerobic digestion of poultry manure.

    PubMed

    Fotidis, Ioannis A; Kougias, Panagiotis G; Zaganas, Ioannis D; Kotsopoulos, Thomas A; Martzopoulos, Gerasimos G

    2014-01-01

    Poultry manure is an ammonia-rich substrate due to its high content of proteins and amino acids. Ammonia is the major inhibitor of anaerobic digestion (AD) process, affecting biogas production and causing great economic losses to the biogas plants. In this study, the effect of different natural zeolite dosages on the mesophilic AD of poultry manure inoculated with a non-acclimatized to ammonia inoculum (dairy manure) was investigated. Additionally, a comparative analysis was performed between the data extracted from this study and the results of a previous study, which has been conducted under the same experimental conditions but with the use of ammonia acclimatized inoculum (swine manure). At 5 and 10 g zeolite L(-1), the methane yield of poultry manure was 43.4% and 80.3% higher compared with the experimental set without zeolite addition. However, the ammonia non-acclimatized inoculum was not efficient in digesting poultry manure even in the presence of 10 g zeolite L(-1), due to low methane production (only 39%) compared with the maximum theoretical yield. Finally, ammonia acclimatized inoculum and zeolite have demonstrated a possible 'synergistic effect', which led to a more efficient AD of poultry manure. The results of this study could potentially been used by the biogas plant operators to efficiently digest poultry manure.

  2. Thermochemical conversion of biomass storage covers to reduce ammonia emissions from dairy manure Thermochemical conversion of biomass storage covers to reduce ammonia emissions from dairy manure

    USDA-ARS?s Scientific Manuscript database

    Manure storages, and in particular those storing digested manure, are a source of ammonia (NH3) emissions. Permeable manure storage covers can reduce NH3 emissions, however performance can decline as they degrade. Thermochemical conversion of biomass through pyrolysis and steam treatment could incre...

  3. Impacts of manure application on SWAT model outputs in the Xiangxi River watershed

    NASA Astrophysics Data System (ADS)

    Liu, Ruimin; Wang, Qingrui; Xu, Fei; Men, Cong; Guo, Lijia

    2017-12-01

    SWAT (Soil and Water Assessment Tool) model has been widely used to simulate agricultural non-point source (ANPS) pollution; however, the impacts of livestock manure application on SWAT model outputs have not been well studied. The objective of this study was to investigate the environmental effects of livestock manure application based on the SWAT model in the Xiangxi River watershed, which is one of the largest tributaries of the Three Gorges Reservoir in China. Three newly-built manure databases (NB) were created and applied to different subbasins based on the actual livestock manure discharging amount. The calibration and validation values of SWAT model outputs obtained from the NB manure application and the original mixed (OM) manure were compared. The study results are as follows: (1) The livestock industry of Xingshan County developed quickly between 2005 and 2015. The downstream of the Xiangxi River (Huangliang, Shuiyuesi and Xiakou) had the largest livestock amount, and largely accounted for manure, total nitrogen (TN) and total phosphorus (TP) production (>50%). (2) The NB manure application resulted in less phosphorus pollution (1686.35 kg for ORGP and 31.70 kg for MINP) than the OM manure application. Compared with the upstream, the downstream was influenced more by the manure application. (3) The SWAT results obtained from the NB manure had a better calibration and validation values than those from the OM manure. For ORGP, R2 and NSE values were 0.77 and 0.65 for the NB manure calibration; and the same values for the OM manure were 0.72 and 0.61, respectively. For MINP, R2 values were 0.65 and 0.62 for the NB manure and the OM manure, and the NSE values were 0.60 and 0.58, respectively. The results indicated that the built-in fertilizer database in SWAT has its limitation because it is set up for the simulation in the USA. Thus, when livestock manure is considered in a SWAT simulation, a newly built fertilizer database needs to be set up to represent

  4. Effect of manure vs. fertilizer inputs on productivity of forage crop models.

    PubMed

    Annicchiarico, Giovanni; Caternolo, Giovanni; Rossi, Emanuela; Martiniello, Pasquale

    2011-06-01

    Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF) were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV). The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha(-1), respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha(-1) of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha(-1) under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding.

  5. Effects of a high-fibre diet on ammonia and greenhouse gas emissions from gestating sows and fattening pigs

    NASA Astrophysics Data System (ADS)

    Philippe, François-Xavier; Laitat, Martine; Wavreille, José; Nicks, Baudouin; Cabaraux, Jean-François

    2015-05-01

    This study aims to measure under barn conditions the emissions of NH3, N2O, CH4 and CO2 associated with gestating sows (trial 1) and fattening pigs (trial 2) fed either a control diet (CTD) based on cereals or a high-fibre diet (HFD) based on sugar beet pulp (SBP). Three successive batches of 10 Belgian Landrace gestating sows were used for trial 1. Two successive batches of 24 Piétrain × Belgian Landrace fattening pigs were used for trial 2. Animals were kept on slatted floor. The gas emissions were measured by infrared photoacoustic detection and expressed per day and per livestock unit, equals to 500 kg body weight. Similar trends were observed for both animal types. With HFD, the NH3 emissions were reduced (27.2 vs. 36.5 g for the gestating sows, P < 0.001; 23.2 vs. 45.0 g for the fattening pigs, P < 0.001) but the CH4 emissions were increased (41.5 vs. 21.0 g for gestating sows, P < 0.001; 37.9 vs. 27.2 g for fattening pigs, P < 0.001). The fibre content of the diet had not significant impact on N2O emissions (around 1.4 g for gestating sows and 2.1 g for fattening pigs, P > 0.05), and on CO2 emissions (around 6.0 kg for gestating sows and 9.1 kg for fattening pigs, P > 0.05). Most of manure parameters did not statistically differ regarding the treatment. Reproductive performance and body condition of the sows were not affected by the diet. However, growth performance and carcass traits of the HFD-fed fattening pigs were deteriorated compared to CTD.

  6. The economics of energy from animal manure for greenhouse gas mitigation

    NASA Astrophysics Data System (ADS)

    Ghafoori, Emad

    2007-12-01

    Anaerobic digestion (AD) has significant economies of scale, i.e. per unit processing costs decrease with increasing size. The economics of AD to produce biogas and in turn electric power in farm or feedlot based units as well as centralized plants is evaluated for two settings in Alberta: a mixed farming area, Red Deer County, and an area of concentrated beef cattle feedlots, Lethbridge County. A centralized plant drawing manure from 61 sources in the mixed farming area could produce power at a cost of 218 MWh-1 (2005 US). A centralized plant drawing manure from 560,000 beef cattle in Lethbridge County, can produce power at a cost of 138 MWh-1. Digestate processing, if commercially available, shifts the balance in favor of centralized processing. At larger scales, pipelines could be used to deliver manure to a centralized plant and return the processed digestate back to the manure source for spreading. Pipeline transport of beef cattle manure is more economic than truck transport for the manure produced by more than 90,000 animals. Pipeline transport of digestate is more economic when manure from more than 21,000 beef cattle is available and two-way pipelining of manure plus digestate is more economic when manure from more than 29,000 beef cattle is available. The value of carbon credits necessary to make AD profitable in a mixed farming region is also calculated based on a detailed analysis of manure and digestate transport and processing costs at an AD plant. Carbon emission reductions from power generation are calculated for displacement of power from coal and natural gas. The required carbon credit to cover the cost of AD processing of manure is greater than 150 per tonne of CO2. These results show that AD treatment of manure from mixed farming areas is not economic given current values of carbon credits. Power from biogas has a high cost relative to current power prices and to the cost of power from other large scale renewable sources. Power from biogas would

  7. Transformation of Swine Manure and Algal Consortia to Value-added Products

    NASA Astrophysics Data System (ADS)

    Sharara, Mahmoud A.

