Combining control input with flight path data to evaluate pilot performance in transport aircraft.
Ebbatson, Matt; Harris, Don; Huddlestone, John; Sears, Rodney
2008-11-01
When deriving an objective assessment of piloting performance from flight data records, it is common to employ metrics which purely evaluate errors in flight path parameters. The adequacy of pilot performance is evaluated from the flight path of the aircraft. However, in large jet transport aircraft these measures may be insensitive and require supplementing with frequency-based measures of control input parameters. Flight path and control input data were collected from pilots undertaking a jet transport aircraft conversion course during a series of symmetric and asymmetric approaches in a flight simulator. The flight path data were analyzed for deviations around the optimum flight path while flying an instrument landing approach. Manipulation of the flight controls was subject to analysis using a series of power spectral density measures. The flight path metrics showed no significant differences in performance between the symmetric and asymmetric approaches. However, control input frequency domain measures revealed that the pilots employed highly different control strategies in the pitch and yaw axes. The results demonstrate that to evaluate pilot performance fully in large aircraft, it is necessary to employ performance metrics targeted at both the outer control loop (flight path) and the inner control loop (flight control) parameters in parallel, evaluating both the product and process of a pilot's performance.
A Methodology to Determine the Psychomotor Performance of Helicopter Pilots During Flight Maneuvers.
McMahon, Terry W; Newman, David G
2015-07-01
Helicopter flying is a complex psychomotor task requiring continuous control inputs to maintain stable flight and conduct maneuvers. Flight safety is impaired when this psychomotor performance is compromised. A comprehensive understanding of the psychomotor performance of helicopter pilots, under various operational and physiological conditions, remains to be developed. The purpose of this study was to develop a flight simulator-based technique for capturing psychomotor performance data of helicopter pilots. Three helicopter pilots conducted six low-level flight sequences in a helicopter simulator. Accelerometers applied to each flight control recorded the frequency and magnitude of movements. The mean (± SEM) number of control inputs per flight was 2450 (± 136). The mean (± SEM) number of control inputs per second was 1.96 (± 0.15). The mean (± SEM) force applied was 0.44 G (± 0.05 G). No significant differences were found between pilots in terms of flight completion times or number of movements per second. The number of control inputs made by the hands was significantly greater than the number of foot movements. The left hand control input forces were significantly greater than all other input forces. This study shows that the use of accelerometers in flight simulators is an effective technique for capturing accurate, reliable data on the psychomotor performance of helicopter pilots. This technique can be applied in future studies to a wider range of operational and physiological conditions and mission types in order to develop a greater awareness and understanding of the psychomotor performance demands on helicopter pilots.
Simulation Evaluation of Pilot Inputs for Real Time Modeling During Commercial Flight Operations
NASA Technical Reports Server (NTRS)
Martos, Borja; Ranaudo, Richard; Oltman, Ryan; Myhre, Nick
2017-01-01
Aircraft dynamics characteristics can only be identified from flight data when the aircraft dynamics are excited sufficiently. A preliminary study was conducted into what types and levels of manual piloted control excitation would be required for accurate Real-Time Parameter IDentification (RTPID) results by commercial airline pilots. This includes assessing the practicality for the pilot to provide this excitation when cued, and to further understand if pilot inputs during various phases of flight provide sufficient excitation naturally. An operationally representative task was evaluated by 5 commercial airline pilots using the NASA Ice Contamination Effects Flight Training Device (ICEFTD). Results showed that it is practical to use manual pilot inputs only as a means of achieving good RTPID in all phases of flight and in flight turbulence conditions. All pilots were effective in satisfying excitation requirements when cued. Much of the time, cueing was not even necessary, as just performing the required task provided enough excitation for accurate RTPID estimation. Pilot opinion surveys reported that the additional control inputs required when prompted by the excitation cueing were easy to make, quickly mastered, and required minimal training.
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1996-01-01
Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for closed loop parameter identification purposes, specifically for longitudinal and lateral linear model parameter estimation at 5, 20, 30, 45, and 60 degrees angle of attack, using the NASA 1A control law. Each maneuver is to be realized by the pilot applying square wave inputs to specific pilot station controls. Maneuver descriptions and complete specifications of the time/amplitude points defining each input are included, along with plots of the input time histories.
Adaptive State Predictor Based Human Operator Modeling on Longitudinal and Lateral Control
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.
2015-01-01
Control-theoretic modeling of the human operator dynamic behavior in manual control tasks has a long and rich history. In the last two decades, there has been a renewed interest in modeling the human operator. There has also been significant work on techniques used to identify the pilot model of a given structure. The purpose of this research is to attempt to go beyond pilot identification based on collected experimental data and to develop a predictor of pilot behavior. An experiment was conducted to categorize these interactions of the pilot with an adaptive controller compensating during control surface failures. A general linear in-parameter model structure is used to represent a pilot. Three different estimation methods are explored. A gradient descent estimator (GDE), a least squares estimator with exponential forgetting (LSEEF), and a least squares estimator with bounded gain forgetting (LSEBGF) used the experiment data to predict pilot stick input. Previous results have found that the GDE and LSEEF methods are fairly accurate in predicting longitudinal stick input from commanded pitch. This paper discusses the accuracy of each of the three methods - GDE, LSEEF, and LSEBGF - to predict both pilot longitudinal and lateral stick input from the flight director's commanded pitch and bank attitudes.
Adaptive Controller Effects on Pilot Behavior
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.
2014-01-01
Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.
Preliminary Exploration of Adaptive State Predictor Based Human Operator Modeling
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.
2012-01-01
Control-theoretic modeling of the human operator dynamic behavior in manual control tasks has a long and rich history. In the last two decades, there has been a renewed interest in modeling the human operator. There has also been significant work on techniques used to identify the pilot model of a given structure. The purpose of this research is to attempt to go beyond pilot identification based on collected experimental data and to develop a predictor of pilot behavior. An experiment was conducted to quantify the effects of changing aircraft dynamics on an operator s ability to track a signal in order to eventually model a pilot adapting to changing aircraft dynamics. A gradient descent estimator and a least squares estimator with exponential forgetting used these data to predict pilot stick input. The results indicate that individual pilot characteristics and vehicle dynamics did not affect the accuracy of either estimator method to estimate pilot stick input. These methods also were able to predict pilot stick input during changing aircraft dynamics and they may have the capability to detect a change in a subject due to workload, engagement, etc., or the effects of changes in vehicle dynamics on the pilot.
Pilot-model measurements of pilot responses in a lateral-directional control task
NASA Technical Reports Server (NTRS)
Adams, J. J.
1976-01-01
Pilot response during an aircraft bank-angle compensatory control task was measured by using an adaptive modeling technique. In the main control loop, which is the bank angle to aileron command loop, the pilot response was the same as that measured previously in single-input, single-output systems. The pilot used a rudder to aileron control coordination that canceled up to 80 percent of the vehicle yawing moment due to aileron deflection.
System and Method for Providing Model-Based Alerting of Spatial Disorientation to a Pilot
NASA Technical Reports Server (NTRS)
Johnson, Steve (Inventor); Conner, Kevin J (Inventor); Mathan, Santosh (Inventor)
2015-01-01
A system and method monitor aircraft state parameters, for example, aircraft movement and flight parameters, applies those inputs to a spatial disorientation model, and makes a prediction of when pilot may become spatially disoriented. Once the system predicts a potentially disoriented pilot, the sensitivity for alerting the pilot to conditions exceeding a threshold can be increased and allow for an earlier alert to mitigate the possibility of an incorrect control input.
Pilot Human Factors in Stall/Spin Accidents of Supersonic Fighter Aircraft
NASA Technical Reports Server (NTRS)
Anderson, S. B.; Enevoldson, E. K.; Nguyen, L. T.
1983-01-01
A study has been made of pilot human factors related to stall/spin accidents of supersonic fighter aircraft. The military specifications for flight at high angles of attack are examined. Several pilot human factors problems related to stall/spin are discussed. These problems include (1) unsatisfactory nonvisual warning cues; (2) the inability of the pilot to quickly determine if the aircraft is spinning out of control, or to recognize the type of spin; (3) the inability of the pilot to decide on and implement the correct spin recovery technique; (4) the inability of the pilot to move, caused by high angular rotation; and (5) the tendency of pilots to wait too long in deciding to abandon the irrecoverable aircraft. Psycho-physiological phenomena influencing pilot's behavior in stall/spin situations include (1) channelization of sensory inputs, (2) limitations in precisely controlling several muscular inputs, (3) inaccurate judgment of elapsed time, and (4) disorientation of vestibulo-ocular inputs. Results are given of pilot responses to all these problems in the F14A, F16/AB, and F/A-18A aircraft. The use of departure spin resistance and automatic spin prevention systems incorporated on recent supersonic fighters are discussed. These systems should help to improve the stall/spin accident record with some compromise in maneuverability.
NASA Technical Reports Server (NTRS)
Andrews, William H.; Holleman, Euclid C.
1960-01-01
An investigation was conducted to determine a human pilot's ability to control a multistage vehicle through the launch trajectory. The simulation was performed statically and dynamically by utilizing a human centrifuge. An interesting byproduct of the program was the three-axis side-located controller incorporated for pilot control inputs. This method of control proved to be acceptable for the successful completion of the tracking task during the simulation. There was no apparent effect of acceleration on the mechanical operation of the controller, but the pilot's control feel deteriorated as his dexterity decreased at high levels of acceleration. The application of control in a specific control mode was not difficult. However, coordination of more than one mode was difficult, and, in many instances, resulted in inadvertent control inputs. The acceptable control harmony at an acceleration level of 1 g became unacceptable at higher acceleration levels. Proper control-force harmony for a particular control task appears to be more critical for a three-axis controller than for conventional controllers. During simulations in which the pilot wore a pressure suit, the nature of the suit gloves further aggravated this condition.
NASA Technical Reports Server (NTRS)
Dick, A. O.; Brown, J. L.; Bailey, G.
1977-01-01
Two different types of analyses were done on data from a study in which eye movements and other variables were recorded while four pilots executed landing sequences in a Boeing 737 simulation. Various conditions were manupulated, including changes in turbulence, starting position, and instrumentation. Control inputs were analyzed in the context of the various conditions and compared against ratings of workload obtained using the Cooper-Harper scale. A number of eye-scanning measures including mean dwell time and transition from one instrument to another were entered into a principal components factor analysis. The results show a differentiation between control inputs and eye-scanning behavior. This shows the need for improved definition of workload and experiments to uncover the important differences among control inputs, eye-scanning and cognitive processes of the pilot.
Vertical flight path steering system for aircraft
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor)
1983-01-01
Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.
NASA Technical Reports Server (NTRS)
Dick, A. O.
1980-01-01
Eye movement data and other parameters including instrument readings, aircraft state and position variables, and control maneuvers were recorded while pilots flew ILS simulations in a B 737. The experiment itself employed seven airline pilots, each of whom flew approximately 40 approach/landing sequences. The simulator was equipped with a night visual scene but the scene was fogged out down to approximately 60 meters (200 ft). The instrument scanning appeared to follow aircraft parameters not physical position of instruments. One important implication of the results is: pilots look for categories or packets of information. Control inputs were tabulated according to throttle, wheel position, column, and pitch trim changes. Three seconds of eye movements before and after the control input were then obtained. Analysis of the eye movement data for the controlling periods showed clear patterns. The results suggest a set of miniscan patterns which are used according to the specific details of the situation. A model is developed which integrates scanning and controlling. Differentiations are made between monitoring and controlling scans.
Effect of vertical active vibration isolation on tracking performance and on ride qualities
NASA Technical Reports Server (NTRS)
Dimasi, F. P.; Allen, R. E.; Calcaterra, P. C.
1972-01-01
An investigation to determine the effect on pilot performance and comfort of an active vibration isolation system for a commercial transport pilot seat is reported. The test setup consisted of: a hydraulic shaker which produced random vertical vibration inputs; the active vibration isolation system; the pilot seat; the pilot control wheel and column; the side-arm controller; and a two-axis compensatory tracking task. The effects of various degrees of pilot isolation on short-term (two-minute) tracking performance and comfort were determined.
Towards practical control design using neural computation
NASA Technical Reports Server (NTRS)
Troudet, Terry; Garg, Sanjay; Mattern, Duane; Merrill, Walter
1991-01-01
The objective is to develop neural network based control design techniques which address the issue of performance/control effort tradeoff. Additionally, the control design needs to address the important issue if achieving adequate performance in the presence of actuator nonlinearities such as position and rate limits. These issues are discussed using the example of aircraft flight control. Given a set of pilot input commands, a feedforward net is trained to control the vehicle within the constraints imposed by the actuators. This is achieved by minimizing an objective function which is the sum of the tracking errors, control input rates and control input deflections. A tradeoff between tracking performance and control smoothness is obtained by varying, adaptively, the weights of the objective function. The neurocontroller performance is evaluated in the presence of actuator dynamics using a simulation of the vehicle. Appropriate selection of the different weights in the objective function resulted in the good tracking of the pilot commands and smooth neurocontrol. An extension of the neurocontroller design approach is proposed to enhance its practicality.
Flying qualities and control system characteristics for superaugmented aircraft
NASA Technical Reports Server (NTRS)
Myers, T. T.; Mcruer, D. T.; Johnston, D. E.
1984-01-01
Aircraft-alone dynamics and superaugmented control system fundamental regulatory properties including stability and regulatory responses of the basic closed-loop systems; fundamental high and low frequency margins and governing factors; and sensitivity to aircraft and controller parameters are addressed. Alternative FCS mechanizations, and mechanizational side effects are also discussed. An overview of flying qualities considerations encompasses general pilot operations as a controller in unattended, intermittent and trim, and full-attention regulatory or command control; effective vehicle primary and secondary response properties to pilot inputs and disturbances; pilot control architectural possibilities; and comparison of superaugmented and conventional aircraft path responses for different forms of pilot control. Results of a simple experimental investigation into pilot dynamic behavior in attitude control of superaugmented aircraft configurations with high frequency time laps and time delays are presented.
Human Systems Integration: Requirements and Functional Decomposition
NASA Technical Reports Server (NTRS)
Berson, Barry; Gershzohn, Gary; Boltz, Laura; Wolf, Russ; Schultz, Mike
2005-01-01
This deliverable was intended as an input to the Access 5 Policy and Simulation Integrated Product Teams. This document contains high-level pilot functionality for operations in the National Airspace System above FL430. Based on the derived pilot functions the associated pilot information and control requirements are given.
Flight Simulator Visual-Display Delay Compensation
NASA Technical Reports Server (NTRS)
Crane, D. Francis
1981-01-01
A piloted aircraft can be viewed as a closed-loop man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability. The changes in pilot dynamic response and performance bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. The study reported here evaluated an approach to visual-display delay compensation. The objective of the compensation was to minimize delay-induced change in pilot performance and workload, The compensation was effective. Because the compensation design approach is based on well-established control-system design principles, prospects are favorable for successful application of the approach in other simulations.
Use of Dynamic Distortion to Predict and Alleviate Loss of Control
NASA Technical Reports Server (NTRS)
Klyde, David; Liang, Chi-Ying; Alvarez, Daniel
2011-01-01
This research has developed and evaluated the specific concepts, termed Smart-Cue and Smart-Gain, to alleviate aircraft loss of control that results from unfavorable pilot/vehicle system interactions, including pilot-induced oscillations (PIOs). Unfavorable pilot/ vehicle-system interactions have long been an aviation safety problem. While the effective aircraft dynamic properties involved in these events have been extensively studied and understood, similar scrutiny has not been paid to the many aspects of the primary manual control system that converts the pilot control inputs to motions of the control surfaces. The purpose of the Smart-Cue and Smart-Gain developments is to redress this neglect, and to develop and validate remedial manual control systems.
NASA Technical Reports Server (NTRS)
Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Leonard, Michael W.; Hardy, Gordon H.; Weinstein, Michael; Yildiz, Yildiray
2013-01-01
This paper describes the maturation of a control allocation technique designed to assist pilots in the recovery from pilot induced oscillations (PIOs). The Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) is designed to enable next generation high efficiency aircraft designs. Energy efficient next generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. One of the common issues flying with actuator rate limits is PIOs caused by the phase lag between the pilot inputs and control surface response. CAPIO utilizes real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a non-linear aircraft simulation in the NASA Ames Vertical Motion Simulator. Results indicate that CAPIO helps reduce oscillatory behavior, including the severity and duration of PIOs, introduced by control surface rate limiting.
Single pilot scanning behavior in simulated instrument flight
NASA Technical Reports Server (NTRS)
Pennington, J. E.
1979-01-01
A simulation of tasks associated with single pilot general aviation flight under instrument flight rules was conducted as a baseline for future research studies on advanced flight controls and avionics. The tasks, ranging from simple climbs and turns to an instrument landing systems approach, were flown on a fixed base simulator. During the simulation the control inputs, state variables, and the pilots visual scan pattern including point of regard were measured and recorded.
Stall Recovery Guidance Algorithms Based on Constrained Control Approaches
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Kaneshige, John; Acosta, Diana
2016-01-01
Aircraft loss-of-control, in particular approach to stall or fully developed stall, is a major factor contributing to aircraft safety risks, which emphasizes the need to develop algorithms that are capable of assisting the pilots to identify the problem and providing guidance to recover the aircraft. In this paper we present several stall recovery guidance algorithms, which are implemented in the background without interfering with flight control system and altering the pilot's actions. They are using input and state constrained control methods to generate guidance signals, which are provided to the pilot in the form of visual cues. It is the pilot's decision to follow these signals. The algorithms are validated in the pilot-in-the loop medium fidelity simulation experiment.
NASA Technical Reports Server (NTRS)
Gerdes, R. M.
1980-01-01
A series of simulation and flight investigations were undertaken to evaluate helicopter flying qualities and the effects of control system augmentation for nap-of-the-Earth (NOE) agility and instrument flying tasks. Handling quality factors common to both tasks were identified. Precise attitude control was determined to be a key requirement for successful accomplishment of both tasks. Factors that degraded attitude controllability were improper levels of control sensitivity and damping, and rotor system cross coupling due to helicopter angular rate and collective pitch input. Application of rate command, attitude command, and control input decouple augmentation schemes enhanced attitude control and significantly improved handling qualities for both tasks. The NOE agility and instrument flying handling quality considerations, pilot rating philosophy, and supplemental flight evaluations are also discussed.
NASA Technical Reports Server (NTRS)
Crane, J. M.; Boucek, G. P., Jr.; Smith, W. D.
1986-01-01
A flight management computer (FMC) control display unit (CDU) test was conducted to compare two types of input devices: a fixed legend (dedicated) keyboard and a programmable legend (multifunction) keyboard. The task used for comparison was operation of the flight management computer for the Boeing 737-300. The same tasks were performed by twelve pilots on the FMC control display unit configured with a programmable legend keyboard and with the currently used B737-300 dedicated keyboard. Flight simulator work activity levels and input task complexity were varied during each pilot session. Half of the points tested were previously familiar with the B737-300 dedicated keyboard CDU and half had no prior experience with it. The data collected included simulator flight parameters, keystroke time and sequences, and pilot questionnaire responses. A timeline analysis was also used for evaluation of the two keyboard concepts.
Evaluation of Piloted Inputs for Onboard Frequency Response Estimation
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Martos, Borja
2013-01-01
Frequency response estimation results are presented using piloted inputs and a real-time estimation method recently developed for multisine inputs. A nonlinear simulation of the F-16 and a Piper Saratoga research aircraft were subjected to different piloted test inputs while the short period stabilator/elevator to pitch rate frequency response was estimated. Results show that the method can produce accurate results using wide-band piloted inputs instead of multisines. A new metric is introduced for evaluating which data points to include in the analysis and recommendations are provided for applying this method with piloted inputs.
Application of an integrated flight/propulsion control design methodology to a STOVL aircraft
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Mattern, Duane L.
1991-01-01
Results are presented from the application of an emerging Integrated Flight/Propulsion Control (IFPC) design methodology to a Short Take Off and Vertical Landing (STOVL) aircraft in transition flight. The steps in the methodology consist of designing command shaping prefilters to provide the overall desired response to pilot command inputs. A previously designed centralized controller is first validated for the integrated airframe/engine plant used. This integrated plant is derived from a different model of the engine subsystem than the one used for the centralized controller design. The centralized controller is then partitioned in a decentralized, hierarchical structure comprising of airframe lateral and longitudinal subcontrollers and an engine subcontroller. Command shaping prefilters from the pilot control effector inputs are then designed and time histories of the closed loop IFPC system response to simulated pilot commands are compared to desired responses based on handling qualities requirements. Finally, the propulsion system safety and nonlinear limited protection logic is wrapped around the engine subcontroller and the response of the closed loop integrated system is evaluated for transients that encounter the propulsion surge margin limit.
NASA Technical Reports Server (NTRS)
Gerdes, R. M.
1980-01-01
Results from a series of simulation and flight investigations undertaken to evaluate helicopter flying qualities and the effects of control system augmentation for nap-of-the-earth (NOE) agility and instrument flying tasks were analyzed to assess handling-quality factors common to both tasks. Precise attitude control was determined to be a key requirement for successful accomplishment of both tasks. Factors that degraded attitude controllability were improper levels of control sensitivity and damping and rotor-system cross-coupling due to helicopter angular rate and collective pitch input. Application of rate-command, attitude-command, and control-input decouple augmentation schemes enhanced attitude control and significantly improved handling qualities for both tasks. NOE agility and instrument flying handling-quality considerations, pilot rating philosophy, and supplemental flight evaluations are also discussed.
1990-09-01
military pilot acceptance of a safety network system would be based , as always, on the following: a. Do I really need such a system and will it be a...inferring pilot state based on computer analysis of pilot control inputs (or lack of)l. Having decided that the pilot is incapacitated, PMAS would alert...the advances being made in neural network computing machinery have necessitated a complete re-thinking of the conventional serial von Neuman machine
Applications of pilot scanning behavior to integrated display research
NASA Technical Reports Server (NTRS)
Waller, M. C.
1977-01-01
The oculometer is an electrooptical device designed to measure pilot scanning behavior during instrument approaches and landing operations. An overview of some results from a simulation study is presented to illustrate how information from the oculometer installed in a visual motion simulator, combined with measures of performance and control input data, can provide insight into the behavior and tactics of individual pilots during instrument approaches. Differences in measured behavior of the pilot subjects are pointed out; these differences become apparent in the way the pilots distribute their visual attention, in the amount of control activity, and in selected performance measures. Some of these measured differences have diagnostic implications, suggesting the use of the oculometer along with performance measures as a pilot training tool.
Criteria for Handling Qualities of Military Aircraft.
1982-06-01
loop precognitive manner. The pilot is able to apply discrete, step-like inputs which more or less exactly produce the desired aircraft response. Some...While closed loop operation depends upon the frequency domain response characteristics, successful precognitive control requires the time domain...represents the other extreme of the pilot task from the precognitive time response situation. Mich work was done in attempting to predict pilot opinion from
NASA Technical Reports Server (NTRS)
Siwakosit, W.; Hess, R. A.; Bacon, Bart (Technical Monitor); Burken, John (Technical Monitor)
2000-01-01
A multi-input, multi-output reconfigurable flight control system design utilizing a robust controller and an adaptive filter is presented. The robust control design consists of a reduced-order, linear dynamic inversion controller with an outer-loop compensation matrix derived from Quantitative Feedback Theory (QFT). A principle feature of the scheme is placement of the adaptive filter in series with the QFT compensator thus exploiting the inherent robustness of the nominal flight control system in the presence of plant uncertainties. An example of the scheme is presented in a pilot-in-the-loop computer simulation using a simplified model of the lateral-directional dynamics of the NASA F18 High Angle of Attack Research Vehicle (HARV) that included nonlinear anti-wind up logic and actuator limitations. Prediction of handling qualities and pilot-induced oscillation tendencies in the presence of these nonlinearities is included in the example.
A Collection of Nonlinear Aircraft Simulations in MATLAB
NASA Technical Reports Server (NTRS)
Garza, Frederico R.; Morelli, Eugene A.
2003-01-01
Nonlinear six degree-of-freedom simulations for a variety of aircraft were created using MATLAB. Data for aircraft geometry, aerodynamic characteristics, mass / inertia properties, and engine characteristics were obtained from open literature publications documenting wind tunnel experiments and flight tests. Each nonlinear simulation was implemented within a common framework in MATLAB, and includes an interface with another commercially-available program to read pilot inputs and produce a three-dimensional (3-D) display of the simulated airplane motion. Aircraft simulations include the General Dynamics F-16 Fighting Falcon, Convair F-106B Delta Dart, Grumman F-14 Tomcat, McDonnell Douglas F-4 Phantom, NASA Langley Free-Flying Aircraft for Sub-scale Experimental Research (FASER), NASA HL-20 Lifting Body, NASA / DARPA X-31 Enhanced Fighter Maneuverability Demonstrator, and the Vought A-7 Corsair II. All nonlinear simulations and 3-D displays run in real time in response to pilot inputs, using contemporary desktop personal computer hardware. The simulations can also be run in batch mode. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. Since all the nonlinear simulations are implemented entirely in MATLAB, user-defined control laws can be added in a straightforward fashion, and the simulations are portable across various computing platforms. Routines for trim, linearization, and numerical integration are included. The general nonlinear simulation framework and the specifics for each particular aircraft are documented.
Applying face identification to detecting hijacking of airplane
NASA Astrophysics Data System (ADS)
Luo, Xuanwen; Cheng, Qiang
2004-09-01
That terrorists hijacked the airplanes and crashed the World Trade Center is disaster to civilization. To avoid the happening of hijack is critical to homeland security. To report the hijacking in time, limit the terrorist to operate the plane if happened and land the plane to the nearest airport could be an efficient way to avoid the misery. Image processing technique in human face recognition or identification could be used for this task. Before the plane take off, the face images of pilots are input into a face identification system installed in the airplane. The camera in front of pilot seat keeps taking the pilot face image during the flight and comparing it with pre-input pilot face images. If a different face is detected, a warning signal is sent to ground automatically. At the same time, the automatic cruise system is started or the plane is controlled by the ground. The terrorists will have no control over the plane. The plane will be landed to a nearest or appropriate airport under the control of the ground or cruise system. This technique could also be used in automobile industry as an image key to avoid car stealth.
NASA Technical Reports Server (NTRS)
Clark, Carl C.; Woodling, C. H.
1959-01-01
With the ever increasing complexity of airplanes and the nearness to reality of manned space vehicles the use of pilot-controlled flight simulators has become imperative. The state of the art in flight simulation has progressed well with the demand. Pilot-controlled flight simulators are finding increasing uses in aeromedical research, airplane and airplane systems design, and preflight training. At the present many flight simulators are in existence with various degrees of sophistication and sundry purposes. These vary from fixed base simulators where the pilot applies control inputs according to visual cues presented to him on an instrument display to moving base simulators where various combinations of angular and linear motions are added in an attempt to improve the flight simulation.
Evaluation of Two Unique Side Stick Controllers in a Fixed-Base Flight Simulator
NASA Technical Reports Server (NTRS)
Mayer, Jann; Cox, Timothy H.
2003-01-01
A handling qualities analysis has been performed on two unique side stick controllers in a fixed-base F-18 flight simulator. Each stick, which uses a larger range of motion than is common for similar controllers, has a moving elbow cup that accommodates movement of the entire arm for control. The sticks are compared to the standard center stick in several typical fighter aircraft tasks. Several trends are visible in the time histories, pilot ratings, and pilot comments. The aggressive pilots preferred the center stick, because the side sticks are underdamped, causing overshoots and oscillations when large motions are executed. The less aggressive pilots preferred the side sticks, because of the smooth motion and low breakout forces. The aggressive pilots collectively gave the worst ratings, probably because of increased sensitivity of the simulator (compared to the actual F-18 aircraft), which can cause pilot-induced oscillations when aggressive inputs are made. Overall, the elbow cup is not a positive feature, because using the entire arm for control inhibits precision. Pilots had difficulty measuring their performance, particularly during the offset landing task, and tended to overestimate.
Flight Simulator Platform Motion and Air Transport Pilot Training
NASA Technical Reports Server (NTRS)
Lee, Alfred T.; Bussolari, Steven R.
1989-01-01
The influence of flight simulator platform motion on pilot training and performance was examined In two studies utilizing a B-727-200 aircraft simulator. The simulator, located at Ames Research Center, Is certified by the FAA for upgrade and transition training in air carrier operations. Subjective ratings and objective performance of experienced B-727 pilots did not reveal any reliable effects of wide variations In platform motion de- sign. Motion platform variations did, however, affect the acquisition of control skill by pilots with no prior heavy aircraft flying experience. The effect was limited to pitch attitude control inputs during the early phase of landing training. Implications for the definition of platform motion requirements in air transport pilot training are discussed.
Compensation for time delay in flight simulator visual-display systems
NASA Technical Reports Server (NTRS)
Crane, D. F.
1983-01-01
A piloted aircraft can be viewed as a closed-loop, man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability, and these changes bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. Delay compensation, designed to restore pilot-aircraft system stability, was evaluated in several studies which are reported here. The studies range from single-axis, tracking-task experiments (with sufficient subjects and trials to establish statistical significance of the results) to a brief evaluation of compensation of a computer-generated-imagery (CGI) visual display system in a full six-degree-of-freedom simulation. The compensation was effective - improvements in pilot performance and workload or aircraft handling-qualities rating (HQR) were observed. Results from recent aircraft handling-qualities research literature which support the compensation design approach are also reviewed.
Evaluation of Control Inputs on the Spin Recovery of the 8KCAB Super Decathlon
2015-09-17
limited exposure to spins and variations of spin recovery methods. Aircraft spins have become taboo and avoided by all but the most experienced...knowledge of every pilot, some areas have become taboo and avoided all but the most experienced pilots and researchers. This leads to much...recovery methods. Aircraft spins have become taboo and avoided by all but the most experienced pilots and researchers. The research here is focused
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.
2014-01-01
Control-theoretic modeling of human operator's dynamic behavior in manual control tasks has a long, rich history. There has been significant work on techniques used to identify the pilot model of a given structure. This research attempts to go beyond pilot identification based on experimental data to develop a predictor of pilot behavior. Two methods for pre-dicting pilot stick input during changing aircraft dynamics and deducing changes in pilot behavior are presented This approach may also have the capability to detect a change in a subject due to workload, engagement, etc., or the effects of changes in vehicle dynamics on the pilot. With this ability to detect changes in piloting behavior, the possibility now exists to mediate human adverse behaviors, hardware failures, and software anomalies with autono-my that may ameliorate these undesirable effects. However, appropriate timing of when au-tonomy should assume control is dependent on criticality of actions to safety, sensitivity of methods to accurately detect these adverse changes, and effects of changes in levels of auto-mation of the system as a whole.
Modified optimal control pilot model for computer-aided design and analysis
NASA Technical Reports Server (NTRS)
Davidson, John B.; Schmidt, David K.
1992-01-01
This paper presents the theoretical development of a modified optimal control pilot model based upon the optimal control model (OCM) of the human operator developed by Kleinman, Baron, and Levison. This model is input compatible with the OCM and retains other key aspects of the OCM, such as a linear quadratic solution for the pilot gains with inclusion of control rate in the cost function, a Kalman estimator, and the ability to account for attention allocation and perception threshold effects. An algorithm designed for each implementation in current dynamic systems analysis and design software is presented. Example results based upon the analysis of a tracking task using three basic dynamic systems are compared with measured results and with similar analyses performed with the OCM and two previously proposed simplified optimal pilot models. The pilot frequency responses and error statistics obtained with this modified optimal control model are shown to compare more favorably to the measured experimental results than the other previously proposed simplified models evaluated.
Flight simulator platform motion and air transport pilot training
NASA Technical Reports Server (NTRS)
Lee, Alfred T.; Bussolari, Steven R.
1987-01-01
The effect of a flight simulator platform motion on the performance and training of a pilot was evaluated using subjective ratings and objective performance data obtained on experienced B-727 pilots and pilots with no prior heavy aircraft flying experience flying B-727-200 aircraft simulator used by the FAA in the upgrade and transition training for air carrier operations. The results on experienced pilots did not reveal any reliable effects of wide variations in platform motion design. On the other hand, motion variations significantly affected the behavior of pilots without heavy-aircraft experience. The effect was limited to pitch attitude control inputs during the early phase of landing training.
Predicting Loss-of-Control Boundaries Toward a Piloting Aid
NASA Technical Reports Server (NTRS)
Barlow, Jonathan; Stepanyan, Vahram; Krishnakumar, Kalmanje
2012-01-01
This work presents an approach to predicting loss-of-control with the goal of providing the pilot a decision aid focused on maintaining the pilot's control action within predicted loss-of-control boundaries. The predictive architecture combines quantitative loss-of-control boundaries, a data-based predictive control boundary estimation algorithm and an adaptive prediction method to estimate Markov model parameters in real-time. The data-based loss-of-control boundary estimation algorithm estimates the boundary of a safe set of control inputs that will keep the aircraft within the loss-of-control boundaries for a specified time horizon. The adaptive prediction model generates estimates of the system Markov Parameters, which are used by the data-based loss-of-control boundary estimation algorithm. The combined algorithm is applied to a nonlinear generic transport aircraft to illustrate the features of the architecture.
Effects of stick dynamics on helicopter flying qualities
NASA Technical Reports Server (NTRS)
Watson, Douglas C.; Schroeder, Jeffery A.
1990-01-01
An experiment that investigated the influence of typical helicopter force-feel system dynamics on roll-axis handling qualities was conducted in concurrent ground and inflight simulations. Variations in lateral control natural frequency and damping ratio, effected by changes in inertia and damping, were evaluated in a disturbance-rejection task. Pilot ratings indicated a preference for low-inertia feel systems, although measured performance was relatively constant over the range of stick characteristics. Force-sensing was compared with position sensing as the input to the control system. Force-sensing improved performance but did not improve pilot ratings. Overall, the results indicated that control-stick dynamics, at least within a reasonable range, did not have a significant effect on pilot-vehicle performance. However, the physical effort required to maintain a desired pilot/manipulator bandwidth became objectionable as the stick inertia increased beyond 5-7 lbm, which was reflected in the pilot ratings and comments.
A study of pilot modeling in multi-controller tasks
NASA Technical Reports Server (NTRS)
Whitbeck, R. F.; Knight, J. R.
1972-01-01
A modeling approach, which utilizes a matrix of transfer functions to describe the human pilot in multiple input, multiple output control situations, is studied. The approach used was to extend a well established scalar Wiener-Hopf minimization technique to the matrix case and then study, via a series of experiments, the data requirements when only finite record lengths are available. One of these experiments was a two-controller roll tracking experiment designed to force the pilot to use rudder in order to coordinate and reduce the effects of aileron yaw. One model was computed for the case where the signals used to generate the spectral matrix are error and bank angle while another model was computed for the case where error and yaw angle are the inputs. Several anomalies were observed to be present in the experimental data. These are defined by the descriptive terms roll up, break up, and roll down. Due to these algorithm induced anomalies, the frequency band over which reliable estimates of power spectra can be achieved is considerably less than predicted by the sampling theorem.
NASA Technical Reports Server (NTRS)
Cok, Keith E.
1989-01-01
The Orbital Maneuvering Vehicle (OMV) will be remotely piloted during rendezvous, docking, or proximity operations with target spacecraft from a ground control console (GCC). The real-time mission simulator and graphics being used to design a console pilot-machine interface are discussed. A real-time orbital dynamics simulator drives the visual displays. The dynamics simulator includes a J2 oblate earth gravity model and a generalized 1962 rotating atmospheric and drag model. The simulator also provides a variable-length communication delay to represent use of the Tracking and Data Relay Satellite System (TDRSS) and NASA Communications (NASCOM). Input parameter files determine the graphics display. This feature allows rapid prototyping since displays can be easily modified from pilot recommendations. A series of pilot reviews are being held to determine an effective pilot-machine interface. Pilots fly missions with nominal to 3-sigma dispersions in translational or rotational axes. Console dimensions, switch type and layout, hand controllers, and graphic interfaces are evaluated by the pilots and the GCC simulator is modified for subsequent runs. Initial results indicate a pilot preference for analog versus digital displays and for two 3-degree-of-freedom hand controllers.
An Evaluation of Automatic Control System Concepts for General Aviation Airplanes
NASA Technical Reports Server (NTRS)
Stewart, E. C.
1990-01-01
A piloted simulation study of automatic longitudinal control systems for general aviation airplanes has been conducted. These automatic control systems were designed to make the simulated airplane easy to fly for a beginning or infrequent pilot. Different control systems are presented and their characteristics are documented. In a conventional airplane control system each cockpit controller commands combinations of both the airspeed and the vertical speed. The best system in the present study decoupled the airspeed and vertical speed responses to cockpit controller inputs. An important feature of the automatic system was that neither changing flap position nor maneuvering in steeply banked turns affected either the airspeed or the vertical speed. All the pilots who flew the control system simulation were favorably impressed with the very low workload and the excellent handling qualities of the simulated airplane.
NASA Technical Reports Server (NTRS)
Wingrove, Rodney C.; Coate, Robert E.
1961-01-01
The guidance system for maneuvering vehicles within a planetary atmosphere which was studied uses the concept of fast continuous prediction of the maximum maneuver capability from existing conditions rather than a stored-trajectory technique. used, desired touchdown points are compared with the maximum range capability and heating or acceleration limits, so that a proper decision and choice of control inputs can be made by the pilot. In the method of display and control a piloted fixed simulator was used t o demonstrate the feasibility od the concept and to study its application to control of lunar mission reentries and recoveries from aborts.
Interaction of feel system and flight control system dynamics on lateral flying qualities
NASA Technical Reports Server (NTRS)
Bailey, R. E.; Knotts, L. H.
1990-01-01
An experimental investigation of the influence of lateral feel system characteristics on fighter aircraft roll flying qualities was conducted using the variable stability USAF NT-33. Forty-two evaluation flights were flown by three engineering test pilots. The investigation utilized the power approach, visual landing task and up-and-away tasks including formation, gun tracking, and computer-generated compensatory attitude tracking tasks displayed on the Head-Up Display. Experimental variations included the feel system frequency, force-deflection gradient, control system command type (force or position input command), aircraft roll mode time constant, control system prefilter frequency, and control system time delay. The primary data were task performance records and evaluation pilot comments and ratings using the Cooper-Harper scale. The data highlight the unique and powerful effect of the feel system of flying qualities. The data show that the feel system is not 'equivalent' in flying qualities influence to analogous control system elements. A lower limit of allowable feel system frequency appears warranted to ensure good lateral flying qualities. Flying qualities criteria should most properly treat the feel system dynamic influence separately from the control system, since the input and output of this dynamic element is apparent to the pilot and thus, does not produce a 'hidden' effect.
NASA Technical Reports Server (NTRS)
Perri, Todd A.; Mckillip, R. M., Jr.; Curtiss, H. C., Jr.
1987-01-01
The development and methodology is presented for development of full-authority implicit model-following and explicit model-following optimal controllers for use on helicopters operating in the Nap-of-the Earth (NOE) environment. Pole placement, input-output frequency response, and step input response were used to evaluate handling qualities performance. The pilot was equipped with velocity-command inputs. A mathematical/computational trajectory optimization method was employed to evaluate the ability of each controller to fly NOE maneuvers. The method determines the optimal swashplate and thruster input histories from the helicopter's dynamics and the prescribed geometry and desired flying qualities of the maneuver. Three maneuvers were investigated for both the implicit and explicit controllers with and without auxiliary propulsion installed: pop-up/dash/descent, bob-up at 40 knots, and glideslope. The explicit controller proved to be superior to the implicit controller in performance and ease of design.
Real-Time Monitoring and Prediction of the Pilot Vehicle System (PVS) Closed-Loop Stability
NASA Astrophysics Data System (ADS)
Mandal, Tanmay Kumar
Understanding human control behavior is an important step for improving the safety of future aircraft. Considerable resources are invested during the design phase of an aircraft to ensure that the aircraft has desirable handling qualities. However, human pilots exhibit a wide range of control behaviors that are a function of external stimulus, aircraft dynamics, and human psychological properties (such as workload, stress factor, confidence, and sense of urgency factor). This variability is difficult to address comprehensively during the design phase and may lead to undesirable pilot-aircraft interaction, such as pilot-induced oscillations (PIO). This creates the need to keep track of human pilot performance in real-time to monitor the pilot vehicle system (PVS) stability. This work focused on studying human pilot behavior for the longitudinal axis of a remotely controlled research aircraft and using human-in-the-loop (HuIL) simulations to obtain information about the human controlled system (HCS) stability. The work in this dissertation is divided into two main parts: PIO analysis and human control model parameters estimation. To replicate different flight conditions, this study included time delay and elevator rate limiting phenomena, typical of actuator dynamics during the experiments. To study human control behavior, this study employed the McRuer model for single-input single-output manual compensatory tasks. McRuer model is a lead-lag controller with time delay which has been shown to adequately model manual compensatory tasks. This dissertation presents a novel technique to estimate McRuer model parameters in real-time and associated validation using HuIL simulations to correctly predict HCS stability. The McRuer model parameters were estimated in real-time using a Kalman filter approach. The estimated parameters were then used to analyze the stability of the closed-loop HCS and verify them against the experimental data. Therefore, the main contribution of this dissertation is the design of an unscented Kalman filter-based algorithm to estimate McRuer model parameters in real time, and a framework to validate this algorithm for single-input single-output manual compensatory tasks to predict instabilities.
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Guo, Ten-Huei; Sowers, T. Shane; Chicatelli, Amy K.; Fulton, Christopher E.; May, Ryan D.; Owen, A. Karl
2012-01-01
This paper describes the implementation and evaluation of a yaw rate to throttle feedback system designed to replace a damaged rudder. It can act as a Dutch roll damper and as a means to facilitate pilot input for crosswind landings. Enhanced propulsion control modes were implemented to increase responsiveness and thrust level of the engine, which impact flight dynamics and performance. Piloted evaluations were performed to determine the capability of the engines to substitute for the rudder function under emergency conditions. The results showed that this type of implementation is beneficial, but the engines' capability to replace the rudder is limited.
