Science.gov

Sample records for pilhas chevron utilizando

  1. Smectic C chevrons in nanocylinders

    SciTech Connect

    Lefort, R. Morineau, D.; Jean, F.; Noirez, L.; Ndao, M.; Cerclier, C. V.

    2014-11-17

    The structure of an achiral smectic-C liquid crystal confined in nanocylinders with a planar surface anchoring is studied by small angle neutron scattering. We observe an invariant alignment of the nematic director with the pore axis, that promotes an original chevron structure with revolution symmetry.

  2. Parametric Testing of Chevrons on Single Flow Hot Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James; Brown, Clifford A.

    2004-01-01

    A parametric family of chevron nozzles have been studied, looking for relationships between chevron geometric parameters, flow characteristics, and far-field noise. Both cold and hot conditions have been run at acoustic Mach number 0.9. Ten models have been tested, varying chevron count, penetration, length, and chevron symmetry. Four comparative studies were defined from these datasets which show: that chevron length is not a major impact on either flow or sound; that chevron penetration increases noise at high frequency and lowers it at low frequency, especially for low chevron counts; that chevron count is a strong player with good low frequency reductions being achieved with high chevron count without strong high frequency penalty; and that chevron asymmetry slightly reduces the impact of the chevron. Finally, it is shown that although the hot jets differ systematically from the cold one, the overall trends with chevron parameters is the same.

  3. Industry. Pollution prevention: The Chevron story

    SciTech Connect

    Karras, G. )

    1989-10-01

    This article outlines the efforts of Chevron to control pollution in the San Francisco Bay area. The company worked on reducing the numbers and types of pollutants used in the petrochemical industry. By changing the raw materials used in production as well as altering the finished products, the Chevron refinery was able to significantly reduce the toxic metals in the Bay area.

  4. Chevrons formation in laminar erosion

    NASA Astrophysics Data System (ADS)

    Devauchelle, Olivier; Josserand, Christophe; Lagree, Pierre-Yves; Zaleski, Stephane; Nguyen, Khanh-Dang; Malverti, Luce; Lajeunesse, Eric

    2007-11-01

    When eroded by laminar free-surface flows, granular substrates may generate a rich variety of natural patterns. Among them are dunes, similar to the ones observed by Charru and Hinch in a Couette cell (Charru F, Hinch EJ ; Ripple formation on a particle bed sheared by a viscous liquid. Part 1. Steady flow ; JOURNAL OF FLUID MECHANICS 550: 111-121 MAR 10 2006). Chevron-shaped instabilities as those found on the sea-shore, can also be observed, sometimes in competition against dunes formation. These were first pointed out by Daerr et al. when pulling a plate covered with granular material out of a bath of water (Daerr A, Lee P, Lanuza J, et al. ; Erosion patterns in a sediment layer ; PHYSICAL REVIEW E 67 (6): Art. No. 065201 Part 2 JUN 2003). Both instabilities can grow in laminar open-channel flows, an experimental set-up which is more easily controlled. The mechanisms leading to the formation of these patterns are investigated and compared. Whereas dunes formation requires vertical inertia effects, we show that chevrons may result from the non-linear evolution of bars instability, which may grow even in purely viscous flows.

  5. Fluidic Chevrons for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Kinzie, Kevin; Henderson, Brenda; Whitmire, Julia

    2004-01-01

    Chevron mixing devices are used to reduce noise from commercial separate-flow turbofan engines. Mechanical chevron serrations at the nozzle trailing edge generate axial vorticity that enhances jet plume mixing and consequently reduces far-field noise. Fluidic chevrons generated with air injected near the nozzle trailing edge create a vorticity field similar to that of the mechanical chevrons and allow more flexibility in controlling acoustic and thrust performance than a passive mechanical design. In addition, the design of such a system has the future potential for actively controlling jet noise by pulsing or otherwise optimally distributing the injected air. Scale model jet noise experiments have been performed in the NASA Langley Low Speed Aeroacoustic Wind Tunnel to investigate the fluidic chevron concept. Acoustic data from different fluidic chevron designs are shown. Varying degrees of noise reduction are achieved depending on the injection pattern and injection flow conditions. CFD results were used to select design concepts that displayed axial vorticity growth similar to that associated with mechanical chevrons and qualitatively describe the air injection flow and the impact on acoustic performance.

  6. Chevron formation of the zebrafish muscle segments

    PubMed Central

    Rost, Fabian; Eugster, Christina; Schröter, Christian; Oates, Andrew C.; Brusch, Lutz

    2014-01-01

    The muscle segments of fish have a folded shape, termed a chevron, which is thought to be optimal for the undulating body movements of swimming. However, the mechanism shaping the chevron during embryogenesis is not understood. Here, we used time-lapse microscopy of developing zebrafish embryos spanning the entire somitogenesis period to quantify the dynamics of chevron shape development. By comparing such time courses with the start of movements in wildtype zebrafish and analysing immobile mutants, we show that the previously implicated body movements do not play a role in chevron formation. Further, the monotonic increase of chevron angle along the anteroposterior axis revealed by our data constrains or rules out possible contributions by previously proposed mechanisms. In particular, we found that muscle pioneers are not required for chevron formation. We put forward a tension-and-resistance mechanism involving interactions between intra-segmental tension and segment boundaries. To evaluate this mechanism, we derived and analysed a mechanical model of a chain of contractile and resisting elements. The predictions of this model were verified by comparison with experimental data. Altogether, our results support the notion that a simple physical mechanism suffices to self-organize the observed spatiotemporal pattern in chevron formation. PMID:25267843

  7. Aeroacoustic Improvements to Fluidic Chevron Nozzles

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Kinzie, Kevin; Whitmire, Julia; Abeysinghe, Amal

    2006-01-01

    Fluidic chevrons use injected air near the trailing edge of a nozzle to emulate mixing and jet noise reduction characteristics of mechanical chevrons. While previous investigations of "first generation" fluidic chevron nozzles showed only marginal improvements in effective perceived noise levels when compared to nozzles without injection, significant improvements in noise reduction characteristics were achieved through redesigned "second generation" nozzles on a bypass ratio 5 model system. The second-generation core nozzles had improved injection passage contours, external nozzle contour lines, and nozzle trailing edges. The new fluidic chevrons resulted in reduced overall sound pressure levels over that of the baseline nozzle for all observation angles. Injection ports with steep injection angles produced lower overall sound pressure levels than those produced by shallow injection angles. The reductions in overall sound pressure levels were the result of noise reductions at low frequencies. In contrast to the first-generation nozzles, only marginal increases in high frequency noise over that of the baseline nozzle were observed for the second-generation nozzles. The effective perceived noise levels of the new fluidic chevrons are shown to approach those of the core mechanical chevrons.

  8. Chevron cutting: Experiment with new runway mixtures

    NASA Technical Reports Server (NTRS)

    Tyran, K. (Compiler)

    1978-01-01

    Chevron cutting is shown to occur in different forms depending on the type of tire and the rubber on the running surface. Hardest wear is shown by the main tires of the B-747. Four defects occurred, in the form of two rip separation and two breakouts of the running surface. Tires capped by Thompson are more affected than any of the other rubber-capping fabrics. For Thompson tires, Chevron Cutting is greatly reduced with a fiberglass-rubber mixture. For Goodyear tires, it is eliminated with spiral wrap rubbercapping; resistance to damages through cuts seems to be more positive for Goodyear tires. For Mader tires, the extent of Chevron Cutting is generally smaller than for Thompson cappings.

  9. 33 CFR 147.825 - Chevron Genesis Spar safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Chevron Genesis Spar safety zone... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.825 Chevron Genesis Spar safety zone. (a) Description. The Chevron Genesis Spar, Green Canyon 205A (GC205A), is located at position 27°46′46.365″ N,...

  10. Chevron folding patterns and heteroclinic orbits

    NASA Astrophysics Data System (ADS)

    Budd, Christopher J.; Chakhchoukh, Amine N.; Dodwell, Timothy J.; Kuske, Rachel

    2016-09-01

    We present a model of multilayer folding in which layers with bending stiffness EI are separated by a very stiff elastic medium of elasticity k2 and subject to a horizontal load P. By using a dynamical system analysis of the resulting fourth order equation, we show that as the end shortening per unit length E is increased, then if k2 is large there is a smooth transition from small amplitude sinusoidal solutions at moderate values of P to larger amplitude chevron folds, with straight limbs separated by regions of high curvature when P is large. The chevron solutions take the form of near heteroclinic connections in the phase-plane. By means of this analysis, values for P and the slope of the limbs are calculated in terms of E and k2.

  11. Compliance measurements of chevron notched four point bend specimen

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony; Bubsey, Raymond; Ghosn, Louis J.

    1994-01-01

    The experimental stress intensity factors for various chevron notched four point bend specimens are presented. The experimental compliance is verified using the analytical solution for a straight through crack four point bend specimen and the boundary integral equation method for one chevron geometry. Excellent agreement is obtained between the experimental and analytical results. In this report, stress intensity factors, loading displacements and crack mouth opening displacements are reported for different crack lengths and different chevron geometries, under four point bend loading condition.

  12. A review of chevron-notched fracture specimens

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1984-01-01

    The historical development of chevron notched fracture specimens is reviewed. Stress intensity factors and load line displacement solutions proposed for some of these specimens are compared. The original bend bar configurations up to the present day short rod and bar specimens are reviewed. The results of an analytical round robin that was conducted on chevron-notched specimens are presented. In the round robin, stress-intensity factors for either the chevron notched round rod or square bar specimens were calculated. The consensus stress intensity factor (compliance) solution for these specimens is assessed. The stress intensity factor solutions proposed for three and four point bend chevron notched specimens are reviewed.

  13. An MDOE Investigation of Chevrons for Supersonic Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bridges, James

    2010-01-01

    The impact of chevron design on the noise radiated from heated, overexpanded, supersonic jets is presented. The experiments used faceted bi-conic convergent-divergent nozzles with design Mach numbers equal to 1.51 and 1.65. The purpose of the facets was to simulate divergent seals on a military style nozzle. The nozzle throat diameter was equal to 4.5 inches. Modern Design of Experiment (MDOE) techniques were used to investigate the impact of chevron penetration, length, and width on the resulting acoustic radiation. All chevron configurations used 12 chevrons to match the number of facets in the nozzle. Most chevron designs resulted in increased broadband shock noise relative to the baseline nozzle. In the peak jet noise direction, the optimum chevron design reduced peak sound pressure levels by 4 dB relative to the baseline nozzle. The penetration was the parameter having the greatest impact on radiated noise at all observation angles. While increasing chevron penetration decreased acoustic radiation in the peak jet noise direction, broadband shock noise was adversely impacted. Decreasing chevron length increased noise at most observation angles. The impact of chevron width on radiated noise depended on frequency and observation angle.

  14. Molecular simulation of chevrons in confined smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Webster, Richard E.; Mottram, Nigel J.; Cleaver, Douglas J.

    2003-08-01

    Chevron structures adopted by confined smectic liquid crystals are investigated via molecular dynamics simulations of the Gay-Berne model. The chevrons are formed by quenching nematic films confined between aligning planar substrates whose easy axes have opposing azimuthal components. When the substrates are perfectly smooth, the chevron formed migrates rapidly towards one of the confining walls to yield a tilted layer structure. However, when substrate roughness is included, by introducing a small-amplitude modulation to the particle-substrate interaction well depth, a symmetric chevron is formed which remains stable over sufficiently long run times for detailed structural information, such as the relevant order parameters and director orientation, to be determined. For both smooth and rough boundaries, the smectic order parameter remains nonzero across the entire chevron, implying that layer identity is maintained across the chevron tip. Also, when the surface-stabilized chevron does eventually revert to a tilted layer structure, it does so via surface slippage, such that layer integrity is maintained throughout the chevron to tilted layer relaxation process.

  15. Chevron nails: a normal variant in the pediatric population.

    PubMed

    Delano, Sofia; Belazarian, Leah

    2014-01-01

    A 7-month-old girl was evaluated for V-shaped ridging of the fingernails consistent with chevron nails. Chevron nails are a normal variant in the pediatric population that is frequently outgrown. This case nicely demonstrates this normal finding that has so rarely been reported in the literature.

  16. Recent developments in Chevron mild isocracking

    SciTech Connect

    Fuchs, M.J.; Powell, B.E.; Tolberg, R.S.; Saito, Y.

    1985-01-01

    The use of Chevron's dual-catalyst mild hydrocracking technology has enabled Nippon Petroleum Refining Company (NPRC) to produce excellent yields of good-quality mid-distillate from vacuum gas oil (VGO) in an existing VGO desulfurizer at its Muroran Refinery. This technology enables refiners to take advantage of underutilized desulfurization capacity for hydrocracking with minimal additional capital investment. The Muroran unit has been in this high-conversion mode since June 1982 and has operated in the range of 10-30 liquid volume (LV) percent synthetic conversion with yields up to 48 LV percent of 680 F cut-point diesel and lighter products. The details of this operation are discussed. Laboratory pilot plant data are also presented for two different feedbacks. The amount of recoverable diesel and its quality are strong functions of the feed boiling range, synthetic conversion, and plant pressure.

  17. Sedimentology of coastal chevron deposits - tsunamigenic versus aeolian origin

    NASA Astrophysics Data System (ADS)

    Garcia Garcia, A.; Spiske, M.; Tsukamoto, S.; Schmidt, V.

    2012-12-01

    The genesis of v-shaped coastal chevrons is currently controversially discussed. So far, chevrons are only described regarding their morphology, but not in terms of their origin. Two possible origins of chevrons are proposed: both aeolian transport and tsunami inundation are discussed as depositing processes. We present initial results of a detailed sedimentological survey of Holocene coastal chevrons from the American and Australian west coasts. The chevrons were measured and levelled using a differential GPS system. Large scale internal structures were recorded by ground penetrating radar imaging. Trenches were dug for sampling and analyzing small scale internal structures. The sediment samples were used for the analysis of grain-size distributions, mineral composition and content of marine microorganisms. Additional samples were taken for optically stimulated luminescence (OSL) and radiocarbon dating. Furthermore, we took reference samples from beaches, cliffs and rivers, which could act as potential sediment sources for the surveyed chevrons. Tsunami deposits are commonly polymodal, exhibit a grain-size decrease and tend to show better sorting in landward direction. Such trends are not present in the surveyed chevrons. Most samples are well to moderately well sorted and unimodal. The OSL ages decrease in transport direction and indicate a long term generation process, such as dune migration, rather than a short term event like a tsunami. This fact is additionally underlined by land snails found in different stratigraphic levels within the Australian chevrons. Furthermore, the occurrence of intercalated soil horizons implies a change of stable and active migration phases. The initial results of this study point out to an aoelian origin of coastal chevrons and do not support the previously supposed thesis of a tsunamigenic origin.

  18. Impact of Fluidic Chevrons on Jet Noise

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Kinzie, Kevin W.; Whitmire, Julia; Abeysinghe, Amal

    2005-01-01

    The impact of alternating fluidic core chevrons on the production of jet noise is investigated. Core nozzles for a representative 1/9th scale, bypass ratio 5 model system were manufactured with slots cut near the trailing edges to allow for air injection into the core and fan streams. The injectors followed an alternating pattern around the nozzle perimeter so that the injection alternated between injection into the core stream and injection into the fan stream. For the takeoff condition and a forward flight Mach number of 0.10, the overall sound pressure levels at the peak jet noise angle decrease with increasing injection pressure. Sound pressure levels increase for observation angles less than 110o at higher injection pressures due to increases in high frequency noise. Greater increases in high frequency noise are observed when the number of injectors increases from 8 to 12. When the forward flight Mach number is increased to 0.28, jet noise reduction (relative to the baseline) is observed at aft angles for increasing injection pressure while significant increases in jet noise are observed at forward observation angles due to substantial acoustic radiation at high frequencies. A comparison between inflow and alternating injectors shows that, for equal mass injection rates, the inflow nozzle produces greater low frequency noise reduction (relative to the baseline) than the alternating injectors at 90o and aft observation angles and a forward flight Mach number of 0.28. Preliminary computational fluid dynamic simulations indicate that the spatial decay rate of the hot potential core flow is less for the inflow nozzle than for the alternating nozzles which indicates that gentle mixing may be preferred over sever mixing when fluidic chevrons are used for jet noise reduction.

  19. Computational Analysis of a Pylon-Chevron Core Nozzle Interaction

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Kinzie, Kevin W.; Pao, S. Paul

    2001-01-01

    In typical engine installations, the pylon of an engine creates a flow disturbance that interacts with the engine exhaust flow. This interaction of the pylon with the exhaust flow from a dual stream nozzle was studied computationally. The dual stream nozzle simulates an engine with a bypass ratio of five. A total of five configurations were simulated all at the take-off operating point. All computations were performed using the structured PAB3D code which solves the steady, compressible, Reynolds-averaged Navier-Stokes equations. These configurations included a core nozzle with eight chevron noise reduction devices built into the nozzle trailing edge. Baseline cases had no chevron devices and were run with a pylon and without a pylon. Cases with the chevron were also studied with and without the pylon. Another case was run with the chevron rotated relative to the pylon. The fan nozzle did not have chevron devices attached. Solutions showed that the effect of the pylon is to distort the round Jet plume and to destroy the symmetrical lobed pattern created by the core chevrons. Several overall flow field quantities were calculated that might be used in extensions of this work to find flow field parameters that correlate with changes in noise.

  20. Comparison of Chevron and Distal Oblique Osteotomy for Bunion Correction.

    PubMed

    Scharer, Brandon M; DeVries, J George

    2016-01-01

    The chevron osteotomy is a standard procedure by which bunions are corrected. One of us routinely performs a distal oblique osteotomy, which, to the best of our knowledge, has not been described for the correction of bunion deformities. The purpose of the present study was to compare the short- and medium-term results of the distal oblique and chevron osteotomies for bunion correction. We performed a retrospective clinical and radiographic comparison of patients who had undergone a distal oblique or chevron osteotomy for the correction of bunion deformity. In addition, a prospective patient satisfaction survey was undertaken. A total of 55 patients were included in the present study and were treated from January 2012 to November 2014. Of the 55 patients, 27 (49.2%) were in the chevron group and 28 (50.8%) in the distal oblique group. Radiographically, no statistically significant difference was found between the 2 groups with respect to postoperative first intermetatarsal angle (p < .0001) and hallux valgus angle (p < .0001), but a greater change was found in the intermetatarsal angle in the distal oblique group (p = .467). Prospective patient satisfaction scores were available for 33 patients (60%), 16 (29%) in the chevron group and 17 (31%) in the distal oblique group. When converting the satisfaction score to a numerical score, the chevron group scored 3.3 ± 1.1 and the distal oblique group scored 3.2 ± 0.8 (p = .812). We found that the distal oblique osteotomy used in the present study is simple and reliable and showed radiographic correction and patient satisfaction equivalent to those in the chevron osteotomy. PMID:26972755

  1. Wet active chevron nozzle for controllable jet noise reduction

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Kinzie, Kevin W. (Inventor)

    2011-01-01

    Disposed at or toward the trailing edge of one or more nozzles associated with a jet engine are injection ports which can selectively be made to discharge a water stream into a nozzle flow stream for the purpose of increasing turbulence in somewhat of a similar fashion as mechanically disposed chevrons have done in the known art. Unlike mechanically disposed chevrons of the known art, the fluid flow may be secured thereby increasing the engine efficiency. Various flow patterns, water pressures, orifice designs or other factors can be made operative to provide desired performance characteristics.

  2. The effect of chevron alignment signs on driver performance on horizontal curves with different roadway geometries.

    PubMed

    Zhao, Xiaohua; Wu, Yiping; Rong, Jian; Ma, Jianming

    2015-02-01

    To develop a practicable and clear guideline for implementing Chevrons on China's highways, it is necessary to understand the effect of Chevrons on driving performance in different roadway geometries. Using a driving simulator, this study tests the effect of China's Chevrons on vehicle speed and lane position on two-lane rural highway horizontal curves with different roadway geometries. The results showed a significant effect of Chevrons on speed reduction, and this function was not significantly affected by curve radius but was statistically affected by curve direction. The speed reduction caused by Chevrons was also significant at the approach of curve, middle of curve and point of tangent. The 85th percentile speed was also markedly lower when Chevrons were present. We also found a significant effect of Chevrons in encouraging participants to drive the vehicle with a more proper lane position at the first half of curves; and this function was slightly affected by curve radius. Meanwhile, the effect of Chevrons on keeping drivers staying in a more stable lane position was also statistically significant at the second half of curves. In sharp curves, the function of Chevrons to make drivers keep a stable lane position was lost. Besides, the impact of curve direction on the function of Chevrons on lane position was always present, and drivers would drive slightly away from Chevrons. Regardless of the curve radius, China's Chevrons at horizontal curves provide an advance warning, speed control and lane position guide for traffic on the nearside of Chevrons. Besides, combing with the function of Chevrons on preventing excessive speed and the benefit to make drivers keep a more proper lane position, China's Chevrons appear to be of great benefit to reduce crashes (e.g., run-off-road) in curves. PMID:25525973

  3. Fracture toughness of brittle materials determined with chevron notch specimens

    NASA Technical Reports Server (NTRS)

    Shannon, J. L., Jr.; Bursey, R. T.; Munz, D.; Pierce, W. S.

    1980-01-01

    The use of chevron-notch specimens for determining the plane strain fracture toughness (K sub Ic) of brittle materials is discussed. Three chevron-notch specimens were investigated: short bar, short rod, and four-point-bend. The dimensionless stress intensity coefficient used in computing K sub Ic is derived for the short bar specimen from the superposition of ligament-dependent and ligament-independent solutions for the straight through crack, and also from experimental compliance calibrations. Coefficients for the four-point-bend specimen were developed by the same superposition procedure, and with additional refinement using the slice model of Bluhm. Short rod specimen stress intensity coefficients were determined only by experimental compliance calibration. Performance of the three chevron-notch specimens and their stress intensity factor relations were evaluated by tests on hot-pressed silicon nitride and sintered aluminum oxide. Results obtained with the short bar and the four-point-bend specimens on silicon nitride are in good agreement and relatively free of specimen geometry and size effects within the range investigated. Results on aluminum oxide were affected by specimen size and chevron-notch geometry, believed due to a rising crack growth resistance curve for the material. Only the results for the short bar specimen are presented in detail.

  4. Articles which include chevron film cooling holes, and related processes

    SciTech Connect

    Bunker, Ronald Scott; Lacy, Benjamin Paul

    2014-12-09

    An article is described, including an inner surface which can be exposed to a first fluid; an inlet; and an outer surface spaced from the inner surface, which can be exposed to a hotter second fluid. The article further includes at least one row or other pattern of passage holes. Each passage hole includes an inlet bore extending through the substrate from the inlet at the inner surface to a passage hole-exit proximate to the outer surface, with the inlet bore terminating in a chevron outlet adjacent the hole-exit. The chevron outlet includes a pair of wing troughs having a common surface region between them. The common surface region includes a valley which is adjacent the hole-exit; and a plateau adjacent the valley. The article can be an airfoil. Related methods for preparing the passage holes are also described.

  5. Marine construction. Chevron sets completion in record depth

    SciTech Connect

    Not Available

    1983-11-01

    The deepest well scheduled for production to date, Chevron's Montanazo D2 discovery offshore Spain, will be produced with a satellite facility. The well is in 2,474 ft of water and will be serviced with a remotely operated vehicle. Chevron favored the concept over several floating production schemes. The well will flow through two 4-in. flowlines up-slope for a distance of 5 miles to the Casablanca field platform, beginning in the summer of 1985. Tests over a period of 4 yr include no evidence of downslope pressure on the surface conductor, which could cause deflection problems in the well. The satellite Christmas tree will be capable of vertical entry and installed on a 16-3/4-in., 10,000-psi wellhead system. A crossover loop is included for pigging flowlines and for production through either of the flowlines. A remotely operated vehicle will be the primary tool for intervention and maintenance operations.

  6. 75 FR 51479 - Notice of Availability of the Final Environmental Impact Statement for the Chevron Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ...) was published by EPA in the Federal Register on March 19, 2010 (75 FR 13301). The formal 90- day... Chevron Energy Solutions/Solar Millennium Blythe Solar Power Plant and Proposed California Desert... Impact Statement (EIS) for the Chevron Energy Solutions/Solar Millennium (CESSM), LLC's Blythe...

  7. Acoustic Efficiency of Azimuthal Modes in Jet Noise Using Chevron Nozzles

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Bridges, James

    2006-01-01

    The link between azimuthal modes in jet turbulence and in the acoustic sound field has been examined in cold, round jets. Chevron nozzles, however, impart an azimuthal structure on the jet with a shape dependent on the number, length and penetration angle of the chevrons. Two particular chevron nozzles, with 3 and 4 primary chevrons respectively, and a round baseline nozzle are compared at both cold and hot jet conditions to determine how chevrons impact the modal structure of the flow and how that change relates to the sound field. The results show that, although the chevrons have a large impact on the azimuthal shape of the mean axial velocity, the impact of chevrons on the azimuthal structure of the fluctuating axial velocity is small at the cold jet condition and smaller still at the hot jet condition. This is supported by results in the azimuthal structure of the sound field, which also shows little difference in between the two chevron nozzles and the baseline nozzle in the distribution of energy across the azimuthal modes measured.

  8. Catalytic dehazing of heavy lube oil - A chevron case history

    SciTech Connect

    Zakarian, J.A.; Ziemer, J.N.

    1987-01-01

    In the fall of 1984, Chevron started up a new plant in Richmond, California, to make high-V.I. lube base oils. After about eight months onstream, the heavy neutral product became hazy. The haze was caused by wax which had leaked into the oil through tiny holes in the canvas filter cloths at the solvent dewaxing plant. The haze was difficult to detect and control because it required many days to form and it resulted from parts per million quantities of wax. The haze problem was intermittent and unpredictable, occurring as filter cloths aged. Consequently, the solvent dewaxing plant was limited in capacity and flexibility because of the need to reprocess hazy oil. To improve operating economics and product quality, Chevron developed a dehazing process. The process uses a catalyst downstream of the solvent dewaxer to remove inadvertent wax contaminants. The catalyst was loaded in the upper portion of an existing hydrofinishing reactor so that there were no expenditures for new equipment. Since the process went onstream in the fall of 1985, the heavy neutral lube oil has been consistently haze free.

  9. Chevron beam dump for ITER edge Thomson scattering system

    NASA Astrophysics Data System (ADS)

    Yatsuka, E.; Hatae, T.; Vayakis, G.; Bassan, M.; Itami, K.

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  10. Chevron beam dump for ITER edge Thomson scattering system.

    PubMed

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  11. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  12. Testing of SMA-enabled Active Chevron Prototypes under Representative Flow Conditions

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Cabell,Randolph H.; Cano, Roberto J.; Silcox, Richard J.

    2008-01-01

    Control of jet noise continues to be an important research topic. Exhaust-nozzle chevrons have been shown to reduce jet noise, but parametric effects are not well understood. Additionally, thrust loss due to chevrons at cruise suggests significant benefit from active chevrons. The focus of this study is development of an active chevron concept for the primary purpose of parametric studies for jet noise reduction in the laboratory and secondarily for technology development to leverage for full scale systems. The active chevron concept employed in this work consists of a laminated composite structure with embedded shape memory alloy (SMA) actuators, termed a SMA hybrid composite (SMAHC). SMA actuators are embedded on one side of the neutral axis of the structure such that thermal excitation, via joule heating, generates a moment and deflects the structure. The performance of two active chevron concepts is demonstrated in the presence of representative flow conditions. One of the concepts is shown to possess significant advantages for the proposed application and is selected for further development. Fabrication and design changes are described and shown to produce a chevron prototype that meets the performance objectives.

  13. Flight Test Results for Uniquely Tailored Propulsion-Airframe Aeroacoustic Chevrons: Community Noise

    NASA Technical Reports Server (NTRS)

    Nesbitt, Eric; Mengle, Vinod; Czech, Michael; Callendar, Bryan; Thomas, Russ

    2006-01-01

    The flow/acoustic environment around the jet exhaust of an engine when installed on an airplane, say, under the wing, is highly asymmetric due to the pylon, the wing and the high-lift devices. Recent scale model tests have shown that such Propulsion Airframe Aeroacoustic (PAA) interactions and the jet mixing noise can be reduced more than with conventional azimuthally uniform chevrons by uniquely tailoring the chevrons to produce enhanced mixing near the pylon. This paper describes the community noise results from a flight test on a large twin-engine airplane using this concept of azimuthally varying chevrons for engines installed under the wing. Results for two different nozzle configurations are described: azimuthally varying "PAA T-fan" chevrons on the fan nozzle with a baseline no-chevron core nozzle and a second with PAA T-fan chevrons with conventional azimuthally uniform chevrons on the core nozzle. We analyze these test results in comparison to the baseline no-chevron nozzle on both spectral and integrated power level bases. The study focuses on the peak jet noise reduction and the effects at high frequencies for typical take-off power settings. The noise reduction and the absolute noise levels are then compared to model scale results. The flight test results verify that the PAA T-fan nozzles in combination with standard core chevron nozzles can, indeed, give a reasonable amount of noise reduction at low frequencies without high-frequency lift during take-off conditions and hardly any impact on the cruise thrust coefficient.

  14. Computational Analysis of a Chevron Nozzle Uniquely Tailored for Propulsion Airframe Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Elmiligui, Alaa A.; Hunter, Craig A.; Thomas, Russell H.; Pao, S. Paul; Mengle, Vinod G.

    2006-01-01

    A computational flow field and predicted jet noise source analysis is presented for asymmetrical fan chevrons on a modern separate flow nozzle at take off conditions. The propulsion airframe aeroacoustic asymmetric fan nozzle is designed with an azimuthally varying chevron pattern with longer chevrons close to the pylon. A baseline round nozzle without chevrons and a reference nozzle with azimuthally uniform chevrons are also studied. The intent of the asymmetric fan chevron nozzle was to improve the noise reduction potential by creating a favorable propulsion airframe aeroacoustic interaction effect between the pylon and chevron nozzle. This favorable interaction and improved noise reduction was observed in model scale tests and flight test data and has been reported in other studies. The goal of this study was to identify the fundamental flow and noise source mechanisms. The flow simulation uses the asymptotically steady, compressible Reynolds averaged Navier-Stokes equations on a structured grid. Flow computations are performed using the parallel, multi-block, structured grid code PAB3D. Local noise sources were mapped and integrated computationally using the Jet3D code based upon the Lighthill Acoustic Analogy with anisotropic Reynolds stress modeling. In this study, trends of noise reduction were correctly predicted. Jet3D was also utilized to produce noise source maps that were then correlated to local flow features. The flow studies show that asymmetry of the longer fan chevrons near the pylon work to reduce the strength of the secondary flow induced by the pylon itself, such that the asymmetric merging of the fan and core shear layers is significantly delayed. The effect is to reduce the peak turbulence kinetic energy and shift it downstream, reducing overall noise production. This combined flow and noise prediction approach has yielded considerable understanding of the physics of a fan chevron nozzle designed to include propulsion airframe aeroacoustic

  15. Experimental investigation of heat transfer and effectiveness in corrugated plate heat exchangers having different chevron angles

    NASA Astrophysics Data System (ADS)

    Kılıç, Bayram; İpek, Osman

    2016-06-01

    In this study, heat transfer rate and effectiveness of corrugated plate heat exchangers having different chevron angles were investigated experimentally. Chevron angles of plate heat exchangers are β = 30° and β = 60°. For this purpose, experimentally heating system used plate heat exchanger was designed and constructed. Thermodynamic analysis of corrugated plate heat exchangers having different chevron angles were carried out. The heat transfer rate and effectiveness values are calculated. The experimental results are shown that heat transfer rate and effectiveness values for β = 60° is higher than that of the other. Obtained experimental results were graphically presented.

  16. Trailing edge cooling using angled impingement on surface enhanced with cast chevron arrangements

    SciTech Connect

    Lee, Ching-Pang; Heneveld, Benjamin E.; Brown, Glenn E.; Klinger, Jill

    2015-05-26

    A gas turbine engine component, including: a pressure side (12) having an interior surface (34); a suction side (14) having an interior surface (36); a trailing edge portion (30); and a plurality of suction side and pressure side impingement orifices (24) disposed in the trailing edge portion (30). Each suction side impingement orifice is configured to direct an impingement jet (48) at an acute angle (52) onto a target area (60) that encompasses a tip (140) of a chevron (122) within a chevron arrangement (120) formed in the suction side interior surface. Each pressure side impingement orifice is configured to direct an impingement jet at an acute angle onto an elongated target area that encompasses a tip of a chevron within a chevron arrangement formed in the pressure side interior surface.

  17. 76 FR 63294 - Chevron Products Company v. SFPP, L.P. ; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Act (ICA), and 49 USC App. 13(1), Chevron Products Company (Complainants) filed a complaint against... violate the ICA by applying the increased ceiling rates which are unjust and unreasonable for...

  18. Fractured toughness of Si3N4 measured with short bar chevron-notched specimens

    NASA Technical Reports Server (NTRS)

    Salem, J. A.; Shannon, J. L., Jr.

    1985-01-01

    The short bar chevron-notched specimen is used to measure the plane strain fracture toughness of hot pressed Si3N4. Specimen proportions and chevron-notch angle are varied, thereby varying the amount of crack extension to maximum load (upon which K sub IC is based). The measured toughness (4.68 + or - 0.19 MNm to the 3/2 power) is independent of these variations, inferring that the material has a flat crack growth resistance curve.

  19. Effect of chevrons on the slat noise of straight and swept wings

    NASA Astrophysics Data System (ADS)

    Belyaev, I. V.; Zaytsev, M. Yu.; Kopiev, V. F.

    2015-11-01

    An experimental study of the airframe noise for small-scale wing models with high-lift devices (slat and flap) is performed. It is shown that installation of chevrons on the lower edge of a slat leads to noise reduction on both straight and swept wings. Simultaneous acoustic and aerodynamic measurements show that chevrons lead to suppression of the slat tonal noise components without significantly affecting the wing aerodynamics.

  20. Reducing Propulsion Airframe Aeroacoustic Interactions with Uniquely Tailored Chevrons. 1.; Isolated Nozzles

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Elkroby, Ronen; Brunsniak, Leon; Thomas, Russ H.

    2006-01-01

    The flow/acoustic environment surrounding an engine nozzle installed on an airplane, say, under the wing, is asymmetric due to the pylon, the wing and the interaction of the exhaust jet with flaps on the wing. However, the conventional chevrons, which are azimuthally uniform serrations on the nozzle lip, do not exploit the asymmetry due to these propulsion airframe aeroacoustic interactions to reduce jet noise. In this pioneering study we use this non-axisymmetry to our advantage and examine if the total jet-related noise radiated to the ground can be reduced by using different types of azimuthally varying chevrons (AVC) which vary the mixing around the nozzle periphery. Several scale models of the isolated nozzle, representative of high bypass ratio engine nozzles, were made with a pylon and azimuthally varying chevrons on both fan and core nozzles to enhance mixing at the top (near the pylon) with less mixing at the bottom (away from the pylon) or vice versa. Various combinations of fan and core AVC nozzles were systematically tested at typical take-off conditions inside a free jet wind-tunnel and, here, in Part 1 we analyze the acoustics results for the isolated nozzle with a pylon, with installation effects reported in Parts 2 and 3. Several interesting results are discovered: amongst the fan AVCs the top-enhanced mixing T-fan chevron nozzle is quieter in combination with any core AVC nozzle when compared to conventional chevrons; however, the bottom-mixing B-fan chevrons, as well as the core AVC nozzles, by themselves, are noisier. Further, the low-frequency source strengths in the jet plume, obtained via phased microphone arrays, also corroborate the far field sound, and for the T-fan chevrons such sources move further downstream than those for baseline or conventional chevron nozzles.

  1. CFD Analyses and Jet-Noise Predictions of Chevron Nozzles with Vortex Stabilization

    NASA Technical Reports Server (NTRS)

    Dippold, Vance

    2008-01-01

    The wind computational fluid dynamics code was used to perform a series of analyses on a single-flow plug nozzle with chevrons. Air was injected from tubes tangent to the nozzle outer surface at three different points along the chevron at the nozzle exit: near the chevron notch, at the chevron mid-point, and near the chevron tip. Three injection pressures were used for each injection tube location--10, 30, and 50 psig-giving injection mass flow rates of 0.1, 0.2, and 0.3 percent of the nozzle mass flow. The results showed subtle changes in the jet plume s turbulence and vorticity structure in the region immediately downstream of the nozzle exit. Distinctive patterns in the plume structure emerged from each injection location, and these became more pronounced as the injection pressure was increased. However, no significant changes in centerline velocity decay or turbulent kinetic energy were observed in the jet plume as a result of flow injection. Furthermore, computational acoustics calculations performed with the JeNo code showed no real reduction in jet noise relative to the baseline chevron nozzle.

  2. Design, fabrication, and testing of a SMA hybrid composite jet engine chevron

    NASA Astrophysics Data System (ADS)

    Turner, Travis L.; Cabell, Randolph H.; Cano, Roberto J.; Fleming, Gary A.

    2006-03-01

    Control of jet noise continues to be an important research topic. Exhaust nozzle chevrons have been shown to reduce jet noise, but parametric effects are not well understood. Additionally, thrust loss due to chevrons at cruise suggests significant benefit from deployable chevrons. The focus of this study is development of an active chevron concept for the primary purpose of parametric studies for jet noise reduction in the laboratory and technology development to leverage for full scale systems. The active chevron concept employed in this work consists of a laminated composite structure with embedded shape memory alloy (SMA) actuators, termed a SMA hybrid composite (SMAHC). The actuators are embedded on one side of the middle surface such that thermal excitation generates a moment and deflects the structure. A brief description of the chevron design is given followed by details of the fabrication approach. Results from bench top tests are presented and correlated with numerical predictions from a model for such structures that was recently implemented in MSC.Nastran and ABAQUS. Excellent performance and agreement with predictions is demonstrated. Results from tests in a representative flow environment are also presented. Excellent performance is again achieved for both open- and closed-loop tests, the latter demonstrating control to a specified immersion into the flow. The actuation authority and immersion performance is shown to be relatively insensitive to nozzle pressure ratio (NPR). Very repeatable immersion control with modest power requirements is demonstrated.

  3. Design, fabrication, and testing of a SMA hybrid composite jet engine chevron

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Cabell, Randolph H.; Cano, Roberto J.; Fleming, Gary A.

    2006-01-01

    Control of jet noise continues to be an important research topic. Exhaust nozzle chevrons have been shown to reduce jet noise, but parametric effects are not well understood. Additionally, thrust loss due to chevrons at cruise suggests significant benefit from deployable chevrons. The focus of this study is development of an active chevron concept for the primary purpose of parametric studies for jet noise reduction in the laboratory and technology development to leverage for full scale systems. The active chevron concept employed in this work consists of a laminated composite structure with embedded shape memory alloy (SMA) actuators, termed a SMA hybrid composite (SMAHC). The actuators are embedded on one side of the middle surface such that thermal excitation generates a moment and deflects the structure. A brief description of the chevron design is given followed by details of the fabrication approach. Results from bench top tests are presented and correlated with numerical predictions from a model for such structures that was recently implemented in MSC.Nastran and ABAQUS. Excellent performance and agreement with predictions is demonstrated. Results from tests in a representative flow environment are also presented. Excellent performance is again achieved for both open- and closed-loop tests, the latter demonstrating control to a specified immersion into the flow. The actuation authority and immersion performance is shown to be relatively insensitive to nozzle pressure ratio (NPR). Very repeatable immersion control with modest power requirements is demonstrated.

  4. Fatigue analysis of chevron structures with Z shape arms

    NASA Astrophysics Data System (ADS)

    Tecpoyotl Torres, Margarita; Cabello Ruiz, Ramón; Vera Dimas, J. G.; Rodriguez Ramirez, J. Alfredo; Escobedo Alatorre, J. Jesus; Ocampo Diaz, Alejandra

    2015-08-01

    Due to the diversity and multiple energy domains involved, Micro-Electromechanical Systems MEMS devices are vulnerable to several mechanical failures such as fatigue. They been widely used in military applications, radio frequency systems, pressure sensors, automotive industry, among several others. Most MEMS devices contain moving parts that are subjected to cyclic loading, which degrade the devicés efficiency. Due to the high importance of MEMS in various applications, it is necessary to know their lifetime to prevent any damage or process discontinuity to which the system is subject. There have been several investigations in particular on the fatigue analysis in presence of cracks, however in terms of lifetime under cycling load, information is not abundant. The fatigue analysis can be performed for characterizing the ability of materials to support many cycles. Some parts of systems are exposed to strong stress level experiences during its usable lifetime, so the analysis must be focused on them. In this paper, a simulated fatigue analysis of classic, Z-shape and optimized chevron with Z shape arms is shown. Simulations are made using Ansys 15.0, to obtain the arms lifetime of the system because they are subjected to greater stresses in the presence of cyclic loading.

  5. Reducing Propulsion Airframe Aeroacoustic Interactions With Uniquely Tailored Chevrons: 3. Jet-Flap Interaction

    NASA Technical Reports Server (NTRS)

    Thomas, Russ H.; Mengle, Vinod G.; Brunsniak, Leon; Elkoby, Ronen

    2006-01-01

    Propulsion airframe aeroacoustic (PAA) interactions, resulting from the integration of engine and airframe, lead to azimuthal asymmetries in the flow/acoustic field, e.g., due to the interaction between the exhaust jet flow and the pylon, the wing and its high-lift devices, such as, flaps and flaperons. In the first two parts of this series we have presented experimental results which show that isolated and installed nozzles with azimuthally varying chevrons (AVCs) can reduce noise more than conventional chevrons when integrated with a pylon and a wing with flaps at take-off conditions. In this paper, we present model-scale experimental results for the reduction of jet-flap interaction noise source due to these AVCs and document the PAA installation effects (difference in noise between installed and isolated nozzle configurations) at both approach and take-off conditions. It is found that the installation effects of both types of chevron nozzles, AVCs and conventional, are reversed at approach and take-off, in that there is more installed noise reduction at approach and less at take-off compared to that of the isolated nozzles. Moreover, certain AVCs give larger total installed noise benefits at both conditions compared to conventional chevrons. Phased microphone array results show that at approach conditions (large flap deflection, low jet speed and low ambient Mach number), chevrons gain more noise benefit from reducing jetflap interaction noise than they do from quieting the jet plume noise source which is already weak at these low jet speeds. In contrast, at take-off (small flap deflection, high jet speed and high ambient Mach number) chevrons reduce the dominant jet plume noise better than the reduction they create in jet-flap interaction noise source. In addition, fan AVCs with enhanced mixing near the pylon are found to reduce jet-flap interaction noise better than conventional chevrons at take-off.

  6. Design, Fabrication, and Testing of SMA Enabled Adaptive Chevrons for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Buehrle, Ralph D.; Cano, Roberto J.; Fleming, Gary A.

    2004-01-01

    This study presents the status and results from an effort to design, fabricate, and test an adaptive jet engine chevron concept based upon embedding shape memory alloy (SMA) actuators in a composite laminate, termed a SMA hybrid composite (SMAHC). The approach for fabricating the adaptive SMAHC chevrons involves embedding prestrained Nitinol actuators on one side of the mid-plane of the composite laminate such that thermal excitation generates a thermal moment and deflects the structure. A glass-epoxy pre-preg/Nitinol ribbon material system and a vacuum hot press consolidation approach are employed. A versatile test system for control and measurement of the chevron deflection performance is described. Projection moire interferometry (PMI) is used for global deformation measurement and infrared (IR) thermography is used for 2-D temperature measurement and feedback control. A recently commercialized constitutive model for SMA and SMAHC materials is used in the finite element code ABAQUS to perform nonlinear static analysis of the chevron prototypes. Excellent agreement is achieved between the predicted and measured chevron deflection performance, thereby validating the design tool. Although the performance results presented in this paper fall short of the requirement, the concept is proven and an approach for achieving the performance objectives is evident.

  7. PIV Measurements of Chevrons on F400 Tactical Aircraft Nozzle Model

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark; Frate, Franco

    2010-01-01

    Previous talks at this meeting have covered our collaborative work on high-energy jets such as present in tactical aircraft (those with supersonic plumes). The emphasis of this work is improving our understanding of flow physics and our prediction tools. In this presentation we will discuss recent flow diagnostics acquired using Particle Image Velocimetry (PIV) made on an underexpanded shocked jet plume from a tactical aircraft nozzle. In this presentation we show cross-sectional and streamwise cuts of both mean and turbulent velocities of an F404 engine nozzle with various chevron designs applied. The impact of chevron penetration, length, and width are documented. The impact of the parameters is generally nonlinear in measures considered here, a surprising result given the relatively smooth behavior of the noise to variations in these chevron parameters.

  8. Reducing Propulsion Airframe Aeroacoustic Interactions with Uniquely Tailored Chevrons. 2; Installed Nozzles

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Elkoby, Ronen; Brusniak, Leon; Thomas, Russ H.

    2006-01-01

    Propulsion airframe aeroacoustic (PAA) interactions arise due to the manner in which an engine is installed on the airframe and lead to an asymmetry in the flow/acoustic environment, for example, for under-the-wing installations due to the pylon, the wing and the high-lift devices. In this work we study how we can affect these PAA interactions to reduce the overall jet-related installed noise by tailoring the chevron shapes on fan and core nozzles in a unique fashion to take advantage of this asymmetry. In part 1 of this trio of papers we introduced the concept of azimuthally varying chevrons (AVC) and showed how some types of AVCs can be more beneficial than the conventional chevrons when tested on "isolated" scaled nozzles inclusive of the pylon effect. In this paper, we continue to study the effect of installing these AVC nozzles under a typical scaled modern wing with high-lift devices placed in a free jet. The noise benefits of these installed nozzles, as well as their installation effects are systematically studied for several fan/core AVC combinations at typical take-off conditions with high bypass ratio. We show, for example, that the top-enhanced mixing T-fan AVC nozzle (with enhanced mixing near the pylon and less mixing away from it) when combined with conventional chevrons on the core nozzle is quieter than conventional chevrons on both nozzles, and hardly produces any high-frequency lift, just as in the isolated case; however, its installed nozzle benefit is less than its isolated nozzle benefit. This suppression of take-off noise benefit under installed conditions, compared to its isolated nozzle benefit, is seen for all other chevron nozzles. We show how these relative noise benefits are related to the relative installation effects of AVCs and baseline nozzles.

  9. 78 FR 69659 - Chevron U.S.A. Inc. v. Kinder Morgan Louisiana Pipeline LLC; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Chevron U.S.A. Inc. v. Kinder Morgan Louisiana Pipeline LLC; Notice of.... (Chevron or Complainant), filed a complaint against Kinder Morgan Louisiana Pipeline LLC (KMLP...

  10. 75 FR 62852 - Notice of Availability of the Record of Decision for the Chevron Energy Solutions Lucerne Valley...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... Bureau of Land Management Notice of Availability of the Record of Decision for the Chevron Energy Solutions Lucerne Valley Solar Project, California and the Approved Plan Amendment to the California Desert...)/Approved Plan Amendment (PA) to the California Desert Conservation Area (CDCA) Plan for the Chevron...

  11. Chevron starts U.S. gulf`s first Lower Cretaceous flow

    SciTech Connect

    Petzet, G.A.

    1998-06-15

    Chevron plans to start production from its Mobile 991 No. 1 well this month. The trend`s first producer is the Viosca Knoll 68 No. 2 well, which went on line April 26 at the anticipated rate of about 15 MMcfd of gas. Chevron has also tested its Viosca Knoll 114 discovery well, drilled in August 1997. Five gas discoveries since 1994 in a trend that extends now Mobile Block 991 to Viosca Knoll Block 252 have recoverable reserve potential of over 600 bcf (gross trend) of natural gas. The paper describes the carbonate trend and exploring the Lower Cretaceous James deposit.

  12. The relationship between perceived length and egocentric location in Muller-Lyer figures with one versus two chevrons

    NASA Technical Reports Server (NTRS)

    Welch, Robert B.; Post, Robert B.; Lum, Wayland; Prinzmetal, William

    2004-01-01

    We examined the apparent dissociation of perceived length and perceived position with respect to the Muller-Lyer (M-L) illusion. With the traditional (two-chevron) figure, participants made accurate open-loop pointing responses at the endpoints of the shaft, despite the presence of a strong length illusion. This apparently non-Euclidean outcome replicated that of Mack, Heuer, Villardi, and Chambers (1985) and Gillam and Chambers (1985) and contradicts any theory of the M-L illusion in which mislocalization of shaft endpoints plays a role. However, when one of the chevrons was removed, a constant pointing error occurred in the predicted direction, as well as a strong length illusion. Thus, with one-chevron stimuli, perceived length and location were no longer completely dissociated. We speculated that the presence of two opposing chevrons suppresses the mislocalizing effects of a single chevron, especially for figures with relatively short shafts.

  13. Feedback Control of a Morphing Chevron for Takeoff and Cruise Noise Reduction

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.; Schiller, Noah H.; Mabe, James H.; Ruggeri, Robert T.; Butler, G. W.

    2004-01-01

    Noise from commercial high-bypass ratio turbofan engines is generated by turbulent mixing of the hot jet exhaust, fan stream, and ambient air. Serrated aerodynamic devices, known as chevrons, along the trailing edges of a jet engine primary and secondary exhaust nozzle have been shown to reduce jet noise at takeoff and shock-cell noise at cruise conditions. Their optimum shape is a finely tuned compromise between noise-benefit and thrust-loss. The design of a full scale Variable Geometry Chevron (VGC) fan-nozzle incorporating Shape Memory Alloy (SMA) actuators is described in a companion paper. This paper describes the development and testing of a proportional-integral control system that regulates the heating of the SMA actuators to control the VGC s tip immersion. The VGC and control system were tested under representative flow conditions in Boeing s Nozzle Test Facility (NTF). Results from the NTF test which demonstrate controllable immersion of the VGC are described. The paper also describes the correlation between strains and temperatures on the chevron with a photogrammetric measurement of the chevron's tip immersion.

  14. Stress Intensity Factors of Semi-Circular Bend Specimens with Straight-Through and Chevron Notches

    NASA Astrophysics Data System (ADS)

    Ayatollahi, M. R.; Mahdavi, E.; Alborzi, M. J.; Obara, Y.

    2016-04-01

    Semi-circular bend specimen is one of the useful test specimens for determining fracture toughness of rock and geo-materials. Generally, in rock test specimens, initial cracks are produced in two shapes: straight-edge cracks and chevron notches. In this study, the minimum dimensionless stress intensity factors of semi-circular bend specimen (SCB) with straight-through and chevron notches are calculated. First, using finite element analysis, a suitable relation for the dimensionless stress intensity factor of SCB with straight-through crack is presented based on the normalized crack length and half-distance between supports. For evaluating the validity and accuracy of this relation, the obtained results are then compared with numerical and experimental results reported in the literature. Subsequently, by performing some experiments and also finite element analysis of the SCB specimen with chevron notch, the minimum dimensionless stress intensity factor of this specimen is obtained. Using the new equation for the dimensionless stress intensity factor of SCB with straight-through crack and an analytical method, i.e., Bluhm's slice synthesis method, the minimum (critical) dimensionless stress intensity factor of chevron notched semi-circular bend specimens is calculated. Good agreement is observed between the results of two mentioned methods.

  15. Creative Collaboration between Chevron and CSUB: Research Experience Vitalizing Science -- University Program

    ERIC Educational Resources Information Center

    Wang, Jianjun

    2013-01-01

    Since 2007, Chevron has funded the Research Experience Vitalizing Science -- University Program (REVS-UP), which lasts four weeks each summer to develop Science, Technology, Engineering, and Mathematics (STEM) projects at CSUB [California State University, Bakersfield]. Over the past six years, a total of 26 STEM professors have led the…

  16. 76 FR 35880 - Chevron Products Company v. SFPP, L.P.; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Chevron Products Company v. SFPP, L.P.; Notice of Complaint Take notice that....0.0, and 200.0.0 and all predecessor tariffs, supplements and re-issuances. The Complainant...

  17. 76 FR 35881 - Chevron Products Company v. SFPP, L.P.; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Chevron Products Company v. SFPP, L.P.; Notice of Complaint Take notice that....0, and 200.1.0 and successor tariffs, supplements and reissuances. The Complainant states that...

  18. Analysis of some compliance calibration data for chevron-notch bar and rod specimens

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.; Bubsey, Raymond T.; Pierce, William S.; Shannon, John L., Jr.

    1991-01-01

    A set of equations describing certain fracture mechanics parameters for chevron-notch bar and rod specimens are presented. They are developed by fitting earlier compliance calibration data. The difficulty in determining the minimum stress intensity coefficient and the critical crack length is discussed.

  19. Flight Test Results for Uniquely Tailored Propulsion-Airframe Aeroacoustic Chevrons: Shockcell Noise

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Ganz, Ulrich W.; Nesbitt, Eric; Bultemeier, Eric J.; Thomas, Russell H.; Nesbitt, Eric

    2006-01-01

    Azimuthally varying chevrons (AVC) which have been uniquely tailored to account for the asymmetric propulsion-airframe aeroacoustic interactions have recently shown significant reductions in jet-related community noise at low-speed take-off conditions in scale model tests of coaxial nozzles with high bypass ratio. There were indications that such AVCs may also provide shockcell noise reductions at high cruise speeds. This paper describes the flight test results when one such AVC concept, namely, the T-fan chevrons with enhanced mixing near the pylon, was tested at full-scale on a modern large twin-jet aircraft (777-300ER) with focus on shockcell noise at mid-cruise conditions. Shockcell noise is part of the interior cabin noise at cruise conditions and its reduction is useful from the viewpoint of passenger comfort. Noise reduction at the source, in the exhaust jet, especially, at low frequencies, is beneficial from the perspective of reduced fuselage sidewall acoustic lining. Results are shown in terms of unsteady pressure spectra both on the exterior surface of the fuselage at several axial stations and also microphone arrays placed inside the fuselage aft of the engine. The benefits of T-fan chevrons, with and without conventional chevrons on the core nozzle, are shown for several engine operating conditions at cruise involving supersonic fan stream and subsonic or supersonic core stream. The T-fan AVC alone provides up to 5 dB low-frequency noise reduction on the fuselage exterior skin and up to 2 dB reduction inside the cabin. Addition of core chevrons appears to increase the higher frequency noise. This flight test result with the previous model test observation that the T-fan AVCs have hardly any cruise thrust coefficient loss (< 0.05%) make them viable candidates for reducing interior cabin noise in high bypass ratio engines.

  20. Digital Coordinates and Age for 3,869 Foraminifer Samples Collected by Chevron Petroleum Geologists in Washington and Oregon

    USGS Publications Warehouse

    West, William B.; Brabb, Earl E.; Malmborg, William T.; Parker, John M.

    2009-01-01

    The general location and age of more than 33,500 mostly foraminifer samples from Chevron Petroleum Company surface localities in California were provided by Brabb and Parker (2003, 2005). Malmborg and others (2008) provided digital latitude, longitude, and age for more than 13,000 of these samples. We provide here for the first time the digital latitude, longitude, and age for nearly 4,000 Chevron surface and auger samples in Washington and Oregon.

  1. Mean Flow and Noise Prediction for a Separate Flow Jet With Chevron Mixers

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Bridges, James; Khavaran, Abbas

    2004-01-01

    Experimental and numerical results are presented here for a separate flow nozzle employing chevrons arranged in an alternating pattern on the core nozzle. Comparisons of these results demonstrate that the combination of the WIND/MGBK suite of codes can predict the noise reduction trends measured between separate flow jets with and without chevrons on the core nozzle. Mean flow predictions were validated against Particle Image Velocimetry (PIV), pressure, and temperature data, and noise predictions were validated against acoustic measurements recorded in the NASA Glenn Aeroacoustic Propulsion Lab. Comparisons are also made to results from the CRAFT code. The work presented here is part of an on-going assessment of the WIND/MGBK suite for use in designing the next generation of quiet nozzles for turbofan engines.

  2. Androgynous rex - the utility of chevrons for determining the sex of crocodilians and non-avian dinosaurs.

    PubMed

    Erickson, Gregory M; Kristopher Lappin, A; Larson, Peter

    2005-01-01

    The sex of non-avian dinosaurs has been inferred on numerous occasions using a variety of anatomical criteria, but the efficacy of none has been proven. Nearly 50 years ago Romer suggested that the cranial-most or first chevron in the tails of some reptiles, including crocodilians, is sexually dimorphic. Recent work on this subject purportedly substantiated that the female first chevron articulates in a more caudal position than in males. Furthermore, it was concluded that this element is shorter in females. These phenotypic attributes theoretically provide a broader cloacal passageway for eggs by ovipositing females and a greater attachment area for male "penile retractor muscles". Because theropod dinosaurs such as Tyrannosaurus rex presumably show similar variation in chevron anatomy, the same criteria has been advocated for sexing dinosaurs. We tested the neontological model for the chevron sexual dimorphism hypothesis using a skeletonized growth series of American alligators (Alligator mississippiensis) of known sex. No statistical support for the hypothesis was found. Furthermore, analysis of a diversity of crocodilian taxa from museum collections revealed similar findings suggesting the alligator results are not taxon specific. Study of well-preserved tyrannosaurid dinosaurs in museum collections showed nearly invariant chevron positioning like that seen in crocodilians. This suggests the usefulness of chevron anatomy for sexing dinosaurs is tenuous.

  3. Electrooptical properties of the uniform chevron state of a ferroelectric smectic liquid crystal

    SciTech Connect

    Vorflusev, V.P.; Kosygina, M.A.; Shoshin, V.M.; Bobylev, Y.P.

    1995-12-31

    The influence of additives when introduced into the orienting agent on the orientation quality of the SmF phase of a liquid crystal (FLC) was studied. The conditions which allow bistable switching of the FLC with low spontaneous polarization P{sub s}(P{sub s} = 5 nCoul/cm{sup 2}) were determined. A model of smectic layers structure was suggested and the peculiarities of the optical transmission of thin chevron FLC cells were investigated. 8 figs., 5 refs.

  4. PIV Measurements of Chevrons on F400-Series Tactical Aircraft Nozzle Model

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.; Frate, Franco C.

    2011-01-01

    Reducing noise of tactical jet aircraft has taken on fresh urgency as core engine technologies allow higher specific-thrust engines and as society become more concerned for the health of its military workforce. Noise reduction on this application has lagged the commercial field as incentives for quieting military aircraft have not been as strong as in their civilian counterparts. And noise reduction strategies employed on civilian engines may not be directly applicable due to the differences in exhaust system architecture and mission. For instance, the noise reduction technology of chevrons, examined in this study, will need to be modified to take into account the special features of tactical aircraft nozzles. In practice, these nozzles have divergent slats that are tied to throttle position, and at take off the jet flow is highly overexpanded as the nozzle is optimized for cruise altitude rather than sea level. In simple oil flow visualization experiments conducted at the onset of the current test program flow barely stays attached at end of nozzle at takeoff conditions. This adds a new twist to the design of chevrons. Upon reaching the nozzle exit the flow shrinks inward radially, meaning that for a chevron to penetrate the flow it must extend much farther away from the baseline nozzle streamline. Another wrinkle is that with a variable divergence angle on the nozzle, the effective penetration will differ with throttle position and altitude. The final note of realism introduced in these experiments was to simulate the manner in which bypass flow is bled into the nozzle wall in real engines to cool the nozzle, which might cause very fat boundary layer at exit. These factors, along with several other issues specific to the application of chevrons to convergent-divergent nozzles have been explored with particle image velocimetry measurements and are presented in this paper.

  5. Unstructured Large Eddy Simulations of Hot Supersonic Jets from a Chevron Nozzle

    NASA Astrophysics Data System (ADS)

    Brès, Guillaume; Nichols, Joseph; Lele, Sanjiva; Ham, Frank

    2012-11-01

    Large eddy simulations (LES) are performed for heated supersonic turbulent jets issued from a converging-diverging round nozzle with chevrons. The unsteady flow processes and shock/turbulence interactions are investigated with the unstructured compressible flow solver ``Charles'' developed at Cascade Technologies. In this study, the complex geometry of the nozzle and chevrons (12 counts, 6° penetration) are explicitly included in the computational domain using unstructured body-fitted mesh and adaptive grid refinement. Sound radiation from the jet is computed using an efficient frequency-domain implementation of the Ffowcs Williams-Hawkings equation. Noise predictions are compared to experimental measurements carried out at the United Technologies Research Center for the same nozzle and operating conditions. The initial blind comparisons show good agreement in terms of spectra shape and levels for both the near-field and far-field noise. The current results show that the simulations accurately capture the main flow and noise features, including the shock cells, broadband shock-associated noise and turbulent mixing noise. Additional analysis of the large database generated by the LES is ongoing, to further investigate jet noise sources and chevron effects. This work is supported by NAVAIR grant N68335-11-C-0026 managed by Dr. John Spyropoulos. The simulations were carried out at DoD supercomputer facilities in ERDC and AFRL as part of the HPC Challenge Project NAWCP30952C5.

  6. Analytical and computational studies on the vacuum performance of a chevron ejector

    NASA Astrophysics Data System (ADS)

    Kong, F. S.; Jin, Y. Z.; Kim, H. D.

    2016-02-01

    The effects of chevrons on the performance of a supersonic vacuum ejector-diffuser system are investigated numerically and evaluated theoretically in this work. A three-dimensional geometrical domain is numerically solved using a fully implicit finite volume scheme based on the unsteady Reynolds stress model. A one-dimensional mathematical model provides a useful tool to reveal the steady flow physics inside the vacuum ejector-diffuser system. The effects of the chevron nozzle on the generation of recirculation regions and Reynolds stress behaviors are studied and compared with those of a conventional convergent nozzle. The present performance parameters obtained from the simulated results and the mathematical results are validated with existing experimental data and show good agreement. Primary results show that the duration of the transient period and the secondary chamber pressure at a dynamic equilibrium state depend strongly on the primary jet conditions, such as inlet pressure and primary nozzle shape. Complicated oscillatory flow, generated by the unsteady movement of recirculation, finally settles into a dynamic equilibrium state. As a vortex generator, the chevron demonstrated its strong entrainment capacity to accelerate the starting transient flows to a certain extent and reduce the dynamic equilibrium pressure of the secondary chamber significantly.

  7. Design and fabrication of a MEMS chevron-type thermal actuator

    SciTech Connect

    Baracu, Angela; Voicu, Rodica; Müller, Raluca; Avram, Andrei; Pustan, Marius Chiorean, Radu Birleanu, Corina Dudescu, Cristian

    2015-02-17

    This paper presents the design and fabrication of a MEMS chevron-type thermal actuator. The device was designed for fabrication in the standard MEMS technology, where the topography of the upper layers depends on the patterns of structural and sacrificial layers underneath. The proposed actuator presents some advantages over usual thermal vertical chevron actuators by means of low operating voltages, high output force and linear movement without deformation of the shaft. The device simulations were done using COVENTOR software. The movement obtained by simulation was 12 μm, for a voltage of 0.2 V and the current intensity of 257 mA. The design optimizes the in-plane displacement by fixed anchors and beam inclination angle. Heating is provided by Joule dissipation. The material used for manufacture of chevron-based actuator was aluminum due to its thermal and mechanical properties. The release of the movable part was performed using isotropic dry etching by Reactive Ion Etching (RIE). A first inspection was achieved using Scanning Electron Microscope (SEM). In order to obtain the in-plane displacement we carried out electrical measurements. The thermal actuator can be used for a variety of optical and microassembling applications. This kind of thermal actuator could be integrated easily with other micro devices since its fabrication is compatible with the general semiconductor processes.

  8. Flaperon Modification Effect on Jet-Flap Interaction Noise Reduction for Chevron Nozzles

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Mengle, Vinod G.; Stoker, Robert W.; Brusniak, Leon; Elkoby, Ronen

    2007-01-01

    Jet-flap interaction (JFI) noise can become an important component of far field noise when a flap is immersed in the engine propulsive stream or is in its entrained region, as in approach conditions for under-the-wing engine configurations. We experimentally study the effect of modifying the flaperon, which is a high speed aileron between the inboard and outboard flaps, at both approach and take-off conditions using scaled models in a free jet. The flaperon modifications were of two types: sawtooth trailing edge and mini vortex generators (vg s). Parametric variations of these two concepts were tested with a round coaxial nozzle and an advanced chevron nozzle, with azimuthally varying fan chevrons, using both far field microphone arrays and phased microphone arrays for source diagnostics purposes. In general, the phased array results corroborated the far field results in the upstream quadrant pointing to JFI near the flaperon trailing edge as the origin of the far field noise changes. Specific sawtooth trailing edges in conjunction with the round nozzle gave marginal reduction in JFI noise at approach, and parallel co-rotating mini-vg s were somewhat more beneficial over a wider range of angles, but both concepts were noisier at take-off conditions. These two concepts had generally an adverse JFI effect when used in conjunction with the advanced chevron nozzle at both approach and take-off conditions.

  9. Report on inspection of concerns regarding DOE`s evaluation of Chevron USA`s unsolicited proposal for the Elk Hills Naval Petroleum Reserve

    SciTech Connect

    1997-11-17

    An allegation was made to the Office of Inspector General (OIG) that the integrity of the Department of Energy`s (DOE) unsolicited proposal review process may have been compromised by the actions of a former Deputy Secretary of Energy and his Executive Assistant during the review of an unsolicited proposal received from Chevron U.S.A. Production Company (Chevron) in may 1993. The Chevron unsolicited proposal was for the management and operation of DOE`s Elk Hills Naval Petroleum Reserve (Elk Hills), located near Bakersfield, California. Chevron submitted the unsolicited proposal on May 19, 1993. DOE formally rejected Chevron`s unsolicited proposal in May 1995. Although Chevron`s unsolicited proposal was eventually rejected by DOE, the complainant specifically alleged that the {open_quotes}sanctity, integrity, and sensitivity{close_quotes} of the unsolicited proposal review process had been breached in meetings during the Fall of 1993 between Chevron officials, the Deputy Secretary of Energy (Deputy Secretary), and his Executive Assistant. Based on our review of the allegation, we identified the following issue as the focus of our inspection.

  10. Three-dimensional analysis of chevron-notched specimens by boundary integral method

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Ghosn, L.