    The swine production sector is projected to grow globally. In the past, this growth manifested itself in increased herd sizes and geographically concentrated production. Although economically sound, these trends had negative consequences on surrounding ecosystems. Over-application of manure resulted in water quality degradation, while long-term storage of manure slurries was found to promote release of potent GHG emissions. There is a need for innovative approaches for swine manure management that are compatible with current scales of production, and increasingly strict environmental regulations. This study aims to investigate the potential for incorporating gasification as part of a novel swine manure management system which utilizes liquid-solid separation and periphytic algal consortia as a phycoremediation vector for the liquid slurry. The gasification of swine manure solids, and algal biomass solids generate both a gaseous fuel product (producer gas) in addition to a biochar co-product. First, the decomposition kinetics for both feedstock, i.e., swine manure solids, and algal solids, were quantified using thermogravimetry at different heating rates (1 ~ 40°C min-1) under different atmospheres (nitrogen, and air). Pyrolysis kinetics were determined for manure solids from two farms with different manure management systems. Similarly, the pyrolysis kinetics were determined for phycoremediation algae grown on swine manure slurries. Modeling algal solids pyrolysis as first-order independent parallel reactions was sufficient to describe sample devolatilization. Combustion of swine manure solids blended with algal solids, at different ratios, showed no synergistic effects. Gasification of phycoremediation algal biomass was studied using a bench-scale auger gasification system at temperatures between 760 and 960°C. The temperature profile suggested a stratification of reaction zones common to fixed-bed reactors. The producer gas heating value ranged between 2.2 MJ m

  8. Low-disturbance manure application methods in a corn silage-rye cover crop system

    USDA-ARS?s Scientific Manuscript database

    Incorporation of manure by tillage can conserve manure N by reducing ammonia volatilization losses, but tillage also incorporates crop residue, which increases erosion potential. This study compared several low-disturbance manure application methods, designed to incorporate manure while still mainta...

  9. Long-term Effect of Pig Slurry Application on Soil Carbon Storage, Quality and Yield Sustainability in Murcia Region, Spain

    NASA Astrophysics Data System (ADS)

    Büyükkılıç Yanardaǧ, Asuman

    2013-04-01

    Sustainability of agriculture is now a major global concern, especially since the 1980s. Soil organic matter is very important in the proper functions of the soil, which is also a good indicator of soil quality. This is due to its influence on many of the chemical, physical, and biological processes that control the capacity of a soil to perform properly. Understanding of nutrient supply through organic matter mineralization in agricultural systems is essential for maintaining long-term quality and productivity. The composition of pig manure will have a profound impact on soil properties, quality and crop yield when used in agriculture. We studied the effects of pig slurry (PS) application as an organic fertilizer, trying to determine the optimum amount that can be added to the soil, and the effect on soil properties, quality, and productivity. We applied 3 different doses on silty loam soils: Single (D1), Double (D2), Triple (D3) and unfertilized plots (C) served as controls. Samples were collected at two different levels, surface (0-30 cm) and subsurface (30-60 cm). D1 application dose, which is the agronomic rate of N-requirement (170 kg N/ha/yr) (European Directive 91/676/CEE), is very appropriate in term of sustainable agriculture and also can improve physical, chemical and biological soil properties. Therefore that the long-term use of PS with low dose may necessarily enhance soil quality in the long term. There are many factors to be considered when attempting to assess the overall net impact of a management practice on productivity. Additions of pig manure to soils at agronomic rates (170 kg N ha-1 yr-1) to match crop nutrient requirements are expected to have a positive impact on soil productivity. Therefore, the benefits from the use of application depend on the management of PS, carbon and environmental quality. However, PS have high micronutrient contents, and for this reason the application of high doses can pollute soils and damage human, animal and

  10. Efficacy of alum and coal combustion by-products in stabilizing manure phosphorus.

    PubMed

    Dou, Z; Zhang, G Y; Stout, W L; Toth, J D; Ferguson, J D

    2003-01-01

    Animal manures contain large amounts of soluble phosphorus (P), which is prone to runoff losses when manure is surface-applied. Here we report the efficacy of alum and three coal combustion by-products in reducing P solubility when added to dairy, swine, or broiler litter manures in a laboratory incubation study. Compared with unamended controls, alum effectively reduced readily soluble P, determined in water extracts of moist manure samples with 1 h of shaking, for all three manures. The reduction ranged from 80 to 99% at treatment rates of 100 to 250 g alum kg(-1) manure dry matter. The fluidized bed combustion fly ash (FBC) reduced readily soluble P by 50 to 60% at a rate of 400 g kg(-1) for all three manures. Flue gas desulfurization by-product (FGD) reduced readily soluble P by nearly 80% when added to swine manure and broiler litter at 150 and 250 g kg(-1). Another by-product, anthracite refuse fly ash (ANT), was ineffective for all three manures. In all cases, reduction in readily soluble P is primarily associated with inorganic phosphorus (P(i)) with little change in organic phosphorus (P(o)). Sequential extraction results indicate that the by-product treatments shifted manure P from H2O-P into a less vulnerable fraction, NaHCO3 - P, while the alum treatment shifted the P into even more stable forms, mostly NaOH-P. Such shifts in P fractions would have little influence on P availability for crops over the long-term but would retard and reduce potential losses of P following manure applications.

  11. An Overview of the Control of Bacterial Pathogens in Cattle Manure

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Makaka, Golden; Simon, Michael; Okoh, Anthony I.

    2016-01-01

    Cattle manure harbors microbial constituents that make it a potential source of pollution in the environment and infections in humans. Knowledge of, and microbial assessment of, manure is crucial in a bid to prevent public health and environmental hazards through the development of better management practices and policies that should govern manure handling. Physical, chemical and biological methods to reduce pathogen population in manure do exist, but are faced with challenges such as cost, odor pollution, green house gas emission, etc. Consequently, anaerobic digestion of animal manure is currently one of the most widely used treatment method that can help to salvage the above-mentioned adverse effects and in addition, produces biogas that can serve as an alternative/complementary source of energy. However, this method has to be monitored closely as it could be fraught with challenges during operation, caused by the inherent characteristics of the manure. In addition, to further reduce bacterial pathogens to a significant level, anaerobic digestion can be combined with other methods such as thermal, aerobic and physical methods. In this paper, we review the bacterial composition of cattle manure as well as methods engaged in the control of pathogenic microbes present in manure and recommendations that need to be respected and implemented in order to prevent microbial contamination of the environment, animals and humans. PMID:27571092

  12. Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure.

    PubMed

    Myers, Heidi M; Tomberlin, Jeffery K; Lambert, Barry D; Kattes, David

    2008-02-01

    Black soldier flies, Hermetia illucens L., are a common colonizer of animal wastes. However, all published development data for this species are from studies using artificial diets. This study represents the first examining black soldier fly development on animal wastes. Additionally, this study examined the ability of black soldier fly larvae to reduce dry matter and associated nutrients in manure. Black soldier fly larvae were fed four rates of dairy manure to determine their effects on larval and adult life history traits. Feed rate affected larval and adult development. Those fed less ration daily weighed less than those fed a greater ration. Additionally, larvae provided the least amount of dairy manure took longer to develop to the prepupal stage; however, they needed less time to reach the adult stage. Adults resulting from larvae provided 27 g dairy manure/d lived 3-4 d less than those fed 70 g dairy manure. Percentage survivorship to the prepupal or adult stages did not differ across treatments. Larvae fed 27 g dairy manure daily reduced manure dry matter mass by 58%, whereas those fed 70 g daily reduced dry matter 33%. Black soldier fly larvae were able to reduce available P by 61-70% and N by 30-50% across treatments. Based on results from this study, the black soldier fly could be used to reduce wastes and associated nutrients in confined bovine facilities.

  13. Method for extraction of proteins and phosphate minerals from swine manure

    USDA-ARS?s Scientific Manuscript database

    The recovery of phosphorus and proteins from manure could be advantageous to both offset costs and to improve and lessen the environmental impacts of manure storage and treatment. Phosphorous in manure can contaminate rivers, lakes, and bays through runoff, if applied onto a cropland excessively. Th...

  14. Manure storage capacity and application timing influence watershed-level nutrient losses

    USDA-ARS?s Scientific Manuscript database

    Current concerns over water quality requires best management practices for land-applied manure. One important strategy is to apply manure at right timing, which though is often greatly affected by manure generation and storage capacities in a given watershed. This study was to test the hypotheses: (...

  15. Ammonia volatilization loss from surface applied livestock manure.

    PubMed

    Paramasivam, S; Jayaraman, K; Wilson, Takela C; Alva, Ashok K; Kelson, Luma; Jones, Leandra B

    2009-03-01

    Ammonia (NH(3)) emission from livestock manures used in agriculture reduces N uptake by crops and negatively impacts air quality. This laboratory study was conducted to evaluate NH(3)emission from different livestock manures applied to two soils: Candler fins sand (CFS; light-textured soil, pH 6.8 and field capacity soil water content of 70 g kg(-1)) from Lake Alfred, Florida and Ogeechee loamy sand (OLS; medium-textured soil, pH 5.2 and field capacity soil water content of 140 g kg(-1)) from Savannah, Georgia. Poultry litter (PL) collected from a poultry farm near Douglas, Georgia, and fresh solid separate of swine manure (SM) collected from a farm near Clinton, North Carolina were used. Each of the soil was weighed in 100 g sub samples and amended with either PL or SM at rates equivalent to either 0, 2.24, 5.60, 11.20, or 22.40 Mg ha(-1) in 1L Mason jars and incubated in the laboratory at field capacity soil water content for 19 days to monitor NH(3) volatilization. Results indicated a greater NH(3) loss from soils amended with SM compared to that with PL. The cumulative NH(3)volatilization loss over 19 days ranged from 4 to 27% and 14 to 32% of total N applied as PL and SM, respectively. Volatilization of NH(3) was greater from light-textured CFS than that from medium-textured OLS. Volatilization loss increased with increasing rates of manure application. Ammonia volatilization was lower at night time than that during the day time. Differences in major factors such as soil water content, temperature, soil type and live stock manure type influenced the diurnal variation in volatilization loss of NH(3) from soils. A significant portion (> 50%) of cumulative NH(3) emission over 19 d occurred during the first 5-7 d following the application of livestock manures. Results of this study demonstrate that application of low rates of livestock manure (< or = 5.60 Mg ha(-1)) is recommended to minimize NH(3) emissions.