Study of the application of an implicit model-following flight controller to lift-fan VTOL aircraft
NASA Technical Reports Server (NTRS)
Merrick, V. K.
1977-01-01
An implicit model-following flight controller is proposed. This controller is relatively simple in concept: it provides an input/output relationship that is approximately that of any selected second order system; it provides good gust alleviation; and it is self-trimming. The flight controller was applied to all axes of a comprehensive mathematical model of a lift-fan V/STOL transport. Power management controls and displays were designed to match the various modes of control provided by the flight controller. A piloted simulation was performed using a six degree of freedom simulator. The fixed-operating-point handling qualities throughout the powered lift flight envelope received pilot ratings of 3-1/2 or better. Approaches and vertical landings in IFR zero-zero conditions received pilot ratings varying from 2-1/2 to 4 depending on the type of approach and weather conditions.
Compound hydraulic shear-modulated vortex amplifiers
NASA Technical Reports Server (NTRS)
Goldschmied, F. R.
1977-01-01
A novel two-stage shear-modulated hydraulic vortex amplifier (U.S. patent 3,520,317) has been fabricated and put through preliminary steady-state testing at the 1000 psi supply pressure level with flows up to 15 gpm. The invention comprises a conventional fluidic vortex power stage and a shear-modulated pilot stage. In the absence of any mechanical moving parts, water may be used as the hydraulic medium thus opening the way to many underseas applications. At blocked load, a control input from 0 to 150 psi was required to achieve an output from 0 to 900 psi; at wide-open load, a control input of 0 to 120 psi was needed to achieve an output from 0 to 15 gpm. The power stage has been found unsuitable for the proportional control mode because of its nonlinear performance in the intermediate load range and because of strong pressure fluctuations (plus or minus 150 psi) in the intermediate control range. The addition of the shear-modulated pilot stage improves intermediate load linearity.
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Jackson, E. Bruce; Goodrich, Kenneth H.; Ragsdale, W. Al; Neuhaus, Jason; Barnes, Jim
2008-01-01
A program of research, development, test, and evaluation is planned for the development of Spacecraft Handling Qualities guidelines. In this first experiment, the effects of Reaction Control System design characteristics and rotational control laws were evaluated during simulated proximity operations and docking. Also, the influence of piloting demands resulting from varying closure rates was assessed. The pilot-in-the-loop simulation results showed that significantly different spacecraft handling qualities result from the design of the Reaction Control System. In particular, cross-coupling between translational and rotational motions significantly affected handling qualities as reflected by Cooper-Harper pilot ratings and pilot workload, as reflected by Task-Load Index ratings. This influence is masked but only slightly by the rotational control system mode. While rotational control augmentation using Rate Command Attitude Hold can reduce the workload (principally, physical workload) created by cross-coupling, the handling qualities are not significantly improved. The attitude and rate deadbands of the RCAH introduced significant mental workload and control compensation to evaluate when deadband firings would occur, assess their impact on docking performance, and apply control inputs to mitigate that impact.
2012-05-25
station design . These issues include: poor ergonomics ; varying data input methods; multiple inputs required to implement a single command; lack of...facing the UAS/RPA discipline. Major discussion topics included: UAS operator selection, training, control station design , manpower and scheduling...Break 1400 – 1430: Naval UAS Training LCDR Brent Olde 1430 – 1500: Control Station Design Issues Melissa Walwanis 1500 – 1600: Tour of NAMRU-D
Autorotation flight control system
NASA Technical Reports Server (NTRS)
Bachelder, Edward N. (Inventor); Aponso, Bimal L. (Inventor); Lee, Dong-Chan (Inventor)
2011-01-01
The present invention provides computer implemented methodology that permits the safe landing and recovery of rotorcraft following engine failure. With this invention successful autorotations may be performed from well within the unsafe operating area of the height-velocity profile of a helicopter by employing the fast and robust real-time trajectory optimization algorithm that commands control motion through an intuitive pilot display, or directly in the case of autonomous rotorcraft. The algorithm generates optimal trajectories and control commands via the direct-collocation optimization method, solved using a nonlinear programming problem solver. The control inputs computed are collective pitch and aircraft pitch, which are easily tracked and manipulated by the pilot or converted to control actuator commands for automated operation during autorotation in the case of an autonomous rotorcraft. The formulation of the optimal control problem has been carefully tailored so the solutions resemble those of an expert pilot, accounting for the performance limitations of the rotorcraft and safety concerns.
NASA Technical Reports Server (NTRS)
Nataupsky, Mark; Crittenden, Lucille
1988-01-01
Stereo 3-D was researched as a means to present cockpit displays which enhance a pilot's situational awareness while maintaining a desirable level of mental workload. The initial study at the NASA Langley Research Center used two different pathways-in-the-sky to augment a computer-generated pictorial primary flight display. One pathway resembled the outline of signposts, while the other pathway resembled a monorail. That display was configured for a curved approach to a landing such as could be used in a Microwave Landing System (MLS) approach. It could also be used for military transports which would have to fly a precision curved pathway. Each trial was initialized with the pilot on the desired flight path. After 2 seconds, he suddenly was shifted to one of eight flight path offsets. The pilot was then required to make the initial pitch and/or roll input to correct back to the nominal flight path. As soon as the input was made, the trial was over. No input was required for control trials with no flight path offset. Pilots responded statistically significantly faster when the display was presented in the stereo version than when it was presented in the nonstereo version.
An evaluation of automatic control system concepts for general aviation airplanes
NASA Technical Reports Server (NTRS)
Stewart, E. C.; Ragsdale, W. A.; Wunschel, A. J.
1988-01-01
A piloted simulation study of automatic longitudinal control systems for general aviation airplanes has been conducted. These automatic control systems were designed to make the simulated airplane easy to fly for a beginning or infrequent pilot. Different control systems are presented and their characteristics are documented. In a conventional airplane control system each cockpit controller commands combinations of both the airspeed and the vertical speed. The best system in the present study decoupled the airspeed and vertical speed responses to cockpit throttle inputs. That is, the cockpit throttle lever commanded only airspeed responses, and the longitudinal wheel position commanded only vertical speed responses. This system significantly reduced the pilot workload throughout an entire mission of the airplane from takeoff to landing. An important feature of the automatic system was that neither changing flap position nor maneuvering in steeply banked turns affected either the airspeed or the vertical speed. All the pilots who flew the control system simulation were favorably impressed with the very low workload and the excellent handling qualities of the simulated airplane.
NASA Technical Reports Server (NTRS)
Steinmetz, G. G.
1980-01-01
Using simulation, an improved longitudinal velocity vector control wheel steering mode and an improved electronic display format for an advanced flight system were developed and tested. Guidelines for the development phase were provided by test pilot critique summaries of the previous system. The results include performances from computer generated step column inputs across the full airplane speed and configuration envelope, as well as piloted performance results taken from a reference line tracking task and an approach to landing task conducted under various environmental conditions. The analysis of the results for the reference line tracking and approach to landing tasks indicates clearly detectable improvement in pilot tracking accuracy with a reduction in physical workload. The original objectives of upgrading the longitudinal axis of the velocity vector control wheel steering mode were successfully met when measured against the test pilot critique summaries and the original purpose outlined for this type of augment control mode.
Hewson, D J; McNair, P J; Marshall, R N
2001-07-01
Pilots may have difficulty controlling aircraft at both high and low force levels due to larger variability in force production at these force levels. The aim of this study was to measure the force variability and landing performance of pilots during an instrument landing in a flight simulator. There were 12 pilots who were tested while performing 5 instrument landings in a flight simulator, each of which required different control force inputs. Pilots can produce the least force when pushing the control column to the right, therefore the force levels for the landings were set relative to each pilot's maximum aileron-right force. The force levels for the landings were 90%, 60%, and 30% of maximal aileron-right force, normal force, and 25% of normal force. Variables recorded included electromyographic activity (EMG), aircraft control forces, aircraft attitude, perceived exertion and deviation from glide slope and heading. Multivariate analysis of variance was used to test for differences between landings. Pilots were least accurate in landing performance during the landing at 90% of maximal force (p < 0.05). There was also a trend toward decreased landing performance during the landing at 25% of normal force. Pilots were more variable in force production during the landings at 60% and 90% of maximal force (p < 0.05). Pilots are less accurate at performing instrument landings when control forces are high due to the increased variability of force production. The increase in variability at high force levels is most likely associated with motor unit recruitment, rather than rate coding. Aircraft designers need to consider the reduction in pilot performance at high force levels, as well as pilot strength limits when specifying new standards.
Pursuit tracking and higher levels of skill development in the human pilot
NASA Technical Reports Server (NTRS)
Hess, R. A.
1981-01-01
A model of the human pilot is offered for pursuit tracking tasks; the model encompasses an existing model for compensatory tracking. The central hypothesis in the development of this model states that those primary structural elements in the compensatory model responsible for the pilot's equalization capabilities remain intact in the pursuit model. In this latter case, effective low-frequency inversion of the controlled-element dynamics occurs by feeding-forward derived input rate through the equalization dynamics, with low-frequency phase droop minimized. The sharp reduction in low-frequency phase lag beyond that associated with the disappearance of phase droop is seen to accompany relatively low-gain feedback of vehicle output. The results of some recent motion cue research are discussed and interpreted in terms of the compensatory-pursuit display dichotomy. Tracking with input preview is discussed in a qualitative way. In terms of the model, preview is shown to demand no fundamental changes in structure or equalization and to allow the pilot to eliminate the effective time delays that accrue in the inversion of the controlled-element dynamics. Precognitive behavior is discussed, and a model that encompasses all the levels of skill development outlined in the successive organizations of perception theory is finally proposed.
A preliminary investigation of the use of throttles for emergency flight control
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Fullerton, C. Gordon; Gilyard, Glenn B.; Wolf, Thomas D.; Stewart, James F.
1991-01-01
A preliminary investigation was conducted regarding the use of throttles for emergency flight control of a multiengine aircraft. Several airplanes including a light twin-engine piston-powered airplane, jet transports, and a high performance fighter were studied during flight and piloted simulations. Simulation studies used the B-720, B-727, MD-11, and F-15 aircraft. Flight studies used the Lear 24, Piper PA-30, and F-15 airplanes. Based on simulator and flight results, all the airplanes exhibited some control capability with throttles. With piloted simulators, landings using manual throttles-only control were extremely difficult. An augmented control system was developed that converts conventional pilot stick inputs into appropriate throttle commands. With the augmented system, the B-720 and F-15 simulations were evaluated and could be landed successfully. Flight and simulation data were compared for the F-15 airplane.
NASA Technical Reports Server (NTRS)
Takallu, M. A.; Wong, D. T.; Uenking, M. D.
2002-01-01
An experimental investigation was conducted to study the effectiveness of modern flight displays in general aviation cockpits for mitigating Low Visibility Loss of Control and the Controlled Flight Into Terrain accidents. A total of 18 General Aviation (GA) pilots with private pilot, single engine land rating, with no additional instrument training beyond private pilot license requirements, were recruited to evaluate three different display concepts in a fixed-based flight simulator at the NASA Langley Research Center's General Aviation Work Station. Evaluation pilots were asked to continue flight from Visual Meteorological Conditions (VMC) into Instrument Meteorological Conditions (IMC) while performing a series of 4 basic precision maneuvers. During the experiment, relevant pilot/vehicle performance variables, pilot control inputs and physiological data were recorded. Human factors questionnaires and interviews were administered after each scenario. Qualitative and quantitative data have been analyzed and the results are presented here. Pilot performance deviations from the established target values (errors) were computed and compared with the FAA Practical Test Standards. Results of the quantitative data indicate that evaluation pilots committed substantially fewer errors when using the Synthetic Vision Systems (SVS) displays than when they were using conventional instruments. Results of the qualitative data indicate that evaluation pilots perceived themselves to have a much higher level of situation awareness while using the SVS display concept.
An optimal control model approach to the design of compensators for simulator delay
NASA Technical Reports Server (NTRS)
Baron, S.; Lancraft, R.; Caglayan, A.
1982-01-01
The effects of display delay on pilot performance and workload and of the design of the filters to ameliorate these effects were investigated. The optimal control model for pilot/vehicle analysis was used both to determine the potential delay effects and to design the compensators. The model was applied to a simple roll tracking task and to a complex hover task. The results confirm that even small delays can degrade performance and impose a workload penalty. A time-domain compensator designed by using the optimal control model directly appears capable of providing extensive compensation for these effects even in multi-input, multi-output problems.
NASA Technical Reports Server (NTRS)
Batterson, James G. (Technical Monitor); Morelli, E. A.
1996-01-01
Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for closed loop parameter identification purposes, specifically for longitudinal and lateral linear model parameter estimation at 5,20,30,45, and 60 degrees angle of attack, using the Actuated Nose Strakes for Enhanced Rolling (ANSER) control law in Thrust Vectoring (TV) mode. Each maneuver is to be realized by applying square wave inputs to specific pilot station controls using the On-Board Excitation System (OBES). Maneuver descriptions and complete specifications of the time / amplitude points defining each input are included, along with plots of the input time histories.
Slushy weightings for the optimal pilot model. [considering visual tracking task
NASA Technical Reports Server (NTRS)
Dillow, J. D.; Picha, D. G.; Anderson, R. O.
1975-01-01
A pilot model is described which accounts for the effect of motion cues in a well defined visual tracking task. The effect of visual and motion cues are accounted for in the model in two ways. First, the observation matrix in the pilot model is structured to account for the visual and motion inputs presented to the pilot. Secondly, the weightings in the quadratic cost function associated with the pilot model are modified to account for the pilot's perception of the variables he considers important in the task. Analytic results obtained using the pilot model are compared to experimental results and in general good agreement is demonstrated. The analytic model yields small improvements in tracking performance with the addition of motion cues for easily controlled task dynamics and large improvements in tracking performance with the addition of motion cues for difficult task dynamics.
Pilot mental workload: how well do pilots really perform?
Morris, Charles H; Leung, Ying K
2006-12-15
The purpose of this study was to investigate the effects of increasing mental demands on various aspects of aircrew performance. In particular, the robustness of the prioritization and allocation hierarchy of aviate-navigate-communicate was examined, a hierarchy commonly used within the aviation industry. A total of 42 trainee pilots were divided into three workload groups (low, medium, high) to complete a desktop, computer-based exercise that simulated combinations of generic flight deck activities: flight control manipulation, rule-based actions and higher level cognitive processing, in addition to Air Traffic Control instructions that varied in length from one chunk of auditory information to seven chunks. It was found that as mental workload and auditory input increased, participants experienced considerable difficulty in carrying out the primary manipulation task. A similar decline in prioritization was also observed. Moreover, when pilots were under a high mental workload their ability to comprehend more than two chunks of auditory data deteriorated rapidly.
The Pilot Training Study: A Cost-Estimating Model for Undergraduate Pilot Training.
ERIC Educational Resources Information Center
Allison, S. L.
A means for estimating the resource requirements and attendant costs of any configuration of the undergraduate pilot training system (UPT) is described by inputs that are supplied by the user of the model. The inputs consist of data such as UPT graduate requirements, course syllabus requirements, instructor-student ratios, administrative and…
NASA Technical Reports Server (NTRS)
Chen, R. T. N.; Talbot, P. D.; Gerdes, R. M.; Dugan, D. C.
1978-01-01
A piloted simulation study assessed various levels of stability and control augmentation designed to improve the handling qualities of several helicopters in nap-of-the-earth (NOE) flight. Five basic single rotor helicopters - one teetering, two articulated, and two hingeless - which were found to have a variety of major deficiencies in a previous fixed-based simulator study were selected as baseline configurations. The stability and control augmentation systems (SCAS) include simple control augmentation systems (CAS) to decouple pitch and yaw responses due to collective input and to quicken the pitch and roll control responses; SCAS of rate command type designed to optimize the sensitivity and damping and to decouple the pitch-roll due to aircraft angular rate; and attitude command type SCAS. Pilot ratings and commentary are presented as well as performance data related to the task. SCAS control usage and their gain levels associated with specific rotor type are also discussed.
Measurement of human pilot dynamic characteristics in flight simulation
NASA Technical Reports Server (NTRS)
Reedy, James T.
1987-01-01
Fast Fourier Transform (FFT) and Least Square Error (LSE) estimation techniques were applied to the problem of identifying pilot-vehicle dynamic characteristics in flight simulation. A brief investigation of the effects of noise, input bandwidth and system delay upon the FFT and LSE techniques was undertaken using synthetic data. Data from a piloted simulation conducted at NASA Ames Research Center was then analyzed. The simulation was performed in the NASA Ames Research Center Variable Stability CH-47B helicopter operating in fixed-basis simulator mode. The piloting task consisted of maintaining the simulated vehicle over a moving hover pad whose motion was described by a random-appearing sum of sinusoids. The two test subjects used a head-down, color cathode ray tube (CRT) display for guidance and control information. Test configurations differed in the number of axes being controlled by the pilot (longitudinal only versus longitudinal and lateral), and in the presence or absence of an important display indicator called an 'acceleration ball'. A number of different pilot-vehicle transfer functions were measured, and where appropriate, qualitatively compared with theoretical pilot- vehicle models. Some indirect evidence suggesting pursuit behavior on the part of the test subjects is discussed.
NASA Technical Reports Server (NTRS)
Morelli, E. A.
1996-01-01
Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for closed loop parameter identification purposes, specifically for lateral linear model parameter estimation at 30, 45, and 60 degrees angle of attack, using the Actuated Nose Strakes for Enhanced Rolling (ANSER) control law in Strake (S) model and Strake/Thrust Vectoring (STV) mode. Each maneuver is to be realized by applying square wave inputs to specific pilot station controls using the On-Board Excitation System (OBES). Maneuver descriptions and complete specification of the time/amplitude points defining each input are included, along with plots of the input time histories.
Trunk Acceleration for Neuroprosthetic Control of Standing – a Pilot Study
Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.
2013-01-01
This pilot study investigated the potential of using trunk acceleration feedback control of center of pressure (COP) against postural disturbances with a standing neuroprosthesis following paralysis. Artificial neural networks (ANNs) were trained to use three-dimensional trunk acceleration as input to predict changes in COP for able-bodied subjects undergoing perturbations during bipedal stance. Correlation coefficients between ANN predictions and actual COP ranged from 0.67 to 0.77. An ANN trained across all subject-normalized data was used to drive feedback control of ankle muscle excitation levels for a computer model representing a standing neuroprosthesis user. Feedback control reduced average upper-body loading during perturbation onset and recovery by 42% and peak loading by 29% compared to optimal, constant excitation. PMID:21975251
Trunk acceleration for neuroprosthetic control of standing: a pilot study.
Nataraj, Raviraj; Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J
2012-02-01
This pilot study investigated the potential of using trunk acceleration feedback control of center of pressure (COP) against postural disturbances with a standing neuroprosthesis following paralysis. Artificial neural networks (ANNs) were trained to use three-dimensional trunk acceleration as input to predict changes in COP for able-bodied subjects undergoing perturbations during bipedal stance. Correlation coefficients between ANN predictions and actual COP ranged from 0.67 to 0.77. An ANN trained across all subject-normalized data was used to drive feedback control of ankle muscle excitation levels for a computer model representing a standing neuroprosthesis user. Feedback control reduced average upper-body loading during perturbation onset and recovery by 42% and peak loading by 29% compared with optimal, constant excitation.
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Parrish, Russell V.
1990-01-01
A piloted simulation study was conducted comparing three different input methods for interfacing to a large screen, multiwindow, whole flight deck display for management of transport aircraft systems. The thumball concept utilized a miniature trackball embedded in a conventional side arm controller. The multifunction control throttle and stick (MCTAS) concept employed a thumb switch located in the throttle handle. The touch screen concept provided data entry through a capacitive touch screen installed on the display surface. The objective and subjective results obtained indicate that, with present implementations, the thumball concept was the most appropriate for interfacing with aircraft systems/subsystems presented on a large screen display. Not unexpectedly, the completion time differences between the three concepts varied with the task being performed, although the thumball implementation consistently outperformed the other two concepts. However, pilot suggestions for improved implementations of the MCTAS and touch screen concepts could reduce some of these differences.
Arbitrating Control of Control and Display Units
NASA Technical Reports Server (NTRS)
Sugden, Paul C.
2007-01-01
The ARINC 739 Switch is a computer program that arbitrates control of two multi-function control and display units (MCDUs) between (1) a commercial flight-management computer (FMC) and (2) NASA software used in research on transport aircraft. (MCDUs are the primary interfaces between pilots and FMCs on many commercial aircraft.) This program was recently redesigned into a software library that can be embedded in research application programs. As part of the redesign, this software was combined with software for creating custom pages of information to be displayed on a CDU. This software commands independent switching of the left (pilot s) and right (copilot s) MCDUs. For example, a custom CDU page can control the left CDU while the FMC controls the right CDU. The software uses menu keys to switch control of the CDU between the FMC or a custom CDU page. The software provides an interface that enables custom CDU pages to insert keystrokes into the FMC s CDU input interface. This feature allows the custom CDU pages to manipulate the FMC as if it were a pilot.
Using Natural Language to Enable Mission Managers to Control Multiple Heterogeneous UAVs
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Puig-Navarro, Javier; Mehdi, S. Bilal; Mcquarry, A. Kyle
2016-01-01
The availability of highly capable, yet relatively cheap, unmanned aerial vehicles (UAVs) is opening up new areas of use for hobbyists and for commercial activities. This research is developing methods beyond classical control-stick pilot inputs, to allow operators to manage complex missions without in-depth vehicle expertise. These missions may entail several heterogeneous UAVs flying coordinated patterns or flying multiple trajectories deconflicted in time or space to predefined locations. This paper describes the functionality and preliminary usability measures of an interface that allows an operator to define a mission using speech inputs. With a defined and simple vocabulary, operators can input the vast majority of mission parameters using simple, intuitive voice commands. Although the operator interface is simple, it is based upon autonomous algorithms that allow the mission to proceed with minimal input from the operator. This paper also describes these underlying algorithms that allow an operator to manage several UAVs.
Download SolarPILOT | Concentrating Solar Power | NREL
fill out this input box. First Name Last Name Email Address * Organization Planned Use of SolarPILOT software's Help system. Just click Help Contents under the Help menu, or press F1 from any input page to
2009-09-01
the cyclic behavior of the rotor angle of attack. The last form of pilot command is the rudder pedal . The rudder pedal provides collective input...response of [1, p. 112], as expected. The yaw angle increases in a counter-clockwise direction with right pedal input and damps down to almost zero yaw...FORCES.........................................................................45 1. Determination of Drag and Main Rotor Tip-Path Plane Angle ....45
Error rate information in attention allocation pilot models
NASA Technical Reports Server (NTRS)
Faulkner, W. H.; Onstott, E. D.
1977-01-01
The Northrop urgency decision pilot model was used in a command tracking task to compare the optimized performance of multiaxis attention allocation pilot models whose urgency functions were (1) based on tracking error alone, and (2) based on both tracking error and error rate. A matrix of system dynamics and command inputs was employed, to create both symmetric and asymmetric two axis compensatory tracking tasks. All tasks were single loop on each axis. Analysis showed that a model that allocates control attention through nonlinear urgency functions using only error information could not achieve performance of the full model whose attention shifting algorithm included both error and error rate terms. Subsequent to this analysis, tracking performance predictions for the full model were verified by piloted flight simulation. Complete model and simulation data are presented.
NASA Technical Reports Server (NTRS)
Chen, R. T. N.; Talbot, P. D.; Gerdes, R. M.; Dugan, D. C.
1979-01-01
Four basic single-rotor helicopters, one teetering, on articulated, and two hingeless, which were found to have a variety of major deficiencies in a previous fixed-based simulator study, were selected as baseline configurations. The stability and control augmentation systems (SCAS) include simple control augmentation systems to decouple pitch and yaw responses due to collective input and to quicken the pitch and roll control responses; SCAS of rate-command type designed to optimize the sensitivity and damping and to decouple the pitch-roll due to aircraft angular tate; and attitude-command type SCAS. Pilot ratings and commentary are presented as well as performance data related to the task. SCAS control usages and their gain levels associated with specific rotor types are also discussed.
Petruck, A; Holtmeier, E; Redder, A; Teichgräber, B
2003-01-01
Emschergenossenschaft and Lippeverband have developed a method to use radar-measured precipitation as an input for a real-time control of a combined sewer system containing several overflow structures. Two real-time control strategies have been developed and tested, one is solely volume-based, the other is volume and pollution-based. The system has been implemented in a pilot study in Gelsenkirchen, Germany. During the project the system was optimised and is now in constant operation. It was found, that the volume of combined sewage overflow could be reduced by 5 per cent per year. This was also found in simulations carried out in similar catchment areas. Most of the potential of improvement can already be achieved by local pollution-based control strategies.
Subsatellite Orbital Analysis Program (SOAP) user's guide
NASA Astrophysics Data System (ADS)
Castle, K. G.; Voss, J. M.; Gibson, J. S.
1981-07-01
The features and use of the subsatellite operational analysis are examined. The model simulates several Earth-orbiting vehicles, their pilots, control systems, and interaction with the environment. The use of the program, input and output capabilities, executive structures, and properties of the vehicles and environmental effects which it models are described.
Subsatellite Orbital Analysis Program (SOAP) user's guide
NASA Technical Reports Server (NTRS)
Castle, K. G.; Voss, J. M.; Gibson, J. S.
1981-01-01
The features and use of the subsatellite operational analysis are examined. The model simulates several Earth-orbiting vehicles, their pilots, control systems, and interaction with the environment. The use of the program, input and output capabilities, executive structures, and properties of the vehicles and environmental effects which it models are described.
Postural-Sway Response in Learning-Disabled Children: Pilot Data.
ERIC Educational Resources Information Center
Polatajko, H. J.
1987-01-01
The postural-sway response of five learning disabled (LD) and five nondisabled children was evaluated using a force platform. From statistical analysis of the two groups, the LD children appeared to use visual input to compensate for postural problems and had significant difficulty controlling posture with eyes closed. (SK)
A fuzzy-logic-based controller for methane production in anaerobic fixed-film reactors.
Robles, A; Latrille, E; Ruano, M V; Steyer, J P
2017-01-01
The main objective of this work was to develop a controller for biogas production in continuous anaerobic fixed-bed reactors, which used effluent total volatile fatty acids (VFA) concentration as control input in order to prevent process acidification at closed loop. To this aim, a fuzzy-logic-based control system was developed, tuned and validated in an anaerobic fixed-bed reactor at pilot scale that treated industrial winery wastewater. The proposed controller varied the flow rate of wastewater entering the system as a function of the gaseous outflow rate of methane and VFA concentration. Simulation results show that the proposed controller is capable to achieve great process stability even when operating at high VFA concentrations. Pilot results showed the potential of this control approach to maintain the process working properly under similar conditions to the ones expected at full-scale plants.
Effect of motion cues during complex curved approach and landing tasks: A piloted simulation study
NASA Technical Reports Server (NTRS)
Scanlon, Charles H.
1987-01-01
A piloted simulation study was conducted to examine the effect of motion cues using a high fidelity simulation of commercial aircraft during the performance of complex approach and landing tasks in the Microwave Landing System (MLS) signal environment. The data from these tests indicate that in a high complexity MLS approach task with moderate turbulence and wind, the pilot uses motion cues to improve path tracking performance. No significant differences in tracking accuracy were noted for the low and medium complexity tasks, regardless of the presence of motion cues. Higher control input rates were measured for all tasks when motion was used. Pilot eye scan, as measured by instrument dwell time, was faster when motion cues were used regardless of the complexity of the approach tasks. Pilot comments indicated a preference for motion. With motion cues, pilots appeared to work harder in all levels of task complexity and to improve tracking performance in the most complex approach task.
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Takallu, Mohammad A.
2002-01-01
An experimental investigation was conducted to study the effectiveness of Synthetic Vision Systems (SVS) flight displays as a means of eliminating Low Visibility Loss of Control (LVLOC) and Controlled Flight Into Terrain (CFIT) accidents by low time general aviation (GA) pilots. A series of basic maneuvers were performed by 18 subject pilots during transition from Visual Meteorological Conditions (VMC) to Instrument Meteorological Conditions (IMC), with continued flight into IMC, employing a fixed-based flight simulator. A total of three display concepts were employed for this evaluation. One display concept, referred to as the Attitude Indicator (AI) replicated instrumentation common in today's General Aviation (GA) aircraft. The second display concept, referred to as the Electronic Attitude Indicator (EAI), featured an enlarged attitude indicator that was more representative of a glass display that also included advanced flight symbology, such as a velocity vector. The third concept, referred to as the SVS display, was identical to the EAI except that computer-generated terrain imagery replaced the conventional blue-sky/brown-ground of the EAI. Pilot performance parameters, pilot control inputs and physiological data were recorded for post-test analysis. Situation awareness (SA) and qualitative pilot comments were obtained through questionnaires and free-form interviews administered immediately after the experimental session. Initial pilot performance data were obtained by instructor pilot observations. Physiological data (skin temperature, heart rate, and muscle flexure) were also recorded. Preliminary results indicate that far less errors were committed when using the EAI and SVS displays than when using conventional instruments. The specific data example examined in this report illustrates the benefit from SVS displays to avoid massive loss of SA conditions. All pilots acknowledged the enhanced situation awareness provided by the SVS display concept. Levels of pilot stress appear to be correlated with skin temperature measurements.
Real-Time Stability and Control Derivative Extraction From F-15 Flight Data
NASA Technical Reports Server (NTRS)
Smith, Mark S.; Moes, Timothy R.; Morelli, Eugene A.
2003-01-01
A real-time, frequency-domain, equation-error parameter identification (PID) technique was used to estimate stability and control derivatives from flight data. This technique is being studied to support adaptive control system concepts currently being developed by NASA (National Aeronautics and Space Administration), academia, and industry. This report describes the basic real-time algorithm used for this study and implementation issues for onboard usage as part of an indirect-adaptive control system. A confidence measures system for automated evaluation of PID results is discussed. Results calculated using flight data from a modified F-15 aircraft are presented. Test maneuvers included pilot input doublets and automated inputs at several flight conditions. Estimated derivatives are compared to aerodynamic model predictions. Data indicate that the real-time PID used for this study performs well enough to be used for onboard parameter estimation. For suitable test inputs, the parameter estimates converged rapidly to sufficient levels of accuracy. The devised confidence measures used were moderately successful.
Loss-of-Control-Inhibitor Systems for Aircraft
NASA Technical Reports Server (NTRS)
AHarrah, Ralph C.
2007-01-01
Systems to provide improved tactile feedback to aircraft pilots are being developed to help the pilots maintain harmony between their control actions and the positions of aircraft control surfaces, thereby helping to prevent loss of control. A system of this type, denoted a loss-of-control-inhibitor system (LOCIS) can be implemented as a relatively simple addition to almost any pre-existing flight-control system. The LOCIS concept offers at least a partial solution to the problem of (1) keeping a pilot aware of the state of the control system and the aircraft and (2) maintaining sufficient control under conditions that, as described below, have been known to lead to loss of control. Current commercial aircraft exhibit uneven responses of primary flight-control surfaces to aggressive pilot control commands, leading to deterioration of pilots ability to control their aircraft. In severe cases, this phenomenon can result in loss of control and consequent loss of aircraft. For an older aircraft equipped with a purely mechanical control system, the loss of harmony between a pilot s command action and the control- surface response can be attributed to compliance in the control system (caused, for example, by stretching of control cables, flexing of push rods, or servo-valve distortion). In a newer aircraft equipped with a fly-by-wire control system, the major contributions to loss of harmony between the pilot and the control surfaces are delays attributable to computer cycle time, control shaping, filtering, aliasing, servo-valve distortion, and actuator rate limiting. In addition, a fly-by-wire control system provides no tactile feedback that would enable the pilot to sense such features of the control state as surface flutter, surface jam, position limiting, actuator rate limiting, and control limiting imposed by the aircraft operational envelope. Hence, for example, when a pilot is involved in aggressive closed-loop maneuvering, as when encountering a wake-vortex upset on final landing approach, the control-surface delay can lead to loss of control. Aggressive piloting can be triggered and exacerbated by control-system anomalies, which the pilot cannot diagnose because of the lack of symptoms caused by the absence of feedback through the controls. The purpose served by a LOCIS is to counteract these adverse effects by providing real-time feedback that notifies the pilot that the aircraft is tending to lag the pilot s commands. A LOCIS (see figure) includes cockpit control input-position sensors, control-surface output-position sensors, variable dampers (for example, shock absorbers containing magneto-rheological fluids such that the damping forces can be varied within times of the order of milliseconds by varying applied magnetic fields) attached to the cockpit control levers, electromagnet coils to apply the magnetic fields, and feedback control circuits to drive the electromagnet coils. The feedback control gains are chosen so that the current applied to each electromagnet coil results in a damping force that increases in a suitable nonlinear manner (e.g., exponentially) with the difference between the actual and commanded positions of the affected control surface. The increasing damping force both alerts the pilot to the onset of a potentially dangerous situation and resists the pilot s effort to command a control surface to change position at an excessive rate
F-8 DFBW simulating STS contro l system - Pilot-induced oscillation (PIO) on landing
NASA Technical Reports Server (NTRS)
1978-01-01
From 1972 to 1985 the NASA Dryden Flight Research Center conducted flight research with an F-8C employing the first digital fly-by-wire flight control system without a mechanical back up. The decision to replace all mechanical control linkages to rudder, ailerons, and other flight control surfaces was made for two reasons. First, it forced the research engineers to focus on the technology and issues that were truly critical for a production fly-by-wire aircraft. Secondly, it would give industry the confidence it needed to apply the technology--confidence it would not have had if the experimental system relied on a mechanical back up. In the first few decades of flight, pilots had controlled aircraft through direct force--moving control sticks and rudder pedals linked to cables and pushrods that pivoted control surfaces on the wings and tails. As engine power and speeds increased, more force was needed and hydraulically boosted controls emerged. Soon, all high-performance and large aircraft had hydraulic-mechanical flight-control systems. These conventional flight control systems restricted designers in the configuration and design of aircraft because of the need for flight stability. As the electronic era grew in the 1960s, so did the idea of aircraft with electronic flight-control systems. Wires replacing mechanical devices would give designers greater flexibility in configuration and in the size and placement of components such as tail surfaces and wings. A fly-by-wire system also would be smaller, more reliable, and in military aircraft, much less vulnerable to battle damage. A fly-by-wire aircraft would also be much more responsive to pilot control inputs. The result would be more efficient, safer aircraft with improved performance and design. The Aircraft By the late 1960s, engineers at Dryden began discussing how to modify an aircraft and create a fly-by-wire testbed. Support for the concept at NASA Headquarters came from Neil Armstrong, former research pilot at Dryden. He served in the Office of Advanced Research and Technology following his historic Apollo 11 lunar landing and knew electronic control systems from his days training in and operating the lunar module. Armstrong supported the proposed Dryden project and backed the transfer of an F-8C Crusader from the U.S. Navy to NASA to become the Digital Fly-By-Wire (DFBW) research aircraft. It was given the tail number 'NASA 802.' Wires from the control stick in the cockpit to the control surfaces on the wings and tail surfaces replaced the entire mechanical flight-control system in the F-8. The heart of the system was an off-the-shelf backup Apollo digital flight-control computer and inertial sensing unit, which transmitted pilot inputs to the actuators on the control surfaces. On May 25, 1972, the highly modified F-8 became the first aircraft to fly completely dependent upon an electronic flight-control system without any mechanical backup. The pilot was Gary Krier. The first phase of the DFBW program validated the fly-by-wire concept and quickly showed that a refined system, especially in large aircraft, would greatly enhance flying qualities by sensing motion changes and applying pilot inputs instantaneously. The Phase 1 system had a backup analog fly-by-wire system in the event of a failure in the Apollo computer unit, but it was never necessary to use the system in flight. In a joint program carried out with the Langley Research Center in the second phase of research, the original Apollo system was replaced with a triply redundant digital system. It would provide backup computer capabilities if a failure occurred. The DFBW program lasted 13 years. The final research flight, the 210th of the program, was made April 2, 1985, with Dryden Research Pilot Ed Schneider at the controls. Research Benefits The F-8 DFBW validated the principal concepts of the all-electric flight control systems now used in a variety of airplanes ranging from the F/A-18 to the Boeing 777 and the space shuttles. A DFBW flight control system also is used on the space shuttles. NASA 802 was the testbed for the sidestick-controller used in the F-16 fighter, the second U.S. high performance aircraft with a DFBW system. In addition to pioneering the space shuttle's fly-by-wire flight-control system, NASA 802 was the testbed that explored Pilot Induced Oscillations (PIO) and validated methods to suppress them. PIOs occur when a pilot over-controls an aircraft and a sustained oscillation results. On the last of five free flights of the prototype Space Shuttle Enterprise during approach and landing tests in l977, a PIO developed as the vehicle settled onto the runway. The problem was duplicated with the F-8 DFBW and a series of PIO suppression filters was developed and tested on the aircraft for the shuttle program office. DFBW research carried out with NASA 802 at Dryden is now considered one of the most significant and successful aeronautical programs in NASA history. In this clip we see NASA research pilot John Manke at the controls of Dryden's F-8 Digital Fly-By-Wire aircraft as it enters a severe pilot induced oscillation or PIO just after completion of a touch-and-go landing while testing for a signal-delay-related problem that occurred during an approach to landing on the shuttle prototype Enterprise.
NASA Technical Reports Server (NTRS)
Ligda, Sarah V.; Dao, Arik-Quang V.; Vu, Kim-Phuong; Strybel, Thomas Z.; Battiste, Vernol; Johnson, Walter W.
2010-01-01
Pilot workload was examined during simulated flights requiring flight deck-based merging and spacing while avoiding weather. Pilots used flight deck tools to avoid convective weather and space behind a lead aircraft during an arrival into Louisville International airport. Three conflict avoidance management concepts were studied: pilot, controller or automation primarily responsible. A modified Air Traffic Workload Input Technique (ATWIT) metric showed highest workload during the approach phase of flight and lowest during the en-route phase of flight (before deviating for weather). In general, the modified ATWIT was shown to be a valid and reliable workload measure, providing more detailed information than post-run subjective workload metrics. The trend across multiple workload metrics revealed lowest workload when pilots had both conflict alerting and responsibility of the three concepts, while all objective and subjective measures showed highest workload when pilots had no conflict alerting or responsibility. This suggests that pilot workload was not tied primarily to responsibility for resolving conflicts, but to gaining and/or maintaining situation awareness when conflict alerting is unavailable.
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).
The Impact of Structural Vibration on Flying Qualities of a Supersonic Transport
NASA Technical Reports Server (NTRS)
Raney, David L.; Jackson, E. Bruce; Buttrill, Carey S.; Adams, William M.
2001-01-01
A piloted simulation experiment has been conducted in the NASA Langley Visual/Motion Simulator facility to address the impact of dynamic aeroelastic effects on flying qualities of a supersonic transport. The intent of this experiment was to determine the effectiveness of several measures that may be taken to reduce the impact of aircraft flexibility on piloting tasks. Potential solutions that were examined included structural stiffening, active vibration suppression, and elimination of visual cues associated with the elastic modes. A series of parametric configurations was evaluated by six test pilots for several types of maneuver tasks. During the investigation, several incidents were encountered in which cockpit vibrations due to elastic modes fed back into the control stick through involuntary motions of the pilot's upper body and arm. The phenomenon, referred to as biodynamic coupling, is evidenced by a resonant peak in the power spectrum of the pilot's stick inputs at a structural mode frequency. The results of the investigation indicate that structural stiffening and compensation of the visual display were of little benefit in alleviating the impact of elastic dynamics on the piloting tasks, while increased damping and elimination of control-effector excitation of the lowest frequency modes offered great improvements when applied in sufficient degree.
BASIC, Logo, and Pilot: A Comparison of Three Computer Languages.
ERIC Educational Resources Information Center
Maddux, Cleborne D.; Cummings, Rhoda E.
1985-01-01
Following a brief history of Logo, BASIC, and Pilot programing languages, common educational programing tasks (input from keyboard, evaluation of keyboard input, and computation) are presented in each language to illustrate how each can be used to perform the same tasks and to demonstrate each language's strengths and weaknesses. (MBR)
Unilateral Hearing Loss Is Associated With Impaired Balance in Children: A Pilot Study.
Wolter, Nikolaus E; Cushing, Sharon L; Vilchez-Madrigal, Luis D; James, Adrian L; Campos, Jennifer; Papsin, Blake C; Gordon, Karen A
2016-12-01
To determine if children with unilateral sensorineural hearing loss (UHL) demonstrate impaired balance compared with their normal hearing (NH) peers. Prospective, case-control study. Balance was assessed in14 UHL and 14 NH children using the Bruininks-Oseretsky Test-2 (BOT-2) and time to fall (TTF) in an immersive, virtual-reality laboratory. Postural control was quantified by center of pressure (COP) using force plates. The effect of vision on balance was assessed by comparing scores and COP characteristics on BOT-2 tasks performed with eyes open and closed. Balance ability as measured by the BOT-2 score was significantly worse in children with UHL compared with NH children (p = 0.004). TTF was shorter in children with UHL compared with NH children in the most difficult tasks when visual and somatosensory inputs were limited (p < 0.01). Visual input improved postural control (reduced COP variability) in both groups in all tasks (p < 0.05) but postural control as measured by COP variability was more affected in children with UHL when visual input was removed while performing moderately difficult tasks (i.e., standing on one foot) (p = 0.02). In this pilot study, children with UHL show poorer balance skills than NH children. Significant differences in TTF between the two groups were only seen in the most difficult tasks and therefore may be missed on routine clinical assessment. Children with UHL appear to rely more on vision for maintaining postural control than their NH peers. These findings may point to deficits not only in the hearing but also the vestibular portion of the inner ear.