    1983-01-01

    The chevron-notched short bar and short rod specimens was analyzed by the boundary integral equations method. This method makes use of boundary surface elements in obtaining the solution. The boundary integral models were composed of linear triangular and rectangular surface segments. Results were obtained for two specimens with width to thickness ratios of 1.45 and 2.00 and for different crack length to width ratios ranging from 0.4 to 0.7. Crack opening displacement and stress intensity factors determined from displacement calculations along the crack front and compliance calculations were compared with experimental values and with finite element analysis.

  11. Evolution of chevron folds by profile shape changes: comparison between multilayer deformation experiments and folds of the Bendigo-Castlemaine goldfields, Australia

    NASA Astrophysics Data System (ADS)

    Fowler, T. J.; Winsor, C. N.

    1996-06-01

    The Bendigo-Castlemaine goldfields lie within the well-known chevron-folded Ordovician turbidites of Victoria, Australia. Detailed re-examination of surface and subsurface maps indicates that there are other common fold shapes (boxfolds and flat-topped folds with subsidiary hinges) which are enclosed within chevron folded layers and are traceable into them. Plasticine multilayer experiments were performed to examine the fold profile shape evolution of chevrons and associated folds. In the experiments chevrons evolved from sinusoidal folds or boxfolds. Sinusoidal folds became chevrons mainly via hinge sharpening, while boxfolds evolved into chevrons via hinge migration and fusion of the hinges. For boxfolds, hinge migration rates controlled rates of limb steepening versus median segment (i.e., the flat top of the boxfold) length reduction during bulk shortening. Periodic slowing or "jamming" of hinge migration led to stepwise) limb-dip increases, and buckling of median segments producing analogous fold styles to those seen in the Bendigo-Castlemaine folds. Limb steepening in a boxfolded multilayer must lead to dilations spanning the median segment and/or curving of boxfold axial planes. The latter dilations experience the same shape changes as their enclosing folded layers. In nature such dilation may be represented by bedding-parallel veins which are subsequently incorporated onto chevron limbs as a result of hinge migration. Thus bedding-parallel veins which are continuous over chevron hinges and are folded in the hinge zones need not be pre-folding or early-folding.

  12. Impact of chevron spacing and asymmetric distribution on supersonic jet acoustics and flow

    NASA Astrophysics Data System (ADS)

    Heeb, N.; Gutmark, E.; Kailasanath, K.

    2016-05-01

    An experimental investigation into the effect of chevron spacing and distribution on supersonic jets was performed. Cross-stream and streamwise particle imaging velocimetry measurements were used to relate flow field modification to sound field changes measured by far-field microphones in the overexpanded, ideally expanded, and underexpanded regimes. Drastic modification of the jet cross-section was achieved by the investigated configurations, with both elliptic and triangular shapes attained downstream. Consequently, screech was nearly eliminated with reductions in the range of 10-25 dB depending on the operating condition. Analysis of the streamwise velocity indicated that both the mean shock spacing and strength were reduced resulting in an increase in the broadband shock associated noise spectral peak frequency and a reduction in the amplitude, respectively. Maximum broadband shock associated noise amplitude reductions were in the 5-7 dB range. Chevron proximity was found to be the primary driver of peak vorticity production, though persistence followed the opposite trend. The integrated streamwise vorticity modulus was found to be correlated with peak large scale turbulent mixing noise reduction, though optimal overall sound pressure level reductions did not necessarily follow due to the shock/fine scale mixing noise sources. Optimal large scale mixing noise reductions were in the 5-6 dB range.

  13. Change in First Metatarsal Length After Proximal and Distal Chevron Osteotomies for Hallux Valgus Deformity.

    PubMed

    Lee, Jun Young; Lee, Yeon Soo; Song, Kyoung Chul; Choi, Kwi Youn

    2015-01-01

    The present study assessed the changes in the length of the first metatarsal bone after performing proximal chevron metatarsal osteotomy (PCMO) or distal Chevron metatarsal osteotomy (DCMO) for patients with hallux valgus deformity. A total of 60 patients with moderate-to-severe hallux valgus deformity from July 2009 to July 2011 were randomly divided into the PCMO and DCMO groups, with 30 patients in each group. The distal soft tissue procedure was performed in the same method for both groups. Measurements were performed preoperatively, postoperatively, and at the last follow-up visit at 6.1 ± 0.8 months. The postoperative length change with respect to the preoperative length was 0.7 ± 2.5 mm and -0.7 ± 5.1 mm for the PCMO and DCMO groups, respectively, with a slight lengthening of the first metatarsal bone in the PCMO group and a shortening in the DCMO group (p < .01). The follow-up length change with respect to the preoperative length was -2.1 ± 3.0 mm and -4.4 ± 2.2 mm for the PCMO and DCMO groups, respectively, demonstrating a clear shortening of the first metatarsal length at the last follow-up point in the DCMO group (p < .01).When DCMO and the distal soft tissue procedure were performed, significant shortening was found at 6 months of follow-up.

  14. The Chevron Foil Thrust Bearing: Improved Performance Through Passive Thermal Management and Effective Lubricant Mixing

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert

    2013-01-01

    An improved foil thrust bearing is described that eliminates or reduces the need for forced cooling of the bearing foils while at the same time improves the load capacity of the bearing, enhances damping, provides overload tolerance, and eliminates the high speed load capacity drop-off that plagues the current state of the art. The performance improvement demonstrated by the chevron foil thrust bearing stems from a novel trailing edge shape that splays the hot lubricant in the thin film radially, thus preventing hot lubricant carry-over into the ensuing bearing sector. Additionally, the chevron shaped trailing edge induces vortical mixing of the hot lubricant with the gas that is naturally resident within the inter-pad region of a foil thrust bearing. The elimination of hot gas carry-over in combination with the enhanced mixing has enabled a completely passive thermally managed foil bearing design. Laboratory testing at NASA has confirmed the original analysis and reduced this concept to practice.

  15. An Analysis of Model Scale Data Transformation to Full Scale Flight Using Chevron Nozzles

    NASA Technical Reports Server (NTRS)

    Brown, Clifford; Bridges, James

    2003-01-01

    Ground-based model scale aeroacoustic data is frequently used to predict the results of flight tests while saving time and money. The value of a model scale test is therefore dependent on how well the data can be transformed to the full scale conditions. In the spring of 2000, a model scale test was conducted to prove the value of chevron nozzles as a noise reduction device for turbojet applications. The chevron nozzle reduced noise by 2 EPNdB at an engine pressure ratio of 2.3 compared to that of the standard conic nozzle. This result led to a full scale flyover test in the spring of 2001 to verify these results. The flyover test confirmed the 2 EPNdB reduction predicted by the model scale test one year earlier. However, further analysis of the data revealed that the spectra and directivity, both on an OASPL and PNL basis, do not agree in either shape or absolute level. This paper explores these differences in an effort to improve the data transformation from model scale to full scale.

  16. Computational and Experimental Flow Field Analyses of Separate Flow Chevron Nozzles and Pylon Interaction

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Thomas, Russell H.; AbdolHamid, Khaled S.; Elmiligui, Alaa A.

    2003-01-01

    A computational and experimental flow field analyses of separate flow chevron nozzles is presented. The goal of this study is to identify important flow physics and modeling issues required to provide highly accurate flow field data which will later serve as input to the Jet3D acoustic prediction code. Four configurations are considered: a baseline round nozzle with and without a pylon, and a chevron core nozzle with and without a pylon. The flow is simulated by solving the asymptotically steady, compressible, Reynolds-averaged Navier-Stokes equations using an implicit, up-wind, flux-difference splitting finite volume scheme and standard two-equation kappa-epsilon turbulence model with a linear stress representation and the addition of a eddy viscosity dependence on total temperature gradient normalized by local turbulence length scale. The current CFD results are seen to be in excellent agreement with Jet Noise Lab data and show great improvement over previous computations which did not compensate for enhanced mixing due to high temperature gradients.

  17. LEAK AND GAS PERMEABILITY TESTING DURING SOIL-GAS SAMPLING AT HAL'S CHEVRON LUST SITE IN GREEN RIVER, UTAH

    EPA Science Inventory

    The results of gas permeability and leak testing during active soil-gas sampling at Hal’s Chevron LUST Site in Green River, Utah are presented. This study was conducted to support development of a passive soil-gas sampling method. Gas mixtures containing helium and methane were...

  18. 77 FR 66597 - Chevron U.S.A. Inc.; Application for Blanket Authorization To Export Previously Imported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... from foreign sources in an amount up to the equivalent of 72 billion cubic feet (Bcf) of natural gas on..., DOE/FE Order No. 3113 granted Chevron blanket authorization to import LNG up to the equivalent of 800 Bcf of natural gas from various international sources for a two-year period beginning on August...

  19. 75 FR 53284 - Chevron Keystone Gas Storage, LLC; Bridgeline Holdings, L.P.; New York State Electric & Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-81-000; Docket No. PR10-82-000; Docket No. PR10-83-000 (Not Consolidated)] Chevron Keystone Gas Storage, LLC; Bridgeline Holdings, L.P.; New York State Electric & Gas Corporation; Notice of...

  20. Image potential states at chevron-shaped graphene nanoribbons /Au(111) interfaces

    NASA Astrophysics Data System (ADS)

    Bronner, Christopher; Haase, Anton; Tegeder, Petra

    2015-01-01

    Image potential states (IPSs) have been observed for various adsorbed carbon structures, such as graphene or carbon nanotubes. Graphene nanoribbons (GNRs) are intriguing nanostructures with a significant band gap which promise applications in nanotechnology. In the present paper we employ two-photon photoemission (2PPE) to investigate the unoccupied electronic structure and particularly the IPS of chevron-shaped GNR which are synthesized in a thermally activated on-surface synthesis on Au(111). Angle- and time-resolved 2PPE are utilized to gain further insights into the properties of the IPS. Compared to the pristine surface, reduced effective masses between 0.6 and 0.8 electron masses are observed and the lifetimes of the IPS are below the experimental detection limit, which is in the femtosecond regime. Independent of the concentration of N dopant atoms introduced in the GNR we observe a constant binding energy with respect to the vacuum level of the system.

  1. Effects of subcritical crack growth on fracture toughness of ceramics assessed in chevron-notched three-point bend tests

    NASA Technical Reports Server (NTRS)

    Chao, L. Y.; Singh, D.; Shetty, D. K.

    1988-01-01

    A numerical computational study was carried out to assess the effects of subcritical crack growth on crack stability in the chevron-notched three-point bend specimens. A power-law relationship between the subcritical crack velocity and the applied stress intensity were used along with compliance and stress-intensity relationships for the chevron-notched bend specimen to calculate the load response under fixed deflection rate and a machine compliance. The results indicate that the maximum load during the test occurs at the same crack length for all the deflection rates; the maximum load, however, is dependent on the deflection rate for rates below the critical rate. The resulting dependence of the apparent fracture toughness on the deflection rate is compared to experimental results on soda-lime glass and polycrystalline alumina.

  2. Digital Coordinates and Age of More Than 13,000 Foraminifers Samples Collected by Chevron Petroleum Geologists in California

    USGS Publications Warehouse

    Malmblorg, William T.; West, William B.; Brabb, Earl E.; Parker, John M.

    2008-01-01

    The general location and age of more than 33,500 mostly foraminifer samples from Chevron surface localities in nearly 600 U.S. Geological Survey (USGS) 7.5' quadrangles from California were provided by Brabb and Parker (2003). Barren and non-diagnostic samples plus many that have no paleontologic information were omitted to provide a revised list for more than 27,000 of these samples by Brabb and Parker (2005). The locations for many of these samples were recorded by Chevron geoscientists on topographic maps (originals now in the USGS Library in Menlo Park, Calif.). The recent availability of digital databases for geologic and topographic maps has provided the opportunity to prepare a database of the locations of these Chevron samples so that the information can be combined with geology and topography for plotting or geospatial analysis. This report provides specific locations for more than 13,000 samples in central California that have enough paleontologic information to determine their age but omits thousands of samples that are too closely spaced to differentiate or those that have only a general location.

  3. Ultrasonically Assisted Anchoring of Biodegradable Implants for Chevron Osteotomies – Clinical Evaluation of a Novel Fixation Method

    PubMed Central

    Olms, Kai; Randt, Thorsten; Reimers, Nils; Zander, Nils; Schulz, Arndt P.

    2014-01-01

    Reconstructive osteotomies for the treatment of Hallux valgus are among the most prevalent procedures in foot and ankle surgery. The combination of biodegradable materials with an innovative method for fixation by application of ultrasonic energy facilitates a new bonding method for fractures or osteotomies. As clinical experience is still limited, the aim of this study was to assess the safety and performance of the SonicPin system for fixation of Austin/Chevron osteotomies. Chevron osteotomy was performed on 30 patients for the treatment of Hallux valgus. The used SonicPins were made from polylactide and are selectively melted into the cancellous bone structure during insertion by ultrasonic energy. Patients were followed for one year, which included X-ray and MRI examinations as well as evaluation of life quality by EQ-5D (EuroQol). The MRI after three months showed adequate bone healing in all cases and no signs of foreign body reactions, which was again confirmed by MRI 12 months postoperatively. The bony healing after 12 months was uneventful without any signs of foreign body reactions. In summary, based on the low complication rate and the significant improvement in health related quality of life (EQ-5D) reported in this study, fixation of an Austin/Chevron osteotomy with a SonicPin for treatment of Hallux valgus can be considered to be safe and efficient over the short term. Level of Clinical Evidence: Therapeutic Level III. PMID:24851140

  4. Elevated-temperature fracture resistances of monolithic and composite ceramics using chevron-notched bend tests

    NASA Technical Reports Server (NTRS)

    Ghosh, Asish; Jenkins, Michael G.; Ferber, Mattison K.; Peussa, Jouko; Salem, Jonathan A.

    1992-01-01

    The quasi-static fracture behaviors of monolithic ceramics (SiC, Si3N4, MgAl2O4), self-reinforced monoliths (acicular grained Si3N4, acicular grained mullite), and ceramic matrix composites (SiC whisker/Al2O3 matrix, TiB2 particulate/SiC matrix, SiC fiber/CVI SiC matrix, Al2O3 fiber/CVI SiC matrix) were measured over the temperature range of 20 to 1400 C. The chevron notched, bend bar test geometry was essential for characterizing the elevated temperature fracture resistances of this wide range of quasi-brittle materials during stable crack growth. Fractography revealed the differences in the fracture behavior of the different materials at the various temperatures. The fracture resistances of the self-reinforced monoliths were comparable to those of the composites and the fracture mechanisms were found to be similar at room temperature. However at elevated temperatures the differences of the fracture behavior became apparent where the superior fracture resistance of the self-reinforced monoliths were attributed to the minor amounts of glassy, intergranular phases which were often more abundant in the composites and affected the fracture behavior when softened by elevated temperatures.

  5. Characterization of a highly efficient chevron-shaped anti-contamination device

    NASA Astrophysics Data System (ADS)

    Fiore, M.; Vermeersch, O.; Forte, M.; Casalis, G.; François, C.

    2016-04-01

    This paper is devoted to the characterization of an optimized chevron-shaped anti-contamination device (ACD). This device can prevent efficiently the propagation of turbulence from the fuselage along the attachment line (hypothetical streamline that spreads the flow going to suction side and the one going to pressure side) of swept wings and enables the development of a new laminar boundary layer downstream. More specifically, the aim is to prevent boundary-layer transition along the attachment line by a contamination process. This process is characterized by the typical Reynolds number overline{R} and the associated Poll's criterion. Thus, ACD efficiency will be expressed in terms of overline{R} values. Some experiments performed on a new numerically optimized ACD have shown its ability to prevent leading-edge contamination up to overline{R} values close to the natural transition process of the laminar boundary layer along the attachment line. The corresponding stability analysis of the laminar boundary layer is made using the Görtler-Hämmerlin stability approach. The study is completed with the different transition processes that can occur downstream the attachment line, around the airfoil, especially with crossflow analysis.

  6. Interfacial toughness of bilayer dental ceramics based on a short-bar, chevron-notch test

    PubMed Central

    Anunmana, Chuchai; Anusavice, Kenneth J.; Mecholsky, John J.

    2009-01-01

    Objective The objective of this study was to test the null hypothesis that the interfacial toughness of each of two types of bonded core-veneer bilayer ceramics is not significantly different from the apparent fracture toughness of the control monolithic glass veneer. Methods T-shaped short bars of a lithia-disilicate glass-ceramic core (LC) and yttria-stabilized polycrystalline zirconia core ceramic (ZC) were prepared according to the manufacturer's recommendations. V-shaped notches were prepared by using 25-μm-thick palladium foil, leaving the chevron notch area exposed, and the bars were veneered with a thermally compatible glass veneer (LC/GV and ZC/GV). Additionally, we also bonded the glass veneer to itself as a control group (GV/GV). Specimens were kept in distilled water for 30 days before testing in tension. Eight glass veneer bars were prepared for the analysis of fracture toughness test using the indentation-strength technique. Results The mean interfacial toughness of the LC/GV group was 0.69 [0.11] MPa·m1/2, and did not significantly differ from that of the GV/GV control group, 0.74 (0.17) MPa·m1/2 (p > 0.05). However, the difference between the mean interfacial toughness of the ZC/GV group, 0.13 (0.07) MPa·m1/2, and the LC/GV and the GV/GV groups was statistically significant (p<0.05). Significance For bilayer all-ceramic restorations with high-strength core materials, the veneering ceramics are the weakest link in the design of the structure. Since all-ceramic restorations often fail from chipping of veneer layers or crack initiation at the interface, the protective effects of thermal mismatch stresses oral prosthesis design should be investigated. PMID:19818486

  7. Chevron: Refinery Identifies $4.4 Million in Annual Savings by Using Process Simulation Models to Perform Energy-Efficiency Assessment

    SciTech Connect

    Not Available

    2004-05-01

    In an energy-efficiency study at its refinery near Salt Lake City, Utah, Chevron focused on light hydrocarbons processing. The company found it could recover hydrocarbons from its fuel gas system and sell them. By using process simulation models of special distillation columns and associated reboilers and condensers, Chevron could predict the performance of potential equipment configuration changes and process modifications. More than 25,000 MMBtu in natural gas could be saved annually if a debutanizer upgrade project and a new saturated gas plant project were completed. Together, these projects would save $4.4 million annually.

  8. Closed form expressions for crack mouth displacements and stress intensity factors for chevron notched short bar and short rod specimens based on experimental compliance measurements

    NASA Technical Reports Server (NTRS)

    Bubsey, R. T.; Orange, T. W.; Pierce, W. S.; Shannon, J. L., Jr.

    1992-01-01

    A set of equations are presented describing certain fracture mechanics parameters for chevron notch bar and rod specimens. They are developed by fitting compliance calibration data reported earlier. The equations present the various parameters in their most useful forms. The data encompass the entire range of the specimen geometries most commonly used. Their use will facilitate the testing and analysis of brittle metals, ceramics, and glasses.

  9. Experimental and Numerical Study on the Cracked Chevron Notched Semi-Circular Bend Method for Characterizing the Mode I Fracture Toughness of Rocks

    NASA Astrophysics Data System (ADS)

    Wei, Ming-Dong; Dai, Feng; Xu, Nu-Wen; Liu, Jian-Feng; Xu, Yuan

    2016-05-01

    The cracked chevron notched semi-circular bending (CCNSCB) method for measuring the mode I fracture toughness of rocks combines the merits (e.g., avoidance of tedious pre-cracking of notch tips, ease of sample preparation and loading accommodation) of both methods suggested by the International Society for Rock Mechanics, which are the cracked chevron notched Brazilian disc (CCNBD) method and the notched semi-circular bend (NSCB) method. However, the limited availability of the critical dimensionless stress intensity factor (SIF) values severely hinders the widespread usage of the CCNSCB method. In this study, the critical SIFs are determined for a wide range of CCNSCB specimen geometries via three-dimensional finite element analysis. A relatively large support span in the three point bending configuration was considered because the fracture of the CCNSCB specimen in that situation is finely restricted in the notch ligament, which has been commonly assumed for mode I fracture toughness measurements using chevron notched rock specimens. Both CCNSCB and NSCB tests were conducted to measure the fracture toughness of two different rock types; for each rock type, the two methods produce similar toughness values. Given the reported experimental results, the CCNSCB method can be reliable for characterizing the mode I fracture toughness of rocks.

  10. Foreign direct investment strategies: Least-developed countries and foreign firms. A case study of Sudan and Chevron Oil

    SciTech Connect

    Tom, B.M.

    1988-01-01

    The least-developed countries (LDCS) are politically underdeveloped. They often have autocratic authoritarian regimes that give less than appropriate attention to their societies' development. Being vulnerable and fairly unstable, such regimes are more occupied with their own survival than with developing pragmatic plans that cater to supplying their nations with missing economic resources needed through Foreign Direct Investment (FDI). Internal and external pressures on LDCS with such primitive political structures have greatly confused their leaderships and have resulted in the lack of institutionalization in these countries. Foreign firms normally choose to serve world markets through direct operations rather than exporting or licensing because the former maximize their gains more than the two other alternatives. This is why benefits to host countries may not match a host country's expectations when it allows FDI penetration. It is the contention of this research that Sudan failed to formulate a right policy towards FDI, and came short of maximizing its scarce resource returns. On the other hand, Chevron Oil, with a global overall profit-maximization strategy, succeeded in running its subsidiary in Sudan in accordance with its global outlook.

  11. Turbulent Flow Field Measurements of Separate Flow Round and Chevron Nozzles with Pylon Interaction Using Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Henerson, Brenda S.; Kinzie, Kevin W.

    2004-01-01

    Particle Image Velocimetry (PIV) measurements for six separate flow bypass ratio five nozzle configurations have recently been obtained in the NASA Langley Jet Noise Laboratory. The six configurations include a baseline configuration with round core and fan nozzles, an eight-chevron core nozzle at two different clocking positions, and repeats of these configurations with a pylon included. One run condition representative of takeoff was investigated for all cases with the core nozzle pressure ratio set to 1.56 and the total temperature to 828 K. The fan nozzle pressure ratio was set to 1.75 with a total temperature of 350 K, and the freestream Mach number was M = 0.28. The unsteady flow field measurements provided by PIV complement recent computational, acoustic, and mean flow field studies performed at NASA Langley for the same nozzle configurations and run condition. The PIV baseline configuration measurements show good agreement with mean flow field data as well as existing PIV data acquired at NASA Glenn. Nonetheless, the baseline configuration turbulence profile indicates an asymmetric flow field, despite careful attention to concentricity. The presence of the pylon increases the upper shear layer turbulence levels while simultaneously decreasing the turbulence levels in the lower shear layer. In addition, a slightly shorter potential core length is observed with the addition of the pylon. Finally, comparisons of computational results with PIV measurements are favorable for mean flow, slightly over-predicted for Reynolds shear stress, and underpredicted for Reynolds normal stress components.

  12. Fracture Toughness Determination of Cracked Chevron Notched Brazilian Disc Rock Specimen via Griffith Energy Criterion Incorporating Realistic Fracture Profiles

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Dai, Feng; Zhao, Tao; Xu, Nu-wen; Liu, Yi

    2016-08-01

    The cracked chevron notched Brazilian disc (CCNBD) specimen has been suggested by the International Society for Rock Mechanics to measure the mode I fracture toughness of rocks, and has been widely adopted in laboratory tests. Nevertheless, a certain discrepancy has been observed in results when compared with those derived from methods using straight through cracked specimens, which might be due to the fact that the fracture profiles of rock specimens cannot match the straight through crack front as assumed in the measuring principle. In this study, the progressive fracturing of the CCNBD specimen is numerically investigated using the discrete element method (DEM), aiming to evaluate the impact of the realistic cracking profiles on the mode I fracture toughness measurements. The obtained results validate the curved fracture fronts throughout the fracture process, as reported in the literature. The fracture toughness is subsequently determined via the proposed G-method originated from Griffith's energy theory, in which the evolution of the realistic fracture profile as well as the accumulated fracture energy is quantified by DEM simulation. A comparison between the numerical tests and the experimental results derived from both the CCNBD and the semi-circular bend (SCB) specimens verifies that the G-method incorporating realistic fracture profiles can contribute to narrowing down the gap between the fracture toughness values measured via the CCNBD and the SCB method.

  13. Supersonic jet noise prediction and noise source investigation for realistic baseline and chevron nozzles based on hybrid RANS/LES simulations

    NASA Astrophysics Data System (ADS)

    Du, Yongle

    Jet noise simulations have been performed for a military-style baseline nozzle and a chevron nozzle with design Mach numbers of Md = 1:5 operating at several off-design conditions. The objective of the current numerical study is to provide insight into the noise generation mechanisms of shock-containing supersonic hot jets and the noise reduction mechanisms of chevron nozzles. A hybrid methodology combining advanced CFD technologies and the acoustic analogy is used for supersonic jet noise simulations. Unsteady Reynolds-averaged Navier-Stokes (URANS) equations are solved to predict the turbulent noise sources in the jet flows. A modified version of the Detached Eddy Simulation (DES) approach is used to avoid excessive damping of fine scale turbulent fluctuations. A multiblock structured mesh topology is used to represent complex nozzle geometries, including the faceted inner contours and finite nozzle thickness. A block interface condition is optimized for the complex multiblock mesh topology to avoid the centerline singularity. A fourth-order Dispersion-Relation-Preserving (DRP) scheme is used for spatial discretization. To enable efficient calculations, a dual time-stepping method is used in addition to parallel computation using MPI. Both multigrid and implicit residual smoothing are used to accelerate the convergence rate of sub-iterations in the fictitious time domain. Noise predictions are made with the permeable surface Ffowcs Williams and Hawkings (FWH) solution. All the numerical methods have been implemented in the jet flow simulation code "CHOPA" and the noise prediction code "PSJFWH". The computer codes have been validated with several benchmark cases. A preliminary study has been performed for an under-expanded baseline nozzle jet with Mj = 1:56 to validate the accuracy of the jet noise simulations. The results show that grid refinement around the jet potential core and the use of a lower artificial dissipation improve the resolution of the predicted

  14. Controle sismique d'un batiment en acier de 3 etages a l'echelle 1/3 par amortisseurs elastomeres et contreventements en chevron

    NASA Astrophysics Data System (ADS)

    Gauron, Olivier

    This study develops an innovative configuration of seismic natural rubber dampers for multistory low- and medium-rise steel braced frames. The dampers are directly integrated in an horizontal position in the seismic force resisting system of the structure. They are connected in a series with typical chevron brace systems. This control system provides not only additional structural damping to the structure but also a period shift, acting in the same way as a base isolation system. First, the fiber reinforced natural rubber used in the application was tested. It exhibited strong non linear dependance of its equivalent viscoelastic properties related to the shear strain. Then, a 1/3-scale 3-story chevron braced steel frame with and without dampers was considered. The structure was build and placed on the shaking table of the University of Sherbrooke Structures Laboratory. Numerical studies show that the efficiency of the control system reduces strongly the seismic induced forces of the undamped structure without any amplification of displacement or drift. Obtained seismic response reduction levels represent significant safety and economical benefits for the proposed application. Finally, the control system viability is experimentally demonstrated by shaking table tests at different reduced seismic intensities. Non linear behavior of the structure due to non linear behavior of the damping material is highlighted, and the dependance of seismic control performances is shown to be related to seismic intensities. Results allow an extrapolation of the experimental control peformances tending to the numerical results at higher intensities. Key-words : chevron braces, damper, multistory building, natural rubber, seismic control, shaking table.

  15. Location and age of foraminifer samples examined by Chevron Petroleum Company paleontologists from more than 2,500 oil test wells in California

    USGS Publications Warehouse

    Brabb, Earl E.

    2011-01-01

    Chevron Petroleum Company in 2001 donated an estimated 50,000 foraminifer slides, 5,000 well logs, geologic and surface locality maps, and paleontologic reports to the California Academy of Sciences and Stanford University for safekeeping, because they stopped or cut back exploration for petroleum deposits in California. The material was loaned to Earl Brabb temporarily so that information useful to the U.S. Geological Survey could be extracted. Among the estimated 5,000 well logs, more than 2,500 were printed on fragile Ozalid paper that had deteriorated by turning brown and hardening so that they could be easily damaged. These 2,516 well logs were scanned to provide a digital copy of the information. The 2,516 wells extend over an area from Eureka in Humboldt County south to the Imperial Valley and from the Pacific Ocean east to the eastern side of the Great Valley and the Los Angeles Basin. The wells are located in 410 7.5-minute quadrangle maps in 42 counties. The digital information herein preserves the data, makes the logs easily distributed to others interested in subsurface geology, and makes previously proprietary information widely available to the public for the first time.

  16. Impact of 3-D seismic data on the Nigerian National Petroleum Corporation/Chevron Nigeria Limited joint venture development drilling program

    SciTech Connect

    Quam, S. )

    1993-09-01

    The Nigerian National Petroleum Corporation/Chevron Nigeria Limited joint venture has been acquiring three-dimensional (3-D) seismic data over its concessions since 1984. To date, 1700 km[sup 2] have been recorded and processed at a cumulative cost of US $39 million. During 1991 - 1992, 20 development wells were drilled based directly on new 3-D seismic interpretations. These wells have added 148 million bbl of oil in new recoverable reserves, and to date have added 37,000 bbl/day to the joint venture's production. In addition, the 3-D interpretations have resulted in a sizable inventory of wells for future development drilling. The new 3-D interpretations provided more accurate pictures of fault patterns, fluid contacts, channel trends, stratigraphic continuity, and velocity/amplitude anomalies. In addition, the 3-D data were invaluable in designing low risk, directional well trajectories to tap relatively thin oil legs under large gas caps. Wells often were programmed to hit several objectives at their respective gas/oil contacts, resulting in maximized net oil sand pays and reducing the risk of gas production. In order to do this, directional [open quotes]sharpshooting,[close quotes] accurate depth conversion of the seismic time maps, was critical. By using the 3-D seismic, checkshot, and sonic data to develop a variable velocity space, well-top prognoses within 50 ft at depths of 6,000-10,000 ft were possible, and were key to the success of the program. As the joint venture acreage becomes more mature, development wells will be drilled for smaller numbers of stacked objectives, and sometimes for single sands. Highly accurate 3-D interpretations and depth conversions will become even more critical in order to tap thinner pay zones in a cost-effect manner.

  17. Chevron bone graft procedure for the correction of brachymetatarsia.

    PubMed

    Alter, S A; Feinman, B; Rosen, R G

    1995-01-01

    Brachymetatarsia is a relatively rare condition, although there are many surgical procedures to correct the condition. The authors present a case study with a 2-year follow-up period demonstrating the successful surgical treatment of a 4th metatarsal brachymetatarsia of the left foot of a 14-year-old female. The operative technique and literature review are discussed. This technique combines the idea of bone grafting with a specific graft shape and donor site to facilitate graft stability and graft healing. PMID:7599619

  18. Jet Noise Modeling for Coannular Nozzles Including the Effects of Chevrons

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2003-01-01

    Development of good predictive models for jet noise has always been plagued by the difficulty in obtaining good quality data over a wide range of conditions in different facilities.We consider such issues very carefully in selecting data to be used in developing our model. Flight effects are of critical importance, and none of the means of determining them are without significant problems. Free-jet flight simulation facilities are very useful, and can provide meaningful data so long as they can be analytically transformed to the flight frame of reference. In this report we show that different methodologies used by NASA and industry to perform this transformation produce very different results, especially in the rear quadrant; this compels us to rely largely on static data to develop our model, but we show reasonable agreement with simulated flight data when these transformation issues are considered. A persistent problem in obtaining good quality data is noise generated in the experimental facility upstream of the test nozzle: valves, elbows, obstructions, and especially the combustor can contribute significant noise, and much of this noise is of a broadband nature, easily confused with jet noise. Muffling of these sources is costly in terms of size as well as expense, and it is particularly difficult in flight simulation facilities, where compactness of hardware is very important, as discussed by Viswanathan (Ref. 13). We feel that the effects of jet density on jet mixing noise may have been somewhat obscured by these problems, leading to the variable density exponent used in most jet noise prediction procedures including our own. We investigate this issue, applying Occam s razor, (e.g., Ref. 14), in a search for the simplest physically meaningful model that adequately describes the observed phenomena. In a similar vein, we see no reason to reject the Lighthill approach; it provides a very solid basis upon which to build a predictive procedure, as we believe we demonstrate in this report. Another feature of our approach is that the analyses are all conducted with lossless spectra, rather than Standard Day spectra, as is often done in industry. We feel that it is important to isolate the effects of as many physical processes as practical. Atmospheric attenuation can then be included using the relations developed for NASA by Shields and Bass (Ref. 15), which are available in both FOOTPR and ANOPP. The current approach to coannular jet noise prediction used in FOOTPR is reported in Reference 16, which updates the earlier conventional-velocity-profile (CVP, Ref. 17) and inverted-velocity-profile (IVP, Ref. 18) models.

  19. Chevron Defect at the Intersection of Grain Boundaries with Free Surfaces in Au

    NASA Astrophysics Data System (ADS)

    Radetic, T.; Lançon, F.; Dahmen, U.

    2002-08-01

    We have identified a new defect at the intersection between grain boundaries and surfaces in Au using atomic resolution transmission electron microscopy. At the junction line of 90° <110> tilt grain boundaries of (110)-(001) orientation with the free surface, a small segment of the grain boundary, about 1nm in length, dissociates into a triangular region with a chevronlike stacking disorder and a distorted hcp structure. The structure and stability of these defects are confirmed by atomistic simulations, and we point out the relationship with the one-dimensional incommensurate structure of the grain boundary.

  20. 78 FR 42061 - Notice of Complaint; Chevron Products Company v. Enterprise TE Products Pipeline Company, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... 343.2(c) of the Commission's Procedural Rules Applicable to Oil Pipeline Proceedings, 18 CFR 343.1(a... Pipeline Company, LLC Take notice that on July 3, 2013, pursuant to sections 13(1), 15(1) and 16(1) of the... Products Pipeline Company, LLC (Respondent) challenging the lawfulness of the Respondent's FERC Tariff...

  1. 75 FR 49515 - Notice of Availability of the Final Environmental Impact Statement for the Chevron Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Southern California Edison 33 kilovolt (kV) distribution system. The proposed project would include a new.... Thomas Pogacnik, Deputy State Director, Natural Resources. Authority: 40 CFR 1506.6 and 1506.10 and...

  2. 75 FR 6057 - Notice of Availability of the Draft Environmental Impact Statement for the Proposed Chevron...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... photovoltaic project and connect it to an existing Southern California Edison 33 kV distribution system on.... Authority: 40 CFR 1506.6; 40 CFR 1506.10; 43 CFR 1610.2. Thomas Pogacnik, Deputy State Director,...

  3. 75 FR 62510 - Chevron U.S.A. Inc.; Application for Blanket Authorization To Export Liquefied Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... equivalent of up to 800 Bcf of natural gas from various international sources for a two year period beginning... gas (LNG) that previously had been imported into the United States from foreign sources in an amount up to the equivalent of 72 billion cubic feet (Bcf) of natural gas on a short-term or spot...

  4. 75 FR 18497 - Chevron Keystone Gas Storage, LLC; Notice of Notification of Change in Market Power Analysis and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... Market Power Analysis and Request for Renewed Approval of Market-Based Rates April 5, 2010. Take notice..., a notification of change in market power analysis and request for renewed approval of market-based rates for its storage and hub services, including wheeling services, provided under its...

  5. Controle sismique d'un batiment en acier de 1 etage par amortisseurs elastomeres et contreventements en Chevron

    NASA Astrophysics Data System (ADS)

    Girard, Olivier

    Actuellement, le principe de dimensionnement a la capacite est fortement utilise dans le domaine du genie parasismique. De maniere simplifiee, cette methode de dimensionnement consiste a dissiper l'energie injectee a une structure lors d'une secousse sismique par la deformation inelastique d'un element structural sacrificiel. Cette methode de dimensionne-ment permet d'obtenir des structures economiques, car cette dissipation d'energie permet de reduire substantiellement les efforts qui se retrouvent a l'interieur de la structure. Or, la consequence de ce dimensionnement est la presence de degats importants a la structure qui suivent a la secousse sismique. Ces degats peuvent engendrer des couts superieurs aux couts d'erection de la structure. Bien entendu, sachant que les secousses sismiques d'importances sont des phenomenes rares, l'ingenieur est pret a accepter ce risque afin de diminuer les couts initiaux de construction. Malgre que cette methode ait permis d'obtenir des constructions economiques et securitaires, il serait interessant de developper un systeme qui permettrait d'obtenir des performances de controle des efforts sismiques comparables a un systeme dimensionne selon un principe de dimensionnement a la capacite sans les consequences negatives de ces systemes. En utilisant les principes d'isolation a la base, il a ete possible de developper un systeme de reprise des forces sismiques (SRFS). qui permet d'obtenir un controle des efforts sismiques concurrentiels tout en gardant une structure completement elastique. Ce systeme consiste u inserer un materiel elastomere entre l'assemblage de la poutre et des contreventements a l'interieur d'un cadre contrevente conventionnel. Cette insertion permet de diminuer substantiellement la rigidite laterale du batiment, ce qui a pour consequence d'augmenter la valeur de la periode fondamentale du batiment dans lequel ces cadres sont inseres. Ce phenomene est appele le saut de periode. Ce saut de periode permet de reduire grandement l'amplification dynamique essuyee lors d'un seisme du au contenu frequentiel particulier des secousses sismiques. Toutefois, la reduction de la rigidite globale a pour consequence d'augmenter grandement les deplacements de fonctionnement de la structure, ce phenomene etant mitige par les proprietes amortissantes de l'elastomere utilise. Le SRFS propose a ete etudie dans le cadre de la presente maitrise. Les objectifs de l'etude consistent a demontrer l'efficacite et la faisabilite du systeme propose ainsi que de developper une methode de dimensionnement efficace et securitaire pour ce genre de systeme. Afin de faciliter l'obtention des objectifs, l'approche qui a ete utilisee est l'etude comparative d'un meme batiment dimensionne selon deux principes. Le premier est le dimensionnement a la capacite. Le second est un dimensionnement employant le systeme propose. La presente etude a ete scindee en quatre parties distinctes. La premiere est l'etude du materiel elastomere afin de determiner les proprietes utiles lors d'un dimensionnement. La seconde est le dimensionnement et l'etude en laboratoire du comportement d'un cadre contrevente selon un principe de dimensionnement a la capacite. La troisieme partie est le dimensionnement et l'etude en laboratoire du comportement d'un cadre contrevente integrant des amortisseurs elastomeres. La quatrieme et derniere partie est l'etude comparative des performances sismiques d'un batiment qui emploie des cadres amortis avec des amortisseurs elastomeres avec les performances d'un batiment qui emploie un SRFS par contreventements classiques. A la suite des differentes analyses, il a ete possible de conclure sur les performances du systeme propose employant des amortisseurs elastomeres. Le systeme possede un excellent comportement quant aux sollicitations sismiques. Le controle des efforts sismiques est du meme ordre qu'un SRFS par contreventements de ductilite moderee (reduction des efforts elastiques par un facteur de 3). Bien que la demande en deplacement soit plus grande pour le systeme propose que pour un syst

  6. Confirmatory Survey Report for Area B1S/B2S at the Chevron Mining Washington Remediation Project, Washington, PA

    SciTech Connect

    W. C. Adams

    2007-11-20

    During the period of October 2 and 3, 2007, the Oak Ridge Institute for Science and Education (ORISE) performed confirmatory radiological survey activities which included gamma surface scans within Area B1S/B2S and the collection of soil samples from these areas.

  7. Joint environmental assessment for Chevron USA, Inc. and Santa Fe Energy Resources, Inc.: Midway Valley 3D seismic project, Kern County, California

    SciTech Connect

    1996-10-01

    The proposed Midway Valley 3D Geophysical Exploration Project covers approximately 31,444 aces of private lands, 6,880 acres of Department of Energy (DOE) Lands within Naval Petroleum Reserve 2 (NPR2) and 3,840 acres of lands administered by the Bureau of Land Management (BLM), in western Kern County, California. This environmental assessment (EA) presents an overview of the affected environment within the project area using results of a literature review of biological field surveys previously conducted within or adjacent to a proposed 3D seismic project. The purpose is to provide background information to identify potential and known locations of sensitive wildlife and special status plant species within the proposed seismic project area. Biological field surveys, following agency approved survey protocols, will be conducted during October through November 1996 to acquire current resources data to provide avoidance as the project is being implemented in the field.

  8. Jet Engine Exhaust Nozzle Flow Effector

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Cano, Roberto J. (Inventor); Silcox, Richard J. (Inventor); Buehrle, Ralph D. (Inventor); Cagle, Christopher M. (Inventor); Cabell, Randolph H. (Inventor); Hilton, George C. (Inventor)

    2011-01-01

    A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.

  9. Jet Engine Exhaust Nozzle Flow Effector

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Cano, Roberto J. (Inventor); Silox, Richard J. (Inventor); Buehrle, Ralph D. (Inventor); Cagle, Christopher M. (Inventor); Cabell, Randolph H. (Inventor); Hilton, George C. (Inventor)

    2014-01-01

    A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.

  10. Clasificación de asterismos utilizando datos astrométricos

    NASA Astrophysics Data System (ADS)

    de Biasi, M. S.; Orellana, R. B.

    Based on accurate positions and proper motion data up to faint magnitudes, we have studied the regions of twenty three objects known in the literature as asterisms. A parametric method was applied to confirm the nature of these objects. The following objects have been classified: Alessi 11, Alessi 17, Brosch 1, Collinder 21, Dol-Dzim 1, Dolidze 31, Dolidze 43, Dolidze 50, Dolidze 51, NGC 272, NGC2063, NGC 2413, NGC 2664, NGC 5155, NGC 5284, NGC 6222, NGC 6360, NGC 6447, NGC 6476, NGC 6480, NGC 6605, NGC 6659, NGC 6728. FULL TEXT IN SPANISH

  11. Estudio numerico y experimental del proceso de soldeo MIG sobre la aleacion 6063--T5 utilizando el metodo de Taguchi

    NASA Astrophysics Data System (ADS)

    Meseguer Valdenebro, Jose Luis

    Electric arc welding processes represent one of the most used techniques on manufacturing processes of mechanical components in modern industry. The electric arc welding processes have been adapted to current needs, becoming a flexible and versatile way to manufacture. Numerical results in the welding process are validated experimentally. The main numerical methods most commonly used today are three: finite difference method, finite element method and finite volume method. The most widely used numerical method for the modeling of welded joints is the finite element method because it is well adapted to the geometric and boundary conditions in addition to the fact that there is a variety of commercial programs which use the finite element method as a calculation basis. The content of this thesis shows an experimental study of a welded joint conducted by means of the MIG welding process of aluminum alloy 6063-T5. The numerical process is validated experimentally by applying the method of finite element through the calculation program ANSYS. The experimental results in this paper are the cooling curves, the critical cooling time t4/3, the weld bead geometry, the microhardness obtained in the welded joint, and the metal heat affected zone base, process dilution, critical areas intersected between the cooling curves and the curve TTP. The numerical results obtained in this thesis are: the thermal cycle curves, which represent both the heating to maximum temperature and subsequent cooling. The critical cooling time t4/3 and thermal efficiency of the process are calculated and the bead geometry obtained experimentally is represented. The heat affected zone is obtained by differentiating the zones that are found at different temperatures, the critical areas intersected between the cooling curves and the TTP curve. In order to conclude this doctoral thesis, an optimization has been conducted by means of the Taguchi method for welding parameters in order to obtain an improvement on mechanical properties in aluminum metal joint. Los procesos de soldadura por arco electrico representan unas de las tecnicas mas utilizadas en los procesos de fabricacion de componentes mecanicos en la industria moderna. Los procesos de soldeo por arco se han adaptado a las necesidades actuales, haciendose un modo de fabricacion flexible y versatil. Los resultados obtenidos numericamente en el proceso de soldadura son validados experimentalmente. Los principales metodos numericos mas empleados en la actualidad son tres, metodo por diferencias finitas, metodos por elementos finitos y metodo por volumenes finitos. El metodo numerico mas empleado para el modelado de uniones soldadas, es el metodo por elementos finitos, debido a que presenta una buena adaptacion a las condiciones geometricas y de contorno ademas de que existe una diversidad de programas comerciales que utilizan el metodo por elementos finitos como base de calculo. Este trabajo de investigacion presenta un estudio experimental de una union soldada mediante el proceso MIG de la aleacion de aluminio 6063-T5. El metodo numerico se valida experimentalmente aplicando el metodo de los elementos finitos con el programa de calculo ANSYS. Los resultados experimentales obtenidos son: las curvas de enfriamiento, el tiempo critico de enfriamiento t4/3, geometria del cordon, microdurezas obtenidas en la union soldada, zona afectada termicamente y metal base, dilucion del proceso, areas criticas intersecadas entre las curvas de enfriamiento y la curva TTP. Los resultados numericos son: las curvas del ciclo termico, que representan tanto el calentamiento hasta alcanzar la temperatura maxima y un posterior enfriamiento. Se calculan el tiempo critico de enfriamiento t4/3, el rendimiento termico y se representa la geometria del cordon obtenida experimentalmente. La zona afectada termicamente se obtiene diferenciando las zonas que se encuentran a diferentes temperaturas, las areas criticas intersecadas entre las curvas de enfriamiento y la curva TTP. Para finalizar el trabajo de investigacion se ha realizado una optimizacion, con la aplicacion del metodo de Taguchi, de los parametros de soldeo con el objetivo de obtener una mejora sustancial en las propiedades mecanicas de las uniones metalicas de aluminio.

  12. Aeroacoustics of Turbulent Jets: Flow Structure, Noise Sources, and Control

    NASA Astrophysics Data System (ADS)

    Gutmark, Ephraim Jeff; Callender, Bryan William; Martens, Steve

    The paper reviews research performed to advance the understanding of state-of-the-art technologies capable of reducing coaxial jet noise simulating the exhaust flow of turbofan engines. The review focuses on an emerging jet noise passive control technology known as chevron nozzles. The fundamental physical mechanisms responsible for the acoustic benefits provided by these nozzles are discussed. Additionally, the relationship between these physical mechanisms and some of the primary chevron geometric parameters are highlighted. Far-field acoustic measurements over a wide range of nozzle operating conditions illustrated the ability of the chevron nozzles to provide acoustic benefits. Detailed mappings of the acoustic near-field provided more insight into the chevron noise suppression mechanisms by successfully identifying two primary chevron effects consistent with the results of the far-field measurements: chevrons penetration and shear velocity across them. Mean and turbulence data identified the physical flow mechanisms responsible for the effects documented in the far- and near-field studies.

  13. 75 FR 34448 - Proposed CERCLA Administrative Cost Recovery Settlement; Great Lakes Container Corporation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... Uniroyal, Inc.); Cytec Industries Inc. (on behalf of American Cyanamid Company); Hubbard Hall, Inc.; Invesys, Inc. on behalf of Elmwood Sensors, Inc.; Chevron Environmental Management Company, for itself...

  14. 75 FR 17765 - Notice of Availability of the Draft Environmental Impact Statement/Staff Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... 23, 2008 (73 FR 61902). The BLM held one public scoping meeting in Palm Desert, California, on... Assessment for the Chevron Energy Solutions/Solar Millennium Palen Solar Power Plant (PSPP) and Possible... joint environmental analysis document for the Chevron Energy Solutions/Solar Millennium (CESSM)...

  15. Percutaneous Surgery for Severe Hallux Valgus.

    PubMed

    Vernois, Joel; Redfern, David J

    2016-09-01

    Severe hallux valgus is a challenge to treat. If the basal osteotomy is a well known surgery for severe deformity, the chevron osteotomy is usually used in mild to moderate deformity. With a accurent fixation the chevron can also be used in severe deformity. Both techniques can be performed percutaneously and offer reliable techniques. PMID:27524702

  16. 75 FR 9438 - Americas Styrenics, LLC-Marietta Plant a Subsidiary of Americas Styrenics, LLLC Formerly Known as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... was published in the Federal Register on January 25, 2010 (75 FR 3937). At the request of the State... Styrenics, LLLC Formerly Known as Chevron Phillips Chemical Co. LP Including On-Site Leased Workers From... Styrenics LLC-Marietta Plant was formerly known as Chevron Phillips Chemical Co. LP. Some workers...

  17. Oil Exploration Mapping

    NASA Technical Reports Server (NTRS)

    1994-01-01

    After concluding an oil exploration agreement with the Republic of Yemen, Chevron International needed detailed geologic and topographic maps of the area. Chevron's remote sensing team used imagery from Landsat and SPOT, combining images into composite views. The project was successfully concluded and resulted in greatly improved base maps and unique topographic maps.

  18. DESIGN, FABRICATION AND BENCH TESTING OF A TEXACO INFRARED RATIO PYROMETER SYSTEM FOR THE MEASUREMENT OF GASIFIER REACTION CHAMBER TEMPERATURE

    SciTech Connect

    Thomas F. Leininger; Hua-Min Huang

    2003-10-01

    Polk Power and ChevronTexaco have signed the cooperative agreement at the end of reporting period. ChevronTexaco is shipping the pyrometer system to Tampa, Florida. Polk Power will start the modification fieldwork and installation of the system. The testing will start when the next opportunity is available.

  19. Detección automática de NEOs en imágenes CCD utilizando la transformada de Hough

    NASA Astrophysics Data System (ADS)

    Ruétalo, M.; Tancredi, G.

    El interés y la dedicación por los objetos que se acercan a la órbita de la Tierra (NEOs) ha aumentado considerablemente en los últimos años, tanto que se han iniciado varias campañas de búsqueda sistemática para aumentar la población identificada de éstos. El uso de placas fotográficas e identificación visual está siendo sustituído, progresivamente, por el uso de cámaras CCD y paquetes de detección automática de los objetos en las imágenes digitales. Una parte muy importante para la implementación exitosa de un programa automatizado de detección de este tipo es el desarrollo de algoritmos capaces de identificar objetos de baja relación señal-ruido y con requerimientos computacionales no elevados. En el presente trabajo proponemos la utilización de la transformada de Hough (utilizada en algunas áreas de visión artificial) para detectar automáticamente trazas, aproximadamente rectilíneas y de baja relación señal-ruido, en imágenes CCD. Desarrollamos una primera implementación de un algoritmo basado en ésta y lo probamos con una serie de imágenes reales conteniendo trazas con picos de señales de entre ~1 σ y ~3 σ por encima del nivel del ruido de fondo. El algoritmo detecta, sin inconvenientes, la mayoría de los casos y en tiempos razonablemente adecuados.

  20. High Bypass Ratio Jet Noise Reduction and Installation Effects Including Shielding Effectiveness

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Czech, Michael J.; Doty, Michael J.

    2013-01-01

    An experimental investigation was performed to study the propulsion airframe aeroacoustic installation effects of a separate flow jet nozzle with a Hybrid Wing Body aircraft configuration where the engine is installed above the wing. Prior understanding of the jet noise shielding effectiveness was extended to a bypass ratio ten application as a function of nozzle configuration, chevron type, axial spacing, and installation effects from additional airframe components. Chevron types included fan chevrons that are uniform circumferentially around the fan nozzle and T-fan type chevrons that are asymmetrical circumferentially. In isolated testing without a pylon, uniform chevrons compared to T-fan chevrons showed slightly more low frequency reduction offset by more high frequency increase. Phased array localization shows that at this bypass ratio chevrons still move peak jet noise source locations upstream but not to nearly the extent, as a function of frequency, as for lower bypass ratio jets. For baseline nozzles without chevrons, the basic pylon effect has been greatly reduced compared to that seen for lower bypass ratio jets. Compared to Tfan chevrons without a pylon, the combination with a standard pylon results in more high frequency noise increase and an overall higher noise level. Shielded by an airframe surface 2.17 fan diameters from nozzle to airframe trailing edge, the T-fan chevron nozzle can produce reductions in jet noise of as much as 8 dB at high frequencies and upstream angles. Noise reduction from shielding decreases with decreasing frequency and with increasing angle from the jet inlet. Beyond an angle of 130 degrees there is almost no noise reduction from shielding. Increasing chevron immersion more than what is already an aggressive design is not advantageous for noise reduction. The addition of airframe control surfaces, including vertical stabilizers and elevon deflection, showed only a small overall impact. Based on the test results, the best

  1. Active Noise Control of Radiated Noise from Jets Originating NASA

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Fuller, Christopher R.; Schiller, Noah H.; Turner, Travis L.

    2013-01-01

    The reduction of jet noise using a closed-loop active noise control system with highbandwidth active chevrons was investigated. The high frequency energy introduced by piezoelectrically-driven chevrons was demonstrated to achieve a broadband reduction of jet noise, presumably due to the suppression of large-scale turbulence. For a nozzle with one active chevron, benefits of up to 0.8 dB overall sound pressure level (OASPL) were observed compared to a static chevron nozzle near the maximum noise emission angle, and benefits of up to 1.9 dB OASPL were observed compared to a baseline nozzle with no chevrons. The closed-loop actuation system was able to effectively reduce noise at select frequencies by 1-3 dB. However, integrated OASPL did not indicate further reduction beyond the open-loop benefits, most likely due to the preliminary controller design, which was focused on narrowband performance.

  2. High-Temperature Smart Structures for Engine Noise Reduction and Performance Enhancement

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; McKillip, Robert M., Jr.

    2011-01-01

    One of key NASA goals is to develop and integrate noise reduction technology to enable unrestricted air transportation service to all communities. One of the technical priorities of this activity has been to account for and reduce noise via propulsion/airframe interactions, identifying advanced concepts to be integrated with the airframe to mitigate these noise-producing mechanisms. An adaptive geometry chevron using embedded smart structures technology offers the possibility of maximizing engine performance while retaining and possibly enhancing the favorable noise characteristics of current designs. New high-temperature shape memory alloy (HTSMA) materials technology enables the devices to operate in both low-temperature (fan) and high-temperature (core) exhaust flows. Chevron-equipped engines have demonstrated reduced noise in testing and operational use. It is desirable to have the noise benefits of chevrons in takeoff/landing conditions, but have them deployed into a minimum drag position for cruise flight. The central feature of the innovation was building on rapidly maturing HTSMA technology to implement a next-generation aircraft noise mitigation system centered on adaptive chevron flow control surfaces. In general, SMA-actuated devices have the potential to enhance the demonstrated noise reduction effectiveness of chevron systems while eliminating the associated performance penalty. The use of structurally integrated smart devices will minimize the mechanical and subsystem complexity of this implementation. The central innovations of the effort entail the modification of prior chevron designs to include a small cut that relaxes structural stiffness without compromising the desired flow characteristics over the surface; the reorientation of SMA actuation devices to apply forces to deflect the chevron tip, exploiting this relaxed stiffness; and the use of high-temperature SMA (HTSMA) materials to enable operation in the demanding core chevron environment

  3. Electrothermal Microactuators With Peg Drive Improve Performance for Brain Implant Applications

    PubMed Central

    Anand, Sindhu; Sutanto, Jemmy; Baker, Michael S.; Okandan, Murat; Muthuswamy, Jit

    2013-01-01

    This paper presents a new actuation scheme for in-plane bidirectional translation of polysilicon microelectrodes. The new Chevron-peg actuation scheme uses microelectromechanical systems (MEMS) based electrothermal microactuators to move microelectrodes for brain implant applications. The design changes were motivated by specific needs identified by the in vivo testing of an earlier generation of MEMS microelectrodes that were actuated by the Chevron-latch type of mechanism. The microelectrodes actuated by the Chevron-peg mechanism discussed here show improved performance in the following key areas: higher force generation capability (111 μN per heat strip compared to 50 μN), reduced power consumption (91 mW compared to 360 mW), and reliable performance with consistent forward and backward movements of microelectrodes. Failure analysis of the Chevron-latch and the Chevron-peg type of actuation schemes showed that the latter is more robust to wear over four million cycles of operation. The parameters for the activation waveforms for Chevron-peg actuators were optimized using statistical analysis. Waveforms with a 1-ms time period and a 1-Hz frequency of operation showed minimal error between the expected and the actual movement of the microelectrodes. The new generation of Chevron-peg actuators and microelectrodes are therefore expected to enhance the longevity and performance of implanted microelectrodes in the brain.  [2011-0341] PMID:24431926

  4. Electrothermal Microactuators With Peg Drive Improve Performance for Brain Implant Applications.

    PubMed

    Anand, Sindhu; Sutanto, Jemmy; Baker, Michael S; Okandan, Murat; Muthuswamy, Jit

    2012-07-13

    This paper presents a new actuation scheme for in-plane bidirectional translation of polysilicon microelectrodes. The new Chevron-peg actuation scheme uses microelectromechanical systems (MEMS) based electrothermal microactuators to move microelectrodes for brain implant applications. The design changes were motivated by specific needs identified by the in vivo testing of an earlier generation of MEMS microelectrodes that were actuated by the Chevron-latch type of mechanism. The microelectrodes actuated by the Chevron-peg mechanism discussed here show improved performance in the following key areas: higher force generation capability (111 μN per heat strip compared to 50 μN), reduced power consumption (91 mW compared to 360 mW), and reliable performance with consistent forward and backward movements of microelectrodes. Failure analysis of the Chevron-latch and the Chevron-peg type of actuation schemes showed that the latter is more robust to wear over four million cycles of operation. The parameters for the activation waveforms for Chevron-peg actuators were optimized using statistical analysis. Waveforms with a 1-ms time period and a 1-Hz frequency of operation showed minimal error between the expected and the actual movement of the microelectrodes. The new generation of Chevron-peg actuators and microelectrodes are therefore expected to enhance the longevity and performance of implanted microelectrodes in the brain.  [2011-0341].

  5. Assessment and introduction of quantitative resistance to Fusarium head blight in elite spring barley.

    PubMed

    Linkmeyer, A; Götz, M; Hu, L; Asam, S; Rychlik, M; Hausladen, H; Hess, M; Hückelhoven, R

    2013-12-01

    Breeding for resistance is a key task to control Fusarium head blight (FHB), a devastating disease of small cereals leading to economic losses and grain contamination with mycotoxins harmful for humans and animals. In the present work, FHB resistance of the six-rowed spring barley 'Chevron' to FHB in Germany was compared with those of adapted German spring barley cultivars. Both under natural infection conditions and after spray inoculation with conidia of Fusarium culmorum, F. sporotrichioides, and F. avenaceum under field conditions, Chevron showed a high level of quantitative resistance to the infection and contamination of grain with diverse mycotoxins. This indicates that Chevron is not only a little susceptible to deoxynivalenol-producing Fusarium spp. but also to Fusarium spp. producing type A trichothecenes and enniatins. Monitoring the initial infection course of F. culmorum on barley lemma tissue by confocal laser-scanning microscopy provided evidence that FHB resistance of Chevron is partially mediated by a preformed penetration resistance, because direct penetration of floral tissue by F. culmorum was observed rarely on Chevron but was common on susceptible genotypes. Alternatively, F. culmorum penetrated Chevron lemma tissue via stomata, which was unusual for susceptible genotypes. We generated double-haploid barley populations segregating for the major FHB resistance quantitative trait loci (QTL) Qrgz-2H-8 of Chevron. Subsequently, we characterized these populations by spray inoculation with conidia of F. culmorum and F. sporotrichioides. This suggested that Qrgz-2H-8 was functional in the genetic background of European elite barley cultivars. However, the degree of achieved resistance was very low when compared with quantitative resistance of the QTL donor Chevron, and the introgression of Qrgz-2H-8 was not sufficient to mediate the cellular resistance phenotype of Chevron in the European backgrounds.

  6. Distributed Reforming of Biomass Pyrolysis Oils: Cooperative Research and Development Final Report, CRADA number CRD-06-00192

    SciTech Connect

    Czernik, S.

    2010-07-01

    The objective of this project is for Chevron and NREL to collaborate in determining the effect of bio-oil composition variability on autothermal reforming performance including bio-oil volatilization, homogeneous oxidative cracking, and catalytic reforming.

  7. 77 FR 43614 - Notice of Lodging of Consent Decree Pursuant to the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... hazardous air pollutants, 40 CFR Part 63, Subparts A, H and CC, at an asphalt petroleum refinery owned and..., although the plant has not refined asphalt since 2008, Chevron agrees to implement an enhanced LDAR...

  8. Use of a mobile diving support vessel, Offshore California

    SciTech Connect

    Carroll, J.P.

    1983-03-01

    The Blue Dolphin is a converted workboat with a one-atmosphere manipulator bell diving system. It provides diving support for Chevron's offshore drilling program. This support includes underwater inspection, repair and salvage.

  9. 78 FR 21349 - Orders Granting Authority To Import and Export Natural Gas, To Export Liquefied Natural Gas, To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... Nos. SABINE PASS LIQUEFACTION, LLC 10-111-LNG TENASKA WASHINGTON PARTNERS, L.P 11-160-NG CHEVRON U.S.A... Pass Opinion and Order denying Liquefaction, LLC. request for rehearing of Order denying motion...

  10. 75 FR 57017 - Venice Gathering System, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... located offshore Louisiana by sale to Chevron USA Inc. (CUSA) pursuant to a Purchase and Sale Agreement by... Louisiana, Suite 4300, Houston, Texas 77002, filed a prior notice request pursuant to sections 157.205...

  11. Madison Avenue vs. the Environmentalists

    ERIC Educational Resources Information Center

    Sandman, Peter M.

    1973-01-01

    The Chevron F-310 advertising program is studied as an example of large companies' use of environmental and conservation themes for attracting customers. The effects of such advertising on the society are discussed. (JP)

  12. Jet-Pylon Interaction of High Bypass Ratio Separate Flow Nozzle Configurations

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Kinzie, Kevin W.

    2004-01-01

    NASA Langley Research Center, Hampton, Virginia, 23681-0001 USA An experimental investigation was performed of the acoustic effects of jet-pylon interaction for separate flow and chevron nozzles of both bypass ratio five and eight. The models corresponded to an approximate scale factor of nine. Cycle conditions from approach to takeoff were tested at wind tunnel free jet Mach numbers of 0.1, 0.2 and 0.28. An eight-chevron core nozzle, a sixteen chevron fan nozzle, and a pylon were primary configuration variables. In addition, two orientations of the chevrons relative to each other and to the pylon were tested. The effect of the pylon on the azimuthal directivity was investigated for the baseline nozzles and the chevron nozzles. For the bypass ratio five configuration, the addition of the pylon reduces the noise by approximately 1 EPNdB compared to the baseline case and there is little effect of azimuthal angle. The core chevron produced a 1.8 EPNdB reduction compared to the baseline nozzle. Adding a pylon to the chevron core nozzle produces an effect that depends on the orientation of the chevron relative to the pylon. The azimuthal directivity variation remains low at less than 0.5 EPNdB. For the bypass ratio eight configuration the effect of adding a pylon to the baseline nozzle is to slightly increase the noise at higher cycle points and for the case with a core chevron the pylon has little additional effect. The azimuthal angle effect continues to be very small for the bypass ratio eight configurations. A general impact of the pylon was observed for both fan and core chevrons at both bypass ratios. The pylon reduces the typical low frequency benefit of the chevrons, even eliminating it in some cases, while not impacting the high frequency. On an equal ideal thrust basis, the bypass ratio eight baseline nozzle was about 5 EPNdB lower than the bypass ratio five baseline nozzle at the highest cycle condition, however, with a pylon installed the difference

  13. DESIGN, FABRICATION AND BENCH TESTNG OF A TEXACO INFRARED RATIO PYROMETER SYSTEM FOR THE MEASUREMENT OF GASIFIER REACTION CHAMBER TEMPERATURE

    SciTech Connect

    Thomas F. Leininger; Hua-Min Huang

    2003-04-01

    The cooperative agreement between Texaco and Polk Power has been revised by Polk Power and ChevronTexaco several times already. Lawyers from both Polk Power and ChevronTexaco are in the process to include the issues related to the ownership transfer of the Texaco gasification unit in the agreement and finalize the draft. The modification fieldwork and testing will start once the cooperative agreement is signed with Polk Power.

  14. Observação do abrilhantamento de limbo solar e de estruturas filamentares em 48 ghz utilizando a técnica de regularização adaptativa

    NASA Astrophysics Data System (ADS)

    Machado, W. R. S.; Mascarenhas, N.; Costa, J. E. R.; Silva, A. V. R.

    2003-08-01

    O radiotelescópio do Itapetinga tem sido utilizado em campanhas de observações de explosões solares gerando um grande número de mapas diários em 48 GHz como sub-produto destas observações. A resolução espacial do telescópio de 14m do Itapetinga nesta freqüência é de aproximadamente dois minutos de arco. Estruturas de interesse para análise da atmosfera solar quiescente tais como os filamentos e o anel de abrilhantamento do limbo são de dimensão angular moderada da ordem ou ligeiramente menores que a resolução do telescópio. É conhecido que a convolução da função de espalhamento do telescópio, PSF (padrão de ganho do feixe) borra as estruturas de dimensão angular abaixo do HPBW (largura a meia potência do feixe) e portanto é comum a busca por técnicas de restauração que eliminem pelo menos em parte este borramento. Estudamos a restauração destas radioimagens usando a técnica de regularização adaptativa e os resultados ressaltam estas estruturas espaciais de pequeno contraste. O algoritmo da regularização adaptativa faz uso de k imagens, chamadas protótipos, obtidas através da variação de parâmetros de um filtro de regularização. Para controle da qualidade da restauração utilizamos uma imagem de alta resolução espacial obtida na linha H-a e a PSF do Itapetinga para borrá-la. Pequenos desvios, entre a PSF utilizada para o borramento e a PSF utilizada na restauração, produziram alguns desvios notáveis na imagem restaurada porém a adição de ruído nas simulações de restauração foram mais influentes no cálculo da rugosidade da imagem e portanto mais limitante para a restauração. Apresentamos como nosso primeiro resultado uma imagem em 48 GHz com a presença clara do abrilhantamento de limbo que não estava evidente na imagem original e traços de estruturas filamentares, porém ainda sem grande evidência.

  15. Intelligent Engine Systems: Acoustics

    NASA Technical Reports Server (NTRS)

    Wojno, John; Martens, Steve; Simpson, Benjamin

    2008-01-01

    An extensive study of new fan exhaust nozzle technologies was performed. Three new uniform chevron nozzles were designed, based on extensive CFD analysis. Two new azimuthally varying variants were defined. All five were tested, along with two existing nozzles, on a representative model-scale, medium BPR exhaust nozzle. Substantial acoustic benefits were obtained from the uniform chevron nozzle designs, the best benefit being provided by an existing design. However, one of the azimuthally varying nozzle designs exhibited even better performance than any of the uniform chevron nozzles. In addition to the fan chevron nozzles, a new technology was demonstrated, using devices that enhance mixing when applied to an exhaust nozzle. The acoustic benefits from these devices applied to medium BPR nozzles were similar, and in some cases superior to, those obtained from conventional uniform chevron nozzles. However, none of the low noise technologies provided equivalent acoustic benefits on a model-scale high BPR exhaust nozzle, similar to current large commercial applications. New technologies must be identified to improve the acoustics of state-of-the-art high BPR jet engines.