  16. Hardwood biochar and manure co-application to a calcareous soil.

    PubMed

    Ippolito, J A; Stromberger, M E; Lentz, R D; Dungan, R S

    2016-01-01

    Biochar may affect the mineralization rate of labile organic C sources such as manures via microbial community shifts, and subsequently affect nutrient release. In order to ascertain the positive or negative priming effect of biochar on manure, dairy manure (2% by wt.) and a hardwood-based, fast pyrolysis biochar were applied (0%, 1%, 2%, and 10% by wt.) to a calcareous soil. Destructive sampling occurred at 1, 2, 3, 4, 6 and 12 months to monitor for changes in soil chemistry, water content, microbial respiration, bacterial populations, and microbial community structure. Overall results showed that increasing biochar application rate improved the soil water content, which may be beneficial in limited irrigation or rainfall areas. Biochar application increased soil organic C content and plant-available Fe and Mn, while a synergistic biochar-manure effect increased plant-available Zn. Compared to the other rates, the 10% biochar application lowered concentrations of NO3-N; effects appeared masked at lower biochar rates due to manure application. Over time, soil NO3-N increased likely due to manure N mineralization, yet soil NO3-N in the 10% biochar rate remained lower as compared to other treatments. In the presence of manure, only the 10% biochar application caused subtle microbial community structure shifts by increasing the relative amounts of two fatty acids associated with Gram-negative bacteria and decreasing Gram-positive bacterial fatty acids, each by ∼1%. Our previous findings with biochar alone suggested an overall negative priming effect with increasing biochar application rates, yet when co-applied with manure the negative priming effect was eliminated. Published by Elsevier Ltd.

  17. Tertiary recycling of PVC-containing plastic waste by copyrolysis with cattle manure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duangchan, Apinya; Samart, Chanatip

    2008-11-15

    The corrosion from pyrolysis of PVC in plastic waste was reduced by copyrolysis of PVC with cattle manure. The optimization of pyrolysis conditions between PVC and cattle manure was studied via a statistical method, the Box-Behnken model. The pyrolysis reaction was operated in a tubular reactor. Heating rate, reaction temperature and the PVC:cattle manure ratio were optimized in the range of 1-5 deg. C/min, 250-450 deg. C and the ratio of 1:1-1:5, respectively. The suitable conditions which provided the highest HCl reduction efficiency were the lowest heating rate of 1 deg. C/min, the highest reaction temperature of 450 deg. C,more » and the PVC:cattle manure ratio of 1:5, with reliability of more than 90%. The copyrolysis of the mixture of PVC-containing plastic and cattle manure was operated at optimized conditions and the synergistic effect was studied on product yields. The presence of manure decreased the oil yield by about 17%. The distillation fractions of oil at various boiling points from both the presence and absence of manure were comparable. The BTX concentration decreased rapidly when manure was present and the chlorinated hydrocarbon was reduced by 45%. However, the octane number of the gasoline fraction was not affected by manure and was in the range of 99-100.« less

  18. Tertiary recycling of PVC-containing plastic waste by copyrolysis with cattle manure.

    PubMed

    Duangchan, Apinya; Samart, Chanatip

    2008-11-01

    The corrosion from pyrolysis of PVC in plastic waste was reduced by copyrolysis of PVC with cattle manure. The optimization of pyrolysis conditions between PVC and cattle manure was studied via a statistical method, the Box-Behnken model. The pyrolysis reaction was operated in a tubular reactor. Heating rate, reaction temperature and the PVC:cattle manure ratio were optimized in the range of 1-5 degrees C/min, 250-450 degrees C and the ratio of 1:1-1:5, respectively. The suitable conditions which provided the highest HCl reduction efficiency were the lowest heating rate of 1 degrees C/min, the highest reaction temperature of 450 degrees C, and the PVC:cattle manure ratio of 1:5, with reliability of more than 90%. The copyrolysis of the mixture of PVC-containing plastic and cattle manure was operated at optimized conditions and the synergistic effect was studied on product yields. The presence of manure decreased the oil yield by about 17%. The distillation fractions of oil at various boiling points from both the presence and absence of manure were comparable. The BTX concentration decreased rapidly when manure was present and the chlorinated hydrocarbon was reduced by 45%. However, the octane number of the gasoline fraction was not affected by manure and was in the range of 99-100.

  19. Effect of Manure vs. Fertilizer Inputs on Productivity of Forage Crop Models

    PubMed Central

    Annicchiarico, Giovanni; Caternolo, Giovanni; Rossi, Emanuela; Martiniello, Pasquale

    2011-01-01

    Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF) were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV). The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha−1, respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha−1 of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha−1 under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding. PMID:21776208

  20. Co-pyrolysis of sewage sludge and manure.

    PubMed

    Ruiz-Gómez, Nadia; Quispe, Violeta; Ábrego, Javier; Atienza-Martínez, María; Murillo, María Benita; Gea, Gloria

    2017-01-01

    The management and valorization of residual organic matter, such as sewage sludge and manure, is gaining interest because of the increasing volume of these residues, their localized generation and the related problems. The anaerobic digestion of mixtures of sewage sludge and manure could be performed due to the similarities between both residues. The purpose of this study is to evaluate the feasibility of the co-pyrolysis of sewage sludge (SS) and digested manure (DM) as a potential management technology for these residues. Pyrolysis of a sewage sludge/manure blend (50:50%) was performed at 525°C in a stirred batch reactor under N 2 atmosphere. The product yields and some characteristics of the product were analyzed and compared to the results obtained in the pyrolysis of pure residues. Potential synergetic and antagonist effects during the co-pyrolysis process were evaluated. Although sewage sludge and manure seem similar in nature, there are differences in their pyrolysis product properties and distribution due to their distinct ash and organic matter composition. For the co-pyrolysis of SS and DM, the product yields did not show noticeable synergistic effects with the exception of the yields of organic compounds, being slightly higher than the predicted average, and the H 2 yield, being lower than expected. Co-pyrolysis of SS and DM could be a feasible management alternative for these residues in locations where both residues are generated, since the benefits and the drawbacks of the co-pyrolysis are similar to those of the pyrolysis of each residue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Technologies and logistics for handling, transport and distribution of animal manures

    USDA-ARS?s Scientific Manuscript database

    Organizing and managing the whole manure handling chain from the animal house through transport to the point of use (e.g. in the field) is a challenging task requiring consideration of manure type and operating conditions. Solid and liquid manure must be handled differently, using very different tec...

  2. Operator Exposure to Hydrogen Sulfide from Dairy Manure Storages Containing Gypsum Bedding.

    PubMed

    Fabian-Wheeler, Eileen E; Hile, Michael L; Murphy, Dennis J; Hill, Davis E; Meinen, Robert; Brandt, Robin C; Elliott, Hershel A; Hofstetter, Daniel

    2017-01-26

    Dairy manure storages containing gypsum-based bedding have been linked anecdotally with injury and death due to presumed dangerous levels of gases released. Recycled gypsum products are used as a cost-effective bedding alternative to improve animal welfare and provide agronomic benefits to manure recycled back to the land. Sulfur contained in gypsum (calcium sulfate) can contribute to hydrogen sulfide (H2S) gas formation under the anaerobic storage conditions typical of dairy manure slurry. Disturbance of stored manure during agitation releases a burst of volatile gases. On-farm monitoring was conducted to document conditions during manure storage agitation relative to gas concentration and operator safety. One objective was to document operator exposure to H2S levels; therefore, each operator wore a personal gas monitor while performing tasks associated with manure storage agitation. Data from three dairy bedding management categories on ten farms were compared: (1) traditional organic bedding, (2) gypsum bedding, and (3) gypsum bedding plus a manure additive thought to reduce H2S formation and/or release. Portable meters placed around the perimeter of dairy manure storages recorded H2S concentrations prior to and during 19 agitation events. Results show that farms using gypsum bedding produced higher H2S concentrations during manure storage agitation than farms using traditional bedding. In most cases, gypsum-containing manure storages produced H2S levels above recognized safe thresholds for both livestock and humans. Farm operators were most at risk during activities in close proximity to the manure storage during agitation, and conditions 10 m away from the storage were above the 20 ppm H2S threshold on some farms using gypsum bedding. Although H2S concentrations rose to dangerous levels, only two of 18 operators were exposed to >50 ppm H2S during the first 60 min of manure storage agitation. Operators who are aware of the risk of high H2S concentrations near