Bae, Seahyun; Kim, Kyung-Yoon
2017-01-01
Stimulation through afferent sensory input is necessary to improve voluntary functional movement in stroke patients. Dual-afferent sensory input, which combines electromyography-triggered functional electric stimulation (ETFES) and action observation, was investigated to determine its effects on voluntary movements in stroke patients. This study was conducted on 18 patients with left hemiplegia diagnosed between 6 and 24 months prior. The 9 subjects in the dual-afferent sensory input (DASI) group underwent ETFES with action observation training for 4 weeks (20 min/d, 5 d/wk), while the 9 control group subjects underwent functional electric stimulation (FES) for the same duration. The outcome measures were the movement-related cortical potential (MRCP), H-reflex, electromyography (EMG), and balance. The control and DASI groups showed significant increases in MRCP, muscle activity, and balance, while H-reflex was significantly decreased. MRCP and balance showed significant differences between DASI and control groups. DASI stimulates voluntary movement in patients, causes rapid activation of the cerebral cortex, and reduces excessive excitation of spinal motor neurons. Therefore, DASI, which stimulates voluntary movement, has a greater effect on brain activation in stroke patients.
Practical input optimization for aircraft parameter estimation experiments. Ph.D. Thesis, 1990
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1993-01-01
The object of this research was to develop an algorithm for the design of practical, optimal flight test inputs for aircraft parameter estimation experiments. A general, single pass technique was developed which allows global optimization of the flight test input design for parameter estimation using the principles of dynamic programming with the input forms limited to square waves only. Provision was made for practical constraints on the input, including amplitude constraints, control system dynamics, and selected input frequency range exclusions. In addition, the input design was accomplished while imposing output amplitude constraints required by model validity and considerations of safety during the flight test. The algorithm has multiple input design capability, with optional inclusion of a constraint that only one control move at a time, so that a human pilot can implement the inputs. It is shown that the technique can be used to design experiments for estimation of open loop model parameters from closed loop flight test data. The report includes a new formulation of the optimal input design problem, a description of a new approach to the solution, and a summary of the characteristics of the algorithm, followed by three example applications of the new technique which demonstrate the quality and expanded capabilities of the input designs produced by the new technique. In all cases, the new input design approach showed significant improvement over previous input design methods in terms of achievable parameter accuracies.
Optimal controller design for high performance aircraft undergoing large disturbance angles
NASA Technical Reports Server (NTRS)
Rhoten, R. P.
1974-01-01
An examination of two aircraft controller structures applicable to on-line implementation was conducted. The two controllers, a linear regulator model follower and an inner-product model follower, were applied to the lateral dynamics of the F8-C aircraft. For the purposes of this research effort, the lateral dynamics of the F8-C aircraft were considered. The controller designs were evaluated for four flight conditions. Additionally, effects of pilot input, rapid variation of flight condition and control surface rate and magnitude deflection limits were considered.
Evaluation of Factors Unique to Multifunction Controls/Displays Devices
1980-11-01
different Iron Report) 18. SUPPLEMENTARY NOTES This work was performed by the contractor at the Flight Dynamics Laboratory, Flight Control Division, Crew...This Technical Report is the result of a work effort performed by the Require- ments and Analysis Group of the Crew Systems Development Branch (FIGR...human factors. Mr. Emmett Herron of the Bunker Ramo Corporation provided pilot inputs to the work efforts, and Ms. Gloria Calhoun of the same company
Survey of Quantitative Research Metrics to Assess Pilot Performance in Upset Recovery
NASA Technical Reports Server (NTRS)
Le Vie, Lisa R.
2016-01-01
Accidents attributable to in-flight loss of control are the primary cause for fatal commercial jet accidents worldwide. The National Aeronautics and Space Administration (NASA) conducted a literature review to determine and identify the quantitative standards for assessing upset recovery performance. This review contains current recovery procedures for both military and commercial aviation and includes the metrics researchers use to assess aircraft recovery performance. Metrics include time to first input, recognition time and recovery time and whether that input was correct or incorrect. Other metrics included are: the state of the autopilot and autothrottle, control wheel/sidestick movement resulting in pitch and roll, and inputs to the throttle and rudder. In addition, airplane state measures, such as roll reversals, altitude loss/gain, maximum vertical speed, maximum/minimum air speed, maximum bank angle and maximum g loading are reviewed as well.
Algorithm for Simulating Atmospheric Turbulence and Aeroelastic Effects on Simulator Motion Systems
NASA Technical Reports Server (NTRS)
Ercole, Anthony V.; Cardullo, Frank M.; Kelly, Lon C.; Houck, Jacob A.
2012-01-01
Atmospheric turbulence produces high frequency accelerations in aircraft, typically greater than the response to pilot input. Motion system equipped flight simulators must present cues representative of the aircraft response to turbulence in order to maintain the integrity of the simulation. Currently, turbulence motion cueing produced by flight simulator motion systems has been less than satisfactory because the turbulence profiles have been attenuated by the motion cueing algorithms. This report presents a new turbulence motion cueing algorithm, referred to as the augmented turbulence channel. Like the previous turbulence algorithms, the output of the channel only augments the vertical degree of freedom of motion. This algorithm employs a parallel aircraft model and an optional high bandwidth cueing filter. Simulation of aeroelastic effects is also an area where frequency content must be preserved by the cueing algorithm. The current aeroelastic implementation uses a similar secondary channel that supplements the primary motion cue. Two studies were conducted using the NASA Langley Visual Motion Simulator and Cockpit Motion Facility to evaluate the effect of the turbulence channel and aeroelastic model on pilot control input. Results indicate that the pilot is better correlated with the aircraft response, when the augmented channel is in place.
Digital adaptive control of a VTOL aircraft
NASA Technical Reports Server (NTRS)
Reid, G. F.
1976-01-01
A technique has been developed for calculating feedback and feedforward gain matrices that stabilize a VTOL aircraft while enabling it to track input commands of forward and vertical velocity. Leverrier's algorithm is used in a procedure for determining a set of state variable, feedback gains that force the closed loop poles and zeroes of one pilot input transfer function to be at preselected positions in the s plane. This set of feedback gains is then used to calculate the feedback and feedforward gains for the velocity command controller. The method is computationally attractive since the gains are determined by solving systems of linear, simultaneous equations. Responses obtained using a digital simulation of the longitudinal dynamics of the CH-47 helicopter are presented.
Flight deck benefits of integrated data link communication
NASA Technical Reports Server (NTRS)
Waller, Marvin C.
1992-01-01
A fixed-base, piloted simulation study was conducted to determine the operational benefits that result when air traffic control (ATC) instructions are transmitted to the deck of a transport aircraft over a digital data link. The ATC instructions include altitude, airspeed, heading, radio frequency, and route assignment data. The interface between the flight deck and the data link was integrated with other subsystems of the airplane to facilitate data management. Data from the ATC instructions were distributed to the flight guidance and control system, the navigation system, and an automatically tuned communication radio. The co-pilot initiated the automation-assisted data distribution process. Digital communications and automated data distribution were compared with conventional voice radio communication and manual input of data into other subsystems of the simulated aircraft. Less time was required in the combined communication and data management process when data link ATC communication was integrated with the other subsystems. The test subjects, commercial airline pilots, provided favorable evaluations of both the digital communication and data management processes.
Development of a Model for Human Operator Learning in Continuous Estimation and Control Tasks.
1983-12-01
and (3) a " precognitive mode" in 17 which the pilot is able to take full advantage of any predictability "" inherent in the external inputs and can...allow application of a partial feedforward strategy; and (3) a " precognitive " mode in which full advantage is taken of any predictability of the
T. E. Spittler
1995-01-01
The California Department of Conservation, Division of Mines and Geology (DMG) is submitting this report and accompanying maps to the California Department of Forestry and Fire Protection (CDF) to fulfill Interagency Agreement number 8CA38400, Pilot Monitoring Program -- Geologic Input for the Hillslope Component. Under this agreement, DMG has assisted CDF in the...
Motion Cueing Algorithm Development: Piloted Performance Testing of the Cueing Algorithms
NASA Technical Reports Server (NTRS)
Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.; Kelly, Lon C.
2005-01-01
The relative effectiveness in simulating aircraft maneuvers with both current and newly developed motion cueing algorithms was assessed with an eleven-subject piloted performance evaluation conducted on the NASA Langley Visual Motion Simulator (VMS). In addition to the current NASA adaptive algorithm, two new cueing algorithms were evaluated: the optimal algorithm and the nonlinear algorithm. The test maneuvers included a straight-in approach with a rotating wind vector, an offset approach with severe turbulence and an on/off lateral gust that occurs as the aircraft approaches the runway threshold, and a takeoff both with and without engine failure after liftoff. The maneuvers were executed with each cueing algorithm with added visual display delay conditions ranging from zero to 200 msec. Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. Piloted performance parameters for the approach maneuvers, the vertical velocity upon touchdown and the runway touchdown position, were also analyzed but did not show any noticeable difference among the cueing algorithms. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach were less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.
NASA Technical Reports Server (NTRS)
Jones, Denise R.
1990-01-01
A piloted simulation study was conducted comparing three different input methods for interfacing to a large-screen, multiwindow, whole-flight-deck display for management of transport aircraft systems. The thumball concept utilized a miniature trackball embedded in a conventional side-arm controller. The touch screen concept provided data entry through a capacitive touch screen. The voice concept utilized a speech recognition system with input through a head-worn microphone. No single input concept emerged as the most desirable method of interacting with the display. Subjective results, however, indicate that the voice concept was the most preferred method of data entry and had the most potential for future applications. The objective results indicate that, overall, the touch screen concept was the most effective input method. There was also significant differences between the time required to perform specific tasks and the input concept employed, with each concept providing better performance relative to a specific task. These results suggest that a system combining all three input concepts might provide the most effective method of interaction.
NASA Technical Reports Server (NTRS)
Takallu, M. A.; Glaab, L. J.; Hughes, M. F.; Wong, D. T.; Bartolone, A. P.
2008-01-01
In support of the NASA Aviation Safety Program's Synthetic Vision Systems Project, a series of piloted simulations were conducted to explore and quantify the relationship between candidate Terrain Portrayal Concepts and Guidance Symbology Concepts, specific to General Aviation. The experiment scenario was based on a low altitude en route flight in Instrument Metrological Conditions in the central mountains of Alaska. A total of 18 general aviation pilots, with three levels of pilot experience, evaluated a test matrix of four terrain portrayal concepts and six guidance symbology concepts. Quantitative measures included various pilot/aircraft performance data, flight technical errors and flight control inputs. The qualitative measures included pilot comments and pilot responses to the structured questionnaires such as perceived workload, subjective situation awareness, pilot preferences, and the rare event recognition. There were statistically significant effects found from guidance symbology concepts and terrain portrayal concepts but no significant interactions between them. Lower flight technical errors and increased situation awareness were achieved using Synthetic Vision Systems displays, as compared to the baseline Pitch/Roll Flight Director and Blue Sky Brown Ground combination. Overall, those guidance symbology concepts that have both path based guidance cue and tunnel display performed better than the other guidance concepts.
Stereopsis cueing effects on hover-in-turbulence performance in a simulated rotorcraft
NASA Technical Reports Server (NTRS)
Parrish, Russell V.; Williams, Steven P.
1990-01-01
The efficacy of stereopsis cueing in pictorial displays was assessed in a real-time piloted simulation experiment of a rotorcraft precision hover-in-turbulence task. Seven pilots endeavored to maintain a hover by visually aligning a set of inner and outer wickets (major elements of a real-world pictorial display, thus attaining the desired hover position, in a full factorial experimental design. The display conditions examined included the presence or absence of a velocity display element (a velocity head-up display) as well as the stereopsis cueing conditions, which included non-stereo (binoptic or monoscopic - no depth cues other than those provided by a perspective, real-world display), stereo 3-D, and hyper stereo (telestereoscopic). Subjective and objective results indicated that the depth cues provided by the stereo displays enhanced the situational awareness of the pilot and enabled improved hover performance to be achieved. The velocity display element also improved the hover performance, with the best hover performance being achieved with the combined use of stereo and the velocity display element. Pilot control input data revealed that less control action was required to attain the improved hover performance with the stereo displays.
Warning Alert HITL Experiment Results
NASA Technical Reports Server (NTRS)
Monk, Kevin J.; Ferm, Lisa; Roberts, Zach
2018-01-01
Minimum Operational Performance Standards (MOPS) are being developed to support the integration of Unmanned Aircraft Systems (UAS) in the National Airspace (NAS). Input from subject matter experts and multiple research studies have informed display requirements for Detect-and-Avoid (DAA) systems aimed at supporting timely and appropriate pilot responses to collision hazards. Phase 1 DAA MOPS alerting is designed to inform pilots if an avoidance maneuver is necessary; the two highest alert levels - caution and warning - indicate how soon pilot action is required and whether there is adequate time to coordinate with the air traffic controller (ATC). Additional empirical support is needed to clarify the extent to which warning-level alerting impacts DAA task performance. The present study explores the differential effects of the auditory and visual cues provided by the DAA Warning alert, and performance implications compared to caution-only alerting are discussed.
Fuel injection staged sectoral combustor for burning low-BTU fuel gas
Vogt, Robert L.
1981-01-01
A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.
Fuel injection staged sectoral combustor for burning low-BTU fuel gas
Vogt, Robert L.
1985-02-12
A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.
A Low Cost Simulation System to Demonstrate Pilot Induced Oscillation Phenomenon
NASA Technical Reports Server (NTRS)
Ali, Syed Firasat
1997-01-01
A flight simulation system with graphics and software on Silicon Graphics computer workstations has been installed in the Flight Vehicle Design Laboratory at Tuskegee University. The system has F-15E flight simulation software from NASA Dryden which uses the graphics of SGI flight simulation demos. On the system, thus installed, a study of pilot induced oscillations is planned for future work. Preliminary research is conducted by obtaining two sets of straight level flights with pilot in the loop. In one set of flights no additional delay is used between the stick input and the appearance of airplane response on the computer monitor. In another set of flights, a 500 ms additional delay is used. The flight data is analyzed to find cross correlations between deflections of control surfaces and response of the airplane. The pilot dynamics features depicted from cross correlations of straight level flights are discussed in this report. The correlations presented here will serve as reference material for the corresponding correlations in a future study of pitch attitude tracking tasks involving pilot induced oscillations.
NASA Astrophysics Data System (ADS)
Goupil, Ph.; Puyou, G.
2013-12-01
This paper presents a high-fidelity generic twin engine civil aircraft model developed by Airbus for advanced flight control system research. The main features of this benchmark are described to make the reader aware of the model complexity and representativeness. It is a complete representation including the nonlinear rigid-body aircraft model with a full set of control surfaces, actuator models, sensor models, flight control laws (FCL), and pilot inputs. Two applications of this benchmark in the framework of European projects are presented: FCL clearance using optimization and advanced fault detection and diagnosis (FDD).
NASA Astrophysics Data System (ADS)
Telban, Robert J.
While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach are less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.
Meteorological Input to General Aviation Pilot Training
NASA Technical Reports Server (NTRS)
Colomy, J. R.
1979-01-01
The meteorological education of general aviation pilots is discussed in terms of the definitions and concepts of learning and good educational procedures. The effectiveness of the metoeorological program in the training of general aviations pilots is questioned. It is suggested that flight instructors provide real experience during low ceilings and visibilities, and that every pilot receiving an instrument rating should experience real instrument flight.
The Pilot Training Study: A Cost-Estimating Model for Advanced Pilot Training (APT).
ERIC Educational Resources Information Center
Knollmeyer, L. E.
The Advanced Pilot Training Cost Model is a statement of relationships that may be used, given the necessary inputs, for estimating the resources required and the costs to train pilots in the Air Force formal flying training schools. Resources and costs are computed by weapon system on an annual basis for use in long-range planning or sensitivity…
Delay-based signal shapers and acfa 2020 blended wing body flight control system
NASA Astrophysics Data System (ADS)
Kucera, V.; Hromčík, M.
2013-12-01
The purpose of this paper is twofold. First: results related to application of signal shapers, imposed on pilot's commands, in cooperation with feedback flight control system (FCS) are reported for the case of ACFA2020 (Active Control for Flexible 2020 Aircraft) blended-wingbody (BWB) design. The results suggest that signal shapers can cooperate nicely both with FCS focused on the rigid-body dynamics only, as well as with an implemented and properly working active damping system. In both cases, the amount of vibrations due to pilot's inputs (manoeuvres) can be substantially reduced. Second: combination of signal shapers and rate-limiters is discussed in detail. Rate-limiters, representing finite achievable rates of servos for control surfaces, deteriorate considerably performance of the delay-based shapers. Configuration proposes only open-loop response of the free aircraft (without controller) for shaped reference respect to nonlinearities at action surface. Standard versions of the shapers cannot be therefore directly applied, especially for higher control surfaces deflections. Instead, two efficient alternatives can be used, suggested in the paper, that take the rate limitations into account at the design stage already.
NASA Technical Reports Server (NTRS)
Abbott, Terence S.; Nataupsky, Mark; Steinmetz, George G.
1987-01-01
A ground-based aircraft simulation study was conducted to determine the effects on pilot preference and performance of integrating airspeed and altitude information into an advanced electronic primary flight display via moving-tape (linear moving scale) formats. Several key issues relating to the implementation of moving-tape formats were examined in this study: tape centering, tape orientation, and trend information. The factor of centering refers to whether the tape was centered about the actual airspeed or altitude or about some other defined reference value. Tape orientation refers to whether the represented values are arranged in descending or ascending order. Two pilots participated in this study, with each performing 32 runs along seemingly random, previously unknown flight profiles. The data taken, analyzed, and presented consisted of path performance parameters, pilot-control inputs, and electrical brain response measurements.
Variable strategy model of the human operator
NASA Astrophysics Data System (ADS)
Phillips, John Michael
Human operators often employ discontinuous or "bang-bang" control strategies when performing large-amplitude acquisition tasks. The current study applies Variable Structure Control (VSC) techniques to model human operator behavior during acquisition tasks. The result is a coupled, multi-input model replicating the discontinuous control strategy. In the VSC formulation, a switching surface is the mathematical representation of the operator's control strategy. The performance of the Variable Strategy Model (VSM) is evaluated by considering several examples, including the longitudinal control of an aircraft during the visual landing task. The aircraft landing task becomes an acquisition maneuver whenever large initial offsets occur. Several different strategies are explored in the VSM formulation for the aircraft landing task. First, a switching surface is constructed from literal interpretations of pilot training literature. This approach yields a mathematical representation of how a pilot is trained to fly a generic aircraft. This switching surface is shown to bound the trajectory response of a group of pilots performing an offset landing task in an aircraft simulator study. Next, front-side and back-side landing strategies are compared. A back-side landing strategy is found to be capable of landing an aircraft flying on either the front side or back side of the power curve. However, the front-side landing strategy is found to be insufficient for landing an aircraft flying on the back side. Finally, a more refined landing strategy is developed that takes into the account the specific aircraft's dynamic characteristics. The refined strategy is translated back into terminology similar to the existing pilot training literature.
Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J
2012-05-06
The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required.
2012-01-01
Background The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). Methods In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Results Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Conclusions Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required. PMID:22559852
Effect of shaping sensor data on pilot response
NASA Technical Reports Server (NTRS)
Bailey, Roger M.
1990-01-01
The pilot of a modern jet aircraft is subjected to varying workloads while being responsible for multiple, ongoing tasks. The ability to associate the pilot's responses with the task/situation, by modifying the way information is presented relative to the task, could provide a means of reducing workload. To examine the feasibility of this concept, a real time simulation study was undertaken to determine whether preprocessing of sensor data would affect pilot response. Results indicated that preprocessing could be an effective way to tailor the pilot's response to displayed data. The effects of three transformations or shaping functions were evaluated with respect to the pilot's ability to predict and detect out-of-tolerance conditions while monitoring an electronic engine display. Two nonlinear transformations, on being the inverse of the other, were compared to a linear transformation. Results indicate that a nonlinear transformation that increases the rate-or-change of output relative to input tends to advance the prediction response and improve the detection response, while a nonlinear transformation that decreases the rate-of-change of output relative to input tends to lengthen the prediction response and make detection more difficult.
NASA Technical Reports Server (NTRS)
Gerren, Donna S.
1995-01-01
A study has been conducted to determine the capability to control a very large transport airplane with engine thrust. This study consisted of the design of an 800-passenger airplane with a range of 5000 nautical miles design and evaluation of a flight control system, and design and piloted simulation evaluation of a thrust-only backup flight control system. Location of the four wing-mounted engines was varied to optimize the propulsive control capability, and the time constant of the engine response was studied. The goal was to provide level 1 flying qualities. The engine location and engine time constant did not have a large effect on the control capability. The airplane design did meet level 1 flying qualities based on frequencies, damping ratios, and time constants in the longitudinal and lateral-directional modes. Project pilots consistently rated the flying qualities as either level 1 or level 2 based on Cooper-Harper ratings. However, because of the limited control forces and moments, the airplane design fell short of meeting the time required to achieve a 30 deg bank and the time required to respond a control input.
Automatic control of the Skylab Astronaut Maneuvering Research Vehicle.
NASA Technical Reports Server (NTRS)
Murtagh, T. B.; Goodwin, M. A.; Greenlee, J. E.; Whitsett , C. E.
1973-01-01
The two automatic control modes of the Astronaut Maneuvering Research Vehicle (AMRV) are analyzed: the control moment gyro (CMG) and the rate gyro (RG). The AMRV is an autonomous maneuvering unit which translates and rotates the pilot by means of hand-controller input commands. The CMG normal operation, desaturation, and cage/lock dynamics are described in terms of a realistic AMRV mass property configuration. No propellant is used for normal operation in the CMG mode, and the maximum rotation rate is 5 deg/sec about each AMRV axis. The RG attitude maneuvering and limit cycle submode dynamic are described in terms of the same AMRV mass property configuration.
Neural network application to aircraft control system design
NASA Technical Reports Server (NTRS)
Troudet, Terry; Garg, Sanjay; Merrill, Walter C.
1991-01-01
The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.
Neural network application to aircraft control system design
NASA Technical Reports Server (NTRS)
Troudet, Terry; Garg, Sanjay; Merrill, Walter C.
1991-01-01
The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.
Retaining U.S. Air Force Pilots When the Civilian Demand for Pilots Is Growing
2016-01-01
pilot retention and determine the changes in ARP and AP that could offset those effects. It also simulates the effects of eliminating AP for pilots...array of compensation policies for pilots, thereby providing the USAF with an empirically based analytical platform to determine the special and...greatly from the input and support of our project monitor, Maj Ryan Theiss, Chief, Rated Force Policy-Mobility Forces (HQ USAF/A1PPR), as well as Lt
GEMINI-TITAN (GT)-9- TRAINING - AEROSPACE FLIGHT SIMULATOR - PILOT - TX
1966-03-01
S66-27990 (March 1966) --- Astronaut Eugene A. Cernan, pilot for the Gemini-9 spaceflight, works out procedures for his historic space excursion in a unique manned Aerospace Flight Simulator at LTV Corp. at Dallas, Texas. The LTV simulator is used frequently by NASA astronauts for a variety of space programs maneuvers to provide many of the sensations and visual scenes of actual spaceflight. Controlled through a complex of computers, the device makes it possible for the astronauts to work out procedures, solve problems and simulate missions in real time with great accuracy. The astronaut rides in a spacecraft-like gondola which moves in roll, pitch and yaw in response to his controls and accurate computer inputs. The simulator's usual spacecraft displays and canopy have been removed and AMU backpack complete with control electronics installed. The astronaut makes his simulated flight in an inflated pressure suit and with the NASA-developed Extravehicular Life Support system chest pack which will be used in the Gemini flight. Photo credit: NASA
NASA Technical Reports Server (NTRS)
Biezad, D. J.; Schmidt, D. K.; Leban, F.; Mashiko, S.
1986-01-01
Single-channel pilot manual control output in closed-tracking tasks is modeled in terms of linear discrete transfer functions which are parsimonious and guaranteed stable. The transfer functions are found by applying a modified super-position time series generation technique. A Levinson-Durbin algorithm is used to determine the filter which prewhitens the input and a projective (least squares) fit of pulse response estimates is used to guarantee identified model stability. Results from two case studies are compared to previous findings, where the source of data are relatively short data records, approximately 25 seconds long. Time delay effects and pilot seasonalities are discussed and analyzed. It is concluded that single-channel time series controller modeling is feasible on short records, and that it is important for the analyst to determine a criterion for best time domain fit which allows association of model parameter values, such as pure time delay, with actual physical and physiological constraints. The purpose of the modeling is thus paramount.
NASA Technical Reports Server (NTRS)
Guo, Liwen; Cardullo, Frank M.; Kelly, Lon C.
2007-01-01
This report summarizes the results of delay measurement and piloted performance tests that were conducted to assess the effectiveness of the adaptive compensator and the state space compensator for alleviating the phase distortion of transport delay in the visual system in the VMS at the NASA Langley Research Center. Piloted simulation tests were conducted to assess the effectiveness of two novel compensators in comparison to the McFarland predictor and the baseline system with no compensation. Thirteen pilots with heterogeneous flight experience executed straight-in and offset approaches, at various delay configurations, on a flight simulator where different predictors were applied to compensate for transport delay. The glideslope and touchdown errors, power spectral density of the pilot control inputs, NASA Task Load Index, and Cooper-Harper rating of the handling qualities were employed for the analyses. The overall analyses show that the adaptive predictor results in slightly poorer compensation for short added delay (up to 48 ms) and better compensation for long added delay (up to 192 ms) than the McFarland compensator. The analyses also show that the state space predictor is fairly superior for short delay and significantly superior for long delay than the McFarland compensator.
A pilot study comparing mouse and mouse-emulating interface devices for graphic input.
Kanny, E M; Anson, D K
1991-01-01
Adaptive interface devices make it possible for individuals with physical disabilities to use microcomputers and thus perform many tasks that they would otherwise be unable to accomplish. Special equipment is available that purports to allow functional access to the computer for users with disabilities. As technology moves from purely keyboard applications to include graphic input, it will be necessary for assistive interface devices to support graphics as well as text entry. Headpointing systems that emulate the mouse in combination with on-screen keyboards are of particular interest to persons with severe physical impairment such as high level quadriplegia. Two such systems currently on the market are the HeadMaster and the Free Wheel. The authors have conducted a pilot study comparing graphic input speed using the mouse and two headpointing interface systems on the Macintosh computer. The study used a single subject design with six able-bodied subjects, to establish a baseline for comparison with persons with severe disabilities. Results of these preliminary data indicated that the HeadMaster was nearly as effective as the mouse and that it was superior to the Free Wheel for graphics input. This pilot study, however, demonstrated several experimental design problems that need to be addressed to make the study more robust. It also demonstrated the need to include the evaluation of text input so that the effectiveness of the interface devices with text and graphic input could be compared.
1985-02-01
li’Lii El. IE F INE ,UT 1 = K MM. * GET, NAST484/UN=SYSTEM. E(EGIN, ,NAST464. PFL, 160000, RED’UCE(-). LINKI , L~DDEDDD Figure A-I1 Typical Control-Card...initiated via Che LINKI statement, in which the second term is the input data file. The permanent file name KMDM, shown in conjunction with local file
Instrumentation and control system for an F-15 stall/spin
NASA Technical Reports Server (NTRS)
Pitts, F. L.; Holmes, D. C. E.; Zaepfel, K. P.
1974-01-01
An instrumentation and control system is described that was used for radio-controlled F-15 airplane model stall/spin research at the NASA-Langley Research Center. This stall/spin research technique, using scale model aircraft, provides information on the post-stall and spin-entry characteristics of full-scale aircraft. The instrumentation described provides measurements of flight parameters such as angle of attack and sideslip, airspeed, control-surface position, and three-axis rotation rates; these data are recorded on an onboard magnetic tape recorder. The proportional radio control system, which utilizes analog potentiometric signals generated from ground-based pilot inputs, and the ground-based system used in the flight operation are also described.
A simplified rotor system mathematical model for piloted flight dynamics simulation
NASA Technical Reports Server (NTRS)
Chen, R. T. N.
1979-01-01
The model was developed for real-time pilot-in-the-loop investigation of helicopter flying qualities. The mathematical model included the tip-path plane dynamics and several primary rotor design parameters, such as flapping hinge restraint, flapping hinge offset, blade Lock number, and pitch-flap coupling. The model was used in several exploratory studies of the flying qualities of helicopters with a variety of rotor systems. The basic assumptions used and the major steps involved in the development of the set of equations listed are described. The equations consisted of the tip-path plane dynamic equation, the equations for the main rotor forces and moments, and the equation for control phasing required to achieve decoupling in pitch and roll due to cyclic inputs.
NASA Technical Reports Server (NTRS)
Evans, Emory; Young, Steven D.; Daniels, Taumi; Santiago-Espada, Yamira; Etherington, Tim
2016-01-01
A flight simulation study was conducted at NASA Langley Research Center to evaluate flight deck systems that (1) predict aircraft energy state and/or autoflight configuration, (2) present the current state and expected future state of automated systems, and/or (3) show the state of flight-critical data systems in use by automated systems and primary flight instruments. Four new technology concepts were evaluated vis-à-vis current state-of-the-art flight deck systems and indicators. This human-in-the-loop study was conducted using commercial airline crews. Scenarios spanned a range of complex conditions and several emulated causal factors and complexity in recent accidents involving loss of state awareness by pilots (e.g. energy state, automation state, and/or system state). Data were collected via questionnaires administered after each flight, audio/video recordings, physiological data, head and eye tracking data, pilot control inputs, and researcher observations. This paper strictly focuses on findings derived from the questionnaire responses. It includes analysis of pilot subjective measures of complexity, decision making, workload, situation awareness, usability, and acceptability.
Proceedings: Third Annual Workshop on Meteorological and Environmental Inputs to Aviation Systems
NASA Technical Reports Server (NTRS)
Camp, D. W. (Editor); Frost, W. (Editor)
1979-01-01
The proceedings of a workshop on meteorological and environmental inputs to aviation systems are reported. The major objectives of the workshop are to satisfy such needs of the sponsoring agencies as the expansion of our understanding and knowledge of the interaction of the atmosphere with aviation systems, the better definition and implementation of services to operators, and the collection and interpretation of data for establishing operational criteria, relating the total meteorological inputs from the atmospheric sciences to the needs of aviation communities. The unique aspect of the workshop was the achievement of communication across the interface of the boundaries between pilots, meteorologists, training personnel, accident investigators, traffic controllers, flight operation personnel from military, civil, general aviation, and commercial interests alike. Representatives were in attendance from government, airlines, private agencies, aircraft manufacturers, Department of Defense, industries, research institutes, and universities. Full-length papers addressed the topics of training, flight operations, accident investigation, air traffic control, and airports. Winds and wind shear; icing and frost; atmospheric electricity and lightning; fog, visibility and ceilings; and turbulence were discussed.
Development of a helicopter rotor/propulsion system dynamics analysis
NASA Technical Reports Server (NTRS)
Warmbrodt, W.; Hull, R.
1982-01-01
A time-domain analysis of coupled engine/drive train/rotor dynamics of a twin-engine, single main rotor helicopter model has been performed. The analysis incorporates an existing helicopter model with nonlinear simulations of a helicopter turboshaft engine and its fuel controller. System dynamic behavior is studied using the resulting simulation which included representations for the two engines and their fuel controllers, drive system, main rotor, tail rotor, and aircraft rigid body motions. Time histories of engine and rotor RPM response to pilot control inputs are studied for a baseline rotor and propulsion system model. Sensitivity of rotor RPM droop to fuel controller gain changes and collective input feed-forward gain changes are studied. Torque-load-sharing between the two engines is investigated by making changes in the fuel controller feedback paths. A linear engine model is derived from the nonlinear engine simulation and used in the coupled system analysis. This four-state linear engine model is then reduced to a three-state model. The effect of this simplification on coupled system behavior is shown.
Developments in Human Centered Cueing Algorithms for Control of Flight Simulator Motion Systems
NASA Technical Reports Server (NTRS)
Houck, Jacob A.; Telban, Robert J.; Cardullo, Frank M.
1997-01-01
The authors conducted further research with cueing algorithms for control of flight simulator motion systems. A variation of the so-called optimal algorithm was formulated using simulated aircraft angular velocity input as a basis. Models of the human vestibular sensation system, i.e. the semicircular canals and otoliths, are incorporated within the algorithm. Comparisons of angular velocity cueing responses showed a significant improvement over a formulation using angular acceleration input. Results also compared favorably with the coordinated adaptive washout algorithm, yielding similar results for angular velocity cues while eliminating false cues and reducing the tilt rate for longitudinal cues. These results were confirmed in piloted tests on the current motion system at NASA-Langley, the Visual Motion Simulator (VMS). Proposed future developments by the authors in cueing algorithms are revealed. The new motion system, the Cockpit Motion Facility (CMF), where the final evaluation of the cueing algorithms will be conducted, is also described.
NASA Technical Reports Server (NTRS)
Hiltner, Dale W.
2000-01-01
The TAILSIM program uses a 4th order Runge-Kutta method to integrate the standard aircraft equations-of-motion (EOM). The EOM determine three translational and three rotational accelerations about the aircraft's body axis reference system. The forces and moments that drive the EOM are determined from aerodynamic coefficients, dynamic derivatives, and control inputs. Values for these terms are determined from linear interpolation of tables that are a function of parameters such as angle-of-attack and surface deflections. Buildup equations combine these terms and dimensionalize them to generate the driving total forces and moments. Features that make TAILSIM applicable to studies of tailplane stall include modeling of the reversible control System, modeling of the pilot performing a load factor and/or airspeed command task, and modeling of vertical gusts. The reversible control system dynamics can be described as two hinged masses connected by a spring. resulting in a fifth order system. The pilot model is a standard form of lead-lag with a time delay applied to an integrated pitch rate and/or airspeed error feedback. The time delay is implemented by a Pade approximation, while the commanded pitch rate is determined by a commanded load factor. Vertical gust inputs include a single 1-cosine gust and a continuous NASA Dryden gust model. These dynamic models. coupled with the use of a nonlinear database, allow the tailplane stall characteristics, elevator response, and resulting aircraft response, to be modeled. A useful output capability of the TAILSIM program is the ability to display multiple post-run plot pages to allow a quick assessment of the time history response. There are 16 plot pages currently available to the user. Each plot page displays 9 parameters. Each parameter can also be displayed individually. on a one plot-per-page format. For a more refined display of the results the program can also create files of tabulated data. which can then be used by other plotting programs. The TAILSIM program was written straightforwardly assuming the user would want to change the database tables, the buildup equations, the output parameters. and the pilot model parameters. A separate database file and input file are automatically read in by the program. The use of an include file to set up all common blocks facilitates easy changing of parameter names and array sizes.
NASA Astrophysics Data System (ADS)
Stroe, Gabriela; Andrei, Irina-Carmen; Frunzulica, Florin
2017-01-01
The objectives of this paper are the study and the implementation of both aerodynamic and propulsion models, as linear interpolations using look-up tables in a database. The aerodynamic and propulsion dependencies on state and control variable have been described by analytic polynomial models. Some simplifying hypotheses were made in the development of the nonlinear aircraft simulations. The choice of a certain technique to use depends on the desired accuracy of the solution and the computational effort to be expended. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. The engine power dynamic response was modeled with an additional state equation as first order lag in the actual power level response to commanded power level was computed as a function of throttle position. The number of control inputs and engine power states varied depending on the number of control surfaces and aircraft engines. The set of coupled, nonlinear, first-order ordinary differential equations that comprise the simulation model can be represented by the vector differential equation. A linear time-invariant (LTI) system representing aircraft dynamics for small perturbations about a reference trim condition is given by the state and output equations present. The gradients are obtained numerically by perturbing each state and control input independently and recording the changes in the trimmed state and output equations. This is done using the numerical technique of central finite differences, including the perturbations of the state and control variables. For a reference trim condition of straight and level flight, linearization results in two decoupled sets of linear, constant-coefficient differential equations for longitudinal and lateral / directional motion. The linearization is valid for small perturbations about the reference trim condition. Experimental aerodynamic and thrust data are used to model the applied aerodynamic and propulsion forces and moments for arbitrary states and controls. There is no closed form solution to such problems, so the equations must be solved using numerical integration. Techniques for solving this initial value problem for ordinary differential equations are employed to obtain approximate solutions at discrete points along the aircraft state trajectory.
Robust, Decoupled, Flight Control Design with Rate Saturating Actuators
NASA Technical Reports Server (NTRS)
Snell, S. A.; Hess, R. A.
1997-01-01
Techniques for the design of control systems for manually controlled, high-performance aircraft must provide the following: (1) multi-input, multi-output (MIMO) solutions, (2) acceptable handling qualities including no tendencies for pilot-induced oscillations, (3) a tractable approach for compensator design, (4) performance and stability robustness in the presence of significant plant uncertainty, and (5) performance and stability robustness in the presence actuator saturation (particularly rate saturation). A design technique built upon Quantitative Feedback Theory is offered as a candidate methodology which can provide flight control systems meeting these requirements, and do so over a considerable part of the flight envelope. An example utilizing a simplified model of a supermaneuverable fighter aircraft demonstrates the proposed design methodology.
Prediction of jump phenomena in roll-coupled maneuvers of airplanes
NASA Technical Reports Server (NTRS)
Schy, A. A.; Hannah, M. E.
1976-01-01
An easily computerized analytical method is developed for identifying critical airplane maneuvers in which nonlinear rotational coupling effects may cause sudden jumps in the response to pilot's control inputs. Fifth and ninth degree polynomials for predicting multiple pseudo-steady states of roll-coupled maneuvers are derived. The program calculates the pseudo-steady solutions and their stability. The occurrence of jump-like responses for several airplanes and a variety of maneuvers is shown to correlate well with the appearance of multiple stable solutions for critical control combinations. The analysis is extended to include aerodynamics nonlinear in angle of attack.
Pilot Evaluations of Runway Status Light System
NASA Technical Reports Server (NTRS)
Young, Steven D.; Wills, Robert W.; Smith, R. Marshall
1996-01-01
This study focuses on use of the Transport Systems Research Vehicle (TSRV) Simulator at the Langley Research Center to obtain pilot opinion and input on the Federal Aviation Administration's Runway Status Light System (RWSL) prior to installation in an operational airport environment. The RWSL has been designed to reduce the likelihood of runway incursions by visually alerting pilots when a runway is occupied. Demonstrations of the RWSL in the TSRV Simulator allowed pilots to evaluate the system in a realistic cockpit environment.
Theoretical constraints in the design of multivariable control systems
NASA Technical Reports Server (NTRS)
Rynaski, E. G.; Mook, D. Joseph; Depena, Juan
1991-01-01
The research being performed under NASA Grant NAG1-1361 involves a more clear understanding and definition of the constraints involved in the pole-zero placement or assignment process for multiple input, multiple output systems. Complete state feedback to more than a single controller under conditions of complete controllability and observability is redundant if pole placement alone is the design objective. The additional feedback gains, above and beyond those required for pole placement can be used for eignevalue assignment or zero placement of individual closed loop transfer functions. Because both poles and zeros of individual closed loop transfer functions strongly affect the dynamic response to a pilot command input, the pole-zero placement problem is important. When fewer controllers than degrees of freedom of motion are available, complete design freedom is not possible, the transmission zeros constrain the regions of possible pole-zero placement. The effect of transmission zero constraints on the design possibilities, selection of transmission zeros and the avoidance of producing non-minimum phase transfer functions is the subject of the research being performed under this grant.
Prolonging Microgravity on Parabolic Airplane Flights
NASA Technical Reports Server (NTRS)
Robinson, David W.
2003-01-01
Three techniques have been proposed to prolong the intervals of time available for microgravity experiments aboard airplanes flown along parabolic trajectories. Typically, a pilot strives to keep an airplane on such a trajectory during a nominal time interval as long as 25 seconds, and an experimental apparatus is released to float freely in the airplane cabin to take advantage of the microgravitational environment of the trajectory for as long as possible. It is usually not possible to maintain effective microgravity during the entire nominal time interval because random aerodynamic forces and fluctuations in pilot control inputs cause the airplane to deviate slightly from a perfect parabolic trajectory, such that the freely floating apparatus bumps into the ceiling, floor, or a wall of the airplane before the completion of the parabola.
NASA Technical Reports Server (NTRS)
Wheeler, Kevin; Jorgensen, Charles
2000-01-01
This paper presents recent results in neuroelectric pattern recognition of electromyographic (EMG) signals used to control virtual computer input devices. The devices are designed to substitute for the functions of both a traditional joystick and keyboard entry method. We demonstrate recognition accuracy through neuroelectric control of a 757 class simulation aircraft landing at San Francisco International Airport using a virtual joystick as shown. This is accomplished by a pilot closing his fist in empty air and performing control movements that are captured by a dry electrode array on the arm which are then analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. We then demonstrate finer grain motor pattern recognition through a virtual keyboard by having a typist tap his traders on a typical desk in a touch typist position. The EMG signals are then translated to keyboard presses and displayed. The paper describes the bioelectric pattern recognition methodology common to both examples. Figure 2 depicts raw EMG data from typing, the numeral '8' and the numeral '9'. These two gestures are very close in appearance and statistical properties yet are distinguishable by our hidden Kharkov model algorithms. Extensions of this work to NASA emissions and robotic control are considered.
Vision improvement in pilots with presbyopia following perceptual learning.