  16. Mechanism of formation of wiggly compaction bands in porous sandstone: 1. Observations and conceptual model

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Pollard, David D.; Deng, Shang; Aydin, Atilla

    2015-12-01

    Field observations are combined with microscopic analyses to investigate the mechanism of formation of wiggly compaction bands (CBs) in the porous Jurassic aeolian Aztec Sandstone exposed at Valley of Fire State Park, Nevada. Among the three types of CBs (T1, T2, and T3), we focused on the wiggly CBs (T3), which show a chevron (T31) or wavy (T32) pattern with typical corner angles of approximately 90° or 130°, respectively. Where corner angles of wiggly CBs increase to 180°, they become straight CBs (T33). Image analyses of thin sections using an optical microscope show host rock porosity increases downslope in this dune, and the predominant type of wiggly CBs also varies from chevron to straight CBs. Specifically, band type varies continuously from chevron to wavy to straight where the porosity and grain sorting of the host rock increase systematically. Based on the crack and anticrack models, we infer that the change from chevron to straight CBs is due to increasing failure angle of the sandstone and this may correlate with increasing grain sorting. Wavy CBs with intermediate failure angle and host rock porosity are an intermediate stage between chevron and straight CBs. Previous sedimentological studies also have suggested that grain size and sorting degree increase downslope on the downwind side of sand dunes due to a sieving process of the wind-blown grains. Therefore, the transition of wiggly CB types in this regard correlates with increasing sorting and perhaps with increasing porosity downslope.

  17. Two wells per slot optimizes North Sea platform

    SciTech Connect

    1995-11-01

    Chevron UK Ltd. has applied a practical innovation on its Alba Northern Platform (ANP) by drilling and completing two separate, Close Proximity Wells (CPWs) within single 46-in.-OD caissons in the platform`s available well slot pattern. Applied to four existing slots, the technique will provide for four additional platform-based wells on the 24-slot structure at minimum costs, compared to alternative programs. The technique was described in paper SPE 30346, ``Optimizing slot usage on a minimum facilities platform,`` authored by Chevron`s Noel Avocato, Sr. Drilling Advisor, John Jackson, Drilling Manager; Ieuan Jones, Drilling Representative; and Stephen Murphy, Petroleum Engineer. The paper was presented at Offshore Europe `95, Aberdeen, September 5--8.

  18. Carbon adsorption system protects LPG storage sphere

    SciTech Connect

    Gothenquist, C.A.; Rooker, K.M.

    1996-07-01

    Chevron U.S.A. Products Co. installed a carbon adsorption system to protect an LPG storage sphere at its refinery in Richmond, Calif. Vessel damage can result when amine contamination leads to emulsion formation and consequent amine carry-over, thus promoting wet-H{sub 2}S cracking. In Chevron`s No. 5 H{sub 2}S recovery plant, a mixture of butane and propane containing H{sub 2}S is contacted with diethanolamine (DEA) in a liquid-liquid absorber. The absorber is a countercurrent contactor with three packed beds. Because the sweetening system did not include a carbon adsorption unit for amine purification, contaminants were building up in the DEA. The contaminants comprised: treatment chemicals, hydrocarbons, foam inhibitors, and amine degradation products. The paper describes the solution to this problem.

  19. Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities

    SciTech Connect

    Bent, Jimmy

    2014-05-31

    In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

  20. Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands

    SciTech Connect

    Castle, James W.; Molz, Fred W.; Bridges, Robert A.; Dinwiddie, Cynthia L.; Lorinovich, Caitlin J.; Lu, Silong

    2003-02-07

    This project involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field, California. Improved prediction of interwell reservoir heterogeneity was needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contained approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley.

  1. Detector response in time-of-flight mass spectrometry at high pulse repetition frequencies

    NASA Technical Reports Server (NTRS)

    Gulcicek, Erol E.; Boyle, James G.

    1993-01-01

    Dead time effects in chevron configured dual microchannel plates (MCPs) are investigated. Response times are determined experimentally for one chevron-configured dual MCP-type detector and two discrete dynode-type electron multipliers with 16 and 23 resistively divided stages. All of these detectors are found to be suitable for time-of-flight mass spectrometry (TOF MS), yielding 3-6-ns (FWHM) response times triggered on a single ion pulse. It is concluded that, unless there are viable solutions to overcome dead time disadvantages for continuous dynode detectors, suitable discrete dynode detectors for TOF MS appear to have a significant advantage for high repetition rate operation.

  2. Investigaction of Switching Behavior in a Ferroelectric Liquid Crystal Aligned on Obliquely Deposited SiO Films

    NASA Astrophysics Data System (ADS)

    Yamada, Yuichiro; Yamamoto, Norio; Inoue, Tetsuya; Orihara, Hiroshi; Ishibashi, Yoshihiro

    1989-01-01

    The effect of oblique evaporation of SiO on the chevron structure and the switching behavior in a ferroelectric liquid crystal have been investigated by means of the X-ray diffraction and the stroboscopic micrographs. It is found experimentally that the chevron direction and the domain structure appearing during the switching are determined by the direction of incidence of evaporated SiO. On the basis of the experimental results, it is clarified that the bow and the stern of the boat-shaped domain correspond to {+}2π and {-}2π internal disclinations, respectively. The structure of the zig-zag defect is determined.

  3. Lost Hills Field Trial - incorporating new technology for resevoir management

    NASA Technical Reports Server (NTRS)

    Fielding, E. J.; Brink, J. L.; Patzek, T. W.; Silin, D. B.

    2002-01-01

    This paper will discuss how Chevron U.S.A. Production Company is implementing a field trial that will use Supervisory Control and Data Acquisition (SCADA)on injection wells, in conjunction with satellite images to measure ground elevation changes, to perform real-time resevoir management in the Lost Hills Field.

  4. 75 FR 17431 - Notice of Availability of the Draft Environmental Impact Statement/Staff Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... 23, 2008 (73 FR 61902). The BLM held one public scoping meeting in Palm Desert, California, on... Assessment for the Chevron Energy Solutions/Solar Millennium (CESSM) Blythe Solar Power Plant (BSPP) and... for development of the proposed BSPP Project, consisting of four parabolic-trough solar thermal...

  5. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2005-01-01

    Efforts this quarter have concentrated on design of and planning for a 50 MM scf/d dehydration skid testing at ChevronTexaco's Headlee Gas Plant in Odessa, TX. Potting and module materials testing concluded. Construction of the bench-scale equipment continued. GTI has decreased the effort under this contract pending DOE's obligation of the total contract funding.

  6. 75 FR 66389 - Notice of Availability of the Record of Decision for the Blythe Solar Power Project and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... Bureau of Land Management Notice of Availability of the Record of Decision for the Blythe Solar Power... right-of-way (ROW) application CACA-048811 for the proposed Blythe Solar Power Project (BSPP). Chevron... solar generation facilities on public lands, requires that all sites associated with power generation...

  7. Advanced Subsonic Technology (AST) Separate-Flow High-Bypass Ratio Nozzle Noise Reduction Program Test Report

    NASA Technical Reports Server (NTRS)

    Low, John K. C.; Schweiger, Paul S.; Premo, John W.; Barber, Thomas J.; Saiyed, Naseem (Technical Monitor)

    2000-01-01

    NASA s model-scale nozzle noise tests show that it is possible to achieve a 3 EPNdB jet noise reduction with inwardfacing chevrons and flipper-tabs installed on the primary nozzle and fan nozzle chevrons. These chevrons and tabs are simple devices and are easy to be incorporated into existing short duct separate-flow nonmixed nozzle exhaust systems. However, these devices are expected to cause some small amount of thrust loss relative to the axisymmetric baseline nozzle system. Thus, it is important to have these devices further tested in a calibrated nozzle performance test facility to quantify the thrust performances of these devices. The choice of chevrons or tabs for jet noise suppression would most likely be based on the results of thrust loss performance tests to be conducted by Aero System Engineering (ASE) Inc. It is anticipated that the most promising concepts identified from this program will be validated in full scale engine tests at both Pratt & Whitney and Allied-Signal, under funding from NASA s Engine Validation of Noise Reduction Concepts (EVNRC) programs. This will bring the technology readiness level to the point where the jet noise suppression concepts could be incorporated with high confidence into either new or existing turbofan engines having short-duct, separate-flow nacelles.

  8. 77 FR 71668 - Andean Trade Preference Act (ATPA), as Amended: Notice Regarding the 2012 Annual Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... promulgated regulations (15 CFR part 2016) (68 FR 43922) regarding the review of eligibility of countries for... petitions (77 FR 47910). Chevron submitted information updating the petition it originally filed in 2004... period that the ATPA is in effect: Ecuador--Human Rights Watch Ecuador--U.S./Labor Education in...

  9. Improved zeolitic isocracking catalysts

    SciTech Connect

    Dahlberg, A.J.; Habib, M.M.; Moore, R.O.; Law, D.V.; Convery, L.J.

    1995-09-01

    Chevron Research Company introduced the first low pressure, low temperature catalytic hydrocracking process--ISOCRACKING--in 1959. Within the last four years, Chevron has developed and commercialized three new zeolitic ISOCRACKING catalysts. ICR 209 is Chevron`s latest noble metal ISOCRACKING catalyst. It offers improved liquid yield stability, longer life, and superior polynuclear aromatics control compared to its predecessor. ICR 209`s high hydrogenation activity generates the highest yields of superior quality jet fuel of any zeolitic ISOCRACKING catalyst. The second new ISOCRACKING catalyst, ICR 208, is a base metal catalyst which combines high liquid selectivity and high light naphtha octane in hydrocrackers operating for maximum naphtha production. ICR 210 is another new base metal catalyst which offers higher liquid yields and longer life than ICR 208 by virtue of a higher hydrogenation-to-acidity ratio. Both ICR 208 and ICR 210 have been formulated to provide higher liquid yield throughout the cycle and longer cycle length than conventional base metal/zeolite catalysts. This paper will discuss the pilot plant and commercial performances of these new ISOCRACKING catalysts.

  10. A Program of Leadership Development.

    ERIC Educational Resources Information Center

    Charitat, Mac

    1988-01-01

    The Chevron/Mayoral Fellowship program in New Orleans is described. The program provides private funding to support 30 selected high school students each summer in internships in city government agencies. Evaluation after three years has been positive and demonstrate the potential of a governmental/public/private educational program. (DB)

  11. Accelerated Schools Centers: How To Address Challenges to Institutionalization and Growth.

    ERIC Educational Resources Information Center

    Meza, James, Jr.

    The Accelerated Schools Project (ASP) at the University of New Orleans (UNO) was established in spring 1990, funded by a 3-year grant from Chevron. Beginning with 1 pilot school in 1991, the UNO Accelerated Schools Center has expanded to 36 schools representing 19 school districts in Louisiana and 3 schools from the Memphis City Schools district.…

  12. 75 FR 49486 - Environmental Impacts Statements; Notice Of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... accordance with Section 309(a) of the Clean Air Act, EPA is required to make its comments on EISs issued by.... 20100310, Final EIS, BLM, CA, Chevron Energy Solutions Lucerne Valley Solar Project, Proposing To Develop a...: 09/13/2010, Contact: Greg Thomsen, 951-697-5237. EIS No. 20100311, Draft EIS, NRC, FL, Levy...

  13. 76 FR 81761 - Mine Safety Disclosure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ...-9164, 34-63548 (December 15, 2010) [75 FR 80374] (the ``Proposing Release''). \\12\\ Public Law 111-203... existing XBRL rules is to facilitate financial analysis by investors, and therefore asserted that requiring... that the disclosure be tagged in XBRL.\\72\\ \\69\\ See letters from AngloGold, Chevron, Cleary, DGS...

  14. Morphology and molecular taxonomy of Evlachovaea-like fungi, and the status of this unusual conidial genus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The entomopathogenic anamorphic genus Evlachovaea was described to differ from other fungi in forming its conidia obliquely to the axis of the conidiogenous cell and with successive conidia having alternate orientations with a zipper- or chevron-like arrangement resulting in flat, ribbon-like chains...

  15. 75 FR 43960 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 1 July 16, 2010. Take notice that the Commission... Energy Company. Description: Chevron Coalinga Energy Co submits the Order No. 697 Compliance...

  16. DESIGN, FABRICATION AND BENCH TESTING OF A TEXACO INFRARED RATIO PYROMETER SYSTEM FOR THE MEASUREMENT OF GASIFIER REACTION CHAMBER TEMPERATURE

    SciTech Connect

    Thomas F. Leininger; Hua-Min Huang

    2004-01-01

    ChevronTexaco has shipped the pyrometer system to Tampa, Florida. Polk Power is in the process of installing the mechanical, electrical and instrumentation of the pyrometer system as well as integrating the instrumentation to the test site Distributed Control System. The startup and field testing of the system will begin afterwards.

  17. Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Choi, David; Rogers, John H.; Gierasch, Peter J.; Allison, Michael D.; Adamoli, Gianluigi; Mettig, Hans-Joerg

    2012-01-01

    A detailed study of the chevron-shaped dark spots on the strong southern equatorial wind jet near 7.5 S planetographic latitude shows variations in velocity with longitude and time. The presence of the large anticyclonic South Equatorial Disturbance (SED) has a profound effect on the chevron velocity, causing slower velocities to its east and accelerations over distance from the disturbance. The chevrons move with velocities near the maximum wind jet velocity of approx 140 m/s, as deduced by the history of velocities at this latitude and the magnitude of the symmetric wind jet near 7 N latitude. Their repetitive nature is consistent with a gravity-inertia wave (n = 75 to 100) with phase speed up to 25 m/s, relative to the local flow, but the identity of this wave mode is not well constrained. However, for the first time, high spatial resolution movies from Cassini images show that the chevrons oscillate in latitude with a 6.7 +/- 0.7-day period. This oscillating motion has a wavelength of approx 20 and a speed of 101 +/- 3 m/s, following a pattern similar to that seen in the Rossby wave plumes of the North Equatorial Zone, and possibly reinforced by it. All dates show chevron latitude variability, but it is unclear if this larger wave is present during other epochs, as there are no other suitable time series movies that fully delineate it. In the presence of mUltiple wave modes, the difference in dominant cloud appearance between 7 deg N and 7.5 deg S is likely due to the presence of the Great Red Spot, either through changes in stratification and stability or by acting as a wave boundary.

  18. Un Marco Abierto: Un Manual de Matematicas y Ciencas Utilizando Inteligencias Multiples Disenado para Estudiantes Bilingues de Educacion General y Especial (An Open Framework: A Math and Science Manual Utilizing Multiple Intelligences Designed for Bilingual Students in General and Special Education).

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Bilingual Education.

    This manual incorporates a Multiple Intelligences perspective into its presentation of themes and lesson ideas for Spanish-English bilingual elementary school students in grades 4-8 and is designed for both gifted and special education uses. Each unit includes practice activities, semantic maps to illustrate and help organize ideas as well as…

  19. Characterizing fluidic seals for on-board reagent delivery

    NASA Astrophysics Data System (ADS)

    Inamdar, Tejas; Anthony, Brian W.

    2013-03-01

    The reagent delivery mechanism in a point-of-care, HIV diagnostic, microfluidic device is studied. Reagents held in an aluminum blister pack are released on the opening of a fluidic seal. The fluidic seals, controlling the flow of reagents, are characterized to reduce anomalies in the desired flow pattern. The findings of this research can be divided into three categories - 1) bonding phenomenon 2) influence of seal pattern on flow and rupture mechanics and 3) process parameters which minimize flow anomalies. Four seal patterns - line hemisphere, line flat, chevron hemisphere and chevron flat were created and tested for reagent delivery using a flow sensor and a force gauge. Experiments suggest that one of the patterns - line-flat - inducted the fewest flow anomalies. A parameter scoping exercise of the seal manufacturing process parameters (temperature, time, pressure) was performed for the line flat seal. Temperature, time, pressure / gap and distance settings which minimize flow anomalies were found.

  20. New Approaches to Edge-Doping Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Rizzo, Daniel J.; Marangoni, Tomas; Cao, Ting; Nguyen, Giang D.; Tsai, Hsin-Zon; Omrani, Arash A.; Bronner, Christopher; Joshi, Trinity; Rodgers, Griffin F.; Choi, Won-Woo; Cloke, Ryan R.; Louie, Steven G.; Fischer, Felix R.; Crommie, Michael F.; Crommie Team; Fischer Team; Louie Team

    Graphene nanoribbons (GNRs) are narrow semiconducting strips of graphene that exhibit novel electronic and magnetic properties. New bottom-up fabrication techniques enable atomic-scale precision in GNR synthesis. The use of these techniques to reliably tune the position and size of GNR band gaps is an important challenge that also has relevance for the question of whether GNRs are viable for future nanotechnologies. We have used scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) to investigate how the geometry of heteroatom incorporation alters the electronic structure of bottom-up fabricated chevron-type GNRs. We find that the addition of nitrogen into the GNR edge via a five-membered ring yields a reduced band gap compared to the behavior of pristine, undoped chevron GNRs. Performed STM, STS, and nc-AFM measurements.

  1. Workers’ Liberty, Workers’ Welfare: The Supreme Court Speaks on the Rights of Disabled Employees

    PubMed Central

    Bayer, Ronald

    2003-01-01

    On June 10, 2002, a unanimous US Supreme Court rejected the claim by Mario Echazabal that he had been denied his rights under the Americans with Disabilities Act when Chevron USA had refused to employ him because he had hepatitis C. Chevron believed that Echazabal’s exposure to hepatotoxic chemicals in its refinery would pose a grave risk to his health. This case poses critical questions about the ethics of public health: When, if ever, is paternalism justified? Must choice always trump other values? What ought to be the balance between welfare and liberty? Strikingly, the groups that came to Echazabal’s defense adopted an antipaternalistic posture fundamentally at odds with the ethical foundations of occupational health and safety policy. PMID:12660193

  2. Brief: Optimizing slot usage on a minimum-facilities platform

    SciTech Connect

    Avocato, N.S.; Jackson, J.R.; Jones, I.G.; Murphy, S.J.

    1996-04-01

    The close-proximity well (CPW) project has enabled Chevron U.K. Ltd., to increase the number of well slots on the Alba northern platform (ANP) by more than 20% at minimum cost. Four slots on ANP were modified to accommodate 46-in.-OD caissons, each housing two 20,000-B/D wells. Conductor-slot sharing was identified as the preferred solution because it did not require any change to the basic well or wellhead system. The wellheads are only inches apart compared with the normal 8-ft separation, hence are called CPWs. The CPWs allow Chevron to drill 28 wells effectively and economically from a platform originally equipped with 24 slots.

  3. Transitioning from a pen-and-paper health risk appraisal to an online health risk appraisal at a petroleum company.

    PubMed

    Kashima, Sara R

    2006-10-01

    Chevron Texaco's Health and Medical Services Department made the decision to use existing technology and transition from a paper health risk appraisal (HRA) to an online questionnaire. A cross-functional team was formed and a year was spent researching online tools to find a vendor who could supply a product best suited to Chevron Texaco's employee workforce. The purpose of this article is to describe the evolution of a paper-based HRA to an online tool as well as describe the project scope and strategy that a team of employees used in selecting the vendor. The article also describes implementation successes, challenges, and lessons learned in using the online tool with an industrial workforce. The strategy that was followed in deploying the Web site along with initial participation rates for this group of industrial employees are described.

  4. New industrial heat pump applications to a petrochemical plant, Phase IIA: Final report

    SciTech Connect

    1995-12-31

    The purpose of this study was to evaluate the energy conservation potential of a heat pump in an industrial site. The proper placement of the heat pump was based on the principles of Pinch Technology. Chevron`s refinery at Port Arthur, Texas, was selected as the industrial site for this study. Two energy conservation options were identified for this site with a combined total savings of $570,000 per year. This represents over 10% reduction in current thermal energy consumption of the process units, which were part of this study. The details of each option are described. The first option was a passive heat integration scheme. The second option involves a semi-open cycle mechanical vapor recompression heat pump that compresses the steam generated from the reactor exhaust streams of the cyclohexane unit to provide part of the reboiling duty of the benzene column.

  5. A new approach to large area microchannel plate manufacture

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Methods of manufacture of twisted single elements as the base for producing microchannel plates (MCP) are discussed. Initial evaluations validated the off-axis channel concept and no technological roadblocks were identified which would prevent fabrication of high gain, high spatial resolution, large format MCP's using this technique. The first MP's have operated at stable gains of 3 million with pulse height resolution superior to results obtained by standard chevron MCP's.

  6. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2004-07-01

    Efforts this quarter have concentrated on design and planning for of a 50 MM scf/d dehydration skid testing at ChevronTexaco's Headlee Gas Plant in Odessa, TX. Potting and module materials testing continued. Construction of the bench-scale equipment continued. Additional funding to support the test was obtained through a contract with Research Partnership for Secure Energy for America. GTI has decreased the effort under this contract pending DOE's obligation of the total contract funding.

  7. American Avocet (Recurvirostra americana)

    USGS Publications Warehouse

    Ackerman, Joshua T.; Hartman, C. Alex; Herzog, Mark P.; Takekawa, John Y.; Robinson, Julie A.; Oring, Lewis W.; Skorupa, Joseph P.; Boettcher, Ruth; Edited by Poole, A.

    2013-01-01

    This large, striking shorebird with long bluish-gray legs, a long recurved bill, and a black-and-white chevron pattern on its back and wings is one of four Avocet species in the world, the only one with distinct breeding and non-breeding plumages -- its grayish-white head and neck feathers become cinnamon in early spring as birds begin to form pairs and migrate to breeding areas.

  8. Surface engineering of glazing materials and structures using plasma processes

    SciTech Connect

    Anders, Andre; Monteiro, Othon R.

    2003-04-10

    A variety of coatings is commercially produced on a very large scale, including transparent conducting oxides and multi-layer silver-based low-emissivity and solar control coatings. A very brief review of materials and manufacturing process is presented and illustrated by ultrathin silver films and chevron copper films. Understanding the close relation between manufacturing processes and bulk and surface properties of materials is crucial for film growth and self-assembly processes.

  9. Discovery Of A Rossby Wave In Jupiter's South Equatorial Region

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Choi, D. S.; Rogers, J. H.; Gierasch, P. J.

    2012-01-01

    A detailed study of the chevron-shaped dark spots on the strong southern equatorial wind jet near 7.5 deg S planetographic latitude shows variations in velocity with longitude and time. The chevrons move with velocities near the maximum wind jet velocity of approx.140 m/s, as deduced by the history of velocities at this latitude and the magnitude of the symmetric wind jet near 7 deg N latitude. Their repetitive nature is consistent with an inertia-gravity wave (n = 75-100) with phase speed up to 25 m/s, relative to the local flow, but the identity of this wave mode is not well constrained. However, high spatial resolution movies from Cassini images show that the chevrons oscillate in latitude with a approx.7-day period. This oscillating motion has a wavelength of approx.20 deg and a speed of approx.100 m/s, following a pattern similar to that seen in the Rossby wave plumes of the North Equatorial Zone, and possibly reinforced by it, though they are not perfectly in phase. The transient anticyclonic South Equatorial Disturbance (SED) may be a similar wave feature, but moves at slower velocity. All data show chevron latitude variability, but it is unclear if this Rossby wave is present during other epochs, without time series movies that fully delineate it. In the presence of multiple wave modes, the difference in dominant cloud appearance between 7 deg N and 7.5 deg S may be due to the presence of the Great Red Spot, either through changes in stratification and stability or by acting as a wave boundary.

  10. Deepwater completion and tieback -- A case study

    SciTech Connect

    Ghiselin, D.

    1996-10-01

    Major operators are engaged in large-scale integrated projects around the world. Does integration favor the big boys, or can a small independent operator benefit from this approach? Independent partners Hardy Oil and Gas USA and Samedan Oil Corp. looked into integrated project management to successfully design and install subsea completions, subsea pipelines, and platform tiebacks and interfaces to two platforms operated by Texaco and Chevron, respectively. The paper describes the project management approach taken and results of the project.

  11. Aesthetic lip splits.

    PubMed

    Hayter, J P; Vaughan, E D; Brown, J S

    1996-10-01

    Both upper and lower lip splits, usually with osteotomy of the underlying jaw, improve access to the deep structures of the head and neck. A simple modification to the midline lip split is to incorporate a chevron in both the peri-oral skin and vermilion margin. The advantages are: accurate wound closure, no straight line contracture and a broken line of the peri-oral scar. This improves the aesthetic result of the healed lip.

  12. Plate heat exchanger design theory

    NASA Astrophysics Data System (ADS)

    Shah, R. K.; Wanniarachchi, A. S.

    Plate heat exchangers are commonly used in hygienic applications as well as in chemical processing and other industrial applications. Pertinent information on plate exchangers from a designer's point of view is summarized to provide a basic insight into performance behavior of chevron plates. Basic design methods are presented and a method of coupling between heat transfer and pressure drop is introduced. A step by step design procedure for rating and sizing problems is outlined.

  13. Plastic plugbacks can extend oil and gas well productive life

    SciTech Connect

    Rice, R.T. )

    1991-11-01

    A high rate of successful water reduction has been documented in 21 plastic plugbacks performed on gravel-packed oil and gas well completions in the Gulf of Mexico. This electric wireline plugback method is unique because it is performed inside gravel pack assemblies, utilizing plastic instead of cement. This article presents a case study of field results from 21 jobs performed by Tenneco/Chevron.

  14. Chad: World Oil Report 1991

    SciTech Connect

    Not Available

    1991-08-01

    This paper reports on Mango 1, which is an exploration well started in September 1990 on a block adjacent to Lake Chad by Esso, Chevron and Shell was suspended after the coup in that nation's capital later in the year. The small Sedigi oil field, discovered in the 70s, will be developed with a pipeline to a 3,000-bpd refinery. Improved relations with Libya and future internal stability may further open the door to exploration.

  15. Systematic analysis of micromixers to minimize biofouling on reverse osmosis membranes.

    PubMed

    Altman, Susan J; McGrath, Lucas K; Jones, Howland D T; Sanchez, Andres; Noek, Rachel; Clem, Paul; Cook, Adam; Ho, Clifford K

    2010-06-01

    Micromixers, UV-curable epoxy traces printed on the surface of a reverse osmosis membrane, were tested on a cross-flow system to determine their success at reducing biofouling. Biofouling was quantified by measuring the rate of permeate flux decline and the median bacteria concentration on the surface of the membrane (as determined by fluorescence intensity counts due to nucleic acid stains as measured by hyperspectral imaging). The micromixers do not appear to significantly increase the pressure needed to maintain the same initial permeate flux and salt rejection. Chevrons helped prevent biofouling of the membranes in comparison with blank membranes. The chevron design controlled where the bacteria adhered to the membrane surface. However, blank membranes with spacers had a lower rate of permeate flux decline than the membranes with chevrons despite having greater bacteria concentrations on their surfaces. With better optimization of the micromixer design, the micromixers could be used to control where the bacteria will adhere to the surface and create a more biofouling resistant membrane that will help to drive down the cost of water treatment.

  16. AST Critical Propulsion and Noise Reduction Technologies for Future Commercial Subsonic Engines: Separate-Flow Exhaust System Noise Reduction Concept Evaluation

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Hoff, G. E.; Barter, J. W.; Martens, S.; Gliebe, P. R.; Mengle, V.; Dalton, W. N.; Saiyed, Naseem (Technical Monitor)

    2000-01-01

    This report describes the work performed by General Electric Aircraft Engines (GEAE) and Allison Engine Company (AEC) on NASA Contract NAS3-27720 AoI 14.3. The objective of this contract was to generate quality jet noise acoustic data for separate-flow nozzle models and to design and verify new jet-noise-reduction concepts over a range of simulated engine cycles and flight conditions. Five baseline axisymmetric separate-flow nozzle models having bypass ratios of five and eight with internal and external plugs and 11 different mixing-enhancer model nozzles (including chevrons, vortex-generator doublets, and a tongue mixer) were designed and tested in model scale. Using available core and fan nozzle hardware in various combinations, 28 GEAE/AEC separate-flow nozzle/mixing-enhancer configurations were acoustically evaluated in the NASA Glenn Research Center Aeroacoustic and Propulsion Laboratory. This report describes model nozzle features, facility and data acquisition/reduction procedures, the test matrix, and measured acoustic data analyses. A number of tested core and fan mixing enhancer devices and combinations of devices gave significant jet noise reduction relative to separate-flow baseline nozzles. Inward-flip and alternating-flip core chevrons combined with a straight-chevron fan nozzle exceeded the NASA stretch goal of 3 EPNdB jet noise reduction at typical sideline certification conditions.

  17. The influence of geometry on jet plume development

    NASA Astrophysics Data System (ADS)

    Xia, H.; Tucker, P. G.; Eastwood, S.; Mahak, M.

    2012-07-01

    Our recent efforts of using large-eddy simulation (LES) type methods to study complex and realistic geometry single stream and co-flow nozzle jets and acoustics are summarized in this paper. For the LES, since the solver being used tends towards having dissipative qualities, the subgrid scale (SGS) model is omitted, giving a numerical type LES (NLES). To overcome near wall streak resolution problems a near wall RANS (Reynolds averaged Navier-Stokes) model is smoothly blended in the LES making a hybrid RANS-NLES approach. Several complex nozzle geometries including the serrated (chevron) nozzle, realistic co-axial nozzles with eccentricity, pylon and wing-flap are discussed. The hybrid RANS-NLES simulations show encouraging predictions for the chevron jets. The chevrons are known to increase the high frequency noise at high polar angles, but decrease the low frequency noise at lower angles. The deflection effect of the potential core has an important mechanism of noise reduction. As for co-axial nozzles, the eccentricity, the pylon and the deployed wing-flap are shown to influence the flow development, especially the former to the length of potential core and the latter two having a significant impact on peak turbulence levels and spreading rates. The studies suggest that complex and real geometry effects are influential and should be taken into count when moving towards real engine simulations.

  18. Jet Noise Shielding Provided by a Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Brooks, Thomas F.; Burley, Casey L.; Bahr, Christopher J.; Pope, Dennis S.

    2014-01-01

    One approach toward achieving NASA's aggressive N+2 noise goal of 42 EPNdB cumulative margin below Stage 4 is through the use of novel vehicle configurations like the Hybrid Wing Body (HWB). Jet noise measurements from an HWB acoustic test in NASA Langley's 14- by 22-Foot Subsonic Tunnel are described. Two dual-stream, heated Compact Jet Engine Simulator (CJES) units are mounted underneath the inverted HWB model on a traversable support to permit measurement of varying levels of shielding provided by the fuselage. Both an axisymmetric and low noise chevron nozzle set are investigated in the context of shielding. The unshielded chevron nozzle set shows 1 to 2 dB of source noise reduction (relative to the unshielded axisymmetric nozzle set) with some penalties at higher frequencies. Shielding of the axisymmetric nozzles shows up to 6.5 dB of reduction at high frequency. The combination of shielding and low noise chevrons shows benefits beyond the expected additive benefits of the two, up to 10 dB, due to the effective migration of the jet source peak noise location upstream for increased shielding effectiveness. Jet noise source maps from phased array results processed with the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm reinforce these observations.

  19. A petroleum company's experience in implementing a comprehensive medical fitness for duty program for professional truck drivers.

    PubMed

    Kashima, Sara R

    2003-02-01

    Aggregate health risk appraisal data from Chevron Texaco's truck driver workforce revealed that approximately 50% of the truck drivers who completed a health risk appraisal were found to be at risk for a back injury. Lost time records revealed that this population had 65% more lost workdays attributed to cumulative trauma injuries compared with acute trauma injuries. Chevron Texaco addressed the issue by implementing a medical fitness for duty program consisting of three components: physical examination (physical examination mandated by the Department of Transportation and a functional capacity evaluation), education (on safe body mechanics), and physical fitness. After a 1-year development period, the fitness for duty program was implemented for Chevron Texaco's professional truck drivers in North America. In the first year of the program, 109 functional capacity evaluations were completed by trained clinicians, and 88% of candidates were found "able to work without restrictions," whereas 6% were found "able to work with caution." The article describes the program results to date, and also describes the follow-up program for drivers found to be at risk for a back injury.

  20. Tular Lake Field, Kings County, California - a significant onshore development

    SciTech Connect

    Lindblom, R.G.; Waldron, J.M.

    1985-04-01

    The Tulare Lake field is located in Kings County, California, on the west side of the San Joaquin Valley and 10 mi east of the Kettleman Hills (North Dome) field and 30 mi souuheast of the city of Coalinga. The field was discovered by Husky Oil Co. (Marathon) in October 1981 with the completion of the Boswell 22-16, Sec. 16, T22S, R20E from sands in the Burbank formation of Oligocene geologic age. Chevron USA offset the Husky discovery well with the completion of the Salyer 678X, Sec. 8, T22S, R20E, in May 1983. Both Chevron and Husky have continued an orderly development of the field, and to date Chevron has 9 producing wells and Husky 10 producing wells. Production is found in the Burbank formation at a vertical depth below 12,800 ft. The entrapment of hydrocarbons is caused by a low amplitude, seismically subtle, anticlinal fold trending northwest/southeast. Isochore maps of the Burbank formation show that stratigraphy is important in the distribution of the four producing sand intervals. Oil gravities form the sands vary 39/sup 0/ API to 51/sup 0/ API and the GOR ranges from 1050 to over 5500. As of January 1, 1984, the field has a cumulative production of 1.7 million bbl of oil and 3.5 billion ft/sup 3/ of gas.

  1. Full-scale flight tests of aircraft morphing structures using SMA actuators

    NASA Astrophysics Data System (ADS)

    Mabe, James H.; Calkins, Frederick T.; Ruggeri, Robert T.

    2007-04-01

    In August of 2005 The Boeing Company conducted a full-scale flight test utilizing Shape Memory Alloy (SMA) actuators to morph an engine's fan exhaust to correlate exhaust geometry with jet noise reduction. The test was conducted on a 777-300ER with GE-115B engines. The presence of chevrons, serrated aerodynamic surfaces mounted at the trailing edge of the thrust reverser, have been shown to greatly reduce jet noise by encouraging advantageous mixing of the free, and fan streams. The morphing, or Variable Geometry Chevrons (VGC), utilized compact, light weight, and robust SMA actuators to morph the chevron shape to optimize the noise reduction or meet acoustic test objectives. The VGC system was designed for two modes of operation. The entirely autonomous operation utilized changes in the ambient temperature from take-off to cruise to activate the chevron shape change. It required no internal heaters, wiring, control system, or sensing. By design this provided one tip immersion at the warmer take-off temperatures to reduce community noise and another during the cooler cruise state for more efficient engine operation, i.e. reduced specific fuel consumption. For the flight tests a powered mode was added where internal heaters were used to individually control the VGC temperatures. This enabled us to vary the immersions and test a variety of chevron configurations. The flight test demonstrated the value of SMA actuators to solve a real world aerospace problem, validated that the technology could be safely integrated into the airplane's structure and flight system, and represented a large step forward in the realization of SMA actuators for production applications. In this paper the authors describe the development of the actuator system, the steps required to integrate the morphing structure into the thrust reverser, and the analysis and testing that was required to gain approval for flight. Issues related to material strength, thermal environment, vibration

  2. Noise of Embedded High Aspect Ratio Nozzles

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2011-01-01

    A family of high aspect ratio nozzles were designed to provide a parametric database of canonical embedded propulsion concepts. Nozzle throat geometries with aspect ratios of 2:1, 4:1, and 8:1 were chosen, all with convergent nozzle areas. The transition from the typical round duct to the rectangular nozzle was designed very carefully to produce a flow at the nozzle exit that was uniform and free from swirl. Once the basic rectangular nozzles were designed, external features common to embedded propulsion systems were added: extended lower lip (a.k.a. bevel, aft deck), differing sidewalls, and chevrons. For the latter detailed Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) simulations were made to predict the thrust performance and to optimize parameters such as bevel length, and chevron penetration and azimuthal curvature. Seventeen of these nozzles were fabricated at a scale providing a 2.13 inch diameter equivalent area throat." ! The seventeen nozzles were tested for far-field noise and a few data were presented here on the effect of aspect ratio, bevel length, and chevron count and penetration. The sound field of the 2:1 aspect ratio rectangular jet was very nearly axisymmetric, but the 4:1 and 8:1 were not, the noise on their minor axes being louder than the major axes. Adding bevel length increased the noise of these nozzles, especially on their minor axes, both toward the long and short sides of the beveled nozzle. Chevrons were only added to the 2:1 rectangular jet. Adding 4 chevrons per wide side produced some decrease at aft angles, but increased the high frequency noise at right angles to the jet flow. This trend increased with increasing chevron penetration. Doubling the number of chevrons while maintaining their penetration decreased these effects. Empirical models of the parametric effect of these nozzles were constructed and quantify the trends stated above." Because it is the objective of the Supersonics Project that

  3. Evaluating GIS for establishing and monitoring environmental conditions of oil fields

    SciTech Connect

    Pfeil, R.W.; Ellis, J.W.

    1995-04-01

    Good management of an oil field and compliance with ever-increasing environmental regulations is enhanced by technologies that improve a company`s understanding of field/production facilities and environmental conditions that have occurred to both through time. In Nigeria, Kazakhstan, Indonesia, and offshore Cabinda, remote sensing, computer-aided drafting (CAD) and Global Positioning System (GPF) technologies have effectively been used by Chevron to provide accurate maps of facilities and to better understand environmental conditions. Together these proven technologies have provided a solid and cost-effective base for planning field operation, verifying well and seismic locations, and locating sampling sites. The end product of these technologies is often locations, and locating sampling sites. The end product of these technologies is often cartographic-quality hardcopy images and maps for use in the office and field. Chevron has been evaluating the capability of Geographical Information System (GIS) technology to integrate images, maps, and tabular data into a useful database that can help managers and workers better evaluate conditions in an oil field, plan new facilities, and monitor/predict trends (for example, of air emissions, groundwater, soil chemistry, subsidence, etc.). Remote sensing, CAD (if formatted properly), and GPS data can be integrated to establish the spatial or cartographic base of the GIS. A major obstacle to establishing a sophisticated GIS for an overseas operation is the initial cost of data collection and conversion from legacy data base management systems and hardcopy to appropriate digital format. However, Chevron routinely uses GIS for oil spill modeling and is now using GIS in the field for integrating GPS data with field observations and programs.

  4. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Final Technical Report

    SciTech Connect

    Verma, Puneet; Casey, Dan

    2011-03-29

    This report summarizes the work conducted under U.S. Department of Energy (US DOE) contract DE-FC36-04GO14286 by Chevron Technology Ventures (CTV, a division of Chevron U.S.A., Inc.), Hyundai Motor Company (HMC), and UTC Power (UTCP, a United Technologies company) to validate hydrogen (H2) infrastructure technology and fuel cell hybrid vehicles. Chevron established hydrogen filling stations at fleet operator sites using multiple technologies for on-site hydrogen generation, storage, and dispensing. CTV constructed five demonstration stations to support a vehicle fleet of 33 fuel cell passenger vehicles, eight internal combustion engine (ICE) vehicles, three fuel cell transit busses, and eight internal combustion engine shuttle busses. Stations were operated between 2005 and 2010. HMC introduced 33 fuel cell hybrid electric vehicles (FCHEV) in the course of the project. Generation I included 17 vehicles that used UTCP fuel cell power plants and operated at 350 bar. Generation II included 16 vehicles that had upgraded UTC fuel cell power plants and demonstrated options such as the use of super-capacitors and operation at 700 bar. All 33 vehicles used the Hyundai Tucson sports utility vehicle (SUV) platform. Fleet operators demonstrated commercial operation of the vehicles in three climate zones (hot, moderate, and cold) and for various driving patterns. Fleet operators were Southern California Edison (SCE), AC Transit (of Oakland, California), Hyundai America Technical Center Inc. (HATCI), and the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC, in a site agreement with Selfridge Army National Guard Base in Selfridge, Michigan).

  5. Mechanism of formation of wiggly compaction bands in porous sandstone: 2. Numerical simulation using discrete element method

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Pollard, David D.; Gu, Kai; Shi, Bin

    2015-12-01

    Wiggly compaction bands in porous aeolian sandstone vary from chevron shape to wavy shape to nearly straight. In some outcrops these variations occur along a single band. A bonded close-packed discrete element model is used to investigate what mechanical properties control the formation of wiggly compaction bands (CBs). To simulate the volumetric yielding failure of porous sandstone, a discrete element shrinks when the force state of one of its bonds reaches the yielding cap defined by the failure force and the aspect ratio (k) of the yielding ellipse. A Matlab code "MatDEM3D" has been developed on the basis of this enhanced discrete element method. Mechanical parameters of elements are chosen according to the elastic properties and the strengths of porous sandstone. In numerical simulations, the failure angle between the band segment and maximum principle stress decreases from 90° to approximately 45° as k increases from 0.5 to 2, and compaction bands vary from straight to chevron shape. With increasing strain, subsequent compaction occurs inside or beside compacted elements, which leads to further compaction and thickening of bands. The simulations indicate that a greater yielding stress promotes chevron CBs, and a greater cement strength promotes straight CBs. Combined with the microscopic analysis introduced in the companion paper, we conclude that the shape of wiggly CBs is controlled by the mechanical properties of sandstone, including the aspect ratio of the yielding ellipse, the critical yielding stress, and the cement strength, which are determined primarily by petrophysical attributes, e.g., grain sorting, porosity, and cementation.

  6. Impressions from Cassini

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Saturn's turbulent atmosphere is reminiscent of a Van Gogh painting in this view from Cassini. However, unlike the famous impressionist painter, Cassini records the world precisely as it appears to the spacecraft's cameras.

    The feathery band that cuts across from the upper left corner to the right side of this scene has a chevron, or arrow, shape near the right. The center of the chevron is located at the latitude (about 28 degrees South) of an eastward-flowing zonal jet in the atmosphere. Counter-flowing eastward and westward jets are the dominant dynamic features seen in the giant planet atmospheres. A chevron-shaped feature with the tip pointed east means that this is a local maximum in the eastward wind and a region of horizontal wind shear, where clouds to the north and south of the jet are being swept back by the slower currents on the sides of the jet.

    The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 6, 2005, at a distance of approximately 2.5 million kilometers (1.5 million miles) from Saturn using a filter sensitive to wavelengths of infrared light centered at 727 nanometers. The image scale is 14 kilometers (9 miles) per pixel.

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

    For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

  7. Noise Measurements of High Aspect Ratio Distributed Exhaust Systems

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2015-01-01

    This paper covers far-field acoustic measurements of a family of rectangular nozzles with aspect ratio 8, in the high subsonic flow regime. Several variations of nozzle geometry, commonly found in embedded exhaust systems, are explored, including bevels, slants, single broad chevrons and notches, and internal septae. Far-field acoustic results, presented previously for the simple rectangular nozzle, showed that increasing aspect ratio increases the high frequency noise, especially directed in the plane containing the minor axis of the nozzle. Detailed changes to the nozzle geometry generally made little difference in the noise, and the differences were greatest at low speed. Having an extended lip on one broad side (bevel) did produce up to 3 decibels more noise in all directions, while extending the lip on the narrow side (slant) produced up to 2 decibels more noise, primarily on the side with the extension. Adding a single, non-intrusive chevron, made no significant change to the noise, while inverting the chevron (notch) produced up to 2decibels increase in the noise. Having internal walls (septae) within the nozzle, such as would be required for structural support or when multiple fan ducts are aggregated, reduced the noise of the rectangular jet, but could produce a highly directional shedding tone from the septae trailing edges. Finally, a nozzle with both septae and a beveled nozzle, representative of the exhaust system envisioned for a distributed electric propulsion aircraft with a common rectangular duct, produced almost as much noise as the beveled nozzle, with the septae not contributing much reduction in noise.

  8. Noise Measurements of High Aspect Ratio Distributed Exhaust Systems

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2015-01-01

    This paper covers far-field acoustic measurements of a family of rectangular nozzles with aspect ratio 8, in the high subsonic flow regime. Several variations of nozzle geometry, commonly proposed for embedded exhaust systems, are explored, including bevels, slants, single broad chevrons and notches, and internal septae. Far-field acoustic results, presented previously for the simple rectangular nozzle, showed that increasing aspect ratio increases the high frequency noise, especially directed in the plane containing the minor axis of the nozzle. Detailed changes to the nozzle geometry generally made little difference in the noise, and the differences were greatest at low speed. Having an extended lip on one broad side ('bevel') did produce up to 3dB more noise in all directions, while extending the lip on the narrow side ('slant') produced up to 2dB more noise, primarily on the side with the extension. Adding a single, non-intrusive chevron, made no significant change to the noise, while inverting the chevron ('notch') produced up to 2dB increase in the noise. Having internal walls ('septae') within the nozzle, such as would be required for structural support or when multiple fan ducts are aggregated, reduced the noise of the rectangular jet, but could produce a highly directional shedding tone from the septae trailing edges. Finally, a nozzle with both septae and a beveled nozzle, representative of the exhaust system envisioned for a distributed propulsion aircraft with a common rectangular duct, produced almost as much noise as the beveled nozzle, with the septae not contributing much reduction in noise.

  9. Joint environmental assessment for western NPR-1 3-dimensional seismic project at Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect

    1996-05-01

    The Department of Energy (DOE), in conjunction with the Bureau of Land Management (BLM), has prepared an Environmental Assessment (DOE/EA-1124) to identify and evaluate the potential environmental impacts of the proposed geophysical seismic survey on and adjacent to the Naval Petroleum Reserve No.1 (NPR-1), located approximately 35 miles west of Bakersfield, California. NPR-1 is jointly owned and operated by the federal government and Chevron U.S.A. Production Company. The federal government owns about 78 percent of NPR-1, while Chevron owns the remaining 22 percent. The government`s interest is under the jurisdiction of DOE, which has contracted with Bechtel Petroleum Operations, Inc. (BPOI) for the operation and management of the reserve. The 3-dimensional seismic survey would take place on NPR-1 lands and on public and private lands adjacent to NPR-1. This project would involve lands owned by BLM, California Department of Fish and Game (CDFG), California Energy Commission (CEC), The Nature Conservancy, the Center for Natural Lands Management, oil companies (Chevron, Texaco, and Mobil), and several private individuals. The proposed action is designed to provide seismic data for the analysis of the subsurface geology extant in western NPR-1 with the goal of better defining the commercial limits of a currently producing reservoir (Northwest Stevens) and three prospective hydrocarbon bearing zones: the {open_quotes}A Fan{close_quotes} in Section 7R, the 19R Structure in Section 19R, and the 13Z Structure in Section 13Z. Interpreting the data is expected to provide NPR-1 owners with more accurate locations of structural highs, faults, and pinchouts to maximize the recovery of the available hydrocarbon resources in western NPR-1. Completion of this project is expected to increase NPR-1 recoverable reserves, and reduce the risks and costs associated with further exploration and development in the area.

  10. Point-Connecting Measurements of the Hallux Valgus Deformity: A New Measurement and Its Clinical Application

    PubMed Central

    Seo, Jeong-Ho; Boedijono, Dimas

    2016-01-01

    Purpose The aim of this study was to investigate new point-connecting measurements for the hallux valgus angle (HVA) and the first intermetatarsal angle (IMA), which can reflect the degree of subluxation of the first metatarsophalangeal joint (MTPJ). Also, this study attempted to compare the validity of midline measurements and the new point-connecting measurements for the determination of HVA and IMA values. Materials and Methods Sixty feet of hallux valgus patients who underwent surgery between 2007 and 2011 were classified in terms of the severity of HVA, congruency of the first MTPJ, and type of chevron metatarsal osteotomy. On weight-bearing dorsal-plantar radiographs, HVA and IMA values were measured and compared preoperatively and postoperatively using both the conventional and new methods. Results Compared with midline measurements, point-connecting measurements showed higher inter- and intra-observer reliability for preoperative HVA/IMA and similar or higher inter- and intra-observer reliability for postoperative HVA/IMA. Patients who underwent distal chevron metatarsal osteotomy (DCMO) had higher intraclass correlation coefficient for inter- and intra-observer reliability for pre- and post-operative HVA and IMA measured by the point-connecting method compared with the midline method. All differences in the preoperative HVAs and IMAs determined by both the midline method and point-connecting methods were significant between the deviated group and subluxated groups (p=0.001). Conclusion The point-connecting method for measuring HVA and IMA in the subluxated first MTPJ may better reflect the severity of a HV deformity with higher reliability than the midline method, and is more useful in patients with DCMO than in patients with proximal chevron metatarsal osteotomy. PMID:26996576

  11. Active Flow Effectors for Noise and Separation Control

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2011-01-01

    New flow effector technology for separation control and enhanced mixing is based upon shape memory alloy hybrid composite (SMAHC) technology. The technology allows for variable shape control of aircraft structures through actively deformable surfaces. The flow effectors are made by embedding shape memory alloy actuator material in a composite structure. When thermally actuated, the flow effector def1ects into or out of the flow in a prescribed manner to enhance mixing or induce separation for a variety of applications, including aeroacoustic noise reduction, drag reduction, and f1ight control. The active flow effectors were developed for noise reduction as an alternative to fixed-configuration effectors, such as static chevrons, that cannot be optimized for airframe installation effects or variable operating conditions and cannot be retracted for off-design or fail-safe conditions. Benefits include: Increased vehicle control, overall efficiency, and reduced noise throughout all f1ight regimes, Reduced flow noise, Reduced drag, Simplicity of design and fabrication, Simplicity of control through direct current stimulation, autonomous re sponse to environmental heating, fast re sponse, and a high degree of geometric stability. The concept involves embedding prestrained SMA actuators on one side of the chevron neutral axis in order to generate a thermal moment and def1ect the structure out of plane when heated. The force developed in the host structure during def1ection and the aerodynamic load is used for returning the structure to the retracted position. The chevron design is highly scalable and versatile, and easily affords active and/or autonomous (environmental) control. The technology offers wide-ranging market applications, including aerospace, automotive, and any application that requires flow separation or noise control.

  12. Fischer-Tropsch fuel for use by the U.S. military as battlefield-use fuel of the future

    SciTech Connect

    Delanie Lamprecht

    2007-06-15

    The United States Department of Defense (DoD) has been interested in low-sulfur, environmentally cleaner Fischer-Tropsch (FT) fuels since 2001 because they want to be less dependent upon foreign crude oil and ensure the security of the supply. A three-phase Joint Battlefield-Use Fuel of the Future (BUFF) program was initiated to evaluate, demonstrate, certify, and implement turbine fuels produced from alternative energy resources for use in all of its gas turbine and diesel engine applications. Sasol Synfuels International (Pty) Ltd. and Sasol Chevron Holdings Ltd., among others, were invited to participate in the program with the objective to supply the DoD with a FT BUFF that conforms to Jet Propulsion 8 (JP-8) and JP-5 fuel volatility and low-temperature fluidity requirements. Although the DoD is more interested in coal-to-liquid (CTL) technology, the product from a gas-to-liquid (GTL) Products Work-Up Demonstration Unit in Sasolburg, South Africa, was used to evaluate (on a bench scale) the possibility of producing a BUFF fraction from the Sasol Slurry Phase Distillate (Sasol SPD) low-temperature FT (LTFT) process and Chevron Isocracking technology. It was concluded from the study that the production of a synthetic FT BUFF is feasible using the Sasol SPD LTFT technology together with the current Chevron isocracking technology. The product yield for a BUFF conforming to JP-8 requirements is 30 vol % of the fractionator feed, whereas the product yield for a BUFF conforming to the JP-5 volatility requirement is slightly less than 22 vol % of the fractionator feed. Also concluded from the study was that the end point of the Sasol SPD LTFT BUFF will be restricted by the freezing point requirement of the DoD and not the maximum viscosity requirement. One would therefore need to optimize the hydrocracking process conditions to increase the Sasol SPD LTFT BUFF product yield. 16 refs., 8 figs., 6 tabs.

  13. A partnership in upstream HSE technology transfer

    SciTech Connect

    Olszewski, R.E. Wahjosoedibjo, A.S.; Hunley, M.; Peargin, J.C.

    1996-11-01

    The oil and gas industry was for nearly two decades the dominant force in the Indonesian economy and the single largest contributor to the nation`s development. Because of the success of Indonesia`s long-term development and diversification program, this once-dominant sector today occupies a more equal but still vital position in a better-balanced economy. The Indonesian government understands the danger to the environment posed by rapid industrial expansion and has enacted laws and regulations to ensure the sustainable development of its resources while protecting its rain forest environment. In 1992, the government oil company approached Chevron and Texaco for assistance in training its Health, Safety, and Environment (HSE) professionals. The upstream environment, health and safety training program was developed to transfer HSE knowledge and technology to PERTAMINA, PT Caltex Pacific Indonesia, a C&T affiliate, and indirectly, to the entire Indonesian oil and gas industry and government ministries. The four companies have demonstrated the effectiveness of a partnership approach in developing and carrying out HSE training. During 1994 and 1995, four groups, each consisting of about twenty representatives from PERTAMINA, the Directorate of Oil and Gas (MIGAS), the Indonesian Environmental Impact Management Agency (BAPEDAL), CPI, and Chevron and Texaco worldwide subsidiaries, traveled to the United States for an intensive four-month program of study in HSE best practices and technology conducted by Chevron and Texaco experts. This paper describes the development and realization of The PERTAMINA/CPI Health, Safety and Environment Training Program, outlines subjects covered and explains the methodology used to ensure the effective transfer of HSE knowledge and technology. The paper also offers an evaluation of the sessions and presents the plans developed by participant-teams for follow up on their return to Indonesia.

  14. Clackamas 4800-foot thermal gradient hole: Cascade geothermal drilling: Final technical report

    SciTech Connect

    Iovenitti, J.L.; D'Olier, W.L.

    1987-09-30

    Thermal Power Company (Thermal) completed a thermal gradient hole to about 5000 feet (1524 m) total depth in Section 28, Township 8 South, Range 8 East, Willamette Meridian, Marion County, Oregon. The objective was to obtain data for the characterization of the deep hydrothermal regime in the Cascades volcanic region in order to better define its geothermal resource potential. The depth and location of the thermal gradient hole were designed by Thermal to test the basis of the Clackamas geothermal system exploration model developed by Chevron Resources Company.

  15. Results at Mallik highlight progress in gas hydrate energy resource research and development

    USGS Publications Warehouse

    Collett, T.S.

    2005-01-01

    The recent studies that project the role of gas hydrates in the future energy resource management are reviewed. Researchers have long speculated that gas hydrates could eventually be a commercial resource for the future. A Joint Industry Project led by ChevronTexaco and the US Department of Energy is designed to characterize gas hydrates in the Gulf of Mexico. Countries including Japan, canada, and India have established large gas hydrate research and development projects, while China, Korea and Mexico are investigating the viability of forming government-sponsored gas hydrate research projects.

  16. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2004-10-01

    Efforts this quarter have concentrated on design and planning for of a 50 MM scf/d dehydration skid testing at ChevronTexaco's Headlee Gas Plant in Odessa, TX. Potting and module materials testing concluded. Construction of the bench-scale equipment continued and a pre-engineering study on a subsea application of the technology was performed cofunded contracts with Research Partnership for Secure Energy for America and Gas Research Institute. GTI has decreased the effort under this contract pending DOE's obligation of the total contract funding.

  17. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2004-04-01

    Efforts this quarter have concentrated on field site selection. ChevronTexaco has signed a contract with Kvaerner process Systems for the 50 MM scf/d dehydration skid at their Headlee Gas Plant in Odessa, TX for a commercial-scale test. This will allow the test to go forth. A new test schedule was established with testing beyond the existing contract completion date. Potting and module materials testing continued. Construction of the bench-scale equipment was started. Additional funding to support the test was obtained through a contract with Research Partnership for Secure Energy for America.

  18. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2004-01-01

    Efforts this quarter have concentrated on field site selection. ChevronTexaco has signed a contract with Kvaerner process Systems for the 50 MM scf/d dehydration skid at their Headlee Gas Plant in Odessa, TX for a commercial-scale test. This will allow the test to go forth. A new test schedule was established with testing beyond the existing contract completion date. Potting and module materials testing continued. Construction of the bench-scale equipment was started. Additional funding to support the test was obtained through a contract with Research Partnership for Secure Energy for America.

  19. San Diego Gas and Electric Company Imperial Valley geothermal activities

    NASA Technical Reports Server (NTRS)

    Hinrichs, T. C.

    1974-01-01

    San Diego Gas and Electric and its wholly owned subsidiary New Albion Resources Co. have been affiliated with Magma Power Company, Magma Energy Inc. and Chevron Oil Company for the last 2-1/2 years in carrying out geothermal research and development in the private lands of the Imperial Valley. The steps undertaken in the program are reviewed and the sequence that must be considered by companies considering geothermal research and development is emphasized. Activities at the south end of the Salton Sea and in the Heber area of Imperial Valley are leading toward development of demonstration facilities within the near future. The current status of the project is reported.

  20. New mud gas trap allows continuous formation fluid evaluation

    SciTech Connect

    1996-08-01

    Advanced reservoir evaluation applications and other advantages of a new technique for more accurately measuring gas in drilling mud (mud logging) have been proven. The Quantitative Gas Measurement (QGM) System, patented by Texaco and the Gas Research Institute (GRI), is now available through more than 40 licensed companies. Multiple tests have been conducted, as documented in three technical papers. And Chevron has reported positive success with the system in several development projects. This paper gives a brief summary of the background and design of this system.

  1. Venezuelan projects advance to develop world`s largest heavy oil reserves

    SciTech Connect

    Croft, G.; Stauffer, K.

    1996-07-08

    A number of joint venture projects at varying stages of progress promise to greatly increase Venezuela`s production of extra heavy oil. Units of Conoco, Chevron, Total, Arco, and Mobil have either signed agreements or are pursuing negotiations with affiliates of state-owned Petroleos de Venezuela SA on the development of huge reserves of 8--10{degree} gravity crude. Large heavy oil resources are present in the oil producing areas of eastern and western Venezuela, and the largest are in eastern Venezuela`s Orinoco heavy oil belt. The paper discusses the Orinoco heavy oil belt geology and several joint ventures being implemented.

  2. Propulsion Airframe Aeroacoustic Integration Effects for a Hybrid Wing Body Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Czech, Michael J.; Thomas, Russell H.; Elkoby, Ronen

    2010-01-01

    An extensive experimental investigation was performed to study the propulsion airframe aeroacoustic effects of a high bypass ratio engine for a hybrid wing body aircraft configuration where the engine is installed above the wing. The objective was to provide an understanding of the jet noise shielding effectiveness as a function of engine gas condition and location as well as nozzle configuration. A 4.7% scale nozzle of a bypass ratio seven engine was run at characteristic cycle points under static and forward flight conditions. The effect of the pylon and its orientation on jet noise was also studied as a function of bypass ratio and cycle condition. The addition of a pylon yielded significant spectral changes lowering jet noise by up to 4dB at high polar angles and increasing it by 2 to 3dB at forward angles. In order to assess jet noise shielding, a planform representation of the airframe model, also at 4.7% scale was traversed relative to the jet nozzle from downstream to several diameters upstream of the wing trailing edge. Installations at two fan diameters upstream of the wing trailing edge provided only limited shielding in the forward arc at high frequencies for both the axisymmetric and a conventional round nozzle with pylon. This was consistent with phased array measurements suggesting that the high frequency sources are predominantly located near the nozzle exit and, consequently, are amenable to shielding. The mid to low frequencies sources were observed further downstream and shielding was insignificant. Chevrons were designed and used to impact the distribution of sources with the more aggressive design showing a significant upstream migration of the sources in the mid frequency range. Furthermore, the chevrons reduced the low frequency source levels and the typical high frequency increase due to the application of chevron nozzles was successfully shielded. The pylon was further modified with a technology that injects air through the shelf of the

  3. Analysis of the new GCFR upper and lower plenum flow-through shields

    SciTech Connect

    Cramer, S.N.; Reed, D.A.; Emmett, M.B.; Rouse, C.A.

    1980-09-14

    Analysis of the proposed GCFR upper and lower plenum flow-through shields has been performed using both discrete ordinate (DOT) and Monte Carlo (MORSE) methods. Several shields having one change of direction in the coolant path (chevron) and two changes of direction (herringbone) were investigated. The shields were modeled as unit cells with periodic boundary conditions. From plenum fluence calculations and design constraints at the reactor vessel liner, it was determined that all the shield configurations analyzed should be adequate for the necessary radiation attenuation.

  4. MEMS Calculator

    National Institute of Standards and Technology Data Gateway

    SRD 166 MEMS Calculator (Web, free access)   This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.

  5. Cogels -- A unique family of Isocracking catalysts

    SciTech Connect

    Bridge, A.G. ); Cash, D.R.; Mayer, J.F. )

    1993-01-01

    The Chevron Isocracking Process has been developed to efficiently convert heavy feedstocks into good quality middle distillates and lube oil basestocks. This has been demonstrated in many commercial plants which have employed a family of unique cogel Isocracking catalysts. The Isocracking technology has been tailored to meet specific customer needs and has been integrated in many complex refining schemes. This paper summarizes this experience and illustrates some of the benefits which these catalysts offer over competitive hydrocracking processes, e.g., lower capital investment, higher desired product yields, better cold flow properties and better control of polynuclear aromatic formation.

  6. Microalgal Production of Jet Fuel: Cooperative Research and Development Final Report, CRADA Number CRD-07-208

    SciTech Connect

    Jarvis, E. E.; Pienkos, P. T.

    2012-06-01

    Microalgae are photosynthetic microorganisms that can use CO2 and sunlight to generate the complex biomolecules necessary for their survival. These biomolecules include energy-rich lipid compounds that can be converted using existing refinery equipment into valuable bio-derived fuels, including jet fuel for military and commercial use. Through a dedicated and thorough collaborative research, development and deployment program, the team of the National Renewable Energy Laboratory (NREL) and Chevron will identify a suitable algae strain that will surpass the per-acre biomass productivity of terrestrial plant crops.

  7. Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet

    NASA Technical Reports Server (NTRS)

    Simon-Miller, A. A.; Rogers, John H.; Gierasch, Peter J.; Choi, David; Allison, Michael; Adamoli, Gianluigi; Mettig, Hans-Joerg

    2012-01-01

    We have conducted a detailed study of the cloud features in the strong southern equatorial wind jet near 7.5 S planetographic latitude. To understand the apparent variations in average zonal wind jet velocity at this latitude [e.g.. 1,2,3], we have searched for variations iIi both feature latitude and velocity with longitude and time. In particular, we focused on the repetitive chevron-shaped dark spots visible on most dates and the more transient large anticyclonic system known as the South Equatorial Disturbance (SED). These small dark spots are interpreted as cloud holes, and are often used as material tracers of the wind field.

  8. Performance of Boeing LRV wheels in a lunar soil simulant. Report 1: Effect of wheel design and soil

    NASA Technical Reports Server (NTRS)

    Green, A. J.; Melzer, K.

    1971-01-01

    Six versions of the wire mesh wheel were laboratory tested in a lunar soil simulant, consisting of a crushed basalt with a grainsize distribution similar to that of samples collected during Apollo 11 and 12 flights, to determine their relative performance. The consistency of the soil was varied to cover a range of cohesive and frictional properties to simulate soil conditions assumed to exist on the moon. Programmed-slip and constant-slip tests conducted with the single wheel dynamometer system showed that the performance of the wheel covered with a metal chevron tread over 50 percent of its contact surface was slightly superior to that of other tread designs.

  9. Numerical simulation of a three-dimensional wall separation

    NASA Astrophysics Data System (ADS)

    Billet, G.

    1980-09-01

    A three-dimensional unsteady separated flow over a step having a chevron planform placed in a channel, bounded by vertical walls is studied using a numerical approach in which the walls are replaced by a surface distribution of quadrilateral vortex rings, and the vortex sheet by a discrete vortex volumic distribution. It is shown that various improvements brought to the method, in particular concerning the vorticity emission mechanism and the interactions between the vortex-sheets and the wall, allow to describe correctly the time-evolution of the vortex-sheets and to obtain numerical results in good agreement with experiment.

  10. Numerical simulation of a three-dimensional wall separation

    NASA Astrophysics Data System (ADS)

    Billet, G.

    1980-08-01

    A three-dimensional unsteady separated flow over a step having a chevron planform placed in a channel, bounded by vertical walls is studied using a numerical approach in which the walls are replaced by a surface distribution of quadrilateral vortex rings, and the vortex sheet by a discrete vortex volumic distribution. It is shown that various improvements brought to the method, in particular concerning the vorticity emission mechanism and the interactions between the vortex-sheets and the wall, allow to describe correctly the time-evolution of the vortex-sheets and to obtain numerical results in good agreement with experiment.

  11. Numerical simulation of a three dimensional wall separation

    NASA Astrophysics Data System (ADS)

    Billet, G.

    1981-03-01

    A three dimensional unsteady separated flow over a step having a chevron planform in a channel, bounded by vertical walls was studied. A numerical approach was used in which the walls are replaced by a surface distribution of quadrilateral vortex rings, and the vortex sheet by a discrete vortex volumic distribution. It is shown that the vorticity emission mechanism and the interactions between the vortex sheets and the wall, allow a correct description of the time evolution of the vortex sheets and show numerical results in good agreement with experiment.