  3. 16S rRNA analysis of diversity of manure microbial community in dairy farm environment

    PubMed Central

    Miao, Max; Wang, Yi; Settles, Matthew; del Rio, Noelia Silva; Castillo, Alejandro; Souza, Alex; Pereira, Richard

    2018-01-01

    Dairy farms generate a considerable amount of manure, which is applied in cropland as fertilizer. While the use of manure as fertilizer reduces the application of chemical fertilizers, the main concern with regards to manure application is microbial pollution. Manure is a reservoir of a broad range of microbial populations, including pathogens, which have potential to cause contamination and pose risks to public and animal health. Despite the widespread use of manure fertilizer, the change in microbial diversity of manure under various treatment processes is still not well-understood. We hypothesize that the microbial population of animal waste changes with manure handling used in a farm environment. Consequential microbial risk caused by animal manure may depend on manure handling. In this study, a reconnaissance effort for sampling dairy manure in California Central Valley followed by 16S rRNA analysis of content and diversity was undertaken to understand the microbiome of manure after various handling processes. The microbial community analysis of manure revealed that the population in liquid manure differs from that in solid manure. For instance, the bacteria of genus Sulfuriomonas were unique in liquid samples, while the bacteria of genus Thermos were observed only in solid samples. Bacteria of genus Clostridium were present in both solid and liquid samples. The population among liquid samples was comparable, as was the population among solid samples. These findings suggest that the mode of manure application (i.e., liquid versus solid) could have a potential impact on the microbiome of cropland receiving manure as fertilizers. PMID:29304047

  4. Evaluation of quick tests for phosphorus determination in dairy manures.

    PubMed

    Lugo-Ospina, A; Dao, Thanh H; Van Kessel, J A; Reeves, J B

    2005-05-01

    Nutrients in animal manure are valuable inputs in agronomic crop production. Rapid and timely information about manure nutrient content are needed to minimize the risks of phosphorus (P) over-application and losses of dissolved P (DP) in runoff from fields treated with manure. We evaluated the suitability of a commercial hand-held reflectometer, a hydrometer, and an electrical conductivity (EC) meter for determining DP and total P (TP) in dairy manures. Bulk samples (n = 107) collected from farms across CT, MD, NY, PA, and VA were highly variable in total solids (TS) concentration, ranging from 11 to 213gL(-1), in suspensions' pH (6.3-9.2), and EC (6.2-53.3 dS m(-1)). Manure DP concentrations measured using the RQFlex reflectometer (RQFlex-DP(s)) were related to molybdate-reactive P (MRP(s)) concentrations as follows: RQFlex-DP(s) = 0.471 x MRP(s) + 1102 (r2 = 0.29). Inclusion of pH and squared-pH terms improved the prediction of manure DP from RQFlex results (r2 = 0.66). Excluding five outlier samples that had pH < or = 6.9 the coefficient of determination (r2) for the MRP(s) and RQFlex-DP(s) relationship was 0.83 for 95% of the samples. Manure TS were related to hydrometer specific gravity readings (r2 = 0.53) that were in turn related to TP (r2 = 0.34), but not to either RQFlex-DP or MRP. Relationships between suspensions' EC and DP or TP were non-significant. Therefore, the RQFlex method is the only viable option for on-site quick estimates of DP that can be made more robust when complemented with TS and pH measurements. The DP quick test can provide near real-time information on soluble manure nutrient content across a wide range of handling and storage conditions on dairy farms and quick estimates of potential soluble P losses in runoff following land applications of manure.

  5. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization.

    PubMed

    Udikovic-Kolic, Nikolina; Wichmann, Fabienne; Broderick, Nichole A; Handelsman, Jo

    2014-10-21

    The increasing prevalence of antibiotic-resistant bacteria is a global threat to public health. Agricultural use of antibiotics is believed to contribute to the spread of antibiotic resistance, but the mechanisms by which many agricultural practices influence resistance remain obscure. Although manure from dairy farms is a common soil amendment in crop production, its impact on the soil microbiome and resistome is not known. To gain insight into this impact, we cultured bacteria from soil before and at 10 time points after application of manure from cows that had not received antibiotic treatment. Soil treated with manure contained a higher abundance of β-lactam-resistant bacteria than soil treated with inorganic fertilizer. Functional metagenomics identified β-lactam-resistance genes in treated and untreated soil, and indicated that the higher frequency of resistant bacteria in manure-amended soil was attributable to enrichment of resident soil bacteria that harbor β-lactamases. Quantitative PCR indicated that manure treatment enriched the blaCEP-04 gene, which is highly similar (96%) to a gene found previously in a Pseudomonas sp. Analysis of 16S rRNA genes indicated that the abundance of Pseudomonas spp. increased in manure-amended soil. Populations of other soil bacteria that commonly harbor β-lactamases, including Janthinobacterium sp. and Psychrobacter pulmonis, also increased in response to manure treatment. These results indicate that manure amendment induced a bloom of certain antibiotic-resistant bacteria in soil that was independent of antibiotic exposure of the cows from which the manure was derived. Our data illustrate the unintended consequences that can result from agricultural practices, and demonstrate the need for empirical analysis of the agroecosystem.

  6. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization

    PubMed Central

    Udikovic-Kolic, Nikolina; Wichmann, Fabienne; Broderick, Nichole A.; Handelsman, Jo

    2014-01-01

    The increasing prevalence of antibiotic-resistant bacteria is a global threat to public health. Agricultural use of antibiotics is believed to contribute to the spread of antibiotic resistance, but the mechanisms by which many agricultural practices influence resistance remain obscure. Although manure from dairy farms is a common soil amendment in crop production, its impact on the soil microbiome and resistome is not known. To gain insight into this impact, we cultured bacteria from soil before and at 10 time points after application of manure from cows that had not received antibiotic treatment. Soil treated with manure contained a higher abundance of β-lactam–resistant bacteria than soil treated with inorganic fertilizer. Functional metagenomics identified β-lactam–resistance genes in treated and untreated soil, and indicated that the higher frequency of resistant bacteria in manure-amended soil was attributable to enrichment of resident soil bacteria that harbor β-lactamases. Quantitative PCR indicated that manure treatment enriched the blaCEP-04 gene, which is highly similar (96%) to a gene found previously in a Pseudomonas sp. Analysis of 16S rRNA genes indicated that the abundance of Pseudomonas spp. increased in manure-amended soil. Populations of other soil bacteria that commonly harbor β-lactamases, including Janthinobacterium sp. and Psychrobacter pulmonis, also increased in response to manure treatment. These results indicate that manure amendment induced a bloom of certain antibiotic-resistant bacteria in soil that was independent of antibiotic exposure of the cows from which the manure was derived. Our data illustrate the unintended consequences that can result from agricultural practices, and demonstrate the need for empirical analysis of the agroecosystem. PMID:25288759

  7. Optimization of Aqueous Ammonia Soaking of manure fibers by Response Surface Methodology for unlocking the methane potential of swine manure.

    PubMed

    Lymperatou, Anna; Gavala, Hariklia N; Skiadas, Ioannis V

    2017-11-01

    Swine manure mono-digestion often results to economically non-feasible processes, due to the high dilution and ammonia concentration together with the low degradation rates it presents. The effects of different parameters of Aqueous Ammonia Soaking (AAS) as a pretreatment for improving the digestion of manure fibers when coupled to an ammonia removal step were investigated in this study. Response Surface Methodology was followed and the influence and interactions of the following AAS parameters were studied: NH 3 concentration, duration and solid-to-liquid ratio. The mild conditions found to be optimal (7%w/w NH 3 , 96h, and 0.16kg/L) in combination to a significant increase of the short term CH 4 yield (244% in 17days), make this pretreatment a promising solution for improving swine manure mono-digestion. Furthermore, compositional analysis of the manure fibers revealed significant solubilization of hemicellulose, while no lignin removal or loss of cellulose occurred under optimal conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Ammonia Volatilization Loss from Surface Applied Livestock Manure

    USDA-ARS?s Scientific Manuscript database

    Ammonia (NH3) emission from livestock manures used in agriculture reduces N uptake by crops and negatively impacts air quality. This laboratory study was conducted to evaluate NH3 emission from different livestock manures applied to two soils: Candler fins sand (CFS; light-textured soil, pH 6.8 and...