Sterkin, Anna; Levy, Yuval; Pokroy, Russell; Lev, Maria; Levian, Liora; Doron, Ravid; Yehezkel, Oren; Fried, Moshe; Frenkel-Nir, Yael; Gordon, Barak; Polat, Uri
2017-11-24
Israeli Air Force (IAF) pilots continue flying combat missions after the symptoms of natural near-vision deterioration, termed presbyopia, begin to be noticeable. Because modern pilots rely on the displays of the aircraft control and performance instruments, near visual acuity (VA) is essential in the cockpit. We aimed to apply a method previously shown to improve visual performance of presbyopes, and test whether presbyopic IAF pilots can overcome the limitation imposed by presbyopia. Participants were selected by the IAF aeromedical unit as having at least initial presbyopia and trained using a structured personalized perceptual learning method (GlassesOff application), based on detecting briefly presented low-contrast Gabor stimuli, under the conditions of spatial and temporal constraints, from a distance of 40 cm. Our results show that despite their initial visual advantage over age-matched peers, training resulted in robust improvements in various basic visual functions, including static and temporal VA, stereoacuity, spatial crowding, contrast sensitivity and contrast discrimination. Moreover, improvements generalized to higher-level tasks, such as sentence reading and aerial photography interpretation (specifically designed to reflect IAF pilots' expertise in analyzing noisy low-contrast input). In concert with earlier suggestions, gains in visual processing speed are plausible to account, at least partially, for the observed training-induced improvements. Copyright © 2017 Elsevier Ltd. All rights reserved.
1990-12-01
methods are implemented in MATRIXx with the programs SISOTF and MIMOTF respectively. Following the mathe - matical development, the application of these...intent is not to teach any of the methods , it has been written in a manner to significantly assist an individual attempting follow on work. I would...equivalent plant models. A detailed mathematical development of the method used to develop these equivalent LTI plant models is provided. After this inner
Astronaut Stephen Oswald and fellow crew members on middeck
NASA Technical Reports Server (NTRS)
1995-01-01
Astronaut Stephen S. Oswald (center), STS-67 mission commander, is seen with two of his fellow crew members and an experiment which required a great deal of his time on the middeck of the Earth orbiting Space Shuttle Endeavour. Astronaut John M. Grunsfeld inputs mission data on a computer while listening to a cassette. Astronaut William G. Gregory (right edge of frame), pilot, consults a check list. The Middeck Active Control Experiment (MACE), not in use here, can be seen in upper center.
Airplane automatic control force trimming device for asymmetric engine failures
NASA Technical Reports Server (NTRS)
Stewart, Eric C. (Inventor)
1987-01-01
The difference in dynamic pressure in the propeller slipstreams as measured by sensors is divided by the freestream dynamic pressure generating a quantity proportional to the differential thrust coefficient. This quantity is used to command an electric trim motor to change the position of trim tab thereby retrimming the airplane to the new asymmetric power condition. The change in position of the trim tab produced by the electric trim motor is summed with the pilot's input to produce the actual trim tab position.
Heavy Lift Helicopter - Advanced Technology Component Program - Hub and Upper Controls
1977-09-01
horsepov.er increasces or decreases at a rate which is determined by the pilot’s rate of collective input. The change in rotor horse - power produces a...34;TATU’ H-31 1"O1 RMANC1• T’I’.- J’ - MOD IFl El) FSD I.1’:AKA(;I’ ARIEA U .00025 IN’ Unuodit ied ModI. iud Spec. I; trkt,. F I:(._ ’z’u1.11, % Nnl-,’F
An in-flight investigation of a twin fuselage configuration in approach and landing
NASA Technical Reports Server (NTRS)
Weingarten, N. C.
1984-01-01
An in-flight investigation of the flying qualities of a twin fuselage aircraft design in the approach and landing flight phase was carried out in the USAF/AFWAL Total In-Flight Simulator (TIFS). The objective was to determine the effects of actual motion and visual cues on the pilot when he was offset from the centerline of the aircraft. The experiment variables were lateral pilot offset position (0, 30 and 50 feet) and effective roll mode time constant (.6, 1.2, 2.4 seconds). The evaluation included the final approach, flare and touchdown. Lateral runway offsets and 15 knot crosswinds were used to increase the pilot's workload and force him to make large lateral corrections in the final portion of the approach. Results indicated that large normal accelerations rather than just vertical displacements in rolling maneuvers had the most significant degrading effect on pilot ratings. The normal accelerations are a result of large lateral offset and fast roll mode time constant and caused the pilot to make unnecessary pitch inputs and get into a coupled pitch/roll oscillation while he was making line up and crosswind corrections. A potential criteria for lateral pilot offset position effects is proposed. When the ratio of incremented normal aceleration at the pilot station to the steady state roll rate for a step input reaches .01 to .02 g/deg/sec a deterioration of pilot rating and flying qualities level can be expected.
Reinforcement Learning with Autonomous Small Unmanned Aerial Vehicles in Cluttered Environments
NASA Technical Reports Server (NTRS)
Tran, Loc; Cross, Charles; Montague, Gilbert; Motter, Mark; Neilan, James; Qualls, Garry; Rothhaar, Paul; Trujillo, Anna; Allen, B. Danette
2015-01-01
We present ongoing work in the Autonomy Incubator at NASA Langley Research Center (LaRC) exploring the efficacy of a data set aggregation approach to reinforcement learning for small unmanned aerial vehicle (sUAV) flight in dense and cluttered environments with reactive obstacle avoidance. The goal is to learn an autonomous flight model using training experiences from a human piloting a sUAV around static obstacles. The training approach uses video data from a forward-facing camera that records the human pilot's flight. Various computer vision based features are extracted from the video relating to edge and gradient information. The recorded human-controlled inputs are used to train an autonomous control model that correlates the extracted feature vector to a yaw command. As part of the reinforcement learning approach, the autonomous control model is iteratively updated with feedback from a human agent who corrects undesired model output. This data driven approach to autonomous obstacle avoidance is explored for simulated forest environments furthering autonomous flight under the tree canopy research. This enables flight in previously inaccessible environments which are of interest to NASA researchers in Earth and Atmospheric sciences.
NASA Astrophysics Data System (ADS)
Cheng, Lara W. S.
Airport moving maps (AMMs) have been shown to decrease navigation errors, increase taxiing speed, and reduce workload when they depict airport layout, current aircraft position, and the cleared taxi route. However, current technologies are limited in their ability to depict the cleared taxi route due to the unavailability of datacomm or other means of electronically transmitting clearances from ATC to the flight deck. This study examined methods by which pilots can input ATC-issued taxi clearances to support taxi route depictions on the AMM. Sixteen general aviation (GA) pilots used a touchscreen monitor to input taxi clearances using two input layouts, softkeys and QWERTY, each with and without feedforward (graying out invalid inputs). QWERTY yielded more taxi route input errors than the softkeys layout. The presence of feedforward did not produce fewer taxi route input errors than in the non-feedforward condition. The QWERTY layout did reduce taxi clearance input times relative to the softkeys layout, but when feedforward was present this effect was observed only for the longer, 6-segment taxi clearances. It was observed that with the softkeys layout, feedforward reduced input times compared to non-feedforward but only for the 4-segment clearances. Feedforward did not support faster taxi clearance input times for the QWERTY layout. Based on the results and analyses of the present study, it is concluded that for taxi clearance inputs, (1) QWERTY remain the standard for alphanumeric inputs, and (2) feedforward be investigated further, with a focus on participant preference and performance of black-gray contrast of keys.
Multivariable control of a rolling spider drone
NASA Astrophysics Data System (ADS)
Lyu, Haifeng
The research and application of Unmanned Aerial Vehicles (UAVs) has been a hot topic recently. A UAV is dened as an aircraft which is designed not to carry a human pilot or operated with remote electronic input by the flight controller. In this thesis, the design of a control system for a quadcopter named Rolling Spider Drone is conducted. The thesis work presents the design of two kinds of controllers that can control the Drone to keep it balanced and track different kinds of input trajectories. The nonlinear mathematical model for the Drone is derived by the Newton-Euler method. The rotational subsystem and translational system are derived to describe the attitude and position motion of Drone. Techniques from linear control theory are employed to linearize the highly coupled and nonlinear quadcopter plant around equilibrium points and apply the linear feedback controller to stabilize the system. The controller is a digital tracking system that deploys LQR for system stability design. Fixed gain and adaptive gain scheduled controllers are developed and compared with different LQR weights. Step references and reference trajectories involving signicant variation for the yaw angle in the xy-plane and three-dimensional spaces are tracked in the simulation. The physical implementation and an output feedback controller are considered for future work.
NASA Astrophysics Data System (ADS)
Guo, Liwen
The desire to create more complex visual scenes in modern flight simulators outpaces recent increases in processor speed. As a result, the simulation transport delay remains a problem. Because of the limitations shown in the three prominent existing delay compensators---the lead/lag filter, the McFarland compensator and the Sobiski/Cardullo predictor---new approaches of compensating the transport delay in a flight simulator have been developed. The first novel compensator is the adaptive predictor making use of the Kalman filter algorithm in a unique manner so that the predictor can provide accurately the desired amount of prediction, significantly reducing the large spikes caused by the McFarland predictor. Among several simplified online adaptive predictors it illustrates mathematically why the stochastic approximation algorithm achieves the best compensation results. A second novel approach employed a reference aircraft dynamics model to implement a state space predictor on a flight simulator. The practical implementation formed the filter state vector from the operator's control input and the aircraft states. The relationship between the reference model and the compensator performance was investigated in great detail, and the best performing reference model was selected for implementation in the final tests. Piloted simulation tests were conducted for assessing the effectiveness of the two novel compensators in comparison to the McFarland predictor and no compensation. Thirteen pilots with heterogeneous flight experience executed straight-in and offset approaches, at various delay configurations, on a flight simulator where different predictors were applied to compensate for transport delay. Four metrics---the glide slope and touchdown errors, power spectral density of the pilot control inputs, NASA Task Load Index, and Cooper-Harper rating on the handling qualities---were employed for the analyses. The overall analyses show that while the adaptive predictor results in slightly poorer compensation for short added delay (up to 48 ms) and better compensation for long added delay (up to 192 ms) than the McFarland compensator, the state space predictor is fairly superior for short delay and significantly superior for long delay to the McFarland compensator. The state space predictor also achieves better compensation than the adaptive predictor. The results of the evaluation on the effectiveness of these predictors in the piloted tests agree with those in the theoretical offline tests conducted with the recorded simulation aircraft states.
Evaluation of an Outer Loop Retrofit Architecture for Intelligent Turbofan Engine Thrust Control
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Sowers, T. Shane
2006-01-01
The thrust control capability of a retrofit architecture for intelligent turbofan engine control and diagnostics is evaluated. The focus of the study is on the portion of the hierarchical architecture that performs thrust estimation and outer loop thrust control. The inner loop controls fan speed so the outer loop automatically adjusts the engine's fan speed command to maintain thrust at the desired level, based on pilot input, even as the engine deteriorates with use. The thrust estimation accuracy is assessed under nominal and deteriorated conditions at multiple operating points, and the closed loop thrust control performance is studied, all in a complex real-time nonlinear turbofan engine simulation test bed. The estimation capability, thrust response, and robustness to uncertainty in the form of engine degradation are evaluated.
Helicopter flight-control design using an H(2) method
NASA Technical Reports Server (NTRS)
Takahashi, Marc D.
1991-01-01
Rate-command and attitude-command flight-control designs for a UH-60 helicopter in hover are presented and were synthesized using an H(2) method. Using weight functions, this method allows the direct shaping of the singular values of the sensitivity, complementary sensitivity, and control input transfer-function matrices to give acceptable feedback properties. The designs were implemented on the Vertical Motion Simulator, and four low-speed hover tasks were used to evaluate the control system characteristics. The pilot comments from the accel-decel, bob-up, hovering turn, and side-step tasks indicated good decoupling and quick response characteristics. However, an underlying roll PIO tendency was found to exist away from the hover condition, which was caused by a flap regressing mode with insufficient damping.
Covariance Matrix Estimation for Massive MIMO
NASA Astrophysics Data System (ADS)
Upadhya, Karthik; Vorobyov, Sergiy A.
2018-04-01
We propose a novel pilot structure for covariance matrix estimation in massive multiple-input multiple-output (MIMO) systems in which each user transmits two pilot sequences, with the second pilot sequence multiplied by a random phase-shift. The covariance matrix of a particular user is obtained by computing the sample cross-correlation of the channel estimates obtained from the two pilot sequences. This approach relaxes the requirement that all the users transmit their uplink pilots over the same set of symbols. We derive expressions for the achievable rate and the mean-squared error of the covariance matrix estimate when the proposed method is used with staggered pilots. The performance of the proposed method is compared with existing methods through simulations.
78 FR 11609 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Landing Pitchover Condition
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... automatic braking system. The applicable airworthiness regulations do not contain adequate or appropriate... with an automatic braking system. This feature is a pilot-selectable function that allows earlier braking at landing without pilot pedal input. When the autobrake system is armed before landing, it...
A next generation, pilot-scale continuous sterilization system for fermentation media
Lester, M.; Brix, T.; Wong, D.; Nuechterlein, J.
2006-01-01
A new continuous sterilization system was designed, constructed, started up, and qualified for media sterilization for secondary metabolite cultivations, bioconversions, and enzyme production. An existing Honeywell Total Distributed Control 3000-based control system was extended using redundant High performance Process Manager controllers for 98 I/O (input/output) points. This new equipment was retrofitted into an industrial research fermentation pilot plant, designed and constructed in the early 1980s. Design strategies of this new continuous sterilizer system and the expanded control system are described and compared with the literature (including dairy and bio-waste inactivation applications) and the weaknesses of the prior installation for expected effectiveness. In addition, the reasoning behind selection of some of these improved features has been incorporated. Examples of enhancements adopted include sanitary heat exchanger (HEX) design, incorporation of a “flash” cooling HEX, on-line calculation of Fo and Ro, and use of field I/O modules located near the vessel to permit low-cost addition of new instrumentation. Sterilizer performance also was characterized over the expected range of operating conditions. Differences between design and observed temperature, pressure, and other profiles were quantified and investigated. PMID:16496186
Development of a PC-based diabetes simulator in collaboration with teenagers with type 1 diabetes.
Nordfeldt, S; Hanberger, L; Malm, F; Ludvigsson, J
2007-02-01
The main aim of this study was to develop and test in a pilot study a PC-based interactive diabetes simulator prototype as a part of future Internet-based support systems for young teenagers and their families. A second aim was to gain experience in user-centered design (UCD) methods applied to such subjects. Using UCD methods, a computer scientist participated in iterative user group sessions involving teenagers with Type 1 diabetes 13-17 years old and parents. Input was transformed into a requirements specification by the computer scientist and advisors. This was followed by gradual prototype development based on a previously developed mathematical core. Individual test sessions were followed by a pilot study with five subjects testing a prototype. The process was evaluated by registration of flow and content of input and opinions from expert advisors. It was initially difficult to motivate teenagers to participate. User group discussion topics ranged from concrete to more academic matters. The issue of a simulator created active discussions among parents and teenagers. A large amount of input was generated from discussions among the teenagers. Individual test runs generated useful input. A pilot study suggested that the gradually elaborated software was functional. A PC-based diabetes simulator may create substantial interest among teenagers and parents, and the prototype seems worthy of further development and studies. UCD methods may generate significant input for computer support system design work and contribute to a functional design. Teenager involvement in design work may require time, patience, and flexibility.
NASA Technical Reports Server (NTRS)
Anderson, W. W.; Will, R. W.; Grantham, C.
1972-01-01
A concept for automating the control of air traffic in the terminal area in which the primary man-machine interface is the cockpit is described. The ground and airborne inputs required for implementing this concept are discussed. Digital data link requirements of 10,000 bits per second are explained. A particular implementation of this concept including a sequencing and separation algorithm which generates flight paths and implements a natural order landing sequence is presented. Onboard computer/display avionics utilizing a traffic situation display is described. A preliminary simulation of this concept has been developed which includes a simple, efficient sequencing algorithm and a complete aircraft dynamics model. This simulated jet transport was flown through automated terminal-area traffic situations by pilots using relatively sophisticated displays, and pilot performance and observations are discussed.
NASA Technical Reports Server (NTRS)
Voorhees, J. W.; Bucher, N. M.
1983-01-01
The cockpit has been one of the most rapidly changing areas of new aircraft design over the past thirty years. In connection with these developments, a pilot can now be considered a decision maker/system manager as well as a vehicle controller. There is, however, a trend towards an information overload in the cockpit, and information processing problems begin to occur for the rotorcraft pilot. One approach to overcome the arising difficulties is based on the utilization of voice technology to improve the information transfer rate in the cockpit with respect to both input and output. Attention is given to the background of speech technology, the application of speech technology within the cockpit, voice interactive electronic warning system (VIEWS) simulation, and methodology. Information subsystems are considered along with a dynamic simulation study, and data collection.
Validating Performance Level Descriptors (PLDs) for the AP® Environmental Science Exam
ERIC Educational Resources Information Center
Reshetar, Rosemary; Kaliski, Pamela; Chajewski, Michael; Lionberger, Karen
2012-01-01
This presentation summarizes a pilot study conducted after the May 2011 administration of the AP Environmental Science Exam. The study used analytical methods based on scaled anchoring as input to a Performance Level Descriptor validation process that solicited systematic input from subject matter experts.
Domain-Specific Interference Tests on Navigational Working Memory in Military Pilots.
Verde, Paola; Boccia, Maddalena; Colangeli, Stefano; Barbetti, Sonia; Nori, Raffaella; Ferlazzo, Fabio; Piccolo, Francesco; Vitalone, Roberto; Lucertini, Elena; Piccardi, Laura
2016-06-01
Human navigation is a very complex ability that encompasses all four stages of human information processing (sensory input, perception/cognition, selection, and execution of an action), involving both cognitive and physical requirements. During flight, the pilot uses all of these stages and one of the most critical aspect is interference. In fact, spatial tasks competing for the same cognitive resource cause greater distraction from a concurrent task than another task that uses different resource modalities. Here we compared and contrasted the performance of pilots and nonpilots of both genders performing increasingly complex navigational memory tasks while exposed to various forms of interference. We investigated the effects of four different sources of interference: motor, spatial motor, verbal, and spatial environment, focusing on gender differences. We found that flight experts perform better than controls (Pilots: 6.50 ± 1.29; Nonpilots: 5.45 ± 1.41). Furthermore, in the general population, navigational working memory is compromised only by spatial environmental interference (Nonpilots: 4.52 ± 1.50); female nonpilots were less able than male nonpilots. Also, the flight expert group showed the same interference, even if reduced (Pilots: 5.24 ± 0.92); moreover, we highlighted a complete absence of gender-related effects. Spatial environmental interference is the only interference producing a decrease in performance. Nevertheless, pilots are less affected than the general population. This is probably a consequence of the need to commit substantial cognitive resources to process spatial information during flight.
Fault tolerant attitude sensing and force feedback control for unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Jagadish, Chirag
Two aspects of an unmanned aerial vehicle are studied in this work. One is fault tolerant attitude determination and the other is to provide force feedback to the joy-stick of the UAV so as to prevent faulty inputs from the pilot. Determination of attitude plays an important role in control of aerial vehicles. One way of defining the attitude is through Euler angles. These angles can be determined based on the measurements of the projections of the gravity and earth magnetic fields on the three body axes of the vehicle. Attitude determination in unmanned aerial vehicles poses additional challenges due to limitations of space, payload, power and cost. Therefore it provides for almost no room for any bulky sensors or extra sensor hardware for backup and as such leaves no room for sensor fault issues either. In the face of these limitations, this study proposes a fault tolerant computing of Euler angles by utilizing multiple different computation methods, with each method utilizing a different subset of the available sensor measurement data. Twenty-five such methods have been presented in this document. The capability of computing the Euler angles in multiple ways provides a diversified redundancy required for fault tolerance. The proposed approach can identify certain sets of sensor failures and even separate the reference fields from the disturbances. A bank-to-turn maneuver of the NASA GTM UAV is used to demonstrate the fault tolerance provided by the proposed method as well as to demonstrate the method of determining the correct Euler angles despite interferences by inertial acceleration disturbances. Attitude computation is essential for stability. But as of today most UAVs are commanded remotely by human pilots. While basic stability control is entrusted to machine or the on-board automatic controller, overall guidance is usually with humans. It is therefore the pilot who sets the command/references through a joy-stick. While this is a good compromise between complete automation and complete human control, it still poses some unique challenges. Pilots of manned aircraft are present inside the cockpit of the aircraft they fly and thus have a better feel of the flying environment and also the limitations of the flight. The same might not be true for UAV pilots stationed on the ground. A major handicap is that visual feedback is the only one available for the UAV pilot. An additional parameter like force feedback on the remote control joy-stick can help the UAV pilot to physically feel the limitation of the safe flight envelope. This can make the flying itself easier and safer. A method proposed here is to design a joy-stick assembly with an additional actuator. This actuator is controlled so as to generate a force feedback on the joy-stick. The control developed for this system is such that the actuator allows free movement for the pilot as long as the UAV is within the safe flight envelope. On the other hand, if it is outside this safe range, the actuator opposes the pilot's applied torque and prevents him/her from giving erroneous commands to the UAV.
Design and Flight Tests of an Adaptive Control System Employing Normal-Acceleration Command
NASA Technical Reports Server (NTRS)
McNeill, Water E.; McLean, John D.; Hegarty, Daniel M.; Heinle, Donovan R.
1961-01-01
An adaptive control system employing normal-acceleration command has been designed with the aid of an analog computer and has been flight tested. The design of the system was based on the concept of using a mathematical model in combination with a high gain and a limiter. The study was undertaken to investigate the application of a system of this type to the task of maintaining nearly constant dynamic longitudinal response of a piloted airplane over the flight envelope without relying on air data measurements for gain adjustment. The range of flight conditions investigated was between Mach numbers of 0.36 and 1.15 and altitudes of 10,000 and 40,000 feet. The final adaptive system configuration was derived from analog computer tests, in which the physical airplane control system and much of the control circuitry were included in the loop. The method employed to generate the feedback signals resulted in a model whose characteristics varied somewhat with changes in flight condition. Flight results showed that the system limited the variation in longitudinal natural frequency of the adaptive airplane to about half that of the basic airplane and that, for the subsonic cases, the damping ratio was maintained between 0.56 and 0.69. The system also automatically compensated for the transonic trim change. Objectionable features of the system were an exaggerated sensitivity of pitch attitude to gust disturbances, abnormally large pitch attitude response for a given pilot input at low speeds, and an initial delay in normal-acceleration response to pilot control at all flight conditions. The adaptive system chatter of +/-0.05 to +/-0.10 of elevon at about 9 cycles per second (resulting in a maximum airplane normal-acceleration response of from +/-0.025 g to +/- 0.035 g) was considered by the pilots to be mildly objectionable but tolerable.
An Investigation of Large Tilt-Rotor Hover and Low Speed Handling Qualities
NASA Technical Reports Server (NTRS)
Malpica, Carlos A.; Decker, William A.; Theodore, Colin R.; Lindsey, James E.; Lawrence, Ben; Blanken, Chris L.
2011-01-01
A piloted simulation experiment conducted on the NASA-Ames Vertical Motion Simulator evaluated the hover and low speed handling qualities of a large tilt-rotor concept, with particular emphasis on longitudinal and lateral position control. Ten experimental test pilots evaluated different combinations of Attitude Command-Attitude Hold (ACAH) and Translational Rate Command (TRC) response types, nacelle conversion actuator authority limits and inceptor choices. Pilots performed evaluations in revised versions of the ADS-33 Hover, Lateral Reposition and Depart/Abort MTEs and moderate turbulence conditions. Level 2 handling qualities ratings were primarily recorded using ACAH response type in all three of the evaluation maneuvers. The baseline TRC conferred Level 1 handling qualities in the Hover MTE, but there was a tendency to enter into a PIO associated with nacelle actuator rate limiting when employing large, aggressive control inputs. Interestingly, increasing rate limits also led to a reduction in the handling qualities ratings. This led to the identification of a nacelle rate to rotor longitudinal flapping coupling effect that induced undesired, pitching motions proportional to the allowable amount of nacelle rate. A modification that counteracted this effect significantly improved the handling qualities. Evaluation of the different response type variants showed that inclusion of TRC response could provide Level 1 handling qualities in the Lateral Reposition maneuver by reducing coupled pitch and heave off axis responses that otherwise manifest with ACAH. Finally, evaluations in the Depart/Abort maneuver showed that uncertainty about commanded nacelle position and ensuing aircraft response, when manually controlling the nacelle, demanded high levels of attention from the pilot. Additional requirements to maintain pitch attitude within 5 deg compounded the necessary workload.
Operational effectiveness of a Multiple Aquila Control System (MACS)
NASA Technical Reports Server (NTRS)
Brown, R. W.; Flynn, J. D.; Frey, M. R.
1983-01-01
The operational effectiveness of a multiple aquila control system (MACS) was examined under a variety of remotely piloted vehicle (RPV) mission configurations. The set of assumptions and inputs used to form the rules under which a computerized simulation of MACS was run is given. The characteristics that are to govern MACS operations include: the battlefield environment that generates the requests for RPV missions, operating time-lines of the RPV-peculiar equipment, maintenance requirements, and vulnerability to enemy fire. The number of RPV missions and the number of operation days are discussed. Command, control, and communication data rates are estimated by determining how many messages are passed and what information is necessary in them to support ground coordination between MACS sections.
Man-machine interfaces in health care
NASA Technical Reports Server (NTRS)
Charles, Steve; Williams, Roy E.
1991-01-01
The surgeon, like the pilot, is confronted with an ever increasing volume of voice, data, and image input. Simultaneously, the surgeon must control a rapidly growing number of devices to deliver care to the patient. The broad disciplines of man-machine interface design, systems integration, and teleoperation will play a role in the operating room of the future. The purpose of this communication is to report the incorporation of these design concepts into new surgical and laser delivery systems. A review of each general problem area and the systems under development to solve the problems are presented.
Tziraki, Chariklia; Berenbaum, Rakel; Gross, Daniel; Abikhzer, Judith; Ben-David, Boaz M
2017-07-31
The field of serious games for people with dementia (PwD) is mostly driven by game-design principals typically applied to games created by and for younger individuals. Little has been done developing serious games to help PwD maintain cognition and to support functionality. We aimed to create a theory-based serious game for PwD, with input from a multi-disciplinary team familiar with aging, dementia, and gaming theory, as well as direct input from end users (the iterative process). Targeting enhanced self-efficacy in daily activities, the goal was to generate a game that is acceptable, accessible and engaging for PwD. The theory-driven game development was based on the following learning theories: learning in context, errorless learning, building on capacities, and acknowledging biological changes-all with the aim to boost self-efficacy. The iterative participatory process was used for game screen development with input of 34 PwD and 14 healthy community dwelling older adults, aged over 65 years. Development of game screens was informed by the bio-psychological aging related disabilities (ie, motor, visual, and perception) as well as remaining neuropsychological capacities (ie, implicit memory) of PwD. At the conclusion of the iterative development process, a prototype game with 39 screens was used for a pilot study with 24 PwD and 14 healthy community dwelling older adults. The game was played twice weekly for 10 weeks. Quantitative analysis showed that the average speed of successful screen completion was significantly longer for PwD compared with healthy older adults. Both PwD and controls showed an equivalent linear increase in the speed for task completion with practice by the third session (P<.02). Most important, the rate of improved processing speed with practice was not statistically different between PwD and controls. This may imply that some form of learning occurred for PwD at a nonsignificantly different rate than for controls. Qualitative results indicate that PwD found the game engaging and fun. Healthy older adults found the game too easy. Increase in self-reported self-efficacy was documented with PwD only. Our study demonstrated that PwD's speed improved with practice at the same rate as healthy older adults. This implies that when tasks are designed to match PwD's abilities, learning ensues. In addition, this pilot study of a serious game, designed for PwD, was accessible, acceptable, and enjoyable for end users. Games designed based on learning theories and input of end users and a multi-disciplinary team familiar with dementia and aging may have the potential of maintaining capacity and improving functionality of PwD. A larger longer study is needed to confirm our findings and evaluate the use of these games in assessing cognitive status and functionality. ©Chariklia Tziraki, Rakel Berenbaum, Daniel Gross, Judith Abikhzer, Boaz M Ben-David. Originally published in JMIR Serious Games (http://games.jmir.org), 31.07.2017.
Gross, Daniel; Abikhzer, Judith
2017-01-01
Background The field of serious games for people with dementia (PwD) is mostly driven by game-design principals typically applied to games created by and for younger individuals. Little has been done developing serious games to help PwD maintain cognition and to support functionality. Objectives We aimed to create a theory-based serious game for PwD, with input from a multi-disciplinary team familiar with aging, dementia, and gaming theory, as well as direct input from end users (the iterative process). Targeting enhanced self-efficacy in daily activities, the goal was to generate a game that is acceptable, accessible and engaging for PwD. Methods The theory-driven game development was based on the following learning theories: learning in context, errorless learning, building on capacities, and acknowledging biological changes—all with the aim to boost self-efficacy. The iterative participatory process was used for game screen development with input of 34 PwD and 14 healthy community dwelling older adults, aged over 65 years. Development of game screens was informed by the bio-psychological aging related disabilities (ie, motor, visual, and perception) as well as remaining neuropsychological capacities (ie, implicit memory) of PwD. At the conclusion of the iterative development process, a prototype game with 39 screens was used for a pilot study with 24 PwD and 14 healthy community dwelling older adults. The game was played twice weekly for 10 weeks. Results Quantitative analysis showed that the average speed of successful screen completion was significantly longer for PwD compared with healthy older adults. Both PwD and controls showed an equivalent linear increase in the speed for task completion with practice by the third session (P<.02). Most important, the rate of improved processing speed with practice was not statistically different between PwD and controls. This may imply that some form of learning occurred for PwD at a nonsignificantly different rate than for controls. Qualitative results indicate that PwD found the game engaging and fun. Healthy older adults found the game too easy. Increase in self-reported self-efficacy was documented with PwD only. Conclusions Our study demonstrated that PwD’s speed improved with practice at the same rate as healthy older adults. This implies that when tasks are designed to match PwD’s abilities, learning ensues. In addition, this pilot study of a serious game, designed for PwD, was accessible, acceptable, and enjoyable for end users. Games designed based on learning theories and input of end users and a multi-disciplinary team familiar with dementia and aging may have the potential of maintaining capacity and improving functionality of PwD. A larger longer study is needed to confirm our findings and evaluate the use of these games in assessing cognitive status and functionality. PMID:28760730
Piloted simulator study of allowable time delays in large-airplane response
NASA Technical Reports Server (NTRS)
Grantham, William D.; Bert T.?aetingas, Stephen A.dings with ran; Bert T.?aetingas, Stephen A.dings with ran
1987-01-01
A piloted simulation was performed to determine the permissible time delay and phase shift in the flight control system of a specific large transport-type airplane. The study was conducted with a six degree of freedom ground-based simulator and a math model similar to an advanced wide-body jet transport. Time delays in discrete and lagged form were incorporated into the longitudinal, lateral, and directional control systems of the airplane. Three experienced pilots flew simulated approaches and landings with random localizer and glide slope offsets during instrument tracking as their principal evaluation task. Results of the present study suggest a level 1 (satisfactory) handling qualities limit for the effective time delay of 0.15 sec in both the pitch and roll axes, as opposed to a 0.10-sec limit of the present specification (MIL-F-8785C) for both axes. Also, the present results suggest a level 2 (acceptable but unsatisfactory) handling qualities limit for an effective time delay of 0.82 sec and 0.57 sec for the pitch and roll axes, respectively, as opposed to 0.20 sec of the present specifications for both axes. In the area of phase shift between cockpit input and control surface deflection,the results of this study, flown in turbulent air, suggest less severe phase shift limitations for the approach and landing task-approximately 50 deg. in pitch and 40 deg. in roll - as opposed to 15 deg. of the present specifications for both axes.
2011-08-01
5 Figure 4 Architetural diagram of running Blender on Amazon EC2 through Nimbis...classification of streaming data. Example input images (top left). All digit prototypes (cluster centers) found, with size proportional to frequency (top...Figure 4 Architetural diagram of running Blender on Amazon EC2 through Nimbis 1 http
ERIC Educational Resources Information Center
Cousineau, Tara; Houle, Brian; Bromberg, Jonas; Fernandez, Kathrine C.; Kling, Whitney C.
2008-01-01
Objective: Tailored nutrition Web programs constitute an emerging trend in obesity prevention. Initial investment in innovative technology necessitates that the target population be well understood. This pilot study's purpose was to determine the feasibility of a workplace nutrition Web program. Design: Formative research was conducted with gaming…
Development of An Intelligent Flight Propulsion Control System
NASA Technical Reports Server (NTRS)
Calise, A. J.; Rysdyk, R. T.; Leonhardt, B. K.
1999-01-01
The initial design and demonstration of an Intelligent Flight Propulsion and Control System (IFPCS) is documented. The design is based on the implementation of a nonlinear adaptive flight control architecture. This initial design of the IFPCS enhances flight safety by using propulsion sources to provide redundancy in flight control. The IFPCS enhances the conventional gain scheduled approach in significant ways: (1) The IFPCS provides a back up flight control system that results in consistent responses over a wide range of unanticipated failures. (2) The IFPCS is applicable to a variety of aircraft models without redesign and,(3) significantly reduces the laborious research and design necessary in a gain scheduled approach. The control augmentation is detailed within an approximate Input-Output Linearization setting. The availability of propulsion only provides two control inputs, symmetric and differential thrust. Earlier Propulsion Control Augmentation (PCA) work performed by NASA provided for a trajectory controller with pilot command input of glidepath and heading. This work is aimed at demonstrating the flexibility of the IFPCS in providing consistency in flying qualities under a variety of failure scenarios. This report documents the initial design phase where propulsion only is used. Results confirm that the engine dynamics and associated hard nonlineaaities result in poor handling qualities at best. However, as demonstrated in simulation, the IFPCS is capable of results similar to the gain scheduled designs of the NASA PCA work. The IFPCS design uses crude estimates of aircraft behaviour. The adaptive control architecture demonstrates robust stability and provides robust performance. In this work, robust stability means that all states, errors, and adaptive parameters remain bounded under a wide class of uncertainties and input and output disturbances. Robust performance is measured in the quality of the tracking. The results demonstrate the flexibility of the IFPCS architecture and the ability to provide robust performance under a broad range of uncertainty. Robust stability is proved using Lyapunov like analysis. Future development of the IFPCS will include integration of conventional control surfaces with the use of propulsion augmentation, and utilization of available lift and drag devices, to demonstrate adaptive control capability under a greater variety of failure scenarios. Further work will specifically address the effects of actuator saturation.
NASA Technical Reports Server (NTRS)
Goodrich, Kenneth H.; McManus, John W.; Chappell, Alan R.
1992-01-01
A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics. The environment can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics equivalent to those used in high-fidelity piloted simulation. Databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system known as the Tactical Autopilot (TA) is implemented in the aircraft simulation model. The TA converts guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft. This report describes the capabilities and operation of the TMS.
User type certification for advanced flight control systems
NASA Technical Reports Server (NTRS)
Gilson, Richard D.; Abbott, David W.
1994-01-01
Advanced avionics through flight management systems (FMS) coupled with autopilots can now precisely control aircraft from takeoff to landing. Clearly, this has been the most important improvement in aircraft since the jet engine. Regardless of the eventual capabilities of this technology, it is doubtful that society will soon accept pilotless airliners with the same aplomb they accept driverless passenger trains. Flight crews are still needed to deal with inputing clearances, taxiing, in-flight rerouting, unexpected weather decisions, and emergencies; yet it is well known that the contribution of human errors far exceed those of current hardware or software systems. Thus human errors remain, and are even increasing in percentage as the largest contributor to total system error. Currently, the flight crew is regulated by a layered system of certification: by operation, e.g., airline transport pilot versus private pilot; by category, e.g., airplane versus helicopter; by class, e.g., single engine land versus multi-engine land; and by type (for larger aircraft and jet powered aircraft), e.g., Boeing 767 or Airbus A320. Nothing in the certification process now requires an in-depth proficiency with specific types of avionics systems despite their prominent role in aircraft control and guidance.
A motion-constraint logic for moving-base simulators based on variable filter parameters
NASA Technical Reports Server (NTRS)
Miller, G. K., Jr.
1974-01-01
A motion-constraint logic for moving-base simulators has been developed that is a modification to the linear second-order filters generally employed in conventional constraints. In the modified constraint logic, the filter parameters are not constant but vary with the instantaneous motion-base position to increase the constraint as the system approaches the positional limits. With the modified constraint logic, accelerations larger than originally expected are limited while conventional linear filters would result in automatic shutdown of the motion base. In addition, the modified washout logic has frequency-response characteristics that are an improvement over conventional linear filters with braking for low-frequency pilot inputs. During simulated landing approaches of an externally blown flap short take-off and landing (STOL) transport using decoupled longitudinal controls, the pilots were unable to detect much difference between the modified constraint logic and the logic based on linear filters with braking.
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Ghatas, Rania W.; Mcadaragh, Raymon; Burdette, Daniel W.; Comstock, James R.; Hempley, Lucas E.; Fan, Hui
2015-01-01
As part of the Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) project, research on integrating small UAS (sUAS) into the NAS was underway by a human-systems integration (HSI) team at the NASA Langley Research Center. Minimal to no research has been conducted on the safe, effective, and efficient manner in which to integrate these aircraft into the NAS. sUAS are defined as aircraft weighing 55 pounds or less. The objective of this human system integration team was to build a UAS Ground Control Station (GCS) and to develop a research test-bed and database that provides data, proof of concept, and human factors guidelines for GCS operations in the NAS. The objectives of this experiment were to evaluate the effectiveness and safety of flying sUAS in Class D and Class G airspace utilizing manual control inputs and voice radio communications between the pilot, mission control, and air traffic control. The design of the experiment included three sets of GCS display configurations, in addition to a hand-held control unit. The three different display configurations were VLOS, VLOS + Primary Flight Display (PFD), and VLOS + PFD + Moving Map (Map). Test subject pilots had better situation awareness of their vehicle position, altitude, airspeed, location over the ground, and mission track using the Map display configuration. This configuration allowed the pilots to complete the mission objectives with less workload, at the expense of having better situation awareness of other aircraft. The subjects were better able to see other aircraft when using the VLOS display configuration. However, their mission performance, as well as their ability to aviate and navigate, was reduced compared to runs that included the PFD and Map displays.
The Differential Effect of Sustained Operations on Psychomotor Skills of Helicopter Pilots.
McMahon, Terry W; Newman, David G
2018-06-01
Flying a helicopter is a complex psychomotor skill requiring constant control inputs from pilots. A deterioration in psychomotor performance of a helicopter pilot may be detrimental to operational safety. The aim of this study was to test the hypothesis that psychomotor performance deteriorates over time during sustained operations and that the effect is more pronounced in the feet than the hands. The subjects were helicopter pilots conducting sustained multicrew offshore flight operations in a demanding environment. The remote flight operations involved constant workload in hot environmental conditions with complex operational tasking. Over a period of 6 d 10 helicopter pilots were tested. At the completion of daily flying duties, a helicopter-specific screen-based compensatory tracking task measuring tracking accuracy (over a 5-min period) tested both hands and feet. Data were compared over time and tested for statistical significance for both deterioration and differential effect. A statistically significant deterioration of psychomotor performance was evident in the pilots over time for both hands and feet. There was also a statistically significant differential effect between the hands and the feet in terms of tracking accuracy. The hands recorded a 22.6% decrease in tracking accuracy, while the feet recorded a 39.9% decrease in tracking accuracy. The differential effect may be due to prioritization of limb movement by the motor cortex due to factors such as workload-induced cognitive fatigue. This may result in a greater reduction in performance in the feet than the hands, posing a significant risk to operational safety.McMahon TW, Newman DG. The differential effect of sustained operations on psychomotor skills of helicopter pilots. Aerosp Med Hum Perform. 2018; 89(6):496-502.
Effect of time delay on flying qualities: An update
NASA Technical Reports Server (NTRS)
Smith, R. E.; Sarrafian, S. K.
1986-01-01
Flying qualities problems of modern, full-authority electronic flight control systems are most often related to the introduction of additional time delay in aircraft response to a pilot input. These delays can have a significant effect on the flying qualities of the aircraft. Time delay effects are reexamined in light of recent flight test experience with aircraft incorporating new technology. Data from the X-29A forward-swept-wing demonstrator, a related preliminary in-flight experiment, and other flight observations are presented. These data suggest that the present MIL-F-8785C allowable-control system time delay specifications are inadequate or, at least, incomplete. Allowable time delay appears to be a function of the shape of the aircraft response following the initial delay. The cockpit feel system is discussed as a dynamic element in the flight control system. Data presented indicate that the time delay associated with a significant low-frequency feel system does not result in the predicted degradation in aircraft flying qualities. The impact of the feel system is discussed from two viewpoints: as a filter in the control system which can alter the initial response shape and, therefore, the allowable time delay, and as a unique dynamic element whose delay contribution can potentially be discounted by special pilot loop closures.
Pilot Designed Aircraft Displays in General Aviation: An Exploratory Study and Analysis
NASA Astrophysics Data System (ADS)
Conaway, Cody R.