  12. Propulsion Airframe Aeroacoustic Integration Effects for a Hybrid Wing Body Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Czech, Michael J.; Thomas, Russell H; Elkoby, Ronen

    2012-01-01

    An extensive experimental investigation was performed to study the propulsion airframe aeroacoustic effects of a high bypass ratio engine for a hybrid wing body aircraft configuration where the engine is installed above the wing. The objective was to provide an understanding of the jet noise shielding effectiveness as a function of engine gas condition and location as well as nozzle configuration. A 4.7% scale nozzle of a bypass ratio seven engine was run at characteristic cycle points under static and forward flight conditions. The effect of the pylon and its orientation on jet noise was also studied as a function of bypass ratio and cycle condition. The addition of a pylon yielded significant spectral changes lowering jet noise by up to 4 dB at high polar angles and increasing it by 2 to 3 dB at forward angles. In order to assess jet noise shielding, a planform representation of the airframe model, also at 4.7% scale was traversed such that the jet nozzle was positioned from downstream of to several diameters upstream of the airframe model trailing edge. Installations at two fan diameters upstream of the wing trailing edge provided only limited shielding in the forward arc at high frequencies for both the axisymmetric and a conventional round nozzle with pylon. This was consistent with phased array measurements suggesting that the high frequency sources are predominantly located near the nozzle exit and, consequently, are amenable to shielding. The mid to low frequency sources were observed further downstream and shielding was insignificant. Chevrons were designed and used to impact the distribution of sources with the more aggressive design showing a significant upstream migration of the sources in the mid frequency range. Furthermore, the chevrons reduced the low frequency source levels and the typical high frequency increase due to the application of chevron nozzles was successfully shielded. The pylon was further modified with a technology that injects air

  13. Relaxation rate for an ultrafast folding protein is independent of chemical denaturant concentration.

    PubMed

    Cellmer, Troy; Henry, Eric R; Kubelka, Jan; Hofrichter, James; Eaton, William A

    2007-11-28

    The connection between free-energy surfaces and chevron plots has been investigated in a laser temperature jump kinetic study of a small ultrafast folding protein, the 35-residue subdomain from the villin headpiece. Unlike all other proteins that have been studied so far, no measurable dependence of the unfolding/refolding relaxation rate on denaturant concentration was observed over a wide range of guanidinium chloride concentration. Analysis with a simple Ising-like theoretical model shows that this denaturant-invariant relaxation rate can be explained by a large movement of the major free energy barrier, together with a denaturant- and reaction coordinate-dependent diffusion coefficient.

  14. Nigeria`s Escravos gas project starts up

    SciTech Connect

    Nwokoma, M.

    1998-04-20

    Nigeria`s Escravos gas project, Delta state, officially began late last year. The project -- 6,650 b/d of LPG and 1,740 b/d of condensate from 165 MMscfd of gas -- is the first attempt to rid Nigeria of incessant flares that have lit the Delta skies. Operator Chevron Nigeria Ltd. believes that the Escravos project will enable the joint venture to utilize a significant portion of the gas reserves, thus reducing gas flaring. The paper describes the background of the project, the gas fields, transport pipeline, process design, construction, and start-up.

  15. Program for the improvement of downhole drilling motor bearings and seals. Phase V. Final report

    SciTech Connect

    DeLafosse, P.H.; Tibbitts, G.A.; Black, A.D.; DiBona, B.G.

    1983-08-01

    The work done during the fifth and final phase of a program to improve downhole drilling motor bearing and seals is described. The principal activities in this phase were: (a) testing seals with abrasive-laden mud on the low-pressure side; (b) test second and third generation designs of both elastomeric chevron seals and Teflon U-seals; and (c) testing a full-scale bearing/seal package. Several operating parameters which have a radical effect on seal life were identified, and some promising designs and materials were tested.

  16. Soft x-ray pinhole imaging diagnostics for compact toroid plasmas

    NASA Astrophysics Data System (ADS)

    Crawford, E. A.; Taggart, D. P.; Bailey, A. D., III

    1990-10-01

    Soft x-ray pinhole imaging has recently become established as a valuable diagnostic for visualization of field reversed configuration (FRC) plasmas in the TRX-2, FRX-C/LSM devices. Gated MCP image converter devices with CsI cathodes and Be filters with a peak response around 11 nm wavelength are used for exposure durations ranging from a few tenths up to several microseconds. Results of experiments with single and Chevron channel plates are discussed along with estimates of linear exposure limitations with both film and CCD cameras as recording media. Plans for multiframe devices on the FRX-C/LSM and the LSX devices are also discussed.

  17. Cumulative sperm whale bone damage and the bends.

    PubMed

    Moore, Michael J; Early, Greg A

    2004-12-24

    Diving mosasaurs, plesiosaurs, and humans develop dysbaric osteonecrosis from end-artery nitrogen embolism ("the bends") in certain bones. Sixteen sperm whales from calves to large adults showed a size-related development of osteonecrosis in chevron and rib bone articulations, deltoid crests, and nasal bones. Occurrence in animals from the Pacific and Atlantic oceans over 111 years made a pathophysiological diagnosis of dysbarism most likely. Decompression avoidance therefore may constrain diving behavior. This suggests why some deep-diving mammals show periodic shallow-depth activity and why gas emboli are found in animals driven to surface precipitously by acoustic stressors such as mid-frequency sonar systems.

  18. 4. International reservoir characterization technical conference

    SciTech Connect

    1997-04-01

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  19. DEEP STEAM project. Quarterly report, January 1-March 31, 1980

    SciTech Connect

    Donaldson, A.B.; Fox, R.L.; Clay, R.G.; Eisenhawer, S.W.; Johnson, D.R.; Lyle, W.D.; Mulac, A.J.

    1980-10-01

    The objective of the DEEP STEAM Project is to develop the technology of steam delivery to the sand face, for the economic production of heavy oil from deep reservoirs. The accomplishments attained during this reporting period include: (1) completion of simulation testing of high pressure combustion downhole generator and support system for initial field test, (2) commencement of initial field test in Kern River Field, Bakersfield, CA, in cooperation with Chevron, USA, and (3) completion of site preparation for injection string insulation field test in Aberfeldy field, Lloydminster, Canada, in cooperation with Husky Oil Co.

  20. Development of a Jet Noise Prediction Method for Installed Jet Configurations

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Thomas, Russell H.

    2003-01-01

    This paper describes development of the Jet3D noise prediction method and its application to heated jets with complex three-dimensional flow fields and installation effects. Noise predictions were made for four separate flow bypass ratio five nozzle configurations tested in the NASA Langley Jet Noise Laboratory. These configurations consist of a round core and fan nozzle with and without pylon, and an eight chevron core nozzle and round fan nozzle with and without pylon. Predicted SPL data were in good agreement with experimental noise measurements up to 121 inlet angle, beyond which Jet3D under predicted low frequency levels. This is due to inherent limitations in the formulation of Lighthill's Acoustic Analogy used in Jet3D, and will be corrected in ongoing development. Jet3D did an excellent job predicting full scale EPNL for nonchevron configurations, and captured the effect of the pylon, correctly predicting a reduction in EPNL. EPNL predictions for chevron configurations were not in good agreement with measured data, likely due to the lower mixing and longer potential cores in the CFD simulations of these cases.

  1. Acoustics and Trust of Separate-Flow Exhaust Nozzles With Mixing Devices for High-Bypass-Ratio Engines

    NASA Technical Reports Server (NTRS)

    Saiyed, Naseem H.; Mikkelsen, Kevin L.; Bridges, James E.

    2000-01-01

    The NASA Glenn Research Center recently completed an experimental study to reduce the jet noise from modern turbofan engines. The study concentrated on exhaust nozzle designs for high-bypass-ratio engines. These designs modified the core and fan nozzles individually and simultaneously. Several designs provided an ideal jet noise reduction of over 2.5 EPNdB for the effective perceived noise level (EPNL) metric. Noise data, after correcting for takeoff thrust losses, indicated over a 2.0-EPNdB reduction for nine designs. Individually modifying the fan nozzle did not provide attractive EPNL reductions. Designs in which only the core nozzle was modified provided greater EPNL reductions. Designs in which core and fan nozzles were modified simultaneously provided the greatest EPNL reduction. The best nozzle design had a 2.7-EPNdB reduction (corrected for takeoff thrust loss) with a 0.06-point cruise thrust loss. This design simultaneously employed chevrons on the core and fan nozzles. In comparison with chevrons, tabs appeared to be an inefficient method for reducing jet noise. Data trends indicate that the sum of the thrust losses from individually modifying core and fan nozzles did not generally equal the thrust loss from modifying them simultaneously. Flow blockage from tabs did not scale directly with cruise thrust loss and the interaction between fan flow and the core nozzle seemed to strongly affect noise and cruise performance. Finally, the nozzle configuration candidates for full-scale engine demonstrations are identified.

  2. Transport woes threaten California production

    SciTech Connect

    Not Available

    1994-05-23

    California oil producers face a loss of production this year because of constraints on pipeline and tanker transportation to Los Angeles area refineries. The potential bottleneck is occurring at a time when Outer Continental Shelf production is near capacity from Chevron Corp.'s Point Arguello project at the same time production is increasing from Exxon Corp.'s nearby Santa Ynex Unit (SYU) expansion. Both megaprojects must compete for pipeline space with onshore crude producers, notably in California's San Joaquin Valley (SJV). Recent development limiting transportation options include: An indefinite shutdown of Four Corners Pipe Line Co.'s 50,000 b/d Line No. 1, damaged by the Jan. 17 earthquake; Loss of a tanker permit by Chevron and partners for offshore Point Arguello production; Permanent shutdown of Exxon's offshore storage and treatment (OST) facility, which since 1981 has used tankers to transport about 20,000 b/d of SYU production from the Santa Barbara Channel to Los Angeles. The OST, the first commercial floating production system in the US -- placed in the Santa Barbara Channel in 1981 after a decade of precedent setting legal and political battles -- was shut down Apr. 4. The paper discusses these production concerns, available options, the OST shutdown, and the troubled history of the OST.

  3. Density Fluctuation in Asymmetric Nozzle Plumes and Correlation with Far Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, J.; Zaman, K. B. M. Q.

    2001-01-01

    A comparative experimental study of air density fluctuations in the unheated plumes of a circular, 4-tabbed-circular, chevron-circular and 10-lobed rectangular nozzles was performed at a fixed Mach number of 0.95 using a recently developed Rayleigh scattering based technique. Subsequently, the flow density fluctuations are cross-correlated with the far field sound pressure fluctuations to determine sources for acoustics emission. The nearly identical noise spectra from the baseline circular and the chevron nozzles are found to be in agreement with the similarity in spreading, turbulence fluctuations, and flow-sound correlations measured in the plumes. The lobed nozzle produced the least low frequency noise, in agreement with the weakest overall density fluctuations and flow-sound correlation. The tabbed nozzle took an intermediate position in the hierarchy of noise generation, intensity of turbulent fluctuation and flow-sound correlation. Some of the features in the 4-tabbed nozzle are found to be explainable in terms of splitting of the jet in a central large core and 4 side jetlets.

  4. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Abdalla H. Ali; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

    2003-04-16

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified petroleum coke characteristics as a potential technical risk. The composition of petroleum coke varies from one refinery to another. Petroleum coke characteristics are a function of the crude oil slate available at the refinery and the coker operating parameters. The specific

  5. Multi-Pixel Photon Counters for Optofluidic Characterization of Particles and Microalgae

    PubMed Central

    Asrar, Pouya; Sucur, Marta; Hashemi, Nastaran

    2015-01-01

    We have developed an optofluidic biosensor to study microscale particles and different species of microalgae. The system is comprised of a microchannel with a set of chevron-shaped grooves. The chevrons allows for hydrodynamic focusing of the core stream in the center using a sheath fluid. The device is equipped with a new generation of highly sensitive photodetectors, multi-pixel photon counter (MPPC), with high gain values and an extremely small footprint. Two different sizes of high intensity fluorescent microspheres and three different species of algae (Chlamydomonas reinhardtii strain 21 gr, Chlamydomonas suppressor, and Chlorella sorokiniana) were studied. The forward scattering emissions generated by samples passing through the interrogation region were carried through a multimode fiber, located in 135 degree with respect to the excitation fiber, and detected by a MPPC. The signal outputs obtained from each sample were collected using a data acquisition system and utilized for further statistical analysis. Larger particles or cells demonstrated larger peak height and width, and consequently larger peak area. The average signal output (integral of the peak) for Chlamydomonas reinhardtii strain 21 gr, Chlamydomonas suppressor, and Chlorella sorokiniana falls between the values found for the 3.2 and 10.2 μm beads. Different types of algae were also successfully characterized. PMID:26075506

  6. Design and Simulation of an Electrothermal Actuator Based Rotational Drive

    NASA Astrophysics Data System (ADS)

    Beeson, Sterling; Dallas, Tim

    2008-10-01

    As a participant in the Micro and Nano Device Engineering (MANDE) Research Experience for Undergraduates program at Texas Tech University, I learned how MEMS devices operate and the limits of their operation. Using specialized AutoCAD-based design software and the ANSYS simulation program, I learned the MEMS fabrication process used at Sandia National Labs, the design limitations of this process, the abilities and drawbacks of micro devices, and finally, I redesigned a MEMS device called the Chevron Torsional Ratcheting Actuator (CTRA). Motion is achieved through electrothermal actuation. The chevron (bent-beam) actuators cause a ratcheting motion on top of a hub-less gear so that as voltage is applied the CTRA spins. The voltage applied needs to be pulsed and the frequency of the pulses determine the angular frequency of the device. The main objective was to design electromechanical structures capable of transforming the electrical signals into mechanical motion without overheating. The design was optimized using finite element analysis in ANSYS allowing multi-physics simulations of our model system.

  7. Prediction of Central Burst Defects in Copper Wire Drawing Process

    SciTech Connect

    Vega, G.; Haddi, A.; Imad, A.

    2011-01-17

    In this study, the prediction of chevron cracks (central bursts) in copper wire drawing process is investigated using experimental and numerical approaches. The conditions of the chevron cracks creation along the wire axis depend on (i) the die angle, the friction coefficient between the die and the wire, (ii) the reduction in crosssectional area of the wire, (iii) the material properties and (iv) the drawing velocity or strain rate. Under various drawing conditions, a numerical simulation for the prediction of central burst defects is presented using an axisymmetric finite element model. This model is based on the application of the Cockcroft and Latham fracture criterion. This criterion was used as the damage value to estimate if and where defects will occur during the copper wire drawing. The critical damage value of the material is obtained from a uniaxial tensile test. The results show that the die angle and the reduction ratio have a significant effect on the stress distribution and the maximum damage value. The central bursts are expected to occur when the die angle and reduction ratio reach a critical value. Numerical predictions are compared with experimental observations.

  8. Macro-permeability distribution and anisotropy in a 3D fissured and fractured clay rock: ‘Excavation Damaged Zone’ around a cylindrical drift in Callovo-Oxfordian Argilite (Bure)

    NASA Astrophysics Data System (ADS)

    Ababou, Rachid; Cañamón Valera, Israel; Poutrel, Adrien

    The Underground Research Laboratory at Bure (CMHM), operated by ANDRA, the French National Radioactive Waste Management Agency, was developed for studying the disposal of radioactive waste in a deep clayey geologic repository. It comprises a network of underground galleries in a 130 m thick layer of Callovo-Oxfordian clay rock (depths 400-600 m). This work focuses on hydraulic homogenization (permeability upscaling) of the Excavation Damaged Zone (EDZ) around a cylindrical drift, taking into account: (1) the permeability of the intact porous rock matrix; (2) the geometric structure of micro-fissures and small fractures synthesized as a statistical set of planar discs; (3) the curved shapes of large ‘chevron’ fractures induced by excavation (periodically distributed). The method used for hydraulic homogenization (upscaling) of the 3D porous and fractured rock is based on a ‘frozen gradient’ superposition of individual fluxes pertaining to each fracture/matrix block, or ‘unit block’. Each unit block comprises a prismatic block of permeable matrix (intact rock) obeying Darcy’s law, crossed by a single piece of planar fracture obeying either Darcy or Poiseuille law. Polygonal as well as disc shaped fractures are accommodated. The result of upscaling is a tensorial Darcy law, with macro-permeability K ij( x) distributed over a grid of upscaling sub-domains, or ‘voxels’. Alternatively, K ij( x) can be calculated point-wise using a moving window, e.g., for obtaining permeability profiles along ‘numerical’ boreholes. Because the permeable matrix is taken into account, the upscaling procedure can be implemented sequentially, as we do here: first, we embed the statistical fissures in the matrix, and secondly, we embed the large curved chevron fractures. The results of hydraulic upscaling are expressed first in terms of ‘equivalent’ macro-permeability tensors, K ij( x, y, z) distributed around the drift. The statistically isotropic fissures are

  9. Effects of Droplet Size on Intrusion of Sub-Surface Oil Spills

    NASA Astrophysics Data System (ADS)

    Adams, Eric; Chan, Godine; Wang, Dayang

    2014-11-01

    We explore effects of droplet size on droplet intrusion and transport in sub-surface oil spills. Negatively buoyant glass beads released continuously to a stratified ambient simulate oil droplets in a rising multiphase plume, and distributions of settled beads are used to infer signatures of surfacing oil. Initial tests used quiescent conditions, while ongoing tests simulate currents by towing the source and a bottom sled. Without current, deposited beads have a Gaussian distribution, with variance increasing with decreasing particle size. Distributions agree with a model assuming first order particle loss from an intrusion layer of constant thickness, and empirically determined flow rate. With current, deposited beads display a parabolic distribution similar to that expected from a source in uniform flow; we are currently comparing observed distributions with similar analytical models. Because chemical dispersants have been used to reduce oil droplet size, our study provides one measure of their effectiveness. Results are applied to conditions from the `Deep Spill' field experiment, and the recent Deepwater Horizon oil spill, and are being used to provide ``inner boundary conditions'' for subsequent far field modeling of these events. This research was made possible by grants from Chevron Energy Technology Co., through the Chevron-MITEI University Partnership Program, and BP/The Gulf of Mexico Research Initiative, GISR.

  10. Analogue models of melt-flow networks in folding migmatites

    NASA Astrophysics Data System (ADS)

    Barraud, Joseph; Gardien, Véronique; Allemand, Pascal; Grandjean, Philippe

    2004-02-01

    We have modelled the formation and the layer-parallel shortening of layered (stromatic) migmatites. The model consists of thin superposed layers of partially molten microcrystalline wax. The melt (30 vol.%) has a negative buoyancy and a high viscosity contrast with its solid matrix. As soon as the shortening begins, melt-filled veins with high aspect ratios open along foliation. The melt is segregated into the veins, forming a stromatic layering. During incipient folding, crescent-shaped saddle reefs open at the hinges of open sinusoidal folds. Further shortening and melt-enhanced shear displacements on interlayer interfaces cause chevron folds to develop and the saddle reefs to become triangular. In comparison, a melt-free experiment shows only a few layer-parallel openings and no saddle reefs in chevron folds. On the basis of our experimental results, we propose that in migmatites: (1) mesoscale melt migration is a combination of flow in immobile veins and movements of veins as a whole; (2) the changes in the geometry of the mesoscale melt-flow network create the pressure gradients that drive melt migration; (3) the melt-flow network does not need to be fully interconnected to allow local expulsion; (4) melt expulsion is episodic because the temporal evolution of the network combines with the spatial heterogeneity of the deformation.

  11. Plans for first oil production revived in two Sudanese fields

    SciTech Connect

    Not Available

    1993-05-03

    A Vancouver, British Columbia, independent and its Sudanese partner have filed a development plan with the government of Sudan to produce an initial 40,000 b/d from Heglig and Unity oil fields in Sudan. Arakis Energy Corp., and the private Sudanese company State Petroleum Corp. (SPC) want to begin the first commercial hydrocarbon production in the destitute, war torn country. They are picking up where Chevron Corp. left off after years of grappling with an ambitious, costly - and ultimately futile - effort to export crude-oil from Sudan. After finding almost 300 million bbl of oil in Sudan during the early 1980s, Chevron scuttled a $2 billion project to export 50,000 b/d of Sudanese crude in 1986. It drilled 90 wells and sank more than $1 billion into the project. But it dropped the plan, citing the 1986 collapse of oil prices and concerns over security after repeated guerrilla attacks delayed work. The paper details the project.

  12. Adjusting flow station job to remote Nigerian location yields savings

    SciTech Connect

    Wooten, R.; Williams, E.C. )

    1994-05-02

    In September 1991, Chevron Nigeria Ltd. and Nigerian National Petroleum Crop. contracted Offshore Pipelines to design, procure, construct, install, and commission the Opuekeba 30,000 b/d crude-oil flow station on an offshore platform near Olero Creek, Nigeria, approximately 22 miles from the nearest deepwater access. Chevron's original project plan included bringing the flow station to the site in small packages and then assembling it in a lengthy field hook-up process. Offshore Pipelines developed a plan early in the project to maximize construction and hook-up in the fabrication yard, then transport the nearly complete structures to site by way of a newly dredged canal. What proved to be most difficult was the site location in Nigeria. Job planning and communication were important in the successful completion of the project. Keeping the components of the large and complex facility simple proved to be effective and efficient and played a key role in completing the project on time and within budget. The paper discusses overcoming obstacles, lift and depth constraints, dredging, fabrication, installation, and large-time problems.

  13. Drug and alcohol abuse: The pattern and magnitude of the problem

    SciTech Connect

    Ajayi, P.A.

    1996-12-31

    In the last 12 months, many more cases of alcohol and drug (substance) abuse in the workplace were seen in the Escravos operations of Chevron Nigeria Limited than in previous years. This called the attention to the rising prevalence of drug and alcohol abuse in contradistinction to reports from similar organizations in other parts of the world. Chevron Nigeria has a written Drug and Alcohol Policy which has been dormant for some time because of the apparent rarity of the problem of substance abuse in the workplace. This Policy is being reviewed to broaden its scope and make it more effective. A total of 30 employees were tested for drugs and alcohol .6 exceeded the legal limits of Blood Alcohol Concentration (BAC) and 5 tested positive for drugs. Tests were mainly post-accident, reasonable cause and random. The common substances abused were alcohol, cannabis, cocaine and morphine in that order. The findings are compared with those of similar organizations in UK and USA. Efforts to control substance abuse in the workplace are being put into place.

  14. Geomorphology of the Southwest Coast of County Cork, Ireland: A Look into the Rocks, Folds, and Glacial Scours

    NASA Astrophysics Data System (ADS)

    Bowden, S.; Wireman, R.; Sautter, L.; Beutel, E. K.

    2015-12-01

    Bathymetric data were collected off the southwest coast of County Cork, Ireland by the joint INFOMAR project between the Marine Institute of Ireland and the Geologic Survey of Ireland. Data were collected using a Kongsberg EM2040 multibeam sonar on the R/V Celtic Voyager, in August and September 2014, and were post-processed with CARIS HIPS and SIPS 8.1 and 9.0 software to create 2D and 3D bathymetric surfaces. From the computer generated images, some of the lithologic formations were relatively aged and observed. The studied regions range in depth from 20 to 118 m, with shallower areas to the northeast. Several large rock outcrops occur, the larger of which shows a vertical rise of nearly 20 m. These outcrops are oriented in a northeast-southwest direction, and exhibit significant bed folding, regional folding, tilted beds, and cross joints. The folds studied are plunging chevron folds. These folds have a northeast-southwest fold axis orthogonal to the cross joints and are older relative to the jointing systems. The NE-SW joints are older than the NW-SE joints due to their correlation with drainage and erosion patterns. Regional folding is the youngest feature due to its superposition on the chevron folding and jointing systems. The interaction of cross jointing and folding is consistent with the geologic history of the area, and creates a unique bathymetry worthy of further study.

  15. Testing of molded high temperature plastic actuator road seals for use in advanced aircraft hydraulic systems

    NASA Technical Reports Server (NTRS)

    Waterman, A. W.; Huxford, R. L.; Nelson, W. G.

    1976-01-01

    Molded high temperature plastic first and second stage rod seal elements were evaluated in seal assemblies to determine performance characteristics. These characteristics were compared with the performance of machined seal elements. The 6.35 cm second stage Chevron seal assembly was tested using molded Chevrons fabricated from five molding materials. Impulse screening tests conducted over a range of 311 K to 478 K revealed thermal setting deficiencies in the aromatic polyimide molding materials. Seal elements fabricated from aromatic copolyester materials structurally failed during impulse cycle calibration. Endurance testing of 3.85 million cycles at 450 K using MIL-H-83283 fluid showed poorer seal performance with the unfilled aromatic polyimide material than had been attained with seals machined from Vespel SP-21 material. The 6.35 cm first stage step-cut compression loaded seal ring fabricated from copolyester injection molding material failed structurally during impulse cycle calibration. Molding of complex shape rod seals was shown to be a potentially controllable technique, but additional molding material property testing is recommended.

  16. Permian paleoclimate data from fluid inclusions in halite

    USGS Publications Warehouse

    Benison, K.C.; Goldstein, R.H.

    1999-01-01

    This study has yielded surface water paleotemperatures from primary fluid inclusions in mid Permian Nippewalla Group halite from western Kansas. A 'cooling nucleation' method is used to generate vapor bubbles in originally all-liquid primary inclusions. Then, surface water paleotemperatures are obtained by measuring temperatures of homogenization to liquid. Homogenization temperatures ranged from 21??C to 50??C and are consistent along individual fluid inclusion assemblages, indicating that the fluid inclusions have not been altered by thermal reequilibration. Homogenization temperatures show a range of up to 26??C from base to top of individual cloudy chevron growth bands. Petrographic and fluid inclusion evidence indicate that no significant pressure correction is needed for the homogenization temperature data. We interpret these homogenization temperatures to represent shallow surface water paleotemperatures. The range in temperatures from base to top of single chevron bands may reflect daily temperatures variations. These Permian surface water temperatures fall within the same range as some modern evaporative surface waters, suggesting that this Permian environment may have been relatively similar to its modern counterparts. Shallow surface water temperatures in evaporative settings correspond closely to local air temperatures. Therefore, the Permian surface water temperatures determined in this study may be considered proxies for local Permian air temperatures.

  17. Engineering properties and performance of dental crowns.

    PubMed

    Mitchell, C A; Orr, J F

    2005-07-01

    Dental crowns are used to replace damaged natural crowns of teeth and are fixed to prepared teeth with luting cements, which should provide an adhesive bond to the tooth structure giving reliable retention and minimal microleakage. Mechanical testing of crowns in vitro gives failure load distributions that are well described by Weibull models, comparing probabilities of survival and reliability. Fatigue testing of crowns is time consuming, but regression analysis to interpolate functions through data points quoting probability limits or applying Weibull analysis is achievable. A complementary approach is to conduct materials tests with appropriate interfacial geometries. Luting cements are used in thin layers of 40-150 microm. Contraction during polymerization is restrained by adhesion to substrates, allowing little relaxation of stresses. Conventional and resin-modified glass ionomer cements create thin zones of interaction with dentine and fail cohesively. The chevron notch short rod technique has been used to measure fracture toughness and rank cements. A development of this method, using chevron notch short bar specimens, permitted fracture toughness to be determined for luting cement--dentine substrate interfaces. Representative fracture experiments need to be developed to apply mixed mode conditions. The basic challenge to predict long-term performance from short-term laboratory tests remains.

  18. Acoustic scattering from microfibers of Parylene C

    NASA Astrophysics Data System (ADS)

    Chindam, Chandraprakash; Lakhtakia, Akhlesh; Awadelkarim, Osama O.; Orfali, Wasim

    2014-10-01

    The acoustic scattering characteristics of ˜10 μ m-long microfibers of Parylene C embedded in water were investigated, towards the eventual goal of designing polymeric sculptured thin films for biomedical applications. The chosen microfibers were upright circular-cylindrical, slanted circular-cylindrical, chevronic, and helical in shape. A combination of numerical and analytical techniques was adopted to examine the scattering of plane waves in a spectral regime spanning the lower few eigenfrequencies of the microfibers. Certain maximums in the spectrums of the forward and back scattering efficiencies arise from the phenomenon of creeping waves. The same phenomenon affects the total scattering efficiency in some instances. The spectrums of all efficiencies exhibit the geometric symmetry of a microfiber in relation to the direction of propagation of the incident plane wave. Similarities in the shapes of the slanted circular-cylindrical and the chevronic microfibers are reflected in the spectrums of their scattering efficiencies. A highly compliant microfiber has shorter and broader peaks than a less compliant microfiber in the spectrums of the total scattering efficiency. The proper design of polymeric sculptured thin films will benefit from the knowledge gained of the directions of maximum scattering from individual microfibers.

  19. Phased Array Noise Source Localization Measurements of an F404 Nozzle Plume at Both Full and Model Scale

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Bridges, James E.; Henderson, Brenda S.

    2010-01-01

    A 48-microphone planar phased array system was used to acquire jet noise source localization data on both a full-scale F404-GE-F400 engine and on a 1/4th scale model of a F400 series nozzle. The full-scale engine test data show the location of the dominant noise sources in the jet plume as a function of frequency for the engine in both baseline (no chevron) and chevron configurations. Data are presented for the engine operating both with and without afterburners. Based on lessons learned during this test, a set of recommendations are provided regarding how the phased array measurement system could be modified in order to obtain more useful acoustic source localization data on high-performance military engines in the future. The data obtained on the 1/4th scale F400 series nozzle provide useful insights regarding the full-scale engine jet noise source mechanisms, and document some of the differences associated with testing at model-scale versus fullscale.

  20. Smectic layer instabilities in liquid crystals.

    PubMed

    Dierking, Ingo; Mitov, Michel; Osipov, Mikhail A

    2015-02-01

    Scientists aspire to understand the underlying physics behind the formation of instabilities in soft matter and how to manipulate them for diverse investigations, while engineers aim to design materials that inhibit or impede the nucleation and growth of these instabilities in critical applications. The present paper reviews the field-induced rotational instabilities which may occur in chiral smectic liquid-crystalline layers when subjected to an asymmetric electric field. Such instabilities destroy the so-named bookshelf geometry (in which the smectic layers are normal to the cell surfaces) and have a detrimental effect on all applications of ferroelectric liquid crystals as optical materials. The transformation of the bookshelf geometry into horizontal chevron structures (in which each layer is in a V-shaped structure), and the reorientation dynamics of these chevrons, are discussed in details with respect to the electric field conditions, the material properties and the boundary conditions. Particular attention is given to the polymer-stabilisation of smectic phases as a way to forbid the occurrence of instabilities and the decline of related electro-optical performances. It is also shown which benefit may be gained from layer instabilities to enhance the alignment of the liquid-crystalline geometry in practical devices, such as optical recording by ferroelectric liquid crystals. Finally, the theoretical background of layer instabilities is given and discussed in relation to the experimental data.

  1. Dual relaxation and structural changes under uniaxial strain in main-chain smectic-C liquid crystal elastomer.

    PubMed

    Agra-Kooijman, Dena M; Fisch, Michael R; Joshi, Leela; Ren, Wanting; McMullan, Philip J; Griffin, Anselm C; Kumar, Satyendra

    2015-01-01

    The relationship between strain-dependent macroscopic elastic behavior and the changes in microscopic structure of the smectic-C liquid crystal elastomer (LCE), C11MeHQSi8 were investigated using synchrotron X-ray studies. At very low strains ε ≤ 0.2, the smectic layers are randomly oriented. As the strain increases beyond 0.2, the smectic layers reorient and become parallel to the direction of the applied strain. The polydomain to monodomain (P-M) transition accompanied by the formation of chevron structure ensues for ε > 0.2 and is nearly complete for ε = 0.7. The chevron structure relaxes after the applied strain changes, with a time constant τα ∼ 45 min while the orientation order parameters of the mesogenic and elastomeric components gradually increase and saturate at 0.83 and 0.4, respectively at ε = 1.7 which is near the end of the plateau region. Relaxation rates τα for the tilt angle and τd corresponding to the smectic layer spacing both become about 10 times faster when the strain exceeds 0.7. The LCE remains "locked" into the monodomain state and retains 90% and 80% values of α and S, respectively for 24 hours after the applied strain is removed. The viscoelastic properties of the liquid crystal appear to dominate the equilibration process at low strains while the elastomeric properties control the system's response at high strains.

  2. Reaction-diffusion models of within-feather pigmentation patterning.

    PubMed

    Prum, Richard O; Williamson, Scott

    2002-04-22

    Feathers are complex, branched keratin structures that exhibit a diversity of pigmentation patterns. Feather pigments are transferred into developing feather keratinocytes from pigment cells that migrate into the tubular feather germ from the dermis. Within-feather pigment patterns are determined by differential pigmentation of keratinocytes within independent barb ridges during feather development. Little is known about the molecular mechanisms that determine which keratinocytes receive pigment. We apply reaction-diffusion models to the growth of within-feather pigment patterns based on a realistic model of feather growth. These models accurately simulate the growth of a diversity of the within-feather pigmentation patterns found in real feathers, including a central patch, a 'hollow' central patch, concentric central patches, bars, chevrons, a central circular spot, rows of paired spots, and arrays of offset dots. The models can also simulate the complex transitions between distinct pigmentation patterns among feathers observed in real avian plumages, including transitions from bars to chevrons, bars to paired dots, and bars to arrays of dots. The congruence between the developmental dynamics of the simulated and observed feather patterns indicates that the reaction-diffusion models provide a realistic and accurate description of the determination of pigment pattern within avian feather follicles. The models support the hypothesis that within-feather pigmentation patterning is determined by antagonistic interactions among molecular expression gradients within the tubular follicle and feather germ.

  3. Measurment and Interpretation of Seismic Attenuation for Hydrocarbon Exploration

    SciTech Connect

    Michael Batzle; Luca Duranti; James Rector; Steve Pride

    2007-12-31

    This research project is the combined effort of several leading research groups. Advanced theoretical work is being conducted at the Lawrence Berkeley National Laboratory. Here, the fundamental controls on loss mechanisms are being examined, primarily by use of numerical models of heterogeneous porous media. At the University of California, Berkeley, forward modeling is combined with direct measurement of attenuation. This forward modeling provides an estimate of the influence of 1/Q on the observed seismic signature. Direct measures of losses in Vertical Seismic Profiles (VSPs) indicate mechanisms to separate scattering versus intrinsic losses. At the Colorado School of Mines, low frequency attenuation measurements are combined with geologic models of deep water sands. ChevronTexaco is our corporate cosponsor and research partner. This corporation is providing field data over the Genesis Field, Gulf of Mexico. In addition, ChevronTexaco has rebuilt and improved their low frequency measurement system. Soft samples representative of the Genesis Field can now be measured for velocities and attenuations under reservoir conditions. Throughout this project we have: Assessed the contribution of mechanical compaction on time-lapse monitoring; Developed and tested finite difference code to model dispersion and attenuation; Heterogeneous porous materials were modeled and 1/Q calculated vs. frequency; 'Self-affine' heterogeneous materials with differing Hurst exponent modeled; Laboratory confirmation was made of meso-scale fluid motion influence on 1/Q; Confirmed theory and magnitude of layer-based scattering attenuation at Genesis and at a shallow site in California; Scattering Q's of between 40 and 80 were obtained; Measured very low intrinsic Q's (2-20) in a partially saturated vadose zone VSP; First field study to separate scattering and intrinsic attenuation in real data set; Revitalized low frequency device at ChevronTexaco's Richmond lab completed; First complete

  4. Thermal Actuation Based 3-DoF Non-Resonant Microgyroscope Using MetalMUMPs

    PubMed Central

    Shakoor, Rana Iqtidar; Bazaz, Shafaat Ahmed; Kraft, Michael; Lai, Yongjun; Masood ul Hassan, Muhammad

    2009-01-01

    High force, large displacement and low voltage consumption are a primary concern for microgyroscopes. The chevron-shaped thermal actuators are unique in terms of high force generation combined with the large displacements at a low operating voltage in comparison with traditional electrostatic actuators. A Nickel based 3-DoF micromachined gyroscope comprising 2-DoF drive mode and 1-DoF sense mode oscillator utilizing the chevron-shaped thermal actuators is presented here. Analytical derivations and finite element simulations are carried out to predict the performance of the proposed device using the thermo-physical properties of electroplated nickel. The device sensitivity is improved by utilizing the dynamical amplification of the oscillation in 2-DoF drive mode using an active-passive mass configuration. A comprehensive theoretical description, dynamics and mechanical design considerations of the proposed gyroscopes model are discussed in detail. Parametric optimization of gyroscope, its prototype modeling and fabrication using MetalMUMPs has also been investigated. Dynamic transient simulation results predicted that the sense mass of the proposed device achieved a drive displacement of 4.1μm when a sinusoidal voltage of 0.5V is applied at 1.77 kHz exhibiting a mechanical sensitivity of 1.7μm /°/s in vacuum. The wide bandwidth frequency response of the 2-DoF drive mode oscillator consists of two resonant peaks and a flat region of 2.11 kHz between the peaks defining the operational frequency region. The sense mode resonant frequency can lie anywhere within this region and therefore the amplitude of the response is insensitive to structural parameter variations, enhancing device robustness against such variations. The proposed device has a size of 2.2 × 2.6 mm2, almost one third in comparison with existing M-DoF vibratory gyroscope with an estimated power consumption of 0.26 Watts. These predicted results illustrate that the chevron-shaped thermal actuator has

  5. 2,5-Bis{[(−)-(S)-1-(4-bromo­phen­yl)eth­yl]imino­meth­yl}thio­phene

    PubMed Central

    Mendoza, Angel; Bernès, Sylvain; Hernández-Téllez, Guadalupe; Portillo-Moreno, Oscar; Gutiérrez, René

    2014-01-01

    The title compound, C22H20Br2N2S, was synthesized under solvent-free conditions. The mol­ecule shows crystallographic C 2 symmetry, with the S atom of the central thio­phene ring lying on a twofold rotation axis. Furthermore, as a consequence of the (S,S) stereochemistry, the mol­ecule has a twisted conformation. The dihedral angle between the thio­phene and benzene rings is 72.7 (2)° and that between the two benzene rings is 55.9 (2)°. In the crystal, mol­ecules are arranged in a chevron-like pattern, without any significant inter­molecular inter­actions. PMID:24765036

  6. Turbulence Measurements of Separate Flow Nozzles with Mixing Enhancement Features

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2002-01-01

    Comparison of turbulence data taken in three separate flow nozzles, two with mixing enhancement features on their core nozzle, shows how the mixing enhancement features modify turbulence to reduce jet noise. The three nozzles measured were the baseline axisymmetric nozzle 3BB, the alternating chevron nozzle, 3A12B, with 6-fold symmetry, and the flipper tab nozzle 3T24B also with 6-fold symmetry. The data presented show the differences in turbulence characteristics produced by the geometric differences in the nozzles, with emphasis on those characteristics of interest in jet noise. Among the significant findings: the enhanced mixing devices reduce turbulence in the jet mixing region while increasing it in the fan/core shear layer, the ratios of turbulence components are significantly altered by the mixing devices, and the integral lengthscales do not conform to any turbulence model yet proposed. These findings should provide guidance for modeling the statistical properties of turbulence to improve jet noise prediction.

  7. Energy and Technology Review, August--September

    SciTech Connect

    Sefcik, J A

    1992-01-01

    This issue of Energy and Technology Review focuses on cooperative research and development agreements (CRADAs)-one of the Laboratory's most effective means of technology transfer. The first article chronicles the legislative evolution of these agreements. The second article examines the potential beneficial effects of CRADAs on the national economy and discusses their role in the development and marketing of Laboratory technologies. The third article provides information on how to initiate and develop CRADAs at LLNL, and the fourth and fifth articles describe the Laboratory's two most prominent technology transfer projects. One is a 30-month CRADA with General Motors to develop advanced lasers for cutting, welding, and heat-treating operations. The cover photograph shows this laser cutting through a piece of steel 1/16 of an inch thick. The other project is a three-year CRADA with Amoco, Chevron-Conoco, and Unocal to refine our oil shale retorting process.

  8. Meteorological and Wave Measurements for Improving Meteorological and Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Hare, J.; MacDonald, C.; Ray, A.; Fairall, C. W.; Pezoa, S.; Gibson, B.; Huang, C. H.

    2010-12-01

    A unique collaboration between corporate, government, and university researchers have teamed up to develop a marine environmental observations program on an offshore platform in the Gulf of Mexico. The meteorological and oceanographic sensors have been deployed for an extended period (12-24 months) on a Chevron service platform (90.5W, 29N) to collect boundary layer and sea surface data sufficient to improve dispersion modeling in and around the Gulf of Mexico. This task has recently been provided significant import, given the large industrial presence in the Gulf, the large regional population, and the recognized need for precise and accurate dispersion forecasts. Observations include marine boundary layer winds, height, and temperature, sea surface temperature and current, wave height, downwelling solar and infrared radiation, air-sea momentum and heat fluxes, and mean meteorological parameters. We will present a summary of the instrument deployment, show the initial time series of the observations, and provide context for the experimental outcomes.

  9. Interpolating cathode pad readout in gas proportional detectors for high multiplicity particle tracks

    SciTech Connect

    Yu, B.; Radeka, V.; Smith, G.C.; O`Brien, E.

    1992-02-01

    Experiments which are planned for the Superconducting Super Collider and the Relativistic Heavy Ion Collider will involve interactions in which detectors will need to identify and localize hundreds or even thousands of particle tracks simultaneously. Most types of conventional position sensitive, proportional detectors with projective geometry are not able to unravel the individual tracks in these environments. We have been investigating several forms of sub-divided cathode readout to address this problem. We report here on geometric charge division using chevron shaped cathode pads which lie in rows underneath each anode wire. Investigations have quantified the non-linear effects due to avalanche angular localization, and how these become negligible with proper design of the pad. Differential nm-linearity of {plus_minus}5%, and position resolution in the region of 50{mu}m rms, have been achieved.

  10. Interpolating cathode pad readout in gas proportional detectors for high multiplicity particle tracks

    SciTech Connect

    Yu, B.; Radeka, V.; Smith, G.C.; O'Brien, E.

    1992-02-01

    Experiments which are planned for the Superconducting Super Collider and the Relativistic Heavy Ion Collider will involve interactions in which detectors will need to identify and localize hundreds or even thousands of particle tracks simultaneously. Most types of conventional position sensitive, proportional detectors with projective geometry are not able to unravel the individual tracks in these environments. We have been investigating several forms of sub-divided cathode readout to address this problem. We report here on geometric charge division using chevron shaped cathode pads which lie in rows underneath each anode wire. Investigations have quantified the non-linear effects due to avalanche angular localization, and how these become negligible with proper design of the pad. Differential nm-linearity of {plus minus}5%, and position resolution in the region of 50{mu}m rms, have been achieved.

  11. Direct visualization of atomically precise nitrogen-doped graphene nanoribbons

    SciTech Connect

    Zhang, Yi; Zhang, Yanfang; Li, Geng; Lu, Jianchen; Du, Shixuan E-mail: feng@mpip-mainz.mpg.de; Gao, Hong-Jun; Lin, Xiao; Berger, Reinhard; Feng, Xinliang E-mail: feng@mpip-mainz.mpg.de; Müllen, Klaus

    2014-07-14

    We have fabricated atomically precise nitrogen-doped chevron-type graphene nanoribbons by using the on-surface synthesis technique combined with the nitrogen substitution of the precursors. Scanning tunneling microscopy and spectroscopy indicate that the well-defined nanoribbons tend to align with the neighbors side-by-side with a band gap of 1.02 eV, which is in good agreement with the density functional theory calculation result. The influence of the high precursor coverage on the quality of the nanoribbons is also studied. We find that graphene nanoribbons with sufficient aspect ratios can only be fabricated at sub-monolayer precursor coverage. This work provides a way to construct atomically precise nitrogen-doped graphene nanoribbons.

  12. Alkanes in shrimp from the Buccaneer Oil Field

    SciTech Connect

    Middleditch, B.S.; Basile, B.; Chang, E.S.

    1982-07-01

    A total of 36 samples of shrimp were examined from the region of the Buccaneer oil field, eighteen of which were representatives of the commercial species Penaeus aztecus and the rest were various other species: Penaeus duorarum (pink shrimp), Trachypenaeus duorarum (sugar shrimp), Squilla empusa (mantis shrimp), and Sicyonia dorsalis (chevron shrimp). The alkanes and deuteriated alkanes were completely separated by GC, so a mass spectrometer was not required for their detection and quantitation. To confirm the identities of individual compounds, however, some samples were examined by combined gas chromatography-mass spectrometry. Results show that only thirteen of the forty shrimp collected from the region of the Buccaneer oil field contained petroleum alkanes, and the majority of these were obtained from trawls immediately adjacent to the production platforms. It appears that shrimp caught in the region of the Buccaneer oil field are not appreciably tainted with hydrocarbons discharged from the production platforms. (JMT)

  13. Fracture behavior of 20% Nb particulate reinforced alumina composite

    SciTech Connect

    Lane, S.; Biner, S.B.; Buck, O.

    1993-11-01

    The composites consist of alumina matrix with 0.05 wt % MgO and 20 Vol % Nb with an average particle size of 30 to 100 microns produced by dry mixing and sintering to near their theoretical densities. Fracture toughness tests were carried out in three point bending on chevron notched samples. Results indicate that R-curve of the composites exhibited more than 300% increase in crack growth resistance compared to crack growth resistance of alumina produced with the identical procedures. Crack growth resistance curve of the composites increased with increasing Nb particle size. Metallorgraph indicated that failure of Nb particles in crack path ranges from full interface separation without any significant deformation of Nb particles to cleavage failure without any evidence of interface separation.

  14. Laser notching ceramics for reliable fracture toughness testing

    SciTech Connect

    Barth, Holly D.; Elmer, John W.; Freeman, Dennis C.; Schaefer, Ronald D.; Derkach, Oleg; Gallegos, Gilbert F.

    2015-09-19

    A new method for notching ceramics was developed using a picosecond laser for fracture toughness testing of alumina samples. The test geometry incorporated a single-edge-V-notch that was notched using picosecond laser micromachining. This method has been used in the past for cutting ceramics, and is known to remove material with little to no thermal effect on the surrounding material matrix. This study showed that laser-assisted-machining for fracture toughness testing of ceramics was reliable, quick, and cost effective. In order to assess the laser notched single-edge-V-notch beam method, fracture toughness results were compared to results from other more traditional methods, specifically surface-crack in flexure and the chevron notch bend tests. Lastly, the results showed that picosecond laser notching produced precise notches in post-failure measurements, and that the measured fracture toughness results showed improved consistency compared to traditional fracture toughness methods.

  15. Laser notching ceramics for reliable fracture toughness testing

    DOE PAGESBeta

    Barth, Holly D.; Elmer, John W.; Freeman, Dennis C.; Schaefer, Ronald D.; Derkach, Oleg; Gallegos, Gilbert F.

    2015-09-19

    A new method for notching ceramics was developed using a picosecond laser for fracture toughness testing of alumina samples. The test geometry incorporated a single-edge-V-notch that was notched using picosecond laser micromachining. This method has been used in the past for cutting ceramics, and is known to remove material with little to no thermal effect on the surrounding material matrix. This study showed that laser-assisted-machining for fracture toughness testing of ceramics was reliable, quick, and cost effective. In order to assess the laser notched single-edge-V-notch beam method, fracture toughness results were compared to results from other more traditional methods, specificallymore » surface-crack in flexure and the chevron notch bend tests. Lastly, the results showed that picosecond laser notching produced precise notches in post-failure measurements, and that the measured fracture toughness results showed improved consistency compared to traditional fracture toughness methods.« less

  16. Direct integration of MEMS, dielectric pumping and cell manipulation with reversibly bonded gecko adhesive microfluidics

    NASA Astrophysics Data System (ADS)

    Warnat, S.; King, H.; Wasay, A.; Sameoto, D.; Hubbard, T.

    2016-09-01

    We present an approach to form a microfluidic environment on top of MEMS dies using reversibly bonded microfluidics. The reversible polymeric microfluidics moulds bond to the MEMS die using a gecko-inspired gasket architecture. In this study the formed microchannels are demonstrated in conjunction with a MEMS mechanical single cell testing environment for BioMEMS applications. A reversible microfluidics placement technique with an x-y and rotational accuracy of  ±2 µm and 1° respectively on a MEMS die was developed. No leaks were observed during pneumatic pumping of common cell media (PBS, sorbitol, water, seawater) through the fluidic channels. Thermal chevron actuators were successful operated inside this fluidic environment and a performance deviation of ~15% was measured compared to an open MEMS configuration. Latex micro-spheres were pumped using traveling wave di-electrophoresis and compared to an open (no-microfluidics) configuration with velocities of 24 µm s‑1 and 20 µm s‑1.

  17. Geology of the Beowawe geothermal system, Eureka and Lander Counties, Nevada

    SciTech Connect

    Struhsacker, E.M.

    1980-07-01

    A geologic study is described undertaken to evaluate the nature of structural and stratigraphic controls within the Beowawe geothermal system, Eureka and Lander Counties, Nevada. This study includes geologic mapping at a scale of 1:24,000 and lithologic logs of deep Chevron wells. Two major normal fault systems control the configuration of the Beowawe geothermal system. Active hot springs and sinter deposits lie along the Malpais Fault zone at the base of the Malpais Rim. The Malpais Rim is one of several east-northeast-striking, fault-bounded cuestas in north central Nevada. A steeply inclined scarp slope faces northwest towards Whirlwind Valley. The general inclination of the volcanic rocks on the Malpais dip slope is 5/sup 0/ to 10/sup 0/ southeast.

  18. LANDSAT image studies as applied to petroleum exploration in Kenya

    NASA Technical Reports Server (NTRS)

    Miller, J. B.

    1975-01-01

    The Chevron-Kenya oil license, acquired in 1972, covers an area at the north end of the Lamu Embayment. Immediately after acquisition, a photogeologic study of the area was made followed by a short field inspection. An interpretation of LANDSAT-1 images as a separate attempt to improve geological knowledge was completed. The method used in the image study, the multispectral characteristics of rock units and terrain, and the observed anomalous features as seen in the LANDSAT imagery are described. It was found that the study helped to define the relationship of the Lamu Embayment and its internal structure with surrounding regional features, such as the East Africa rifting, the Rudolf Trough, the Bur Acaba structural ridge, and the Ogaden Basin.

  19. Emissions of metals, chromium and nickel species, and organics from municipal waste-water-sludge incinerators. Volume 9. Site 9 emission-test report: Appendices. Final report, 1989-91

    SciTech Connect

    Segall, R.R.; DeWees, W.G.; Lewis, F.M.

    1992-03-01

    Site 9 is a secondary plant designed for 15 million gallons per day (MGD) of wastewater flow. The sludge incinerator at Site 9 is a seven (7) hearth, multiple hearth furnace (MHF) built by Nichols Engineering in 1974 controlled by an adjustable throat venturi scrubber with a nominal pressure drop of 20 in. w.c.. After leaving the venturi, the gases pass upward through a three (3) plate tray scrubber with a Chevron mist eliminator. A 10 ft. x 10 ft., upflow, wet electrostatic precipitator, manufacturer testing. Volume 9 contains the appendices PB92-151620 for Volume 8. These include: (1) Incinerator and Scrubber Operating Data, (2) Sampling and Analytical Methods; (3) Sample Calculations; (4) Analytical Data and Reports; (5) Continuous Emission Monitoring Data, Calibrations/One-min Averages, and (6) External Audit Report.

  20. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect

    Gerald P. Huffman

    2003-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research.

  1. Fracture Toughness of Thin Plates by the Double-Torsion Test Method

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Radovic, Miladin; Lara-Curzio, Edgar; Nelson, George

    2006-01-01

    Double torsion testing can produce fracture toughness values without crack length measurement that are comparable to those measured via standardized techniques such as the chevron-notch, surface-crack-in-flexure and precracked beam if the appropriate geometry is employed, and the material does not exhibit increasing crack growth resistance. Results to date indicate that 8 < W/d < 80 and L/W > 2 are required if crack length is not considered in stress intensity calculations. At L/W = 2, the normalized crack length should be 0.35 < a/L < 0.65; whereas for L/W = 3, 0.2 < a/L < 0.75 is acceptable. In addition, the load-points need to roll to reduce friction. For an alumina exhibiting increasing crack growth resistance, values corresponding to the plateau of the R-curve were measured. For very thin plates (W/d > 80) nonlinear effects were encountered.

  2. A Novel Surgical Approach to Coracoid-based Eosinophilic Granuloma and the Technical Trick.

    PubMed

    Gökkuş, Kemal; Unal, Mehmet B; Aydin, Ahmet T

    2016-09-01

    The coracoid base is a very rare location for tumors. It is difficult to diagnose and approach, but easy to dismiss. In this case, the tumor (eosinophilic granuloma of the scapula) was located at the base of the coracoid, and the posterior cortex was eroded by the tumor. Accessing this lesion through the deltopectoral approach with coracoid osteotomy without penetrating the supposed tumor extending posterior soft tissue will be discussed. This approach gives a wider and safer access to the surgeon than the posterior approach. This report presents a customized solution with the deltopectoral approach, and the chevron-type osteotomy to access the coracoid base and tension band wiring to fix the osteotomy side.

  3. Removal of heteroatoms and metals from heavy oils by bioconversion processes. CRADA final report

    SciTech Connect

    Kaufman, E N; Borole, A P

    1999-03-01

    The objective of this Cooperative research and Development Agreement project between Oak Ridge National Laboratory ( O W ) and Baker Performance Chemicals (BPC), Chevron, Energy BioSystems, Exxon, UNOCAL and Texaco is to investigate the biological desukrization of crude oil. Biological removal of organic s&%r fiom crude oil offers an attractive alternative to conventional thermochemical treatment due to the mild operating conditions afforded by the biocatalyst. In order for biodesulfbrization to realize commercial success, reactors must be designed which allow for sufficient liquid / liquid and gas / liquid mass transfer while simultaneously reducing operating costs. To this end we have been developing advanced bioreactors for biodesufirization and have been studying their performance using both actual crude oil as well as more easily characterized model systems.

  4. Bottom-up Synthesis of N =13 Sulfur-doped Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Joshi, Trinity; Nguyen, Giang; Toma, Francesca; Cao, Ting; Pedramrazi, Zahra; Chen, Chen; Rizzo, Daniel; Bronner, Christopher; Chen, Yen-Chia; Louie, Steven; Fischer, Felix; Crommie, Michael

    Substitutional doping of graphene nanoribbons (GNRs) with heteroatoms is a principal strategy to fine-tune the electronic structure of GNRs for future device applications. Up to now, however, edge-doping in bottom-up fabricated GNRs has exclusively relied on the introduction of nitrogen heteroatoms in the form of pyridine and pyrimidine rings along the edges of chevron GNRs. Here we report the bottom-up synthesis and characterization of atomically-precise N =13 armchair graphene nanoribbons (S-13-AGNRs) wherein alternating (CH)2 groups lining the edges of the GNRs have been replaced by sulfur atoms. We study the resultant GNR with scanning tunneling microscopy (STM) and spectroscopy (STS). Our experimental results are consistent with first-principles simulations of the S-13-AGNR electronic structure.

  5. [Radical nephrectomy and thrombectomy in patients with renal cell cancer complicated by tumoral thrombosis of the renal vein and vena cava inferior].

    PubMed

    Rusyn, V I; Korsak, V V; Rusyn, A V; Boĭko, S O

    2013-01-01

    Surgical treatment was conducted in 81 patients, suffering renocellular cancer (RCC), complicated by a renal vein and vena cava inferior thrombosis. According to the Mayo clinic classification, the level of a tumoral thrombus spread was established: the 0 level--in 37 patients, the level I--in 19, the level II--in 17, the level III --in 6, and the level IV--in 2. There were substantiated the optimal surgical accesses and technique of radical nephrectomy and thrombectomy for RCC, complicated by a renal vein and vena cava inferior thrombosis. It is recommended to apply transabdominal accesses: the extended median laparotomic, bilateral subcostal of a "Chevron" or "Mercedes" type. There was shown, that the access choice depends on the level of the tumoral thrombus localization.

  6. IN-SITU SAMPLING AND CHARACTERIZATION OF NATURALLY OCCURRING MARINE METHANE HYDRATE USING THE D/V JOIDES RESOLUTION

    SciTech Connect

    Frank R. Rack

    2004-05-01

    The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were that: (1) Frank Rack presented preliminary results and operational outcomes of ODP Leg 204 at the DOE/NETL project review and two made two presentations at the ChevronTexaco Gulf of Mexico Hydrate JIP meeting, which were both held in Westminster, CO; and, (2) postcruise evaluation of the data, tools and measurement systems that were used during ODP Leg 204 continued in the preparation of deliverables under this agreement. Work continued on analyzing data collected during ODP Leg 204 and preparing reports on the outcomes of Phase 1 projects as well as developing plans for Phase 2.

  7. Flow-Field Surveys for Rectangular Nozzles. Supplement

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2012-01-01

    Flow field survey results for three rectangular nozzles are presented for a low subsonic condition obtained primarily by hot-wire anemometry. The three nozzles have aspect ratios of 2:1, 4:1 and 8:1. A fourth case included has 2:1 aspect ratio with chevrons added to the long edges. Data on mean velocity, turbulent normal and shear stresses as well as streamwise vorticity are presented covering a streamwise distance up to sixteen equivalent diameters from the nozzle exit. These detailed flow properties, including initial boundary layer characteristics, are usually difficult to measure in high speed flows and the primary objective of the study is to aid ongoing and future computational and noise modeling efforts. This supplement contains data files, charts and source code.

  8. U.S. DRIVE

    SciTech Connect

    2012-03-16

    U.S. DRIVE, which stands for United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability, is an expanded government-industry partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company and General Motors; Tesla Motors; five energy companies – BP America, Chevron Corporation, ConocoPhillips, ExxonMobil Corporation, and Shell Oil Products US; two utilities – Southern California Edison and Michigan-based DTE Energy; and the Electric Power Research Institute (EPRI). The U.S. DRIVE mission is to accelerate the development of pre-competitive and innovative technologies to enable a full range of affordable and clean advanced light-duty vehicles, as well as related energy infrastructure.

  9. A long-tailed, seed-eating bird from the Early Cretaceous of China.

    PubMed

    Zhou, Zhonghe; Zhang, Fucheng

    2002-07-25

    The lacustrine deposits of the Yixian and Jiufotang Formations in the Early Cretaceous Jehol Group in the western Liaoning area of northeast China are well known for preserving feathered dinosaurs, primitive birds and mammals. Here we report a large basal bird, Jeholornis prima gen. et sp. nov., from the Jiufotang Formation. This bird is distinctively different from other known birds of the Early Cretaceous period in retaining a long skeletal tail with unexpected elongated prezygopophyses and chevrons, resembling that of dromaeosaurids, providing a further link between birds and non-avian theropods. Despite its basal position in early avian evolution, the advanced features of the pectoral girdle and the carpal trochlea of the carpometacarpus of Jeholornis indicate the capability of powerful flight. The dozens of beautifully preserved ovules of unknown plant taxa in the stomach represents direct evidence for seed-eating adaptation in birds of the Mesozoic era.

  10. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, Harry C.; Fang, Ho T.

    1991-01-01

    The results of a four year program to improve the strength and reliability of injection-molded silicon nitride are summarized. Statistically designed processing experiments were performed to identify and optimize critical processing parameters and compositions. Process improvements were monitored by strength testing at room and elevated temperatures, and microstructural characterization by optical, scanning electron microscopes, and scanning transmission electron microscope. Processing modifications resulted in a 20 percent strength and 72 percent Weibull slope improvement of the baseline material. Additional sintering aids screening and optimization experiments succeeded in developing a new composition (GN-10) capable of 581.2 MPa at 1399 C. A SiC whisker toughened composite using this material as a matrix achieved a room temperature toughness of 6.9 MPa m(exp .5) by the Chevron notched bar technique. Exploratory experiments were conducted on injection molding of turbocharger rotors.

  11. Brachymetatarsia: congenitally short third and fourth metatarsals treated by distraction lengthening--a case report and literature summary.

    PubMed

    Robinson, J F; Ouzounian, T J

    1998-10-01

    Brachymetatarsia is an uncommon condition, and when present, it is usually asymptomatic. A case report demonstrating the use of distraction lengthening for symptomatic multiple congenital short metatarsals is presented. A 15-year-old female with congenital short third and fourth metatarsals was treated for painful transfer lesions under the second and fifth metatarsal heads and a secondary hallux valgus deformity. Surgical correction with a chevron osteotomy, soft tissue reconstruction of the second toe, and distraction lengthening of the third and fourth metatarsals was performed. Three years after treatment, the patient has an excellent clinical correction, with no evidence of recurrent transfer lesions. To our knowledge, this is the first report demonstrating the use of distraction lengthening without supplemental bone graft for multiple short metatarsals in a single extremity. PMID:9801088

  12. Extending acoustic data measured with small-scale supersonic model jets to practical aircraft exhaust jets

    NASA Astrophysics Data System (ADS)

    Kuo, Ching-Wen

    2010-06-01

    extrapolated to represent the expected noise levels at different noise monitoring locations of practical interest. With the emergence of more powerful fighter aircraft, supersonic jet noise reduction devices are being intensely researched. Small-scale measurements are a crucial step in evaluating the potential of noise reduction concepts at an early stage in the design process. With this in mind, the present thesis provides an acoustic assessment methodology for small-scale military-style nozzles with chevrons. Comparisons are made between the present measurements and those made by NASA at moderate-scale. The effect of chevrons on supersonic jets was investigated, highlighting the crucial role of the jet operating conditions on the effects of chevrons on the jet flow and the subsequent acoustic benefits. A small-scale heat simulated jet is investigated in the over-expanded condition and shows no substantial noise reduction from the chevrons. This is contrary to moderate-scale measurements. The discrepancy is attributed to a Reynolds number low enough to sustain an annular laminar boundary layer in the nozzle that separates in the over-expanded flow condition. These results are important in assessing the limitations of small-scale measurements in this particular jet noise reduction method. Lastly, to successfully present the results from the acoustic measurements of small-scale jets with high quality, a newly developed PSU free-field response was empirically derived to match the specific orientation and grid cap geometry of the microphones. Application to measured data gives encouraging results validating the capability of the method to produce superior accuracy in measurements even at the highest response frequencies of the microphones.

  13. Flow-Field Surveys for Rectangular Nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2012-01-01

    Flow field survey results for three rectangular nozzles are presented for a low subsonic condition obtained primarily by hot-wire anemometry. The three nozzles have aspect ratios of 2:1, 4:1 and 8:1. A fourth case included has 2:1 aspect ratio with chevrons added to the long edges. Data on mean velocity, turbulent normal and shear stresses as well as streamwise vorticity are presented covering a streamwise distance up to sixteen equivalent diameters from the nozzle exit. These detailed flow properties, including initial boundary layer characteristics, are usually difficult to measure in high speed flows and the primary objective of the study is to aid ongoing and future computational and noise modeling efforts.

  14. Deposition, diagenesis, and porosity relationships in the Glorieta formation, Keystone (Holt) field, Winkler County, Texas

    SciTech Connect

    Haack, R.C.; Jacka, A.D.

    1984-04-01

    Production of hydrocarbons from the Chevron 7C H.E. Lovett well, Keystone (Holt) field, is from the upper part of the Glorieta formation (Leonardian). The field is located near the western margin of the Central Basin platform (Permian basin) on a present-day structural high. The 116-ft (35.4-m) core contains at least 7 cycles of deposition, which consist, upward from the base, of progradational subtidal, intertidal and supratidal deposits. Supratidal deposits predominantly consist of dolostones with fenestral cavities; sabkha deposits are not represented. Scattered nodules of nonevaporitic anhydrite have been emplaced within subtidally deposited carbonates after dolomitization. Intrabiopelgrapestone grainstones, oointrabiopelgrainstones, intrabiopelpackstones and wackestones, and intrapelpackstones and wackestones are the predominant lithofacies. Dolostone is the predominant lithology.

  15. Single electron counting using a dual MCP assembly

    NASA Astrophysics Data System (ADS)

    Yang, Yuzhen; Liu, Shulin; Zhao, Tianchi; Yan, Baojun; Wang, Peiliang; Yu, Yang; Lei, Xiangcui; Yang, Luping; Wen, Kaile; Qi, Ming; Heng, Yuekun

    2016-09-01

    The gain, pulse height resolution and peak-to-valley ratio of single electrons detected by using a Chevron configured Microchannel Plate (MCP) assembly are studied. The two MCPs are separated by a 280 μm gap and are biased by four electrodes. The purpose of the study is to determine the optimum bias voltage arrangements for single electron counting. By comparing the results of various bias voltage combinations, we conclude that good performance for the electron counting can be achieved by operating the MCP assembly in saturation mode. In addition, by applying a small reverse bias voltage across the gap while adjusting the bias voltages of the MCPs, optimum performance of electron counting can be obtained.

  16. Towards Simulating Non-Axisymmetric Influences on Aircraft Plumes for Signature Prediction

    NASA Technical Reports Server (NTRS)

    Kenzakowski, D. C.; Shipman, J. D.; Dash, S. M.

    2000-01-01

    A methodology for efficiently including three-dimensional effects on aircraft plume signature is presented. First, exploratory work on the use of passive mixing enhancement devices, namely chevrons and tabs, in IR signature reduction for external turbofan plumes is demonstrated numerically and experimentally. Such small attachments, when properly designed, cause an otherwise axisymmetric plume to have significant 3D structures, affecting signature prediction. Second, an approach for including non-axisymmetric and installation effects in plume signature prediction is discussed using unstructured methodology. Unstructured flow solvers, using advanced turbulence modeling and plume thermochemistry, facilitate the modeling of aircraft effects on plume structure that previously have been neglected due to gridding complexities. The capabilities of the CRUNCH unstructured Navier-Stokes solver for plume modeling is demonstrated for a passively mixed turbofan nozzle, a generic fighter nozzle, and a complete aircraft.

  17. Reining in agency action: the rejected proposal rule and Section 1011 of the 2003 Medicare Act.

    PubMed

    Charles, Sabrina

    2006-01-01

    Section 1011 of the 2003 Medicare Act authorized the disbursement of over one billion dollars to healthcare providers that provide uncompensated emergency medical care to undocumented immigrants. In 2005, the Centers for Medicare and Medicaid Services (CMS) issued its final interpretation of the statute. Despite previous statementsto the contrary, CMS conditioned eligibilityfor Section 1011 funds on the collection of certain immigration status-related information from patients seeking emergency care. Prior to the issuance of CMS' final guidance, the House defeated House Resolution 3722, which was substantially similar to the CMS final guidance. This Article argues that the House's rejection of H.R. 3722 renders CMS's final guidance invalid under the analysis set forth in Chevron, U.S.A. Inc. v. National Resources Defense Council, Inc. PMID:17260547

  18. Heat shield characterization: Outer planet atmospheric entry probe

    NASA Technical Reports Server (NTRS)

    Mezines, S. A.; Rusert, E. L.; Disser, E. F.