  9. Methane Recovery from Animal Manures The Current Opportunities Casebook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lusk, P.

    1998-09-01

    Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only provides pollution prevention but also can convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion (AD) of livestock manures is a commercially available bioconversion technology with considerable potential for providing profitable coproducts, including a cost-effectivemore » renewable fuel for livestock production operations. This Casebook examines some of the current opportunities for the recovery of methane from the AD animal manures. U.S. livestock operations currently employ four types of anaerobic digester technology: slurry, plug-flow, complete-mix, and covered lagoon. An introduction to the engineering economies of these technologies is provided, and possible end-use applications for the methane gas generated by the digestion process are discussed. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Case studies of operating digesters, with project and maintenance histories and the operators ''lessons learned,'' are included as reality checks. Factors necessary for successful projects, as well as a list of reasons explaining why some AD projects fail, are provided. The role of farm management is key; not only must digesters be well engineered and built with high-quality components, they must also be sited at farms willing to incorporate the uncertainties of a new technology. More than two decades of research has provided much information about how manure can be converted to an energy source; however, the American farmer has not been

  10. Liming Poultry Manures to Kill Pathogens and Decrease Soluble Phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire,R.; Hesterberg, D.; Gernat, A.

    2006-01-01

    Received for publication September 9, 2005. Stabilizing phosphorus (P) in poultry waste to reduce P losses from manured soils is important to protect surface waters, while pathogens in manures are an emerging issue. This study was conducted to evaluate CaO and Ca(OH){sub 2} for killing manure bacterial populations (pathogens) and stabilizing P in poultry wastes and to investigate the influence on soils following amendment with the treated wastes. Layer manure and broiler litter varying in moisture content were treated with CaO and Ca(OH){sub 2} at rates of 2.5, 5, 10, and 15% by weight. All treated wastes were analyzed formore » microbial plate counts, pH, and water-soluble phosphorus (WSP), while a few selected layer manures were analyzed by phosphorus X-ray absorption near edge structure (XANES). A loamy sand and a silt loam were amended with broiler litter and layer manure treated with CaO at rates of 0, 2.5, 5, 10, and 15% and soil WSP and pH were measured at times 1, 8, and 29 d. Liming reduced bacterial populations, with greater rates of lime leading to greater reductions; for example 10% CaO applied to 20% solids broiler litter reduced the plate counts from 793 000 to 6500 mL{sup -1}. Liming also reduced the WSP in the manures by over 90% in all cases where at least 10% CaO was added. Liming the manures also reduced WSP in soils immediately following application and raised soil pH. The liming process used successfully reduced plate counts and concerns about P losses in runoff following land application of these limed products due to decreased WSP.« less

  11. Soil microbiota respond to green manure in organic vineyards.

    PubMed

    Longa, C M O; Nicola, L; Antonielli, L; Mescalchin, E; Zanzotti, R; Turco, E; Pertot, I

    2017-12-01

    The aim of this work was to investigate the effects of biodynamic management with and without the addition of green manure, in comparison with organic management, on the microbiota in vineyards soil. High throughput sequencing was used to compare the taxonomic structure of the soil bacterial and fungal communities from vineyards managed with different methods (organic, biodynamic or biodynamic with green manure). Our results showed that microbial communities associated with biodynamic and organic farming systems were very similar, while green manure was the greatest source of soil microbial biodiversity and significantly changed microbial richness and community composition compared with other soils. Green manure also significantly enriched bacterial taxa involved in the soil nitrogen cycle (e.g. Microvirga sp., Pontibacter sp. and Nitrospira sp.). Our results showed that the diversity and composition of the microbial communities associated with biodynamic and organic farming systems were similar, indicating that the use of biodynamic preparations 500 and 501 did not cause any significant detectable changes to the soil microbial community in the short term, while the effects of green manure were significant in soil microbiota. The microbiological richness and structure of soil are used as a sensitive indicator of soil quality. The extension of organic/biodynamic farming, associated with green manure application, could contribute to increase the abundance of functional groups of biological and agronomical relevance and maintaining microbial biodiversity in vineyard soils. © 2017 The Society for Applied Microbiology.

  12. Assessing the effect of different treatments on decomposition rate of dairy manure.

    PubMed

    Khalil, Tariq M; Higgins, Stewart S; Ndegwa, Pius M; Frear, Craig S; Stöckle, Claudio O

    2016-11-01

    Confined animal feeding operations (CAFOs) contribute to greenhouse gas emission, but the magnitude of these emissions as a function of operation size, infrastructure, and manure management are difficult to assess. Modeling is a viable option to estimate gaseous emission and nutrient flows from CAFOs. These models use a decomposition rate constant for carbon mineralization. However, this constant is usually determined assuming a homogenous mix of manure, ignoring the effects of emerging manure treatments. The aim of this study was to measure and compare the decomposition rate constants of dairy manure in single and three-pool decomposition models, and to develop an empirical model based on chemical composition of manure for prediction of a decomposition rate constant. Decomposition rate constants of manure before and after an anaerobic digester (AD), following coarse fiber separation, and fine solids removal were determined under anaerobic conditions for single and three-pool decomposition models. The decomposition rates of treated manure effluents differed significantly from untreated manure for both single and three-pool decomposition models. In the single-pool decomposition model, AD effluent containing only suspended solids had a relatively high decomposition rate of 0.060 d(-1), while liquid with coarse fiber and fine solids removed had the lowest rate of 0.013 d(-1). In the three-pool decomposition model, fast and slow decomposition rate constants (0.25 d(-1) and 0.016 d(-1) respectively) of untreated AD influent were also significantly different from treated manure fractions. A regression model to predict the decomposition rate of treated dairy manure fitted well (R(2) = 0.83) to observed data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Does group size have an impact on welfare indicators in fattening pigs?

    PubMed

    Meyer-Hamme, S E K; Lambertz, C; Gauly, M

    2016-01-01

    Production systems for fattening pigs have been characterized over the last 2 decades by rising farm sizes coupled with increasing group sizes. These developments resulted in a serious public discussion regarding animal welfare and health in these intensive production systems. Even though large farm and group sizes came under severe criticism, it is still unknown whether these factors indeed negatively affect animal welfare. Therefore, the aim of this study was to assess the effect of group size (30 pigs/pen) on various animal-based measures of the Welfare Quality(®) protocol for growing pigs under conventional fattening conditions. A total of 60 conventional pig fattening farms with different group sizes in Germany were included. Moderate bursitis (35%) was found as the most prevalent indicator of welfare-related problems, while its prevalence increased with age during the fattening period. However, differences between group sizes were not detected (P>0.05). The prevalence of moderately soiled bodies increased from 9.7% at the start to 14.2% at the end of the fattening period, whereas large pens showed a higher prevalence (15.8%) than small pens (10.4%; P<0.05). With increasing group size, the incidence of moderate wounds with 8.5% and 11.3% in small- and medium-sized pens, respectively, was lower (P<0.05) than in large-sized ones (16.3%). Contrary to bursitis and dirtiness, its prevalence decreased during the fattening period. Moderate manure was less often found in pigs fed by a dry feeder than in those fed by a liquid feeding system (P<0.05). The human-animal relationship was improved in large in comparison to small groups. On the contrary, negative social behaviour was found more often in large groups. Exploration of enrichment material decreased with increasing live weight. Given that all animals were tail-docked, tail biting was observed at a very low rate of 1.9%. In conclusion, the results indicate that BW and feeding system are determining factors for

  14. Energy conversion of animal manures: Feasibility analysis for thirteen western states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittier, J.; Haase, S.; Milward, R.

    1993-12-31

    The growth and concentration of the livestock industry has led to environmental disposal problems for large quantities of manure at feedlots, dairies, poultry production plants, animal holding areas and pasturelands. Consequently, waste management systems that facilitate energy recovery are becoming increasingly attractive since they address pollution problems and allow for energy generation from manure resources. This paper presents a manure resource assessment for the 13 US Department of Energy, Western Regional Biomass Energy Program states, describes and evaluates available energy conversion technologies, identifies environmental and regulatory factors associated with manure collection, storage and disposal, and identifies common disposal practices specificmore » to animal types and areas within the WRBEP region. The paper also presents a pro forma economic analysis for selected manure-to-energy conversion technologies. The annual energy potential of various manures within the WRBEP region is equivalent to approximately 111 {times} 10{sup 13} Btu. Anaerobic digestion systems, both lagoon and plug flow, offer positive economic returns in a broad range of utility service territories.« less

  15. Modeling water movement in beef cattle bedded manure pack

    USDA-ARS?s Scientific Manuscript database

    Bedded manure is a valuable fertilizer source because it contains essential macronutrients (nitrogen (N), phosphorus (P), and potassium (K)) for crop production. Previous research with beef cattle bedded manure packs demonstrated that water-soluble macronutrients accumulated toward the bottom of the...