From 2001-2011, the General Aviation (GA) fatal accident rate remained unchanged (Duquette & Dorr, 2014) with an overall stagnant accident rate between 2004 and 2013. The leading cause, loss of control in flight (NTSB, 2015b & 2015c) due to pilot inability to recognize approach to stall/spin conditions (NTSB, 2015b & 2016b). In 2013, there were 1,224 GA accidents in the U.S., accounting for 94% of all U.S. aviation accidents and 90% of all U.S. aviation fatalities that year (NTSB, 2015c). Aviation entails multiple challenges for pilots related to task management, procedural errors, perceptual distortions, and cognitive discrepancies. While machine errors in airplanes have continued to decrease over the years, human error still has not (NTSB, 2013). A preliminary analysis of a PC-based, Garmin G1000 flight deck was conducted with 3 professional pilots. Analyses revealed increased task load, opportunities for distraction, confusing perceptual ques, and hindered cognitive performance. Complex usage problems were deeply ingrained in the functionality of the system, forcing pilots to use fallible work arounds, add unnecessary steps, and memorize knob turns or button pushes. Modern computing now has the potential to free GA cockpit designs from knobs, soft keys, or limited display options. Dynamic digital displays might include changes in instrumentation or menu structuring depending on the phase of flight. Airspeed indicators could increase in size to become more salient during landing, simultaneously highlighting pitch angle on Attitude Indicators and automatically decluttering unnecessary information for landing. Likewise, Angle-of-Attack indicators demonstrate a great safety and performance advantage for pilots (Duquette & Dorr, 2014; NTSB, 2015b & 2016b), an instrument typically found in military platforms and now the Icon A5, light-sport aircraft (Icon, 2016). How does the design of pilots' environment---the cockpit---further influence their efficiency and effectiveness? To explore the possibilities for small aircraft displays, a participatory design investigation was conducted with 9 qualified instrument pilots. Aviators designed mock cockpits on a PC using pictorial cutouts of analog (e.g., mechanical dials) and digital (e.g., dynamic displays) controls. Data was analyzed qualitatively and compared to similar work. Finally, a template for GA displays was developed based on pilot input.
2013-01-01
Background Patients, identified to be at risk for but who have never experienced a potentially lethal cardiac arrhythmia, have the option of receiving an implantable cardioverter defibrillator (ICD) as prophylaxis against sudden cardiac death - a primary prevention indication. In Canada, there is no clear framework to support patients’ decision-making for these devices. Decision support, using a decision aid, could moderate treatment-related uncertainty and prepare patients to make well-informed decisions. Patient decision aids provide information on treatment options, risks, and benefits, to help patients clarify their values for outcomes of treatment options. The objectives of this research are: 1) develop a decision aid, 2) evaluate the decision aid, and 3) determine the feasibility of conducting a trial. Methods/design A development panel comprised of the core investigative team, health service researchers, decision science experts, cardiovascular healthcare practitioners, and ICD patient representatives will collaborate to provide input on the content and format of the aid. To generate probabilities to include in the aid, we will synthesize primary prevention ICD evidence. To obtain anonymous input about the facts and content, we will employ a modified Delphi process. To evaluate the draft decision aid will invite ICD patients and their families (n = 30) to rate its acceptability. After we evaluate the aid, to determine the feasibility, we will conduct a feasibility pilot randomized controlled trial (RCT) in new ICD candidates (n = 80). Participants will be randomized to receive a decision aid prior to specialist consultation versus usual care. Results from the pilot RCT will determine the feasibility of research processes; inform sample size calculation, measure decision quality (knowledge, values, decision conflict) and the influence of health related quality of life on decision-making. Discussion Our study seeks to develop a decision aid, for patients offered their first ICD for prophylaxis against sudden cardiac death. This paper outlines the background and methods of a pilot randomized trial which will inform a larger multicenter trial. Ultimately, decision support prior to specialist consultation could enhance the decision-making process between patients, physicians, and families, associated with life-prolonging medical devices like the ICD. Trial registration ClinicalTrials.gov: NCT01876173 PMID:24148851
Carroll, Sandra L; McGillion, Michael; Stacey, Dawn; Healey, Jeff S; Browne, Gina; Arthur, Heather M; Thabane, Lehana
2013-10-22
Patients, identified to be at risk for but who have never experienced a potentially lethal cardiac arrhythmia, have the option of receiving an implantable cardioverter defibrillator (ICD) as prophylaxis against sudden cardiac death - a primary prevention indication. In Canada, there is no clear framework to support patients' decision-making for these devices. Decision support, using a decision aid, could moderate treatment-related uncertainty and prepare patients to make well-informed decisions. Patient decision aids provide information on treatment options, risks, and benefits, to help patients clarify their values for outcomes of treatment options. The objectives of this research are: 1) develop a decision aid, 2) evaluate the decision aid, and 3) determine the feasibility of conducting a trial. A development panel comprised of the core investigative team, health service researchers, decision science experts, cardiovascular healthcare practitioners, and ICD patient representatives will collaborate to provide input on the content and format of the aid. To generate probabilities to include in the aid, we will synthesize primary prevention ICD evidence. To obtain anonymous input about the facts and content, we will employ a modified Delphi process. To evaluate the draft decision aid will invite ICD patients and their families (n = 30) to rate its acceptability. After we evaluate the aid, to determine the feasibility, we will conduct a feasibility pilot randomized controlled trial (RCT) in new ICD candidates (n = 80). Participants will be randomized to receive a decision aid prior to specialist consultation versus usual care. Results from the pilot RCT will determine the feasibility of research processes; inform sample size calculation, measure decision quality (knowledge, values, decision conflict) and the influence of health related quality of life on decision-making. Our study seeks to develop a decision aid, for patients offered their first ICD for prophylaxis against sudden cardiac death. This paper outlines the background and methods of a pilot randomized trial which will inform a larger multicenter trial. Ultimately, decision support prior to specialist consultation could enhance the decision-making process between patients, physicians, and families, associated with life-prolonging medical devices like the ICD. ClinicalTrials.gov: NCT01876173.
Effects of distractors and force feedback on an aimed movement task in a CDTI environment
NASA Astrophysics Data System (ADS)
Monk, Kevin J., II
New onboard technologies will be required for future cockpits to support the altered responsibilities of pilots under the NextGen program. Effective Cockpit Displays of Information (CD Tis) should provide more flexibility to pilots en route and reduce the probability of conflicts. However, precise input from pilots can be difficult due to the unstable environment in the cockpit. The present study used a non-traditional input device (Novint Falcon) to examine the effect of force feedback on operator performance during point-and-click movements in a CDTI environment when distractors are present. Twelve participants performed point-and-click tasks with varying amounts of force feedback, distractor locations, target sizes, distances, and movement directions. Overall movement times (OMTs) were recorded. Results demonstrated that force feedback did not reduce or match OMTs relative to the computer mouse. However, significant interactions with other target variables highlighted conditional differences between the force levels, as well as distractor effects.
An analysis of a candidate control algorithm for a ride quality augmentation system
NASA Technical Reports Server (NTRS)
Suikat, Reiner; Donaldson, Kent; Downing, David R.
1987-01-01
This paper presents a detailed analysis of a candidate algorithm for a ride quality augmentation system. The algorithm consists of a full-state feedback control law based on optimal control output weighting, estimators for angle of attack and sideslip, and a maneuvering algorithm. The control law is shown to perform well by both frequency and time domain analysis. The rms vertical acceleration is reduced by about 40 percent over the whole mission flight envelope. The estimators for the angle of attack and sideslip avoid the often inaccurate or costly direct measurement of those angles. The maneuvering algorithm will allow the augmented airplane to respond to pilot inputs. The design characteristics and performance are documented by the closed-loop eigenvalues; rms levels of vertical, lateral, and longitudinal acceleration; and representative time histories and frequency response.
NASA Technical Reports Server (NTRS)
Macdonald, G.
1983-01-01
A prototype Air Traffic Control facility and multiman flight simulator facility was designed and one of the component simulators fabricated as a proof of concept. The facility was designed to provide a number of independent simple simulator cabs that would have the capability of some local, stand alone processing that would in turn interface with a larger host computer. The system can accommodate up to eight flight simulators (commercially available instrument trainers) which could be operated stand alone if no graphics were required or could operate in a common simulated airspace if connected to the host computer. A proposed addition to the original design is the capability of inputing pilot inputs and quantities displayed on the flight and navigation instruments to the microcomputer when the simulator operates in the stand alone mode to allow independent use of these commercially available instrument trainers for research. The conceptual design of the system and progress made to date on its implementation are described.
NASA Technical Reports Server (NTRS)
Grose, D. L.
1979-01-01
The development of the DAST I (drones for aerodynamic and structural testing) remotely piloted research vehicle is described. The DAST I is a highly modified BQM-34E/F Firebee II Supersonic Aerial Target incorporating a swept supercritical wing designed to flutter within the vehicle's flight envelope. The predicted flutter and rigid body characteristics are presented. A description of the analysis and design of an active flutter suppression control system (FSS) designed to increase the flutter boundary of the DAST wing (ARW-1) by a factor of 20% is given. The design and development of the digital remotely augmented primary flight control system and on-board analog backup control system is presented. An evaluation of the near real-time flight flutter testing methods is made by comparing results of five flutter testing techniques on simulated DAST I flutter data. The development of the DAST ARW-1 state variable model used to generate time histories of simulated accelerometer responses is presented. This model uses control surface commands and a Dryden model gust as inputs. The feasibility of the concept of extracting open loop flutter characteristics from closed loop FSS responses was examined. It was shown that open loop characteristics can be determined very well from closed loop subcritical responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prindle, N.H.; Mendenhall, F.T.; Trauth, K.
1996-05-01
The Systems Prioritization Method (SPM) is a decision-aiding tool developed by Sandia National Laboratories (SNL). SPM provides an analytical basis for supporting programmatic decisions for the Waste Isolation Pilot Plant (WIPP) to meet selected portions of the applicable US EPA long-term performance regulations. The first iteration of SPM (SPM-1), the prototype for SPM< was completed in 1994. It served as a benchmark and a test bed for developing the tools needed for the second iteration of SPM (SPM-2). SPM-2, completed in 1995, is intended for programmatic decision making. This is Volume II of the three-volume final report of the secondmore » iteration of the SPM. It describes the technical input and model implementation for SPM-2, and presents the SPM-2 technical baseline and the activities, activity outcomes, outcome probabilities, and the input parameters for SPM-2 analysis.« less
Honeywell optical investigations on FLASH program
NASA Astrophysics Data System (ADS)
O'Rourke, Ken; Peterson, Eric; Yount, Larry
1995-05-01
The increasing performance and reduction of life cycle cost requirements placed on commercial and military transport aircraft are resulting in more complex, highly integrated aircraft control and management systems. The use of fiber optic data transmission media can make significant contributions in achieving these performance and cost goals. The Honeywell portion of Task 2A on the Fly-by-Light Advanced System Hardware (FLASH) program is evaluating a Primary Flight Control System (PFCS) using pilot and copilot inputs from Active Hand Controllers (AHC) which are optically linked to the primary flight Control Computers (PFCC). Customer involvement is an important element of the Task 2A activity. Establishing customer requirements and perspectives on productization of systems developed under FLASH are key to future product success. The Honeywell elements of the PFCS demonstrator provide a command path that is optically interfaced from crew inputs to commands of distributed, smart actuation subsystems commands. Optical communication architectures are implemented using several protocols including the new AS-1773A 20 Mbps data bus standard. The interconnecting fiber optic cable plant is provided by our Task 1A teammate McDonnell Douglas Aerospace (West). Fiber optic cable plant fabrication uses processed, tools and materials reflecting necessary advances in manufacturing required to make fly-by-light avionics systems marketable.
Comparison of frequency-domain and time-domain rotorcraft vibration control methods
NASA Technical Reports Server (NTRS)
Gupta, N. K.
1984-01-01
Active control of rotor-induced vibration in rotorcraft has received significant attention recently. Two classes of techniques have been proposed. The more developed approach works with harmonic analysis of measured time histories and is called the frequency-domain approach. The more recent approach computes the control input directly using the measured time history data and is called the time-domain approach. The report summarizes the results of a theoretical investigation to compare the two approaches. Five specific areas were addressed: (1) techniques to derive models needed for control design (system identification methods), (2) robustness with respect to errors, (3) transient response, (4) susceptibility to noise, and (5) implementation difficulties. The system identification methods are more difficult for the time-domain models. The time-domain approach is more robust (e.g., has higher gain and phase margins) than the frequency-domain approach. It might thus be possible to avoid doing real-time system identification in the time-domain approach by storing models at a number of flight conditions. The most significant error source is the variation in open-loop vibrations caused by pilot inputs, maneuvers or gusts. The implementation requirements are similar except that the time-domain approach can be much simpler to implement if real-time system identification were not necessary.
Text Enhancement and the Acquisition of English Verbal Inflection "-s" by L1 Haitian Creole Speakers
ERIC Educational Resources Information Center
De Santis, Paulina
2008-01-01
This article contributes to the growing body of research investigating the effects of drawing learner attention to the problematic aspects of the linguistic input in the context of meaning-focused instruction. One specific approach to concentrate learner attention on form in the written input is known as textual enhancement. The pilot study…
NASA Technical Reports Server (NTRS)
Napolitano, Marcello R.
1996-01-01
This progress report presents the results of an investigation focused on parameter identification for the NASA F/A-18 HARV. This aircraft was used in the high alpha research program at the NASA Dryden Flight Research Center. In this study the longitudinal and lateral-directional stability derivatives are estimated from flight data using the Maximum Likelihood method coupled with a Newton-Raphson minimization technique. The objective is to estimate an aerodynamic model describing the aircraft dynamics over a range of angle of attack from 5 deg to 60 deg. The mathematical model is built using the traditional static and dynamic derivative buildup. Flight data used in this analysis were from a variety of maneuvers. The longitudinal maneuvers included large amplitude multiple doublets, optimal inputs, frequency sweeps, and pilot pitch stick inputs. The lateral-directional maneuvers consisted of large amplitude multiple doublets, optimal inputs and pilot stick and rudder inputs. The parameter estimation code pEst, developed at NASA Dryden, was used in this investigation. Results of the estimation process from alpha = 5 deg to alpha = 60 deg are presented and discussed.
Effects of movement imitation training in Parkinson's disease: A virtual reality pilot study.
Robles-García, Verónica; Corral-Bergantiños, Yoanna; Espinosa, Nelson; García-Sancho, Carlos; Sanmartín, Gabriel; Flores, Julián; Cudeiro, Javier; Arias, Pablo
2016-05-01
Hypometria is a clinical motor sign in Parkinson's disease. Its origin likely emerges from basal ganglia dysfunction, leading to an impaired control of inhibitory intracortical motor circuits. Some neurorehabilitation approaches include movement imitation training; besides the effects of motor practice, there might be a benefit due to observation and imitation of un-altered movement patterns. In this sense, virtual reality facilitates the process by customizing motor-patterns to be observed and imitated. To evaluate the effect of a motor-imitation therapy focused on hypometria in Parkinson's disease using virtual reality. We carried out a randomized controlled pilot-study. Sixteen patients were randomly assigned in experimental and control groups. Groups underwent 4-weeks of training based on finger-tapping with the dominant hand, in which imitation was the differential factor (only the experimental group imitated). We evaluated self-paced movement features and cortico-spinal excitability (recruitment curves and silent periods in both hemispheres) before, immediately after, and two weeks after the training period. Movement amplitude increased significantly after the therapy in the experimental group for the trained and un-trained hands. Motor thresholds and silent periods evaluated with transcranial magnetic stimulation were differently modified by training in the two groups; although the changes in the input-output recruitment were similar. This pilot study suggests that movement imitation therapy enhances the effect of motor practice in patients with Parkinson's disease; imitation-training might be helpful for reducing hypometria in these patients. These results must be clarified in future larger trials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stember, Joseph N; Deng, Fang-Ming; Taneja, Samir S; Rosenkrantz, Andrew B
2014-08-01
To present results of a pilot study to develop software that identifies regions suspicious for prostate transition zone (TZ) tumor, free of user input. Eight patients with TZ tumors were used to develop the model by training a Naïve Bayes classifier to detect tumors based on selection of most accurate predictors among various signal and textural features on T2-weighted imaging (T2WI) and apparent diffusion coefficient (ADC) maps. Features tested as inputs were: average signal, signal standard deviation, energy, contrast, correlation, homogeneity and entropy (all defined on T2WI); and average ADC. A forward selection scheme was used on the remaining 20% of training set supervoxels to identify important inputs. The trained model was tested on a different set of ten patients, half with TZ tumors. In training cases, the software tiled the TZ with 4 × 4-voxel "supervoxels," 80% of which were used to train the classifier. Each of 100 iterations selected T2WI energy and average ADC, which therefore were deemed the optimal model input. The two-feature model was applied blindly to the separate set of test patients, again without operator input of suspicious foci. The software correctly predicted presence or absence of TZ tumor in all test patients. Furthermore, locations of predicted tumors corresponded spatially with locations of biopsies that had confirmed their presence. Preliminary findings suggest that this tool has potential to accurately predict TZ tumor presence and location, without operator input. © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Nadeau-Beaulieu, Michel
In this thesis, three mathematical models are built from flight test data for different aircraft design applications: a ground dynamics model for the Bell 427 helicopter, a prediction model for the rotor and engine parameters for the same helicopter type and a simulation model for the aeroelastic deflections of the F/A-18. In the ground dynamics application, the model structure is derived from physics where the normal force between the helicopter and the ground is modelled as a vertical spring and the frictional force is modelled with static and dynamic friction coefficients. The ground dynamics model coefficients are optimized to ensure that the model matches the landing data within the FAA (Federal Aviation Administration) tolerance bands for a level D flight simulator. In the rotor and engine application, rotors torques (main and tail), the engine torque and main rotor speed are estimated using a state-space model. The model inputs are nonlinear terms derived from the pilot control inputs and the helicopter states. The model parameters are identified using the subspace method and are further optimised with the Levenberg-Marquardt minimisation algorithm. The model built with the subspace method provides an excellent estimate of the outputs within the FAA tolerance bands. The F/A-18 aeroelastic state-space model is built from flight test. The research concerning this model is divided in two parts. Firstly, the deflection of a given structural surface on the aircraft following a differential ailerons control input is represented by a Multiple Inputs Single Outputs linear model whose inputs are the ailerons positions and the structural surfaces deflections. Secondly, a single state-space model is used to represent the deflection of the aircraft wings and trailing edge flaps following any control input. In this case the model is made non-linear by multiplying model inputs into higher order terms and using these terms as the inputs of the state-space equations. In both cases, the identification method is the subspace method. Most fit coefficients between the estimated and the measured signals are above 73% and most correlation coefficient are higher than 90%.
Integrated flight/propulsion control system design based on a centralized approach
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Mattern, Duane L.; Bullard, Randy E.
1989-01-01
An integrated flight/propulsion control system design is presented for the piloted longitudinal landing task with a modern, statically unstable, fighter aircraft. A centralized compensator based on the Linear Quadratic Gaussian/Loop Transfer Recovery methodology is first obtained to satisfy the feedback loop performance and robustness specificiations. This high-order centralized compensator is then partitioned into airframe and engine sub-controllers based on modal controllability/observability for the compensator modes. The order of the sub-controllers is then reduced using internally-balanced realization techniques and the sub-controllers are simplified by neglecting the insignificant feedbacks. These sub-controllers have the advantage that they can be implemented as separate controllers on the airframe and the engine while still retaining the important performance and stability characteristics of the full-order centralized compensator. Command prefilters are then designed for the closed-loop system with the simplified sub-controllers to obtain the desired system response to airframe and engine command inputs, and the overall system performance evaluation results are presented.
Breast cancer and personal environmental risk factors in Marin County - Pilot study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdmann, C.A.; Farren, G.; Baltzell, K.
The purpose of the Personal Environmental Risk Factor Study (PERFS) pilot project was to develop methodologies and a questionnaire for a future population-based case-control study to investigate the role of selected environmental exposures in breast cancer development. Identification of etiologically relevant exposures during a period of potential vulnerability proximate to disease onset offers the possibility of clinical disease prevention even when disease initiation may have already occurred many years earlier. Certain personal environmental agents or combinations of agents may influence disease promotion. Therefore, this pilot study focused on exposures that occurred during the ten-year period prior to diagnosis for casesmore » and the last ten years for controls, rather than more historic exposures. For this pilot study, they used a community-based research approach. In the collaborative efforts, community members participated with academic researchers in all phases of the research, including research question identification, study design, development of research tools, development of the human subjects protocol, and report writing. Community member inclusion was based upon the concept that community participation could improve the relevance of scientific studies and ultimate success of the research by encouraging an ongoing dialogue between community members and academic representatives. Early activities of this project focused on the collection of input from the community regarding the possible role of environmental factors in the incidence of breast cancer in Marin County. The intent was to inform the scientists of community concerns, enhance the research team's understanding of the community being studied, and provide interested community members with a better understanding of the strengths and weaknesses of traditional research methods through active participation in the research process.« less
Pilot-model analysis and simulation study of effect of control task desired control response
NASA Technical Reports Server (NTRS)
Adams, J. J.; Gera, J.; Jaudon, J. B.
1978-01-01
A pilot model analysis was performed that relates pilot control compensation, pilot aircraft system response, and aircraft response characteristics for longitudinal control. The results show that a higher aircraft short period frequency is required to achieve superior pilot aircraft system response in an altitude control task than is required in an attitude control task. These results were confirmed by a simulation study of target tracking. It was concluded that the pilot model analysis provides a theoretical basis for determining the effect of control task on pilot opinions.
Apple Image Processing Educator
NASA Technical Reports Server (NTRS)
Gunther, F. J.
1981-01-01
A software system design is proposed and demonstrated with pilot-project software. The system permits the Apple II microcomputer to be used for personalized computer-assisted instruction in the digital image processing of LANDSAT images. The programs provide data input, menu selection, graphic and hard-copy displays, and both general and detailed instructions. The pilot-project results are considered to be successful indicators of the capabilities and limits of microcomputers for digital image processing education.
The F-18 High Alpha Research Vehicle: A High-Angle-of-Attack Testbed Aircraft
NASA Technical Reports Server (NTRS)
Regenie, Victoria; Gatlin, Donald; Kempel, Robert; Matheny, Neil
1992-01-01
The F-18 High Alpha Research Vehicle is the first thrust-vectoring testbed aircraft used to study the aerodynamics and maneuvering available in the poststall flight regime and to provide the data for validating ground prediction techniques. The aircraft includes a flexible research flight control system and full research instrumentation. The capability to control the vehicle at angles of attack up to 70 degrees is also included. This aircraft was modified by adding a pitch and yaw thrust-vectoring system. No significant problems occurred during the envelope expansion phase of the program. This aircraft has demonstrated excellent control in the wing rock region and increased rolling performance at high angles of attack. Initial pilot reports indicate that the increased capability is desirable although some difficulty in judging the size and timing of control inputs was observed. The aircraft, preflight ground testing and envelope expansion flight tests are described.
McMullen, David P.; Hotson, Guy; Katyal, Kapil D.; Wester, Brock A.; Fifer, Matthew S.; McGee, Timothy G.; Harris, Andrew; Johannes, Matthew S.; Vogelstein, R. Jacob; Ravitz, Alan D.; Anderson, William S.; Thakor, Nitish V.; Crone, Nathan E.
2014-01-01
To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p < 0.05). After BMI-based initiation, the MPL completed the entire task 100% (one object) and 70% (three objects) of the time. The MPL took approximately 12.2 seconds for task completion after system improvements implemented for the second subject. Our hybrid-BMI design prevented all but one baseline false positive from initiating the system. The novel approach demonstrated in this proof-of-principle study, using hybrid input, supervisory control, and intelligent robotics, addresses limitations of current BMIs. PMID:24760914
McMullen, David P; Hotson, Guy; Katyal, Kapil D; Wester, Brock A; Fifer, Matthew S; McGee, Timothy G; Harris, Andrew; Johannes, Matthew S; Vogelstein, R Jacob; Ravitz, Alan D; Anderson, William S; Thakor, Nitish V; Crone, Nathan E
2014-07-01
To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p < 0.05). After BMI-based initiation, the MPL completed the entire task 100% (one object) and 70% (three objects) of the time. The MPL took approximately 12.2 s for task completion after system improvements implemented for the second subject. Our hybrid-BMI design prevented all but one baseline false positive from initiating the system. The novel approach demonstrated in this proof-of-principle study, using hybrid input, supervisory control, and intelligent robotics, addresses limitations of current BMIs.
ISO 50001 for Commercial Buildings: Lessons Learned From U.S. DOE Pilot Project: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deru, M.; Field, K.; Punjabi, S.
In the U.S., the ISO 50001 Standard, which establishes energy management systems (EnMSs) and processes, has shown uptake primarily in the industrial sector. The U.S. Department of Energy (DOE) undertook a pilot program to explore ISO 50001 implementation in commercial buildings. Eight organizations participated as pilots, with technical assistance provided by DOE, the National Renewable Energy Laboratory (NREL), the Lawrence Berkeley National Laboratory (LBNL), and the Georgia Institute of Technology (Georgia Tech). This paper shares important lessons learned from the pilot. Staff time was the most critical resource required to establish effective EnMSs in commercial buildings. The pilot also revealedmore » that technical support and template/example materials were essential inputs. Crucial activities included evaluating performance, identifying goals, making connections, communicating operational controls, and tracking/reviewing progress. Benefits realized included enhanced intra-organizational connections, greater energy awareness, increased process efficiencies, and improved ability to make business cases. Incremental benefits for ISO 50001 certification were greater accountability, assurance of best practices, public relations opportunities, and potential to unlock verified savings credits or incentive money. Incremental certification costs included more staff/consultant time, money for certification, and a tendency to limit EnMS scope in order to ensure favorable audit results. Five best practices were identified - utilizing expert technical assistance, training, and other resources; focusing on implementation over documentation; keeping top management involved; considering organizational structure when selecting EnMS scope; and matching the implementation level to an EnMS's scope and scale. The last two practices are particularly relevant to the commercial buildings sector.« less
Konstantinidis, Evdokimos I; Bamparopoulos, Giorgos; Bamidis, Panagiotis D
2017-05-01
Exergames have been the subject of research and technology innovations for a number of years. Different devices and technologies have been utilized to train the body and the mind of senior people or different patient groups. In the past, we presented FitForAll, the protocol efficacy of which was proven through widely taken (controlled) pilots with more than 116 seniors for a period of two months. The current piece of work expands this and presents the first truly web exergaming platform, which is solely based on HTML5 and JavaScript without any browser plugin requirements. The adopted architecture (controller application communication framework) combines a unified solution for input devices such as MS Kinect and Wii Balance Βoard which may seamlessly be exploited through standard physical exercise protocols (American College of Sports Medicine guidelines) and accommodate high detail logging; this allows for proper pilot testing and usability evaluations in ecologically valid Living Lab environments. The latter type of setups is also used herein for evaluating the web application with more than a dozen of real elderly users following quantitative approaches.
Piloting Changes to Changing Aircraft Dynamics: What Do Pilots Need to Know?
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.
2011-01-01
An experiment was conducted to quantify the effects of changing dynamics on a subject s ability to track a signal in order to eventually model a pilot adapting to changing aircraft dynamics. The data will be used to identify primary aircraft dynamics variables that influence changes in pilot s response and produce a simplified pilot model that incorporates this relationship. Each run incorporated a different set of second-order aircraft dynamics representing short period transfer function pitch attitude response: damping ratio, frequency, gain, zero location, and time delay. The subject s ability to conduct the tracking task was the greatest source of root mean square error tracking variability. As for the aircraft dynamics, the factors that affected the subjects ability to conduct the tracking were the time delay, frequency, and zero location. In addition to creating a simplified pilot model, the results of the experiment can be utilized in an advisory capacity. A situation awareness/prediction aid based on the pilot behavior and aircraft dynamics may help tailor pilot s inputs more quickly so that PIO or an upset condition can be avoided.
Evaluation of a voice recognition system for the MOTAS pseudo pilot station function
NASA Technical Reports Server (NTRS)
Houck, J. A.
1982-01-01
The Langley Research Center has undertaken a technology development activity to provide a capability, the mission oriented terminal area simulation (MOTAS), wherein terminal area and aircraft systems studies can be performed. An experiment was conducted to evaluate state-of-the-art voice recognition technology and specifically, the Threshold 600 voice recognition system to serve as an aircraft control input device for the MOTAS pseudo pilot station function. The results of the experiment using ten subjects showed a recognition error of 3.67 percent for a 48-word vocabulary tested against a programmed vocabulary of 103 words. After the ten subjects retrained the Threshold 600 system for the words which were misrecognized or rejected, the recognition error decreased to 1.96 percent. The rejection rates for both cases were less than 0.70 percent. Based on the results of the experiment, voice recognition technology and specifically the Threshold 600 voice recognition system were chosen to fulfill this MOTAS function.
Advanced integrated enhanced vision systems
NASA Astrophysics Data System (ADS)
Kerr, J. R.; Luk, Chiu H.; Hammerstrom, Dan; Pavel, Misha
2003-09-01
In anticipation of its ultimate role in transport, business and rotary wing aircraft, we clarify the role of Enhanced Vision Systems (EVS): how the output data will be utilized, appropriate architecture for total avionics integration, pilot and control interfaces, and operational utilization. Ground-map (database) correlation is critical, and we suggest that "synthetic vision" is simply a subset of the monitor/guidance interface issue. The core of integrated EVS is its sensor processor. In order to approximate optimal, Bayesian multi-sensor fusion and ground correlation functionality in real time, we are developing a neural net approach utilizing human visual pathway and self-organizing, associative-engine processing. In addition to EVS/SVS imagery, outputs will include sensor-based navigation and attitude signals as well as hazard detection. A system architecture is described, encompassing an all-weather sensor suite; advanced processing technology; intertial, GPS and other avionics inputs; and pilot and machine interfaces. Issues of total-system accuracy and integrity are addressed, as well as flight operational aspects relating to both civil certification and military applications in IMC.
Legislated emergency locating transmitters and emergency position indicating radio beacons
NASA Technical Reports Server (NTRS)
Wade, William R. (Inventor)
1988-01-01
An emergency locating transmitting (ELT) system is disclosed which comprises a legislated ELT modified with an interface unit and connected by a multiwire cable to a remote control monitor (RCM), typically located at the pilot position. The RCM can remotely test the ELT by disabling the legislated swept tone and allowing transmission of a single tone, turn the ELT on for legislated ELT transmission, and reset the ELT to an armed condition. The RCM also provides visual and audio indications of transmitter operating condition as well as ELT battery condition. Removing the RCM or shorting or opening the interface input connections will not affect traditional ELT operation.
A Novel Approach to Noise-Filtering Based on a Gain-Scheduling Neural Network Architecture
NASA Technical Reports Server (NTRS)
Troudet, T.; Merrill, W.
1994-01-01
A gain-scheduling neural network architecture is proposed to enhance the noise-filtering efficiency of feedforward neural networks, in terms of both nominal performance and robustness. The synergistic benefits of the proposed architecture are demonstrated and discussed in the context of the noise-filtering of signals that are typically encountered in aerospace control systems. The synthesis of such a gain-scheduled neurofiltering provides the robustness of linear filtering, while preserving the nominal performance advantage of conventional nonlinear neurofiltering. Quantitative performance and robustness evaluations are provided for the signal processing of pitch rate responses to typical pilot command inputs for a modern fighter aircraft model.
Envelope Protection for In-Flight Ice Contamination
NASA Technical Reports Server (NTRS)
Gingras, David R.; Barnhart, Billy P.; Ranaudo, Richard J.; Ratvasky, Thomas P.; Morelli, Eugene A.
2010-01-01
Fatal loss-of-control (LOC) accidents have been directly related to in-flight airframe icing. The prototype system presented in this paper directly addresses the need for real-time onboard envelope protection in icing conditions. The combinations of a-priori information and realtime aerodynamic estimations are shown to provide sufficient input for determining safe limits of the flight envelope during in-flight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system has been designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. Components of ICEPro are described and results from preliminary tests are presented.
Knowledge-based processing for aircraft flight control
NASA Technical Reports Server (NTRS)
Painter, John H.
1991-01-01
The purpose is to develop algorithms and architectures for embedding artificial intelligence in aircraft guidance and control systems. With the approach adopted, AI-computing is used to create an outer guidance loop for driving the usual aircraft autopilot. That is, a symbolic processor monitors the operation and performance of the aircraft. Then, based on rules and other stored knowledge, commands are automatically formulated for driving the autopilot so as to accomplish desired flight operations. The focus is on developing a software system which can respond to linguistic instructions, input in a standard format, so as to formulate a sequence of simple commands to the autopilot. The instructions might be a fairly complex flight clearance, input either manually or by data-link. Emphasis is on a software system which responds much like a pilot would, employing not only precise computations, but, also, knowledge which is less precise, but more like common-sense. The approach is based on prior work to develop a generic 'shell' architecture for an AI-processor, which may be tailored to many applications by describing the application in appropriate processor data bases (libraries). Such descriptions include numerical models of the aircraft and flight control system, as well as symbolic (linguistic) descriptions of flight operations, rules, and tactics.
Dem Local Accuracy Patterns in Land-Use/Land-Cover Classification
NASA Astrophysics Data System (ADS)
Katerji, Wassim; Farjas Abadia, Mercedes; Morillo Balsera, Maria del Carmen
2016-01-01
Global and nation-wide DEM do not preserve the same height accuracy throughout the area of study. Instead of assuming a single RMSE value for the whole area, this study proposes a vario-model that divides the area into sub-regions depending on the land-use / landcover (LULC) classification, and assigns a local accuracy per each zone, as these areas share similar terrain formation and roughness, and tend to have similar DEM accuracies. A pilot study over Lebanon using the SRTM and ASTER DEMs, combined with a set of 1,105 randomly distributed ground control points (GCPs) showed that even though the inputDEMs have different spatial and temporal resolution, and were collected using difierent techniques, their accuracy varied similarly when changing over difierent LULC classes. Furthermore, validating the generated vario-models proved that they provide a closer representation of the accuracy to the validating GCPs than the conventional RMSE, by 94% and 86% for the SRTMand ASTER respectively. Geostatistical analysis of the input and output datasets showed that the results have a normal distribution, which support the generalization of the proven hypothesis, making this finding applicable to other input datasets anywhere around the world.
NASA Technical Reports Server (NTRS)
Gundy-Burlet, Karen
2003-01-01
The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.
Computer simulation of a pilot in V/STOL aircraft control loops
NASA Technical Reports Server (NTRS)
Vogt, William G.; Mickle, Marlin H.; Zipf, Mark E.; Kucuk, Senol
1989-01-01
The objective was to develop a computerized adaptive pilot model for the computer model of the research aircraft, the Harrier II AV-8B V/STOL with special emphasis on propulsion control. In fact, two versions of the adaptive pilot are given. The first, simply called the Adaptive Control Model (ACM) of a pilot includes a parameter estimation algorithm for the parameters of the aircraft and an adaption scheme based on the root locus of the poles of the pilot controlled aircraft. The second, called the Optimal Control Model of the pilot (OCM), includes an adaption algorithm and an optimal control algorithm. These computer simulations were developed as a part of the ongoing research program in pilot model simulation supported by NASA Lewis from April 1, 1985 to August 30, 1986 under NASA Grant NAG 3-606 and from September 1, 1986 through November 30, 1988 under NASA Grant NAG 3-729. Once installed, these pilot models permitted the computer simulation of the pilot model to close all of the control loops normally closed by a pilot actually manipulating the control variables. The current version of this has permitted a baseline comparison of various qualitative and quantitative performance indices for propulsion control, the control loops and the work load on the pilot. Actual data for an aircraft flown by a human pilot furnished by NASA was compared to the outputs furnished by the computerized pilot and found to be favorable.
NASA Astrophysics Data System (ADS)
Monteil, P.
1981-11-01
Computation of the overall levels and spectral densities of the responses measured on a launcher skin, the fairing for instance, merged into a random acoustic environment during take off, was studied. The analysis of transmission of these vibrations to the payload required the simulation of these responses by a shaker control system, using a small number of distributed shakers. Results show that this closed loop computerized digital system allows the acquisition of auto and cross spectral densities equal to those of the responses previously computed. However, wider application is sought, e.g., road and runway profiles. The problems of multiple input-output system identification, multiple true random signal generation, and real time programming are evoked. The system should allow for the control of four shakers.
Design and Development of Tilting Rotary Furnace
NASA Astrophysics Data System (ADS)
Sai Varun, V.; Tejesh, P.; Prashanth, B. N.
2018-02-01
Casting is the best and effective technique used for manufacturing products. The important accessory for casting is furnace. Furnace is used to melt the metal. A perfect furnace is one that reduces the wastage of material, reduces the cost of manufacturing and there by reduces the cost of production. Of all the present day furnaces there may be wastage of material, and the chances of increasing the time of manufacturing as the is continuous need of tilting of the furnace for every mould and then changing the moulds. Considering these aspects, a simple and least expensive tilting rotary furnace is designed and developed. The Tilting and Rotary Furnace consists of mainly melting chamber and the base. The metal enters the melting chamber through the input door that is provided on the top of the melting chamber. Inside the melting chamber there is a graphite furnace. The metal is melted in the graphite crucible. An insulation of ceramic fibre cloth is provided inside the furnace. The metal is melted using Propane gas. The propane gas is easily available and economic. The gas is burned using a pilot burner. The pilot burner is more efficient that other burners. The pilot burner is lit with a push button igniter. The pilot burner is located at the bottom of the combustion chamber. This enables the uniform heating of the metal inside the crucible. The temperature inside the melting chamber is noted using a temperature sensor. The gas input is cut-off if the temperature is exceeding a specific temperature. After the melting of the metal is done the furnace is tilted and after the mould is filled it is rotated. The external gears are used to controlling the tilting. The results of studies carried out for the design & development of low cost, simple furnace that can be mounted anywhere on the shop floor and this can be very much useful for the education purposes and small scale manufacturing. The furnace can be rotated in 360 degrees and can help in reducing the time taken in manufacturing. The furnace is provided with a rotation motion to the base which helps in providing a uniform distribution of molten metal to various moulds and can be used to fill a number of moulds with minimal wastage of the molten material. Due to the tilting action provided to the combustion chamber, the flow of metal can be controlled easily during pouring of molten metal into the moulds.
76 FR 61138 - Pilot Program on NAFTA Long-Haul Trucking Provisions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-03
... concerned with motor carrier safety, customs, immigration, vehicle registration and taxation, and fuel taxation. The safety of the participating carriers would be tracked closely by FMCSA with input from the...
Report: Science to Support Rulemaking
Report #2003-P-00003, November 15, 2002. The rules included in the pilot study were not a representative statistical sample of EPA rules, and we did not identify all ofthe critical science inputs for every rule.
On the Design of a Fuzzy Logic-Based Control System for Freeze-Drying Processes.
Fissore, Davide
2016-12-01
This article is focused on the design of a fuzzy logic-based control system to optimize a drug freeze-drying process. The goal of the system is to keep product temperature as close as possible to the threshold value of the formulation being processed, without trespassing it, in such a way that product quality is not jeopardized and the sublimation flux is maximized. The method involves the measurement of product temperature and a set of rules that have been obtained through process simulation with the goal to obtain a unique set of rules for products with very different characteristics. Input variables are the difference between the temperature of the product and the threshold value, the difference between the temperature of the heating fluid and that of the product, and the rate of change of product temperature. The output variables are the variation of the temperature of the heating fluid and the pressure in the drying chamber. The effect of the starting value of the input variables and of the control interval has been investigated, thus resulting in the optimal configuration of the control system. Experimental investigation carried out in a pilot-scale freeze-dryer has been carried out to validate the proposed system. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
1992-01-01
results in stimulation of spatial-motion-location visual processes, which are known to take precedence over any other sensor or cognitive stimuli. In...or version he is flying. This was initially an observation that stimulated the birth of the human-factors engineering discipline during World War H...collisions with the surface, the pilot needs inputs to sensory channels other than the focal visual system. Properly designed auditory and
NASA Technical Reports Server (NTRS)
Chelette, T. L.; Repperger, Daniel W.; Albery, W. B.
1991-01-01
An effort was initiated at the Armstrong Aerospace Medical Research Laboratory (AAMRL) to investigate the improvement of the situational awareness of a pilot with respect to his aircraft's spatial orientation. The end product of this study is a device to alert a pilot to potentially disorienting situations. Much like a ground collision avoidance system (GCAS) is used in fighter aircraft to alert the pilot to 'pull up' when dangerous flight paths are predicted, this device warns the pilot to put a higher priority on attention to the orientation instrument. A Kalman filter was developed which estimates the pilot's perceived position and orientation. The input to the Kalman filter consists of two classes of data. The first class of data consists of noise parameters (indicating parameter uncertainty), conflict signals (e.g. vestibular and kinesthetic signal disagreement), and some nonlinear effects. The Kalman filter's perceived estimates are now the sum of both Class 1 data (good information) and Class 2 data (distorted information). When the estimated perceived position or orientation is significantly different from the actual position or orientation, the pilot is alerted.
New techniques for test development for tactical auto-pilots using microprocessors
NASA Astrophysics Data System (ADS)
Shemeta, E. H.
1980-07-01
This paper reports on a demonstration of the application of the method to generate system level tests for a typical tactical missile autopilot. The test algorithms are based on the autopilot control law. When loaded on the tester with appropriate control information, the complete autopilot is tested to establish if the specified control law requirements are met. Thus, the test procedure not only checks to see if the hardware is functional, but also checks the operational software. The technique also uses a 'learning' mode to allow minor timing or functional deviations from the expected responses to be incorporated in the test procedures. A potential application of this test development technique is the extraction of production test data for the various subassemblies. The technique will 'learn' the input-output patterns forming the basis for developement and production tests. If successful, these new techniques should allow the test development process to keep pace with semiconductor progress.
NASA Technical Reports Server (NTRS)
Rising, J. J.; Kairys, A. A.; Maass, C. A.; Siegart, C. D.; Rakness, W. L.; Mijares, R. D.; King, R. W.; Peterson, R. S.; Hurley, S. R.; Wickson, D.
1982-01-01
A limited authority pitch active control system (PACS) was developed for a wide body jet transport (L-1011) with a flying horizontal stabilizer. Two dual channel digital computers and the associated software provide command signals to a dual channel series servo which controls the stabilizer power actuators. Input sensor signals to the computer are pitch rate, column-trim position, and dynamic pressure. Control laws are given for the PACS and the system architecture is defined. The piloted flight simulation and vehicle system simulation tests performed to verify control laws and system operation prior to installation on the aircraft are discussed. Modifications to the basic aircraft are described. Flying qualities of the aircraft with the PACS on and off were evaluated. Handling qualities for cruise and high speed flight conditions with the c.g. at 39% mac ( + 1% stability margin) and PACS operating were judged to be as good as the handling qualities with the c.g. at 25% (+15% stability margin) and PACS off.