    1976-01-01

    A full scale carbon phenolic heat shield was fabricated for the Outer Planet Probe in order to demonstrate the feasibility of molding large carbon phenolic parts with a new fabrication processing method (multistep). The sphere-cone heat shield was molded as an integral unit with the nose cap plies configured into a double inverse chevron shape to achieve the desired ply orientation. The fabrication activity was successful and the feasibility of the multistep processing technology was established. Delaminations or unbonded plies were visible on the heat shield and resulted from excessive loss of resin and lack of sufficient pressure applied on the part during the curing cycle. A comprehensive heat shield characterization test program was conducted, including: nondestructive tests with the full scale heat shield and thermal and mechanical property tests with small test specimen.

  19. A Survey of Challenges in Aerodynamic Exhaust Nozzle Technology for Aerospace Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Shyne, Rickey J.

    2002-01-01

    The current paper discusses aerodynamic exhaust nozzle technology challenges for aircraft and space propulsion systems. Technology advances in computational and experimental methods have led to more accurate design and analysis tools, but many major challenges continue to exist in nozzle performance, jet noise and weight reduction. New generations of aircraft and space vehicle concepts dictate that exhaust nozzles have optimum performance, low weight and acceptable noise signatures. Numerous innovative nozzle concepts have been proposed for advanced subsonic, supersonic and hypersonic vehicle configurations such as ejector, mixer-ejector, plug, single expansion ramp, altitude compensating, lobed and chevron nozzles. This paper will discuss the technology barriers that exist for exhaust nozzles as well as current research efforts in place to address the barriers.

  20. Recent Progress in Engine Noise Reduction for Commercial Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2003-01-01

    Considerable progress has been made over the past ten years developing technologies for reducing aircraft noise. Engine noise continues to be a dominate source, particularly for aircraft departing from airports. Research efforts have concentrated on developing noise prediction methods, experimental validation, and developing noise reduction concepts that have been verified through model scale and static engine tests. Most of the work has concentrated on fan and jet components for commercial turbofan engines. In this seminar, an overview of the engine noise reduction work that was sponsored by NASA s Advanced Subsonic Technology Noise Reduction Program will be given, along with background information on turbofan noise sources and certification procedures. Concepts like "chevron" nozzles for jet noise reduction and swept stators for fan noise reduction will be highlighted. A preliminary assessment on how the new technologies will impact future engines will be given.

  1. Two wheeled lunar dumptruck

    NASA Technical Reports Server (NTRS)

    Brus, Michael R.; Haleblain, Ray; Hernandez, Tomas L.; Jensen, Paul E.; Kraynick, Ronald L.; Langley, Stan J.; Shuman, Alan G.

    1988-01-01

    The design of a two wheel bulk material transport vehicle is described in detail. The design consists of a modified cylindrical bowl, two independently controlled direct drive motors, and two deformable wheels. The bowl has a carrying capacity of 2.8 m (100 ft) and is constructed of aluminum. The low speed, high HP motors are directly connected to the wheels, thus yielding only two moving parts. The wheels, specifically designed for lunar applications, utilize the chevron tread pattern for optimum traction. The vehicle is maneuvered by varying the relative angular velocities of the wheels. The bulk material being transported is unloaded by utilizing the motors to oscillate the bowl back and forth to a height at which dumping is achieved. The analytical models were tested using a scaled prototype of the lunar transport vehicle. The experimental data correlated well with theoretical predictions. Thus, the design established provides a feasible alternative for the handling of bulk material on the moon.

  2. Direct integration of MEMS, dielectric pumping and cell manipulation with reversibly bonded gecko adhesive microfluidics

    NASA Astrophysics Data System (ADS)

    Warnat, S.; King, H.; Wasay, A.; Sameoto, D.; Hubbard, T.

    2016-09-01

    We present an approach to form a microfluidic environment on top of MEMS dies using reversibly bonded microfluidics. The reversible polymeric microfluidics moulds bond to the MEMS die using a gecko-inspired gasket architecture. In this study the formed microchannels are demonstrated in conjunction with a MEMS mechanical single cell testing environment for BioMEMS applications. A reversible microfluidics placement technique with an x-y and rotational accuracy of  ±2 µm and 1° respectively on a MEMS die was developed. No leaks were observed during pneumatic pumping of common cell media (PBS, sorbitol, water, seawater) through the fluidic channels. Thermal chevron actuators were successful operated inside this fluidic environment and a performance deviation of ~15% was measured compared to an open MEMS configuration. Latex micro-spheres were pumped using traveling wave di-electrophoresis and compared to an open (no-microfluidics) configuration with velocities of 24 µm s-1 and 20 µm s-1.

  3. Sidney Blatt's Object Relations Inventory: Contributions and Future Directions.

    PubMed

    Huprich, Steven K; Auerbach, John S; Porcerelli, John H; Bupp, Lindsey L

    2016-01-01

    In this article, we provide a historical overview of the Object Relations Inventory (ORI) and related methods for the assessment of object relations constructed by Sidney Blatt and colleagues (e.g., Blatt, Bers, & Schaffer, 1992 ; Blatt, Wein, Chevron, & Quinlan, 1979 ; Diamond, Kaslow, Coonerty, & Blatt, 1990 ). We clarify terminology that has been used inconsistently in the literature, especially by way of differentiating the methods used to collect descriptions of significant figures, such as the ORI and its predecessor, the Parental Description (PD) task, and the rating scales that Blatt and colleagues constructed to rate those descriptions. We provide a tabular summary of empirical studies of the measure and offer a critical review of those aspects of the instrument that require further empirical investigation and methodological rigor.

  4. Self-organized patterns along sidewalls of iron silicide nanowires on Si(110) and their origin

    SciTech Connect

    Das, Debolina; Mahato, J. C.; Bisi, Bhaskar; Dev, B. N.; Satpati, B.

    2014-11-10

    Iron silicide (cubic FeSi{sub 2}) nanowires have been grown on Si(110) by reactive deposition epitaxy and investigated by scanning tunneling microscopy and scanning/transmission electron microscopy. On an otherwise uniform nanowire, a semi-periodic pattern along the edges of FeSi{sub 2} nanowires has been discovered. The origin of such growth patterns has been traced to initial growth of silicide nanodots with a pyramidal Si base at the chevron-like atomic arrangement of a clean reconstructed Si(110) surface. The pyramidal base evolves into a comb-like structure along the edges of the nanowires. This causes the semi-periodic structure of the iron silicide nanowires along their edges.

  5. Cryopump

    DOEpatents

    McFarlin, David J.

    1980-01-01

    A cryopump having a cryopanel adapted for being cooled by a first refrigerant and shielded from radiation incident thereon by shields adapted for being cooled with a second refrigerant is disclosed. The cryopanel and the radiation shield are fabricated with a first material having high thermal conductivity, such as aluminum, while means for distributing refrigerant from refrigerant dewars to the cryopanel and shields are made of a second material, such as stainless steel. The stainless steel and aluminum sections are connected by an aluminum-steel transition connector adapted for providing vacuum tight connections at cryogenic temperatures. Both the cryopanel and chevrons comprising the shields are fabricated and extruded aluminum with coolant passages formed therein. Thermal distortions during operation are compensated by the use of stainless steel bellows within refrigerant distribution lines. Additionally the refrigerant distribution lines are utilized to suspend the cryopanel and shields within an evacuated environment of the cryopump.

  6. A new two-pored species of Amphisbaena (Squamata, Amphisbaenidae) from the Brazilian Cerrado, with a key to the two-pored species of Amphisbaena.

    PubMed

    Ribeiro, Síria; Gomes, Jerriane O; Silva, Helder Lúcio Rodrigues Da; Cintra, Carlos Eduardo D; Silva, Nelson Jorge Da Jr

    2016-01-01

    A new species of Amphisbaena is described from municipalities of Babaçulândia, State of Tocantins, and Estreito, State of Maranhão, northern Brazilian Cerrado. The new species differs from other two-pored species of the genus, by presenting mainly slender body shape; snout rounded in profile and dorsal view; high number of body annuli (328-342); 12-14 dorsal segments and 14-16 ventral in midbody half-annulus; autotomic site between 9-10th caudal annuli; absence of chevron-shaped anterior dorsal half-annuli; 20-23 caudal annuli; postmalar row absent; and precloacals pores arranged in a continuous series of the precloacal half-annuli. Additionally, we present a key for two-pored species of Amphisbaena. PMID:27515611

  7. Reining in agency action: the rejected proposal rule and Section 1011 of the 2003 Medicare Act.

    PubMed

    Charles, Sabrina

    2006-01-01

    Section 1011 of the 2003 Medicare Act authorized the disbursement of over one billion dollars to healthcare providers that provide uncompensated emergency medical care to undocumented immigrants. In 2005, the Centers for Medicare and Medicaid Services (CMS) issued its final interpretation of the statute. Despite previous statementsto the contrary, CMS conditioned eligibilityfor Section 1011 funds on the collection of certain immigration status-related information from patients seeking emergency care. Prior to the issuance of CMS' final guidance, the House defeated House Resolution 3722, which was substantially similar to the CMS final guidance. This Article argues that the House's rejection of H.R. 3722 renders CMS's final guidance invalid under the analysis set forth in Chevron, U.S.A. Inc. v. National Resources Defense Council, Inc.

  8. Work zone safety, maintenance management and equipment, and transportation of hazardous materials. Transportation research record

    SciTech Connect

    Faulkner, M.J.S.

    1981-01-01

    Contents of this report are: Field evaluation of Highway Advisory Radio For traffic management in work zones; Use of chevron patterns on traffic control devices in work zones; Effectiveness of city traffic-control programs for construction and maintenance work zones; Concrete barriers at transition zones adjacent to two-way traffic operation on normally divided highways; Alternative sign sequences for work zones on rural highways; Highway-related tort claims to Iowa counties; Procedure for evaluating efficiency of power-operated cutting tools in localized pavement repair; Portable hydrodynamic brine roadway deicer system; Crash testing of a portable energy-absorbing system for highway service vehicles; Regulation of the movement of hazardous cargoes on highways.

  9. CLIMATE CHANGE FUEL CELL PROGRAM

    SciTech Connect

    Mike Walneuski

    2004-09-16

    ChevronTexaco has successfully operated a 200 kW PC25C phosphoric acid fuel cell power plant at the corporate data center in San Ramon, California for the past two years and seven months following installation in December 2001. This site was chosen based on the ability to utilize the combined heat (hot water) and power generation capability of this modular fuel cell power plant in an office park setting . In addition, this project also represents one of the first commercial applications of a stationary fuel cell for a mission critical data center to assess power reliability benefits. This fuel cell power plant system has demonstrated outstanding reliability and performance relative to other comparably sized cogeneration systems.

  10. Fracture toughness of fiber-reinforced glass ceramic and ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Stull, Kevin R.; Parvizi-Majidi, A.

    1991-01-01

    A fracture mechanics investigation of 2D woven Nicalon SiC/SiC and Nicalon SiC/LAS has been undertaken. An energy approach has been adopted to characterize and quantify the fracture properties of these materials. Chevron-notched bend specimens were tested in an edgewise configuration in which the crack propagated perpendicular to the ply direction. R-curves were obtained from repeated loading and unloading of specimens using several methods of data reduction. Values correconding to the plateau regions of the R-curves were taken as steady-state crack-growth resistance. These ranged from 37 to 63 kJ/sq m for 2D-SiC/LAS and 2.6 to 2.8 kJ/sq m for 2D-SiC/SiC composites.

  11. Estimation of Fracture Toughness of Small-Sized Ultrafine-Grained Specimens

    NASA Astrophysics Data System (ADS)

    Deryugin, E. E.; Suvorov, B. I.

    2015-10-01

    The results obtained from measurements of the crack resistance of a VT6 alloy (Ti-6.46Al-3.84V in wt.%) produced by refining coarse-crystalline structure down to an ultrafine-grained state, using a triaxial forging technique, are presented. The specific fracture energy γc is calculated by means of a new procedure developed for small-sized chevron-notched specimens. Severe plastic deformation is shown to cause a substantial reduction in γc at room temperature. Fracture surface structure found in the ultrafine-grained alloy under study contains local zones of a severely deformed material characterized by high pore concentration. This type of structure cannot be formed solely by crystallographic shearing along densely packed lattice planes. This is evidence for a significant role of rotation deformation modes in crack nucleation and growth on different structural scales of the material.

  12. Imaging MAMA detector systems. [Multi-Anode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-01-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  13. Two-dimensional ultraviolet imagery with a microchannel-plate/resistive-anode detector

    NASA Technical Reports Server (NTRS)

    Opal, C. B.; Feldman, P. D.; Weaver, H. A.; Mcclintock, J. A.

    1979-01-01

    An imaging ultraviolet detector has been designed for use with a precision pointed telescope flown on a sounding rocket. Resolution of better than 80 microns over a field of 5 mm has been achieved. The ultraviolet image is converted to electrons at the front surface of a CsI coated chevron microchannel-plate electron multiplier. For each photoelectron, the multiplier produces a burst of about 3,000,000 electrons, which impinges on a tellurium-coated resistive anode with four evaporated hyperbolic readout electrodes. The sizes of the four resulting output pulses are digitized to 10 bit accuracy and telemetered to the ground, where they are divided in pairs to give the x and y coordinates of the photoelectron event. The coordinates are used to generate a picture in real time, and are recorded for computer processing later. The detector was successfully flown in December 1978. Good images of Jupiter and Capella in hydrogen Lyman alpha emission were obtained.

  14. Kinetic Analysis of Protein Folding Lattice Models

    NASA Astrophysics Data System (ADS)

    Chen, Hu; Zhou, Xin; Liaw, Chih Young; Koh, Chan Ghee

    Based on two-dimensional square lattice models of proteins, the relation between folding time and temperature is studied by Monte Carlo simulation. The results can be represented by a kinetic model with three states — random coil, molten globule, and native state. The folding process is composed of nonspecific collapse and final searching for the native state. At high temperature, it is easy to escape from local traps in the folding process. With decreasing temperature, because of the trapping in local traps, the final searching speed decreases. Then the folding shows chevron rollover. Through the analysis of the fitted parameters of the kinetic model, it is found that the main difference between the energy landscapes of the HP model and the Go model is that the number of local minima of the Go model is less than that of the HP model.

  15. Testing of reciprocating seals for application in a Stirling cycle engine

    NASA Technical Reports Server (NTRS)

    Curulla, J. F.; Beck, T. L.

    1980-01-01

    Six single stage reciprocating seal configurations to the requirements of the Stirling cycle engine were evaluated. The seals tested were: the Boeing Footseal, NASA Chevron polyimide seal, Bell seal, Quad seal, Tetraseal, and Dynabak seal. None of these seal configurations met the leakage goals of .002 cc/sec at helium gas pressure of 1.22 x 10 to the 7th power PA, rod speed of 7.19 m/sec peak, and seal environmental temperature of 408 K for 1500 hours. Most seals failed due to high temperatures. Catastrophic failures were observed for a minimum number of test runs characterized by extremely high leakage rates and large temperature rises. The Bell seal attained 63 hours of run time at significantly lowered test conditions.

  16. Research study on materials processing in space experiment number M512. [adhesion-cohesion properties of liquid metals under weightlessness conditions in Skylab

    NASA Technical Reports Server (NTRS)

    Tobin, J. M.; Kossowsky, R.

    1973-01-01

    Adhesion of the melted metals to the adjacent solid metals, and cohesion of the liquid metal to itself appeared to be equally as strong in zero gravity as on earth. Similar cut edge bead periodicity in cut thin plate, and similar periodic chevron patterns in full penetration welds were seen. The most significant practical result is that the design of braze joints for near zero gravity can be very tolerant of dimensional gaps in the joint. This conclusion is based on a comparison of narrow, wide and variable gap widths. Brazing is very practical as a joining or repairing technique for metal structures at zero gravity. The operation of the hardware developed to locate successive small (0.6 cm) diameter cylinders in the focus of the battery powered EB unit, melt the various metal specimens and deploy some liquid metal drops to drift in space, was generally successful. However, the sphericity and surface roughness were far from those of ball bearings.

  17. Recovery of heavy oils from deep reservoirs

    SciTech Connect

    Stoller, H. M.; Fox, R. L.

    1980-01-01

    The objective of Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. Two approaches are being pursued: improving the thermal efficiency of injection string components and the development of downhole steam generators to achieve steam injection. The first approach has seen the testing of commercially available components at a high temperature (650/sup 0/F)/high pressure (2100 psi) simulation facility. Promising components will be tested shortly in a field test conducted by Husky Oil at Lloydminster, Canada. The second approach has seen the prototype development and laboratory testing of low-pressure and high-pressure hydrocarbon-fueled downhole steam generators. Concurrently, a modified high pressure steam generator has undergone extensive laboratory combustion studies and is currently being employed in a field test at Chevron's Kern River field. This field test is examining the effects of simultaneous injection of steam and combustion products on the reservoir and oil recovery. 9 figures.

  18. Unusual Repertoire of Vocalizations in the BTBR T+tf/J Mouse Model of Autism

    PubMed Central

    Scattoni, Maria Luisa; Gandhy, Shruti U.; Ricceri, Laura; Crawley, Jacqueline N.

    2008-01-01

    BTBR T+ tf/J (BTBR) is an inbred mouse strain that displays social abnormalities and repetitive behaviors analogous to the first and third diagnostic symptoms of autism. Here we investigate ultrasonic vocalizations in BTBR, to address the second diagnostic symptom of autism, communication deficits. As compared to the commonly used C57BL/6J (B6) strain, BTBR pups called more loudly and more frequently when separated from their mothers and siblings. Detailed analysis of ten categories of calls revealed an unusual pattern in BTBR as compared to B6. BTBR emitted high levels of harmonics, two-syllable, and composite calls, but minimal numbers of chevron-shaped syllables, upward, downward, and short calls. Because body weights were higher in BTBR than B6 pups, one possible explanation was that larger thoracic size was responsible for the louder calls and different distribution of syllable categories. To test this possibility, we recorded separation calls from FVB/NJ, a strain with body weights similar to BTBR, and 129X1/SvJ, a strain with body weights similar to B6. BTBR remained the outlier on number of calls, displaying low numbers of complex, upward, chevron, short, and frequency steps calls, along with high harmonics and composites. Further, developmental milestones and growth rates were accelerated in BTBR, indicating an unusual neurodevelopmental trajectory. Overall, our findings demonstrate strain-specific patterns of ultrasonic calls that may represent different lexicons, or innate variations in complex vocal repertoires, in genetically distinct strains of mice. Particularly intriguing is the unusual pattern of vocalizations and the more frequent, loud harmonics evident in the BTBR mouse model of autism that may resemble the atypical vocalizations seen in some autistic infants. PMID:18728777

  19. The Optical Dielectric Tensor Configuration in Aligned Ferroelectric Liquid Crystal Cells

    NASA Astrophysics Data System (ADS)

    Lavers, Christopher Ralph

    1990-01-01

    Available from UMI in association with The British Library. Entirely new observations are presented using prism-coupling of radiation to probe the director configuration of thin FLC cells. For the first time detailed results are obtained on 'real' structures composed of polyimide aligning layers and ITO conductive surfaces using the powerful optical mode excitation technique. Results show the presence of a chevron in the layering and that a uniaxial model for the optic tensor is adequate to fit the data in the nematic and both the smectic A and smectic C* phases. Comparison of theoretical reflectivity curves, generated from a formalism of Fresnel's optical equations, to experimental data taken as a function of wavelength across the visible part of the spectrum show that a uniaxial model is sufficient to fit all of the data. DC voltages were applied to several different FLC cells in the forward biased condition and theoretical modelling has shown that the liquid crystal optic tensor configuration distorts in such a manner as to cause small distortion of the layering with a pinned point or 'chevron interface' in the middle of the cell. In-plane and out -of-plane tilt profiles for the liquid crystal optic tensor distort in a consistent manner from initial zero voltage boundary conditions. Further the form of the in-plane tilt angels obtained as a function of temperature of the FLC containing system agrees well with theoretical predictions based on Landau second order phases transitions. Some conventional optical polarised microscopy work conducted on ordinary flat cells and a half pyramid/high -refractive-index backplate cell is briefly discussed and current voltage (I/V) characteristics are investigated.

  20. Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion

    NASA Astrophysics Data System (ADS)

    Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J.

    2016-04-01

    Full waveform inversion using the conventional L2 distance to measure the misfit between seismograms is known to suffer from cycle skipping. An alternative strategy is proposed in this study, based on a measure of the misfit computed with an optimal transport distance. This measure allows to account for the lateral coherency of events within the seismograms, instead of considering each seismic trace independently, as is done generally in full waveform inversion. The computation of this optimal transport distance relies on a particular mathematical formulation allowing for the non-conservation of the total energy between seismograms. The numerical solution of the optimal transport problem is performed using proximal splitting techniques. Three synthetic case studies are investigated using this strategy: the Marmousi 2 model, the BP 2004 salt model, and the Chevron 2014 benchmark data. The results emphasize interesting properties of the optimal transport distance. The associated misfit function is less prone to cycle skipping. A workflow is designed to reconstruct accurately the salt structures in the BP 2004 model, starting from an initial model containing no information about these structures. A high-resolution P-wave velocity estimation is built from the Chevron 2014 benchmark data, following a frequency continuation strategy. This estimation explains accurately the data. Using the same workflow, full waveform inversion based on the L2 distance converges towards a local minimum. These results yield encouraging perspectives regarding the use of the optimal transport distance for full waveform inversion: the sensitivity to the accuracy of the initial model is reduced, the reconstruction of complex salt structure is made possible, the method is robust to noise, and the interpretation of seismic data dominated by reflections is enhanced.

  1. Tonganoxichnus, a new insect trace from the Upper Carboniferous of eastern Kansas

    USGS Publications Warehouse

    Mangano, M.G.; Buatois, L.A.; Maples, C.G.; Lanier, Wendy E.

    1997-01-01

    Upper Carboniferous tidal rhythmites of the Tonganoxie Sandstone Member (Stranger Formation) at Buildex Quarry, eastern Kansas, USA, host a relatively diverse arthropod-dominated ichnofauna. Bilaterally symmetrical traces displaying unique anterior and posterior sets of morphological features are well represented within the assemblage. A new ichnogenus, Tonganoxichnus, is proposed for these traces. T. buildexensis, the type ichnospecies, has an anterior region characterized by the presence of a frontal pair of maxillary palp impressions, followed by a head impression and three pairs of conspicuous thoracic appendage imprints symmetrically opposite along a median axis. The posterior region commonly exhibits numerous delicate chevron-like markings, recording the abdominal appendages, and a thin, straight, terminal extension. T. buildexensis is interpreted as a resting trace. A second ichnospecies, T. ottawensis, is characterized by a fan-like arrangement of mostly bifid scratch marks at the anterior area that records the head- and thoracic-appendage backstrokes against the substrate. The posterior area shows chevron-like markings or small subcircular impressions that record the abdominal appendages of the animal, also ending in a thin, straight, terminal extension. Specimens display lateral repetition, and are commonly grouped into twos or threes with a fix point at the posteriormost tail-like structure. T. ottawensis is interpreted as a jumping structure, probably in connection with feeding purposes. The two ichnospecies occur in close association, and share sufficient morphologic features to support the same type of arthropod producer. T. buildexensis closely mimics the ventral anatomy of the tracemaker, whereas T. ottawensis records the jumping abilities of the animal providing significant ethologic and paleoecologic information. The presence of well-differentiated cephalic, thoracic, and abdominal features, particularly in T. buildexensis, resembles the

  2. Hollow Fiber Flight Prototype Spacesuit Water Membrane Evaporator Design and Testing

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Vogel, Matt; Makinen, Janice; Tsioulos, Gus

    2010-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform thermal control for advanced spacesuits and to take advantage of recent advances in micropore membrane technology. This results in a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. The Membrana Celgard X50-215 microporous hollow-fiber (HoFi) membrane was selected after recent extensive testing as the most suitable candidate among commercial alternatives for continued SWME prototype development. The current design was based on a previous design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape. This was developed into a full-scale prototype consisting of 14,300 tube bundled into 30 stacks, each of which is formed into a chevron shape and separated by spacers and organized into three sectors of 10 nested stacks. The new design replaced metal components with plastic ones, and has a custom built flight like backpressure valve mounted on the side of the SWME housing to reduce backpressure when fully open. The spacers that provided separation of the chevron fiber stacks were eliminated. Vacuum chamber testing showed improved heat rejection as a function of inlet water temperature and water vapor backpressure compared with the previous design. Other tests pushed the limits of tolerance to freezing and showed suitability to reject heat in a Mars pressure environment with and without a sweep gas. Tolerance to contamination by constituents expected to be found in potable water produced by distillation processes was tested in a conventional way by allowing constituents to accumulate in the coolant as evaporation occurs. For this purpose, the SWME cartridge has endured an equivalent of 30 EVAs exposure and demonstrated minimal performance decline.

  3. Surface water paleotemperatures and chemical compositions from fluid inclusions in Permian Nippewalla Group halite

    SciTech Connect

    Benison, K.C.

    1996-12-31

    Quantitative climatic data for the Permian have been determined from Nippewalla Group halite. The middle Permian Nippewalla Group of Kansas and Oklahoma consists of several hundred feet of bedded halite, anhydrite, and red beds. Study of core and surface samples suggest that this halite was deposited by ephemeral lakes. Fluid inclusions provide evidence for the geochemistry of these Permian saline lake waters, including temperatures, salinities, and chemical compositions. Primary fluid inclusions are well-preserved in the Nippewalla halite. They are 5 - 30 {mu}m cubic inclusions situated along chevron and cornet growth bands. Most are one phase aqueous inclusions, but some also contain anhydride {open_quote}accidental{close_quotes} crystals. Rare two phase liquid-vapor inclusions may have formed by subaqueous outgassing or trapping of air at the water surface. Fluid inclusion freezing-melting behavior and leachate analyses suggest that Nippewalla halite precipitated from Na-Cl-rich waters with lesser quantities of SO{sub 4}, Mg, K, Al, and Si. This composition may be a product of long-term weathering. Surface water paleotemperatures were determined from one phase aqueous fluid inclusions. Homogenization temperatures range from 32 to 46{degrees}C in primary fluid inclusions and are consistent (within 3{degrees}C) along individual chevrons and cornets. These homogenization temperatures are interpreted to represent maximum surface water temperatures. These fluid inclusion data are significant in addressing global change problems. Temperatures and chemistries in these Permian lake waters agree with some modern shallow saline lake waters and with Permian climate models. This study suggests that this Permian environment was relatively similar to its modern counterparts.

  4. Surface water paleotemperatures and chemical compositions from fluid inclusions in Permian Nippewalla Group halite

    SciTech Connect

    Benison, K.C. )

    1996-01-01

    Quantitative climatic data for the Permian have been determined from Nippewalla Group halite. The middle Permian Nippewalla Group of Kansas and Oklahoma consists of several hundred feet of bedded halite, anhydrite, and red beds. Study of core and surface samples suggest that this halite was deposited by ephemeral lakes. Fluid inclusions provide evidence for the geochemistry of these Permian saline lake waters, including temperatures, salinities, and chemical compositions. Primary fluid inclusions are well-preserved in the Nippewalla halite. They are 5 - 30 [mu]m cubic inclusions situated along chevron and cornet growth bands. Most are one phase aqueous inclusions, but some also contain anhydride [open quote]accidental[close quotes] crystals. Rare two phase liquid-vapor inclusions may have formed by subaqueous outgassing or trapping of air at the water surface. Fluid inclusion freezing-melting behavior and leachate analyses suggest that Nippewalla halite precipitated from Na-Cl-rich waters with lesser quantities of SO[sub 4], Mg, K, Al, and Si. This composition may be a product of long-term weathering. Surface water paleotemperatures were determined from one phase aqueous fluid inclusions. Homogenization temperatures range from 32 to 46[degrees]C in primary fluid inclusions and are consistent (within 3[degrees]C) along individual chevrons and cornets. These homogenization temperatures are interpreted to represent maximum surface water temperatures. These fluid inclusion data are significant in addressing global change problems. Temperatures and chemistries in these Permian lake waters agree with some modern shallow saline lake waters and with Permian climate models. This study suggests that this Permian environment was relatively similar to its modern counterparts.

  5. Development of a hydraulic borehole seismic source

    SciTech Connect

    Cutler, R.P.

    1998-04-01

    This report describes a 5 year, $10 million Sandia/Industry project to develop an advanced borehole seismic source for use in oil and gas exploration and production. The development Team included Sandia, Chevron, Amoco, Conoco, Exxon, Raytheon, Pelton, and GRI. The seismic source that was developed is a vertically oriented, axial point force, swept frequency, clamped, reaction-mass vibrator design. It was based on an early Chevron prototype, but the new tool incorporates a number of improvements which make it far superior to the original prototype. The system consists of surface control electronics, a special heavy duty fiber optic wireline and draw works, a cablehead, hydraulic motor/pump module, electronics module, clamp, and axial vibrator module. The tool has a peak output of 7,000 lbs force and a useful frequency range of 5 to 800 Hz. It can operate in fluid filled wells with 5.5-inch or larger casing to depths of 20,000 ft and operating temperatures of 170 C. The tool includes fiber optic telemetry, force and phase control, provisions to add seismic receiver arrays below the source for single well imaging, and provisions for adding other vibrator modules to the tool in the future. The project yielded four important deliverables: a complete advanced borehole seismic source system with all associated field equipment; field demonstration surveys funded by industry showing the utility of the system; industrial sources for all of the hardware; and a new service company set up by their industrial partner to provide commercial surveys.

  6. Transmission sputtering of gold thin films by low-energy (< 1 keV) xenon ions. I. The system and the measurement

    NASA Astrophysics Data System (ADS)

    Ayrault, Guy; Seidman, David N.

    1982-10-01

    A novel system for direct measurement of the transmission-sputtering yields of ion-irradiated thin films is described. The system was specifically designed for the study of the transmission sputtering caused by low-energy (<1 keV) xenon ions. The xenon ion beam employed is first mass-analyzed in a specially constructed corssed magnetic- and electric-field mass spectrometer; this analyzer eliminates all energetic neutral and singly charged ions of mass less than 40 amu; it is also expected that ≤2% of the xenon ions which actually reach a specimen are doubly charged. The analyzed xenon ion beam is made to impinge on a gold thin film (˜100-500 Å thick) which is mounted in a JEM 200 transmission electron-microscope holder. The temperature of the specimen can be varied between ˜25 and 300 K employing a continuous transfer liquid-helium cryostat. The particles (atoms or ions) ejected from the unirradiated surface of the gold thin film are detected by two channeltron electron-multiplier arrays (CEMA) in the Chevron configuration; the Chevron detector is able to detect individual transmission-sputtered particles when operated in the saturated mode. To further enhance resolution, the electron cascades (produced by the CEMA), are amplified and shaped electronically into uniform square pulses. The shaped signals are detected with an Ithaco 391A lock-in amplifier (LIA). With the aid of a ratiometer feature in the LIA, we are able to measure directly the ratio of the transmission-sputtered current It to the incident ion current Ib; for Ibn=1 μA cm-2, a ratio of It/Ib as small as 1×10-9 has been measured. A detailed discussion of the calibration procedure and the experimental errors, involved in this technique, are also presented.

  7. Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation

    NASA Astrophysics Data System (ADS)

    Nelson, Sheldon

    2013-04-01

    Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation Sheldon Nelson Chevron Energy Technology Company 6001 Bollinger Canyon Road San Ramon, California 94583 snne@chevron.com The basic concept of using a plant-based remedial approach (phytoremediation) for nitrogen containing compounds is the incorporation and transformation of the inorganic nitrogen from the soil and/or groundwater (nitrate, ammonium) into plant biomass, thereby removing the constituent from the subsurface. There is a general preference in many plants for the ammonium nitrogen form during the early growth stage, with the uptake and accumulation of nitrate often increasing as the plant matures. The synthesis process refers to the variety of biochemical mechanisms that use ammonium or nitrate compounds to primarily form plant proteins, and to a lesser extent other nitrogen containing organic compounds. The shallow soil at the former warehouse facility test site is impacted primarily by elevated concentrations of nitrate, with a minimal presence of ammonium. Dissolved nitrate (NO3-) is the primary dissolved nitrogen compound in on-site groundwater, historically reaching concentrations of 1000 mg/L. The initial phases of the project consisted of the installation of approximately 1750 trees, planted in 10-foot centers in the areas impacted by nitrate and ammonia in the shallow soil and groundwater. As of the most recent groundwater analytical data, dissolved nitrate reductions of 40% to 96% have been observed in monitor wells located both within, and immediately downgradient of the planted area. In summary, an evaluation of time series groundwater analytical data from the initial planted groves suggests that the trees are an effective means of transfering nitrogen compounds from the subsurface to overlying vegetation. The mechanism of concentration reduction may be the uptake of residual nitrate from the

  8. Development of the Radiation Stabilized Distributed Flux Burner. Phase 1, final report

    SciTech Connect

    Sullivan, J.D.; Duret, M.J.

    1997-06-01

    The RSB was first developed for Thermally Enhanced Oil Recovery steamers which fire with a single 60 MMBtu/hr burner; the California Energy Commission and Chevron USA were involved in the burner development. The burner has also since found applications in refinery and chemical plant process heaters. All Phase I goals were successfully met: the RSB achieved sub-9 ppM NOx and sub-50 ppM CO emissions using high excess air, external flue gas recirculation (FGR), and fuel staging in the 3 MMBtu/hr laboratory watertube boiler. In a test in a 50,000 lb/hr oil field steamer with fuel staging, it consistently achieved sub-20 ppM NOx and as low as 10 ppM NOx. With high CO{sub 2} casing gas in this steamer, simulating external FGR, sub-20 ppM NOx and as low as 5 ppM NOx were achieved. Burner material cost was reduced by 25% on a per Btu basis by increasing the effective surface firing rate at the burner; further reductions will occur in Phase II. The market for 30 ppM and 9 ppM low NOx burners has been identified as package boilers in the 50,000 to 250,000 lb/hr size range (the 30 ppM is for retrofit, the 9 ppM for the new boiler market). Alzeta and Babcock & Wilcox have teamed to sell both boiler retrofits and new boilers; they have identified boiler designs which use the compact flame shape of the RSB and can increase steam capacity while maintaining the same boiler footprint. Alzeta, Chevron, and B & W have teamed to identify sites to demonstrate the RSB in Phases II and III. In Phase II, the RSB will be demonstrated in a 100,000 lb/hr industrial watertube boiler.

  9. Modern nonmarine evaporite deposition, Quaidam basin, China: An overview

    SciTech Connect

    Lowenstien, T.K.; Casas, E.; Schubel, K.A. ); Spencer, R.J. ); Pengxi, Zhang )

    1991-03-01

    Dabusun Lake (200 km{sup 2}) is a shallow ({lt}1 m) perennial saline lake in the high altitude Qaidam basin (120,000 km{sup 2}) of western China. It is underlain by {gt}40 m of salt and siliciclastic sediments ({approximately}54,000 years old). Petrographic features in two 50 m cores (chevron halite, halite cumulates, rafts, and siliciclastic mud, minor solution and no subaerial exposure features except in the top meter) indicate continuous shallow perennial lake conditions. The chemical composition of fluid inclusions trapped in halite crystals show lakewaters have generally undergone progressive concentration to the present. Modern Dabusun Lake is chemically uniform (Na-Mg-Cl-rich), nonstratified, and at or near halite saturation. Evaporites accumulate in zones on the restricted lake margins as halite (cumulate and raft layers with rippled surfaces and chevron mounds), halite + carnallite (KCl{center dot}MgCl{sub 2}{center dot}6H{sub 2}O), and finally carnallite (ephemeral fine-grained crystal mush). The carnallite zone merges with a 25 m wide shoreline facies, highlighted by a 1 m wide zone of halite ooids/pisoids that border a 20-30 cm tall overhanging salt crust (1967 shoreline). Lower lake levels since that time have produced vadose diagenetic features in the shoreline halites including: pendant cements, meniscus cements, halite 'popcorn,' and solution voids with muddy geopetal fills. A large flood (July-September 1989) expanded Dabusun Lake to 800 km{sup 2}, and dissolved all surface carnallite deposits. Diagenetic carnallite cements, formed by downward migration and cooking of carnallite saturated surface brines, however, remain in the subsurface to depths of 13 m. These potash mineral cements are similar in texture to many ancient potash evaporites.

  10. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Roko Bujas; Ming He; Ken Kwik; Charles H. Schrader; Lalit Shah; Dennis Slater; Donald Todd; Don Wall

    2003-08-21

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES), a subsidiary of ChevronTexaco, General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc. GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP, Phase II RD&T included tests of an alternative (to Rentech's Dynamic Settler) primary catalyst/wax separation device and

  11. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John H. Anderson; Charles Benham; Earl R. Berry; Ming He; Charles H. Schrader; Lalit S. Shah; O.O. Omatete; T.D. Burchell

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified several potential methods to reduce or minimize the environmental impact of the proposed EECP. The EECP Project Team identified F-T catalyst disposal, beneficial gasifier slag usage (other than landfill), and carbon dioxide recovery for the gas turbine exhaust for study under this task. Successfully completing the Task 2.10 RD&T provides additional opportunities for the EECP to meet the

  12. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Abdalla H. Ali; Raj Kamarthi; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

    2003-04-16

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified the integration of the water produced in the F-T synthesis section with the gasification section as an area of potential synergy. By utilizing the F-T water in the petroleum coke slurry for the gasifier, the EECP can eliminate a potential waste stream and reduce capital costs. There is a low technical risk for this synergy, however, the economic risk, particularly in regards to the water, can be high. The economic costs include the costs

  13. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Charles Benham; Mark Bohn; John Anderson; Earl Berry; Fred Brent; Ming He; Randy Roberts; Lalit Shah; Marjan Roos

    2003-09-15

    The 1999 U. S. Department of Energy (DOE) award to Texaco Energy Systems Inc. (presently Texaco Energy Systems LLC, a subsidiary of ChevronTexaco) was made to provide a Preliminary Engineering Design of an Early Entrance Coproduction Plant (EECP). Since the award presentation, work has been undertaken to achieve an economical concept design that makes strides toward the DOE Vision 21 goal. The objective of the EECP is to convert coal and/or petroleum coke to electric power plus transportation fuels, chemicals and useful utilities such as steam. The use of petroleum coke was added as a fuel to reduce the cost of feedstock and also to increase the probability of commercial implementation of the EECP concept. This objective has been pursued in a three phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems LLC and subcontractors General Electric (GE), Praxair, and Kellogg Brown and Root (KBR). ChevronTexaco is providing gasification technology and Rentech's Fischer-Tropsch technology that has been developed for non-natural gas feed sources. GE is providing gas turbine technology for the combustion of low energy content gas. Praxair is providing air separation technology, and KBR is providing engineering to integrate the facility. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. Phase I Preliminary Concept Report was completed in 2000. The Phase I Preliminary Concept Report was prepared based on making

  14. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Randy Roberts

    2003-04-25

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using petroleum coke and ChevronTexaco's proprietary gasification technology. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC. (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). ChevronTexaco is providing gasification technology and Fischer-Tropsch technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified F-T reactor scale-up as a potential technical risk. The objective of Task 2.3 was to confirm engineering models that allow scale-up to commercial slurry phase bubble column (SPBC) reactors operating in the churn-turbulent flow regime. In

  15. QUANTITATIVE METHODS FOR RESERVOIR CHARACTERIZATION AND IMPROVED RECOVERY: APPLICATION TO HEAVY OIL SANDS

    SciTech Connect

    James W. Castle; Fred J. Molz; Ronald W. Falta; Cynthia L. Dinwiddie; Scott E. Brame; Robert A. Bridges

    2002-10-30

    Improved prediction of interwell reservoir heterogeneity has the potential to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involves application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation, particularly in heavy oil sands. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field. Observations of lateral variability and vertical sequences observed in Temblor Formation outcrops has led to a better understanding of reservoir geology in West Coalinga Field. Based on the characteristics of stratigraphic bounding surfaces in the outcrops, these surfaces were identified in the subsurface using cores and logs. The bounding surfaces were mapped and then used as reference horizons in the reservoir modeling. Facies groups and facies tracts were recognized from outcrops and cores of the Temblor Formation and were applied to defining the stratigraphic framework and facies architecture for building 3D geological models. The following facies tracts were recognized: incised valley, estuarine, tide- to wave-dominated shoreline, diatomite, and subtidal. A new minipermeameter probe, which has important advantages over previous methods of measuring outcrop permeability, was developed during this project. The device, which measures permeability at the distal end of a small drillhole, avoids surface weathering effects and provides a superior seal compared with previous methods for measuring outcrop permeability. The new probe was used successfully for obtaining a high-quality permeability data set from an outcrop in southern Utah. Results obtained

  16. Development of the Radiation Stabilized Distributed Flux Burner, Phase II Final Report

    SciTech Connect

    Webb, A.; Sullivan, J.D.

    1997-06-01

    This report covers progress made during Phase 2 of a three-phase DOE-sponsored project to develop and demonstrate the Radiation Stabilized Distributed Flux burner (also referred to as the Radiation Stabilized Burner, or RSB) for use in industrial watertube boilers and process heaters. The goal of the DOE-sponsored work is to demonstrate an industrial boiler burner with NOx emissions below 9 ppm and CO emissions below 50 ppm (corrected to 3% stack oxygen). To be commercially successful, these very low levels of NOx and CO must be achievable without significantly affecting other measures of burner performance such as reliability, turndown, and thermal efficiency. Phase 1 of the project demonstrated that sub-9 ppm NOx emissions and sub-50 ppm CO emissions (corrected to 3% oxygen) could be achieved with the RSB in a 3 million Btu/Hr laboratory boiler using several methods of NOx reduction. The RSB was also tested in a 60 million Btu/hr steam generator used by Chevron for Thermally Enhanced Oil Recovery (TEOR). In the larger scale tests, fuel staging was demonstrated, with the RSB consistently achieving sub-20 ppm NOx and as low as 10 ppm NOx. Large-scale steam generator tests also demonstrated that flue gas recirculation (FGR) provided a more predictable and reliable method of achieving sub-9 ppm NOx levels. Based on the results of tests at San Francisco Thermal and Chevron, the near-term approach selected by Alzeta for achieving low NOx is to use FGR. This decision was based on a number of factors, with the most important being that FGR has proved to be an easier approach to transfer to different facilities and boiler designs. In addition, staging has proved difficult to implement in a way that allows good combustion and emissions performance in a fully modulating system. In Phase 3 of the project, the RSB will be demonstrated as a very low emissions burner product suitable for continuous operation in a commercial installation. As such, the Phase 3 field demonstration

  17. Kinetic barriers to the folding of horse cytochrome C in the reduced state.

    PubMed

    Bhuyan, Abani K; Kumar, Rajesh

    2002-10-22

    To determine the kinetic barrier in the folding of horse cytochrome c, a CO-liganded derivative of cytochrome c, called carbonmonoxycytochrome c, has been prepared by exploiting the thermodynamic reversibility of ferrocytochrome c unfolding induced by guanidinium hydrochloride (GdnHCl), pH 7. The CO binding properties of unfolded ferrocytochrome c, studied by 13C NMR and optical spectroscopy, are remarkably similar to those of native myoglobin and isolated chains of human hemoglobin. Equilibrium unfolding transitions of ferrocytochrome c in the presence and the absence of CO observed by both excitation energy transfer from the lone tryptophan to the ferrous heme and far-UV circular dichroism (CD) indicate no accumulation of structural intermediates to a detectable level. Values of thermodynamic parameters obtained by two-state analysis of fluorescence transitions are DeltaG(H2O) = 11.65(+/-1.13) kcal x mol(-1) and C(m) = 3.9(+/-0.1) M GdnHCl in the presence of CO, and DeltaG(H2O)=19.3(+/-0.5) kcal x mol(-1) and C(m) = 5.1(+/-0.1) M GdnHCl in the absence of CO, indicating destabilization of ferrocytochrome c by approximately 7.65 kcal x mol(-1) due to CO binding. The native states of ferrocytochrome c and carbonmonoxycytochrome c are nearly identical in terms of structure and conformation except for the Fe2+-M80 --> Fe2+-CO replacement. Folding and unfolding kinetics as a function of GdnHCl, studied by stopped-flow fluorescence, are significantly different for the two proteins. Both refold fast, but carbonmonoxycytochrome c refolds 2-fold faster (tau = 1092 micros at 10 degrees C) than ferrocytochrome c. Linear extrapolation of the folding rates to the ordinate of the chevron plot projects this value of tau to 407 micros. The unfolding rate of the former in water, estimated by extrapolation, is faster by more than 10 orders of magnitude. Significant differences are also observed in rate-denaturant gradients in the chevron. Formation and disruption of the Fe2+-M80

  18. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; Ming He; James F. Stevens; Centha A. Davis; Michael Henley; Jerome Mayer; Harry Tsang; Jimell Erwin; Jennifer Adams; Michael Tillman; Chris Taylor; Marjan J. Roos; Robert F. Earhart

    2004-01-27

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). The potential technical and economic risks to the EECP from Task 2.5 can be mitigated by demonstrating that the end-use products derived from the upgrading of the F-T synthesis total liquid product can meet or exceed current specifications for the manufacture

  19. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    David Storm; Govanon Nongbri; Steve Decanio; Ming He; Lalit Shah; Charles Schrader; Earl Berry; Peter Ricci; Belma Demirel; Charles Benham; Mark Bohn

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc., GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I, a design basis for the Fischer-Tropsch Synthesis section was developed based on limited experience with the specified feed gas and operating conditions. The objective of this Task in Phase II RD&T work was to confirm the performance of the F-T reactor at the set design conditions. Although much of the research, development, and testing work were done by TES outside of this project, several important

  20. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2003-07-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway. Potting

  1. Cretaceous–Cenozoic burial and exhumation history of the Chukchi shelf, offshore Arctic Alaska

    USGS Publications Warehouse

    Craddock, William H.; Houseknecht, David W.

    2016-01-01

    Apatite fission track (AFT) and vitrinite reflectance data from five exploration wells and three seafloor cores illuminate the thermal history of the underexplored United States Chukchi shelf. On the northeastern shelf, Triassic strata in the Chevron 1 Diamond well record apatite annealing followed by cooling, possibly during the Triassic to Middle Jurassic, which is a thermal history likely related to Canada Basin rifting. Jurassic strata exhumed in the hanging wall of the frontal Herald Arch thrust fault record a history of probable Late Jurassic to Early Cretaceous structural burial in the Chukotka fold and thrust belt, followed by rapid exhumation to near-surface temperatures at 104 ± 30 Ma. This history of contractional tectonism is in good agreement with inherited fission track ages in low-thermal-maturity, Cretaceous–Cenozoic strata in the Chukchi foreland, providing complementary evidence for the timing of exhumation and suggesting a source-to-sink relationship. In the central Chukchi foreland, inverse modeling of reset AFT samples from the Shell 1 Klondike and Shell 1 Crackerjack wells reveals several tens of degrees of cooling from maximum paleo-temperatures, with maximum heating permissible at any time from about 100 to 50 Ma, and cooling persisting to as recent as 30 Ma. Similar histories are compatible with partially reset AFT samples from other Chukchi wells (Shell 1 Popcorn, Shell 1 Burger, and Chevron 1 Diamond) and are probable in light of regional geologic evidence. Given geologic context provided by regional seismic reflection data, we interpret these inverse models to reveal a Late Cretaceous episode of cyclical burial and erosion across the central Chukchi shelf, possibly partially overprinted by Cenozoic cooling related to decreasing surface temperatures. Regionally, we interpret this kinematic history to be reflective of moderate, transpressional deformation of the Chukchi shelf during the final phases of contractional tectonism in the

  2. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2003-10-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway. A Haz

  3. 3D Extended Logging for Geothermal Resources: Field Trials with the Geo-Bilt System

    SciTech Connect

    Mallan, R; Wilt, M; Kirkendall, B; Kasameyer, P

    2002-05-29

    Geo-BILT (Geothermal Borehole Induction Logging Tool) is an extended induction logging tool designed for 3D resistivity imaging around a single borehole. The tool was developed for deployment in high temperature geothermal wells under a joint program funded by the California Energy Commission, Electromagnetic Instruments (EMI) and the U.S. Department of Energy. EM1 was responsible for tool design and manufacture, and numerical modeling efforts were being addressed at Lawrence Livermore Laboratory (LLNL) and other contractors. The field deployment was done by EM1 and LLNL. The tool operates at frequencies from 2 to 42 kHz, and its design features a series of three-component magnetic sensors offset at 2 and 5 meters from a three-component magnetic source. The combined package makes it possible to do 3D resistivity imaging, deep into the formation, from a single well. The manufacture and testing of the tool was completed in spring of 2001, and the initial deployment of Geo-BILT occurred in May 2001 at the Lost Hills oil field in southern California at leases operated by Chevron USA. This site was chosen for the initial field test because of the favorable geological conditions and the availability of a number of wells suitable for tool deployment. The second deployment occurred in April 2002 at the Dixie Valley geothermal field, operated by Caithness Power LLC, in central Nevada. This constituted the first test in a high temperature environment. The Chevron site features a fiberglass-cased observation well in the vicinity of a water injector. The injected water, which is used for pressure maintenance and for secondary sweep of the heavy oil formation, has a much lower resistivity than the oil bearing formation. This, in addition to the non-uniform flow of this water, creates a 3D resistivity structure, which is analogous to conditions produced from flowing fractures adjacent to geothermal boreholes. Therefore, it is an excellent site for testing the 3D capability of

  4. Effect of fold structures on seismic anisotropy in continental crust

    NASA Astrophysics Data System (ADS)

    Song, W. J.; Vel, S. S.; Johnson, S. E.; Okaya, D.

    2012-04-01

    Tectonic deformation and metamorphism in the middle and lower crust can produce and modify seismic anisotropy owing to the development of micro-scale fabrics including crystallographic preferred orientation and large-scale structures such as folds, domes, faults and shear zones. Although the impact of the microfabrics on seismic anisotropy is well known via petrophysical or thin-section-based measurements, there have been few studies on how the macro-scale structures affect seismic responses. In this study, we investigate the influence of types and limb angles of cylindrical fold structures on seismic anisotropy through tensor manipulation. To calculate the velocity of seismic waves propagating through the fold structures, the elastic stiffness tensor in the Christoffel equation is substituted by geological effective media (GEM) of the folds. Here the Voigt averaging method is used in computing the GEM stiffness analytically or numerically. In this case, the GEM (C*) is decomposed into the product of a structural geometry operator (SGO) and stiffness of a representative rock that makes up the fold (Crep); C* = SGO - Crep. SGO is an operator that reorients Crep at each point of the fold with respect to a geographical reference frame and averages the reoriented stiffnesses. As an example of the representative rock stiffness, we take the stiffness tensor of the Haast schist of South Island, New Zealand (Okaya & Christensen, 2002), which has intrinsic P-wave anisotropy (AVP) of 12.7% and S1-wave anisotropy (AVS1) of 16.5%. While the rock is hexagonal in symmetry, the calculated GEM for the fold structures range between hexagonal to orthorhombic symmetry, depending on limb angle. The common types of folds are described via power or trigonometric functions: cuspate, chevron, sinusoidal, parabolic and box folds. Our results include the velocity behavior with respect to limb angle and incident angle on specific planes of the folds as well as the seismic anisotropy as a

  5. Hybrid Wing Body Aircraft System Noise Assessment with Propulsion Airframe Aeroacoustic Experiments

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burley, Casey L.; Olson, Erik D.

    2010-01-01

    A system noise assessment of a hybrid wing body configuration was performed using NASA s best available aircraft models, engine model, and system noise assessment method. A propulsion airframe aeroacoustic effects experimental database for key noise sources and interaction effects was used to provide data directly in the noise assessment where prediction methods are inadequate. NASA engine and aircraft system models were created to define the hybrid wing body aircraft concept as a twin engine aircraft with a 7500 nautical mile mission. The engines were modeled as existing technology high bypass ratio turbofans. The baseline hybrid wing body aircraft was assessed at 22 dB cumulative below the FAA Stage 4 certification level. To determine the potential for noise reduction with relatively near term technologies, seven other configurations were assessed beginning with moving the engines two fan nozzle diameters upstream of the trailing edge and then adding technologies for reduction of the highest noise sources. Aft radiated noise was expected to be the most challenging to reduce and, therefore, the experimental database focused on jet nozzle and pylon configurations that could reduce jet noise through a combination of source reduction and shielding effectiveness. The best configuration for reduction of jet noise used state-of-the-art technology chevrons with a pylon above the engine in the crown position. This configuration resulted in jet source noise reduction, favorable azimuthal directivity, and noise source relocation upstream where it is more effectively shielded by the limited airframe surface, and additional fan noise attenuation from acoustic liner on the crown pylon internal surfaces. Vertical and elevon surfaces were also assessed to add shielding area. The elevon deflection above the trailing edge showed some small additional noise reduction whereas vertical surfaces resulted in a slight noise increase. With the effects of the configurations from the

  6. Sobre las soluciones acotadas del problema instantáneo de dos cuerpos

    NASA Astrophysics Data System (ADS)

    Altavista, C.

    La demostración se basa en el hecho de que las integrales del problema de los N-cuerpos admiten componentes en el campo complejo según las raíces n-ésimas de la unidad. Definida la matriz unitaria correspondiente, la fórmula de Cayley permite transformar la matriz unitaria en una matriz hermitiana. Utilizando como parámetros los cosenos direccionales de un sistema de coordenadas orbitales referidos a un sistema de referencia fijo, puede construirse, utilizando el operador hermitiano antes definido, una forma cuadrática cuyas raíces mínima y máxima definen las cotas respectivas de los movimientos de los mencionados cosenos direccionales.

  7. FACTORS RELATED TO TOTAL ENERGY EXPENDITURE IN OLDER ADULTS (CHILE).

    PubMed

    Pakozdi, Tamara; Leiva, Laura; Bunout, Daniel; Barrera, Gladys; de la Maza, María Pía; Henriquez, Sandra; Hirsch, Sandra

    2015-10-01

    Objetivo: evaluar el Gasto Energético Total (GET) en ancianos sanos que viven institucionalizados o independientes en Chile. Método: se evaluaron veintisiete jovenes (27-30 años), 27 adultos mayores institucionalizados (> 65 años ) y 27 ancianos independientes (> 65 años). Se midió la composición corporal utilizando absorciometría bifotónica de rayos X. Se calculó el gasto energético por actividad física (GEAF) y el gasto energético total (GET) utilizando acelerómetros Actiheart; se aplicó Mini Nutritional Assessment (MNA) y se midió el Timed Up and Go (TUG). Resultados: el GEAF fue 171, 320 y 497 kcal/día en ancianos institucionalizados, independientes y jóvenes, respectivamente (p.

  8. Comportamiento dinámico de asteroides en la resonancia 2:1

    NASA Astrophysics Data System (ADS)

    López García, F.; Brunini, A.

    El propósito de este trabajo es mostrar los resultados obtenidos del estudio del movimiento de asteroides cercanos a la conmensurabilidad 2:1 con el movimiento medio de Júpiter, analizando el comportamiento de órbitas de asteroides reales y ficticios. Se analizan los tiempos de Lyapunov obtenidos a partir de la integración de las ecuaciones del movimiento. Se han estudiado la órbitas utilizando el modelo de cinco cuerpos y se han considerado los casos planar y espacial. Las simulaciones numéricas se realizaron utilizando integradores simpléticos y el intervalo de tiempo de integración fue de T = 107 años.

  9. Exploration within the Sub-Andean Thrust Belt of Southern Bolivia

    SciTech Connect

    Nelson, K.J. )

    1993-02-01

    The Sub-Andean thrust belt of Southern Bolivia is a proven hydrocarbon province. Chevron began a regional study of the area in 1988 and chose the Caipipendi block due to its high potential for significant new oil reserves. A regional work program designed to acquire and integrate seismic data, geologic field data, geochemistry, and gravity data was used to generated structural models, evaluate regional risk components and to detail leads. The structural style within the Caipipendi block is interpreted as being an in sequence, thin skinned thrust belt with eastward verging folds and thrust faults. Tight surface anticlines associated with a Middle Devonian detachment have been later folded by deeper fault bend folds associated with the Silurian detachment. While the tight surface folds are presently producing oil, the deeper broader structures associated with the Silurian detachement have not been tested. Seismic data, utilized for the first time in this part of the Sub-Andean thrust belt, integrated with balanced structural cross sections, is the key to evaluating this new play. Geochemical analysis, including oil biomarker work, indicate that the oils are sourced from the Silurian-Devonian sequence. A generative oil system model formulated by integrating the geochemical analysis with maturation modeling indicates that the Devonian Los Monos formation is the primary oil source. Anticipated reservoirs for the new play are Carboniferous and Devonian sandstones which are also productive elsewhere in the basin.

  10. Light-induced self-assembly of active rectification devices.

    PubMed

    Stenhammar, Joakim; Wittkowski, Raphael; Marenduzzo, Davide; Cates, Michael E

    2016-04-01

    Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics-a feature they share with all living systems. The incoherent behavior of individual swimmers can be harnessed (or "rectified") by microfluidic devices that create systematic motions that are impossible in equilibrium. We present a computational proof-of-concept study showing that such active rectification devices could be created directly from an unstructured "primordial soup" of light-controlled motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion, which cause a collisional slowdown at high density. Together, we show how these four factors create a novel, many-body rectification mechanism. Our work suggests that standard spatial light modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath.

  11. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect

    Gerald P. Huffman

    2005-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  12. Pikaia gracilens Walcott: stem chordate, or already specialized in the Cambrian?

    PubMed

    Mallatt, Jon; Holland, Nicholas

    2013-06-01

    For the past 35 years, the Cambrian fossil Pikaia gracilens was widely interpreted as a typical basal chordate based on short descriptions by Conway Morris. Recently, Conway Morris and Caron (CMC) (2012, Biol Rev 87:480-512) described Pikaia extensively, as a basis for new ideas about deuterostome evolution. This new Pikaia has characters with no clear homologues in other animals, so they could be phylogenetically uninformative autapomorphies. These characters include a dorsal organ, posterior ventral area, posterior fusiform structure, and anterior dorsal unit. Yet CMC interpret most of the unusual characters as primitive for chordates, thereby interpreting Pikaia as an even more convincing stem chordate than before. Moreover, they claim that segment (myomere) shape is a reliable guide for defining a chordate and even for assigning animals to their correct place in deuterostome phylogeny. By defining sigmoidal segments as a basal chordate character, they situate Pikaia at the base of the chordates and banish fossil yunnanozoans (which have straight segments) to a position deep within the deuterostomes. In addition, they consider amphioxus, with its conspicuously chevron-shaped segments, to be so highly derived that it is of little use for reconstructing the first chordates. We question their overemphasis on the phylogenetic value of segment shape and their marginalizing of amphioxus. We deduce that Pikaia, not amphioxus, is specialized. We performed a cladistic analysis that showed the character interpretations of CMC are consistent with their wide-ranging evolutionary scenario, but that these interpretations leave unresolved the position of Pikaia within chordates.

  13. Investigation of CaCO3 fouling in plate heat exchangers

    NASA Astrophysics Data System (ADS)

    Li, Wei; Zhou, Kan; Manglik, Raj M.; Li, Guan-Qiu; Bergles, Arthur E.

    2016-01-01

    An experimental investigation, coupled with theoretical modeling of CaCO3 fouling in plate-and-frame type heat exchangers (PHEs) have been conducted. Four different plates, made of SS-304, are used in two different surface patterns (chevron and zig-zag) of varying corrugation severity (waviness depth and pitch) and area enhancement. They were further characterized in clean, non-fouled convection by their measured heat transfer coefficients and friction factors in the Reynolds number range of 600-6000. The flow-fouling experiments delineate the effects of temperature and plate-surface geometry on growth rates and stabilization of fouling resistance, along with the anti-fouling behavior of plates coated with a hydrophobic PTFE (Teflon) film. Moreover, the microscopic structure of fouling deposits is mapped in a scanning-electron microscope. Corrugated plates with the largest height-to-pitch ratio and hydraulic diameter are found to have the lowest fouling growth rate and resistance; Teflon-film coating of plate surface is also found to mitigate fouling relative to the performance of bare stainless steel plates. Finally, a semi-empirical fouling model, based on the Prandtl-Taylor analogy, has been devised to describe the experimental data and provide a predictive tool.

  14. Implementation of the beryllium reflector filter concept in the LANSCE 1L target Mark-III upgrade.

    SciTech Connect

    Muhrer, G.; Pitcher, E. J.; Russell, G. J.

    2005-01-01

    We have investigated the possibility of implementing the idea of a beryllium reflector filter in the LANSCE 1L target Mark-III upgrade. We will present different concepts of beryllium reflector filters (megaphone, chevron and swiss-cheese concept) and their effect on the integrated cold flux and the time distribution of the lower tier hydrogen flux-trap moderator as a function of the three instruments, (SPEAR, LQD and Asterix) which are served by this moderator. As part of the LANSCE 1L target upgrade study it is the declared goal to increase the cold flux (E < 5meV) of the lower tier partially coupled liquid hydrogen moderator by a factor of two. This goal is proposed to be achieved by adding a pre-moderator system to the moderator and by implementing the cold beryllium reflector concept. The cold beryllium reflector filter concept was tested in an experiment at the weapons neutron research (WNR) facility at LANSCE in January 2003 by Pitcher et al. Based on the success of this experiment it was then decided to implement this concept into the 1L target Mark-III upgrade. In this context a series of Monte Carlo transport calculations was performed to optimize the cold neutron flux.

  15. A photographic and acoustic transect across two deep-water seafloor mounds, Mississippi Canyon, northern Gulf of Mexico

    USGS Publications Warehouse

    Hart, P.E.; Hutchinson, D.R.; Gardner, J.; Carney, R.S.; Fornari, D.

    2008-01-01

    In the northern Gulf of Mexico, a series of seafloor mounds lie along the floor of the Mississippi Canyon in Atwater Valley lease blocks 13 and 14. The mounds, one of which was drilled by the Chevron Joint Industry Project on Methane Hydrates in 2005, are interpreted to be vent-related features that may contain significant accumulations of gas hydrate adjacent to gas and fluid migration pathways. The mounds are located ???150 km south of Louisiana at ???1300 m water depth. New side-scan sonar data, multibeam bathymetry, and near-bottom photography along a 4 km northwest-southeast transect crossing two of the mounds (labeled D and F) reveal the mounds' detailed morphology and surficial characteristics. Mound D, ???250 m in diameter and 7-10 m in height, has exposures of authigenic carbonates and appears to result from a seafloor vent of slow-to-moderate flux. Mound F, which is ???400 m in diameter and 10-15 m high, is covered on its southwest flank by extruded mud flows, a characteristic associated with moderate-to-rapid flux. Chemosynthetic communities visible on the bottom photographs are restricted to bacterial mats on both mounds and mussels at Mound D. No indications of surficial gas hydrates are evident on the bottom photographs.

  16. In-Situ X-Ray Diffraction Study of the Elongation Behavior of a Main Chain Liquid Crystal Elastomer

    NASA Astrophysics Data System (ADS)

    Dey, Sonal; Agra-Kooijman, D. M.; Joshi, Leela; Kumar, Satyendra; Ren, Wanting; Kline, Whitney M.; Grrifin, Anselm C.

    2011-03-01

    We studied the structural evolution of a main chain smectic elastomer under uniaxial stress and during strain recovery. At low strains, both the alkyl chains and the smectic layers are oriented on average parallel to the strain direction. At higher strains, the development of layer undulations is observed at ~ 50 % which gradually evolve into chevron-like smectic structures as revealed by the four diffuse spots in small angle x-ray diffraction patterns. This is accompanied with an enhancement of the smectic order as inferred from higher intensity of small angle peaks and larger orientational order parameter, S [for example, S (20%) = 0.33; S (110%) = 0.86]. During strain recovery, two relaxation rates of 6.5 min and 38.5 min are observed which are associated with relaxations of the mesogenic part and the elastomer network, respectively. Supported by the Office of Basic Energy Sciences, DOE grant DE-SC0001412 and by National Textile Center Award M04-GT21.

  17. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibility of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).

  18. Protein Folding Mechanism of the Dimeric AmphiphysinII/Bin1 N-BAR Domain

    PubMed Central

    Gruber, Tobias; Balbach, Jochen

    2015-01-01

    The human AmphyphisinII/Bin1 N-BAR domain belongs to the BAR domain superfamily, whose members sense and generate membrane curvatures. The N-BAR domain is a 57 kDa homodimeric protein comprising a six helix bundle. Here we report the protein folding mechanism of this protein as a representative of this protein superfamily. The concentration dependent thermodynamic stability was studied by urea equilibrium transition curves followed by fluorescence and far-UV CD spectroscopy. Kinetic unfolding and refolding experiments, including rapid double and triple mixing techniques, allowed to unravel the complex folding behavior of N-BAR. The equilibrium unfolding transition curve can be described by a two-state process, while the folding kinetics show four refolding phases, an additional burst reaction and two unfolding phases. All fast refolding phases show a rollover in the chevron plot but only one of these phases depends on the protein concentration reporting the dimerization step. Secondary structure formation occurs during the three fast refolding phases. The slowest phase can be assigned to a proline isomerization. All kinetic experiments were also followed by fluorescence anisotropy detection to verify the assignment of the dimerization step to the respective folding phase. Based on these experiments we propose for N-BAR two parallel folding pathways towards the homodimeric native state depending on the proline conformation in the unfolded state. PMID:26368922

  19. Light-induced self-assembly of active rectification devices

    PubMed Central

    Stenhammar, Joakim; Wittkowski, Raphael; Marenduzzo, Davide; Cates, Michael E.

    2016-01-01

    Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics—a feature they share with all living systems. The incoherent behavior of individual swimmers can be harnessed (or “rectified”) by microfluidic devices that create systematic motions that are impossible in equilibrium. We present a computational proof-of-concept study showing that such active rectification devices could be created directly from an unstructured “primordial soup” of light-controlled motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion, which cause a collisional slowdown at high density. Together, we show how these four factors create a novel, many-body rectification mechanism. Our work suggests that standard spatial light modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath. PMID:27051883

  20. A Prototype Ionization Profile Monitor for RHIC.

    NASA Astrophysics Data System (ADS)

    Connolly, R.; Cameron, P.; Ryan, W.; Shea, T.; Sikora, R.; Tsoupas, N.