  16. MANURE HARVESTING PRACTICES: EFFECTS ON WASTE CHARACTERISTICS AND RUNOFF

    EPA Science Inventory

    To develop a basis for better manure harvesting management practices a combined field and laboratory study was conducted. The effect of management practices on manure qualities and runoff pollution potential were compared on three feedlot pens with fully surfaced, partially surfa...

  17. Occurrence and abundance of antibiotic resistance genes in agricultural soil receiving dairy manure.

    PubMed

    McKinney, Chad W; Dungan, Robert S; Moore, Amber; Leytem, April B

    2018-03-01

    Animal manures are commonly used to enhance soil fertility, but there are growing concerns over the impact of this practice on the development and dissemination of antibiotic resistance. The aim of this field study was to determine the effect of annual dairy manure applications on the occurrence and abundance of antibiotic resistance genes (ARGs) in an agricultural soil during four years of crop production. Treatments included (i) control (no fertilizer or manure), (ii) inorganic fertilizer and (iii) dairy manure at three application rates. Quantitative PCR was used to determine absolute (per g dry soil) and relative (per 16S rRNA gene) abundances of ARGs in DNA extracted from soils. Six ARGs and one class 1 integron were targeted. This study found that (i) manure application increases ARG abundances above background soil levels; (ii) the higher the manure application rate, the higher the ARG abundance in soil; (iii) the amount of manure applied is more important than reoccurring annual applications of the same amount of manure; (iv) absolute abundance and occurrence of ARGs decreases with increasing soil depth, but relative abundances remained constant. This study demonstrated that dairy manure applications to soil significantly increase the abundance of clinically relevant ARGs when compared to control and inorganic fertilized plots.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrer, I.; GIRO Technological Center, Rambla Pompeu Fabra 1, 08100 Mollet del Valles, Barcelona; Gamiz, M.

    Parque Porcino de Ventanilla has an extension of 840 ha with 2200 farmers dedicated to pig production. There is a lack of services in the area (i.e., water supply, electricity, or waste collection). Anaerobic treatment of pig manure would replace current dumping and incineration, reducing environmental pollution and hazards to public health, as well as providing an organic fertilizer and biogas. The objective of the present work was to study the viability of ambient temperature anaerobic digestion of pig manure diluted in urine, by means of on-site pilot scale reactors. The final goal was to establish design parameters for anaerobicmore » digesters to be implemented; since it was part of a project to improve life conditions for the farmers through the incorporation of better management techniques. Experiments were carried out in a low-cost pilot plant, which consists of three anaerobic digesters (225 L total volume), without heating or agitation, placed in a greenhouse. The start-up of the digestion process was performed with a mixture of temperature adapted pig manure-sludge and fresh rumen, and showed a good performance regardless of the dilution of pig manure with water or urine, which is a key parameter due to the scarcity of water in the area under study.« less

  19. Relevant Measures to Prevent the Spread of African Swine Fever in the European Union Domestic Pig Sector.

    PubMed

    Jurado, Cristina; Martínez-Avilés, Marta; De La Torre, Ana; Štukelj, Marina; de Carvalho Ferreira, Helena Cardoso; Cerioli, Monica; Sánchez-Vizcaíno, José Manuel; Bellini, Silvia

    2018-01-01

    During the past decade, African swine fever (ASF) has spread from the Caucasus region to eastern European Union countries affecting domestic pig and wild boar populations. In order to avert ASF spread, mitigation measures targeting both populations have been established. However, despite these efforts, ASF has been reported in thirteen different countries (Georgia, Azerbaijan, Armenia, the Russian Federation, Ukraine, Belarus, Estonia, Latvia, Lithuania, Poland, Moldova, Czech Republic, and Romania). In the absence of an effective vaccine or treatment to ASF, introduction and spread of ASF onto domestic pig farms can only be prevented by strict compliance to control measures. This study systematically reviewed available measures to prevent the spread of ASF in the EU domestic pig sector distinguishing between commercial, non-commercial, and outdoor farms. The search was performed in PubMed and using a common browser. A total of 52 documents were selected for the final review process, which included scientific articles, reports, EU documents and official recommendations, among others. From this literature review, 37 measures were identified as preventive measures for the introduction and spread of ASF. Subsequently, these measures were assessed by ASF experts for their relevance in the mitigation of ASF spread on the three mentioned types of farms. All experts agreed that some of the important preventive measures for all three types of farms were: the identification of animals and farm records; strict enforcement of the ban on swill feeding; and containment of pigs, so as to not allow direct or indirect pig-pig and/or pig-wild boar contacts. Other important preventive measures for all farms were education of farmers, workers, and operators; no contact between farmers and farm staff and external pigs; appropriate removal of carcasses, slaughter residues, and food waste; proper disposal of manure and dead animals, and abstaining from hunting activities during the

  20. Autoclave treatment of pig manure does not reduce the risk of transmission and transfer of tetracycline resistance genes in soil: successive determinations with soil column experiments.

    PubMed

    Kang, Yijun; Gu, Xian; Hao, Yangyang; Hu, Jian

    2016-03-01

    The increasing use of antibiotics, especially tetracycline, in livestock feed adversely affects animal health and ecological integrity. Therefore, approaches to decrease this risk are urgently needed. High temperatures facilitate antibiotic degradation; whether this reduces transmission risk and transfer of tetracycline-resistant bacteria (TRBs) and tetracycline resistance genes (TRGs) in soil remains unknown. Successive experiments with soil columns evaluated the effects of autoclaving pig manure (APM) on soil TRB populations and TRGs over time at different soil depths. The data showed sharp increases in TRB populations and TRGs in each subsoil layer of PM (non-APM) and APM treatments within 30 days, indicating that TRBs and TRGs transferred rapidly. The level of TRBs in the upper soil layers was approximately 15-fold higher than in subsoils. TRBs were not dependent on PM and APM levels, especially in the late phase. Nevertheless, higher levels of APM led to rapid expansion of TRBs as compared to PM. Moreover, temporal changes in TRB frequencies in total culturable bacteria (TCBs) were similar to TRBs, indicating that the impact of PM or APM on TRBs was more obvious than for TCBs. TRBs were hypothesized to depend on the numbers of TRGs and indigenous recipient bacteria. In the plough layer, five TRGs (tetB, tetG, tetM, tetW, and tetB/P) existed in each treatment within 150 days. Selective pressure of TC may not be a necessary condition for the transfer and persistence of TRGs in soil. High temperatures might reduce TRBs in PM, which had minimal impact on the transmission and transfer of TRGs in soil. Identifying alternatives to decrease TRG transmission remains a major challenge.

  1. Nutrient Runoff Losses from Liquid Dairy Manure Applied with Low-Disturbance Methods.

    PubMed

    Jokela, William; Sherman, Jessica; Cavadini, Jason

    2016-09-01

    Manure applied to cropland is a source of phosphorus (P) and nitrogen (N) in surface runoff and can contribute to impairment of surface waters. Tillage immediately after application incorporates manure into the soil, which may reduce nutrient loss in runoff as well as N loss via NH volatilization. However, tillage also incorporates crop residue, which reduces surface cover and may increase erosion potential. We applied liquid dairy manure in a silage corn ( L.)-cereal rye ( L.) cover crop system in late October using methods designed to incorporate manure with minimal soil and residue disturbance. These include strip-till injection and tine aerator-band manure application, which were compared with standard broadcast application, either incorporated with a disk or left on the surface. Runoff was generated with a portable rainfall simulator (42 mm h for 30 min) three separate times: (i) 2 to 5 d after the October manure application, (ii) in early spring, and (iii) after tillage and planting. In the postmanure application runoff, the highest losses of total P and dissolved reactive P were from surface-applied manure. Dissolved P loss was reduced 98% by strip-till injection; this result was not statistically different from the no-manure control. Reductions from the aerator band method and disk incorporation were 53 and 80%, respectively. Total P losses followed a similar pattern, with 87% reduction from injected manure. Runoff losses of N had generally similar patterns to those of P. Losses of P and N were, in most cases, lower in the spring rain simulations with fewer significant treatment effects. Overall, results show that low-disturbance manure application methods can significantly reduce nutrient runoff losses compared with surface application while maintaining residue cover better than incorporation by tillage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Sorption of lincomycin by manure-derived biochars from water

    USDA-ARS?s Scientific Manuscript database

    The presence of antibiotics in agroecosystems raises serious concerns about the proliferation of antibiotic resistant bacteria and potential adverse effects to human health. Soil amendment with biochars pyrolyzed from manures may be a win-win strategy for novel manure management and antibiotics abat...