Emergency Control Aircraft System Using Thrust Modulation
NASA Technical Reports Server (NTRS)
Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor)
2000-01-01
A digital longitudinal Aircraft Propulsion Control (APC system of a multiengine aircraft is provided by engine thrust modulation in response to comparing an input flightpath angle signal (gamma)c from a pilot thumbwheel. or an ILS system with a sensed flightpath angle y to produce an error signal (gamma)e that is then integrated (with reasonable limits) to generate a drift correction signal to be added to the error signal (gamma)e after first subtracting a lowpass filtered velocity signal Vel(sub f) for phugoid damping. The output error signal is multiplied by a constant to produce an aircraft thrust control signal ATC of suitable amplitude to drive a throttle servo for all engines. each of which includes its own full-authority digital engine control (FADEC) computer. An alternative APC system omits sensed flightpath angle feedback and instead controls the flightpath angle by feedback of the lowpass filtered velocity signal Vel(sub f) which also inherently provides phugoid damping. The feature of drift compensation is retained.
The Effect of Shared Information on Pilot/Controller and Controller/Controller Interactions
NASA Technical Reports Server (NTRS)
Hansman, R. John; Davison, Hayley J.
2000-01-01
The increased ability to exchange information between Pilots, Controllers, Dispatchers, and other agents is a key component of advanced Air Traffic Management. The importance of shared information as well as current and evolving practices in information sharing are presented for a variety of interactions including: Controller/Pilot interactions, Pilot/Airline interactions, Controller/Controller interactions, and Airline/ATM interactions.
Evidence for -Gz Adaptation Observed with Wearable Biosensors During High Performance Jet Flight.
Rice, G Merrill; Snider, Dallas; Moore, Jeffrey L; Lavan, J Timothy; Folga, Rich; VanBrunt, Thomas B
2016-12-01
Few studies have evaluated physiological responses to high acceleration forces during actual flight and to our knowledge no normative data has been acquired by technologies such as wearable biosensors during high performance jet aircraft operations. In-flight physiological data from an FDA cleared portable triaxial accelerometer and bio-sensor were observed from five active duty F-18 pilots of the Naval Flight Demonstration Squadron (Blue Angels). Of the five pilots, three were formation pilots who flew lower G profiles and two were solo pilots who flew higher G profiles. Physiological parameters monitored were heart rate, respiratory rate, temperature, caloric expenditure, and duration of exposure to levels of acceleration. Evaluated were 25 practice demonstration flights; 9 flights were excluded secondary to incomplete or inaccurate physiological data. We observed no significant bradycardia during a total of 189 maneuvers which met inclusion criteria for push-pull events (PPE) or isolated -Gz exposures. Further analysis of 73 PPE revealed an overall significant rise in HR following the PPE, where mean heart rate was 106 (95% CI, 100:112) at the beginning of the push and 129 (95% CI, 123:135) following the pull. A majority of the flights monitored provided reliable physiological data. Initial data suggests, contrary to currently held aeromedical doctrine, maneuvers such as the "push-pull" do not evoke vasovagal based bradycardic responses in aerobatic pilots. Possible explanations for these findings are sympathetic nervous system activation through adaptation and/or sustained isometric resistance from control inputs, both of which are areas of future research for our team.Rice GM, Snider D, Moore JL, Lavan JT, Folga R, VanBrunt TB. Evidence for -Gz adaptation observed with wearable biosensors during high performance jet flight. Aerosp Med Hum Perform. 2016; 87(12):996-1003.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-19
... operating conditions and configurations, whether normal or non-normal. 2. Pilot control authority: The... Series Airplanes; Side Stick Controllers: Pilot Strength, Pilot Control Authority, and Pilot Control... side stick controllers for pitch and roll control instead of conventional wheels and columns. The...
A Study of the Characteristics of Human-Pilot Control Response to Simulated Aircraft Lateral Motions
NASA Technical Reports Server (NTRS)
Cheatham, Donald C
1954-01-01
Report presents the results of studies made in an attempt to provide information on the control operations of the human pilot. These studies included an investigation of the ability of pilots to control simulated unstable yawing oscillations, a study of the basic characteristics of human-pilot control response, and a study to determine whether and to what extent pilot control response can be represented in an analytical form.
Advanced helicopter cockpit and control configurations for helicopter combat missions
NASA Technical Reports Server (NTRS)
Haworth, Loran A.; Atencio, Adolph, Jr.; Bivens, Courtland; Shively, Robert; Delgado, Daniel
1987-01-01
Two piloted simulations were conducted by the U.S. Army Aeroflightdynamics Directorate to evaluate workload and helicopter-handling qualities requirements for single pilot operation in a combat Nap-of-the-Earth environment. The single-pilot advanced cockpit engineering simulation (SPACES) investigations were performed on the NASA Ames Vertical Motion Simulator, using the Advanced Digital Optical Control System control laws and an advanced concepts glass cockpit. The first simulation (SPACES I) compared single pilot to dual crewmember operation for the same flight tasks to determine differences between dual and single ratings, and to discover which control laws enabled adequate single-pilot helicopter operation. The SPACES II simulation concentrated on single-pilot operations and use of control laws thought to be viable candidates for single pilot operations workload. Measures detected significant differences between single-pilot task segments. Control system configurations were task dependent, demonstrating a need for inflight reconfigurable control system to match the optimal control system with the required task.
Zapf, Marc P; Matteucci, Paul B; Lovell, Nigel H; Zheng, Steven; Suaning, Gregg J
2014-01-01
Simulated prosthetic vision (SPV) in normally sighted subjects is an established way of investigating the prospective efficacy of visual prosthesis designs in visually guided tasks such as mobility. To perform meaningful SPV mobility studies in computer-based environments, a credible representation of both the virtual scene to navigate and the experienced artificial vision has to be established. It is therefore prudent to make optimal use of existing hardware and software solutions when establishing a testing framework. The authors aimed at improving the realism and immersion of SPV by integrating state-of-the-art yet low-cost consumer technology. The feasibility of body motion tracking to control movement in photo-realistic virtual environments was evaluated in a pilot study. Five subjects were recruited and performed an obstacle avoidance and wayfinding task using either keyboard and mouse, gamepad or Kinect motion tracking. Walking speed and collisions were analyzed as basic measures for task performance. Kinect motion tracking resulted in lower performance as compared to classical input methods, yet results were more uniform across vision conditions. The chosen framework was successfully applied in a basic virtual task and is suited to realistically simulate real-world scenes under SPV in mobility research. Classical input peripherals remain a feasible and effective way of controlling the virtual movement. Motion tracking, despite its limitations and early state of implementation, is intuitive and can eliminate between-subject differences due to familiarity to established input methods.
Performance seeking control excitation mode
NASA Technical Reports Server (NTRS)
Schkolnik, Gerard
1995-01-01
Flight testing of the performance seeking control (PSC) excitation mode was successfully completed at NASA Dryden on the F-15 highly integrated digital electronic control (HIDEC) aircraft. Although the excitation mode was not one of the original objectives of the PSC program, it was rapidly prototyped and implemented into the architecture of the PSC algorithm, allowing valuable and timely research data to be gathered. The primary flight test objective was to investigate the feasibility of a future measurement-based performance optimization algorithm. This future algorithm, called AdAPT, which stands for adaptive aircraft performance technology, generates and applies excitation inputs to selected control effectors. Fourier transformations are used to convert measured response and control effector data into frequency domain models which are mapped into state space models using multiterm frequency matching. Formal optimization principles are applied to produce an integrated, performance optimal effector suite. The key technical challenge of the measurement-based approach is the identification of the gradient of the performance index to the selected control effector. This concern was addressed by the excitation mode flight test. The AdAPT feasibility study utilized the PSC excitation mode to apply separate sinusoidal excitation trims to the controls - one aircraft, inlet first ramp (cowl), and one engine, throat area. Aircraft control and response data were recorded using on-board instrumentation and analyzed post-flight. Sensor noise characteristics, axial acceleration performance gradients, and repeatability were determined. Results were compared to pilot comments to assess the ride quality. Flight test results indicate that performance gradients were identified at all flight conditions, sensor noise levels were acceptable at the frequencies of interest, and excitations were generally not sensed by the pilot.
Helicopter pilots' views of air traffic controller responsibilities: a mismatch.
Martin, Daniel; Nixon, Jim
2018-02-21
Controllers and pilots must work together to ensure safe and efficient helicopter flight within the London control zone. Subjective ratings of pilot perception of controller responsibility for five key flight tasks were obtained from thirty helicopter pilots. Three types of airspace were investigated. Results indicate that there is variation in pilot understanding of controller responsibility compared to the formal regulations that define controller responsibility. Significant differences in the perception of controller responsibility were found for the task of aircraft separation in class D airspace and along helicopter routes. Analysis of the patterns of response suggests that task type rather than the airspace type may be the key factor. Results are framed using the concept of a shared mental model. This research demonstrates that pilots flying in complex London airspace have an expectation of controller responsibility for certain flight tasks, in certain airspace types that is not supported by aviation regulation. Practitioner Summary: The responsibility for tasks during flight varies according to the flight rules used and airspace type. Helicopter pilots may attribute responsibility to controllers for tasks when controllers have no responsibility as defined by regulation. This variation between pilot perceptions of controller responsibility could affect safety within the London control zone.
Simple force feedback for small virtual environments
NASA Astrophysics Data System (ADS)
Schiefele, Jens; Albert, Oliver; van Lier, Volker; Huschka, Carsten
1998-08-01
In today's civil flight training simulators only the cockpit and all its interaction devices exist as physical mockups. All other elements such as flight behavior, motion, sound, and the visual system are virtual. As an extension to this approach `Virtual Flight Simulation' tries to subsidize the cockpit mockup by a 3D computer generated image. The complete cockpit including the exterior view is displayed on a Head Mounted Display (HMD), a BOOM, or a Cave Animated Virtual Environment. In most applications a dataglove or virtual pointers are used as input devices. A basic problem of such a Virtual Cockpit simulation is missing force feedback. A pilot cannot touch and feel buttons, knobs, dials, etc. he tries to manipulate. As a result, it is very difficult to generate realistic inputs into VC systems. `Seating Bucks' are used in automotive industry to overcome the problem of missing force feedback. Only a seat, steering wheel, pedal, stick shift, and radio panel are physically available. All other geometry is virtual and therefore untouchable but visible in the output device. In extension to this concept a `Seating Buck' for commercial transport aircraft cockpits was developed. Pilot seat, side stick, pedals, thrust-levers, and flaps lever are physically available. All other panels are simulated by simple flat plastic panels. They are located at the same location as their real counterparts only lacking the real input devices. A pilot sees the entire photorealistic cockpit in a HMD as 3D geometry but can only touch the physical parts and plastic panels. In order to determine task performance with the developed Seating Buck, a test series was conducted. Users press buttons, adapt dials, and turn knobs. In a first test, a complete virtual environment was used. The second setting had a plastic panel replacing all input devices. Finally, as cross reference the participants had to repeat the test with a complete physical mockup of the input devices. All panels and physical devices can be easily relocated to simulate a different type of cockpit. Maximal 30 minutes are needed for a complete adaptation. So far, an Airbus A340 and a generic cockpit are supported.
Charter for the ARM Atmospheric Modeling Advisory Group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Advisory Group, ARM Atmospheric Modeling
The Atmospheric Modeling Advisory Group of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility is guided by the following: 1. The group will provide feedback on the overall project plan including input on how to address priorities and trade-offs in the modeling and analysis workflow, making sure the modeling follows general best practices, and reviewing the recommendations provided to ARM for the workflow implementation. 2. The group will consist of approximately 6 members plus the PI and co-PI of the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) pilot project. The ARM Technical Director,more » or his designee, serves as an ex-officio member. This size is chosen based on the ability to efficiently conduct teleconferences and to span the general needs for input to the LASSO pilot project.« less
Mostbauer, P; Lombardi, L; Olivieri, T; Lenz, S
2014-01-01
Biogas or landfill gas can be converted to a high-grade gas rich in methane with the use of municipal solid waste incineration bottom ash as a reactant for fixation of CO2 and H2S. In order to verify results previously obtained at a laboratory scale with 65-90 kg of bottom ash (BA), several test runs were performed at a pilot scale, using 500-1000 kg of bottom ash and up to 9.2 Nm(3)/h real landfill gas from a landfill in the Tuscany region (Italy). The input flow rate was altered. The best process performance was observed at a input flow rate of 3.7 Nm(3)/(htBA). At this flow rate, the removal efficiencies for H2S were approximately 99.5-99%. Copyright © 2013 Elsevier Ltd. All rights reserved.
Piloted evaluation of an integrated propulsion and flight control simulator
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.
1992-01-01
A piloted evaluation of the integrated flight and propulsion control simulator for advanced integrated propulsion and airframe control design is described. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and Vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit displays, and pilot effectors. The piloted tasks used for rating displays and control effector gains are described. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.
Waki, Kayo; Aizawa, Kiyoharu; Kato, Shigeko; Fujita, Hideo; Lee, Hanae; Kobayashi, Haruka; Ogawa, Makoto; Mouri, Keisuke; Kadowaki, Takashi; Ohe, Kazuhiko
2015-05-01
Diabetes self-management education is an essential element of diabetes care. Systems based on information and communication technology (ICT) for supporting lifestyle modification and self-management of diabetes are promising tools for helping patients better cope with diabetes. An earlier study had determined that diet improved and HbA1c declined for the patients who had used DialBetics during a 3-month randomized clinical trial. The objective of the current study was to test a more patient-friendly version of DialBetics, whose development was based on the original participants' feedback about the previous version of DialBetics. DialBetics comprises 4 modules: data transmission, evaluation, exercise input, and food recording and dietary evaluation. Food recording uses a multimedia food record, FoodLog. A 1-week pilot study was designed to determine if usability and compliance improved over the previous version, especially with the new meal-input function. In the earlier 3-month, diet-evaluation study, HbA1c had declined a significant 0.4% among those who used DialBetics compared with the control group. In the current 1-week study, input of meal photos was higher than with the previous version (84.8 ± 13.2% vs 77.1% ± 35.1% in the first 2 weeks of the 3-month trial). Interviews after the 1-week study showed that 4 of the 5 participants thought the meal-input function improved; the fifth found input easier, but did not consider the result an improvement. DialBetics with FoodLog was shown to be an effective and convenient tool, its new meal-photo input function helping provide patients with real-time support for diet modification. © 2015 Diabetes Technology Society.
DialBetics With a Multimedia Food Recording Tool, FoodLog
Waki, Kayo; Aizawa, Kiyoharu; Kato, Shigeko; Fujita, Hideo; Lee, Hanae; Kobayashi, Haruka; Ogawa, Makoto; Mouri, Keisuke; Kadowaki, Takashi; Ohe, Kazuhiko
2015-01-01
Background: Diabetes self-management education is an essential element of diabetes care. Systems based on information and communication technology (ICT) for supporting lifestyle modification and self-management of diabetes are promising tools for helping patients better cope with diabetes. An earlier study had determined that diet improved and HbA1c declined for the patients who had used DialBetics during a 3-month randomized clinical trial. The objective of the current study was to test a more patient-friendly version of DialBetics, whose development was based on the original participants’ feedback about the previous version of DialBetics. Method: DialBetics comprises 4 modules: data transmission, evaluation, exercise input, and food recording and dietary evaluation. Food recording uses a multimedia food record, FoodLog. A 1-week pilot study was designed to determine if usability and compliance improved over the previous version, especially with the new meal-input function. Results: In the earlier 3-month, diet-evaluation study, HbA1c had declined a significant 0.4% among those who used DialBetics compared with the control group. In the current 1-week study, input of meal photos was higher than with the previous version (84.8 ± 13.2% vs 77.1% ± 35.1% in the first 2 weeks of the 3-month trial). Interviews after the 1-week study showed that 4 of the 5 participants thought the meal-input function improved; the fifth found input easier, but did not consider the result an improvement. Conclusions: DialBetics with FoodLog was shown to be an effective and convenient tool, its new meal-photo input function helping provide patients with real-time support for diet modification. PMID:25883164
A simulation study of the flight dynamics of elastic aircraft. Volume 2: Data
NASA Technical Reports Server (NTRS)
Waszak, Martin R.; Davidson, John B.; Schmidt, David K.
1987-01-01
The simulation experiment described addresses the effects of structural flexibility on the dynamic characteristics of a generic family of aircraft. The simulation was performed using the NASA Langley VMS simulation facility. The vehicle models were obtained as part of this research project. The simulation results include complete response data and subjective pilot ratings and comments and so allow a variety of analyses. The subjective ratings and analysis of the time histories indicate that increased flexibility can lead to increased tracking errors, degraded handling qualities, and changes in the frequency content of the pilot inputs. These results, furthermore, are significantly affected by the visual cues available to the pilot.
Banach, J L; van Overbeek, L S; Nierop Groot, M N; van der Zouwen, P S; van der Fels-Klerx, H J
2018-03-23
Controlling water quality is critical in preventing cross-contamination during fresh produce washing. Process wash water (PWW) quality can be controlled by implementing chemical disinfection strategies. The aim of this study was to evaluate the pilot-scale efficacy of chlorine dioxide (ClO 2 ) during processing on the reduction of Escherichia coli in the PWW and on processed fresh-cut 'Lollo Rossa' lettuce. The objective was to have a residual target concentration of either 5 or 3 mg/L ClO 2 in the washing tank (3.5 m 3 ) before and during 800 kg of lettuce processing (90 min). After 90 min., a nonpathogenic, non-Extended Spectrum Beta-Lactamase (ESBL) E. coli inoculum from an overnight culture broth (37 °C) was added to the tank resulting in an approximate final level of 10 6 CFU/mL. PWW and lettuce samples for microbiological and chemical analyses were taken before and after the input and supply halted. ClO 2 concentrations quickly decreased after ClO 2 input halted, yet a residual concentration of ≥2.5 mg/L and ≥2.1 mg/L ClO 2 , respectively for 5 and 3 mg/L pilots, was present 12 min after the supply halted. No detectable levels of E. coli (limit of detection 5 log) were determined in the water within 1 min after E. coli was added to the ClO 2 containing wash water. Results demonstrated that ClO 2 use at the semi-commercial pilot scale was able to reduce the E. coli peak contamination in the PWW. After storage (5 days, 4 °C), background microbial communities (i.e., fluorescent Pseudomonads and total heterotrophic bacteria) grew out on lettuce. Overall, ClO 2 decreased the potential for cross-contamination between batches compared to when no sanitizer was used. Chlorate levels of the lettuce sampled before entering the wash water ranged from 7.3-11.6 μg/kg. The chlorate levels of the lettuce sampled after being washed in the ClO 2 containing wash water, as well as after rinsing and centrifugation, ranged from 22.8-60.4 μg/kg; chlorite levels ranged from 1.3-1.6 mg/kg, while perchlorate levels were below the limit of quantification (LOQ, <5 ng/g). In this study, we report the semi-commercial pilot-scale evaluation of ClO 2 , for its ability to maintain the PWW quality and to prevent cross-contamination in the washing tank during fresh-cut lettuce processing. Furthermore, we provide quantitative values of ClO 2 disinfection by-products chlorate and chlorite as well as of perchlorate from PWW and/or lettuce samples. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Sadoff, Melvin
1958-01-01
The results of a fixed-base simulator study of the effects of variable longitudinal control-system dynamics on pilot opinion are presented and compared with flight-test data. The control-system variables considered in this investigation included stick force per g, time constant, and dead-band, or stabilizer breakout force. In general, the fairly good correlation between flight and simulator results for two pilots demonstrates the validity of fixed-base simulator studies which are designed to complement and supplement flight studies and serve as a guide in control-system preliminary design. However, in the investigation of certain problem areas (e.g., sensitive control-system configurations associated with pilot- induced oscillations in flight), fixed-base simulator results did not predict the occurrence of an instability, although the pilots noted the system was extremely sensitive and unsatisfactory. If it is desired to predict pilot-induced-oscillation tendencies, tests in moving-base simulators may be required. It was found possible to represent the human pilot by a linear pilot analog for the tracking task assumed in the present study. The criterion used to adjust the pilot analog was the root-mean-square tracking error of one of the human pilots on the fixed-base simulator. Matching the tracking error of the pilot analog to that of the human pilot gave an approximation to the variation of human-pilot behavior over a range of control-system dynamics. Results of the pilot-analog study indicated that both for optimized control-system dynamics (for poor airplane dynamics) and for a region of good airplane dynamics, the pilot response characteristics are approximately the same.
Juntorn, Sutinun; Sriphetcharawut, Sarinya; Munkhetvit, Peeraya
2017-01-01
Learning disabilities (LD) can be associated with problems in the four stages of information processing used in learning: input, throughput, output, and feedback. These problems affect the child's ability to learn and perform activities in daily life, especially during academic activities. This study is a pilot study aimed at investigating the effectiveness of information processing strategy training using a combination of two approaches that address the ability to apply processing strategies during academic activities in children with LD. The two approaches are the Perceive, Recall, Plan, and Perform (PRPP) System of Intervention, which is a strategy training intervention, and the Four-Quadrant Model (4QM) of Facilitated Learning approach, which is a systematic facilitator technique. Twenty children with LD were assigned to two groups: the experimental group ( n = 10) and the control group ( n = 10). Children in the experimental group received the intervention twice a week for 6 consecutive weeks. Each treatment session took approximately 50 minutes. Children in the control group received traditional intervention twice a week for 6 consecutive weeks. The results indicated that the combination of the PRPP System of Intervention and the 4QM may improve the participants' ability to apply information processing strategies during academic activities.
Matsukami, Hidenori; Kose, Tomohiro; Watanabe, Mafumi; Takigami, Hidetaka
2014-09-15
Chlorinated and non-halogenated organophosphorus flame retardants (OPFRs) including tris(2-chloroisopropyl) phosphate (TCIPP), diethylene glycol bis(di(2-chloroisopropyl) phosphate) (DEG-BDCIPP), triphenyl phosphate (TPHP), and bisphenol A bis(diphenyl phosphate) (BPA-BDPP) have been used increasingly as alternatives to polybrominated diphenyl ethers and other brominated flame retardants. For this study, five batches of incineration experiments of wastes containing approximately 1% of TCIPP, DEG-BDCIPP, TPHP, and BPA-BDPP were conducted using a pilot-scale incinerator. Destruction and emission behaviors of OPFRs were investigated along with the effects on behaviors of unintentional persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (dl-PCBs), hexachlorobenzene (HCB), pentachlorobenzene (PeCB), and pentachlorophenol (PCP). Incineration conditions were chosen according to current regulations for waste incinerators in Japan and UNEP. The OPFRs in the input materials were mainly destroyed in the primary combustion with destruction efficiencies greater than 99.999%. Concentrations of the OPFRs in the exhaust gases and ash were, respectively, <0.01-0.048 μg m(-3) and <0.5-68 μg kg(-1). Almost all of the total phosphorus in the input materials was partitioned into the ash, but less into final exit gases, indicating negligible emissions of volatile phosphorus compounds during incineration. Inputs of chlorinated OPFRs did not affect the formation markedly. Destruction and emission behaviors of unintentional POPs were investigated. Emissions of such POPs in exhaust gases and the ash were lower than the Japanese and international standards. Results show that even in wastes with high contents of chlorinated and non-halogenated OPFRs, waste incineration by the current regulations for the waste incinerators can control environmental emissions of OPFRs and unintentional POPs. Incineration is regarded as a best available technology (BAT) for waste management systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Identification of Low Order Equivalent System Models From Flight Test Data
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2000-01-01
Identification of low order equivalent system dynamic models from flight test data was studied. Inputs were pilot control deflections, and outputs were aircraft responses, so the models characterized the total aircraft response including bare airframe and flight control system. Theoretical investigations were conducted and related to results found in the literature. Low order equivalent system modeling techniques using output error and equation error parameter estimation in the frequency domain were developed and validated on simulation data. It was found that some common difficulties encountered in identifying closed loop low order equivalent system models from flight test data could be overcome using the developed techniques. Implications for data requirements and experiment design were discussed. The developed methods were demonstrated using realistic simulation cases, then applied to closed loop flight test data from the NASA F-18 High Alpha Research Vehicle.
Auditory input modulates sleep: an intra-cochlear-implanted human model.
Velluti, Ricardo A; Pedemonte, Marisa; Suárez, Hámlet; Bentancor, Claudia; Rodríguez-Servetti, Zulma
2010-12-01
To properly demonstrate the effect of auditory input on sleep of intra-cochlear-implanted patients, the following approach was developed. Four implanted deaf patients were recorded during four nights: two nights with the implant OFF, with no auditory input, and two nights with the implant ON, that is, with normal auditory input, being only the common night sounds present, without any additional auditory stimuli delivered. The sleep patterns of another five deaf people were used as controls, exhibiting normal sleep organization. Moreover, the four experimental patients with intra-cochlear devices and the implant OFF also showed normal sleep patterns. On comparison of the night recordings with the implant ON and OFF, a new sleep organization was observed for the recordings with the implant ON, suggesting that brain plasticity may produce changes in the sleep stage percentages while maintaining the ultradian rhythm. During sleep with the implant ON, the analysis of the electroencephalographic delta, theta and alpha bands in the frequency domain, using the Fast Fourier Transform, revealed a diversity of changes in the power originated in the contralateral cortical temporal region. Different power shifts were observed, perhaps related to the exact position of the implant inside the cochlea and the scalp electrode location. In conclusion, this pilot study shows that the auditory input in humans can introduce changes in central nervous system activity leading to shifts in sleep characteristics, as previously demonstrated in guinea pigs. We are postulating that an intra-cochlear-implanted deaf patient may have a better recovery if the implant is maintained ON during the night, that is, during sleep. © 2010 European Sleep Research Society.
Hubbard, Gill; Campbell, Anna; Davies, Zoe; Munro, Julie; Ireland, Aileen V; Leslie, Stephen; Watson, Angus Jm; Treweek, Shaun
2015-01-01
Recruitment to randomised controlled trials (RCTs) is a perennial problem. Calls have been made for trialists to make recruitment performance publicly available. This article presents our experience of recruiting to a pilot RCT of cardiac rehabilitation for patients with bowel cancer with an embedded process evaluation. Recruitment took place at three UK hospitals. Recruitment figures were based on the following: i) estimated number of patient admissions, ii) number of patients likely to meet inclusion criteria from clinician input and iii) recruitment rates in previous studies. The following recruitment procedure was used:Nurse assessed patients for eligibility.Patients signed a screening form indicating interest in and agreement to be approached by a researcher about the study.An appointment was made at which the patient signed a consent form and was randomised to the intervention or control group. Information about all patients considered for the study and subsequently included or excluded at each stage of the recruitment process and reasons given were recorded. There were variations in the time taken to award Research Management approval to run the study at the three sites (45-359 days). Sixty-two percent of the original recruitment estimate was reached. The main reason for under-recruitment was due to over-estimation of the number of patient admissions; other reasons were i) not assessing all patients for eligibility, ii) not completing a screening form for eligible patients and iii) patients who signed a screening form being lost to the study before consenting and randomisation. Pilot trials should not simply aim to improve recruitment estimates but should also identify factors likely to influence recruitment performance in a future trial and inform the development of that trial's recruitment strategies. Pilot trials are a crucial part of RCT design. Nevertheless, pilot trials are likely to be small scale, involving only a small number of sites, and contextual differences between sites are likely to impact recruitment performance in any future trial. This means that ongoing monitoring and evaluation in trials are likely to be required. ISRCTN63510637; UKCRN id 14092.
Flight Test Techniques for Quantifying Pitch Rate and Angle of Attack Rate Dependencies
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.; Murri, Daniel G.
2017-01-01
Three different types of maneuvers were designed to separately quantify pitch rate and angle of attack rate contributions to the nondimensional aerodynamic pitching moment coefficient. These maneuvers combined pilot inputs and automatic multisine excitations, and were own with the subscale T-2 and Bat-4 airplanes using the NASA AirSTAR flight test facility. Stability and control derivatives, in particular C(sub mq) and C(sub m alpha(.)) were accurately estimated from the flight test data. These maneuvers can be performed with many types of aircraft, and the results can be used to increase simulation prediction fidelity and facilitate more accurate comparisons with wind tunnel experiments or numerical investigations.
NASA Technical Reports Server (NTRS)
Gingras, David R.; Barnhart, Billy P.; Martos, Borja; Ratvasky, Thomas P.; Morelli, Eugene
2011-01-01
Fatal loss-of-control (LOC) accidents have been directly related to in-flight airframe icing. The prototype system presented in this paper directly addresses the need for real-time onboard envelope protection in icing conditions. The combinations of a-priori information and realtime aerodynamic estimations are shown to provide sufficient input for determining safe limits of the flight envelope during in-flight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system has been designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. Components of ICEPro are described and results from preliminary tests are presented.
The SISMA Project: A pre-operative seismic hazard monitoring system.
NASA Astrophysics Data System (ADS)
Massimiliano Chersich, M. C.; Amodio, A. A. Angelo; Francia, A. F. Andrea; Sparpaglione, C. S. Claudio
2009-04-01
Galileian Plus is currently leading the development, in collaboration with several Italian Universities, of the SISMA (Seismic Information System for Monitoring and Alert) Pilot Project financed by the Italian Space Agency. The system is devoted to the continuous monitoring of the seismic risk and is addressed to support the Italian Civil Protection decisional process. Completion of the Pilot Project is planned at the beginning of 2010. Main scientific paradigm of SISMA is an innovative deterministic approach integrating geophysical models, geodesy and active tectonics. This paper will give a general overview of project along with its progress status and a particular focus will be put on the architectural design details and to the software implementation choices. SISMA is built on top of a software infrastructure developed by Galileian Plus to integrate the scientific programs devoted to the update of seismic risk maps. The main characteristics of the system may be resumed as follow: automatic download of input data; integration of scientific programs; definition and scheduling of chains of processes; monitoring and control of the system through a graphical user interface (GUI); compatibility of the products with ESRI ArcGIS, by mean of post-processing conversion. a) automatic download of input data SISMA needs input data such as GNSS observations, updated seismic catalogue, SAR satellites orbits, etc. that are periodically updated and made available from remote servers through FTP and HTTP. This task is accomplished by a dedicated user configurable component. b) integration of scientific programs SISMA integrates many scientific programs written in different languages (Fortran, C, C++, Perl and Bash) and running into different operating systems. This design requirements lead to the development of a distributed system which is platform independent and is able to run any terminal-based program following few simple predefined rules. c) definition and scheduling of chains of processes Processes are bound each other, in the sense that the output of process "A" should be passed as input to process "B". In this case the process "B" must run automatically as soon as the required input is ready. In SISMA this issue is handled with the "data-driven" activation concept allowing specifying that a process should be started as soon as the needed input datum has been made available in the archive. Moreover SISMA may run processes on a "time-driven" base. The infrastructure of SISMA provides a configurable scheduler allowing the user to define the start time and the periodicity of such processes. d) monitoring and control The operator of the system needs to monitor and control every process running in the system. The SISMA infrastructure allows, through its GUI, the user to: view log messages of running and old processes; stop running processes; monitor processes executions; monitor resource status (available ram, network reachability, and available disk space) for every machine in the system. e) compatibility with ESRI Shapefiles Nearly all the SISMA data has some geographic information, and it is useful to integrate it in a Geographic Information System (GIS). Processors output are georeferred, but they are generated as ASCII files in a proprietary format, and thus cannot directly loaded in a GIS. The infrastructures provides a simple framework for adding filters that reads the data in the proprietary format and converts it to ESRI Shapefile format.
Vision, visuo-cognition and postural control in Parkinson's disease: An associative pilot study.
Hill, E; Stuart, S; Lord, S; Del Din, S; Rochester, L
2016-07-01
Impaired postural control (PC) is common in patients with Parkinson's disease (PD) and is a major contributor to falls, with significant consequences. Mechanisms underpinning PC are complex and include motor and non-motor features. Research has focused predominantly on motor and sensory inputs. Vision and visuo-cognitive function are also integral to PC but have largely been ignored to date. The aim of this observational cross-sectional pilot study was to explore the relationship of vision and visuo-cognition with PC in PD. Twelve people with PD and ten age-matched healthy controls (HC) underwent detailed assessments for vision, visuo-cognition and postural control. Vision assessments included visual acuity and contrast sensitivity. Visuo-cognition was measured by visuo-perception (object identification), visuo-construction (ability to copy a figure) and visuo-spatial ability (judge distances and location of object within environment). PC was measured by an accelerometer for a range of outcomes during a 2-min static stance. Spearman's correlations identified significant associations. Contrast sensitivity, visuo-spatial ability and postural control (ellipsis) were significantly impaired in PD (p=0.017; p=0.001; and p=0.017, respectively). For PD only, significant correlations were found for higher visuo-spatial function and larger ellipsis (r=0.64; p=0.024) and impaired attention and reduced visuo-spatial function (r=-0.62; p=0.028). Visuo-spatial ability is associated with PC deficit in PD, but in an unexpected direction. This suggests a non-linear pattern of response. Further research is required to examine this novel and important finding. Copyright © 2016 Elsevier B.V. All rights reserved.
Control theory analysis of a three-axis VTOL flight director. M.S. Thesis - Pennsylvania State Univ.
NASA Technical Reports Server (NTRS)
Niessen, F. R.
1971-01-01
A control theory analysis of a VTOL flight director and the results of a fixed-based simulator evaluation of the flight-director commands are discussed. The VTOL configuration selected for this study is a helicopter-type VTOL which controls the direction of the thrust vector by means of vehicle-attitude changes and, furthermore, employs high-gain attitude stabilization. This configuration is the same as one which was simulated in actual instrument flight tests with a variable stability helicopter. Stability analyses are made for each of the flight-director commands, assuming a single input-output, multi-loop system model for each control axis. The analyses proceed from the inner-loops to the outer-loops, using an analytical pilot model selected on the basis of the innermost-loop dynamics. The time response of the analytical model of the system is primarily used to adjust system gains, while root locus plots are used to identify dominant modes and mode interactions.
Stakeholder Meetings on Black Carbon from Diesel Sources in the Russian Arctic
From January 28-February 1, 2013, EPA and its partners held meetings in Murmansk and Moscow with key Russian stakeholders to gather input into the project’s emissions inventory methodologies and potential pilot project ideas.
NASA Technical Reports Server (NTRS)
Bachelder, Edward; Hess, Ronald; Godfroy-Cooper, Martine; Aponso, Bimal
2017-01-01
In this study, behavioral models are developed that closely reproduced pulsive control response of two pilots from the experimental pool using markedly different control techniques (styles) while conducting a tracking task. An intriguing find was that the pilots appeared to: 1) produce a continuous, internally-generated stick signal that they integrated in time; 2) integrate the actual stick position; and 3) compare the two integrations to issue and cease pulse commands. This suggests that the pilots utilized kinesthetic feedback in order to perceive and integrate stick position, supporting the hypothesis that pilots can access and employ the proprioceptive inner feedback loop proposed by Hess' pilot Structural Model. The Pulse Models used in conjunction with the pilot Structural Model closely recreated the pilot data both in the frequency and time domains during closed-loop simulation. This indicates that for the range of tasks and control styles encountered, the models captured the fundamental mechanisms governing pulsive and control processes. The pilot Pulse Models give important insight for the amount of remnant (stick output uncorrelated with the forcing function) that arises from nonlinear pilot technique, and for the remaining remnant arising from different sources unrelated to tracking control (i.e. neuromuscular tremor, reallocation of cognitive resources, etc.).
Effects of combining vertical and horizontal information into a primary flight display
NASA Technical Reports Server (NTRS)
Abbott, Terence S.; Nataupsky, Mark; Steinmetz, George G.
1987-01-01
A ground-based aircraft simulation study was conducted to determine the effects of combining vertical and horizontal flight information into a single display. Two display configurations were used in this study. The first configuration consisted of a Primary Flight Display (PFD) format and a Horizontal Situation Display (HSD) with the PFD displayed conventionally above the HSD. For the second display configuration, the HSD format was combined with the PFD format. Four subjects participated in this study. Data were collected on performance parameters, pilot-control inputs, auditory evoked response parameters (AEP), oculometer measurements (eye-scan), and heart rate. Subjective pilot opinion was gathered through questionnaire data and scorings for both the Subjective Workload Assessment Technique (SWAT) and the NASA Task Load Index (NASA-TLX). The results of this study showed that, from a performance and subjective standpoint, the combined configuration was better than the separate configuration. Additionally, both the eye-transition and eye-dwell times for the separate HSD were notably higher than expected, with a 46% increase in available visual time when going from double to single display configuration.
Developing Responsive Indicators of Indigenous Community Health
Donatuto, Jamie; Campbell, Larry; Gregory, Robin
2016-01-01
How health is defined and assessed is a priority concern for Indigenous peoples due to considerable health risks faced from environmental impacts to homelands, and because what is “at risk” is often determined without their input or approval. Many health assessments by government agencies, industry, and researchers from outside the communities fail to include Indigenous definitions of health and omit basic methodological guidance on how to evaluate Indigenous health, thus compromising the quality and consistency of results. Native Coast Salish communities (Washington State, USA) developed and pilot-tested a set of Indigenous Health Indicators (IHI) that reflect non-physiological aspects of health (community connection, natural resources security, cultural use, education, self-determination, resilience) on a community scale, using constructed measures that allow for concerns and priorities to be clearly articulated without releasing proprietary knowledge. Based on initial results from pilot-tests of the IHI with the Swinomish Indian Tribal Community (Washington State, USA), we argue that incorporation of IHIs into health assessments will provide a more comprehensive understanding of Indigenous health concerns, and assist Indigenous peoples to control their own health evaluations. PMID:27618086
Estimation of Time-Varying Pilot Model Parameters
NASA Technical Reports Server (NTRS)
Zaal, Peter M. T.; Sweet, Barbara T.
2011-01-01
Human control behavior is rarely completely stationary over time due to fatigue or loss of attention. In addition, there are many control tasks for which human operators need to adapt their control strategy to vehicle dynamics that vary in time. In previous studies on the identification of time-varying pilot control behavior wavelets were used to estimate the time-varying frequency response functions. However, the estimation of time-varying pilot model parameters was not considered. Estimating these parameters can be a valuable tool for the quantification of different aspects of human time-varying manual control. This paper presents two methods for the estimation of time-varying pilot model parameters, a two-step method using wavelets and a windowed maximum likelihood estimation method. The methods are evaluated using simulations of a closed-loop control task with time-varying pilot equalization and vehicle dynamics. Simulations are performed with and without remnant. Both methods give accurate results when no pilot remnant is present. The wavelet transform is very sensitive to measurement noise, resulting in inaccurate parameter estimates when considerable pilot remnant is present. Maximum likelihood estimation is less sensitive to pilot remnant, but cannot detect fast changes in pilot control behavior.
NASA Technical Reports Server (NTRS)
Zipf, Mark E.
1989-01-01
An overview is presented of research work focussed on the design and insertion of classical models of human pilot dynamics within the flight control loops of V/STOL aircraft. The pilots were designed and configured for use in integrated control system research and design. The models of human behavior that were considered are: McRuer-Krendel (a single variable transfer function model); and Optimal Control Model (a multi-variable approach based on optimal control and stochastic estimation theory). These models attempt to predict human control response characteristics when confronted with compensatory tracking and state regulation tasks. An overview, mathematical description, and discussion of predictive limitations of the pilot models is presented. Design strategies and closed loop insertion configurations are introduced and considered for various flight control scenarios. Models of aircraft dynamics (both transfer function and state space based) are developed and discussed for their use in pilot design and application. Pilot design and insertion are illustrated for various flight control objectives. Results of pilot insertion within the control loops of two V/STOL research aricraft (Sikorski Black Hawk UH-60A, McDonnell Douglas Harrier II AV-8B) are presented and compared against actual pilot flight data. Conclusions are reached on the ability of the pilot models to adequately predict human behavior when confronted with similar control objectives.
Piloted evaluation of an integrated propulsion and flight control simulator
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.
1992-01-01
This paper describes a piloted evaluation of the integrated flight and propulsion control simulator at NASA Lewis Research Center. The purpose of this evaluation is to demonstrate the suitability and effectiveness of this fixed based simulator for advanced integrated propulsion and airframe control design. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit, displays, and pilot effectors. The paper describes the piloted tasks used for rating displays and control effector gains. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.
Staff, Michael
2012-01-01
The review of clinical data extraction from electronic records is increasingly being used as a tool to assist general practitioners (GPs) manage their patients in Australia. Type 2 diabetes (T2DM) is a chronic condition cared for primarily in the general practice setting that lends itself to the application of tools in this area. To assess the feasibility of extracting data from a general practice medical record software package to predict clinically significant outcomes for patients with T2DM. A pilot study was conducted involving two large practices where routinely collected clinical data were extracted and inputted into the United Kingdom Prospective Diabetes Study Outcomes Model to predict life expectancy. An initial assessment of the completeness of data available was performed and then for those patients aged between 45 and 64 years with adequate data life expectancies estimated. A total of 1019 patients were identified as current patients with T2DM. There were sufficient data available on 40% of patients from one practice and 49% from the other to provide inputs into the UKPDS Outcomes Model. Predicted life expectancy was similar across the practices with women having longer life expectancies than men. Improved compliance with current management guidelines for glycaemic, lipid and blood pressure control was demonstrated to increase life expectancy between 1.0 and 2.4 years dependent on gender and age group. This pilot demonstrated that clinical data extraction from electronic records is feasible although there are several limitations chiefly caused by the incompleteness of data for patients with T2DM.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PILOT PROGRAM FOR TEMPORARY EXCHANGE OF INFORMATION TECHNOLOGY PERSONNEL § 241.2 Definitions. In this... organizational goals. Information technology (IT) as defined in section 11101 of title 40, U.S.C. includes computers, ancillary equipment (including imaging peripherals, input, output, and storage devices necessary...