    1997-05-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPMs). Each IPM will measure the integrated distribution of electrons in one plane resulting from residual gas ionization during bunch passage. The high space-charge electric field of the beam makes it necessary to image with electrons which are guided by a magnetic field. A prototype detector was tested in the injection line during the RHIC Sextant Test. It consists of a collector circuit board mounted on one side of the beam and a parallel electrode on the other to provide an electric sweep field. The collector board has 48 electrodes oriented parallel to the beam with a chevron microchannel plate amplifier mounted in front of the collection traces. The detector vacuum chamber is placed in the gap of a magnet. At each bunch passage the charge pulses are integrated, amplified, and digitized for display as a profile histogram. This paper describes the prototype detector and gives results from the beam tests.

  1. Control of Jet Noise Through Mixing Enhancement

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark; Brown, Cliff

    2003-01-01

    The idea of using mixing enhancement to reduce jet noise is not new. Lobed mixers have been around since shortly after jet noise became a problem. However, these designs were often a post-design fix that rarely was worth its weight and thrust loss from a system perspective. Recent advances in CFD and some inspired concepts involving chevrons have shown how mixing enhancement can be successfully employed in noise reduction by subtle manipulation of the nozzle geometry. At NASA Glenn Research Center, this recent success has provided an opportunity to explore our paradigms of jet noise understanding, prediction, and reduction. Recent advances in turbulence measurement technology for hot jets have also greatly aided our ability to explore the cause and effect relationships of nozzle geometry, plume turbulence, and acoustic far field. By studying the flow and sound fields of jets with various degrees of mixing enhancement and subsequent noise manipulation, we are able to explore our intuition regarding how jets make noise, test our prediction codes, and pursue advanced noise reduction concepts. The paper will cover some of the existing paradigms of jet noise as they relate to mixing enhancement for jet noise reduction, and present experimental and analytical observations that support these paradigms.

  2. Fluid-filled bomb-disrupting apparatus and method

    DOEpatents

    Cherry, Christopher R.

    2001-01-01

    An apparatus and method for disarming improvised bombs are disclosed. The apparatus comprises a fluid-filled bottle or container made of plastic or another soft material which contains a fixed or adjustable, preferably sheet explosive. The charge is fired centrally at its apex and can be adjusted to propel a fluid projectile that is broad or narrow, depending upon how it is set up. In one embodiment, the sheet explosive is adjustable so as to correlate the performance of the fluid projectile to the disarming needs for the improvised explosive device (IED). Common materials such as plastic water bottles or larger containers can be used, with the sheet explosive or other explosive material configured in a general chevron-shape to target the projectile toward the target. In another embodiment, a thin disk of metal is conformably mounted with the exterior of the container and radially aligned with the direction of fire of the fluid projectile. Depending on the configuration and the amount of explosive and fluid used, a projectile is fired at the target that has sufficient energy to penetrate rigid enclosures from fairly long stand-off and yet is focused enough to be targeted to specific portions of the IED for disablement.

  3. The female reproductive system of the kissing bug, Rhodnius prolixus: arrangements of muscles, distribution and myoactivity of two endogenous FMRFamide-like peptides.

    PubMed

    Sedra, Laura; Lange, Angela B

    2014-03-01

    Phalloidin staining F-actin was used to image muscle fiber arrangements present in the reproductive system of the adult female Rhodnius prolixus. A mesh of muscle fibers encircles the ovaries whereas a criss-cross pattern of finer muscle fibers covers each ovariole. Two layers of muscle fibers (arranged longitudinally and circularly) form the lateral oviducts. The circular layer of muscle fibers extends throughout the common oviduct and spermathecae. A chevron pattern of thicker muscle fibers makes up the bursa. All of these structures show spontaneous contractions that are stimulated in a dose-dependent manner by the endogenous peptides, GNDNFMRFamide and AKDNFIRFamide which belong to the family of the FMRFamide-like peptides (FLP). Immunohistochemistry shows that these peptides could be supplied via nerves to the oviducts, spermathecae and bursa. Although no FMRF-like immunoreactivity was observed on the ovarioles/ovary they still exhibited a stimulatory response to the peptides indicating that they may be under the influence of FLPs as neurohormones. This work implicates FLPs in the control of ovulation, egg movement and oviposition in this insect.

  4. Smart Test Machines

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Vern Wedeven, president of Wedeven Associates, developed the WAM4, a computer-aided "smart" test machine for simulating stress on equipment, based on his bearing lubrication expertise gained while working for Lewis Research Center. During his NASA years from the 1970s into the early 1980s, Wedeven initiated an "Interdisciplinary Collaboration in Tribology," an effort that involved NASA, six universities, and several university professors. The NASA-sponsored work provided foundation for Wedeven in 1983 to form his own company. Several versions of the smart test machine, the WAM1, WAM2, and WAM3, have proceeded the current version, WAM4. This computer-controlled device can provide detailed glimpses at gear and bearing points of contact. WAM4 can yield a three-dimensional view of machinery as an operator adds "what-if" thermal and lubrication conditions, contact stress, and surface motion. Along with NASA, a number of firms, including Pratt & Whitney, Caterpillar Tractor, Exxon, and Chevron have approached Wedeven for help on resolving lubrication problems.

  5. Halite depositional facies in a solar salt pond: A key to interpreting physical energy and water depth in ancient deposits?

    NASA Astrophysics Data System (ADS)

    Robertson Handford, C.

    1990-08-01

    Subaqueous deposits of aragonite, gypsum, and halite are accumulating in shallow solar salt ponds constructed in the Pekelmeer, a sea-level sauna on Bonaire, Netherlands Antilles. Several halite facies are deposited in the crystallizer ponds in response to differences in water depth and wave energy. Cumulate halite, which originates as floating rafts, is present only along the protected, upwind margins of ponds where low-energy conditions foster their formation and preservation. Cornet crystals with peculiar mushroom- and mortarboard-shaped caps precipitate in centimetre-deep brine sheets within a couple of metres of the upwind or low-energy margins. Downwind from these margins, cornet and chevron halite precipitate on the pond floors in water depths ranging from a few centimetres to ˜60 cm. Halite pisoids with radial-concentric structure are precipitated in the swash zone along downwind high-energy shorelines where they form pebbly beaches. This study suggests that primary halite facies are energy and/or depth dependent and that some primary features, if preserved in ancient halite deposits, can be used to infer physical energy conditions, subenvironments such as low- to high-energy shorelines, and extremely shallow water depths in ancient evaporite basins.

  6. Exploiting selective genotyping to study genetic diversity of resistance to Fusarium head blight in barley.

    PubMed

    Wingbermuehle, W J; Gustus, C; Smith, K P

    2004-10-01

    Numerous barley cultivars from around the world have been identified as potential sources of Fusarium head blight (FHB) resistance genes. All of these cultivars exhibit partial resistance, and several mapping studies have shown that resistance to FHB is controlled by multiple genes. Successful development of barley cultivars with high levels of FHB resistance will require combining genes from multiple sources. We characterized five potential new sources of FHB resistance ('AC Oxbow', 'Atahualpa', 'HOR211', 'PFC88209', and 'Zhedar#1') to determine if they contain new FHB resistance genes. Cluster analysis, using a set of 80 SSR markers distributed throughout the genome, showed that most of the new sources of resistance were not similar to three cultivars that have been used in previous FHB mapping studies ('Chevron', 'Frederickson', and 'Gobernadora'), with 'Atahualpa' and 'HOR211' being the most dissimilar. By selective genotyping, we determined whether markers linked to six known FHB resistance quantitative trait loci (QTLs), discovered in other genotypes, explained variation for resistance in advanced breeding populations created from the new sources of resistance. Markers linked to four of the six known QTLs were associated with FHB severity in at least one of the populations. However, none of the six QTL regions were associated with variation for FHB severity in populations derived from crosses that utilized sources of resistance HOR211 or PFC88209. Selective genotyping is an efficient method for breeders to utilize current QTL information about disease resistance to search for new resistance genes. PMID:15257434

  7. On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum

    DOE PAGESBeta

    Cherne, F. J.; Hammerberg, J. E.; Andrews, M. J.; Karkhanis, V.; Ramaprabhu, P.

    2015-11-09

    Other work employed Richtmyer-Meshkov theory to describe the development of spikes and bubblesfrom shocked sinusoidal surfaces. Here, we discuss the effects of machining different two-dimensional shaped grooves in copper and examine the resulting flow of the material after being shocked into liquid on release. For these simulations, a high performance molecular dynamics code, SPaSM, was used with machined grooves of kh 0 = 1 and kh 0 = 1/8, where 2h 0 is the peak-to-valley height of the perturbation with wavelength λ, and k = 2π/λ. The surface morphologies studied include a Chevron, a Fly-Cut, a Square-Wave, and a Gaussian.more » Furthermore, we describe extensions to an existing ejecta source model that better captures the mass ejected from these surfaces. We also investigate the same profiles at length scales of order 1 cm for an idealized fluid equation of state using the FLASH continuum hydrodynamics code. Our findings indicate that the resulting mass can be scaled by the missing area of a sinusoidal curve with an effective wavelength, λeff , that has the same missing area. Finally, our extended ejecta mass formula works well for all the shapes considered and captures the corresponding time evolution and total mass.« less

  8. Investigation of CaCO3 fouling in plate heat exchangers

    NASA Astrophysics Data System (ADS)

    Li, Wei; Zhou, Kan; Manglik, Raj M.; Li, Guan-Qiu; Bergles, Arthur E.

    2016-11-01

    An experimental investigation, coupled with theoretical modeling of CaCO3 fouling in plate-and-frame type heat exchangers (PHEs) have been conducted. Four different plates, made of SS-304, are used in two different surface patterns (chevron and zig-zag) of varying corrugation severity (waviness depth and pitch) and area enhancement. They were further characterized in clean, non-fouled convection by their measured heat transfer coefficients and friction factors in the Reynolds number range of 600-6000. The flow-fouling experiments delineate the effects of temperature and plate-surface geometry on growth rates and stabilization of fouling resistance, along with the anti-fouling behavior of plates coated with a hydrophobic PTFE (Teflon) film. Moreover, the microscopic structure of fouling deposits is mapped in a scanning-electron microscope. Corrugated plates with the largest height-to-pitch ratio and hydraulic diameter are found to have the lowest fouling growth rate and resistance; Teflon-film coating of plate surface is also found to mitigate fouling relative to the performance of bare stainless steel plates. Finally, a semi-empirical fouling model, based on the Prandtl-Taylor analogy, has been devised to describe the experimental data and provide a predictive tool.

  9. Folding and faulting of an elastic continuum

    PubMed Central

    Gourgiotis, Panos A.

    2016-01-01

    Folding is a process in which bending is localized at sharp edges separated by almost undeformed elements. This process is rarely encountered in Nature, although some exceptions can be found in unusual layered rock formations (called ‘chevrons’) and seashell patterns (for instance Lopha cristagalli). In mechanics, the bending of a three-dimensional elastic solid is common (for example, in bulk wave propagation), but folding is usually not achieved. In this article, the route leading to folding is shown for an elastic solid obeying the couple-stress theory with an extreme anisotropy. This result is obtained with a perturbation technique, which involves the derivation of new two-dimensional Green's functions for applied concentrated force and moment. While the former perturbation reveals folding, the latter shows that a material in an extreme anisotropic state is also prone to a faulting instability, in which a displacement step of finite size emerges. Another failure mechanism, namely the formation of dilation/compaction bands, is also highlighted. Finally, a geophysical application to the mechanics of chevron formation shows how the proposed approach may explain the formation of natural structures. PMID:27118925

  10. Processing and properties of FeAl-bonded composites

    SciTech Connect

    Schneibel, J.H.; Subramanian, R.; Alexander, K.B.; Becher, P.F.

    1996-12-31

    Iron aluminides are thermodynamically compatible with a wide range of ceramics such as carbides, borides, oxides, and nitrides, which makes them suitable as the matrix in composites or cermets containing fine ceramic particulates. For ceramic contents varying from 30 to 60 vol.%, composites of Fe-40 at. % Al with WC, TiC, TiB{sub 2}, and ZrB{sub 2} were fabricated by conventional liquid phase sintering of powder mixtures. For ceramic contents from 70 to 85 vol.%, pressureless melt infiltration was found to be a more suitable processing technique. In FeAl-60 vol.% WC, flexure strengths of up to 1.8 GPa were obtained, even though processing defects consisting of small oxide clusters were present. Room temperature fracture toughnesses were determined by flexure testing of chevron-notched specimens. FeAl/WC and FeAl/TiC composites containing 60 vol.% carbide particles exhibited K{sub Q} values around 20 MPa m{sup 1/2}. Slow crack growth measurements carried out in water and in dry oxygen suggest a relatively small influence of water-vapor embrittlement. It appears therefore that the mechanical properties of iron aluminides in the form of fine ligaments are quite different from their bulk properties. Measurements of the oxidation resistance, dry wear resistance, and thermal expansion of iron aluminide composites suggest many potential applications for these new materials.

  11. Accord near for offshore California oil shipments

    SciTech Connect

    Not Available

    1993-02-15

    There are faint glimmers of hope again for offshore California operators. After more than a decade of often bitter strife over offshore oil and gas development and transportation issues, state officials and oil producers may be moving toward compromise solutions. One such solution may be forthcoming on offshore development. But the real change came with the turnabout of the California Coastal Commission (CCC), which last month approved a permit for interim tankering of crude from Point Arguello oil field in the Santa Barbara Channel to Los Angeles. The dispute over how to ship offshore California crude to market has dragged on since before Point Arguelo development plans were unveiled. The project's status has become a flashpoint in the U.S. debate over resource use and environmental concerns. The controversy flared anew in the wake of the 1989 Exxon Valdez tanker spill off Alaska, when CCC voided a Santa Barbara County permit for interim tankering, a move project operator Chevron Corp. linked to the Exxon Valdez accident. Faced with litigation, the state's economic devastation, and acrimonious debate over transporting California crude, Gov. Pete Wilson and other agencies approved the CCC permit. But there's a catch: A permanent pipeline must be built to handle full production within 3 years. The paper discusses permit concerns, the turnaround decision, the anger of environmental groups, and pipeline proposals.

  12. Development of multiphase Navier-Stokes simulation capability for turbulent gas flow over laminar liquid for Cartesian grids

    NASA Astrophysics Data System (ADS)

    Miao, Sha; Hendrickson, Kelli; Liu, Yuming; Subramani, Hariprasad

    2015-11-01

    This work presents a novel and efficient Cartesian-grid based simulation capability for the study of an incompressible, turbulent gas layer over a liquid flow with disparate Reynolds numbers in two phases. This capability couples a turbulent gas-flow solver and a liquid-layer based on a second-order accurate Boundary Data Immersion Method (BDIM) at the deformable interface. The turbulent gas flow solver solves the incompressible Navier-Stokes equations via direct numerical simulation or through turbulence closure (unsteady Reynolds-Averaged Navier-Stokes Models) for Reynolds numbers O(106). In this application, a laminar liquid layer solution is obtained from depth-integrated Navier-Stokes equations utilizing shallow water wave assumptions. The immersed boundary method (BDIM) enforces the coupling at the deformable interface, the boundary conditions to turbulence closure equations and defines the domain geometry on the Cartesian grid. Validations are made for the turbulent gas channel flow over high-viscosity liquid. This simulation capability can be applied to problems in the oil and industrial sector such as channel and pipe flows with heavy oils as well as wind wave generation in shallow waters. Sponsored by the Chevron Energy Technology Company.

  13. Flow development investigation of concentrated unstable oil-water dispersions in turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Voulgaropoulos, Victor; Weheliye, Weheliye; Chinaud, Maxime; Angeli, Panagiota; Karolina Ioannou Collaboration

    2015-11-01

    This study explores the separation characteristics of unstable oil-water dispersed flows in pipes. The test section is a 7 m long acrylic pipe with a 37mm ID and the fluids used are tap water and an Exxsol oil (6.6cSt) An inlet system with more than a thousand capillary tubes of 1mm ID is implemented to actuate highly concentrated dispersions for a wider range of flow rates. High speed imaging combined with ring conductivity probes and pressure transducers are implemented in several axial positions along the pipe to study the flow development. Phase distribution and continuity are measured in the pipe cross-section and drop size information is acquired by high frequency dual impedance probes. The coalescence and sedimentation dynamics of the concentrated dispersions and the development of separate layers downstream the pipe are investigated. The experimental results are coupled with theoretical and semi-empirical models in an effort to predict the separation properties of the highly concentrated dispersed flows. Chevron Energy Technology, Houston, USA.

  14. National Geoscience Data Repository System, Phase III: Implementation and Operation of the Repository

    SciTech Connect

    American Geological Institute

    1999-05-14

    The NGDRS steering committee met at Chevron's office on March 2, 1999 in Houston, Texas to review and discuss issues of data transfer and the future of the Stapleton prospect for establishment of a national core repository. Company representatives reaffirmed their commitment in principal to the NGDRS project. Given the downturn in oil prices and final results from the due diligence of the Stapleton property, AGI has decided to forego pursuing acquisition and build-out of the Stapleton Airport property. The major petroleum companies indicated that rising the $10-12 million endowment would be difficult in the current climate. The completion of the due diligence of the property also revealed major concerns about the environmental liability associated with the property, which would require indemnification of the AGI by the City of Denver. Given these complicating results, AGI officially terminated efforts regarding the Stapleton property effective March 31, 1999. Several steering committee members put forth a proposal that the companies make their non-proprietary holdings public and list them in the NGDRS GeoTrek metadata catalog. Most of these holdings are at C&M Storage in Schulemburg, Texas. The companies are discussing methods to allow for public access to these data with C&M.

  15. Seismic acquisition and processing methodologies in overthrust areas: Some examples from Latin America

    SciTech Connect

    Tilander, N.G.; Mitchel, R..

    1996-08-01

    Overthrust areas represent some of the last frontiers in petroleum exploration today. Billion barrel discoveries in the Eastern Cordillera of Colombia and the Monagas fold-thrust belt of Venezuela during the past decade have highlighted the potential rewards for overthrust exploration. However the seismic data recorded in many overthrust areas is disappointingly poor. Challenges such as rough topography, complex subsurface structure, presence of high-velocity rocks at the surface, back-scattered energy and severe migration wavefronting continue to lower data quality and reduce interpretability. Lack of well/velocity control also reduces the reliability of depth estimations and migrated images. Failure to obtain satisfactory pre-drill structural images can easily result in costly wildcat failures. Advances in the methodologies used by Chevron for data acquisition, processing and interpretation have produced significant improvements in seismic data quality in Bolivia, Colombia and Trinidad. In this paper, seismic test results showing various swath geometries will be presented. We will also show recent examples of processing methods which have led to improved structural imaging. Rather than focusing on {open_quotes}black box{close_quotes} methodology, we will emphasize the cumulative effect of step-by-step improvements. Finally, the critical significance and interrelation of velocity measurements, modeling and depth migration will be explored. Pre-drill interpretations must ultimately encompass a variety of model solutions, and error bars should be established which realistically reflect the uncertainties in the data.

  16. A New Non-Pterodactyloid Pterosaur from the Late Jurassic of Southern Germany

    PubMed Central

    Hone, David W. E.; Tischlinger, Helmut; Frey, Eberhard; Röper, Martin

    2012-01-01

    Background The ‘Solnhofen Limestone’ beds of the Southern Franconian Alb, Bavaria, southern Germany, have for centuries yielded important pterosaur specimens, most notably of the genera Pterodactylus and Rhamphorhynchus. Here we describe a new genus of non-pterodactyloid pterosaur based on an extremely well preserved fossil of a young juvenile: Bellubrunnus rothgaengeri (gen. et sp. nov.). Methodology/Principal Findings The specimen was examined firsthand by all authors. Additional investigation and photography under UV light to reveal details of the bones not easily seen under normal lighting regimes was completed. Conclusions/Significance This taxon heralds from a newly explored locality that is older than the classic Solnhofen beds. While similar to Rhamphorhynchus, the new taxon differs in the number of teeth, shape of the humerus and femur, and limb proportions. Unlike other derived non-pterodacytyloids, Bellubrunnus lacks elongate chevrons and zygapophyses in the tail, and unlike all other known pterosaurs, the wingtips are curved anteriorly, potentially giving it a unique flight profile. PMID:22792168

  17. Application of sequence stratigraphy to Neritic sediments of the Niger delta

    SciTech Connect

    McHargue, T.; Diedjomahor, J.; Arowolo, I.; Hobbet, R.; Onyia, V. )

    1993-09-01

    Sequence stratigraphy is an approach to correlation that emphasizes regional unconformities as the basis for subdividing sediments into time-equivalent packages called sequences. In Chevron's acreage in the northwestern Niger delta, three-dimensional (3-D) seismic data have been used to map each sequence-bounding unconformity based on the presence of a submarine canyon near the paleoshelf edge. Erosion lateral to each canyon is slight or even absent. Useful criteria for recognizing sequence boundaries in 3-D seismic data in neritic sediments of the niger delta are (1) truncation of underlying reflections, (2) drape, dip discordance, or onlap of younger reflections over topography on the sequence boundary, (3) contrast in seismic attributes across the sequence boundary, and (4) termination of faults at the sequence boundary. Published criteria for recognizing sequence boundaries from logs and paleontological data are being adaped to the Niger delta, where high-frequency fourth-order sequences are strongly developed. Identifying and mapping sequence boundaries is beneficial because sequence boundaries (1) may form truncation traps where shales of the younger sequence overlie truncated sands of the older sequence, (2) assist correlations across faults, (3) subdivide the section into units of genetically related sediments, and (4) provide an objective basis for regional correlations.

  18. All-or-none protein-like folding of a homopolymer chain

    NASA Astrophysics Data System (ADS)

    Taylor, Mark; Paul, Wolfgang; Binder, Kurt

    2009-04-01

    Many small proteins fold via a first-order ``all-or-none'' transition directly from an expanded coil to a compact native state. Here we report an analogous direct freezing transition from an expanded coil to a compact crystallite for a simple flexible homopolymer. Wang-Landau sampling is used to construct the complete density of states for square-well chains up to length 256. Analysis within both the microcanonical and canonical ensembles shows that, for a chain with sufficiently short-range interactions, the usual polymer collapse transition is preempted by a direct freezing transition. Despite the non-unique homopolymer ground state, the thermodynamics of this direct freezing transition are identical to the thermodynamics of two-state protein folding. A free energy barrier separates a high entropy ensemble of unfolded states from a low entropy set of crystallite states and the transition proceeds via the formation of a transition-state folding nucleus. An Arrhenius analysis of the folding/unfolding free energy barrier yields a Chevron plot characteristic of proteins and the model chain satisfies the van't Hoff calorimetric criterion for two-state folding.

  19. All-or-none protein-like folding of a homopolymer chain

    NASA Astrophysics Data System (ADS)

    Taylor, Mark; Paul, Wolfgang; Binder, Kurt

    2009-10-01

    Many small proteins fold via a first-order ``all-or-none'' transition directly from an expanded coil to a compact native state. Here we report an analogous direct freezing transition from an expanded coil to a compact crystallite for a simple flexible homopolymer. Wang-Landau sampling is used to construct the complete density of states for square-well chains up to length 256. Analysis within both the microcanonical and canonical ensembles shows that, for a chain with sufficiently short-range interactions, the usual polymer collapse transition is preempted by a direct freezing transition. Despite the non-unique homopolymer ground state, the thermodynamics of this direct freezing transition are identical to the thermodynamics of two-state protein folding. A free energy barrier separates a high entropy ensemble of unfolded states from a low entropy set of crystallite states and the transition proceeds via the formation of a transition-state folding nucleus. An Arrhenius analysis of the folding/unfolding free energy barrier yields a Chevron plot characteristic of proteins and the model chain satisfies the van't Hoff calorimetric criterion for two-state folding.

  20. Protein-like folding and free energy landscape of a homopolymer chain

    NASA Astrophysics Data System (ADS)

    Taylor, Mark; Paul, Wolfgang; Binder, Kurt

    2011-03-01

    Many small proteins fold via a first-order ``all-or-none'' transition directly from an expanded coil to a compact native state. We have recently reported an analogous direct coil-to-crystallite transition for a flexible homopolymer. Wang-Landau sampling was used to construct the 1D density of states for square-well chains up to length 256 and a microcanonical analysis shows that for short-range interactions the usual polymer collapse transition is preempted by a direct freezing transition. A 2D configurational probability landscape, built via multi-canonical sampling, reveals a dominant folding pathway and an inherent configurational barrier to folding. Despite the non-unique homopolymer ground state, the thermodynamics of this direct freezing transition are identical to those of two-state protein folding. Homopolymer folding proceeds over a free energy barrier via a transition state folding nucleus, displays a protein-like Chevron plot, and satisfies the van't Hoff two-state criterion. Funding: NSF DMR-0804370, DFG SFB-625/A3.

  1. Two-state protein-like folding of a homopolymer chain

    NASA Astrophysics Data System (ADS)

    Taylor, Mark P.; Paul, Wolfgang; Binder, Kurt

    Many small proteins fold via a first-order 'all-or-none' transition directly from an expanded coil to a compact native state. Here we study an analogous direct freezing transition from an expanded coil to a compact crystallite for a simple flexible homopolymer. Wang-Landau sampling is used to construct the 1D density of states for square-well chains of length 128. Analysis within both the micro-canonical and canonical ensembles shows that, for a chain with sufficiently short-range interactions, the usual polymer collapse transition is preempted by a direct freezing or 'folding' transition. A 2D free-energy landscape, built via subsequent multi-canonical sampling, reveals a dominant folding pathway over a single free-energy barrier. This barrier separates a high entropy ensemble of unfolded states from a low entropy set of crystallite states and the transition proceeds via the formation of a transition-state folding nucleus. Despite the non-unique homopolymer ground state, the thermodynamics of this direct freezing transition are identical to the thermodynamics of two-state protein folding. The model chain satisfies the van't Hoff calorimetric criterion for two-state folding and an Arrhenius analysis of the folding/unfolding free energy barrier yields a Chevron plot characteristic of small proteins.

  2. Protein-like folding and free energy landscape of a homopolymer chain

    NASA Astrophysics Data System (ADS)

    Taylor, Mark; Paul, Wolfgang; Binder, Kurt

    2011-04-01

    Many small proteins fold via a first-order "all-or-none" transition directly from an expanded coil to a compact native state. We have recently reported an analogous direct coil-to-crystallite transition for a flexible homopolymer [1]. Wang-Landau sampling was used to construct the 1D density of states for square-well chains up to length 256 and a microcanonical analysis shows that for short-range interactions the usual polymer collapse transition is preempted by a direct freezing transition. A 2D configurational probability landscape, built via multi-canonical sampling, reveals a dominant folding pathway and an inherent configurational barrier to folding. Despite the non-unique homopolymer ground state, the thermodynamics of this direct freezing transition are identical to those of two-state protein folding. Homopolymer folding proceeds over a free energy barrier via a transition state folding nucleus, displays a protein-like Chevron plot, and satisfies the van't Hoff two-state criterion.[4pt] [1] Phys. Rev. E 79, 050801(R) (2009); J. Chem. Phys. 131, 114907 (2009).

  3. Acoustic Characterization of Compact Jet Engine Simulator Units

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Haskin, Henry H.

    2013-01-01

    Two dual-stream, heated jet, Compact Jet Engine Simulator (CJES) units are designed for wind tunnel acoustic experiments involving a Hybrid Wing Body (HWB) vehicle. The newly fabricated CJES units are characterized with a series of acoustic and flowfield investigations to ensure successful operation with minimal rig noise. To limit simulator size, consistent with a 5.8% HWB model, the CJES units adapt Ultra Compact Combustor (UCC) technology developed at the Air Force Research Laboratory. Stable and controllable operation of the combustor is demonstrated using passive swirl air injection and backpressuring of the combustion chamber. Combustion instability tones are eliminated using nonuniform flow conditioners in conjunction with upstream screens. Through proper flow conditioning, rig noise is reduced by more than 20 dB over a broad spectral range, but it is not completely eliminated at high frequencies. The low-noise chevron nozzle concept designed for the HWB test shows expected acoustic benefits when installed on the CJES unit, and consistency between CJES units is shown to be within 0.5 dB OASPL.

  4. Sedimentological and petrographical data of Cretaceous evaporites in Barinas subbasin (Venezuela) and their relation to petroleum occurrence

    SciTech Connect

    Toro, M.; Van Berkel, D.; Berrios, I.; Ruggiero, A.

    1996-08-01

    Detailed sedimentological and petrographical studies of cores from the phosphatic-shale of the Cretaceous La Morita Member of the Navay Formation have allowed the identification of evaporites towards the top and base of this unit. The study shows enterolithic spotted textures consisting of the minerals silica, anhydrite and dolomite. There are also evaporate levels diagenetically altered to calcite, whose texture shows a crystallization in the shape of a chevron pattern. One of them has abundant planktonic foraminifers towards its base, and, it is a stratigraphic marker possible to follow for 28 km. The crystalline textures mentioned above allow us to establish that at the end of its sedimentation, the La Morita Member displayed environments varying from mud flats to salterns, suggesting that unusual conditions of evaporation existed during this period. It confirms the common association found by researchers of evaporites overlying oil-bearing carbonate intervals in zones where the paleogeographic conditions have played an important role in the generation of organic matter. The geochemical results of total organic carbon, rockeval pyrolysis and organic petrography of La Morita Member support this assumption.

  5. Optofluidic characterization of marine algae using a microflow cytometer.

    PubMed

    Hashemi, Nastaran; Erickson, Jeffrey S; Golden, Joel P; Ligler, Frances S

    2011-09-01

    The effects of global warming, pollution in river effluents, and changing ocean currents can be studied by characterizing variations in phytoplankton populations. We demonstrate the design and fabrication of a Microflow Cytometer for characterization of phytoplankton. Guided by chevron-shaped grooves on the top and bottom of a microfluidic channel, two symmetric sheath streams wrap around a central sample stream and hydrodynamically focus it in the center of the channel. The lasers are carefully chosen to provide excitation light close to the maximum absorbance wavelengths for the intrinsic fluorophores chlorophyll and phycoerythrin, and the excitation light is coupled to the flow cytometer through the use of an optical fiber. Fluorescence and light scatter are collected using two multimode optical fibers placed at 90-degree angles with respect to the excitation fiber. Light emerging from these collection fibers is directed through optical bandpass filters into photomultiplier tubes. The cytometer measured the optical and side scatter properties of Karenia b., Synechococcus sp., Pseudo-Nitzchia, and Alexandrium. The effect of the sheath-to-sample flow-rate ratio on the light scatter and fluorescence of these marine microorganisms was investigated. Reducing the sample flow rate from 200 μL/min to 10 μL/min produced a more tightly focused sample stream and less heterogeneous signals.

  6. Estimating natural background groundwater chemistry, Questa molybdenum mine, New Mexico

    USGS Publications Warehouse

    Verplanck, Phillip L.; Nordstrom, D Kirk; Plumlee, Geoffrey S.; Walker, Bruce M.; Morgan, Lisa A.; Quane, Steven L.

    2010-01-01

    This 2 1/2 day field trip will present an overview of a U.S. Geological Survey (USGS) project whose objective was to estimate pre-mining groundwater chemistry at the Questa molybdenum mine, New Mexico. Because of intense debate among stakeholders regarding pre-mining groundwater chemistry standards, the New Mexico Environment Department and Chevron Mining Inc. (formerly Molycorp) agreed that the USGS should determine pre-mining groundwater quality at the site. In 2001, the USGS began a 5-year, multidisciplinary investigation to estimate pre-mining groundwater chemistry utilizing a detailed assessment of a proximal natural analog site and applied an interdisciplinary approach to infer pre-mining conditions. The trip will include a surface tour of the Questa mine and key locations in the erosion scar areas and along the Red River. The trip will provide participants with a detailed understanding of geochemical processes that influence pre-mining environmental baselines in mineralized areas and estimation techniques for determining pre-mining baseline conditions.

  7. A new Liopropoma sea bass (Serranidae, Epinephelinae, Liopropomini) from deep reefs off Curaçao, southern Caribbean, with comments on depth distributions of western Atlantic liopropomins.

    PubMed

    Baldwin, Carole C; Robertson, D Ross

    2014-01-01

    Collecting reef-fish specimens using a manned submersible diving to 300 m off Curaçao, southern Caribbean, is resulting in the discovery of numerous new fish species. The new Liopropoma sea bass described here differs from other western Atlantic members of the genus in having VIII, 13 dorsal-fin rays; a moderately indented dorsal-fin margin; a yellow-orange stripe along the entire upper lip; a series of approximately 13 white, chevron-shaped markings on the ventral portion of the trunk; and a reddish-black blotch on the tip of the lower caudal-fin lobe. The new species, with predominantly yellow body and fins, closely resembles the other two "golden basses" found together with it at Curaçao: L. aberrans and L. olneyi. It also shares morphological features with the other western Atlantic liopropomin genus, Bathyanthias. Preliminary phylogenetic data suggest that western Atlantic liopropomins, including Bathyanthias, are monophyletic with respect to Indo-Pacific Liopropoma, and that Bathyanthias is nested within Liopropoma, indicating a need for further study of the generic limits of Liopropoma. The phylogenetic data also suggest that western Atlantic liopropomins comprise three monophyletic clades that have overlapping depth distributions but different depth maxima (3-135 m, 30-150 m, 133-411 m). The new species has the deepest depth range (182-241 m) of any known western Atlantic Liopropoma species. Both allopatric and depth-mediated ecological speciation may have contributed to the evolution of western Atlantic Liopropomini.

  8. U.S. Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements, September 30, 1996 and 1995

    SciTech Connect

    1997-03-01

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves (NOSR) numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the US taxpayer. NPOSR consists of the Naval Petroleum Reserve in California (NPRC or Elk Hills), which is responsible for operations of NPR-1 and NPR-2; the Naval Petroleum Oil Shale Reserve in Colorado, Utah, and Wyoming (NPOSR-CUW), which is responsible for operations of NPR-3, NOSR-1, 2, and 3 and the Rocky Mountain Oilfield Testing Center (RMOTC); and NPOSR Headquarters in Washington, DC, which is responsible for overall program direction. Each participant shares in the unit costs and production of hydrocarbons in proportion to the weighted acre-feet of commercially productive oil and gas formations (zones) underlying the respective surface lands as of 1942. The participating shares of NPR-1 as of September 30, 1996 for the US Government and Chevron USA, Inc., are listed. This report presents the results of the independent certified public accountants` audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1996.

  9. New basins invigorate U.S. gas shales play

    SciTech Connect

    Reeves, S.R.; Kuuskraa, V.A.; Hill, D.G.

    1996-01-22

    While actually the first and oldest of unconventional gas plays, gas shales have lagged the other main unconventional gas resources--tight gas and coalbed methane--in production and proved reserves. Recently, however, with active drilling of the Antrim shales in Michigan and promising results from the Barnett shales of North Texas, this gas play is growing in importance. While once thought of as only an Appalachian basin Devonian-age Ohio shales play and the exclusive domain of regional independents, development of gas shales has expanded to new basins and has began to attract larger E and P firms. Companies such as Amoco, Chevron, and Shell in the Michigan basin and Mitchell Energy and Development and Anadarko Petroleum Corporation in the Fort Worth basin are aggressively pursuing this gas resource. This report, the third of a four part series assessing unconventional gas development in the US, examines the state of the gas shales industry following the 1992 expiration of the Sec. 29 Nonconventional Fuels Tax Credit. The main questions being addressed are first, to what extent are these gas sources viable without the tax credit, and second, what advances in understanding of these reservoirs and what progress in extraction technologies have changed the outlook for this large but complex gas resource?

  10. Role of matrix/reinforcement interfaces in the fracture toughness of brittle materials toughened by ductile reinforcements

    NASA Astrophysics Data System (ADS)

    Xiao, L.; Abbaschian, R.

    1992-10-01

    Crack interactions with ductile reinforcements, especially behavior of a crack tip at the interface, have been studied using MoSi2 composites reinforced with Nb foils. Effects of fracture energy of interfaces on toughness of the composites have also been investigated. Variation of interfacial bonding was achieved by depositing an oxide coating or by the development of a reaction prod- uct layer between the reinforcement and matrix. Toughness was measured using bend tests on chevron-notched specimens. It has been established that as a crack interacts with a ductile re- inforcement, three mechanisms compcte: interfacial debonding, multiple matrix fracture, and direct crack propagation through the reinforcement. Decohesion length at the matrix/reinforcement interface depends on the predominant mechanism. Furthermore, the results add to the evidence that the extent to which interfacial bonding is conducive to toughness of the composites depends on the criterion used to describe the toughness and that ductility of the ductile reinforcement is also an important factor in controlling toughness of the composites. Loss of ductility of the ductile reinforcement due to inappropriate processing could result in little improvement in tough- ness of the composites.

  11. Hollow Fiber Spacesuit Water Membrane Evaporator Development and Testing for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis A.; Tsioulos, Gus; Settles, Joseph; Colunga, Aaron; Vogel, Matthew; Vonau, Walt

    2010-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the most suitable candidate among commercial alternatives for HoFi SWME prototype development. A design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype consisting 14,300 tube bundled into 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Vacuum chamber testing has been performed characterize heat rejection as a function of inlet water temperature and water vapor backpressure and to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the tolerance to freezing and suitability to reject heat in a Mars pressure environment.

  12. Oil and gas developments in North Africa in 1983

    SciTech Connect

    Nicod, M.A.

    1984-10-01

    Petroleum rights in the 6 countries (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) covered by this paper amounted to 1,821,966 km/sup 2/ at the end of 1983, an 11% decrease from the 2,044,851 km/sup 2/ at the end of 1982. This decrease is mostly due to relinquishments in Sudan. Onshore seismic activity decreased in all countries except Sudan, where it slightly increased. Marine seismic activity increased by 85%, mostly due to significant efforts in Morocco and Egypt. Exploration drilling activity increased with 179 wildcats completed in 1983 compared to 166 in 1982. The success rate was 44.7% compared to 36% in 1982. No discoveries were made in Morocco. No new hydrocarbon province was discovered in 1983. Development drilling sharply increased in Egypt and remained at about the same levels in the other countries as in 1982. In Sudan, Chevron started in late September the first development drilling operations in Unity field. Oil production, with a daily average of 2,872,000 bbl, was at the same level as in 1982. In Egypt, 7 new fields went on-stream in the Gulf of Suez, 2 in the Western Desert, and 1 in the Eastern Desert. One field was put on-stream in Libya and 4 in Tunisia. Utilized gas production probably remained at the same level as in 1982 (2000 mmcf/day). 9 figures, 28 tables.

  13. Direct imaging of InSb (110)-(1x1) surface grown by molecular beam epitaxy

    SciTech Connect

    Mishima, T. D.

    2011-10-01

    High-resolution transmission electron microscopy under a profile imaging condition (HR-profile TEM) was employed to determine the structural model for the InSb(110)-(1x1) relaxation surface grown by molecular beam epitaxy (MBE). HR-profile TEM analyses indicate that the chevron model, which is widely accepted for zinc-blende-type III-V(110)-(1x1) surfaces prepared by cleavage, is also applicable to the InSb(110)-(1x1) surface prepared under an Sb-rich MBE condition. The assignment of atomic species (In or Sb) of InSb(110)-(1x1) surfaces was confirmed based on a HR-profile TEM image that captures the connected facets of InSb(110)-(1x1) and InSb(111)B-(2x2). On the basis of the well-known atomic species of InSb(111)B-(2x2), the atomic species of the InSb(110)-(1x1) surface were deduced straightforwardly: the atoms shifted upward and downward at the topmost layer of the InSb(110)-(1x1) surface are Sb and In, respectively. The atomic arrangements of the InSb(110)-(1x1)-InSb(111)B-(2x2) facet determined by HR-profile TEM may represent the atomic arrangements of zinc-blende-type III-V(331)B surfaces.

  14. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect

    Gerald P. Huffman

    2004-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  15. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect

    Gerald P. Huffman

    2003-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the first six months of the subject contract (DE-FC26-02NT-4159), from October 1, 2002 through March 31, 2003.

  16. Epidemiological study of Solvent Refined Coal (SRC) workers. Final report, August 1982-December 1985

    SciTech Connect

    Wen, C.P.; Weiss, N.S.; Bailey, W.J.

    1986-03-31

    This program was initiated for the purpose of monitoring the health status of Solvent Refined Coal (SRC) workers and determining the potential long-term health effects associated with exposure to SRC process materials. The three SRC facilities studied include the SRC pilot plant at Ft. Lewis, Washington (from 1974 through 1981), the P-99 process unit located at Harmarville, Pennsylvania (from 1975 through mid-1981, and benchscale work from October 1984 to the present) and the Merriam Research Laboratory at Merriam, Kansas (from 1962 through May 1984). The methods employed for data collection are described and the success of each discussed. Data collected on each worker included medical history, job history/exposure data, demographic data, lifestyle factors, reproductive history, current vital status, and death information, if applicable. In light of the dramatic cut-back in SRC activities consistent with the overall industry phase-down of synfuel research, coupled with the termination from employment of over 85% of the cohort, the decision was made by Chevron (formerly Gulf) not to extend the project beyond the end of 1985. Therefore, this report describes the work completed through June of 1985 in terms of updating the individual data files, describing the work performed, and presenting descriptive statistics as appropriate. Due to the limited nature of the data collected to date, and the incompleteness of data on many individuals because of short service, no statistical analyses or risk assessments were performed. 4 refs., 4 tabs.

  17. Seismic protection of frame structures via semi-active control: modeling and implementation issues

    NASA Astrophysics Data System (ADS)

    Gattulli, Vincenzo; Lepidi, Marco; Potenza, Francesco

    2009-12-01

    Theoretical and practical issues concerning the multi-faceted task of mitigating the latero-torsional seismic response of a prototypal frame structure with asymmetric mass distribution are approached. Chevron braces with embedded magnetorheological dampers acting on the interstory drift are used to ensure additional energy dissipation. The semi-active control strategy employed to govern the modification of the damper characteristics via feedback is based on the selection of optimal forces according to a H2/LQG criterion, with respect to which the actual forces are regulated by a clipped-optimal logic. A dynamic observer is used to estimate the state through a non-collocated placement of the acceleration sensors. Several aspects to be addressed throughout the complex process including the design, modelization, and implementation phases of semi-active protection systems are discussed. Finally, experimental results obtained to mitigate the motion induced by ground excitation in a large-scale laboratory prototype, simulating the seismic response of a two-story building, are summarized.

  18. Testing the Bistable Topographic State Hypothesis on a Rapidly Prograding Coastal Fluvial Delta

    NASA Astrophysics Data System (ADS)

    Wagner, R. W.; Moffett, K. B.; Mohrig, D. C.

    2013-12-01

    River deltas are the delivery point for freshwater and sediment to the continental shelf. Tides, wind, waves, and water currents re-shape those sediments to create a self-organized delta system. In coastal salt marsh-tidal flat systems it has been shown that the balance of these forces, together with the effect of vegetation, create a bimodal topographic distribution consisting of a stable subtidal state and a stable supratidal, vegetated state. We hypothesize that this theory also applies to prograding coastal deltas and test it using two LiDAR surveys from 2009 and 2013 of the Wax Lake Delta, a rapidly prograding delta in Atchafalaya Bay, Louisiana. The total bathymetric and topographic relief of the delta is greater than that of salt marsh settings, with deep distributary channels around islands. The island surfaces have comparably shallow relief relative to mean water level, only about 0-1.5 m, with chevron-shaped channel-bounding levees bounding large, shallow internal lagoons. Island vegetation succeeds from aquatic to intertidal to emergent species along the elevation gradient. Statistical analysis of the LiDAR data reveals different topographic distributions at the delta and individual-island spatial scales, providing scale-dependent support (and challenge) to the bistable topographic state hypothesis for the coastal fluvial delta setting. This scale-dependence also contains an embedded trend correlated with position in the delta, along a gradient from older proximal islands to younger distal islands.

  19. An Analysis of Cassini Observations Regarding the Structure of Jupiter's Equatorial Atmosphere

    NASA Technical Reports Server (NTRS)

    Choi, David S.; Simon-Miller, Amy A.

    2012-01-01

    A variety of intriguing atmospheric phenomena reside on both sides of Jupiter's equator. 5-micron bright hot spots and opaque plumes prominently exhibit dynamic behavior to the north, whereas compact, dark chevron-shaped features and isolated anticyclonic disturbances periodically occupy the southern equatorial latitudes. All of these phenomena are associated with the vertical and meridional perturbations of Rossby waves disturbing the mean atmospheric state. As previous observational analysis and numerical simulations have investigated the dynamics of the region, an examination of the atmosphere's vertical structure though radiative transfer analysis is necessary for improved understanding of this unique environment. Here we present preliminary analysis of a multispectral Cassini imaging data set acquired during the spacecraft's flyby of Jupiter in 2000. We evaluated multiple methane and continuum spectral channels at available viewing angles to improve constraints on the vertical structure of the haze and cloud layers comprising these interesting features. Our preliminary results indicate distinct differences in the structure for both hemispheres. Upper troposphere hazes and cloud layers are prevalent in the northern equatorial latitudes, but are not present in corresponding southern latitudes. Continued analysis will further constrain the precise structure present in these phenomena and the differences between them.

  20. Explosively separable casing

    SciTech Connect

    Jacobson, A.K.; Kychnovsky, R.E.; Visbeck, C.N.

    1985-02-19

    An explosively separable casing including a cylindrical afterbody and a circular cover for one end of the afterbody is disclosed. The afterbody has a cylindrical tongue extending longitudinally from one end which is matingly received in a corresponding groove in the cover. The groove is sized to provide a pocket between the end of the tongue and the remainder of the groove so that an explosive can be located therein. A seal is also provided between the tongue and the groove for sealing the pocket from the atmosphere. A frangible holding device is utilized to hold the cover to the afterbody. When the explosive is ignited, the increase in pressure in the pocket causes the cover to be accelerated away from the afterbody. Preferably, the inner wall of the afterbody is in the same plane as the inner wall of the tongue to provide a maximum space for storage in the afterbody and the side wall of the cover is thicker than the side wall of the afterbody so as to provide a sufficiently strong surrounding portion for the pocket in which the explosion takes place. The detonator for the explosive is also located on the cover and is carried away with the cover during separation. The seal is preferably located at the longitudinal end of the tongue and has a chevron cross section.

  1. Endangered Species Program Naval Petroleum Reserves in California. Annual report, FY91

    SciTech Connect

    Not Available

    1992-03-01

    The Naval Petroleum Reserves in California (NPRC) are operated by the US Department of Energy (DOE) and Chevron USA. (CUSA). Four federally-listed endangered animal species and one threatened plant species are known to occur on NPRC: the San Joaquin kit fox (Vulpes macrotis mutica), blunt-nosed leopard lizard (Gambelia), giant kangaroo rat (Dipodomys ingens), Tipton kangaroo rat (Dipodomys nitratoides nitratoides) and Hoover`s Wooly-star (Eriastrum hooveri). All five are protected under the Endangered Species Act of 1973 (as amended) (Public Law 93-205), which declares that it is the policy of Congress that all Federal departments and agencies shall seek to conserve endangered and threatened species and shall utilize their authorities in furtherance of the purposes of the Act. DOE is also obliged to determine whether actions taken by their lessees on Naval Petroleum Reserve No. 2 (NPR-2) will have any effects on endangered species or their habitats. The major objective of the Endangered Species Program on NPR-1 and NPR-2 is to provide DOE with the scientific expertise and continuity of programs necessary for the continued compliance with the Endangered Species Act. The specific objective of this report is to summarize progress and results of the Endangered Species Program made during Fiscal Year 1991 (FY91).

  2. A new species of bent-toed gecko, genus Cyrtodactylus Gray, 1827 (Reptilia: Squamata: Gekkonidae), from Jawa Timur Province, Java, Indonesia, with taxonomic remarks on C. fumosus (Müller, 1895).

    PubMed

    Hartmann, Lukas; Mecke, Sven; Kieckbusch, Max; Mader, Felix; Kaiser, Hinrich

    2016-01-01

    A new species of the gekkonid lizard genus Cyrtodactylus Gray, 1827 is described from Klakah, Lumajang Regency, Jawa Timur Province, Java, Indonesia. Cyrtodactylus klakahensis sp. nov. can be distinguished from all other congeners by the presence of (1) a deep precloacal groove in males, (2) three rows of enlarged precloacofemoral scales, of which the third row bears 37-38 pores in males, (3) three or four rows of enlarged scales between the precloacofemoral scale rows and the cloaca, forming distinct chevrons, (4) raised and strongly keeled dorsal tubercles in 15-19 rows at midbody, (5) an indistinct lateral fold, (6) 17-20 subdigital lamellae under the 4th toe, and (7) subcaudal scales which are not transversely enlarged. Cyrtodactylus klakahensis sp. nov. is only the third bent-toed gecko species described from Java, indicating that the diversity of this genus on this island has been neglected in the past. Furthermore, we confirm that C. fumosus (Müller, 1895) is a species that possesses a precloacal groove in males and is most likely restricted to northern Sulawesi. That species is defined by a single female holotype (NMB-REPT 2662). Specimens in museum collections catalogued as C. fumosus from localities elsewhere are misidentified and likely represent undescribed species. PMID:27395895

  3. A novel SU-8 electrothermal microgripper based on the type synthesis of the kinematic chain method and the stiffness matrix method

    NASA Astrophysics Data System (ADS)

    Chu, Jinkui; Zhang, Ran; Chen, Zhaopeng

    2011-05-01

    This paper presents a new systematic design and optimization procedure used for the microgrippers driven by a chevron electrothermal actuator. The procedure includes three steps: first, a suitable rigid-body gripper mechanism is selected using the type synthesis of the kinematic chain method; then, the rigid-body mechanism is transferred into a compliant microgripper; finally, by the stiffness matrix model and the genetic algorithm, a geometry parametric optimization with the high output stiffness objective is carried out. Using this procedure, a novel SU-8 electrothermal microgripper is obtained. According to the FEM simulation, the microgripper meets the design requirements and satisfies the constraints. To eliminate the out-of-plane actuation, a novel processing technology is implemented to fabricate the microgripper with a sandwich structure actuator. The experimental results demonstrate that a jaw gap change of 107.5 µm requires only 73.6 mV, 25.61 mW and only 44.92 °C temperature increase at the actuator and the out-of-plane actuation is almost eliminated. A micromanipulation of a micro blood vessel specimen and a micro-assembly for micro-tensile testing studies of fine hair are demonstrated. Hence, the design procedure is valid to generate novel compliant micro mechanisms. The fabrication process can be used in the fabrication of other SU-8 MEMS devices actuated by the electrothermal actuator.

  4. The neuroergonomic evaluation of human machine interface design in air traffic control using behavioral and EGG/ERP measures.

    PubMed

    Giraudet, L; Imbert, J-P; Bérenger, M; Tremblay, S; Causse, M

    2015-11-01

    The Air Traffic Control (ATC) environment is complex and safety-critical. Whilst exchanging information with pilots, controllers must also be alert to visual notifications displayed on the radar screen (e.g., warning which indicates a loss of minimum separation between aircraft). Under the assumption that attentional resources are shared between vision and hearing, the visual interface design may also impact the ability to process these auditory stimuli. Using a simulated ATC task, we compared the behavioral and neural responses to two different visual notification designs--the operational alarm that involves blinking colored "ALRT" displayed around the label of the notified plane ("Color-Blink"), and the more salient alarm involving the same blinking text plus four moving yellow chevrons ("Box-Animation"). Participants performed a concurrent auditory task with the requirement to react to rare pitch tones. P300 from the occurrence of the tones was taken as an indicator of remaining attentional resources. Participants who were presented with the more salient visual design showed better accuracy than the group with the suboptimal operational design. On a physiological level, auditory P300 amplitude in the former group was greater than that observed in the latter group. One potential explanation is that the enhanced visual design freed up attentional resources which, in turn, improved the cerebral processing of the auditory stimuli. These results suggest that P300 amplitude can be used as a valid estimation of the efficiency of interface designs, and of cognitive load more generally. PMID:26200718

  5. Optofluidic characterization of marine algae using a microflow cytometer

    PubMed Central

    Hashemi, Nastaran; Erickson, Jeffrey S.; Golden, Joel P.; Ligler, Frances S.

    2011-01-01

    The effects of global warming, pollution in river effluents, and changing ocean currents can be studied by characterizing variations in phytoplankton populations. We demonstrate the design and fabrication of a Microflow Cytometer for characterization of phytoplankton. Guided by chevron-shaped grooves on the top and bottom of a microfluidic channel, two symmetric sheath streams wrap around a central sample stream and hydrodynamically focus it in the center of the channel. The lasers are carefully chosen to provide excitation light close to the maximum absorbance wavelengths for the intrinsic fluorophores chlorophyll and phycoerythrin, and the excitation light is coupled to the flow cytometer through the use of an optical fiber. Fluorescence and light scatter are collected using two multimode optical fibers placed at 90-degree angles with respect to the excitation fiber. Light emerging from these collection fibers is directed through optical bandpass filters into photomultiplier tubes. The cytometer measured the optical and side scatter properties of Karenia b., Synechococcus sp., Pseudo-Nitzchia, and Alexandrium. The effect of the sheath-to-sample flow-rate ratio on the light scatter and fluorescence of these marine microorganisms was investigated. Reducing the sample flow rate from 200 μL/min to 10 μL/min produced a more tightly focused sample stream and less heterogeneous signals. PMID:22662031

  6. NATIONAL GEOSCIENCE DATA REPOSITORY SYSTEM PHASE III: IMPLEMENTATION AND OPERATION OF THE REPOSITORY

    SciTech Connect

    Marcus Milling

    2000-12-01

    In the past six months the NGDRS program has seen a new spike in activity, particularly in October 2000. This new spike in activity is the result of increased activities in the petroleum sector, including new funding to examine infrastructure issues facing many of the companies over the long-term. With industry conditions continuing to rapidly change and evolve, the primary core and cuttings preservation strategy has evolved as well. With the severe lack of available public data repository space and the establishment of a major national geoscience data repository facility unlikely in the near future, the focus is on increasing public awareness and access to nonproprietary company data holdings that remain in the public and private sector. Efforts still continue to identify and facilitate the entry of new repository space into the public sector. Additionally, AGI has been working with the National Academy of Sciences Board on Earth Sciences and Resources staff to initiate a study and workshop to develop a policy recommendation on geoscience data preservation and prioritization of efforts. Additional data transfer efforts were undertaken during the second half of FY00. Altura's Permian Basin core was contributed to the Texas BEG's facility in Midland. Transcription and evaluation of selected seismic data from the Santa Barbara Channel previously owned by Phillips was completed. Additionally, Chevron has released over 180,000 boxes of cores to the public through the NGDRS metadata catalog.

  7. Quantification of statistical phenomena in turbulent dispersions

    NASA Astrophysics Data System (ADS)

    Yates, Matthew; Hann, David; Hewakandamby, Buddhika

    2015-11-01

    Understanding of turbulent dispersions is of great importance for environmental and industrial applications. This includes developing a greater understanding of particle movement in atmospheric flows, and providing data that can be used to validate CFD models aimed at producing more accurate simulations of dispersed turbulent flows, aiding design of many industrial components. Statistical phenomena in turbulent dispersions were investigated using Particle Image Velocimetry. Experiments were carried out in a two dimensional channel over a Reynolds number range of 10000-30000, using water and 500 micron hydrogel particles. Particles were injected at the channel entrance, and dispersion properties were characterised at different distances downstream from the injection point. Probability density functions were compiled for the velocity components of the hydrogels for differing flow conditions. Higher order PDFs were constructed to investigate the behaviour of particle pairs. Dispersed phase data was also used to investigate the mechanics of collisions between hydrogel particles, allowing for calculation of the co-efficient of restitution. PIV algorithms were used to create velocity maps for the continuous phase for varying dispersed phase fractions. Thanks to support of Chevron grant as part of TMF consortium.

  8. Hydrocarbon potential of intracratonic rift basins

    SciTech Connect

    Baker, D.G.; Derksen, S.J.

    1984-09-01

    Significant world oil reserves have been added in recent years from rift system. Examples of petroliferous rift basins may be found on nearly every major continent. As our understanding of the mechanisms of sedimentation and structure in rift basins grows, more rift systems will be found. With a few notable exceptions, rifts that have been explored in the past are those that formed along continental margins. These contain marine sediments, and the conditions of source rock, sediment type, depositional environment, and structural style are well-known exploration concepts. Intracratonic rift systems containing continental sediments, and also because of the problems perceived to accompany continental sedimentation. A good modern analog is the East African rift system. Several companies have made significant oil discoveries in different components of the Central African rift system. Average daily production for 1982 from the basins associated with the Benue trough was 107.928 BOPD. In the Abu Gabra rift component, where Marathon is currently exploring, Chevron has drilled approximately 60 wells. Nineteen of these were discoveries and tested an average rate per well of 3,500 BOPD. The Abu Gabra rift may contain up to 10 billion bbl of oil. Research indicates that this type of rift system is present in other areas of the world. Ongoing worldwide exploration has shown that intracratonic rift basins have the potential to make a significant contribution to world oil reserves.

  9. On-sun testing of an advanced falling particle receiver system

    NASA Astrophysics Data System (ADS)

    Ho, Clifford K.; Christian, Joshua M.; Yellowhair, Julius; Siegel, Nathan; Jeter, Sheldon; Golob, Matthew; Abdel-Khalik, Said I.; Nguyen, Clayton; Al-Ansary, Hany

    2016-05-01

    A 1 MWth high-temperature falling particle receiver was constructed and tested at the National Solar Thermal Test Facility at Sandia National Laboratories. The continuously recirculating system included a particle elevator, top and bottom hoppers, and a cavity receiver that comprised a staggered array of porous chevron-shaped mesh structures that slowed the particle flow through the concentrated solar flux. Initial tests were performed with a peak irradiance of ~300 kW/m2 and a particle mass flow rate of 3.3 kg/s. Peak particle temperatures reached over 700 °C near the center of the receiver, but the particle temperature increase near the sides was lower due to a non-uniform irradiance distribution. At a particle inlet temperature of ~440 °C, the particle temperature increase was 27 °C per meter of drop length, and the thermal efficiency was ~60% for an average irradiance of 110 kW/m2. At an average irradiance of 211 kW/m2, the particle temperature increase was 57.1 °C per meter of drop length, and the thermal efficiency was ~65%. Tests with higher irradiances are being performed and are expected to yield greater particle temperature increases and efficiencies.

  10. Cross-Stream PIV Measurements of Jets With Internal Lobed Mixers

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2004-01-01

    With emphasis being placed on enhanced mixing of jet plumes for noise reduction and on predictions of jet noise based upon turbulent kinetic energy, unsteady measurements of jet plumes are a very important part of jet noise studies. Given that hot flows are of most practical interest, optical techniques such as Particle Image Velocimetry (PIV) are applicable. When the flow has strong azimuthal features, such as those generated by chevrons or lobed mixers, traditional PIV, which aligns the measurement plane parallel to the dominant flow direction is very inefficient, requiring many planes of data to be acquired and stacked up to produce the desired flow cross-sections. This paper presents PIV data acquired in a plane normal to the jet axis, directly measuring the cross-stream gradients and features of an internally mixed nozzle operating at aircraft engine flow conditions. These nozzle systems included variations in lobed mixer penetration, lobe count, lobe scalloping, and nozzle length. Several cases validating the accuracy of the PIV data are examined along with examples of its use in answering questions about the jet noise generation processes in these nozzles. Of most interest is the relationship of low frequency aft-directed noise with turbulence kinetic energy and mean velocity.

  11. Comparison of the effects of 23-gauge and 25-gauge microincision vitrectomy blade designs on incision architecture

    PubMed Central

    Inoue, Makoto; Abulon, Dina Joy K; Hirakata, Akito

    2014-01-01

    Purpose To compare the effects of different 23- and 25-gauge microincision vitrectomy trocar cannula entry systems on incision architecture. Methods We tested one ridged microvitreoretinal (MVR), one non-ridged MVR, one pointed beveled, and one round-tipped beveled blade (n=10 per blade design per incision type). Each blade’s straight and oblique incision architecture was assessed in a silicone disc simulating the sclera. Wound leakage under pressure and endoscopic observations were conducted on sclerotomy sites of isolated porcine eyes (n=4 per blade design) after simulated vitrectomy. Results Differences in blade design created distinct incision architecture. Incisions were linear with the ridged MVR blade, flattened “M-shaped” with the non-ridged MVR blade, asymmetrical chevron-shaped with the pointed beveled blade, and curved with the round-tipped beveled blade. With the exception of oblique entry incision thickness, both MVR blade designs created thinner incisions than the beveled blades at entry and exit sites. Only the ridged MVR blade created incisions with no leakage. Vitreous incarceration was observed with all trocar cannula systems. Conclusion Wound closure in porcine eyes was similar with all blades despite differences in incision architecture. Wound leakage occurred at low to moderate infusion pressures with most blades; no wound leakage was observed with ridged MVR blades. PMID:25429201

  12. Apparent fracture toughness of acrylic bone cement: effect of test specimen configuration and sterilization method.

    PubMed

    Lewis, G

    1999-01-01

    The plane strain fracture toughness of Palacos R bone cement was determined using linear elastic fracture mechanics (LEFM) principles and three different test specimen configurations: single edge notched three-point (SENB), rectangular compact tension (RCT), and chevron notched short rod (CNSR). Another aspect of the study was an investigation of the effect of three methods used to sterilize the powder constituents of the cement-none, gamma irradiation and ethylene oxide--on the fracture toughness of the fully polymerized material. A detailed justification is provided for using LEFM. The fracture toughness results obtained using the CNSR specimens were, on average, 14 and 16% higher than those obtained using the SENB and RCT types, respectively. These differences are accounted for in terms of differences in four aspects of these specimen configuration (namely, residual stress effects, loading rate, material inhomogeneity, and the nature of the test). For a given specimen configuration, gamma irradiation produced a statistically significant decrease in fracture toughness which, it is suggested, is due to the concomitant depreciation in molecular weight. For a given cement type, there is no statistically significant difference in fracture toughness results obtained using SENB and RCT specimens. It is thus suggested that either of these configurations can be used to determine the fracture toughness of acrylic bone cement.

  13. Response of a 42-storey steel-frame building to the Ms = 7.1 Loma Prieta earthquake

    USGS Publications Warehouse

    Safak, E.

    1993-01-01

    A set of 14 acceleration records was obtained from a 42-storey steel-frame building, the Chevron Building, in San Francisco during the Ms = 7.1 Loma Prieta earthquake of 17 October 1989. Data were analysed using a system identification method based on the discretetime linear filtering, and the least-squares estimation techniques. The results show that the response of the building is dominated by two modes: a translational mode in the weaker (southwest-northeast) principal direction of the building at 0.16 Hz with 5% damping, and a translational-torsional mode along the east-west diagonal of the building's cross-section at 0.20 Hz with 7% damping. There are significant contributions from higher modes at 0.54 Hz, 0.62 Hz, 1.02 Hz and 1.09 Hz. All the modes incorporate some torsion, but the amplitudes of torsional components are small, about 10% of translational amplitudes. Soil-structure interaction influences the vibrations near 1.0 Hz. The contribution of soil-structure interaction to the peak displacements of the building is significant, particularly at lower floors. ?? 1993.

  14. An Experiment on the Near Flow Field of the GE/ARL Mixer Ejector Nozzle

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2004-01-01

    This report is a documentation of the results on flowfield surveys for the GE/ARL mixer-ejector nozzle carried out in an open jet facility at NASA Glenn Research Center. The results reported are for cold (unheated) flow without any surrounding co-flowing stream. Distributions of streamwise vorticity as well as turbulent stresses, obtained by hot-wire anemometry, are presented for a low subsonic condition. Pitot probe survey results are presented for nozzle pressure ratios up to 3.5. Flowfields both inside and outside of the ejector are considered. Inside the ejector, the mean velocity distribution exhibits a cellular pattern on the cross sectional plane, originating from the flow through the primary and secondary chutes. With increasing downstream distance an interchange of low velocity regions with adjacent high velocity regions takes place due to the action of the streamwise vortices. At the ejector exit, the velocity distribution is nonuniform at low and high pressure ratios but reasonably uniform at intermediate pressure ratios. The effects of two chevron configurations and a tab configuration on the evolution of the downstream jet are also studied. Compared to the baseline case, minor but noticeable effects are observed on the flowfield.

  15. Endangered Species Program, Naval Petroleum Reserves in California. Annual report, FY92

    SciTech Connect

    Not Available

    1992-12-01

    Naval Petroleum Reserve No. 1 (NPR-1) is operated by the U. S. Department of Energy (DOE) and Chevron USA (CUSA). Four federally-listed endangered animal species and one federally-threatened plant species are known to occur on the Naval Petroleum Reserves in California (NPRC): the San Joaquin kit fox (Vulpes velox macrotis), blunt-nosed leopard lizard (Gambelia silus), giant kangaroo rat (Dipodomys ingens), Tipton kangaroo rat (Dipodomys nitratoides nitratoides), and Hoover`s wooly-star (Eriastrum hooveri). All five are protected under the Endangered Species Act of 1973 (as amended) (Public Law 93-205), which declaresthat it is the policy of Congress that all Federal departments and agencies shall seek to conserve endangered and threatened species and shall utilize their authorities in furtherance of the purposes of the Act. DOE is also obliged to determine whether actions taken by their lessees on Naval Petroleum Reserve No. 2 (NPR-2) will have any effects on endangered species or their habitats. The major objective of the EG&G Energy Measurements, Inc. Endangered Species Program on NPR-1 and NPR-2 is to provide DOE with the scientific expertise and continuity of programs necessary for continued compliance with the Endangered SpeciesAct. The specific objective of this report is to summarize progress and results of the Endangered Species Program made during Fiscal Year 1992 (FY92).

  16. Endangered Species Program Naval Petroleum Reserves in California

    SciTech Connect

    Not Available

    1992-03-01

    The Naval Petroleum Reserves in California (NPRC) are operated by the US Department of Energy (DOE) and Chevron USA. (CUSA). Four federally-listed endangered animal species and one threatened plant species are known to occur on NPRC: the San Joaquin kit fox (Vulpes macrotis mutica), blunt-nosed leopard lizard (Gambelia), giant kangaroo rat (Dipodomys ingens), Tipton kangaroo rat (Dipodomys nitratoides nitratoides) and Hoover's Wooly-star (Eriastrum hooveri). All five are protected under the Endangered Species Act of 1973 (as amended) (Public Law 93-205), which declares that it is the policy of Congress that all Federal departments and agencies shall seek to conserve endangered and threatened species and shall utilize their authorities in furtherance of the purposes of the Act. DOE is also obliged to determine whether actions taken by their lessees on Naval Petroleum Reserve No. 2 (NPR-2) will have any effects on endangered species or their habitats. The major objective of the Endangered Species Program on NPR-1 and NPR-2 is to provide DOE with the scientific expertise and continuity of programs necessary for the continued compliance with the Endangered Species Act. The specific objective of this report is to summarize progress and results of the Endangered Species Program made during Fiscal Year 1991 (FY91).