  3. Response of turf and quality of water runoff to manure and fertilizer.

    PubMed

    Gaudreau, J E; Vietor, D M; White, R H; Provin, T L; Munster, C L

    2002-01-01

    Manure applications can benefit turfgrass production and unused nutrients in manure residues can be exported through sod harvests. Yet, nutrients near the soil surface could be transported in surface runoff. Our research objective was to evaluate responses of bermudagrass [Cynodon dactylon (L.) Pers. var. Guymon] turf and volumes and P and N concentrations of surface runoff after fertilizer or composted manure applications. Three replications of five treatments were established on a Boonville fine sandy loam (fine, smectitic, thermic Vertic Albaqualf) that was excavated to create an 8.5% slope. Manure rates of 50 and 100 kg P ha(-1) at the start of two monitoring periods were compared with P fertilizer rates of 25 and 50 kg ha(-1) and an unfertilized control. Compared with initial soil tests, nitrate concentrations decreased and P concentrations increased after two manure or fertilizer applications and eight rain events over the two monitoring periods. The fertilizer sources of P and N produced 19% more dry weight and 21% larger N concentrations in grass clippings than manure sources. Yet, runoff volumes were similar between manure and fertilizer sources of P. Dissolved P concentration (30 mg L(-1)) in runoff during a rain event 3 d after application of 50 kg P ha(-1) was five times greater for fertilizer than for manure P. Observations during both monitoring periods indicated that total P and N losses in runoff were no greater for composted manure than for fertilizer sources of P at relatively large P rates on a steep slope of turfgrass.

  4. The effect of cattle manure cultivation on moisture content and survival of Escherichia coli.

    PubMed

    Weinberg, Z; Chen, Y; Khanal, P; Pinto, R; Zakin, V; Sela, S

    2011-03-01

    A new practice whereby wet slurry is added daily to the cattle manure bedding at the barn and cultivated has been developed in Israel. The objective of the present study was to examine the effect of manure cultivation on the persistence of Escherichia coli in a model system. A cow manure-derived E. coli strain was tagged with green fluorescence protein (GFP) and antibiotic resistance markers and was used to inoculate cow manure in 10-L buckets. After 3 successive cycles of inoculation and cultivation, wet slurry was added during an additional 2 cycles. After 32 d, the cultivated and noncultivated manure contained 677 ± 14 and 505 ± 2 g·kg(-1) DM, respectively. The cultivated manure remained drier compared with the noncultivated manure after the addition of wet slurry, and its texture remained lumpy compared with the compact, cohesive, and sticky texture of the noncultivated manure. Throughout the experiment, the counts of the tagged E. coli were less (P < 0.05) and disappeared faster in the cultivated than in the noncultivated manure. These results support the hypothesis that daily cultivation of manure may result in reduced incidence of mastitis and improves the welfare and performance of dairy cows.

  5. Cadmium in animal production and its potential hazard on Beijing and Fuxin farmlands.

    PubMed

    Li, Yan-xia; Xiong, Xiong; Lin, Chun-ye; Zhang, Feng-song; Wei, Li; Wei, Han

    2010-05-15

    A random sample of pairs of animal feeds and manures were collected from 215 animal barns in Beijing and Fuxin regions of China. The concentrations of Cd in manures and feeds ranged from non-detectable to 129.8 mg/kg dry weight and non-detectable to 31 mg/kg dry weight, respectively. The concentrations of Cd in pig, dairy cow and chicken manures were positively correlated to those in their feeds. About 30% of the manure samples contained Cd concentrations higher than the upper limit for use in farmlands, and pig and chicken manures might be the primary contributors of Cd to farmlands. The farmlands in Beijing and around the Fuxin Downtown areas would exceed the soil quality criteria within several decades according to current manure Cd loading rates. Undoubtedly, more scientific animal production and manure management practices to minimize soil pollution risks are necessary for the two regions. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  6. Chemical P recovery from dairy manure using the Quick Wash process and use of low-P washed manure solids as soil amendments.

    USDA-ARS?s Scientific Manuscript database

    Large volumes of manure generated by intensive dairy production and their final land disposal is a significant environmental problem. Due to the imbalance of nitrogen (N) and phosphorus (P) (4:1), emendation of soils with dairy manure entails a raise in available soil P levels beyond the crops' capa...

  7. Airborne pathogens from dairy manure aerial irrigation and the human health risk

    USGS Publications Warehouse

    Borchardt, Mark A.; Burch, Tucker R

    2016-01-01

    Dairy manure, like the fecal excrement from any domesticated or wild animal, can contain pathogens capable of infecting humans and causing illness or even death. Pathogens in dairy manure can be broadly divided into categories of taxonomy or infectiousness. Dividing by taxonomy there are three pathogen groups in dairy manure: viruses (e.g., bovine rotavirus), bacteria (e.g., Salmonella species), and protozoa (e.g., Cryptosporidium parvum). There are two categories of infectiousness for pathogens found in animals: those that are zoonotic and those that are not. A zoonotic pathogen is one that can infect both human and animal hosts. Some zoonotic pathogens found in dairy manure cause illness in both hosts (e.g., Salmonella) while other zoonotic pathogens, like Escherichia coli O157:H7, (enterohemorrhagic E. coli (EHEC)) cause illness only in humans. As a general rule, the gastrointestinal viruses found in dairy manure are not zoonotic. While there are exceptions (e.g., rare reports of bovine rotavirus infecting children), for the most part the viruses in dairy manure are not a human health concern. The primary concerns are the zoonotic bacteria and protozoa in dairy manure.

  8. Turning schedules influence final composition of composted swine manure

    USDA-ARS?s Scientific Manuscript database

    Liquid swine (Sus scrofa domesticus) manure is a high-moisture, low-nutrient product that limits economical transport to areas in proximity of its source, possibly contributing to localized high soil nutrient levels. Composting swine manure converts liquid slurries to solids at lower moisture conten...

  9. Effect of dietary protein concentration on ammonia and greenhouse gas emitting potential of dairy manure.

    PubMed

    Lee, C; Hristov, A N; Dell, C J; Feyereisen, G W; Kaye, J; Beegle, D

    2012-04-01

    Two experiments were conducted to investigate the effect of dietary crude protein concentration on ammonia (NH(3)) and greenhouse gas (GHG; nitrous oxide, methane, and carbon dioxide) emissions from fresh dairy cow manure incubated in a controlled environment (experiment 1) and from manure-amended soil (experiment 2). Manure was prepared from feces and urine collected from lactating Holstein cows fed diets with 16.7% (DM basis; HCP) or 14.8% CP (LCP). High-CP manure had higher N content and proportion of NH(3)- and urea-N in total manure N than LCP manure (DM basis: 4.4 vs. 2.8% and 51.4 vs. 30.5%, respectively). In experiment 1, NH(3) emitting potential (EP) was greater for HCP compared with LCP manure (9.20 vs. 4.88 mg/m(2) per min, respectively). The 122-h cumulative NH(3) emission tended to be decreased 47% (P=0.09) using LCP compared with HCP manure. The EP and cumulative emissions of GHG were not different between HCP and LCP manure. In experiment 2, urine and feces from cows fed LCP or HCP diets were mixed and immediately applied to lysimeters (61×61×61 cm; Hagerstown silt loam; fine, mixed, mesic Typic Hapludalf) at 277 kg of N/ha application rate. The average NH(3) EP (1.53 vs. 1.03 mg/m(2) per min, respectively) and the area under the EP curve were greater for lysimeters amended with HCP than with LCP manure. The largest difference in the NH(3) EP occurred approximately 24 h after manure application (approximately 3.5 times greater for HCP than LCP manure). The 100-h cumulative NH(3) emission was 98% greater for HCP compared with LCP manure (7,415 vs. 3,745 mg/m(2), respectively). The EP of methane was increased and that of carbon dioxide tended to be increased by LCP compared with HCP manure. The cumulative methane emission was not different between treatments, whereas the cumulative carbon dioxide emission was increased with manure from the LCP diet. Nitrous oxide emissions were low in this experiment and did not differ between treatments. In the

  10. Nitrous oxide emissions from a coal mine land reclaimed with stabilized manure

    USDA-ARS?s Scientific Manuscript database

    Mined land restoration using manure-based amendments may create soil conditions suitable for nitrous oxide production and emission. We measured nitrous oxide emissions from mine soil amended with composted poultry manure (Comp) or poultry manure mixed with paper mill sludge (Man+PMS) at C/N ratios o...