VERIFICATION TESTING OF WET-WEATHER FLOW TECHNOLOGIES
As part of the USEPA's ETV Program, the Wet-Weather Flow (WWF) Technologies Pilot Program verifies the performance of commercial-ready technologies by generating quality-assured data using test protocols developed with broad-based stakeholder input. The availability of a credible...
Summary for Stakeholder Meetings on Black Carbon from Diesel Sources in the Russian Arctic
From January 28-February 1, 2013, EPA and its partners held meetings in Murmansk and Moscow with key Russian stakeholders to gather input into the project’s emissions inventory methodologies and potential pilot project ideas.
User's manual: Subsonic/supersonic advanced panel pilot code
NASA Technical Reports Server (NTRS)
Moran, J.; Tinoco, E. N.; Johnson, F. T.
1978-01-01
Sufficient instructions for running the subsonic/supersonic advanced panel pilot code were developed. This software was developed as a vehicle for numerical experimentation and it should not be construed to represent a finished production program. The pilot code is based on a higher order panel method using linearly varying source and quadratically varying doublet distributions for computing both linearized supersonic and subsonic flow over arbitrary wings and bodies. This user's manual contains complete input and output descriptions. A brief description of the method is given as well as practical instructions for proper configurations modeling. Computed results are also included to demonstrate some of the capabilities of the pilot code. The computer program is written in FORTRAN IV for the SCOPE 3.4.4 operations system of the Ames CDC 7600 computer. The program uses overlay structure and thirteen disk files, and it requires approximately 132000 (Octal) central memory words.
Survey of piloting factors in V/STOL aircraft with implications for flight control system design
NASA Technical Reports Server (NTRS)
Ringland, R. F.; Craig, S. J.
1977-01-01
Flight control system design factors involved for pilot workload relief are identified. Major contributors to pilot workload include configuration management and control and aircraft stability and response qualities. A digital fly by wire stability augmentation, configuration management, and configuration control system is suggested for reduction of pilot workload during takeoff, hovering, and approach.
Methods for Multiloop Identification of Visual and Neuromuscular Pilot Responses.
Olivari, Mario; Nieuwenhuizen, Frank M; Venrooij, Joost; Bülthoff, Heinrich H; Pollini, Lorenzo
2015-12-01
In this paper, identification methods are proposed to estimate the neuromuscular and visual responses of a multiloop pilot model. A conventional and widely used technique for simultaneous identification of the neuromuscular and visual systems makes use of cross-spectral density estimates. This paper shows that this technique requires a specific noninterference hypothesis, often implicitly assumed, that may be difficult to meet during actual experimental designs. A mathematical justification of the necessity of the noninterference hypothesis is given. Furthermore, two methods are proposed that do not have the same limitations. The first method is based on autoregressive models with exogenous inputs, whereas the second one combines cross-spectral estimators with interpolation in the frequency domain. The two identification methods are validated by offline simulations and contrasted to the classic method. The results reveal that the classic method fails when the noninterference hypothesis is not fulfilled; on the contrary, the two proposed techniques give reliable estimates. Finally, the three identification methods are applied to experimental data from a closed-loop control task with pilots. The two proposed techniques give comparable estimates, different from those obtained by the classic method. The differences match those found with the simulations. Thus, the two identification methods provide a good alternative to the classic method and make it possible to simultaneously estimate human's neuromuscular and visual responses in cases where the classic method fails.
Aircraft Turbine Engine Control Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2014-01-01
This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface, interfacing directly with the flight management system to determine its mode of operation, and providing personalized engine control to optimize its performance given the current condition and mission objectives.
Positive Exchange of Flight Controls Program
DOT National Transportation Integrated Search
1995-03-10
This advisory circular provides guidance for all pilots, especially student pilots, flight instructors, and pilot examiners, on the recommended procedure to use for the positive exchange of flight controls between pilots when operating an aircraft.
The Effect of Shared Information on Pilot/Controller Situation Awareness and Re-Route Negotiation
NASA Technical Reports Server (NTRS)
Farley, Todd C.; Hansman, R. John; Endsley, Mica R.; Amonlirdviman, Keith; Vigeant-Langlois, Laurence
1998-01-01
The effect of shared information is assessed in terms of pilot/controller negotiation and shared situation awareness. Pilot goals and situation awareness requirements are developed and compared against those of air traffic controllers to identify areas of common and competing interest. A part-task simulator experiment is described which probes pilot/controller interaction in areas where common information has the potential to lead to contention, as identified in the comparative analysis. Preliminary results are presented which suggest that shared information can effect more collaborative interaction between pilots and air traffic controllers.
Factors influencing aircraft ground handling performance
NASA Technical Reports Server (NTRS)
Yager, T. J.
1983-01-01
Problems associated with aircraft ground handling operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from tests with instrumented ground vehicles and aircraft, and aircraft wet runway accident investigation are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.
Displacement Theories for In-Flight Deformed Shape Predictions of Aerospace Structures
NASA Technical Reports Server (NTRS)
Ko, William L.; Richards, W. L.; Tran, Van t.
2007-01-01
Displacement theories are developed for a variety of structures with the goal of providing real-time shape predictions for aerospace vehicles during flight. These theories are initially developed for a cantilever beam to predict the deformed shapes of the Helios flying wing. The main structural configuration of the Helios wing is a cantilever wing tubular spar subjected to bending, torsion, and combined bending and torsion loading. The displacement equations that are formulated are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. Displacement theories for other structures, such as tapered cantilever beams, two-point supported beams, wing boxes, and plates also are developed. The accuracy of the displacement theories is successfully validated by finite-element analysis and classical beam theory using input-strains generated by finite-element analysis. The displacement equations and associated strain-sensing system (such as fiber optic sensors) create a powerful means for in-flight deformation monitoring of aerospace structures. This method serves multiple purposes for structural shape sensing, loads monitoring, and structural health monitoring. Ultimately, the calculated displacement data can be visually displayed to the ground-based pilot or used as input to the control system to actively control the shape of structures during flight.
Linking the Pilot Structural Model and Pilot Workload
NASA Technical Reports Server (NTRS)
Bachelder, Edward; Hess, Ronald; Aponso, Bimal; Godfroy-Cooper, Martine
2018-01-01
Behavioral models are developed that closely reproduced pulsive control response of two pilots using markedly different control techniques while conducting a tracking task. An intriguing find was that the pilots appeared to: 1) produce a continuous, internally-generated stick signal that they integrated in time; 2) integrate the actual stick position; and 3) compare the two integrations to either issue or cease a pulse command. This suggests that the pilots utilized kinesthetic feedback in order to sense and integrate stick position, supporting the hypothesis that pilots can access and employ the proprioceptive inner feedback loop proposed by Hess's pilot Structural Model. A Pilot Cost Index was developed, whose elements include estimated workload, performance, and the degree to which the pilot employs kinesthetic feedback. Preliminary results suggest that a pilot's operating point (parameter values) may be based on control style and index minimization.
Culture Shock!! "Lesson" the Blow.
ERIC Educational Resources Information Center
Duffin, Ken
1996-01-01
Designing, developing, and implementing an electronic document management system involves preparation. Areas to consider when facilitating technological change include staff input and business and customer needs and wants. Further discussion addresses value assessment of document type, providing a pilot system for staff experiment and practice,…
Code of Federal Regulations, 2012 CFR
2012-07-01
... PILOT PROGRAM FOR TEMPORARY EXCHANGE OF INFORMATION TECHNOLOGY PERSONNEL (EFF. UNTIL 7-20-2012) § 241.2... achieving the organizational goals. Information technology (IT) as defined in section 11101 of title 40, U.S.C. includes computers, ancillary equipment (including imaging peripherals, input, output, and...
Natural Language Based Multimodal Interface for UAV Mission Planning
NASA Technical Reports Server (NTRS)
Chandarana, Meghan; Meszaros, Erica L.; Trujillo, Anna; Allen, B. Danette
2017-01-01
As the number of viable applications for unmanned aerial vehicle (UAV) systems increases at an exponential rate, interfaces that reduce the reliance on highly skilled engineers and pilots must be developed. Recent work aims to make use of common human communication modalities such as speech and gesture. This paper explores a multimodal natural language interface that uses a combination of speech and gesture input modalities to build complex UAV flight paths by defining trajectory segment primitives. Gesture inputs are used to define the general shape of a segment while speech inputs provide additional geometric information needed to fully characterize a trajectory segment. A user study is conducted in order to evaluate the efficacy of the multimodal interface.
Action-specific effects in aviation: what determines judged runway size?
Gray, Rob; Navia, José Antonio; Allsop, Jonathan
2014-01-01
Several recent studies have shown that the performance of a skill that involves acting on a goal object can influence one's judgment of the size of that object. The present study investigated this effect in an aviation context. Novice pilots were asked to perform a series of visual approach and landing manoeuvres in a flight simulator. After each landing, participants next performed a task in which runway size was judged for different simulated altitudes. Gaze behaviour and control stick kinematics were also analyzed. There were significant relationships between judged runway size and multiple action-related variables including touchdown velocity, time fixating the runway, and the magnitude and frequency of control inputs. These findings suggest that relationship between the perception of a target object and action is not solely determined by performance success or failure but rather involves a relationship between multiple variables that reflect the actor's ability.
An evaluative model of system performance in manned teleoperational systems
NASA Technical Reports Server (NTRS)
Haines, Richard F.
1989-01-01
Manned teleoperational systems are used in aerospace operations in which humans must interact with machines remotely. Manual guidance of remotely piloted vehicles, controling a wind tunnel, carrying out a scientific procedure remotely are examples of teleoperations. A four input parameter throughput (Tp) model is presented which can be used to evaluate complex, manned, teleoperations-based systems and make critical comparisons among candidate control systems. The first two parameters of this model deal with nominal (A) and off-nominal (B) predicted events while the last two focus on measured events of two types, human performance (C) and system performance (D). Digital simulations showed that the expression A(1-B)/C+D) produced the greatest homogeneity of variance and distribution symmetry. Results from a recently completed manned life science telescience experiment will be used to further validate the model. Complex, interacting teleoperational systems may be systematically evaluated using this expression much like a computer benchmark is used.
NASA Technical Reports Server (NTRS)
1990-01-01
The present conference on artificial intelligence (AI), robotics, and automation in space encompasses robot systems, lunar and planetary robots, advanced processing, expert systems, knowledge bases, issues of operation and management, manipulator control, and on-orbit service. Specific issues addressed include fundamental research in AI at NASA, the FTS dexterous telerobot, a target-capture experiment by a free-flying robot, the NASA Planetary Rover Program, the Katydid system for compiling KEE applications to Ada, and speech recognition for robots. Also addressed are a knowledge base for real-time diagnosis, a pilot-in-the-loop simulation of an orbital docking maneuver, intelligent perturbation algorithms for space scheduling optimization, a fuzzy control method for a space manipulator system, hyperredundant manipulator applications, robotic servicing of EOS instruments, and a summary of astronaut inputs on automation and robotics for the Space Station Freedom.
Methods and apparatus for graphical display and editing of flight plans
NASA Technical Reports Server (NTRS)
Gibbs, Michael J. (Inventor); Adams, Jr., Mike B. (Inventor); Chase, Karl L. (Inventor); Lewis, Daniel E. (Inventor); McCrobie, Daniel E. (Inventor); Omen, Debi Van (Inventor)
2002-01-01
Systems and methods are provided for an integrated graphical user interface which facilitates the display and editing of aircraft flight-plan data. A user (e.g., a pilot) located within the aircraft provides input to a processor through a cursor control device and receives visual feedback via a display produced by a monitor. The display includes various graphical elements associated with the lateral position, vertical position, flight-plan and/or other indicia of the aircraft's operational state as determined from avionics data and/or various data sources. Through use of the cursor control device, the user may modify the flight-plan and/or other such indicia graphically in accordance with feedback provided by the display. In one embodiment, the display includes a lateral view, a vertical profile view, and a hot-map view configured to simplify the display and editing of the aircraft's flight-plan data.
Pilot control through the TAFCOS automatic flight control system
NASA Technical Reports Server (NTRS)
Wehrend, W. R., Jr.
1979-01-01
The set of flight control logic used in a recently completed flight test program to evaluate the total automatic flight control system (TAFCOS) with the controller operating in a fully automatic mode, was used to perform an unmanned simulation on an IBM 360 computer in which the TAFCOS concept was extended to provide a multilevel pilot interface. A pilot TAFCOS interface for direct pilot control by use of a velocity-control-wheel-steering mode was defined as well as a means for calling up conventional autopilot modes. It is concluded that the TAFCOS structure is easily adaptable to the addition of a pilot control through a stick-wheel-throttle control similar to conventional airplane controls. Conventional autopilot modes, such as airspeed-hold, altitude-hold, heading-hold, and flight path angle-hold, can also be included.
-plaintext.form-control-lg,.form-control-plaintext.form-control-sm,.input-group-lg>.form-control-plaintext.form -control,.input-group-lg>.input-group-append>.form-control-plaintext.btn,.input-group-lg>.input -group-append>.form-control-plaintext.input-group-text,.input-group-lg>.input-group-prepend>
NASA Astrophysics Data System (ADS)
Wulan, D. R.; Cahyaningsih, S.; Djaenudin
2017-03-01
In medium capacity, electroplating industry usually treats wastewater until 5 m3 per day. Heavy metal content becomes concern that should be reduced. Previous studies performed electrocoagulation method on laboratory scale, either batch or continuous. This study was aimed to compare the influence of voltage input variation into heavy metal removal in electroplating wastewater treatment using electrocoagulation process on laboratory-scale in order to determine the optimum condition for scaling up the reactor into pilot-scale. The laboratory study was performed in 1.5 L glass reactor in batch system using wastewater from electroplating industry, the voltage input varied at 20, 30 and 40 volt. The electrode consisted of aluminium 32 cm2 as sacrifice anode and copper 32 cm2 as cathode. During 120 min electrocoagulation process, the pH value was measured using pH meter, whereas the heavy metal of chromium, copper, iron, and zinc concentration were analysed using Atomic Absorption Spectrophotometer (AAS). Result showed that removal of heavy metals from wastewater increased due to the increasing of voltage input. Different initial concentration of heavy metals on wastewater, resulted the different detention time. At pilot-scale reactor with 30 V voltage input, chromium, iron, and zinc reached removal efficiency until 89-98%, when copper reached 79% efficiency. At 40V, removal efficiencies increased on same detention time, i.e. chromium, iron, and zinc reached 89-99%, whereas copper reached 85%. These removal efficiencies have complied the government standard except for copper that had higher initial concentration in wastewater. Kinetic rate also calculated in this study as the basic factor for scaling up the process.
Preliminary design study of a lateral-directional control system using thrust vectoring
NASA Technical Reports Server (NTRS)
Lallman, F. J.
1985-01-01
A preliminary design of a lateral-directional control system for a fighter airplane capable of controlled operation at extreme angles of attack is developed. The subject airplane is representative of a modern twin-engine high-performance jet fighter, is equipped with ailerons, rudder, and independent horizontal-tail surfaces. Idealized bidirectional thrust-vectoring engine nozzles are appended to the mathematic model of the airplane to provide additional control moments. Optimal schedules for lateral and directional pseudo control variables are calculated. Use of pseudo controls results in coordinated operation of the aerodynamic and thrust-vectoring controls with minimum coupling between the lateral and directional airplane dynamics. Linear quadratic regulator designs are used to specify a preliminary flight control system to improve the stability and response characteristics of the airplane. Simulated responses to step pilot control inputs are stable and well behaved. For lateral stick deflections, peak stability axis roll rates are between 1.25 and 1.60 rad/sec over an angle-of-attack range of 10 deg to 70 deg. For rudder pedal deflections, the roll rates accompanying the sideslip responses can be arrested by small lateral stick motions.
NASA Technical Reports Server (NTRS)
Smith, John W.; Montgomery, Terry
1996-01-01
During rapid rolling maneuvers, the F-16 XL aircraft exhibits a 2.5 Hz lightly damped roll oscillation, perceived and described as 'roll ratcheting.' This phenomenon is common with fly-by-wire control systems, particularly when primary control is derived through a pedestal-mounted side-arm controller. Analytical studies have been conducted to model the nature of the integrated control characteristics. The analytical results complement the flight observations. A three-degree-of-freedom linearized set of aerodynamic matrices was assembled to simulate the aircraft plant. The lateral-directional control system was modeled as a linear system. A combination of two second-order transfer functions was derived to couple the lateral acceleration feed through effect of the operator's arm and controller to the roll stick force input. From the combined systems, open-loop frequency responses and a time history were derived, describing and predicting an analogous in-flight situation. This report describes the primary control, aircraft angular rate, and position time responses of the F-16 XL-2 aircraft during subsonic and high-dynamic-pressure rolling maneuvers. The analytical description of the pilot's arm and controller can be applied to other aircraft or simulations to assess roll ratcheting susceptibility.
NASA Technical Reports Server (NTRS)
Moes, Timothy R.; Iliff, Kenneth
2002-01-01
A maximum-likelihood output-error parameter estimation technique is used to obtain stability and control derivatives for the NASA Dryden Flight Research Center SR-71A airplane and for configurations that include experiments externally mounted to the top of the fuselage. This research is being done as part of the envelope clearance for the new experiment configurations. Flight data are obtained at speeds ranging from Mach 0.4 to Mach 3.0, with an extensive amount of test points at approximately Mach 1.0. Pilot-input pitch and yaw-roll doublets are used to obtain the data. This report defines the parameter estimation technique used, presents stability and control derivative results, and compares the derivatives for the three configurations tested. The experimental configurations studied generally show acceptable stability, control, trim, and handling qualities throughout the Mach regimes tested. The reduction of directional stability for the experimental configurations is the most significant aerodynamic effect measured and identified as a design constraint for future experimental configurations. This report also shows the significant effects of aircraft flexibility on the stability and control derivatives.
Assessment of Crew Workload for the RAH-66 Comanche Force Development Experiment 1
2001-10-01
Scale and a cockpit controls and displays usability questionnaire . Results of the assessment indicate that (a) workload was tolerable for the pilots...Workload Levels Between Front Seat and Back Seat 13 3.4 Pilot Responses to Controls and Displays Usability Questionnaire 13 3.5 HMD Symbology 13 4... questionnaire . The data were analyzed to determine if the pilot flying the aircraft (pilot on controls) and the pilot operating the mission equipment
Prediction of pilot-aircraft stability boundaries and performance contours
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Broussard, J. R.
1977-01-01
Control-theoretic pilot models can provide important new insights regarding the stability and performance characteristics of the pilot-aircraft system. Optimal-control pilot models can be formed for a wide range of flight conditions, suggesting that the human pilot can maintain stability if he adapts his control strategy to the aircraft's changing dynamics. Of particular concern is the effect of sub-optimal pilot adaptation as an aircraft transitions from low to high angle-of-attack during rapid maneuvering, as the changes in aircraft stability and control response can be extreme. This paper examines the effects of optimal and sub-optimal effort during a typical 'high-g' maneuver, and it introduces the concept of minimum-control effort (MCE) adaptation. Limited experimental results tend to support the MCE adaptation concept.
Rotorcraft flight control design using quantitative feedback theory and dynamic crossfeeds
NASA Technical Reports Server (NTRS)
Cheng, Rendy P.
1995-01-01
A multi-input, multi-output controls design with robust crossfeeds is presented for a rotorcraft in near-hovering flight using quantitative feedback theory (QFT). Decoupling criteria are developed for dynamic crossfeed design and implementation. Frequency dependent performance metrics focusing on piloted flight are developed and tested on 23 flight configurations. The metrics show that the resulting design is superior to alternative control system designs using conventional fixed-gain crossfeeds and to feedback-only designs which rely on high gains to suppress undesired off-axis responses. The use of dynamic, robust crossfeeds prior to the QFT design reduces the magnitude of required feedback gain and results in performance that meets current handling qualities specifications relative to the decoupling of off-axis responses. The combined effect of the QFT feedback design following the implementation of low-order, dynamic crossfeed compensator successfully decouples ten of twelve off-axis channels. For the other two channels it was not possible to find a single, low-order crossfeed that was effective.
Galna, Brook; Jackson, Dan; Schofield, Guy; McNaney, Roisin; Webster, Mary; Barry, Gillian; Mhiripiri, Dadirayi; Balaam, Madeline; Olivier, Patrick; Rochester, Lynn
2014-04-14
Computer based gaming systems, such as the Microsoft Kinect (Kinect), can facilitate complex task practice, enhance sensory feedback and action observation in novel, relevant and motivating modes of exercise which can be difficult to achieve with standard physiotherapy for people with Parkinson's disease (PD). However, there is a current need for safe, feasible and effective exercise games that are appropriate for PD rehabilitation. The aims of this study were to i) develop a computer game to rehabilitate dynamic postural control for people with PD using the Kinect; and ii) pilot test the game's safety and feasibility in a group of people with PD. A rehabilitation game aimed at training dynamic postural control was developed through an iterative process with input from a design workshop of people with PD. The game trains dynamic postural control through multi-directional reaching and stepping tasks, with increasing complexity across 12 levels of difficulty. Nine people with PD pilot tested the game for one session. Participant feedback to identify issues relating to safety and feasibility were collected using semi-structured interviews. Participants reported that they felt safe whilst playing the game. In addition, there were no adverse events whilst playing. In general, the participants stated that they enjoyed the game and seven of the nine participants said they could imagine themselves using the game at home, especially if they felt it would improve their balance. The Flow State Scale indicated participants were immersed in the gameplay and enjoyed the experience. However, some participants reported that they found it difficult to discriminate between different types and orientations of visual objects in the game and some also had difficulty with the stepping tasks, especially when performed at the same time as the reaching tasks. Computer-based rehabilitation games using the Kinect are safe and feasible for people with PD although intervention trials are needed to test their safety, feasibility and efficacy in the home.
2014-01-01
Background Computer based gaming systems, such as the Microsoft Kinect (Kinect), can facilitate complex task practice, enhance sensory feedback and action observation in novel, relevant and motivating modes of exercise which can be difficult to achieve with standard physiotherapy for people with Parkinson’s disease (PD). However, there is a current need for safe, feasible and effective exercise games that are appropriate for PD rehabilitation. The aims of this study were to i) develop a computer game to rehabilitate dynamic postural control for people with PD using the Kinect; and ii) pilot test the game’s safety and feasibility in a group of people with PD. Methods A rehabilitation game aimed at training dynamic postural control was developed through an iterative process with input from a design workshop of people with PD. The game trains dynamic postural control through multi-directional reaching and stepping tasks, with increasing complexity across 12 levels of difficulty. Nine people with PD pilot tested the game for one session. Participant feedback to identify issues relating to safety and feasibility were collected using semi-structured interviews. Results Participants reported that they felt safe whilst playing the game. In addition, there were no adverse events whilst playing. In general, the participants stated that they enjoyed the game and seven of the nine participants said they could imagine themselves using the game at home, especially if they felt it would improve their balance. The Flow State Scale indicated participants were immersed in the gameplay and enjoyed the experience. However, some participants reported that they found it difficult to discriminate between different types and orientations of visual objects in the game and some also had difficulty with the stepping tasks, especially when performed at the same time as the reaching tasks. Conclusion Computer-based rehabilitation games using the Kinect are safe and feasible for people with PD although intervention trials are needed to test their safety, feasibility and efficacy in the home. PMID:24731758
Extended cooperative control synthesis
NASA Technical Reports Server (NTRS)
Davidson, John B.; Schmidt, David K.
1994-01-01
This paper reports on research for extending the Cooperative Control Synthesis methodology to include a more accurate modeling of the pilot's controller dynamics. Cooperative Control Synthesis (CCS) is a methodology that addresses the problem of how to design control laws for piloted, high-order, multivariate systems and/or non-conventional dynamic configurations in the absence of flying qualities specifications. This is accomplished by emphasizing the parallel structure inherent in any pilot-controlled, augmented vehicle. The original CCS methodology is extended to include the Modified Optimal Control Model (MOCM), which is based upon the optimal control model of the human operator developed by Kleinman, Baron, and Levison in 1970. This model provides a modeling of the pilot's compensation dynamics that is more accurate than the simplified pilot dynamic representation currently in the CCS methodology. Inclusion of the MOCM into the CCS also enables the modeling of pilot-observation perception thresholds and pilot-observation attention allocation affects. This Extended Cooperative Control Synthesis (ECCS) allows for the direct calculation of pilot and system open- and closed-loop transfer functions in pole/zero form and is readily implemented in current software capable of analysis and design for dynamic systems. Example results based upon synthesizing an augmentation control law for an acceleration command system in a compensatory tracking task using the ECCS are compared with a similar synthesis performed by using the original CCS methodology. The ECCS is shown to provide augmentation control laws that yield more favorable, predicted closed-loop flying qualities and tracking performance than those synthesized using the original CCS methodology.
Geologic input to enhanced oil recovery project planning in south Oman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watts, N.L.; Ellis, D.; Heward, A.P.
1986-05-01
South Oman clastic reservoirs contain a combined stock-tank oil in place of more than 1.9 billion m/sup 3/ of predominantly heavy oil distributed in almost 40 fields of varying size. Successful early application of such enhanced oil recovery (EOR) methods as steam flood, polymer drive, and steam soak could realize undiscounted incremental recoveries of 244 million m/sup 3/ of oil. Target oil is contained in three reservoir intervals with distinct characteristics relevant to EOR. (1) The Cambrian-Ordovician Haima Group is a thick monotonous sequence of continental and coastal sands; major problems are steam-rock reactions, recovery factors, effective kv/kh (ratio ofmore » vertical to horizontal permeability), and aquifer strength. (2) The Permian-Carboniferous Al Khlata Formation is a glacial package showing severe heterogeneity, strong permeability anisotropy, and poor predictability. (3) The Permian Gharif Formation is a coastal to fluvial sequence with isolated and multilayer channel sands, smectitic clays, and anomalous primary production performance. Several EOR pilot projects are either ongoing or in preparation as part of a longer term EOR strategy. Geologic input is important at four essential stages of pilot planning: initial project ranking, optimization of pilot location, definition of pilot size, and predictive/history match simulations. Each stage is illustrated using a specific project example from south Oman to show the diverse geologic and logistic problems of the area. Although geologic aspects are highlighted, EOR project planning in south Oman is multidisciplinary, with integration being aided by a dedicated EOR coordination department.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... wheel or stick controls, is not appropriate for a sidestick controller, because pilot forces are applied... Pilot Forces for Sidestick Control AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... conventional wheel or control stick. This kind of controller is designed to be operated using only one hand...
Development of a category 2 approach system model
NASA Technical Reports Server (NTRS)
Johnson, W. A.; Mcruer, D. T.
1972-01-01
An analytical model is presented which provides, as its primary output, the probability of a successful Category II approach. Typical applications are included using several example systems (manual and automatic) which are subjected to random gusts and deterministic wind shear. The primary purpose of the approach system model is to establish a structure containing the system elements, command inputs, disturbances, and their interactions in an analytical framework so that the relative effects of changes in the various system elements on precision of control and available margins of safety can be estimated. The model is intended to provide insight for the design and integration of suitable autopilot, display, and navigation elements; and to assess the interaction of such elements with the pilot/copilot.
Building the Pipeline for Hubble Legacy Archive Grism data
NASA Astrophysics Data System (ADS)
Kümmel, M.; Albrecht, R.; Fosbury, R.; Freudling, W.; Haase, J.; Hook, R. N.; Kuntschner, H.; Lombardi, M.; Micol, A.; Rosa, M.; Stoehr, F.; Walsh, J. R.
2008-10-01
The Pipeline for Hubble Legacy Archive Grism data (PHLAG) is currently being developed as an end-to-end pipeline for the Hubble Legacy Archive (HLA). The inputs to PHLAG are slitless spectroscopic HST data with only the basic calibrations from standard HST pipelines applied; the outputs are fully calibrated, Virtuall Observatory-compatible spectra, which will be made available through a static HLA-archive. We give an overview of the various aspects of PHLAG. The pipeline consists of several subcomponents -- data preparation, data retrieval, image combination, object detection, spectral extraction using the aXe software, quality control -- which is discussed in detail. As a pilot project, PHLAG is currently being applied to NICMOS G141 grism data. Examples of G141 spectra reduced with PHLAG are shown.
Flight-test experience of a helicopter encountering an airplane trailing vortex
NASA Technical Reports Server (NTRS)
Dunham, R. E., Jr.; Holbrook, G. T.; Campbell, R. L.; Van Gunst, R. W.; Mantay, W. R.
1976-01-01
This paper presents results of a flight-test experiment of a UH-1H helicopter encountering the vortex wake of a C-54 airplane. The helicopter was instrumented to record the pilot control inputs, determine the upset experience, and measure critical loads within the rotor system. During the flight-test program 132 penetrations of the vortex wake were made by the helicopter at separation distances from 3/8 to 6-1/2 nautical miles. Test results indicated that the helicopter upsets and the vortex induced blade loads experienced were minimal and well within safe limits. The upsets were very mild when compared to a typical response of a small airplane to the vortex wake of the C-54 airplane.
Investigation of the flight mechanics simulation of a hovering helicopter
NASA Technical Reports Server (NTRS)
Chaimovich, M.; Rosen, A.; Rand, O.; Mansur, M. H.; Tischler, M. B.
1992-01-01
The flight mechanics simulation of a hovering helicopter is investigated by comparing the results of two different numerical models with flight test data for a hovering AH-64 Apache. The two models are the U.S. Army BEMAP and the Technion model. These nonlinear models are linearized by applying a numerical linearization procedure. The results of the linear models are compared with identification results in terms of eigenvalues, stability and control derivatives, and frequency responses. Detailed time histories of the responses of the complete nonlinear models, as a result of various pilots' inputs, are compared with flight test results. In addition the sensitivity of the models to various effects are also investigated. The results are discussed and problematic aspects of the simulation are identified.
Real-Time Parameter Estimation in the Frequency Domain
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2000-01-01
A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented
HSI Guidelines Outline for the Air Vehicle Control Station. Version 2
NASA Technical Reports Server (NTRS)
2006-01-01
This document provides guidance to the FAA and manufacturers on how to develop UAS Pilot Vehicle Interfaces to safely and effectively integrate UASs into the NAS. Preliminary guidelines are provided for Aviate, Communicate, Navigate and Avoid Hazard functions. The pilot shall have information and control capability so that pilot-UA interactions are not adverse, unfavorable, nor compromise safety. Unfavorable interactions include anomalous aircraft-pilot coupling (APC) interactions (closed loop), pilot-involved oscillations (categories I, II or III), and non-oscillatory APC events (e.g., divergence). - Human Systems Integration Pilot-Technology Interface Requirements for Command, Control, and Communications (C3)
Results of a simulator test comparing two display concepts for piloted flight-path-angle control
NASA Technical Reports Server (NTRS)
Kelley, W. W.
1978-01-01
Results of a simulator experiment which was conducted in order to compare pilot gamma-control performance using two display formats are reported. Pilots flew a variable flight path angle tracking task in the landing configuration. Pilot and airplane performance parameters were recorded and pilot comments noted for each case.
Adaptive Controller Adaptation Time and Available Control Authority Effects on Piloting
NASA Technical Reports Server (NTRS)
Trujillo, Anna; Gregory, Irene
2013-01-01
Adaptive control is considered for highly uncertain, and potentially unpredictable, flight dynamics characteristic of adverse conditions. This experiment looked at how adaptive controller adaptation time to recover nominal aircraft dynamics affects pilots and how pilots want information about available control authority transmitted. Results indicate that an adaptive controller that takes three seconds to adapt helped pilots when looking at lateral and longitudinal errors. The controllability ratings improved with the adaptive controller, again the most for the three seconds adaptation time while workload decreased with the adaptive controller. The effects of the displays showing the percentage amount of available safe flight envelope used in the maneuver were dominated by the adaptation time. With the displays, the altitude error increased, controllability slightly decreased, and mental demand increased. Therefore, the displays did require some of the subjects resources but these negatives may be outweighed by pilots having more situation awareness of their aircraft.
Identification of Time-Varying Pilot Control Behavior in Multi-Axis Control Tasks
NASA Technical Reports Server (NTRS)
Zaal, Peter M. T.; Sweet, Barbara T.
2012-01-01
Recent developments in fly-by-wire control architectures for rotorcraft have introduced new interest in the identification of time-varying pilot control behavior in multi-axis control tasks. In this paper a maximum likelihood estimation method is used to estimate the parameters of a pilot model with time-dependent sigmoid functions to characterize time-varying human control behavior. An experiment was performed by 9 general aviation pilots who had to perform a simultaneous roll and pitch control task with time-varying aircraft dynamics. In 8 different conditions, the axis containing the time-varying dynamics and the growth factor of the dynamics were varied, allowing for an analysis of the performance of the estimation method when estimating time-dependent parameter functions. In addition, a detailed analysis of pilots adaptation to the time-varying aircraft dynamics in both the roll and pitch axes could be performed. Pilot control behavior in both axes was significantly affected by the time-varying aircraft dynamics in roll and pitch, and by the growth factor. The main effect was found in the axis that contained the time-varying dynamics. However, pilot control behavior also changed over time in the axis not containing the time-varying aircraft dynamics. This indicates that some cross coupling exists in the perception and control processes between the roll and pitch axes.
Controlled pilot oxidizer for a gas turbine combustor
Laster, Walter R.; Bandaru, Ramarao V.
2010-07-13
A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.
Pilot and Controller Workload and Situation Awareness with Three Traffic Management Concept
NASA Technical Reports Server (NTRS)
Vu, Kim-Phuong L.; Strybel, Thomas Z.; Kraut, Joshua; Bacon, Paige; Minakata, Katsumi; Battiste, Vernol; Johnson, Walter
2010-01-01
This paper reports on workload and situation awareness of pilots and controllers participating in a human-in-the-loop simulation using three different distributed air-ground traffic management concepts. Eight experimental pilots started the scenario in an en-route phase of flight and were asked to avoid convective weather while performing spacing and merging tasks along with a continuous descent approach (CDA) into Louisville Standiford Airport (SDF). Two controllers managed the sectors through which the pilots flew, with one managing a sector that included the Top of Descent, and the other managing a sector that included the merge point for arrival into SDF. At 3-minute intervals in the scenario, pilots and controllers were probed on their workload or situation awareness. We employed one of three concepts of operation that distributed separation responsibility across human controllers, pilots, and automation to measure changes in operator situation awareness and workload. We found that when pilots were responsible for separation, they had higher levels of awareness, but not necessarily higher levels of workload. When controllers are responsible and actively engaged, they showed higher workload levels compared to pilots and changes in awareness that were dependent on sector characteristics.
Seabroke, Suzie; Wise, Lesley; Waller, Patrick
2013-10-01
The prioritisation of drug safety issues for further evaluation or regulatory action is critical to ensure that acceptable timelines and appropriate resource allocation are defined to meet public health and regulatory obligations. Our objective was to develop, pilot and implement a novel tool for prioritising pharmacovigilance issues within the Medicines and Healthcare products Regulatory Agency (MHRA). An initial system was developed empirically and then piloted over a 10-month period in the pharmacovigilance signal management meeting at the MHRA that discusses potential pharmacovigilance issues, and determines, through consensus, their priority and a timescale for action. The priority assigned by the tool was compared with the priority decided by collective judgement at the meeting. Once an acceptable level of concordance between the tool and the meeting had been achieved, the finalised tool was implemented into routine use at the MHRA, with an evaluation of its performance conducted after the first year. The Regulatory Pharmacovigilance Prioritisation System (RPPS) tool prioritises pharmacovigilance issues according to the following four broad categories, each with four inputs: strength of evidence, public health implications, agency regulatory obligations and public perceptions. A weighted scoring system links the inputs to a pre-defined number of points where if a threshold is reached then the points are awarded. The overall priority is determined by the sum of all points obtained from each of the inputs. The pilot study included a total of 73 pharmacovigilance issues during the 10-month study period, with an overall exact agreement between the RPPS priority and the collective judgement of the meeting of 60.3 %. Where exact agreement was not obtained, the RPPS generally prioritised the issues slightly higher than the meeting. Over the first year following implementation, the RPPS achieved an overall exact agreement of 82.2 %. Following the pilot study and implementation at the UK MHRA, the RPPS has provided a systematic approach to drug safety issue prioritisation that should help to reduce the subjectivity of reliance on individual judgement.
Canino-Rodríguez, José M; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G; Travieso-González, Carlos; Alonso-Hernández, Jesús B
2015-03-04
The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers' indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications.
Moss-Morris, Rona; McCrone, Paul; Yardley, Lucy; van Kessel, Kirsten; Wills, Gary; Dennison, Laura
2012-06-01
The majority of people affected by Multiple Sclerosis (paMS) experience severe and disabling fatigue. A recent randomised controlled trial (RCT) showed that cognitive behaviour therapy with a clinical psychologist was an effective treatment for MS fatigue. An Internet-based version of this intervention, MS Invigor8, was developed for the current study using agile design and input from paMS. MS Invigor8 includes eight tailored, interactive sessions. The aim was to test the feasibility and potential efficacy and cost-effectiveness of the programme in a pilot RCT. 40 patients were randomised to MS Invigor8 (n=23) or standard care (n=17). The MS Invigor8 group accessed sessions over 8-10 weeks and received up to three 30-60min telephone support sessions. Participants completed online standardised questionnaires assessing fatigue, mood, quality of life and service use at baseline and 10 weeks follow-up. Large between group treatment effects were found for the primary outcomes of fatigue severity (d=1.19) and impact (d=1.02). The MS Invigor8 group also reported significantly greater improvements in anxiety, depression and quality-adjusted life years. These data suggest that Internet-based CBT may be a clinically and cost-effective treatment for MS fatigue. A larger RCT with longer term follow-up is warranted. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
1997-04-01
This report describes the concept of a propulsion controlled aircraft (PCA), : discusses pilot controls, displays, and procedures; and presents the results of a : PCA piloted simulation test and evaluation of the B747-400 airplane conducted at : NASA...
The Propulsive-Only Flight Control Problem
NASA Technical Reports Server (NTRS)
Blezad, Daniel J.
1996-01-01
Attitude control of aircraft using only the throttles is investigated. The long time constants of both the engines and of the aircraft dynamics, together with the coupling between longitudinal and lateral aircraft modes make piloted flight with failed control surfaces hazardous, especially when attempting to land. This research documents the results of in-flight operation using simulated failed flight controls and ground simulations of piloted propulsive-only control to touchdown. Augmentation control laws to assist the pilot are described using both optimal control and classical feedback methods. Piloted simulation using augmentation shows that simple and effective augmented control can be achieved in a wide variety of failed configurations.
NASA Technical Reports Server (NTRS)
2005-01-01
The document provides the Human System Integration(HSI) high-level functional C3 HSI requirements for the interface to the pilot. Description includes (1) the information required by the pilot to have knowledge C3 system status, and (2) the control capability needed by the pilot to obtain C3 information. Fundamentally, these requirements provide the candidate C3 technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how C3 operations and functions should interface with the pilot to provide the necessary C3 functionality to the UA-pilot system. Requirements and guidelines for C3 are partitioned into three categories: (1) Pilot-Air Traffic Control (ATC) Voice Communications (2) Pilot-ATC Data Communications, and (3) command and control of the unmanned aircraft (UA). Each requirement is stated and is supported with a rationale and associated reference(s).
Application of higher harmonic blade feathering on the OH-6A helicopter for vibration reduction
NASA Technical Reports Server (NTRS)
Straub, F. K.; Byrns, E. V., Jr.
1986-01-01
The design, implementation, and flight test results of higher harmonic blade feathering for vibration reduction on the OH-6A helicopter are described. The higher harmonic control (HHC) system superimposes fourth harmonic inputs upon the stationary swashplate. These inputs are transformed into 3P, 4P and 5P blade feathering angles. This results in modified blade loads and reduced fuselage vibrations. The primary elements of this adaptive vibration suppression system are: (1) acceleration transducers sensing the vibratory response of the fuselage; (2) a higher harmonic blade pitch actuator system; (3) a flightworthy microcomputer, incorporating the algorithm for reducing vibrations, and (4) a signal conditioning system, interfacing between the sensors, the microcomputer and the HHC actuators. The program consisted of three distinct phases. First, the HHC system was designed and implemented on the MDHC OH-6A helicopter. Then, the open loop, or manual controlled, flight tests were performed, and finally, the closed loop adaptive control system was tested. In 1983, one portion of the closed loop testing was performed, and in 1984, additional closed loop tests were conducted with improved software. With the HHC system engaged, the 4P pilot seat vibration levels were significantly lower than the baseline ON-6A levels. Moreover, the system did not adversely affect blade loads or helicopter performance. In conclusion, this successful proof of concept project demonstrated HHC to be a viable vibration suppression mechanism.
Remotely piloted vehicle: Application of the GRASP analysis method
NASA Technical Reports Server (NTRS)
Andre, W. L.; Morris, J. B.
1981-01-01
The application of General Reliability Analysis Simulation Program (GRASP) to the remotely piloted vehicle (RPV) system is discussed. The model simulates the field operation of the RPV system. By using individual component reliabilities, the overall reliability of the RPV system is determined. The results of the simulations are given in operational days. The model represented is only a basis from which more detailed work could progress. The RPV system in this model is based on preliminary specifications and estimated values. The use of GRASP from basic system definition, to model input, and to model verification is demonstrated.
Review of factors affecting aircraft wet runway performance
NASA Technical Reports Server (NTRS)
Yager, T. J.
1983-01-01
Problems associated with aircraft operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from investigations conducted at the Langley Aircraft Landing Loads and Traction Facility and from tests with instrumented ground vehicles and aircraft are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.
Identification of pilot dynamics from in-flight tracking data
NASA Technical Reports Server (NTRS)
Hess, R. A.; Mnich, M. A.