  17. Endangered Species Program, Naval Petroleum Reserves in California. Annual report FY93

    SciTech Connect

    1995-02-01

    The Naval Petroleum Reserves in California (NPRC) are operated by the US Department of Energy (DOE) and Chevron USA. Production Company (CPDN). Four federally-listed endangered animal species and one federally-threatened plant species are known to occur on NPRC: San Joaquin kit fox, blunt-nosed leopard lizard, giant kangaroo rat, Tipton kangaroo rat, and Hoover`s wooly-star. All five are protected under the Endangered Species Act of 1973, which declares that it is ``...the policy of Congress that all Federal departments and agencies shall seek to conserve endangered species and threatened species and shall utilize their authorities in furtherance of the purposes of the Act.`` DOE is also obliged to determine whether actions taken by their lessees on Naval Petroleum Reserve No. 2 will have any effects on endangered species or their habitats. The major objective of the EG&G Energy Measurements, Inc. Endangered Species Program on NPRC is to provide DOE with the scientific expertise necessary for compliance with the Endangered Species Act. The specific objective of this report is to summarize progress and results of the Endangered Species Program made during fiscal year 1993.

  18. Endangered Species Program, Naval Petroleum Reserves in California

    SciTech Connect

    Not Available

    1992-12-01

    Naval Petroleum Reserve No. 1 (NPR-1) is operated by the U. S. Department of Energy (DOE) and Chevron USA (CUSA). Four federally-listed endangered animal species and one federally-threatened plant species are known to occur on the Naval Petroleum Reserves in California (NPRC): the San Joaquin kit fox (Vulpes velox macrotis), blunt-nosed leopard lizard (Gambelia silus), giant kangaroo rat (Dipodomys ingens), Tipton kangaroo rat (Dipodomys nitratoides nitratoides), and Hoover's wooly-star (Eriastrum hooveri). All five are protected under the Endangered Species Act of 1973 (as amended) (Public Law 93-205), which declaresthat it is the policy of Congress that all Federal departments and agencies shall seek to conserve endangered and threatened species and shall utilize their authorities in furtherance of the purposes of the Act. DOE is also obliged to determine whether actions taken by their lessees on Naval Petroleum Reserve No. 2 (NPR-2) will have any effects on endangered species or their habitats. The major objective of the EG G Energy Measurements, Inc. Endangered Species Program on NPR-1 and NPR-2 is to provide DOE with the scientific expertise and continuity of programs necessary for continued compliance with the Endangered SpeciesAct. The specific objective of this report is to summarize progress and results of the Endangered Species Program made during Fiscal Year 1992 (FY92).

  19. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  20. Determining the dynamic range of MCPs based on pore size and strip current

    NASA Astrophysics Data System (ADS)

    Hunt, C.; Adrian, M. L.; Herrero, F.; James, P.; Jones, H. H.; Rodriguez, M.; Roman, P.; Shappirio, M.

    2010-12-01

    Micro-Channel Plates (MCPs) are used as detectors for almost all detectors measuring particles (both ions, electrons and neutrals) below 30 keV. Recent advances in the manufacturing technology of the MCPs have increased the number of options one has when selecting plates for an instrument. But it is not clear how many of these options affect the performance of the MCPs. In particular the dynamic range is not a clear cut calculation to make from the strip current. There is also some evidence that pore size and coating play a role. We measured the dynamic range and pulse height distribution of MCPs detector chevron stacks with a wide variety of strip currents from the low “normal” range in the EDR range. We also looked at the effects of varying the pore size from 25 microns to 10 microns, partial plating of the MCP surface and coating one surface on each MCP with gold rather than the standard zinc chromium. We will show how the dynamic range and pulse height distributions vary vs. strip current, pore size, and surface plating configurations.

  1. On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum

    SciTech Connect

    Cherne, F. J.; Hammerberg, J. E.; Andrews, M. J.; Karkhanis, V.; Ramaprabhu, P.

    2015-11-09

    Other work employed Richtmyer-Meshkov theory to describe the development of spikes and bubblesfrom shocked sinusoidal surfaces. Here, we discuss the effects of machining different two-dimensional shaped grooves in copper and examine the resulting flow of the material after being shocked into liquid on release. For these simulations, a high performance molecular dynamics code, SPaSM, was used with machined grooves of kh 0 = 1 and kh 0 = 1/8, where 2h 0 is the peak-to-valley height of the perturbation with wavelength λ, and k = 2π/λ. The surface morphologies studied include a Chevron, a Fly-Cut, a Square-Wave, and a Gaussian. Furthermore, we describe extensions to an existing ejecta source model that better captures the mass ejected from these surfaces. We also investigate the same profiles at length scales of order 1 cm for an idealized fluid equation of state using the FLASH continuum hydrodynamics code. Our findings indicate that the resulting mass can be scaled by the missing area of a sinusoidal curve with an effective wavelength, λeff , that has the same missing area. Finally, our extended ejecta mass formula works well for all the shapes considered and captures the corresponding time evolution and total mass.

  2. The osteology of Camarasaurus lewisi (Jensen, 1988)

    USGS Publications Warehouse

    Mcintosh, J.S.; Miller, W.E.; Stadtman, K.L.; Gillette, D.D.

    1996-01-01

    Preparation of an approximately two-thirds complete, well-preserved Camarasaurus skeleton has recently been finished. Its detailed osteological description presented here provides a number of interesting characters, some not previously reported for the genus. This specimen (BYU 9047) was earlier named Cathetosaurus lewisi, n. gen. et sp., based on seven characters cited by Jensen (1988). Of these characters, four appear to be age related (this skeleton represents a very old individual) and not of taxonomic significance. Nevertheless, they are useful in advancing our understanding of the ligamentation associated with the sacral and posterior dorsal regions, not only of Camarasaurus but of the sauropods in general. These characters also contribute to a greater knowledge of the ontogenetic development and fusion of the sacral elements. Camarasaurus lewisi (Jensen, 1988) is a valid species whose diagnostic characters include (1) a deep but narrow cleft in the neural spines of presacral vertebrae, which most significantly persists to the sacrum rather than ending in the mid-dorsal region, as in all other species of Camarasaurus; (2) a forward rotation of the ilium with respect to the long axis of the sacrum, a hitherto unreported major character of the genus Camarasaurus; and (3) a steep angle that the posterior chevron articulating facets make with the horizontal plane.

  3. Slim hole drilling proven in remote exploration project

    SciTech Connect

    Dachary, J. ); Vighetto, R. )

    1992-06-22

    This paper reports on a helicopter-supported slim hole exploration project in a remote tropical forest which cost 15% less than a conventional drilling operation. The potential savings after improvements in rig equipment, bits, and drilling and coring methods may approach 30%. Because of the small size of the slim hole equipment, the impact on the rain forest was small. The areas cleared for locations and access during the operation were 75% less than that required for similar operations with conventional road-transported rigs. During the second half of 1991, Total Exploration Gabon, a subsidiary of Total Exploration Production, conducted a slim hole drilling project in the Gabonese tropical rain forest in a joint venture with Chevron Corp., Exxon Corp., and Austria's OMV AG. During this helicopter-supported operation, two wells were drilled: one to 2,747 m (9,010 ft) ending with a 3 in. hole and one to 418 m (1,371 ft) ending with a 5-7/8 in. hole. Continuous coring operations recovered 1,868 m (6,127 ft), or 59% of the total length drilled.

  4. Changes in Differentiation-Relatedness During Psychoanalysis.

    PubMed

    Calamaras, Martha R; Reviere, Susan L; Gallagher, Kathryn E; Kaslow, Nadine J

    2016-01-01

    This study sought to determine (a) if the Differentiation-Relatedness Scale of Self and Object Representations (D-RS), a coding model used with the Object Relations Inventory (Blatt, Wein, Chevron, & Quinlan, 1979 ) could be reliably applied to transcripts of psychoanalyses, and (b) if levels of differentiation-relatedness improve over the course of psychoanalysis. Participants were 4 creative writers who underwent psychoanalysis as part of a longitudinal research project focused on the processes and outcomes of psychoanalysis. Transcripts from the beginning and termination phases of psychoanalysis were coded by 2 independent raters for global, low, and high levels of self and other differentiation-relatedness and compared. There was good interrater agreement, suggesting that, like other forms of narrative material, psychoanalysis transcripts can be reliably rated for levels of object relations. Analysands showed an increase in global levels of differentiation-relatedness from a predominance of emergent ambivalent constancy (M = 6.2) at the beginning of analysis to consolidated, constant representations of self and other (M = 7.5) at the end of analysis. These preliminary findings contribute significantly to the empirical literature with regard to the measurement of self and object representations and change in these representations over the course of psychoanalysis.

  5. Status of coal liquefaction in the United States and related research and development at the Oak Ridge National Laboratory

    SciTech Connect

    Salmon, R.; Cochran, H.D. Jr.; McNeese, L.E.

    1982-10-05

    We divide coal liquefaction processes into four categories: (1) indirect liquefaction, such as Fischer-Tropsch and methanol synthesis, in which coal is fist gasified to produce a synthesis gas which is then recombined to produce liquids; (2) direct liquefaction processes, typified by H-Coal, Exxon Donor Solvent (EDS), and SRC-I and II, in which a slurry of coal and solvent is subjected to high severity liquefaction conditions, either with or without added catalyst; (3) two-stage liquefaction, such as Conoco's CSF process, in which an initial dissolution at mild conditions is followed by a more severe catalytic hydrogenation-hydrocracking step; or the short contact time two-stage liquefaction processes being developed currently by groups which include Chevron, Electric Power Research Institute (EPRI), Department of Energy/Fossil Energy (DOE/FE); and (4) pyrolysis and hydropyrolysis processes, such as COED and Cities Service-Rockewell, in which coal is carbonized to produce liquids, gases, and char. Pilot plant experience with the various processes is reviewed (including equipment problems, corrosion and abrasion, refractory life, heat recovery, coke deposits, reactor kinetics, scale-up problems, health hazards, environmental impacts, upgrading products, economics, etc.). Commercialization possibilities are discussed somewhat pessimistically in the light of reduction of US Oil imports, weakening oil prices, conversion to coal, smaller automobiles, economics and finally, some uncertainty about SFC goals and policies. (LTN)

  6. Two-phase gas-liquid flow characteristics inside a plate heat exchanger

    SciTech Connect

    Nilpueng, Kitti; Wongwises, Somchai

    2010-11-15

    In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-water mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)

  7. Catalytic membrane program novation: High temperature catalytic membrane reactors. Final report

    SciTech Connect

    Kleiner, R.N.

    1998-08-28

    The original objective was to develop an energy-efficient hydrocarbon dehydrogenation process based on catalytic membrane reactors. Golden Technologies determined that the goals of this contract would be best served by novating the contract to an end user or other interested party which is better informed on the economic justification aspects of petrochemical refining processes to carry out the remaining work. In light of the Chevron results, the program objective was broadened to include development of inorganic membranes for applications in the chemical industry. The proposed membrane technologies shall offer the potential to improve chemical production processes via conversion increase and energy savings. The objective of this subcontract is to seek a party that would serve as a prime contractor to carry out the remaining tasks on the agreement and bring the agreement to a successful conclusion. Four tasks were defined to select the prime contractor. They were (1) prepare a request for proposal, (2) solicit companies as potential prime contractors as well as team members, (3) discuss modifications requested by the potential prime contractors, and (4) obtain, review and rank the proposals. The accomplishments on the tasks is described in detail in the following sections.

  8. Explosively separable casing

    DOEpatents

    Jacobson, A.K.; Rychnovsky, R.E.; Visbeck, C.N.

    An explosively separable casing including a cylindrical afterbody and a circular cover for one end of the afterbody is disclosed. The afterbody has a cylindrical tongue extending longitudinally from one end which is matingly received in a corresponding groove in the cover. The groove is sized to provide a picket between the end of the tongue and the remainder of the groove so that an explosive can be located therein. A seal is also provided between the tongue and the groove for sealing the pocket from the atmosphere. A frangible holding device is utilized to hold the cover to the afterbody. When the explosive is ignited, the increase in pressure in the pocket causes the cover to be accelerated away from the afterbody. Preferably, the inner wall of the afterbody is in the same plane as the inner wall of the tongue to provide a maximum space for storage in the afterbody and the side wall of the cover is thicker than the side wall of the afterbody so as to provide a sufficiently strong surrounding portion for the pocket in which the explosion takes place. The detonator for the explosive is also located on the cover and is carried away with the cover during separation. The seal is preferably located at the longitudinal end of the tongue and has a chevron cross section.

  9. Explosively separable casing

    DOEpatents

    Jacobson, Albin K.; Rychnovsky, Raymond E.; Visbeck, Cornelius N.

    1985-01-01

    An explosively separable casing including a cylindrical afterbody and a circular cover for one end of the afterbody is disclosed. The afterbody has a cylindrical tongue extending longitudinally from one end which is matingly received in a corresponding groove in the cover. The groove is sized to provide a pocket between the end of the tongue and the remainder of the groove so that an explosive can be located therein. A seal is also provided between the tongue and the groove for sealing the pocket from the atmosphere. A frangible holding device is utilized to hold the cover to the afterbody. When the explosive is ignited, the increase in pressure in the pocket causes the cover to be accelerated away from the afterbody. Preferably, the inner wall of the afterbody is in the same plane as the inner wall of the tongue to provide a maximum space for storage in the afterbody and the side wall of the cover is thicker than the side wall of the afterbody so as to provide a sufficiently strong surrounding portion for the pocket in which the explosion takes place. The detonator for the explosive is also located on the cover and is carried away with the cover during separation. The seal is preferably located at the longitudinal end of the tongue and has a chevron cross section.

  10. Petroleum production at Maximum Efficient Rate Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California. Final Supplemental Environmental Impact Statement

    SciTech Connect

    Not Available

    1993-07-01

    This document provides an analysis of the potential impacts associated with the proposed action, which is continued operation of Naval Petroleum Reserve No. I (NPR-1) at the Maximum Efficient Rate (MER) as authorized by Public law 94-258, the Naval Petroleum Reserves Production Act of 1976 (Act). The document also provides a similar analysis of alternatives to the proposed action, which also involve continued operations, but under lower development scenarios and lower rates of production. NPR-1 is a large oil and gas field jointly owned and operated by the federal government and Chevron U.SA Inc. (CUSA) pursuant to a Unit Plan Contract that became effective in 1944; the government`s interest is approximately 78% and CUSA`s interest is approximately 22%. The government`s interest is under the jurisdiction of the United States Department of Energy (DOE). The facility is approximately 17,409 acres (74 square miles), and it is located in Kern County, California, about 25 miles southwest of Bakersfield and 100 miles north of Los Angeles in the south central portion of the state. The environmental analysis presented herein is a supplement to the NPR-1 Final Environmental Impact Statement of that was issued by DOE in 1979 (1979 EIS). As such, this document is a Supplemental Environmental Impact Statement (SEIS).

  11. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip.

    PubMed

    Kim, Sun Min; Burns, Mark A; Hasselbrink, Ernest F

    2006-07-15

    We discovered that a protein concentration device can be constructed using a simple one-layer fabrication process. Microfluidic half-channels are molded using standard procedures in PDMS; the PDMS layer is reversibly bonded to a glass base such as a microscope slide. The microfluidic channels are chevron-shaped, in mirror image orientation, with their apexes designed to pass within approximately 20 microm of each other, forming a thin-walled section between the channels. When an electric field is applied across this thin-walled section, negatively charged proteins are observed to concentrate on the anode side of it. About 10(3)-10(6)-fold protein concentration was achieved in 30 min. Subsequent separation of two different concentrated proteins is easily achieved by switching the direction of the electric field in the direction parallel to the thin-walled section. We hypothesize that a nanoscale channel forms between the PDMS and the glass due to the weak, reversible bonding method. This hypothesis is supported by the observation that, when the PDMS and glass are irreversibly bonded, this phenomenon is not observed until a very high E-field was applied and dielectric breakdown of the PDMS is observed. We therefore suspect that the ion exclusion-enrichment effect caused by electrical double layer overlapping induces cationic selectivity of this nanochannel. This simple on-chip protein preconcentration and separation device could be a useful component in practically any PDMS-on-glass microfluidic device used for protein assays.

  12. LES-based evaluation of a microjet noise reduction concept in static and flight conditions

    NASA Astrophysics Data System (ADS)

    Shur, Mikhail L.; Spalart, Philippe R.; Strelets, Mikhail Kh.

    2011-08-01

    The Large-Eddy Simulation (LES) numerical system established since 2002 for jet-noise computation is first evaluated in terms of recent gains in accuracy with increased computer resources, and is then used to explore the relatively new "microjet" noise-reduction concept (injection of high-pressure microjets in the vicinity of the main jet nozzle exit), which currently attracts attention in the aeroacoustic community. The simulations, which are carried out with an emulation of the microjets by specially designed distributed sources of mass, momentum, and energy in the governing equations, are found to capture the essential features of the flow/turbulence and the far-field noise alteration by the microjets observed in experiments, and to reveal the subtle flow features responsible for the effect of injection on noise. They also confirm the experimental observation that in static conditions microjets provide a noise reduction comparable with that from chevrons in the low-frequency range, and probably have a less pronounced high-frequency penalty. This positive evaluation of the microjets concept is, however, mitigated by the far less favorable results of simulations in flight conditions, which were never studied experimentally. The latter results, which are awaiting an experimental verification, make a practical use of the concept in its current form rather unlikely.

  13. Transient behavior of simultaneous flow of gas and surfactant solution in consolidated porous media

    SciTech Connect

    Baghdikian, S.Y.; Handy, L.L.

    1991-07-01

    The main objective of this experimental research was to investigate the mechanisms of foam generation and propagation in porous media. Results obtained give an insight into the conditions of foam generation and propagation in porous media. The rate of propagation of foam is determined by the rates of lamellae generation, destruction, and trapping. Several of the factors that contribute to foam generation have studied with Chevron Chaser SD1000 surfactant. Interfacial tension (IFT) measurements were performed using a spinning drop apparatus. The IFT of two surfactant samples of different concentrations were measured with dodecane and crude oil from the Huntington Beach Field as a function of temperature and time. Foam was used as an oil-displacing fluid. However, when displacing oil, foam was not any more effective than simultaneous brine and gas injection. A series of experiments was performed to study the conditions of foam generation in Berea sandstone cores. Results show that foam may be generated in sandstone at low flow velocities after extended incubation periods. The effect of pregenerating foam before injection into the sandstone was also studied. The pressure profiles in the core were monitored using three pressure taps along the length of the core. A systematic study of foaming with different fluid velocities and foam qualities provides extensive data for foam flow conditions. 134 refs., 57 figs., 2 tabs.

  14. Use of the decision quality process for strategic planning in the Duri Field, Indonesia

    SciTech Connect

    Neal, L. Jr.

    1994-12-31

    Strategic planning and rigorous decision analysis applications will be primary management tools for upstream companies in the 1990`s. Merging the long term focus of a strategic planning process with the probabilistic output of decision analysis techniques can yield insightful views of the potential successes and failures of a business plan. Even with these insights, comparing and deciding among a group of alternatives will remain a difficult task. In addition to uncertainties, business partners do not always share common value measures. Marketers want more barrels to sell, field supervisors like low operating cost strategies, and stockholders like cashflow. This environment complicates the managers` ability to choose between available options. The Decision Quality Process, a combination of classical decision analysis techniques coupled with Quality Improvement (QI) principles, bridges this gap. The process allows managers to develop and decide between different long term strategic plans, explicitly accounting for uncertainties, unknowns, and differing value measures. Three teams consisting of engineers, geologists, front line managers, and the highest levels of management within Caltex Pacific Indonesia, Texaco, and Chevron, spent 18 months developing and evaluating a multitude of development scenarios for the Duri Field. More than 200,000 cases of economics were run to support the evaluation. The result was a significant increase in expected value for the field regardless of the value measure used.

  15. Room and elevated temperature mechanical properties of PM TiAl alloy Ti-47Al-2Cr-2Nb

    SciTech Connect

    Liu, C.T.; Maziasz, P.J.; Schneibel, J.H.; Sikka, V.K.; Wright, J.; Walker, L.R. |; Clemens, D.R.; Nieh, T.G.

    1995-07-01

    A TiAl alloy powder with the composition Ti-47Al-2Cr-2Nb (at. %) was prepared by rotary atomization, followed by hot-extrusion and subsequent heat treatments to produce refined lamellar structures and fine duplex structures. The mechanical properties of the TiM alloy were determined at temperatures to 1000C in air, and the microstructures were characterized by TEM, SEM, and electron microprobe analyses. The alloy with the refined lamellar structure showed excellent mechanical properties at both room and elevated temperatures. It exhibited a plastic strain of 1.4% and a yield strength of 971 MPa (140.9 ksi) at room temperature. The yield strength remained approximately constant up to 800C and decreased to 577 MPa (83.7 ksi) at 1000C. The transverse fracture toughness, estimated by three-point bend testing of chevron-notched specimens at room temperature, was 22.4 MPa {radical}m. The refined lamellar structure contained long and straight alternating {alpha}{sub 2} and {gamma} platelets with an extremely fine interlamellar spacing (0.1 {mu}m) and {alpha}{sub 2}-to-{alpha}{sub 2} spacing (0.22 {mu}m). The mechanical properties of the alloy have been correlated with the unique microstructures developed by hot extrusion.

  16. CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES

    SciTech Connect

    Steve Holditch; Emrys Jones

    2003-01-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During the first six months of operation, the primary activities of the JIP were to conduct and plan Workshops, which were as follows: (1) Data Collection Workshop--March 2002 (2) Drilling, Coring and Core Analyses Workshop--May 2002 (3) Modeling, Measurement and Sensors Workshop--May 2002.

  17. CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES

    SciTech Connect

    Steve Holditch; Emrys Jones

    2003-01-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During April-September 2002, the JIP concentrated on: Reviewing the tasks and subtasks on the basis of the information generated during the three workshops held in March and May 2002; Writing Requests for Proposals (RFPs) and Cost, Time and Resource (CTRs) estimates to accomplish the tasks and subtasks; Reviewing proposals sent in by prospective contractors; Selecting four contractors; Selecting six sites for detailed review; and Talking to drill ship owners and operators about potential work with the JIP.

  18. Au-induced deep groove nanowire structure on the Ge(001) surface: DFT calculations

    NASA Astrophysics Data System (ADS)

    Tsay, Shiow-Fon

    2016-09-01

    The atomic geometry, stability, and electronic properties of self-organized Au induced nanowires on the Ge(001) surface are investigated based on the density-functional theory in GGA and the stoichiometry of Au. A giant Ge zigzag chain structure is suggested for 0.75 ML Au coverage, which displays c(8 × 2) deep groove zigzag nanowire structure simulated STM images. The top layer Ge and Au atomic disorder introduces the chevron units into the zigzag nanowire structure STM image as per the experimental observations. The zigzag Ge nanowire exhibits a semi-metallic characteristic, and the electric transport occurs in between the Ge zigzag nanowire and the subsurface. The system exhibits obvious electronic correlations among the Ge nanowire, the nano-facet Au trimers and the deeper layer Ge atoms, that play an important role in the electronic structure. At surface Brillouin zone boundaries, an anisotropic two-dimensional upward parabolic surface-state band is consistent with the ARPES spectra reported by Nakatsuji et al. [Phys. Rev. B 80, 081406(R) (2009); Phys. Rev. B 84, 115411 (2011)]; this electronic structure is different from the quasi-one-dimensional energy trough reported by Schäfer et al. [Phys. Rev. Lett. 101, 236802 (2008); Phys. Rev. B 83, 121411(R) (2011)].

  19. Synthesis, characterization, monolayer assembly and 2D lanthanide coordination of a linear terphenyl-di(propiolonitrile) linker on Ag(111)

    PubMed Central

    Chen, Zhi; Urgel, José I; Écija, David; Fuhr, Olaf; Auwärter, Willi

    2015-01-01

    Summary As a continuation of our work employing polyphenylene-dicarbonitrile molecules and in particular the terphenyl derivative 1 (TDCN), we have synthesized a novel ditopic terphenyl-4,4"-di(propiolonitrile) (2) linker for the self-assembly of organic monolayers and metal coordination at interfaces. The structure of the organic linker 2 was confirmed by single crystal X-ray diffraction analysis (XRD). On the densely packed Ag(111) surface, the terphenyl-4,4"-di(propiolonitrile) linkers self-assemble in a regular, molecular chevron arrangement exhibiting a Moiré pattern. After the exposure of the molecular monolayer to a beam of Gd atoms, the propiolonitrile groups get readily involved in metal–ligand coordination interactions. Distinct coordination motifs evolve with coordination numbers varying between three and six for the laterally-bound Gd centers. The linker molecules retain an overall flat adsorption geometry. However, only networks with restricted local order were obtained, in marked contrast to previously employed, simpler polyphenylene-dicarbonitrile 1 linkers. PMID:25821671

  20. Fracture Toughness of Advanced Structural Ceramics: Applying ASTM C1421

    DOE PAGESBeta

    Swab, Jeffrey J.; Tice, Jason; Wereszczak, Andrew A.; Kraft, Reuben H.

    2014-11-03

    The three methods of determining the quasi-static Mode I fracture toughness (KIc) (surface crack in flexure – SC, single-edge precracked beam – PB, and chevron notched beam – VB) found in ASTM C1421 were applied to a variety of advanced ceramic materials. All three methods produced valid and comparable KIc values for the Al2O3, SiC, Si3N4 and SiAlON ceramics examined. However, not all methods could successfully be applied to B4C, ZrO2 and WC ceramics due to a variety of material factors. The coarse-grained microstructure of one B4C hindered the ability to observe and measure the precracks generated in the SCmore » and PB methods while the transformation toughening in the ZrO2 prevented the formation of the SC and PB precracks and thus made it impossible to use either method on this ceramic. The high strength and elastic modulus of the WC made it impossible to achieve stable crack growth using the VB method because the specimen stored a tremendous amount of energy prior to fracture. Even though these methods have passed the rigors of the standardization process there are still some issues to be resolved when the methods are applied to certain classes of ceramics. We recommend that at least two of these methods be employed to determine the KIc, especially when a new or unfamiliar ceramic is being evaluated.« less

  1. Structural characteristic and origin of intra-continental fold belt in the eastern Sichuan basin, South China Block

    NASA Astrophysics Data System (ADS)

    Li, Chuanxin; He, Dengfa; Sun, Yanpeng; He, Jinyou; Jiang, Zaixing

    2015-11-01

    The fold-and-thrust belt in the eastern Sichuan basin is represented by a series of subparallel chevron anticlines. Under the orogenic tectonic setting within the South China Block in Meso-Cenozoic period and the influence of the multi-layer detachment fault, the deformation of the thrust belt exhibits remarkably layered and large-scale intracontinental thrusting structural characteristics. In this paper, we focus on the structural geometry and deformational mechanisms using the latest two-dimensional (2D) and three-dimensional (3D) seismic reflection data in combination with well and outcrop data. The multi-layer detachment faults, especially the upper gypsum-bearing detachment in the Middle Triassic Jialingjiang Formation and lower detachment with gypsum or shale in the Lower-Middle Cambrian system, directly control the deformational styles of the study area. Interpretation of seismic sections indicates that the fold-and-thrust belt has various deformational styles during folding, including fault-propagation fold, fault-bend fold, and detachment fold with box-fold or pop-up structural geometry. Regional location and structural boundaries play significant roles in controlling the deformational styles, and distinct differences exist among the different anticlines. The Huayingshan anticline located at the front of the thrust belt shows intense structural deformation with northwestward thrusting direction and a relatively weak opposite southeastward thrusting. In addition, the anticlines exhibit structural differences along strike and the fold-and-thrust belt in the northern segment is influenced by the North China Block.

  2. DAMAS Processing for a Phased Array Study in the NASA Langley Jet Noise Laboratory

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M.; Plassman, Gerald e.

    2010-01-01

    A jet noise measurement study was conducted using a phased microphone array system for a range of jet nozzle configurations and flow conditions. The test effort included convergent and convergent/divergent single flow nozzles, as well as conventional and chevron dual-flow core and fan configurations. Cold jets were tested with and without wind tunnel co-flow, whereas, hot jets were tested only with co-flow. The intent of the measurement effort was to allow evaluation of new phased array technologies for their ability to separate and quantify distributions of jet noise sources. In the present paper, the array post-processing method focused upon is DAMAS (Deconvolution Approach for the Mapping of Acoustic Sources) for the quantitative determination of spatial distributions of noise sources. Jet noise is highly complex with stationary and convecting noise sources, convecting flows that are the sources themselves, and shock-related and screech noise for supersonic flow. The analysis presented in this paper addresses some processing details with DAMAS, for the array positioned at 90 (normal) to the jet. The paper demonstrates the applicability of DAMAS and how it indicates when strong coherence is present. Also, a new approach to calibrating the array focus and position is introduced and demonstrated.

  3. Cooling of hot bubbles by surface texture during the boiling crisis

    NASA Astrophysics Data System (ADS)

    Dhillon, Navdeep; Buongiorno, Jacopo; Varanasi, Kripa

    2015-11-01

    We report the existence of maxima in critical heat flux (CHF) enhancement for pool boiling on textured hydrophilic surfaces and reveal the interaction mechanism between bubbles and surface texture that governs the boiling crisis phenomenon. Boiling is a process of fundamental importance in many engineering and industrial applications but the maximum heat flux that can be absorbed by the boiling liquid (or CHF) is limited by the boiling crisis. Enhancing the CHF of industrial boilers by surface texturing can lead to substantial energy savings and reduction in greenhouse gas emissions on a global scale. However, the fundamental mechanisms behind this enhancement are not well understood, with some previous studies indicating that CHF should increase monotonically with increasing texture density. However, using pool boiling experiments on a parametrically designed set of plain and nano-textured micropillar surfaces, we show that there is an optimum intermediate texture density that maximizes CHF and further that the length scale of this texture is of fundamental significance. Using imbibition experiments and high-speed optical and infrared imaging, we reveal the fundamental mechanisms governing the CHF enhancement maxima in boiling crisis. We acknowledge funding from the Chevron corporation.

  4. Unfolding Kinetics of β-Lactoglobulin Induced by Surfactant and Denaturant: A Stopped-Flow/Fluorescence Study

    PubMed Central

    Viseu, Maria Isabel; Melo, Eduardo P.; Carvalho, Teresa Isabel; Correia, Raquel F.; Costa, Sílvia M. B.

    2007-01-01

    The β→α transition of β-lactoglobulin, a globular protein abundant in the milk of several mammals, is investigated in this work. This transition, induced by the cationic surfactant dodecyltrimethylammonium chloride (DTAC), is accompanied by partial unfolding of the protein. In this work, unfolding of bovine β-lactoglobulin in DTAC is compared with its unfolding induced by the chemical denaturant guanidine hydrochloride (GnHCl). The final protein states attained in the two media have quite different secondary structure: in DTAC the α-helical content increases, leading to the so-called α-state; in GnHCl the amount of ordered secondary-structure decreases, resulting in a random coil-rich final state (denatured, or D, state). To obtain information on both mechanistic routes, in DTAC and GnHCl, and to characterize intermediates, the kinetics of unfolding were investigated in the two media. Equilibrium and kinetic data show the partial accumulation of an on-pathway intermediate in each unfolding route: in DTAC, an intermediate (I1) with mostly native secondary structure but loose tertiary structure appears between the native (β) and α-states; in GnHCl, another intermediate (I2) appears between states β and D. Kinetic rate constants follow a linear Chevron-plot representation in GnHCl, but show a more complex mechanism in DTAC, which acts like a stronger binding species. PMID:17693475

  5. Energy Saving Separations Technologies for the Petroleum Industry: An Industry-University-National Laboratory Research Partnership

    SciTech Connect

    Dorgan, John R.; Stewart, Frederick F.; Way, J. Douglas

    2003-03-28

    This project works to develop technologies capable of replacing traditional energy-intensive distillations so that a 20% improvement in energy efficiency can be realized. Consistent with the DOE sponsored report, Technology Roadmap for the Petroleum Industry, the approach undertaken is to develop and implement entirely new technology to replace existing energy intensive practices. The project directly addresses the top priority issue of developing membranes for hydrocarbon separations. The project is organized to rapidly and effectively advance the state-of-the-art in membranes for hydrocarbon separations. The project team includes ChevronTexaco and BP, major industrial petroleum refiners, who will lead the effort by providing matching resources and real world management perspective. Academic expertise in separation sciences and polymer materials found in the Chemical Engineering and Petroleum Refining Department of the Colorado School of Mines is used to invent, develop, and test new membrane materials. Additional expertise and special facilities available at the Idaho National Engineering and Environmental Laboratory (INEEL) are also exploited in order to effectively meet the goals of the project. The proposed project is truly unique in terms of the strength of the team it brings to bear on the development and commercialization of the proposed technologies.

  6. Evaluation of calcium magnesium acetate and road salt for contact hypersensitivity potential and dermal irritancy in humans.

    PubMed

    Cushman, J R; Duff, V A; Buteau, G H; Aust, L B; Caldwell, N; Lazer, W

    1991-04-01

    Calcium magnesium acetate (CMA) and road salt are both de-icing agents to which workers may be dermally exposed. A commercial formulation of CMA (Chevron Ice-B-Gon Deicer) and road salt were tested in a human repeat insult patch test to evaluate the contact hypersensitivity potential of these materials and to evaluate irritation following single or multiple applications. 72 of the initial 82 panelists completed the study. CMA and road salt (each at 10% and 30% w/w in distilled water; 0.3 ml) were administered under occlusive patches on the forearm for 14 h 3 x per week for 3 weeks. The panelists were challenged 2 weeks later; 2 panelists who had mild reactions were subsequently rechallenged 6 weeks later. Neither CMA nor road salt produced contact hypersensitivity in any panelists. Following the first application, moderate acute irritation was observed only at 1 skin site exposed to 30% road salt. Repeated exposure to CMA or road salt produced mild to moderate irritation. The highest incidence of moderate irritation was observed with 30% road salt. Thus, neither material is expected to cause significant dermal effects in exposed workers. CMA is expected to cause dermal irritation equivalent to or less than that caused by road salt.

  7. Denverton Creek gas field, Solano County, California

    SciTech Connect

    Lindblom, R.G.; Jacobson, J.B.

    1988-02-01

    The Denverton Creek gas field is located in Solano County, California, 40 mi northeast of San Francisco on the west side of the Sacramento Valley. The field was discovered in 1966 by the Mobil Oil Corporation Trojan Powder 1 well from a sand of Paleocene age within the Martinez channel. During 1967 and 1968, new pool discoveries were made in other Paleocene sands. Commercial gas deliveries began in March 1967 and ceased in 1971, and the field was abandoned in 1973 with a cumulative production of 712 million ft/sup 3/ of gas from three wells. Increases in natural gas prices during the middle and late 1970s, coupled with sound geological concepts supported by improved seismic data, led to a number of discoveries in the valley. Included in this effort was reestablishment of production at Denverton Creek in 1977 by new drilling. Chevron USA, in joint ventures with Cities Service and Channel Exploration, has drilled nine wells in the field, which developed two new pool discoveries. In 1986, the field produced 5 bcf of gas from 11 wells. Gas entrapment in the Denverton Creek field is caused by a number of anomalies, including sand pinch-out, faulting, and truncations by unconformities and the Martinez channel. Although these types of entrapping mechanisms are found in other fields in the Sacramento Valley, the Denverton Creekfield is unique in that all are present in one producing area.

  8. Late Eocene to early Oligocene quantitative paleotemperature record: evidence from continental halite fluid inclusions.

    PubMed

    Zhao, Yan-jun; Zhang, Hua; Liu, Cheng-lin; Liu, Bao-kun; Ma, Li-chun; Wang, Li-cheng

    2014-01-01

    Climate changes within Cenozoic extreme climate events such as the Paleocene-Eocene Thermal Maximum and the First Oligocene Glacial provide good opportunities to estimate the global climate trends in our present and future life. However, quantitative paleotemperatures data for Cenozoic climatic reconstruction are still lacking, hindering a better understanding of the past and future climate conditions. In this contribution, quantitative paleotemperatures were determined by fluid inclusion homogenization temperature (Th) data from continental halite of the first member of the Shahejie Formation (SF1; probably late Eocene to early Oligocene) in Bohai Bay Basin, North China. The primary textures of the SF1 halite typified by cumulate and chevron halite suggest halite deposited in a shallow saline water and halite Th can serve as an temperature proxy. In total, one-hundred-twenty-one Th data from primary and single-phase aqueous fluid inclusions with different depths were acquired by the cooling nucleation method. The results show that all Th range from 17.7°C to 50.7°C,with the maximum homogenization temperatures (ThMAX) of 50.5°C at the depth of 3028.04 m and 50.7°C at 3188.61 m, respectively. Both the ThMAX presented here are significantly higher than the highest temperature recorded in this region since 1954 and agree with global temperature models for the year 2100 predicted by the Intergovernmental Panel on Climate Change. PMID:25047483

  9. Late Eocene to early Oligocene quantitative paleotemperature record: evidence from continental halite fluid inclusions.

    PubMed

    Zhao, Yan-jun; Zhang, Hua; Liu, Cheng-lin; Liu, Bao-kun; Ma, Li-chun; Wang, Li-cheng

    2014-01-01

    Climate changes within Cenozoic extreme climate events such as the Paleocene-Eocene Thermal Maximum and the First Oligocene Glacial provide good opportunities to estimate the global climate trends in our present and future life. However, quantitative paleotemperatures data for Cenozoic climatic reconstruction are still lacking, hindering a better understanding of the past and future climate conditions. In this contribution, quantitative paleotemperatures were determined by fluid inclusion homogenization temperature (Th) data from continental halite of the first member of the Shahejie Formation (SF1; probably late Eocene to early Oligocene) in Bohai Bay Basin, North China. The primary textures of the SF1 halite typified by cumulate and chevron halite suggest halite deposited in a shallow saline water and halite Th can serve as an temperature proxy. In total, one-hundred-twenty-one Th data from primary and single-phase aqueous fluid inclusions with different depths were acquired by the cooling nucleation method. The results show that all Th range from 17.7°C to 50.7°C,with the maximum homogenization temperatures (ThMAX) of 50.5°C at the depth of 3028.04 m and 50.7°C at 3188.61 m, respectively. Both the ThMAX presented here are significantly higher than the highest temperature recorded in this region since 1954 and agree with global temperature models for the year 2100 predicted by the Intergovernmental Panel on Climate Change.

  10. Late Eocene to early Oligocene quantitative paleotemperature record: Evidence from continental halite fluid inclusions

    PubMed Central

    Zhao, Yan-jun; Zhang, Hua; Liu, Cheng-lin; Liu, Bao-kun; Ma, Li-chun; Wang, Li-cheng

    2014-01-01

    Climate changes within Cenozoic extreme climate events such as the Paleocene–Eocene Thermal Maximum and the First Oligocene Glacial provide good opportunities to estimate the global climate trends in our present and future life. However, quantitative paleotemperatures data for Cenozoic climatic reconstruction are still lacking, hindering a better understanding of the past and future climate conditions. In this contribution, quantitative paleotemperatures were determined by fluid inclusion homogenization temperature (Th) data from continental halite of the first member of the Shahejie Formation (SF1; probably late Eocene to early Oligocene) in Bohai Bay Basin, North China. The primary textures of the SF1 halite typified by cumulate and chevron halite suggest halite deposited in a shallow saline water and halite Th can serve as an temperature proxy. In total, one-hundred-twenty-one Th data from primary and single-phase aqueous fluid inclusions with different depths were acquired by the cooling nucleation method. The results show that all Th range from 17.7°C to 50.7°C,with the maximum homogenization temperatures (ThMAX) of 50.5°C at the depth of 3028.04 m and 50.7°C at 3188.61 m, respectively. Both the ThMAX presented here are significantly higher than the highest temperature recorded in this region since 1954and agree with global temperature models for the year 2100 predicted by the Intergovernmental Panel on Climate Change. PMID:25047483

  11. On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum

    NASA Astrophysics Data System (ADS)

    Cherne, F. J.; Hammerberg, J. E.; Andrews, M. J.; Karkhanis, V.; Ramaprabhu, P.

    2015-11-01

    Previous work employed Richtmyer-Meshkov theory to describe the development of spikes and bubbles from shocked sinusoidal surfaces. Here, we discuss the effects of machining different two-dimensional shaped grooves in copper and examine the resulting flow of the material after being shocked into liquid on release. For these simulations, a high performance molecular dynamics code, SPaSM, was used with machined grooves of kh0 = 1 and kh0 = 1/8, where 2h0 is the peak-to-valley height of the perturbation with wavelength λ, and k = 2π/λ. The surface morphologies studied include a Chevron, a Fly-Cut, a Square-Wave, and a Gaussian. We describe extensions to an existing ejecta source model that better captures the mass ejected from these surfaces. We also investigate the same profiles at length scales of order 1 cm for an idealized fluid equation of state using the FLASH continuum hydrodynamics code. Our findings indicate that the resulting mass can be scaled by the missing area of a sinusoidal curve with an effective wavelength, λeff, that has the same missing area. Our extended ejecta mass formula works well for all the shapes considered and captures the corresponding time evolution and total mass.

  12. Nozzle Thrust Optimization While Reducing Jet Noise

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.; Gilinsky, M. M.

    1995-01-01

    A Bluebell nozzle design concept is proposed for jet noise reduction with minimal thrust loss or even thrust augmentation. A Bluebell nozzle has a sinusoidal lip line edge (chevrons) and a sinusoidal cross section shape with linear amplitude increasing downstream in the divergent nozzle part (corrugations). The experimental tests of several Bluebell nozzle designs have shown nose reduction relative to a convergent-divergent round nozzle with design exhaust number M(e) = 1.5. The best design provides an acoustic benefit near 4dB with about 1 percent thrust augmentation. For subsonic flow ((M(e)= 0.6)), the tests indicated that the present method for design of Bluebell nozzles gives less acoustic benefit and in most cases jet noise increased. The proposed designs incorporate analytical theory and 2D and 3D numerical simulations. Full Navier-Stokes and Euler solvers were utilized. Boundary layer effects were used. Several different designs were accounted for in the Euler applications.

  13. Inelastic behavior of cold-formed braced walls under monotonic and cyclic loading

    NASA Astrophysics Data System (ADS)

    Gerami, Mohsen; Lotfi, Mohsen; Nejat, Roya

    2015-06-01

    The ever-increasing need for housing generated the search for new and innovative building methods to increase speed and efficiency and enhance quality. One method is the use of light thin steel profiles as load-bearing elements having different solutions for interior and exterior cladding. Due to the increase in CFS construction in low-rise residential structures in the modern construction industry, there is an increased demand for performance inelastic analysis of CFS walls. In this study, the nonlinear behavior of cold-formed steel frames with various bracing arrangements including cross, chevron and k-shape straps was evaluated under cyclic and monotonic loading and using nonlinear finite element analysis methods. In total, 68 frames with different bracing arrangements and different ratios of dimensions were studied. Also, seismic parameters including resistance reduction factor, ductility and force reduction factor due to ductility were evaluated for all samples. On the other hand, the seismic response modification factor was calculated for these systems. It was concluded that the highest response modification factor would be obtained for walls with bilateral cross bracing systems with a value of 3.14. In all samples, on increasing the distance of straps from each other, shear strength increased and shear strength of the wall with bilateral bracing system was 60 % greater than that with lateral bracing system.

  14. Evaluating the displacement amplification factors of concentrically braced steel frames

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Mussa; Zaree, Mahdi

    2013-12-01

    According to seismic design codes, nonlinear performance of structures is considered during strong earthquakes. Seismic design provisions estimate the maximum roof and story drifts occurring during major earthquakes by amplifying the drifts computed from elastic analysis at the prescribed seismic force level with a displacement amplification factor. The present study tries to evaluate the displacement amplification factors of conventional concentric braced frames (CBFs) and buckling restrained braced frames (BRBFs). As such, static nonlinear (pushover) analysis and nonlinear dynamic time history analysis have been performed on the model buildings with single and double bracing bays, and different stories and brace configurations (chevron V, invert V, and X bracing). It is observed that the displacement amplification factors for BRBFs are higher than that of CBFs. Also, the number of bracing bays and height of buildings have a profound effect on the displacement amplification factors. The evaluated ratios between displacement amplification factors and response modification factors are from 1 to 1.12 for CBFs and from 1 to 1.4 for BRBFs.

  15. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect

    Unknown

    2003-01-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

  16. EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect

    John W. Rich

    2001-03-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co--product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases: Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's third quarterly technical progress report. It covers the period performance from October 1, 2001 through December 31, 2001.

  17. The effects of spot treatments on performance in a driving simulator under sober and alcohol-dosed conditions.

    PubMed

    Gawron, V J; Ranney, T A

    1990-06-01

    Accident studies have identified nighttime conditions on rural roads as particular problems for alcohol-impaired drivers. Uneventful driving is hypothesized to result in progressive degradation of tracking performance and a reduced ability to handle the demands of hazardous locations, such as curves. To address these problems, four spot treatments (i.e. herringbone road marking, flashing beacon, chevron, and post delineator) were evaluated in a driving simulator. Twelve subjects drove a simulator under two conditions of task demand (with and without obstacles) and three levels of blood alcohol concentration (BAC): .00%, .07%, and .12%. The purpose of the study was to determine whether providing enhanced visual information about hazardous areas would improve the performance of subjects when sober or alcohol-dosed. Driver performance measures included speed, lateral position, and lateral acceleration on the approach and negotiation of horizontal curves of varying length and curvature. The results indicate that spot treatment effects were primarily curve-specific rather than uniform across curves. The effectiveness of spot treatments as alcohol countermeasures is discussed.

  18. Application of polyimide actuator rod seals

    NASA Technical Reports Server (NTRS)

    Watermann, A. W.; Gay, B. F.; Robinson, E. D.; Srinath, S. K.; Nelson, W. G.

    1972-01-01

    Development of polyimide two-stage hydraulic actuator rod seals for application in high-performance aircraft was accomplished. The significant portion of the effort was concentrated on optimization of the chevron and K-section second-stage seal geometries to satisfy the requirements for operation at 450 K (350 F) with dynamic pressure loads varying between 200 psig steady-state and 1500 psig impulse cycling. Particular significance was placed on reducing seal gland dimension by efficiently utilizing the fatigue allowables of polyimide materials. Other objectives included investigation of pressure balancing techniques for first-stage polyimide rod seals for 4000 psig 450 K(350 F) environment and fabrication of a modular retainer for the two-stage combination. Seals were fabricated in 0.0254 m (1.0in.) and 0.0635 m (2.5in.) sizes and tested for structural integrity, frictional resistance, and endurance life. Test results showed that carefully designed second stages using polyimides could be made to satisfy the dynamic return pressure requirements of applications in high-performance aircraft. High wear under full system pressure indicated that further research is necessary to obtain an acceptable first-stage design. The modular retainer was successfully tested and showed potential for new actuator applications.

  19. Repainting of the VAB continues

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The worker on the lower left applies the red paint to the chevron while the worker on the right fills in the blue field to the NASA logo they are painting on the Vehicle Assembly Building (VAB). When finished, the logo, also known as the 'meatball,' will measure 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls. In addition to the logo, the American flag is being repainted on the other side of the VAB. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid-September.

  20. Recent Progress in Engine Noise Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Huff, Dennis; Gliebe, Philip

    2003-01-01

    Highlights from NASA-funded research over the past ten years for aircraft engine noise reduction are presented showing overall technical plans, accomplishments, and selected applications to turbofan engines. The work was sponsored by NASA's Advanced Subsonic Technology (AST) Noise Reduction Program. Emphasis is given to only the engine noise reduction research and significant accomplishments that were investigated at Technology Readiness Levels ranging from 4 to 6. The Engine Noise Reduction sub-element was divided into four work areas: source noise prediction, model scale tests, engine validation, and active noise control. Highlights from each area include technologies for higher bypass ratio turbofans, scarf inlets, forward-swept fans, swept and leaned stators, chevron/tabbed nozzles, advanced noise prediction analyses, and active noise control for fans. Finally, an industry perspective is given from General Electric Aircraft Engines showing how these technologies are being applied to commercial products. This publication contains only presentation vu-graphs from an invited lecture given at the 41st AIAA Aerospace Sciences Meeting, January 6-9, 2003.

  1. Ichnology of an upper carboniferous fluvio-estuarine paleovalley: The tonganoxie sandstone, buildex quarry, eastern Kansas, USA

    USGS Publications Warehouse

    Buatois, L.A.; Mangano, M.G.; Maples, C.G.; Lanier, Wendy E.

    1998-01-01

    Tidal rhythmites of the Tonganoxie Sandstone Member (Stranger Formation, Douglas Group) at Buildex Quarry, eastern Kansas, contain a relatively diverse ichnofauna. The assemblage includes arthropod locomotion (Dendroidichnites irregulare, Diplichnites gouldi type A and B, Diplopodichnus biformis, Kouphichnium isp., Mirandaichnium famatinense, and Stiaria intermedia), resting (Tonganoxichnus buildexensis) and feeding traces (Stiallia pilosa, Tonganoxichnus ottawensis); grazing traces (Gordia indianaensis, Helminthoidichnites tenuis, Helminthopsis hieroglyphica); feeding structures (Circulichnis montanus, Treptichnus bifurcus, Treptichnus pollardi, irregular networks), fish traces (Undichna britannica, Undichna simplicitas), tetrapod trackways, and root traces. The taxonomy of some of these ichnotaxa is briefly reviewed and emended diagnoses for Gordia indianaensis and Helminthoidichnites tenuis are proposed. Additionally, the combined name Dendroidichnites irregulare is proposed for nested chevron trackways. Traces previously regarded as produced by isopods are reinterpreted as myriapod trackways (D. gouldi type B). Trackways formerly interpreted as limulid crawling and swimming traces are assigned herein to Kouphichnium isp and Dendroidichnites irregulare, respectively. Taphonomic analysis suggests that most grazing and feeding traces were formed before the arthropod trackways and resting traces. Grazing/feeding traces were formed in a soft, probably submerged substrate. Conversely, the majority of trackways and resting traces probably were produced subaerially in a firmer, dewatered and desiccated sediment. The Buildex Quarry ichnofauna records the activity of a terrestrial and freshwater biota. The presence of this assemblage in tidal rhythmites is consistent with deposition on tidal flats in the most proximal zone of the inner estuary, between the maximum landward limit of tidal currents and the salinity limit further towards the sea.

  2. Exploration and production in Papua New Guinea

    SciTech Connect

    Wulff, K.; Hobson, D. )

    1996-01-01

    The prospectivity of the Papuan Basin has been appreciated, since oil seeps were first discovered in 1911. Initially, the mountainous terrain, a deeply karstified limestone surface covered with tropical rainforest, fed by 300 inches of rain each year, restricted access to the adventurous. Early exploration was focussed along the coastline and river systems, with only limited success. The development of helicopter transportable rigs during the 1970s was the technological advance that led to success, as the crests of anticlines became accessible to the drill. Even so, the lack of seismic due to severe terrain conditions and structural complexity, still constrains our ability to image trap. Despite these limitations, the oil discovery at Lagifu-2 in 1986, led to the development of the Kutubu Field by a Chevron led joint venture, with first oil in 1992. The Kutubu Field was developed at a cost of US$ 1 billion. Reserves are in excess of 250 mmbo with production currently at 1,00,000 bopd. PNG's second oil development will be the Gobe / SE Gobe Fields, also in the Papuan Thrust Belt, and thought to contain around 100 mmbo. Discovered in the late 1980s, the field is expected to produce 25 000 bopd from 1997. Significant volumes of gas have been discovered in the Highlands at Hides, where 3 wells have now confirmed a gas column in excess of 1 km. Additional large gas discoveries have been made in the Papuan Basin, highlighting the potential for PNG to become a long term LNG s producer.

  3. Stimulation Technologies for Deep Well Completions

    SciTech Connect

    2004-03-31

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a study to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. An assessment of historical deep gas well drilling activity and forecast of future trends was completed during the first six months of the project; this segment of the project was covered in Technical Progress Report No. 1. During the next six months, efforts were primarily split between summarizing rock mechanics and fracture growth in deep reservoirs and contacting operators about case studies of deep gas well stimulation as documented in Technical Progress Report No. 2. This report details work done with Anadarko and ChevronTexaco in the Table Rock Field in Wyoming.

  4. Removal of heteroatoms and metals from heavy oils by bioconversion processes

    SciTech Connect

    Kaufman, E.N.

    1996-06-01

    Biocatalysts, either appropriate microorganisms or isolated enzymes, will be used in an aqueous phase in contact with the heavy oil phase to extract heteroatoms such as sulfur from the oil phase by bioconversion processes. Somewhat similar work on coal processing will be adapted and extended for this application. Bacteria such as Desulfovibrio desulfuricans will be studied for the reductive removal of organically-bound sulfur and bacteria such as Rhodococcus rhodochrum will be investigated for the oxidative removal of sulfur. Isolated bacteria from either oil field co-produced sour water or from soil contaminated by oil spills will also be tested. At a later time, bacteria that interact with organic nitrogen may also be studied. This type of interaction will be carried out in advanced bioreactor systems where organic and aqueous phases are contacted. One new concept of emulsion-phase contacting, which will be investigated, disperses the aqueous phase in the organic phase and is then recoalesced for removal of the contaminants and recycled back to the reactor. This program is a cooperative research and development program with the following companies: Baker Performance Chemicals, Chevron, Energy BioSystems, Exxon, Texaco, and UNOCAL. After verification of the bioprocessing concepts on a laboratory-scale, the end-product will be a demonstration of the technology at an industrial site. This should result in rapid transfer of the technology to industry.

  5. A new species of bent-toed gecko, genus Cyrtodactylus Gray, 1827 (Reptilia: Squamata: Gekkonidae), from Jawa Timur Province, Java, Indonesia, with taxonomic remarks on C. fumosus (Müller, 1895).

    PubMed

    Hartmann, Lukas; Mecke, Sven; Kieckbusch, Max; Mader, Felix; Kaiser, Hinrich

    2016-01-26

    A new species of the gekkonid lizard genus Cyrtodactylus Gray, 1827 is described from Klakah, Lumajang Regency, Jawa Timur Province, Java, Indonesia. Cyrtodactylus klakahensis sp. nov. can be distinguished from all other congeners by the presence of (1) a deep precloacal groove in males, (2) three rows of enlarged precloacofemoral scales, of which the third row bears 37-38 pores in males, (3) three or four rows of enlarged scales between the precloacofemoral scale rows and the cloaca, forming distinct chevrons, (4) raised and strongly keeled dorsal tubercles in 15-19 rows at midbody, (5) an indistinct lateral fold, (6) 17-20 subdigital lamellae under the 4th toe, and (7) subcaudal scales which are not transversely enlarged. Cyrtodactylus klakahensis sp. nov. is only the third bent-toed gecko species described from Java, indicating that the diversity of this genus on this island has been neglected in the past. Furthermore, we confirm that C. fumosus (Müller, 1895) is a species that possesses a precloacal groove in males and is most likely restricted to northern Sulawesi. That species is defined by a single female holotype (NMB-REPT 2662). Specimens in museum collections catalogued as C. fumosus from localities elsewhere are misidentified and likely represent undescribed species.

  6. Re Effects on Phase Stability and Mechanical Properties of MoSS+Mo3Si+Mo5SiB2 alloys

    SciTech Connect

    Yang, Ying; Bei, Hongbin; George, Easo P; Tiley, Jaimie

    2013-01-01

    Because of their high melting points and good oxidation resistance Mo-Si-B alloys are of interest as potential ultrahigh-temperature structural materials. But their major drawbacks are poor ductility and fracture toughness at room temperature. Since alloying with Re has been suggested as a possible solution, we investigate here the effects of Re additions on the microstructure and mechanical properties of a ternary alloy with the composition Mo-12.5Si-8.5B (at.%). This alloy has a three-phase microstructure consisting of Mo solid-solution (MoSS), Mo3Si, and Mo5SiB2 and our results show that up to 8.4 at.% Re can be added to it without changing its microstructure or forming any brittle phase at 1600 C. Three-point bend tests using chevron-notched specimens showed that Re did not improve fracture toughness of the three-phase alloy. Nanoindentation performed on the MoSS phase in the three-phase alloy showed that Re increases Young s modulus, but does not lower hardness as in some Mo solid solution alloys. Based on our thermodynamic calculations and microstructural analyses, the lack of a Re softening effect is attributed to the increased Si levels in the Re-containing MoSS phase since Si is known to increase its hardness. This lack of softening is possibly why there is no Re-induced improvement in fracture toughness.

  7. Petrography of gypsum-bearing facies of the Codó Formation (Late Aptian), Northern Brazil.

    PubMed

    Paz, Jackson D S; Rossetti, Dilce F

    2006-09-01

    An original and detailed study focusing the petrography of evaporites from the Late Aptian deposits exposed in the eastern and southern São Luís-Grajaú Basin is presented herein, with the attempt of distinguishing between primary and secondary evaporites, and reconstructing their post-depositional evolution. Seven evaporites phases were recognized: 1. chevron gypsum; 2. nodular to lensoidal gypsum or anhydrite; 3. fibrous to acicular gypsum; 4. mosaic gypsum; 5. brecciated gypsum or gypsarenite; 6. pseudo-nodular anhydrite or gypsum; and 7. rosettes of gypsum. The three first phases of gypsum display petrographic characteristics that conform to a primary nature. The fibrous to acicular and mosaic gypsum were formed by replacement of primary gypsum, but their origin took place during the eodiagenesis, still under influence of the depositional setting. These gypsum morphologies are closely related to the laminated evaporites, serving to demonstrate that their formation was related to replacements that did not affect the primary sedimentary structures. The pseudo-nodular anhydrite or gypsum seems to have originated by mobilization of sulfate-rich fluids during burial, probably related to halokinesis. The rosettes of gypsum, which intercept all the other gypsum varieties, represent the latest phase of evaporite formation in the study area, resulting from either intrastratal waters or surface waters during weathering. PMID:16936943

  8. Upper Pleistocene-to-Holocene depositional sequences in the north-central Gulf of Mexico

    SciTech Connect

    Bowland, C. ); Wood, L.J. )

    1991-03-01

    Upper Quaternary depositional sequences and their systems tracts can be delineated in the Main Pass area using minisparker seismic data. Core collected by the Gulf of Mexico Outer Shelf/Slope Research Consortium (Amoco, ARCO, BP, Chevron, Elf-Aquitaine, Exxon, Marathon, Mobil, and Texaco) sampled these systems tracts on one site in Main Pass 303. At the shelfbreak, a distinct change in depositional style occurs across the latest Wisconsinan sequence boundary. Widespread progradational systems (late highstand systems tract) below become focused into discrete depocenters with predominantly aggradational deposits (lowstand systems tract) above. Focusing was probably a result of localized high subsidence rates due to salt movement, progradation into rapidly deepening water, and, possibly, stabilization of sediment transport paths on the exposed shelf. No age-equivalent submarine canyons are present in this area. The oldest mappable systems tract is a highstand systems tract deposited during stage 3 interstadial and the early-to-middle stage 2 glacial. The overlying transgressive systems tract was deposited coeval with the stage 2-stage 1 transition. It thins in a land-ward direction, except where an updip depocenter was present. At the corehole site, the transgressive systems tract consists of fining-upward deposits ranging from medium-grained sands to clays. The transgressive systems tract includes small slope-front-fill lenses deposited on the uppermost slope above and adjacent to lowstand deltaic depocenters. These lenses likely comprise silt and clay derived from either reworking of lowstand deltas or sediment bypassing the outer shelf.

  9. Brine inclusions in halite and the origin of the Middle Devonian Prairie evaporites of Western Canada

    SciTech Connect

    Horita, J.; Weinberg, A.; Das, N.; Holland, H.D.

    1996-09-01

    Brines were extracted from fluid inclusions in Lower Salt halite of the Middle Devonian Prairie Formation in Saskatchewan, Canada. The brines were analyzed by ion chromatography and were found to be of the Na-K-Mg-Ca-Cl type. They do not fall along a simple evaporation trend. Brines from clear, diagenetic halite are significantly lower in Na{sup +} and higher in Mg{sup 2+}, and Cl{sup {minus}} than brines from cloudy, subaqueously formed halite with chevron structures. The isotopic composition of strontium and sulfur in anhydrite associated with the halites was found to be the same as that of Middle Devonian seawater. The composition of the inclusion brines can be derived from that of modern seawater by evaporation, extensive dolomitization of limestone, and albitization of clay minerals. Other evolution paths are, however, also feasible, and it is impossible to rule out effects due to the addition of nonmarine waters (hydrothermal solutions, surface runoff, and groundwater), or dissolutional recycling of existing evaporites within the Prairie evaporite basin. These analyses and published data on brine inclusions in halite from a number of Phanerozoid evaporite deposits show that the Na-K-Mg-Ca-Cl type brine is more common than the Na-K-Mg-Cl-SO{sub 4} type, which is expected from evaporation of modern seawater.

  10. Evaluation of emulsified asphalt for use in Saudi Arabia

    SciTech Connect

    Al-Abdulwahhab, H.I.

    1985-01-01

    Saudi Arabia currently contains 31,000 km (18,600 mi) of paved roads and 42,000 km (25,200 mi) of agricultural roads, with the prospect of more roads to be constructed. The low population (6 million) compared to the large area of the country (2,253,300 kmS, 900,000 miS) coupled with the high cost of crushed aggregate makes maintenance and road building costs very high. Local emulsified-asphalt economics, plants, and uses were investigated in this study. Emulsified asphalt proved to be attractive when used for local road maintenance and road bases and low-volume road construction, especially when used with dune sand and marl. Emulsified asphalts were evaluated for use with dune sand and marl and at two portland cement contents. Three types of emulsified asphalts were used which included locally produced, laboratory prepared, and Chevron USA emulsions. Emulsion treated mixes were tested for tensile strength, Poisson's ratio, resilient modulus, fatigue life, and rutting characteristics. Both diametral and beam fatigue tests were used and tests were conducted at 10, 25, 40, and 55C (50, 77, 104, and 131F). The open-graded mix was tested for fatigue characteristics using beam flexure with a confining membrane.

  11. Effect of surface micro-texture on bubble dynamics and boiling critical heat flux

    NASA Astrophysics Data System (ADS)

    Dhillon, Navdeep; Buongiorno, Jacopo; Varanasi, Kripa

    2014-11-01

    We present results of an experimental study on the effect of surface texture on the dynamics of bubble growth and departure in pool boiling of water and correlate them to the measured values of critical heat flux (CHF) on these surfaces. Although it is well known that surface roughness or micro-texture has a significant impact on macroscale boiling parameters such as boiling heat transfer coefficient (HTC) and CHF, the physics underlying these processes is not well understood. Using high speed optical and infrared (IR) imaging, we explored the mechanism of single bubble growth and departure on micro-textured surfaces fabricated using photolithography techniques. Interestingly, we observed that the introduction of the micro-texture not only completely changed bubble dynamics and boiling surface thermal characteristics but there was a clear correlation between the micro-texture parameters and the salient bubble characteristics such as the departure diameter and frequency. To explain these results, we propose a physical model based on micro-texture-induced surface microflows supplementing the conventional bubble growth and departure theory based on buoyancy and capillary pinning forces, and verify it using CHF measurements. Funding for this project is provided by Chevron Corp.

  12. Surface wetting and bubble dynamics of dielectric fluids boiling in high electric fields

    NASA Astrophysics Data System (ADS)

    Dhillon, Navdeep; Love, Christopher; Mahmoudi, Seyed Reza; Varanasi, Kripa

    2014-11-01

    We present results of an experimental study on the effect of high electric fields on the nature of bubble formation and departure in nucleate pool boiling of dielectric fluids. Despite some past studies looking at the application of electric fields to enhance boiling performance, the exact mechanism of interaction of these fields with the fluid/surface is not well understood. In this study, we employed high-speed optical and infrared (IR) imaging to observe changes in wetting behavior of the fluid on the solid surface and the mode of bubble formation and departure under applied electric fields. The experimental results point towards a liquid film stabilization effect of the applied electric field on the boiling surface. Both the bubble departure size and surface dry spot dynamics is visibly altered under the effect of the electric field. These effects can be attributed to the development of surface charges on the bubble microlayer adjacent to the liquid-vapor contact line, which affect the liquid receding and surface rewetting mechanisms. Funding for this project is provided by Chevron Corp.

  13. A new design of ion storage accelerator for time-of-flight-MS

    SciTech Connect

    Kraft, A.; Wollnik, H.; Laiko, V.; Dodonov, A.F.

    1995-12-31

    A new Time-of-Flight MS for orthogonal extraction has been constructed. It consists of a API-source, the orthogonal extraction optic and a single stage reflectron as well as a detector with two MCP`s in Chevron-arrangement. The extraction optic has a new design in respect to the prevention of disturbing fields. Such fields take influence on the primary beam during accumulation made and causes noise as well as broadening of mass peaks. This fields arises from the penetration of field through the grid between the two stages of the extraction optic. In this construction, this penetration is compensated by the introduction of an additional electrode which is held at the average virtual potential of the separation grid. By adjusting all electrical parameters of the mass spectrometer (extraction-pulser, backplane of reflector, focussing optics) the peakwidth had been optimized. It has been shown the peakwidth strongly depends on the potential of the compensation electrode. The optimal value corresponds in good agreement with the calculated value (1.7V instead of 1.56V). In the case of Gramicidin S (m=1140) a resolving power of 2000 is achieved.