  11. Co-pyrolysis of swine manure with agricultural plastic waste: Laboratory-scale study

    USDA-ARS?s Scientific Manuscript database

    Manure-derived biochar is the solid product resulting from pyrolysis of animal manures. It has considerable potential both to improve soil quality with high levels of nutrients and to reduce contaminants in water and soil. However, the combustible gas produced from manure pyrolysis generally does no...

  12. Manure Spills in Streams: Current Practices and Remediation Methods to Minimize Water Quality Degradation

    USDA-ARS?s Scientific Manuscript database

    Manure spills into streams are an all too common byproduct of animal production. With greater numbers of animals raised on fewer farms, manure spills become greater problems due to the volume of manure spilled into aquatic ecosystems. This book chapter reviews why manure spills occur, and the curren...

  13. Nitrogen transformation in maize soil after application of different organic manures.

    PubMed

    Dong, Yu-hong; Ouyang, Zhu; Liu, Shi-liang

    2005-01-01

    The nitrogen transformation in maize soil after application of different organic manure was studied. The nitrogen mineralization in surface soil, NO3- -N dynamics and distribution in soil profile, and N2O emission were investigated. Eight treatments were laid out randomizing with three replications in 24 plots: maize plantation without fertilizer (CK1), bare soil without maize plantation and fertilization (CK2), swine manure (S1, S2), poultry manure (P1, P2), and cattle manure (C1, C2). Three manures were applied at two application levels (15 t/hm2 and 30 t/hm2). The results indicated that NH+ -N in surface soil showed the same temporal pattern without much variation among different treatments. But NO3- -N in the same layer exhibited large temporal pattern in all treatments, which was mainly due to its easy eluviations of NO3- -N in soil, its transformation to N2O and the influence of precipitation. The distribution of NO3- -N in the soil profile during maize growing season showed the leaching tendency from surface soil to subsoil, which was different among the treatments. The poultry treatments showed the largest leaching tendency. The study also revealed that the emissions of N2O were affected by the application of organic manures in the order of P2 > S2 > C2 > P1 > S1 > Cl > CK1 > CK2. All these results showed that organic manure applications significantly affect nitrogen transformation and distribution in maize soil. Considering N2O emission and NO3- -N leaching, the management of organic manure in the agriculture needs further studies.

  14. Gaseous emission during the composting of pig feces from Chinese Ganqinfen system.

    PubMed

    Jiang, Tao; Schuchardt, Frank; Li, Guo Xue; Guo, Rui; Luo, Yi Ming

    2013-01-01

    The Ganqinfen system - a process of manually cleaning animal feces by means of a shovel - is a widely used manure separating method in Chinese pig farms. Ganqinfen pig feces and chopped corn stalks were mixed at the ratio of 7:1, and composted in 1.5 m(3) rotting boxes for 70 d. Evolution of CH(4), N(2)O and NH(3) during composting, and the effects of turning and covering, were studied in this research. Results showed that 20-39% and 0.5-4% of total nitrogen were lost in the form of NH(3) and N(2)O respectively, and 0.1-0.9% of initial organic carbon was emitted as CH(4). Turning enhanced air exchange in the piles, thus decreasing CH(4) emission by 83-93% and shortening the maturing period. When trials were finished, all non-turned piles were separated to three layers by moisture content. This structure caused the N(2)O losses of non-turning treatments to be 6-12.7 times higher than that of turning treatments. Covering materials reduced air exchange at the surface of the pile, thus decreasing the O(2) supply and consequently increasing CH(4) production by 33-45%. Covering also reduced NH(3) emission by 4-34%. For the composting of Ganqinfen pig feces, we suggest that a program of turning twice weekly without covering will result in compost that is sufficiently matured after 6 wk with the lowest resultant greenhouse gas emission. Copyright © 2012. Published by Elsevier Ltd.

  15. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems.

    PubMed

    Brooks, John P; Adeli, Ardeshir; McLaughlin, Michael R

    2014-06-15

    The environmental influence of farm management in concentrated animal feeding operations (CAFO) can yield vast changes to the microbial biota and ecological structure of both the pig and waste manure lagoon wastewater. While some of these changes may not be negative, it is possible that CAFOs can enrich antibiotic resistant bacteria or pathogens based on farm type, thereby influencing the impact imparted by the land application of its respective wastewater. The purpose of this study was to measure the microbial constituents of swine-sow, -nursery, and -finisher farm manure lagoon wastewater and determine the changes induced by farm management. A total of 37 farms were visited in the Mid-South USA and analyzed for the genes 16S rRNA, spaQ (Salmonella spp.), Camp-16S (Campylobacter spp.), tetA, tetB, ermF, ermA, mecA, and intI using quantitative PCR. Additionally, 16S rRNA sequence libraries were created. Overall, it appeared that finisher farms were significantly different from nursery and sow farms in nearly all genes measured and in 16S rRNA clone libraries. Nearly all antibiotic resistance genes were detected in all farms. Interestingly, the mecA resistance gene (e.g. methicillin resistant Staphylococcus aureus) was below detection limits on most farms, and decreased as the pigs aged. Finisher farms generally had fewer antibiotic resistance genes, which corroborated previous phenotypic data; additionally, finisher farms produced a less diverse 16S rRNA sequence library. Comparisons of Camp-16S and spaQ GU (genomic unit) values to previous culture data demonstrated ratios from 10 to 10,000:1 depending on farm type, indicating viable but not cultivatable bacteria were dominant. The current study indicated that swine farm management schemes positively and negatively affect microbial and antibiotic resistant populations in CAFO wastewater which has future "downstream" implications from both an environmental and public health perspective. Published by Elsevier Ltd.

  16. Gasification of hybrid feedstock using animal manures and hays

    USDA-ARS?s Scientific Manuscript database

    The objective of this study is to evaluate the efficiency of a proprietary integrated gasification-internal combustion system in producing electricity from mixtures of animal manures such as swine solids, chicken litter, and hays. Five to 10 gallons of mixtures of swine manure, chicken litter, and h...

  17. Soil-Plant Nutrient Interactions on Manure-Enriched Calcareous Soils

    USDA-ARS?s Scientific Manuscript database

    Nutrient accumulations on heavily manured soils can trigger soil and plant nutrient interactions. The goal of the study was to determine the current impact of dairy manure applications on nutrient concentrations in soil and tissue for irrigated corn silage crops grown in Southern Idaho. At harvest,...

  18. Potential of Biological Processes to Eliminate Antibiotics in Livestock Manure: An Overview

    PubMed Central

    Massé, Daniel I.; Cata Saady, Noori M.; Gilbert, Yan

    2014-01-01

    Simple Summary Beside their use to treat infections, antibiotics are used excessively as growth promoting factors in livestock industry. Animals discharge in their feces and urine between 70%–90% of the antibiotic administrated unchanged or in active metabolites. Because livestock manure is re-applied to land as a fertilizer, concerns are growing over spread of antibiotics in water and soil. Development of antibiotic resistant bacteria is a major risk. This paper reviewed the potential of anaerobic digestion to degrade antibiotics in livestock manure. Anaerobic digestion can degrade manure-laden antibiotic to various extents depending on the concentration and class of antibiotic, bioreactor operating conditions, type of feedstock and inoculum sources. Abstract Degrading antibiotics discharged in the livestock manure in a well-controlled bioprocess contributes to a more sustainable and environment-friendly livestock breeding. Although most antibiotics remain stable during manure storage, anaerobic digestion can degrade and remove them to various extents depending on the concentration and class of antibiotic, bioreactor operating conditions, type of feedstock and inoculum sources. Generally, antibiotics are degraded during composting > anaerobic digestion > manure storage > soil. Manure matrix variation influences extraction, quantification, and degradation of antibiotics, but it has not been well investigated. Fractioning of manure-laden antibiotics into liquid and solid phases and its effects on their anaerobic degradation and the contribution of abiotic (physical and chemical) versus biotic degradation mechanisms need to be quantified for various manures, antibiotics types, reactor designs and temperature of operations. More research is required to determine the kinetics of antibiotics’ metabolites degradation during anaerobic digestion. Further investigations are required to assess the degradation of antibiotics during psychrophilic anaerobic digestion. PMID

  19. 9 CFR 82.7 - Interstate movement of manure and litter from a quarantined area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... manure and litter at the destination listed on the permit. (b) Compost derived from manure generated by... composting site at the same time; (5) Following the composting process, the composted manure or litter... composted manure or litter from the infected site is removed at the same time; (7) The resulting compost...

  20. 9 CFR 82.7 - Interstate movement of manure and litter from a quarantined area.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... manure and litter at the destination listed on the permit. (b) Compost derived from manure generated by... composting site at the same time; (5) Following the composting process, the composted manure or litter... composted manure or litter from the infected site is removed at the same time; (7) The resulting compost...