  14. Petrography of gypsum-bearing facies of the Codó Formation (Late Aptian), Northern Brazil.

    PubMed

    Paz, Jackson D S; Rossetti, Dilce F

    2006-09-01

    An original and detailed study focusing the petrography of evaporites from the Late Aptian deposits exposed in the eastern and southern São Luís-Grajaú Basin is presented herein, with the attempt of distinguishing between primary and secondary evaporites, and reconstructing their post-depositional evolution. Seven evaporites phases were recognized: 1. chevron gypsum; 2. nodular to lensoidal gypsum or anhydrite; 3. fibrous to acicular gypsum; 4. mosaic gypsum; 5. brecciated gypsum or gypsarenite; 6. pseudo-nodular anhydrite or gypsum; and 7. rosettes of gypsum. The three first phases of gypsum display petrographic characteristics that conform to a primary nature. The fibrous to acicular and mosaic gypsum were formed by replacement of primary gypsum, but their origin took place during the eodiagenesis, still under influence of the depositional setting. These gypsum morphologies are closely related to the laminated evaporites, serving to demonstrate that their formation was related to replacements that did not affect the primary sedimentary structures. The pseudo-nodular anhydrite or gypsum seems to have originated by mobilization of sulfate-rich fluids during burial, probably related to halokinesis. The rosettes of gypsum, which intercept all the other gypsum varieties, represent the latest phase of evaporite formation in the study area, resulting from either intrastratal waters or surface waters during weathering.

  15. Mines in the Four Corners anticipate growth

    SciTech Connect

    Buchsbaum, L.

    2008-02-15

    Productive mines in the southwest deplete reserves, while the government drags its heels on new power projects. Production in Arizona and New Mexico has fallen 18% over the last four years to 34.1 million tons. With Chevron Mining's McKinley mine rapidly depleting its reserves the industry will continue to contract. In the last three years at least three large mines in the Four Corners have terminated operations. Three others remain captive operations: BHP Billiton's San Juan Underground and Navajo Surface operations and Peabody Energy's Kayenta surface mine. In 2006 the Black Mesa mine stopped producing coal. These four mines are isolated from the national railways. Peabody's new El Segundo surface mine near Grants, NM is increasing production. If the planned $3 billion Desert Rock coal-fired power plant is built this will present a new market for the Navajo mine. The article gives details about the state of the aforementioned mines and of the new King II coal mine on the northern periphery of the San Juan basin and discusses the state of plans for the Desert Rock Energy Project. 5 photos.

  16. Jet Noise Modeling for Supersonic Business Jet Application

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2004-01-01

    This document describes the development of an improved predictive model for coannular jet noise, including noise suppression modifications applicable to small supersonic-cruise aircraft such as the Supersonic Business Jet (SBJ), for NASA Langley Research Center (LaRC). For such aircraft a wide range of propulsion and integration options are under consideration. Thus there is a need for very versatile design tools, including a noise prediction model. The approach used is similar to that used with great success by the Modern Technologies Corporation (MTC) in developing a noise prediction model for two-dimensional mixer ejector (2DME) nozzles under the High Speed Research Program and in developing a more recent model for coannular nozzles over a wide range of conditions. If highly suppressed configurations are ultimately required, the 2DME model is expected to provide reasonable prediction for these smaller scales, although this has not been demonstrated. It is considered likely that more modest suppression approaches, such as dual stream nozzles featuring chevron or chute suppressors, perhaps in conjunction with inverted velocity profiles (IVP), will be sufficient for the SBJ.

  17. Variability of formulas to assess insulin sensitivity and their association with the Matsuda index.

    PubMed

    Henríquez, Sandra; Jara, Natalia; Bunout, Daniel; Hirsch, Sandra; de la Maza, María Pía; Leiva, Laura; Barrera, Gladys

    2013-01-01

    Objetivo: Evaluar la variabilidad individual de los índices HOMA y QUICKI para resistencia a insulina, utilizando tres muestras de sangre en ayunas obtenidas en un período de 30 minutos. Material y métodos: Se utilizaron datos provenientes de 80 participantes de 41.5 ± 15 años de edad (26 mujeres) a quienes se les efectuó una prueba de tolerancia a glucosa oral para calcular el índice de Matsuda. A cada participante se le tomaron tres muestras de sangre en ayunas en un período de 30 minutos y cuatro muestras a los 30, 60, 90 y 120 minutos después de una carga oral de 75 g de glucosa. En cada muestra se midieron los niveles de insulina y glucosa. Los índices HOMA y QUICKI se calcularon utilizando las nueve combinaciones posibles con las tres muestras obtenidas en ayunas. El índice de Matsuda se calculó utilizando todas las muestras. Resultados: Las medianas de los índices HOMA-IR, HOMA-?, QUICKI y Matsuda fueron 1,9, 117,9, 0,35 and 3,71 unidades arbitrarias, respectivamente. Los coeficientes de variación individual del HOMA-IR, HOMA-??y QUICKI fueron 11,8 (7,8-18,9), 15 (10,2-22,9) and 1,8 (8,8-21,9) %, respectivamente. Comparados con el índice de Matsuda, los valores de R2 para el HOMA-IR, HOMA-??y QUICKI fueron 0,46, 0,2 y 0,71, respectivamente. Conclusiones: De los índices que utilizan muestras en ayunas para determinar resistencia a insulina, el QUICKI es el que tiene el menor coeficiente de variación y la mejor correlación con el índice de Matsuda.

  18. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Ming He; Charles H. Schrader; Lalit Shah; Donald Todd; Robert Schavey

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to its detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES) (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR). The work was under cooperative agreements with the U.S. Department of Energy (DOE). TES is providing the gasification technology and the Fischer-Tropsch (F-T) technology developed by Rentech Inc., GE is providing the combustion turbine technology, Praxair is providing the air separation technology, and KBR is providing overall engineering. Each of the EECP's subsystems was assessed for technical risks and barriers in Phase I. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP concept, Phase II RD&T included tests for

  19. High Field Strength Elements Reflect Segmentation of the Central American Volcanic Front

    NASA Astrophysics Data System (ADS)

    Bolge, L. L.; Carr, M. J.; Feigenson, M. D.; Lindsay, F. N.; Milidakis, K.

    2006-12-01

    relative to Zr. Although the Zr/Nb sawtooth pattern does mimic the slab depth profile of the arc, there are differences in the relative magnitude of the geochemical signal. Nicaragua shows higher Zr/Nb values than the slab depth would indicate while Costa Rica shows lower than expected Zr/Nb values. Both Nb and, to a lesser extent, Zr display a negative anomaly on spider diagrams normalized to N-MORB. These depletions have a regional pattern best seen using Nb*/Nb and Zr*/Zr. These ratios show the classic Central American chevron pattern displayed by the slab proxy ratios, Ba/La and U/Th. Since both the Nb and Zr depletions are heavily influenced by slab input, it is not surprising that the Zr/Nb ratio is influenced by the subducting slab. Therefore, the regional variation in Zr/Nb results from both the variations in slab depth, providing a sawtooth, and variations in the amount of slab signal providing a longer wavelength chevron.

  20. Fotometría de imágenes CCD insuficientemente muestreadas

    NASA Astrophysics Data System (ADS)

    Ostrov, P. G.

    Se enfrenta el problema de la fotometría de imágenes CCD con una escala inadecuada (fwhm menor o igual que el tamaño de un pixel) y psf fuertemente variable con la posición. Se analiza, en particular, la aplicabilidad de una táctica propuesta por Massey, consistente en eliminar las vecinas débiles (utilizando una psf rudimentaria) para luego efectuar una fotometría de apertura sobre las estrellas brillantes. Se determina, mediante experimentos numéricos, la precisión alcanzada mediante esta técnica.

  1. Gas ionizado alrededor de la estrella WR AB7 en la Nube Menor de Magallanes

    NASA Astrophysics Data System (ADS)

    Giménez Benitez, S.; Niemela, V. S.

    En base a observaciones espectroscópicas en el rango óptico, obtenidas en el CASLEO, se estudian las condiciones físicas de la región HII N76 alrededor de la estrella AB7, en la Nube Menor de Magallanes. En esta región se observa la línea nebular de HeII 4686 Å. Utilizando líneas nebulares de diagnóstico, se derivan los valores de la densidad y la temperatura electrónica, así como también las abundancias de los elementos químicos nebulares.

  2. Búsqueda de variables en Trumpler 14

    NASA Astrophysics Data System (ADS)

    Giorgi, E.; Baume, G. L.; Vázquez, R. A.

    Se presentan resultados preliminares de una búsqueda de variables en el campo del cúmulo abierto Trumpler 14 iniciada durante 1996 con un CCD de 512x512 y continuada en 1997 con uno de 1024x1024, utilizando en ambos casos el telescopio de 60 cm del Toronto Southern Observatory. Las estrellas de comparación pertenecen al mismo cúmulo y han sido elegidas dentro del intervalo de magnitudes y colores de aquellas a las cuales se les analiza la posible variabilidad.

  3. Integrated approach towards the application of horizontal wells to improve waterflooding performance. Annual progress report, January 1, 1996--December 31, 1996

    SciTech Connect

    Kelkar, M.; Liner, C.; Kerr, D.

    1997-01-01

    This annual report describes the progress during the fourth year of the project on {open_quotes}Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance{close_quotes}. The project involves using an integrated approach to characterize the reservoir followed by proposing an appropriate reservoir management strategy to improve the field performance. In the first stage of the project, the type of data we integrated include cross borehole seismic surveys, geological interpretation based on the logs and the cores, and the engineering information. In contrast, during the second stage of the project, we intend to use only conventional data to construct the reservoir description. This report covers the results of the implementation from the first stage of the project. It also discusses the work accomplished so far for the second stage of the project. The production from the Self Unit (location of Stage 1) has sustained an increase of 30 bbls/day over a year with an additional increase anticipated with further implementation. We have collected available core, log and production data from Section 16 in the Berryhill Glenn Unit and have finished the geological description. Based on the geological description and the associated petrophysical properties, we have developed a new indexing procedure for identifying the areas with the most potential. We are also investigating an adjoining tract formerly operated by Chevron where successful miceller-polymer flood was conducted. This will help us in evaluating the reasons for the success of the flood. Armed with this information, we will conduct a detailed geostatistical and flow simulation study and recommend the best reservoir management plan to improve the recovery of the field.

  4. CFD code development for performance evaluation of a pilot-scale FCC riser reactor

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Zhou, C.Q.; Golchert, B.; Petrick, M.

    1997-09-01

    Fluid Catalytic Cracking (FCC) is an important conversion process for the refining industry. The improvement of FCC technology could have a great impact on the public in general by lowering the cost of transportation fuel. A recent review of the FCC technology development by Bienstock et al. of Exxon indicated that the use of computational fluid dynamics (CFD) simulation can be very effective in the advancement of the technology. Theologos and Markatos used a commercial CFD code to model an FCC riser reactor. National Laboratories of the U.S. Department of Energy (DOE) have accumulated immense CFD expertise over the years for various engineering applications. A recent DOE survey showed that National Laboratories are using their CFD expertise to help the refinery industry improve the FCC technology under DOE`s Cooperative Research and Development Agreement (CRADA). Among them are Los Alamos National Laboratory with Exxon and Amoco and Argonne National Laboratory (ANL) with Chevron and UOP. This abstract briefly describes the current status of ANL`s work. The objectives of the ANL CRADA work are (1) to use a CFD code to simulate FCC riser reactor flow and (2) to evaluate the impacts of operating conditions and design parameters on the product yields. The CFD code used in this work was originally developed for spray combustion simulation in early 1980 at Argonne. It has been successfully applied to diagnosing a number of multi-phase reacting flow problems in a magneto-hydrodynamic power train. A new version of the CFD code developed for the simulation of the FCC riser flow is called Integral CRacKing FLOw (ICRKFLO). The CFD code solves conservation equations of general flow properties for three phases: gaseous species, liquid droplets, and solid particles. General conservation laws are used in conjunction with rate equations governing the mass, momentum, enthalpy, and species for a multi-phase flow with gas species, liquid droplets, and solid particles.

  5. The weak interfaces within tough natural composites: experiments on three types of nacre.

    PubMed

    Khayer Dastjerdi, Ahmad; Rabiei, Reza; Barthelat, Francois

    2013-03-01

    Mineralization is a typical strategy used in natural materials to achieve high stiffness and hardness for structural functions such as skeletal support, protection or predation. High mineral content generally leads to brittleness, yet natural materials such as bone, mollusk shells or glass sponge achieve relatively high toughness considering the weakness of their constituents through intricate microstructures. In particular, nanometers thick organic interfaces organized in micro-architectures play a key role in providing toughness by various processes including crack deflection, crack bridging or energy dissipation. While these interfaces are critical in these materials, their composition, structure and mechanics is often poorly understood. In this work we focus on nacre, one of the most impressive hard biological materials in terms of toughness. We performed interfacial fracture tests on chevron notched nacre samples from three different species: red abalone, top shell and pearl oyster. We found that the intrinsic toughness of the interfaces is indeed found to be extremely low, in the order of the toughness of the mineral inclusions themselves. Such low toughness is required for the cracks to follow the interfaces, and to deflect and circumvent the mineral tablets. This result highlights the efficacy of toughening mechanisms in natural materials, turning low-toughness inclusions and interfaces into high-performance composites. We found that top shell nacre displayed the highest interfacial toughness, because of higher surface roughness and a more resilient organic material, and also through extrinsic toughening mechanisms including crack deflection, crack bridging and process zone. In the context of biomimetics, the main implication of this finding is that the interface in nacre-like composite does not need to be tough; the extensibility or ductility of the interfaces may be more important than their strength and toughness to produce toughness at the macroscale

  6. Genetically engineered stem rust resistance in barley using the Rpg1 gene

    PubMed Central

    Horvath, Henriette; Rostoks, Nils; Brueggeman, Robert; Steffenson, Brian; von Wettstein, Diter; Kleinhofs, Andris

    2003-01-01

    The stem-rust-susceptible barley cv. Golden Promise was transformed by Agrobacterium-mediated transformation of immature zygotic embryos with the Rpg1 genomic clone of cv. Morex containing a 520-bp 5′ promoter region, 4,919-bp gene region, and 547-bp 3′ nontranscribed sequence. Representatives of 42 transgenic barley lines obtained were characterized for their seedling infection response to pathotype Pgt-MCC of the stem rust fungus Puccinia graminis f. sp. tritici. Golden Promise was converted from a highly susceptible cultivar into a highly resistant one by transformation with the dominant Rpg1 gene. A single copy of the gene was sufficient to confer resistance against stem rust, and progenies from several transformants segregated in a 3:1 ratio for resistance/susceptibility as expected for Mendelian inheritance. These results unequivocally demonstrate that the DNA segment isolated by map-based cloning is the functional Rpg1 gene for stem rust, resistance. One of the remarkable aspects about the transformants is that they exhibit a higher level of resistance than the original sources of Rpg1 (cvs. Chevron and Peatland). In most cases, the Golden Promise transformants exhibited a highly resistant reaction where no visible sign of infection was evident. Hypersensitive necrotic “fleck” reactions were also observed, but less frequently. With both infection types, pathogen sporulation was prevented. Southern blot and RT-PCR analysis revealed that neither Rpg1 gene copy number nor expression levels could account for the increased resistance observed in Golden Promise transformants. Nevertheless, this research demonstrates that stem-rust-susceptible barley can be made resistant by transformation with the cloned Rpg1 gene. PMID:12509512

  7. Unraveling the Wheat Stem Rust Infection Process on Barley Genotypes Through Relative qPCR and Fluorescence Microscopy.

    PubMed

    Zurn, J D; Dugyala, S; Borowicz, P; Brueggeman, R; Acevedo, M

    2015-05-01

    The infection process of wheat stem rust (Puccinia graminis f. sp. tritici) on barley (Hordeum vulgare) is often observed as a mesothetic infection type at the seedling stages, and cultivars containing the same major resistance genes often show variation in the level of resistance provided against the same pathogen race or isolate. Thus, robust phenotyping data based on quantification of fungal DNA can improve the ability to elucidate host-pathogen interaction, especially at early time points of infection when disease symptoms are not yet evident. Quantitative real-time polymerase chain reaction (qPCR) was used to determine the amount of fungal DNA relative to host DNA in infected tissue, providing new insights about fungal development and host resistance during the infection process in this pathosystem. The stem rust susceptible 'Steptoe', resistant cultivars containing only Rpg1 ('Beacon', 'Morex', and 'Chevron'), and the resistant line Q21861 containing Rpg1 and the rpg4/Rpg5 complex were evaluated using the traditional 0-to-4 rating scale, fluorescence microscopy, and qPCR. Statistical differences (P<0.05) were observed in fungal development as early as 24 h postinoculation using the qPCR assay. Fungal development observed using fluorescence microscopy displayed the same hierarchal ordering observed using the qPCR assay. The fungal development occurring at 24 and 48 h postinoculation was vastly different than what was expected using the traditional disease phenotyping methodology; with Steptoe appearing more resistant than the barley lines harboring the known Rpg1 and rpg4/Rpg5 resistance complex. These data indicate potential early prehaustorial resistance contributions in a cultivar considered susceptible based on infection type. Moreover, the temporal differences in resistance suggest pre- and post-haustorial resistance mechanisms in the barley-wheat stem rust infection process, indicating potential host genotype contributions related to basal defense during

  8. ED51: Using International Networks to Develop the Future Global Geoscience Workforce

    NASA Astrophysics Data System (ADS)

    Velasco, E. E.; Pangman, P.; Jacobs, R. L.

    2011-12-01

    Developed nations face the immediate need to replace the current wave of retiring geoscientists at the same time developing nations need to build an infrastructure to train future geoscientists. But what does a successful geoscientist look like? Recruiters seem to favor candidates from respected universities that pair applied book knowledge with excellent communication skills and the ability to take a multidisciplinary approach to challenges. Students should be global thinking, business minded, and socially aware. The Society of Exploration Geophysicists as a successful global society addresses the needs of a growing diverse membership through an international approach. Student membership has doubled over the past five years to almost 10,000. The Society is building momentum through targeted, yet diverse programs. Students are eager to participate in the unique SEG/Chevron Student Leadership Symposium, SEG/ExxonMobil Student Education Program, Challenge Bowls, Student Expositions, Honorary Lecturer presentations and related events. These are transformative educational opportunities that provide the impetus for expanded and very effective international networking and transfer of knowledge. As SEG's students build on these relationships and newly acquired leadership skills, they affect the scope and breadth of SEG Student Chapter activities. There has been a resulting increase in multi-country field camps. The Geoscientists Without Borders° humanitarian program provides cross-cultural field opportunities that demonstrate how applied geoscience can make a difference in the global society, while providing students with valuable workforce skills that employers seek. These collaborative efforts are facilitated by social media and on-line communities that cause boundaries to dissolve and time zones to become irrelevant.

  9. Mechanical and electromagnetic properties of northern Gulf of Mexico sediments with and without THF hydrates

    USGS Publications Warehouse

    Lee, J.Y.; Santamarina, J.C.; Ruppel, C.

    2008-01-01

    Using an oedometer cell instrumented to measure the evolution of electromagnetic properties, small strain stiffness, and temperature, we conducted consolidation tests on sediments recovered during drilling in the northern Gulf of Mexico at the Atwater Valley and Keathley Canyon sites as part of the 2005 Chevron Joint Industry Project on Methane Hydrates. The tested specimens include both unremolded specimens (as recovered from the original core liner) and remolded sediments both without gas hydrate and with pore fluid exchanged to attain 100% synthetic (tetrahydrofuran) hydrate saturation at any stage of loading. Test results demonstrate the extent to which the electromagnetic and mechanical properties of hydrate-bearing marine sediments are governed by the vertical effective stress, stress history, porosity, hydrate saturation, fabric, ionic concentration of the pore fluid, and temperature. We also show how permittivity and electrical conductivity data can be used to estimate the evolution of hydrate volume fraction during formation. The gradual evolution of geophysical properties during hydrate formation probably reflects the slow increase in ionic concentration in the pore fluid due to ion exclusion in closed systems and the gradual decrease in average pore size in which the hydrate forms. During hydrate formation, the increase in S-wave velocity is delayed with respect to the decrease in permittivity, consistent with hydrate formation on mineral surfaces and subsequent crystal growth toward the pore space. No significant decementation/debonding occurred in 100% THF hydrate-saturated sediments during unloading, hence the probability of sampling hydrate-bearing sediments without disturbing the original sediment fabric is greatest for samples in which the gas hydrate is primarily responsible for maintaining the sediment fabric and for which the time between core retrieval and restoration of in situ effective stress in the laboratory is minimized. In evaluating the

  10. Position and time resolution measurements with a microchannel plate image intensifier: A comparison of monolithic and pixelated CeBr3 scintillators

    NASA Astrophysics Data System (ADS)

    Ackermann, Ulrich; Eschbaumer, Stephan; Bergmaier, Andreas; Egger, Werner; Sperr, Peter; Greubel, Christoph; Löwe, Benjamin; Schotanus, Paul; Dollinger, Günther

    2016-07-01

    To perform Four Dimensional Age Momentum Correlation measurements in the near future, where one obtains the positron lifetime in coincidence with the three dimensional momentum of the electron annihilating with the positron, we have investigated the time and position resolution of two CeBr3 scintillators (monolithic and an array of pixels) using a Photek IPD340/Q/BI/RS microchannel plate image intensifier. The microchannel plate image intensifier has an active diameter of 40 mm and a stack of two microchannel plates in chevron configuration. The monolithic CeBr3 scintillator was cylindrically shaped with a diameter of 40 mm and a height of 5 mm. The pixelated scintillator array covered the whole active area of the microchannel plate image intensifier and the shape of each pixel was 2.5·2.5·8 mm3 with a pixel pitch of 3.3 mm. For the monolithic setup the measured mean single time resolution was 330 ps (FWHM) at a gamma energy of 511 keV. No significant dependence on the position was detected. The position resolution at the center of the monolithic scintillator was about 2.5 mm (FWHM) at a gamma energy of 662 keV. The single time resolution of the pixelated crystal setup reached 320 ps (FWHM) in the region of the center of the active area of the microchannel plate image intensifier. The position resolution was limited by the cross-section of the pixels. The gamma energy for the pixel setup measurements was 511 keV.

  11. The structure and chemical layering of Proterozoic stromatolites in the Mojave Desert

    NASA Astrophysics Data System (ADS)

    Douglas, Susanne; Perry, Meredith E.; Abbey, William J.; Tanaka, Zuki; Chen, Bin; McKay, Christopher P.

    2015-07-01

    The Proterozoic carbonate stromatolites of the Pahrump Group from the Crystal Spring formation exhibit interesting layering patterns. In continuous vertical formations, there are sections of chevron-shaped stromatolites alternating with sections of simple horizontal layering. This apparent cycle of stromatolite formation and lack of formation repeats several times over a vertical distance of at least 30 m at the locality investigated. Small representative samples from each layer were taken and analysed using X-ray diffraction (XRD), X-ray fluorescence (XRF), environmental scanning electron microscopy - energy dispersive X-ray spectrometry, and were optically analysed in thin section. Optical and spectroscopic analyses of stromatolite and of non-stromatolite samples were undertaken with the objective of determining the differences between them. Elemental analysis of samples from within each of the four stromatolite layers and the four intervening layers shows that the two types of layers are chemically and mineralogically distinct. In the layers that contain stromatolites the Ca/Si ratio is high; in layers without stromatolites the Ca/Si ratio is low. In the high Si layers, both K and Al are positively correlated with the presence and levels of Si. This, together with XRD analysis, suggested a high K-feldspar (microcline) content in the non-stromatolitic layers. This variation between these two types of rocks could be due to changes in biological growth rates in an otherwise uniform environment or variations in detrital influx and the resultant impact on biology. The current analysis does not allow us to choose between these two alternatives. A Mars rover would have adequate resolution to image these structures and instrumentation capable of conducting a similar elemental analysis.

  12. Composition of fluid inclusions in Permian salt beds, Palo Duro Basin, Texas, U.S.A.

    USGS Publications Warehouse

    Roedder, E.; d'Angelo, W. M.; Dorrzapf, A.F.; Aruscavage, P. J.

    1987-01-01

    Several methods have been developed and used to extract and chemically analyze the two major types of fluid inclusions in bedded salt from the Palo Duro Basin, Texas. Data on the ratio K: Ca: Mg were obtained on a few of the clouds of tiny inclusions in "chevron" salt, representing the brines from which the salt originally crystallized. Much more complete quantitative data (Na, K, Ca, Mg, Sr, Cl, SO4 and Br) were obtained on ??? 120 individual "large" (mostly ???500 ??m on an edge, i.e., ??? ??? 1.6 ?? 10-4 g) inclusions in recrystallized salt. These latter fluids have a wide range of compositions, even in a given piece of core, indicating that fluids of grossly different composition were present in these salt beds during the several (?) stages of recrystallization. The analytical results indicating very large inter-and intra-sample chemical variation verify the conclusion reached earlier, from petrography and microthermometry, that the inclusion fluids in salt and their solutes are generally polygenetic. The diversity in composition stems from the combination of a variety of sources for the fluids (Permian sea, meteoric, and groundwater, as well as later migrating ground-, formation, or meteoric waters of unknown age), and a variety of subsequent geochemical processes of dissolution, precipitation and rock-water interaction. The compositional data are frequently ambiguous but do provide constraints and may eventually yield a coherent history of the events that produced these beds. Such an understanding of the past history of the evaporite sequence of the Palo Duro Basin should help in predicting the future role of the fluids in the salt if a nuclear waste repository is sited there. ?? 1987.

  13. Imperial County geothermal development semi-annual report, October 1, 1980-March 31, 1981

    SciTech Connect

    Not Available

    1981-01-01

    The current geothermal progress in Imperial County is reported. Three areas are reported: Geothermal Administration, Geothermal Planning, and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. In addition, the cooperative efforts between industry and the County; Master EIR for the Salton Sea KGRA and the resurveying of the subsidence detection network are covered. Geothermal Planning addresses a Board of Supervisor action on the Union Oil Geothermal Production Permit for 16 wells in the Salton Sea KGRA and a permit for Southern California Edison 10 megawatts power plant in the Salton Sea KGRA. Planning Commission action covers: Amendment of Magma Power's 49 megawatts Geothermal Production Permit to 28 megawatt power plant and relocation of the plant and wells within the Salton Sea KGRA; Exploration permit to Occidental Geothermal for four exploratory wells in East Brawley; Geothermal Production Permit to Southern California Edison to operate a 10 megawatt power plant in the Salton Sea KGRA; and Geothermal production permit to Union Oil for 16 production-injection wells in the Salton Sea KGRA. Lastly, EIR exemptions to CEQA were granted to Chevron for 70 shallow temperature observation holes and Union for fifteen. Other Geothermal Activity addresses the County Direct Heat Development study; the solicitation for district heating and cooling proposals; the new Geothermal Class II-1 disposal site; the DOE Region IX meeting in Tucson; and USGA designating a new KGRA, the East Brawley KGRA, the Westmorland KGRA, and revising the southern border of the Salton Sea KGRA.

  14. NO{sub x} control using natural gas reburn on an industrial cyclone boiler

    SciTech Connect

    Farzan, H.; Maringo, G.J.; Beard, C.T.; Weed, G.E.; Pratapas, J.

    1996-12-31

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, has been retrofitted with the gas reburn technology developed by the Babcock and Wilcox (B and W) Company to reduce NO{sub x} emissions in order to comply with the New York State regulations adopted in conformance with the Title I of the Clean Air Act Amendments (CAAA) of 1990. At the peak load, the ozone nonattainment required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit for cyclone boilers in this regulation is 56%. Eastman Kodak Company and the Gas Research Institute (GRI) are co-sponsoring this project. Chevron has supplied the natural gas. Equipment installation for the gas reburn system was performed in a September 1995 outage. Boiler No. 43`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow (or approximately equivalent to 60 MW{sub e}). Because of the compact boiler design, there is insufficient furnace residence time to use coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Contingent upon successful completion of this gas reburn project, modification of Kodak`s other cyclone boilers to include reburn technology will be consideredd. The paper will describe B and W`s gas reburn data from a cyclone-equipped pilot facility (B and W`s Small Boiler Simulator), gas reburn system design, manufacturing, and installation information specific to Kodak`s Unit No. 43. In addition, the paper will discuss numerical modeling and the full-scale commercial boiler test results.

  15. NO{sub x} control using natural gas reburn on an industrial cyclone boiler

    SciTech Connect

    Farzan, H.; Maringo, G.J.; Beard, C.T.; Weed, G.E.; Pratapas, J.

    1997-07-01

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, has been retrofitted with the gas reburn. technology developed by the Babcock & Wilcox (B&W) Company to reduce NO{sub x} emissions in order to comply with the New York State regulations adopted in conformance with the Title I of the Clean Air Act Amendments (CAAA) of 1990. At the peak load, the ozone nonattainment required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit for cyclone boilers in this regulation is 56%. Eastman Kodak Company and the Gas Research Institute (GRI) are co-sponsoring this project. Chevron has supplied the natural gas. Equipment installation for the gas reburn system was performed in a September 1995 outage. Boiler No. 43`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow (or approximately equivalent to 60 MW{sub e}). Because of the compact boiler design, there is insufficient furnace residence time to use coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Contingent upon successful completion of this gas reburn project, modification of Kodak`s other cyclone boilers to include reburn technology will be considered. The paper will describe B&W`s gas reburn data from a cyclone-equipped pilot facility (B&W`s Small Boiler Simulator), gas reburn system design, manufacturing, and installation information specific to Kodak`s Unit No. 43. In addition, the paper will discuss numerical modeling and the full-scale commercial boiler test results.

  16. Nano-scale Petrography of Permian-Basin Halite by TEM

    NASA Astrophysics Data System (ADS)

    Nemer, M. B.; Powers, D. W.; Ismail, A. E.

    2009-12-01

    Halite from the upper Permian Salado Formation of the Permian basin has been extensively studied over the last century. Few researchers, however, have looked at these units at the nano-scale. This is partially due to the difficulty of preparing soft-ionic-crystal samples for TEM studies, and because of the inherent artifacts created in the sectioning and imaging process. We have ultramicrotomed and imaged halite from the Salado in a 200kV TEM. An interesting find is the presence of a ≈ 30 nm transition zone of crystal surrounding some (but not all) fluid inclusions in primary halite (chevron crystal). The transition-zone crystal appears to be oriented differently than the bulk halite crystal away from the transition zone. The thickness of the transition zone does not seem to be sensitive to the dimensions of the inclusion which rules out pressure-temperature changes in solubility in such a small volume. The cause of these transition zones is unknown. Several interesting petrofabrics can also be seen in the primary halite. Fluid-inclusion-banded halite contains bands of very small (< 100 nm) fluid inclusions. Some inclusions appear to have trails of smaller drops, as if due to a drop-breakup event. This is curious because we don’t expect breakup events in a primary crystal. A “myrmekite” like texture has been observed that contains a series of indentations and spurs along the bedding plane. A turbulent fabric has been observed which contains small eddy-like structures . At this time, we are not able to interpret these fabrics with confidence or determine which are real and which are artifacts. This work is considered preliminary and should not be cited, as some samples were not collected under the Waste Isolation Pilot Plant (WIPP) Quality Assurance (QA) program. This work will be repeated in the future with full WIPP QA.

  17. Extreme ductile deformation of fine-grained salt by coupled solution-precipitation creep and microcracking: Microstructural evidence from perennial Zechstein sequence (Neuhof salt mine, Germany)

    NASA Astrophysics Data System (ADS)

    Závada, Prokop; Desbois, Guillaume; Schwedt, Alexander; Lexa, Ondrej; Urai, Janos L.

    2012-04-01

    Microstructural study revealed that the ductile flow of intensely folded fine-grained salt exposed in an underground mine (Zechstein-Werra salt sequence, Neuhof mine, Germany) was accommodated by coupled activity of solution-precipitation (SP) creep and microcracking of the halite grains. The grain cores of the halite aggregates contain remnants of sedimentary microstructures with straight and chevron shaped fluid inclusion trails (FITs) and are surrounded by two concentric mantles reflecting different events of salt precipitation. Numerous intra-granular or transgranular microcracks originate at the tips of FITs and propagate preferentially along the interface between sedimentary cores and the surrounding mantle of reprecipitated halite. These microcracks are interpreted as tensional Griffith cracks. Microcracks starting at grain boundary triple junctions or grain boundary ledges form due to stress concentrations generated by grain boundary sliding (GBS). Solid or fluid inclusions frequently alter the course of the propagating microcracks or the cracks terminate at these inclusions. Because the inner mantle containing the microcracks is corroded and is surrounded by microcrack-free outer mantle, microcracking is interpreted to reflect transient failure of the aggregate. Microcracking is argued to play a fundamental role in the continuation and enhancement of the SP-GBS creep during halokinesis of the Werra salt, because the transgranular cracks (1) provide the ingress of additional fluid in the grain boundary network when cross-cutting the FITs and (2) decrease grain size by splitting the grains. More over, the ingress of additional fluids into grain boundaries is also provided by non-conservative grain boundary migration that advanced into FITs bearing cores of grains. Described readjustments of the microstructure and mechanical and chemical feedbacks for the grain boundary diffusion flow in halite-brine system are proposed to be comparable to other rock-fluid or

  18. Analysis of the pH-dependent thermodynamic stability, local motions, and microsecond folding kinetics of carbonmonoxycytochrome c.

    PubMed

    Kumar, Rajesh

    2016-09-15

    This paper analyzes the effect of pH on thermodynamic stability, low-frequency local motions and microsecond folding kinetics of carbonmonoxycytochrome c (Cyt-CO) all across the alkaline pH-unfolding transition of protein. Thermodynamic analysis of urea-induced unfolding transitions of Cyt-CO measured between pH 6 and pH 11.9 reveals that Cyt-CO is maximally stable at pH∼9.5. Dilution of unfolded Cyt-CO into refolding medium forms a native-like compact state (NCO-state), where Fe(2+)-CO interaction persists. Kinetic and thermodynamic parameters measured for slow thermally-driven CO dissociation (NCO→N+CO) and association (N+CO→NCO) reactions between pH 6.5 and pH 13 reveal that the thermal-motions of M80-containing Ω-loop are decreased in subdenaturing limit of alkaline pH. Laser photolysis of Fe(2+)-CO bond in NCO-state triggers the microsecond folding (NCO→N). The microsecond kinetics measured all across the alkaline pH-unfolding transition of Cyt-CO produce rate rollover in the refolding limb of chevron plot, which suggests a glass transition of NCO en route to N. Between pH 7 and pH 11.9, the natural logarithm of the microsecond folding rate varies by < 1.5 units while the natural logarithm of apparent equilibrium constant varies by 11.8 units. This finding indicates that the pH-dependent ionic-interactions greatly affect the global stability of protein but have very small effect on folding kinetics. PMID:27424489

  19. Gulf of Mexico Air/Sea Interaction: Measurements and Initial Data Characterization

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.

    2011-12-01

    Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and air-sea interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and air quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and air quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and sea surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; sea surface temperature; wave height statistics; downwelling solar and infrared radiation; and air-sea turbulent momentum and heat fluxes. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of

  20. Using Local Second Gradient Model and Shear Strain Localisation to Model the Excavation Damaged Zone in Unsaturated Claystone

    NASA Astrophysics Data System (ADS)

    Pardoen, Benoît; Levasseur, Séverine; Collin, Frédéric

    2015-03-01

    The drilling of galleries induces damage propagation in the surrounding medium and creates, around them, the excavation damaged zone (EDZ). The prediction of the extension and fracture structure of this zone remains a major issue, especially in the context of underground nuclear waste storage. Experimental studies on geomaterials indicate that localised deformation in shear band mode usually appears prior to fractures. Thus, the excavation damaged zone can be modelled by considering the development of shear strain localisation bands. In the classical finite element framework, strain localisation suffers a mesh-dependency problem. Therefore, an enhanced model with a regularisation method is required to correctly model the strain localisation behaviour. Among the existing methods, we choose the coupled local second gradient model. We extend it to unsaturated conditions and we include the solid grain compressibility. Furthermore, air ventilation inside underground galleries engenders a rock-atmosphere interaction that could influence the damaged zone. This interaction has to be investigated in order to predict the damaged zone behaviour. Finally, a hydro-mechanical modelling of a gallery excavation in claystone is presented and leads to a fairly good representation of the EDZ. The main objectives of this study are to model the fractures by considering shear strain localisation bands, and to investigate if an isotropic model accurately reproduces the in situ measurements. The numerical results provide information about the damaged zone extension, structure and behaviour that are in very good agreement with in situ measurements and observations. For instance, the strain localisation bands that develop in chevron pattern during the excavation and rock desaturation, due to air ventilation, are observed close to the gallery.

  1. The paleoclimate of the Kazanian (early Late Permian) world

    SciTech Connect

    Moore, G.T. ); Peoples, C.J. )

    1990-05-01

    The Kazanian (early Late Permian, 258-253 m.y.) marked the onset of a unique interval in the Phanerozoic, distinguished by a classic end-member case of continental assembly, the megacontinent Pangaea. Compilation of biostratigraphic and lithofacies data indicate a warm, extensively arid world, largely ice free, and characterized by the onset of atmospheric conditions that were exceedingly stressful to the biosphere, the worst of the eon. Using Chevron's version of the Community Climate model, the authors report here on two Kazanian paleoclimate seasonal simulations, one using 200 ppm CO{sub 2} and the other with 2,000 ppm CO{sub 2}. The authors consider the knowledge of plate assembly back to the Permian accurate enough to allow employment of a seasonal model. Simulation of a warmer Earth with an elevated greenhouse effect (modeled as CO{sub 2}) fits the observed geology and isotope signals. The increased CO{sub 2} experiment warmed the entire planet with the greatest increases north of 50{degree} latitude and least changes in the tropics. The warming caused the poleward retreat of sea ice in both hemispheres. Precipitation and evaporation increased, but runoff was confined to areas of very intense rainfall. Monsoons are limited to the southern hemisphere, associated with the western Tethys sea and the eastern equatorial Panthalassa ocean. Extreme southeastern Pangaea (northern Australia) was a focus of precipitation throughout the year. Precipitation occurred in the higher latitudes (50-55{degree}) on the western coast, of Pangaea where storm tracks make landfall. High evaporation rates characterized the restricted Permian (US), Zechstein, and Perm (Soviet Union) basins, a time of evaporite, deposition. Interior Pangaea at middle to high latitudes endured frigid winters ({minus}40{degree}C) and torrid summers (60{degree}C).

  2. LDEF (Postflight)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Passive Grapple Tray postflight photograph was taken in the Orbiter Processing Facility (OPF) at KSC during the removal of LDEF from the Orbiter's cargo bay. The tray assembly consists of a modified six (6) inch deep LDEF peripheral experiment tray, a chromic anodized aluminum mounting plate, a Standard Mechanical Grapple Fixture, provided by JSC, and non-magnetic stainless steel fasteners. Two (2) aluminum plates, one in the upper left corner and one near the right center of the tray, cover access openings in the mounting plate. The black chevrons painted on the left half of the mounting plate are used for tray identification and the camera target, black with white markings, is attached to the right edge of the grapple fixture to assist the operator in positioning the RMS end effector during retrieval operations. The grapple tray assembly appears to be intact with no apparent physical damage. The white paint dot on clamp blocks located at the right and left ends of the lower tray flange has changed to a brown color and the tray upper sidewall and tray flanges have become discolored by a light brown stain. The chromic anodized aluminum mounting plate and the passive grapple fixture appear to be discolored by a light brown stain similar to that on the tray sidewall and flanges. The dark irregular shaped discoloration on the lower right corner of the grapple fixture mounting plate is an abrasion that existed preflight. The pinkish tint on the mounting plate is the by-product of the chromic anodizing process and is not attributed to exposure to the space environment. The white stripes on the black camera target and the white tip of the vertical rod located on the target have changed in color from white to brown. The light band along the right edge of the grapple fixture mounting plate is caused by light reflecting from the tray sidewalls.

  3. The Virgo cD galaxy M87 and its environment as mapped by Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Longobardi, Alessia

    2015-08-01

    Cosmological simulations predict the evolution of galaxy halos in cluster environments. Because of their low surface brightness, 1% of the night sky or lower, it is difficult to measure their spatial distribution and line-of-sight motions of the associated stars. Planetary nebulas (PNs) are very good tracers of their parent stellar populations, and we can use them to investigate these extended halos as consequence of their relatively strong [OIII] emission line. We have used PNs to study the outer halo of M87, the BCG at the center of the Virgo cluster. From the deepest and most extended narrow band survey done with Supruime Cam on Subaru, we carry out the spectroscopic follow up with FLMES at the VLT of more than 300 emission line objects in the halo of M87 out to ~150 kpc in radius. We confirm 254 PNs associated with the M87 halo and 44 with the intracluster light in the Virgo core. We show that the galaxy halo overlaps with the Virgo intracluster light (ICL) at all distance. Halo and ICL are dynamically distinct components, have different density profiles and parent stellar populations. The latter result shows that the halo of M87 is redder and more metal rich than the ICL population. Because of the excellent spectra resolution of our data, we identify a chevron structure in the projected phase space and identify the substructure in light associated to this dynamical sub-component. This accretion event account for a third of the light of the halo at 90 kpc distance from the center. It shows that at these distances the M87 halo is significantly lumpy and still growing by accretion of satellites.

  4. Fracture Toughness of Advanced Structural Ceramics: Applying ASTM C1421

    SciTech Connect

    Swab, Jeffrey J.; Tice, Jason; Wereszczak, Andrew A.; Kraft, Reuben H.

    2014-11-03

    The three methods of determining the quasi-static Mode I fracture toughness (KIc) (surface crack in flexure – SC, single-edge precracked beam – PB, and chevron notched beam – VB) found in ASTM C1421 were applied to a variety of advanced ceramic materials. All three methods produced valid and comparable KIc values for the Al2O3, SiC, Si3N4 and SiAlON ceramics examined. However, not all methods could successfully be applied to B4C, ZrO2 and WC ceramics due to a variety of material factors. The coarse-grained microstructure of one B4C hindered the ability to observe and measure the precracks generated in the SC and PB methods while the transformation toughening in the ZrO2 prevented the formation of the SC and PB precracks and thus made it impossible to use either method on this ceramic. The high strength and elastic modulus of the WC made it impossible to achieve stable crack growth using the VB method because the specimen stored a tremendous amount of energy prior to fracture. Even though these methods have passed the rigors of the standardization process there are still some issues to be resolved when the methods are applied to certain classes of ceramics. We recommend that at least two of these methods be employed to determine the KIc, especially when a new or unfamiliar ceramic is being evaluated.

  5. Evidence for fourth generation structures in the Piedra Lumbre region, Western Picuris Mountains, New Mexico

    SciTech Connect

    Chernoff, C.B.; Helper, M.A.; Mosher, S. . Dept. of Geological Sciences)

    1993-02-01

    Mid-Proterozoic Hondo Group metasediments in the western Picuris Mountains, New Mexico clearly display 3 generations of previously recognized penetrative, synmetamorphic structures and a previously undocumented forth generation of overprinting folds with an associated axial planar foliation. The earliest structures include: (1) a bedding-parallel S[sub 1] foliation and rare, rootless, intrafolial F[sub 1] folds; (2) north-verging, west-trending F[sub 2] folds and an axial planar metamorphic foliation (S[sub 2]); (3) a steeply dipping, N-S striking crenulation cleavage (S[sub 3]). In the Piedra Lumbre region, southwest-plunging, open, upright chevron and box folds (F[sub 4]) locally reorient F[sub 2], S[sub 2] and S[sub 3] crenulations. The largest F[sub 4] folds in the Piedra Lumbre region have half-wavelengths of 500 meters. An associated nearly vertical foliation (S[sub 4]) overprints the first three foliations. The S[sub 4] foliation is a crenulation cleavage in micaceous layers and a discontinuous alignment of biotite laths in quartzose layers. Crystallization of biotite during S[sub 4] and chloritoid after S[sub 4], along with static recrystallization and mineral replacement by chlorite, suggests this deformation occurred during the waning stages of mid-Proterozoic metamorphism. The orientation of F[sub 2] and F[sub 4] folds are similar and both appear to occur on a regional scale. Interference of open upright F[sub 4] folds and tight, north-verging, overturned F[sub 2] folds produces a geometry that resembles that of the kilometer-scale Copper Hill Anticline of the western Picuris Mountains, previously interpreted to be solely the result of F[sub 2] folding.

  6. Investigation of Crack Propagation in Rock using Discrete Sphero-Polyhedral Element Method

    NASA Astrophysics Data System (ADS)

    Behraftar, S.; Galindo-torres, S. A.; Scheuermann, A.; Li, L.; Williams, D.

    2014-12-01

    In this study a micro-mechanical model is developed to study the fracture propagation process in rocks. The model is represented by an array of bonded particles simulated by the Discrete Sphero-Polyhedral Element Model (DSEM), which was introduced by the authors previously and has been shown to be a suitable technique to model rock [1]. It allows the modelling of particles of general shape, with no internal porosity. The motivation behind using this technique is the desire to microscopically investigate the fracture propagation process and study the relationship between the microscopic and macroscopic behaviour of rock. The DSEM method is used to model the Crack Chevron Notch Brazilian Disc (CCNBD) test suggested by the International Society of Rock Mechanics (ISRM) for determining the fracture toughness of rock specimens. CCNBD samples with different crack inclination angles, are modelled to investigate their fracture mode. The Crack Mouth Opening Displacement (CMOD) is simulated and the results are validated using experimental results obtained from a previous study [2]. Fig. 1 shows the simulated and experimental results of crack propagation for different inclination angles of CCNBD specimens. The DSEM method can be used to predict crack trajectory and quantify crack propagation during loading. References: 1. Galindo-Torres, S. A., et al. "Breaking processes in three-dimensional bonded granular materials with general shapes." Computer Physics Communications 183.2 (2012): 266-277. 2. Erarslan, N., and D. J. Williams. "Mixed-mode fracturing of rocks under static and cyclic loading." Rock mechanics and rock engineering 46.5 (2013): 1035-1052.

  7. Investigating Wave Structures in Jupiter's Atmosphere using HST Images

    NASA Astrophysics Data System (ADS)

    Johnson, Perianne; Morales-Juberias, Raul; Simon, Amy A.; Wong, Michael H.; Tollefson, Joshua

    2016-10-01

    Hubble Space Telescope images taken in 2015 and 2016 as part of the Outer Planet Atmosphere Legacy (OPAL) program are used to create zonal wind profiles for Jupiter's atmosphere. These jet profiles are then analyzed for longitudinal variations in latitude or velocity, which can be indicators of wave features in the atmosphere. To create the zonal wind profiles, two image sections, separated in time by Δt (typically about one jovian rotation), are correlated at every latitude from -80° to +80°, and the physical displacement Δx between features in each image is found. This yields a velocity for each latitude. The image sections have dimensions of 80° latitude by 80° longitude, but smaller longitude bins were used in the correlations. That allows each velocity profile to be specific to one longitudinal region on the planet. Variations between profiles thus represent variations in the jet's velocity with longitude. This analysis was performed on images taken in visible wavelengths with HST. Here, we focus on two latitudinal regions, ~17°N and ~7°S, which are locations of prominent westward and eastward jets, respectively. At ~17°N, we find a dichotomy in wind speeds: from 165° to 300°W the wind speeds are roughly -13 m/s, in stark contrast with the -23 m/s velocities measured at all other longitudes. In the 7°S jet, we observe quasi-periodic behavior, with longitude regions alternating between ~148 m/s and ~154 m/s, which is possibly related to chevron activity in the region. With a velocity resolution of a few m/s, we argue that the variations in both jets are significant, and suggest possible wave-related explanations for their existence. This research was supported by the NASA EPSCoR JIVE in NM project awarded to NMSU and NMT and a New Mexico Space Grant awarded to NMT.

  8. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO{sub 2} enhanced oil recovery in California`s Monterey Formation siliceous shales. Annual report, February 12, 1996--February 11, 1997

    SciTech Connect

    Toronyi, R.M.

    1997-12-01

    The Buena Vista Hills field is located about 25 miles southwest of Bakersfield, in Kern County, California, about two miles north of the city of Taft, and five miles south of the Elk Hills field. The Antelope Shale zone was discovered at the Buena Vista Hills field in 1952, and has since been under primary production. Little research was done to improve the completion techniques during the development phase in the 1950s, so most of the wells are completed with about 1000 ft of slotted liner. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization of the first phase of the project will be performed using data collected in the pilot pattern wells. This is the first annual report of the project. It covers the period February 12, 1996 to February 11, 1997. During this period the Chevron Murvale 653Z-26B well was drilled in Section 26-T31S/R23E in the Buena Vista Hills field, Kern County, California. The Monterey Formation equivalent Brown and Antelope Shales were continuously cored, the zone was logged with several different kinds of wireline logs, and the well was cased to a total depth of 4907 ft. Core recovery was 99.5%. Core analyses that have been performed include Dean Stark porosity, permeability and fluid saturations, field wettability, anelastic strain recovery, spectral core gamma, profile permeametry, and photographic imaging. Wireline log analysis includes mineral-based error minimization (ELAN), NMR T2 processing, and dipole shear wave anisotropy. A shear wave vertical seismic profile was acquired after casing was set and processing is nearly complete.

  9. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO{sub 2} Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect

    Michael F. Morea

    1997-03-14

    The Buena Vista Hills field is located about 25 miles southwest of Bakersfield, in Kern County, California, about two miles north of the city of Taft, and five miles south of the Elk Hills field. The Antelope Shale zone was discovered at the Buena Vista Hills field in 1952, and has since been under primary production. Little research was done to improve the completion techniques during the development phase in the 1950s, so most of the wells are completed with about 1000 ft of slotted liner. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization of the first phase of the project will be performed using data collected in the pilot pattern wells. This is the first annual report of the project. It covers the period February 12, 1996 to February 11, 1997. During this period the Chevron Murvale 653Z-26B well was drilled in Section 26-T31S/R23E in the Buena Vista Hills field, Kern County, California. The Monterey Formation equivalent Brown and Antelope Shales were continuously cored, the zone was logged with several different kinds of wireline logs, and the well was cased to a total depth of 4907 ft. Core recovery was 99.5%. Core analyses that have been performed include Dean Stark porosity, permeability and fluid saturations, field wettability, anelastic strain recovery, spectral core gamma, profile permeametry, and photographic imaging. Wireline log analysis includes mineral-based error minimization (ELAN), NMR T2 processing, and dipole shear wave anisotropy. A shear wave vertical seismic profile was acquired after casing was set and processing is nearly complete.

  10. Gas reburn retrofit on an industrial cyclone boiler

    SciTech Connect

    Farzan, H.; Latham, C.E.; Maringo, G.J.

    1996-01-01

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, is being retrofitted with the gas reburning technology developed by Babcock & Wilcox (B & W) to reduce NO{sub x} emissions in order to comply with the Title I, ozone nonattainment, of the Clean Air Act Amendments (CAAA) of 1990. The required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit set in New York`s regulation is about 47%. Eastman Kodak and the Gas Research Institute (GRI) are cosponsoring this project. B & W is the prime contractor and contract negotiations with Chevron as the gas supplier are presently being finalized. Equipment installation for the gas reburn system is scheduled for a September 1995 outage. No. 43 Boiler`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow or approximately equivalent to 60 MW{sub e}. Because of the compact boiler design, there is insufficient gas residence time to use pulverized coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Based on successful completion of this gas reburn project, modifying the other three cyclone boilers with gas reburn technology is anticipated. The paper will describe B & W`s gas reburn data from a cyclone-equipped pilot facility (B & W`s Small Boiler Simulator), gas reburn design information specific to Eastman Kodak No. 43 Boiler, and numerical modeling experiences based on the pilot-scale Small Boiler Simulator (SBS) results along with those from a full-scale commercial boiler.

  11. Emissions of metals, chromium and nickel species, and organics from municipal waste-water-sludge incinerators. Volume 8. Site 9 emission-test report. Final report, 1989-91

    SciTech Connect

    DeWees, W.G.; Segall, R.R.; Lewis, F.M.

    1992-03-01

    Site 9 is a secondary plant designed for 15 million gallons per day (MGD) of wastewater flow. The sludge incinerator at Site 9 is a seven (7) hearth, multiple hearth furnace (MHF) built by Nichols Engineering in 1974 controlled by an adjustable throat venturi, with a nominal pressure drop of 20 in. w.c.. After leaving the venturi, the gases pass upward through a three (3) plate tray scrubber with a Chevron mist eliminator. A 10 ft. x 10 ft., upflow, wet electrostatic precipitator, manufacturer by Beltran Associates, Inc., was installed during the first week of testing. The ratio of nickel subsulfide to total nickel in the emission at Site 9 is extremely low, with the sulfidic nickel species being measured at less than detection limit (about 1 to 2 percent of the total nickel). The ratio of hexavalent chromium to total chromium in the emissions at Site 9 was significantly higher that had been anticipated. Site 9 had only two semivolatile organic compounds detected under normal and improved combustion conditions benzyl alcohol and benzoic acid. Several additional compounds were found in the emissions for the normal or improved combustion conditions at Site 9; these compounds were 1,4-dichlorobenzene, 1,2-dichlorobenzene, 2-nitrophenol, 1,2,4-Trichlorobenzene, naphthalene, 2-methylnaphthalene, dibenzofuran, phenanthrene, bis(2-ethylhexyl)phthalate, phenol, 4-methylphenol, and 4-nitrophenol. The volatile organic compounds detected in the Site 9 multiple hearth incinerator emissions were similar to the compounds reported for Sites 1, 2, and 4 (other multiple hearth incinerator tested). Carbon tetrachloride and carbon tetrachloride, reported in the emissions at the other three sites, were not found in the emissions from Site 9.

  12. Archosauriform remains from the Late Triassic of San Luis province, Argentina, Quebrada del Barro Formation, Marayes-El Carrizal Basin

    NASA Astrophysics Data System (ADS)

    Gianechini, Federico A.; Codorniú, Laura; Arcucci, Andrea B.; Castillo Elías, Gabriela; Rivarola, David

    2016-03-01

    Here we present archosauriform remains from 'Abra de los Colorados', a fossiliferous locality at Sierra de Guayaguas, NW San Luis Province. Two fossiliferous levels were identified in outcrops of the Quebrada del Barro Formation (Norian), which represent the southernmost outcrops of the Marayes-El Carrizal Basin. These levels are composed by massive muddy lithofacies, interpreted as floodplain deposits. The specimens consist of one incomplete maxilla (MIC-V718), one caudal vertebra (MIC-V719), one metatarsal (MIC-V720) and one indeterminate appendicular bone (MIC-V721). The materials can be assigned to Archosauriformes but the fragmentary nature and lack of unambiguous synapomorphies preclude a more precise taxomic assignment. The maxilla is remarkably large and robust and represents the posterior process. It preserved one partially erupted tooth with ziphodont morphology. This bone shows some anatomical traits and size match with 'rauisuchians' and theropods. MIC-V719 corresponds to a proximal caudal vertebra. It has a high centrum, a ventral longitudinal furrow, expanded articular processes for the chevrons, a posteriorly displaced diapophysis located below the level of the prezygapophyses, and short prezygapophyses. This vertebra would be from an indeterminate archosauriform. MIC-V720 presents a cylindrical diaphysis, with a well-developed distal trochlea, which present resemblances with metatarsals of theropods, pseudosuchians, and silesaurids, although the size matches better with theropods. MIC-V721 has a slender diaphysis and a convex triangular articular surface, and corresponds to an indeterminate archosauriform. Despite being fragmentary, these materials indicate the presence of a diverse archosauriforms association from Late Triassic beds of San Luis. Thus, they add to the faunal assemblage recently reported from this basin at San Juan Province, which is much rich and diverse than the coeval paleofauna well known from Los Colorados Formation in the

  13. Current concept in dysplastic hip arthroplasty: Techniques for acetabular and femoral reconstruction.

    PubMed

    Bicanic, Goran; Barbaric, Katarina; Bohacek, Ivan; Aljinovic, Ana; Delimar, Domagoj

    2014-09-18

    Adult patients with developmental dysplasia of the hip develop secondary osteoarthritis and eventually end up with total hip arthroplasty (THA) at younger age. Because of altered anatomy of dysplastic hips, THA in these patients represents technically demanding procedure. Distorted anatomy of the acetabulum and proximal femur together with conjoined leg length discrepancy present major challenges during performing THA in patients with developmental dysplasia of the hip. In addition, most patients are at younger age, therefore, soft tissue balance is of great importance (especially the need to preserve the continuity of abductors) to maximise postoperative functional result. In this paper we present a variety of surgical techniques available for THA in dysplastic hips, their advantages and disadvantages. For acetabular reconstruction following techniques are described: Standard metal augments (prefabricated), Custom made acetabular augments (3D printing), Roof reconstruction with vascularized fibula, Roof reconstruction with pedicled iliac graft, Roof reconstruction with autologous bone graft, Roof reconstruction with homologous bone graft, Roof reconstruction with auto/homologous spongious bone, Reinforcement ring with the hook in combination with autologous graft augmentation, Cranial positioning of the acetabulum, Medial protrusion technique (cotyloplasty) with chisel, Medial protrusion technique (cotyloplasty) with reaming, Cotyloplasty without spongioplasty. For femoral reconstruction following techniques were described: Distraction with external fixator, Femoral shortening through a modified lateral approach, Transtrochanteric osteotomies, Paavilainen osteotomy, Lesser trochanter osteotomy, Double-chevron osteotomy, Subtrochanteric osteotomies, Diaphyseal osteotomies, Distal femoral osteotomies. At the end we present author's treatment method of choice: for acetabulum we perform cotyloplasty leaving only paper-thin medial wall, which we break during acetabular

  14. Three-dimensional image reconstruction of insect flight muscle. I. The rigor myac layer

    PubMed Central

    1989-01-01

    We have obtained detailed three-dimensional images of in situ cross- bridge structure in insect flight muscle by electron microscopy of multiple tilt views of single filament layers in ultrathin sections, supplemented with data from thick sections. In this report, we describe the images obtained of the myac layer, a 25-nm longitudinal section containing a single layer of alternating myosin and actin filaments. The reconstruction reveals averaged rigor cross-bridges that clearly separate into two classes constituting lead and rear chevrons within each 38.7-nm axial repeat. These two classes differ in tilt angle, size and shape, density, and slew. This new reconstruction confirms our earlier interpretation of the lead bridge as a two-headed cross-bridge and the rear bridge as a single-headed cross-bridge. The importance of complementing tilt series with additional projections outside the goniometer tilt range is demonstrated by comparison with our earlier myac layer reconstruction. Incorporation of this additional data reveals new details of rigor cross-bridge structure in situ which include clear delineation of (a) a triangular shape for the lead bridge, (b) a smaller size for the rear bridge, and (c) density continuity across the thin filament in the lead bridge. Within actin's regular 38.7-nm helical repeat, local twist variations in the thin filament that correlate with the two cross-bridge classes persist in this new reconstruction. These observations show that in situ rigor cross-bridges are not uniform, and suggest three different myosin head conformations in rigor. PMID:2768334

  15. Hollow Fiber Space Water Membrane Evaporator Flight Prototype Design and Testing

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice; Vogel, Mtthew; Honas, Matt; Dillon, Paul; Colunga, Aaron; Truong, Lily; Porwitz, Darwin; Tsioulos, Gus

    2011-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform thermal control for advanced spacesuits and to take advantage of recent advances in micropore membrane technology. This results in a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. The current design was based on a previous design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape. This was developed into a full-scale prototype consisting of 14,300 tube bundled into 30 stacks, each of which is formed into a chevron shape and separated by spacers and organized into three sectors of 10 nested stacks. The new design replaced metal components with plastic ones, eliminated the spacers, and has a custom built flight like backpressure valve mounted on the side of the SWME housing to reduce backpressure when fully open. A number of tests were performed in order to improve the strength of the polyurethane header that holds the fibers in place while the system is pressurized. Vacuum chamber testing showed similar heat rejection as a function of inlet water temperature and water vapor backpressure was similar to the previous design. Other tests pushed the limits of tolerance to freezing and showed suitability to reject heat in a Mars pressure environment with and without a sweep gas. Tolerance to contamination by constituents expected to be found in potable water produced by distillation processes was tested in a conventional way by allowing constituents to accumulate in the coolant as evaporation occurs. For this purpose, the SWME cartridge has endured an equivalent of 30 EVAs exposure and demonstrated acceptable performance decline.

  16. Full-Scale Hollow Fiber Spacesuit Water Membrane Evaporator Prototype Development and Testing for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg

    2009-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.

  17. Oil and gas developments in North Africa in 1981

    SciTech Connect

    Nicod, M.A.

    1982-11-01

    In the 6 countries covered by this paper, valid petroleum rights at the end of 1981 amounted to 2,024,414 km/sup 2/ or 7% more than at the end of 1980. As far as the rightholding situation is concerned, the main event was the abandonment by Esso of all its rights in Libya. Information on exploration activity remains scarce, but it is estimated that seismic activity increased by 35%. Large air-magnetometry surveys were carried out in Sudan and Egypt. Exploration drilling activity continued to increase, with 169 wells completed versus 115 in 1980. This effort led to 67 oil and gas discoveries, a success rate of about 40% compared with 35% in 1980. All these discoveries were made in established producing provinces. Highly successful results were obtained in the Gulf of Suez with 1 gas and 19 oil discoveries compared with 4 discoveries in 1980. Good success was also obtained by ONAREP, the new Moroccan state company, with 5 gas discoveries out of 11 wells spudded during the year. Chevron continued to find oil in the interior basins of Sudan, and expects commercial production in 1984 from the Unity field, which has reserves estimated at 400 million bbl of oil. Oil production markedly decreased by about 23%, with an average of 2,820,000 BOPD in 1981. Oil output decreased in all the North African countries except Egypt, where it increased 8%. Utilized natural gas production can be estimated at about 2300 MMCFGD. Sonatrach published official figures for gross gas production in 1981 which amounted to 4420 MMCFGD, of which about 2000 MMCFGD were collected and utilized.

  18. Oil and gas developments in North Africa in 1982

    SciTech Connect

    Nicod, M.A.

    1983-10-01

    Within the 2,044,851 km/sup 2/ area described in this paper, petroleum rights in force at the end of 1982 in the 6 countries (Algeria, Egypt, Libya, Morocco, Sudan, Tunisia) remained at about the same level (up 1%) as at the end of 1981. A large award in Sudan made up for a decrease in leased areas in other countries. Both onshore and offshore seismic activity decreased during 1982 in all countries described, except in Sudan, where a significant effort is continuing. Exploration drilling activity also decreased with 166 wells and 330,500 m drilled, compared with 169 wells and 473,000 m drilled in 1981. The success rate was about 36%, compared with 40% in 1981. No new petroleum provinces were discovered. Offshore exploratory drilling was less successful in 1982 (15 discoveries) than in 1981 (24 discoveries). In Sudan, Chevron continued to find oil with 6 discoveries, the most significant being the Heglig field. In Morocco, the Societe Cherifienne des Petroles resumed exploration after a long period of inactivity. Development drilling activity remained the same in most countries, except in Tunisia, where 13 development wells were drilled in 1982 compared with 3 in 1981. Oil production in North Africa decreased 1.4% during 1982, with an average of 2,610,500 BOPD compared with 2,648,500 in 1981. A new offshore field (Shell's Tazerka) was put on stream in Tunisia. This field is the deepest producing field in the Mediterranean (250 m (820 ft) water depth). Utilized natural gas production is estimated to about 2,000 MMCFGD.

  19. A Unique Assemblage of Engraved Plaquettes from Ein Qashish South, Jezreel Valley, Israel: Figurative and Non-Figurative Symbols of Late Pleistocene Hunters-Gatherers in the Levant

    PubMed Central

    Yaroshevich, Alla; Bar-Yosef, Ofer; Boaretto, Elisabeta; Caracuta, Valentina; Greenbaum, Noam; Porat, Naomi; Roskin, Joel

    2016-01-01

    Three engraved limestone plaquettes from the recently excavated Epipaleolithic open-air site Ein Qashish South in the Jezreel Valley, Israel comprise unique evidence for symbolic behavior of Late Pleistocene foragers in the Levant. The engravings, uncovered in Kebaran and Geometric Kebaran deposits (ca. 23ka and ca. 16.5ka BP), include the image of a bird—the first figurative representation known so far from a pre-Natufian Epipaleolithic—along with geometric motifs such as chevrons, crosshatchings and ladders. Some of the engravings closely resemble roughly contemporary European finds interpreted as "systems of notations" or "artificial memory systems"–records related to timing of seasonal resources and associated aggregation events of nomadic groups. Moreover, similarly looking signs and patterns are well known from the context of the local Natufian—a final Epipaleolithic culture of sedentary or semi-sedentary foragers who started practicing agriculture. The investigation of the engravings found in Ein Qashish South involves conceptualizations developed in studies of European and local parallels, a selection of ethnographic examples and preliminary microscopic observations of the plaquettes. This shows that the figurative and non-figurative images comprise a coherent assemblage of symbols that might have been applied in order to store, share and transmit information related to social and subsistence realms of mobile bands. It further suggests that the site functioned as a locality of groups' aggregation and indicates social complexity of pre-Natufian foragers in the Levant. While alterations in social and subsistence strategies can explain the varying frequency of image use characterizing different areas of the Late Pleistocene world—the apparent similarity in graphics and the mode of their application support the possibility that symbol-mediated behavior has a common and much earlier origin. PMID:27557110

  20. Removal of heteroatoms and metals from crude oils by bioconversion processes

    SciTech Connect

    Kaufman, E.N.

    1997-10-01

    The objective of this Cooperative research and Development Agreement project between Oak Ridge National Laboratory (ORNL) and Baker Performance Chemicals (BPC), Chevron, Energy BioSystems, Exxon, UNOCAL and Texaco is to investigate the biological desulfurization of crude oil. Biological removal of organic sulfur from crude oil offers an attractive alternative to conventional thermochemical treatment due to the mild operating conditions afforded by the biocatalyst. In order for biodesulfurization to realize commercial success, reactors must be designed which allow for sufficient liquid/liquid and gas/liquid mass transfer while simultaneously reducing operating costs. To this end we have been developing advanced bioreactors for biodesulfurization and have been studying their performance using both actual crude oil as well as more easily characterized model systems. This CRADA was originally established to be a 3 year program, but was extended to 5 years due to continuing interest. Because of business restructuring, UNOCAL, whose activities focused upon the supply and analysis of crude oil samples, was unable to continue its participation in the CRADA. Hence this report is designed to cover only LTNOCAL`s contribution to the CRADA as other aspects of the research are not yet complete. Experiments investigating the biological oxidative desulfurization of crude oil demonstrated that while dibenzothiophene like structures were readily degraded (>90% in 48 h) this desulfurization had minimal impact upon the total sulfur in the crude oil. This is because these structures represent less than 1% of the total sulfur found in the crude. Additional research is needed investigating sulfur speciation in crude oil with increased efforts upon broadening the sulfur specificity of the biocatalyst.