1985-01-01
Data from a representative flight task involving an F-14 'pursuer' aircraft tracking a T-38 'target' aircraft in a 3G wind-up turn and in level flight are processed using a least squares identification technique in an attempt to identify pilot/vehicle dynamics. Comparative identification results are provided by a Fourier coefficient method which requires a carefully designed and implemented input consisting of a sum of sinusoids. The least-squares results compare favorably with those obtained by the Fourier technique. An example of crossover frequency regression is discussed in the light of the conditions of one of the flight configurations.
The Effects of Shared Information on Pilot-Controller Situation Awareness And Re-Route Negotiation
NASA Technical Reports Server (NTRS)
Farley, Todd C.; Hansman, R. John; Endsley, Mica R.; Amonlirdviman, Keith
1999-01-01
The effect of shared information is assessed in terms of pilot-controller negotiating behavior and shared situation awareness. Pilot goals and situation awareness requirements are developed and compared against those of air traffic controllers to identify areas of common and competing interest. An exploratory, part-task simulator experiment is described which evaluates the extent to which shared information may lead pilots and controllers to cooperate or compete when negotiating route amendments. Results are presented which indicate that shared information enhances situation awareness and can engender more collaborative interaction between pilots and air traffic controllers. Furthermore, the value of providing controllers with a good-quality weather overlay on their plan view displays is demonstrated. Observed improvements in situation awareness and separation assurance are discussed.
A Pilot Model for the NASA Simplified Aid for EVA Rescue (SAFER) (Single-Axis Pitch Task)
NASA Astrophysics Data System (ADS)
Handley, Patrick Mark
This thesis defines, tests, and validates a descriptive pilot model for a single-axis pitch control task of the Simplified Aid for EVA Rescue (SAFER). SAFER is a small propulsive jetpack used by astronauts for self-rescue. Pilot model research supports development of improved self-rescue strategies and technologies through insights into pilot behavior.This thesis defines a multi-loop pilot model. The innermost loop controls the hand controller, the middle loop controls pitch rate, and the outer loop controls pitch angle. A human-in-the-loop simulation was conducted to gather data from a human pilot. Quantitative and qualitative metrics both indicate that the model is an acceptable fit to the human data. Fuel consumption was nearly identical; time to task completion matched very well. There is some evidence that the model responds faster to initial pitch rates than the human, artificially decreasing the model's time to task completion. This pilot model is descriptive, not predictive, of the human pilot. Insights are made into pilot behavior from this research. Symmetry implies that the human responds to positive and negative initial conditions with the same strategy. The human pilot appears indifferent to pitch angles within 0.5 deg, coasts at a constant pitch rate 1.09 deg/s, and has a reaction delay of 0.1 s.
Fleck, David E; Ernest, Nicholas; Adler, Caleb M; Cohen, Kelly; Eliassen, James C; Norris, Matthew; Komoroski, Richard A; Chu, Wen-Jang; Welge, Jeffrey A; Blom, Thomas J; DelBello, Melissa P; Strakowski, Stephen M
2017-06-01
Individualized treatment for bipolar disorder based on neuroimaging treatment targets remains elusive. To address this shortcoming, we developed a linguistic machine learning system based on a cascading genetic fuzzy tree (GFT) design called the LITHium Intelligent Agent (LITHIA). Using multiple objectively defined functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy ( 1 H-MRS) inputs, we tested whether LITHIA could accurately predict the lithium response in participants with first-episode bipolar mania. We identified 20 subjects with first-episode bipolar mania who received an adequate trial of lithium over 8 weeks and both fMRI and 1 H-MRS scans at baseline pre-treatment. We trained LITHIA using 18 1 H-MRS and 90 fMRI inputs over four training runs to classify treatment response and predict symptom reductions. Each training run contained a randomly selected 80% of the total sample and was followed by a 20% validation run. Over a different randomly selected distribution of the sample, we then compared LITHIA to eight common classification methods. LITHIA demonstrated nearly perfect classification accuracy and was able to predict post-treatment symptom reductions at 8 weeks with at least 88% accuracy in training and 80% accuracy in validation. Moreover, LITHIA exceeded the predictive capacity of the eight comparator methods and showed little tendency towards overfitting. The results provided proof-of-concept that a novel GFT is capable of providing control to a multidimensional bioinformatics problem-namely, prediction of the lithium response-in a pilot data set. Future work on this, and similar machine learning systems, could help assign psychiatric treatments more efficiently, thereby optimizing outcomes and limiting unnecessary treatment. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Ostroff, Aaron J.; Hoffler, Keith D.; Proffitt, Melissa S.; Brown, Philip W.; Phillips, Michael R.; Rivers, Robert A.; Messina, Michael D.; Carzoo, Susan W.; Bacon, Barton J.; Foster, John F.
1994-01-01
This paper describes the design, analysis, and nonlinear simulation results (batch and piloted) for a longitudinal controller which is scheduled to be flight-tested on the High-Alpha Research Vehicle (HARV). The HARV is an F-18 airplane modified for and equipped with multi-axis thrust vectoring. The paper includes a description of the facilities, a detailed review of the feedback controller design, linear analysis results of the feedback controller, a description of the feed-forward controller design, nonlinear batch simulation results, and piloted simulation results. Batch simulation results include maximum pitch stick agility responses, angle of attack alpha captures, and alpha regulation for full lateral stick rolls at several alpha's. Piloted simulation results include task descriptions for several types of maneuvers, task guidelines, the corresponding Cooper-Harper ratings from three test pilots, and some pilot comments. The ratings show that desirable criteria are achieved for almost all of the piloted simulation tasks.
Proceedings: Fourth Annual Workshop on Meteorological and Environmental Inputs to Aviation Systems
NASA Technical Reports Server (NTRS)
Frost, Walter (Editor); Camp, Dennis W. (Editor)
1980-01-01
The proceedings of a workshop on meteorological and environmental inputs to aviation systems held at The University of Tennessee Space Institute, Tullahoma, Tennessee, March 25-27, 1980, are reported. The workshop was jointly sponsored by NASA, NOAA, and FAA and brought together many disciplines of the aviation communities in round table discussions. The major objectives of the workshop are to satisfy such needs of the sponsoring agencies as the expansion of our understanding and knowledge of the interaction of the atmosphere with aviation systems, the better definition and implementation of services to operators, and the collection and interpretation of data for establishing operational criteria relating the total meteorological inputs from the atmospheric sciences to the needs of aviation communities. The unique aspects of the workshop were the diversity of the participants and the achievement of communication across the interface of the boundaries between pilots, meteorologists, training personnel, accident investigators, traffic controllers, flight operation personnel from military, civil, general aviation, and commercial interests alike. Representatives were in attendance from government, airlines, private agencies, aircraft manufacturers, Department of Defense, industries, research institutes, and universities. Full-length papers from invited speakers addressed topics on icing, turbulence, wind and wind shear, ceilings and visibility, lightning, and atmospheric electricity. These papers are contained in the proceedings together with the committee chairmen's reports on the results and conclusions of their efforts on similar subjects.
Removing user fees for basic health services: a pilot study and national roll-out in Afghanistan
Steinhardt, Laura C; Aman, Iqbal; Pakzad, Iqbalshah; Kumar, Binay; Singh, Lakhwinder P; Peters, David H
2011-01-01
Background User fees for primary care tend to suppress utilization, and many countries are experimenting with fee removal. Studies show that additional inputs are needed after removing fees, although well-documented experiences are lacking. This study presents data on the effects of fee removal on facility quality and utilization in Afghanistan, based on a pilot experiment and subsequent nationwide ban on fees. Methods Data on utilization and observed structural and perceived overall quality of health care were compared from before-and-after facility assessments, patient exit interviews and catchment area household surveys from eight facilities where fees were removed and 14 facilities where fee levels remained constant, as part of a larger health financing pilot study from 2005 to 2007. After a national user fee ban was instituted in 2008, health facility administrative data were analysed to assess subsequent changes in utilization and quality. Results The pilot study analysis indicated that observed and perceived quality increased across facilities but did not differ by fee removal status. Difference-in-difference analysis showed that utilization at facilities previously charging both service and drug fees increased by 400% more after fee removal, prompting additional inputs from service providers, compared with facilities that previously only charged service fees or had no change in fees (P = 0.001). Following the national fee ban, visits for curative care increased significantly (P < 0.001), but institutional deliveries did not. Services typically free before the ban—immunization and antenatal care—had immediate increases in utilization but these were not sustained. Conclusion Both pilot and nationwide data indicated that curative care utilization increased following fee removal, without differential changes in quality. Concerns raised by non-governmental organizations, health workers and community leaders over the effects of lost revenue and increased utilization require continued effort to raise revenues, monitor health worker and patient perceptions, and carefully manage health facility performance. PMID:22027924
Human factors issues associated with the use of speech technology in the cockpit
NASA Technical Reports Server (NTRS)
Kersteen, Z. A.; Damos, D.
1983-01-01
The human factors issues associated with the use of voice technology in the cockpit are summarized. The formulation of the LHX avionics suite is described and the allocation of tasks to voice in the cockpit is discussed. State-of-the-art speech recognition technology is reviewed. Finally, a questionnaire designed to tap pilot opinions concerning the allocation of tasks to voice input and output in the cockpit is presented. This questionnaire was designed to be administered to operational AH-1G Cobra gunship pilots. Half of the questionnaire deals specifically with the AH-1G cockpit and the types of tasks pilots would like to have performed by voice in this existing rotorcraft. The remaining portion of the questionnaire deals with an undefined rotorcraft of the future and is aimed at determining what types of tasks these pilots would like to have performed by voice technology if anything was possible, i.e. if there were no technological constraints.
Design of a Model Reference Adaptive Controller for an Unmanned Air Vehicle
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.
2010-01-01
This paper presents the "Adaptive Control Technology for Safe Flight (ACTS)" architecture, which consists of a non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off nominal ones. The design and implementation procedures of both controllers are presented. The aim of these procedures, which encompass both theoretical and practical considerations, is to develop a controller suitable for flight. The ACTS architecture is applied to the Generic Transport Model developed by NASA-Langley Research Center. The GTM is a dynamically scaled test model of a transport aircraft for which a flight-test article and a high-fidelity simulation are available. The nominal controller at the core of the ACTS architecture has a multivariable LQR-PI structure while the adaptive one has a direct, model reference structure. The main control surfaces as well as the throttles are used as control inputs. The inclusion of the latter alleviates the pilot s workload by eliminating the need for cancelling the pitch coupling generated by changes in thrust. Furthermore, the independent usage of the throttles by the adaptive controller enables their use for attitude control. Advantages and potential drawbacks of adaptation are demonstrated by performing high fidelity simulations of a flight-validated controller and of its adaptive augmentation.
77 FR 42454 - Airworthiness Directives; Piaggio Aero Industries S.p.A.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-19
... the brake hydraulic fluid from leaking because of the brake assembly rods contacting the brake valve... session during which conflicting inputs were given to the brake pads between pilot and copilot, a brake... tubings connected to the brake valves, with consequent fluid leakage. Prompted by these findings, PAI...
40 CFR 60.703 - Monitoring of emissions and operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... position before any substantial heat exchange is encountered. (ii) Where a catalytic incinerator is used... equipment: (1) A heat sensing device, such as an ultraviolet beam sensor or thermocouple, at the pilot light... 44 MW (150 million Btu/hr) design heat input capacity. Any vent stream introduced with primary fuel...
40 CFR 60.703 - Monitoring of emissions and operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... position before any substantial heat exchange is encountered. (ii) Where a catalytic incinerator is used... equipment: (1) A heat sensing device, such as an ultraviolet beam sensor or thermocouple, at the pilot light... 44 MW (150 million Btu/hr) design heat input capacity. Any vent stream introduced with primary fuel...
40 CFR 60.703 - Monitoring of emissions and operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... position before any substantial heat exchange is encountered. (ii) Where a catalytic incinerator is used... equipment: (1) A heat sensing device, such as an ultraviolet beam sensor or thermocouple, at the pilot light... 44 MW (150 million Btu/hr) design heat input capacity. Any vent stream introduced with primary fuel...
Code of Federal Regulations, 2011 CFR
2011-01-01
... includes any non-heating season pilot input loss. Area of the space (A): the horizontal lighted area of a... doors of a building. Integrated part-load value (IPLV): a single-number figure of merit based on part-load EER or COP expressing part-load efficiency for air-conditioning and heat pump equipment on the...
Creating an Information Literacy Badges Program in Blackboard: A Formative Program Evaluation
ERIC Educational Resources Information Center
Tunon, Johanna; Ramirez, Laura Lucio; Ryckman, Brian; Campbell, Loy; Mlinar, Courtney
2015-01-01
A formative program evaluation using Stufflebeam's (2010) Context, Input, Process, Product (CIPP) model was conducted to assess the use of digital badges for tracking basic library instructional skills across academic programs at Nova Southeastern University. Based on the evaluation of pilot library modules and Blackboard Learn's badges…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
... establish a process for stakeholder input and involvement in the development, implementation, and evaluation of the Highways for LIFE Pilot Program. The process may include participation by representatives of... own that a particular innovation was important, yet never actually determined whether States would...
SUPERFUND TREATABILITY CLEARINGHOUSE: INPUT/OUTPUT DATA FOR SEVERAL TREATMENT TECHNOLOGIES
This treatability study is a pilot-scale evaluation of a thin-film evaporator (TFE) for volatile organics (VO) removal from oily sludges such as refinery sludges. TFEs were studied to evaluate their use to remove and recover VO from these sludges prior to land treatment. This w...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...
The integration of constructed wetlands into a treatment system for airport runoff.
Revitt, D M; Worral, P; Brewer, D
2001-01-01
A new surface runoff treatment system has been designed for London Heathrow Airport, which incorporates separate floating constructed wetlands or reedbeds and sub-surface flow constructed wetlands as major pollutant removal systems. The primary requirement of the newly developed treatment system is to control the concentrations of glycols following their use as de-icers and anti-icers within the airport. The ability of reedbeds to contribute to this treatment role was fully tested through pilot scale, on-site experiments over a 2 year period. The average reductions in runoff BOD concentrations achieved by pilot scale surface flow and sub-surface flow reedbeds were 30.9% and 32.9%, respectively. The corresponding average glycol removal efficiencies were 54.2% and 78.3%, following shock dosing inputs. These treatment performances are used to predict the required full scale constructed wetland surface areas needed to attain the desired effluent water quality. The treatment system also incorporates aeration, storage and, combined with reedbed technology, has been designed to reduce a mixed inlet BOD concentration of 240 mg/l to less than 40 mg/l for water temperatures varying between 6 degrees C and 20 degrees C.
NASA Technical Reports Server (NTRS)
Sadoff, Melvin; McFadden, Norman M.; Heinle, Donovan R.
1961-01-01
As part of a general investigation to determine the effects of simulator motions on pilot opinion and task performance over a wide range of vehicle longitudinal dynamics, a cooperative NASA-AMAL program was conducted on the centrifuge at Johnsville, Pennsylvania. The test parameters and measurements for this program duplicated those of earlier studies made at Ames Research Center with a variable-stability airplane and with a pitch-roll chair flight simulator. Particular emphasis was placed on the minimum basic damping and stability the pilots would accept and on the minimum dynamics they considered controllable in the event of stability-augmentation system failure. Results of the centrifuge-simulator program indicated that small positive damping was required by the pilots over most of the frequency range covered for configurations rated acceptable for emergency conditions only (e.g., failure of a pitch damper). It was shown that the pilot's tolerance for unstable dynamics was dependent primarily on the value of damping. For configurations rated acceptable for emergency operation only, the allowable instability and damping corresponded to a divergence time to double amplitude of about 1 second. Comparisons were made of centrifuge, pitch-chair and fixed-cockpit simulator tests with flight tests. Pilot ratings indicated that the effects of incomplete or spurious motion cues provided by these three modes of simulation were important only for high-frequency, lightly damped dynamics or unstable, moderately damped dynamics. The pitch- chair simulation, which provided accurate angular-acceleration cues to the pilot, compared most favorably with flight. For the centrifuge simulation, which furnished accurate normal accelerations but spurious pitching and longitudinal accelerations, there was a deterioration of pilots' opinion relative to flight results. Results of simulator studies with an analog pilot replacing the human pilot illustrated the adaptive capability of human pilots in coping with the wide range of vehicle dynamics and the control problems covered in this study. It was shown that pilot-response characteristics, deduced by the analog-pilot method, could be related to pilot opinion. Possible application of these results for predicting flight-control problems was illustrated by means of an example control-problem analysis. The results of a brief evaluation of a pencil-type side-arm controller in the centrifuge showed a considerable improvement in the pilots' ability to cope with high-frequency, low-damping dynamics, compared to results obtained with the center stick. This improvement with the pencil controller was attributed primarily to a marked reduction in the adverse effects of large and exaggerated pitching and longitudinal accelerations on pilot control precision.
Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E.
2014-01-01
Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control. PMID:25506339
Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E
2014-01-01
Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control.
Carotid duplex ultrasound and transcranial Doppler findings in commercial divers and pilots.
Dormanesh, Banafshe; Vosoughi, Kia; Akhoundi, Fahimeh H; Mehrpour, Masoud; Fereshtehnejad, Seyed-Mohammad; Esmaeili, Setareh; Sabet, Azin Shafiee
2016-12-01
The risky working environments of divers and pilots, and the possible role of extreme ambient pressure in carotid stenosis, make ischemic stroke an important occupational concern among these professionals. In this study, we aimed to evaluate the association of being exposed to hyperbaric or hypobaric conditions with carotid artery stenosis by comparing common carotid intima-media thickness (CCIMT) and blood flow velocities of cerebral arteries in divers and pilots using carotid duplex ultrasound (CDUS) and transcranial Doppler (TCD). CDUS and transtemporal TCD were performed in 29 divers, 36 pilots and 30 control participants. Medical history, blood pressure, lipid profile and blood sugar were recorded to control the previously well-known risk factors of atherosclerosis. Findings of the CDUS and TCD [including: CCIMT and blood flow velocities of internal carotid artery (ICA), common carotid artery (CCA), and middle cerebral artery (MCA)] of divers and pilots were compared with those of the control group using regression analysis models. Both right and left side CCIMT were significantly higher in divers (P < 0.05) and pilots (P < 0.05) in comparison with the control group. Carotid index [peak systolic velocity (PSV) of ICA/PSV of CCA) of divers and pilots were also higher than the control group. TCD findings were not significantly different between divers, pilots, and the control group. Increased CCIMT and carotid index in diver and pilot groups appear to be suggestive of accelerated atherosclerosis of carotid artery in these occupational groups.
Pilot-in-the-Loop Analysis of Propulsive-Only Flight Control Systems
NASA Technical Reports Server (NTRS)
Chou, Hwei-Lan; Biezad, Daniel J.
1996-01-01
Longitudinal control system architectures are presented which directly couple flight stick motions to throttle commands for a multi-engine aircraft. This coupling enables positive attitude control with complete failure of the flight control system. The architectures chosen vary from simple feedback gains to classical lead-lag compensators with and without prefilters. Each architecture is reviewed for its appropriateness for piloted flight. The control systems are then analyzed with pilot-in-the-loop metrics related to bandwidth required for landing. Results indicate that current and proposed bandwidth requirements should be modified for throttles only flight control. Pilot ratings consistently showed better ratings than predicted by analysis. Recommendations are made for more robust design and implementation. The use of Quantitative Feedback Theory for compensator design is discussed. Although simple and effective augmented control can be achieved in a wide variety of failed configurations, a few configuration characteristics are dominant for pilot-in-the-loop control. These characteristics will be tested in a simulator study involving failed flight controls for a multi-engine aircraft.
Flight test experience and controlled impact of a large, four-engine, remotely piloted airplane
NASA Technical Reports Server (NTRS)
Kempel, R. W.; Horton, T. W.
1985-01-01
A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed.
Simulation of rotor blade element turbulence
NASA Technical Reports Server (NTRS)
Mcfarland, R. E.; Duisenberg, Ken
1995-01-01
A piloted, motion-based simulation of Sikorsky's Black Hawk helicopter was used as a platform for the investigation of rotorcraft responses to vertical turbulence. By using an innovative temporal and geometrical distribution algorithm that preserved the statistical characteristics of the turbulence over the rotor disc, stochastic velocity components were applied at each of twenty blade-element stations. This model was implemented on NASA Ames' Vertical Motion Simulator (VMS), and ten test pilots were used to establish that the model created realistic cues. The objectives of this research included the establishment of a simulation-technology basis for future investigation into real-time turbulence modeling. This goal was achieved; our extensive additions to the rotor model added less than a 10 percent computational overhead. Using a VAX 9000 computer the entire simulation required a cycle time of less than 12 msec. Pilot opinion during this simulation was generally quite favorable. For low speed flight the consensus was that SORBET (acronym for title) was better than the conventional body-fixed model, which was used for comparison purposes, and was determined to be too violent (like a washboard). For high speed flight the pilots could not identify differences between these models. These opinions were something of a surprise because only the vertical turbulence component on the rotor system was implemented in SORBET. Because of the finite-element distribution of the inputs, induced outputs were observed in all translational and rotational axes. Extensive post-simulation spectral analyses of the SORBET model suggest that proper rotorcraft turbulence modeling requires that vertical atmospheric disturbances not be superimposed at the vehicle center of gravity but, rather, be input into the rotor system, where the rotor-to-body transfer function severely attenuates high frequency rotorcraft responses.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-20
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): A Pilot Surveillance for High... in response to ``A Pilot Surveillance for High Impact/Low Prevalence Congenital and Inherited...
Stochastic targeted (STAR) glycemic control: design, safety, and performance.
Evans, Alicia; Le Compte, Aaron; Tan, Chia-Siong; Ward, Logan; Steel, James; Pretty, Christopher G; Penning, Sophie; Suhaimi, Fatanah; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey
2012-01-01
Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. STAR (Stochastic TARgeted) is a flexible, model-based TGC approach that directly accounts for intra- and interpatient variability with a stochastically derived maximum 5% risk of blood glucose (BG) below 72 mg/dl. This research assesses the safety, efficacy, and clinical burden of a STAR TGC controller modulating both insulin and nutrition inputs in virtual and clinical pilot trials. Clinically validated virtual trials using data from 370 patients in the SPRINT (Specialized Relative Insulin and Nutrition Titration) study were used to design the STAR protocol and test its safety, performance, and required clinical effort prior to clinical pilot trials. Insulin and nutrition interventions were given every 1-3 h as chosen by the nurse to allow them to manage workload. Interventions were designed to maximize the overlap of the model-predicted (5-95(th) percentile) range of BG outcomes with the 72-117 mg/dl band and thus provide a maximum 5% risk of BG <72 mg/dl. Interventions were calculated using clinically validated computer models of human metabolism and its variability in critical illness. Carbohydrate intake (all sources) was selected to maximize intake up to 100% of the American College of Chest Physicians/Society of Critical Care Medicine (ACCP/SCCM) goal (25 kg/kcal/h). Insulin doses were limited (8 U/h maximum), with limited increases based on current rate (0.5-2.0 U/h). Initial clinical pilot trials involved 3 patients covering ~450 h. Approval was granted by the Upper South A Regional Ethics Committee. Virtual trials indicate that STAR provides similar glycemic control performance to SPRINT with 2-3 h (maximum) measurement intervals. Time in the 72-126 mg/dl and 72-145 mg/dl bands was equivalent for all controllers, indicating that glycemic outcome differences between protocols were only shifted in this range. Safety from hypoglycemia was improved. Importantly, STAR using 2-3 h (maximum) intervention intervals reduced clinical burden up to 30%, which is clinically very significant. Initial clinical trials showed glycemic performance, safety, and management of inter- and intrapatient variability that matched or exceeded the virtual trial results. In virtual trials, STAR TGC provided tight control that maximized the likelihood of BG in a clinically specified glycemic band and reduced hypoglycemia with a maximum 5% (or lower) expected risk of light hypoglycemia (BG <72 mg/dl) via model-based management of intra- and interpatient variability. Clinical workload was self-managed and reduced up to 30% compared with SPRINT. Initial pilot clinical trials matched or exceeded these virtual results. © 2012 Diabetes Technology Society.
Flight directors for STOl aircraft
NASA Technical Reports Server (NTRS)
Rabin, U. H.
1983-01-01
Flight director logic for flight path and airspeed control of a powered-lift STOL aircraft in the approach, transition, and landing configurations are developed. The methods for flight director design are investigated. The first method is based on the Optimal Control Model (OCM) of the pilot. The second method, proposed here, uses a fixed dynamic model of the pilot in a state space formulation similar to that of the OCM, and includes a pilot work-load metric. Several design examples are presented with various aircraft, sensor, and control configurations. These examples show the strong impact of throttle effectiveness on the performance and pilot work-load associated with manual control of powered-lift aircraft during approach. Improved performed and reduced pilot work-load can be achieved by using direct-lift-control to increase throttle effectiveness.
NASA Technical Reports Server (NTRS)
Shontz, W. D.; Records, R. M.; Antonelli, D. R.
1992-01-01
The focus of this project is on alerting pilots to impending events in such a way as to provide the additional time required for the crew to make critical decisions concerning non-normal operations. The project addresses pilots' need for support in diagnosis and trend monitoring of faults as they affect decisions that must be made within the context of the current flight. Monitoring and diagnostic modules developed under the NASA Faultfinder program were restructured and enhanced using input data from an engine model and real engine fault data. Fault scenarios were prepared to support knowledge base development activities on the MONITAUR and DRAPhyS modules of Faultfinder. An analysis of the information requirements for fault management was included in each scenario. A conceptual framework was developed for systematic evaluation of the impact of context variables on pilot action alternatives as a function of event/fault combinations.
Robust Crossfeed Design for Hovering Rotorcraft
NASA Technical Reports Server (NTRS)
Catapang, David R.
1993-01-01
Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust'. A new low-order matching method is presented here to design robust crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.
Cowings, P S; Kellar, M A; Folen, R A; Toscano, W B; Burge, J D
2001-01-01
Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. This study examined the effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group contained 4 pilots from HC-130 Hercules aircraft and 4 HH-65 Dolphin helicopter pilots; the control group contained 3 pilots of HC-130s and 6 helicopter pilots. During an initial flight, physiological data were recorded on each crewmember and an instructor pilot rated individual crew performance. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training Exercise (AFTE). The remaining participants received no training. During a second flight, treatment participants showed significant improvement in performance (rated by the same instructor pilot as in pretests) while controls did not improve. The results indicate that AFTE management of high states of physiological arousal may improve pilot performance during emergency flying conditions.
NASA Technical Reports Server (NTRS)
Cowings, P. S.; Kellar, M. A.; Folen, R. A.; Toscano, W. B.; Burge, J. D.
2001-01-01
Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. This study examined the effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group contained 4 pilots from HC-130 Hercules aircraft and 4 HH-65 Dolphin helicopter pilots; the control group contained 3 pilots of HC-130s and 6 helicopter pilots. During an initial flight, physiological data were recorded on each crewmember and an instructor pilot rated individual crew performance. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training Exercise (AFTE). The remaining participants received no training. During a second flight, treatment participants showed significant improvement in performance (rated by the same instructor pilot as in pretests) while controls did not improve. The results indicate that AFTE management of high states of physiological arousal may improve pilot performance during emergency flying conditions.
Novel Estimation of Pilot Performance Characteristics
NASA Technical Reports Server (NTRS)
Bachelder, Edward N.; Aponso, Bimal
2017-01-01
Two mechanisms internal to the pilot that affect performance during a tracking task are: 1) Pilot equalization (i.e. lead/lag); and 2) Pilot gain (i.e. sensitivity to the error signal). For some applications McRuer's Crossover Model can be used to anticipate what equalization will be employed to control a vehicle's dynamics. McRuer also established approximate time delays associated with different types of equalization - the more cognitive processing that is required due to equalization difficulty, the larger the time delay. However, the Crossover Model does not predict what the pilot gain will be. A nonlinear pilot control technique, observed and coined by the authors as 'amplitude clipping', is shown to improve stability, performance, and reduce workload when employed with vehicle dynamics that require high lead compensation by the pilot. Combining linear and nonlinear methods a novel approach is used to measure the pilot control parameters when amplitude clipping is present, allowing precise measurement in real time of key pilot control parameters. Based on the results of an experiment which was designed to probe workload primary drivers, a method is developed that estimates pilot spare capacity from readily observable measures and is tested for generality using multi-axis flight data. This paper documents the initial steps to developing a novel, simple objective metric for assessing pilot workload and its variation over time across a wide variety of tasks. Additionally, it offers a tangible, easily implementable methodology for anticipating a pilot's operating parameters and workload, and an effective design tool. The model shows promise in being able to precisely predict the actual pilot settings and workload, and observed tolerance of pilot parameter variation over the course of operation. Finally, an approach is proposed for generating Cooper-Harper ratings based on the workload and parameter estimation methodology.
STS-28 Columbia, OV-102, Pilot Richards at forward flight deck pilots station
NASA Technical Reports Server (NTRS)
1989-01-01
Pilot Richard N. Richards, sitting at forward flight deck pilots station controls, looks back to aft flight deck during STS-28, a Department of Defense (DOD) dedicated mission. Control panels F7 and F8 and portable laptop computer propped on panel F4 appear in front of Richards. Behind him are the pilots seat seat back and head rest. A stuffed toy animal is positioned on C1 panel.
NASA Technical Reports Server (NTRS)
Hanson, Curt; Miller, Chris; Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Orr, Jeb S.
2015-01-01
An Adaptive Augmenting Control (AAC) algorithm for the Space Launch System (SLS) has been developed at the Marshall Space Flight Center (MSFC) as part of the launch vehicle's baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a potential manual steering mode were also investigated by giving the pilot trajectory deviation cues and pitch rate command authority, which is the subject of this paper. Two NASA research pilots flew a total of 25 constant pitch rate trajectories using a prototype manual steering mode with and without adaptive control, evaluating six different nominal and off-nominal test case scenarios. Pilot comments and PIO ratings were given following each trajectory and correlated with aircraft state data and internal controller signals post-flight.
Development of ADOCS controllers and control laws. Volume 3: Simulation results and recommendations
NASA Technical Reports Server (NTRS)
Landis, Kenneth H.; Glusman, Steven I.
1985-01-01
The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase is a function of SCAS characteristics; display mode switching logic. Results of the five piloted simulations conducted at the Boeing Vertol and NASA-Ames simulation facilities are presented in Volume 3. Conclusions drawn from analysis of pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.
Piechowski, Patricia; Warrick, Debra; Grawi, Carolyn; Choate, Celeste; Sneed, Glenda; Carr, Diane; Lota, Kanchan; Key, Kent; Alexander, Valerie; Ghosh, Pratik; Sampselle, Carolyn
2014-01-01
Abstract In 2007, the Michigan Institute for Clinical and Health Research (MICHR) at the University of Michigan received a Clinical and Translational Science Award (CTSA). Within MICHR, the Community Engagement (CE) program supports partnership efforts between researchers, practitioners, and community‐based organizations in specific focal communities throughout Michigan. A key component of the CE program is the Community Engagement Coordinating Council, a group that provides input and guidance on program priorities, strategic planning, and reviews pilot funding proposals for community–academic partnerships. This paper will describe a unique MICHR pilot funding mechanism for Community–University Research Partnerships (CURES) with an emphasis on the ways that community partners are involved in the review process, as well as the benefits, challenges, and insights gained over 5 years of pilot review. There is a growing need for community involvement and expertise in review of funding proposals for community‐engaged research at both institutional and federal levels. The CURES pilot review process is one example of an institutional effort to engage community partners in university funding decisions and has demonstrated clear benefit toward accomplishing the aims of the CTSA. PMID:24456508
Channel Acquisition for Massive MIMO-OFDM With Adjustable Phase Shift Pilots
NASA Astrophysics Data System (ADS)
You, Li; Gao, Xiqi; Swindlehurst, A. Lee; Zhong, Wen
2016-03-01
We propose adjustable phase shift pilots (APSPs) for channel acquisition in wideband massive multiple-input multiple-output (MIMO) systems employing orthogonal frequency division multiplexing (OFDM) to reduce the pilot overhead. Based on a physically motivated channel model, we first establish a relationship between channel space-frequency correlations and the channel power angle-delay spectrum in the massive antenna array regime, which reveals the channel sparsity in massive MIMO-OFDM. With this channel model, we then investigate channel acquisition, including channel estimation and channel prediction, for massive MIMO-OFDM with APSPs. We show that channel acquisition performance in terms of sum mean square error can be minimized if the user terminals' channel power distributions in the angle-delay domain can be made non-overlapping with proper phase shift scheduling. A simplified pilot phase shift scheduling algorithm is developed based on this optimal channel acquisition condition. The performance of APSPs is investigated for both one symbol and multiple symbol data models. Simulations demonstrate that the proposed APSP approach can provide substantial performance gains in terms of achievable spectral efficiency over the conventional phase shift orthogonal pilot approach in typical mobility scenarios.
White Matter Integrity in High-Altitude Pilots Exposed to Hypobaria
McGuire, Stephen A.; Boone, Goldie R.E.; Sherman, Paul M.; Tate, David F.; Wood, Joe D.; Patel, Beenish; Eskandar, George; Wijtenburg, S. Andrea; Rowland, Laura M.; Clarke, Geoffrey D.; Grogan, Patrick M.; Sladky, John H.; Kochunov, Peter V.
2017-01-01
Introduction Nonhypoxic hypobaric (low atmospheric pressure) occupational exposure, such as experienced by U.S. Air Force U-2 pilots and safety personnel operating inside altitude chambers, is associated with increased subcortical white matter hyperintensity (WMH) burden. The pathophysiological mechanisms underlying this discrete WMH change remain unknown. The objectives of this study were to demonstrate that occupational exposure to nonhypoxic hypobaria is associated with altered white matter integrity as quantified by fractional anisotropy (FA) measured using diffusion tensor imaging and relate these findings to WMH burden and neurocognitive ability. Methods There were 102 U-2 pilots and 114 age- and gender-controlled, health-matched controls who underwent magnetic resonance imaging. All pilots performed neurocognitive assessment. Whole-brain and tract-wise average FA values were compared between pilots and controls, followed by comparison within pilots separated into high and low WMH burden groups. Neurocognitive measurements were used to help interpret group difference in FA values. Results Pilots had significantly lower average FA values than controls (0.489/0.500, respectively). Regionally, pilots had higher FA values in the fronto-occipital tract where FA values positively correlated with visual-spatial performance scores (0.603/0.586, respectively). There was a trend for high burden pilots to have lower FA values than low burden pilots. Discussion Nonhypoxic hypobaric exposure is associated with significantly lower average FA in young, healthy U-2 pilots. This suggests that recurrent hypobaric exposure causes diffuse axonal injury in addition to focal white matter changes. PMID:28323582
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2014-01-01
This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface, interfacing directly with the flight management system to determine its mode of operation, and providing personalized engine control to optimize its performance given the current condition and mission objectives.
Do Colleges Cultivate Critical Thinking, Problem Solving, Writing and Interpersonal Skills?
ERIC Educational Resources Information Center
Saavedra, Anna Rosefsky; Saavedra, Juan Esteban
2011-01-01
We investigate how much value college enrollment adds to students' critical thinking, problem-solving and communication skills, and the role college inputs play in developing these competencies, using data from a 2009 collegiate assessment pilot study in Colombia. Relative to observationally similar first year students, students in their final…
Lindsey enters data into laptop in Spacehab
1998-11-04
STS095-E-5227 (4 Nov. 1998) --- Astronaut Steven W. Lindsey, STS-95 pilot, has done a 180-degree change of posture from earlier frame as he inputs data on a laptop in Spacehab aboard the Space Shuttle Discovery. The photo was taken with an electronic still camera (ESC) at 03:07:52 GMT, Nov. 4.
A Cognitive Engineering Analysis of the Vertical Navigation (VNAV) Function
NASA Technical Reports Server (NTRS)
Sherry, Lance; Feary, Michael; Polson, Peter; Mumaw, Randall; Palmer, Everett
2001-01-01
A cognitive engineering analysis of the Flight Management System (FMS) Vertical Navigation (VNAV) function has identified overloading of the VNAV button and overloading of the Flight Mode Annunciator (FMA) used by the VNAV function. These two types of overloading, resulting in modal input devices and ambiguous feedback, are well known sources of operator confusion, and explain, in part, the operational issues experienced by airline pilots using VNAV in descent and approach. A proposal to modify the existing VNAV design to eliminate the overloading is discussed. The proposed design improves pilot's situational awareness of the VNAV function, and potentially reduces the cost of software development and improves safety.
Commander Brand and Pilot Overmyer operate controls on forward flight deck
NASA Technical Reports Server (NTRS)
1982-01-01
On forward flight deck, Commander Brand and Pilot Overmyer operate controls from commanders and pilots seats. Overall view taken from the aft flight deck looking forward shows both astronauts reviewing procedures and checking CRT screen data.
Effects of modeling errors on trajectory predictions in air traffic control automation
NASA Technical Reports Server (NTRS)
Jackson, Michael R. C.; Zhao, Yiyuan; Slattery, Rhonda
1996-01-01
Air traffic control automation synthesizes aircraft trajectories for the generation of advisories. Trajectory computation employs models of aircraft performances and weather conditions. In contrast, actual trajectories are flown in real aircraft under actual conditions. Since synthetic trajectories are used in landing scheduling and conflict probing, it is very important to understand the differences between computed trajectories and actual trajectories. This paper examines the effects of aircraft modeling errors on the accuracy of trajectory predictions in air traffic control automation. Three-dimensional point-mass aircraft equations of motion are assumed to be able to generate actual aircraft flight paths. Modeling errors are described as uncertain parameters or uncertain input functions. Pilot or autopilot feedback actions are expressed as equality constraints to satisfy control objectives. A typical trajectory is defined by a series of flight segments with different control objectives for each flight segment and conditions that define segment transitions. A constrained linearization approach is used to analyze trajectory differences caused by various modeling errors by developing a linear time varying system that describes the trajectory errors, with expressions to transfer the trajectory errors across moving segment transitions. A numerical example is presented for a complete commercial aircraft descent trajectory consisting of several flight segments.
The poststall nonlinear dynamics and control of an F-18: A preliminary investigation
NASA Technical Reports Server (NTRS)
Patten, William N.
1988-01-01
The successful high angle of attack (HAOA) operation of fighter aircraft will necessarily require the introduction of a new onboard control methodology that address the nonlinearity of the system when flown at the stall/poststall limits of the craft's flight envelope. As a precursor to this task, a researcher endeavored to familarize himself with the dynamics of one specific aircraft, the F-18, when it is flown at HAOA. This was accomplished by conducting a number of real time flight sorties using the NASA-Langley Research Center's F-18 simulator, which was operated with a pilot in the loop. In addition to developing a first hand familarity with the aircraft's dynamic characteristic at HAOA, work was also performed to identify the input/output operational footprint of the F-18's control surfaces. This investigator proposes to employ the nonlinear models of the plant identified this summer in a subsequent research effort that will make it possible to fly the F-18 effectively at poststall angles of attack. The controller design used there will rely on a new technique proposed by this investigator that provides for the automatic generation of online optimal control solutions for nonlinear dynamic systems.
Characterization of Pilot Technique
NASA Technical Reports Server (NTRS)
Bachelder, Edward; Aponso, Bimal; Godfroy, Martine
2017-01-01
Skilled pilots often use pulse control when controlling higher order (i.e. acceleration-command) vehicle dynamics. Pulsing does not produce a stick response that resembles what the human Crossover Model predicts. The Crossover Model (CM) assumes the pilot provides compensation necessary (lead or lag) such that the suite of display-human-vehicle approximates an integrator in the region of crossover frequency. However, it is shown that the CM does appear to drive the pilots pulsing behavior in a very predictable manner. Roughly speaking, the pilot generates pulses such that the area under the pulse (pulse amplitude multiplied by pulse width) is approximately equal to area under the hypothetical CM output. This can allow a pilot to employ constant amplitude pulsing so that only the pulse duration (width) is modulated a drastic simplification over the demands of continuous tracking. A pilot pulse model is developed, with which the parameters of the pilots internally-generated CM can be computed in real time for pilot monitoring and display compensation. It is also demonstrated that pursuit tracking may be activated when pulse control is employed.
The influence of ATC message length and timing on pilot communication
NASA Technical Reports Server (NTRS)
Morrow, Daniel; Rodvold, Michelle
1993-01-01
Pilot-controller communication is critical to safe and efficient flight. It is often a challenging component of piloting, which is reflected in the number of incidents and accidents involving miscommunication. Our previous field study identified communication problems that disrupt routine communication between pilots and controllers. The present part-task simulation study followed up the field results with a more controlled investigation of communication problems. Pilots flew a simulation in which they were frequently vectored by Air Traffic Control (ATC), requiring intensive communication with the controller. While flying, pilots also performed a secondary visual monitoring task. We examined the influence of message length (one message with four commands vs. two messages with two commands each) and noncommunication workload on communication accuracy and length. Longer ATC messages appeared to overload pilot working memory, resulting in more incorrect or partial readbacks, as well as more requests to repeat the message. The timing between the two short messages also influenced communication. The second message interfered with memory for or response to the first short message when it was delivered too soon after the first message. Performing the secondary monitoring task did not influence communication. Instead, communication reduced monitoring accuracy.
Effects of False Tilt Cues on the Training of Manual Roll Control Skills
NASA Technical Reports Server (NTRS)
Zaal, Peter M. T.; Popovici, Alexandru; Zavala, Melinda A.
2015-01-01
This paper describes a transfer-of-training study performed in the NASA Ames Vertica lMotion Simulator. The purpose of the study was to investigate the effect of false tilt cues on training and transfer of training of manual roll control skills. Of specific interest were the skills needed to control unstable roll dynamics of a mid-size transport aircraft close to the stall point. Nineteen general aviation pilots trained on a roll control task with one of three motion conditions: no motion, roll motion only, or reduced coordinated roll motion. All pilots transferred to full coordinated roll motion in the transfer session. A novel multimodal pilot model identification technique was successfully applied to characterize how pilots' use of visual and motion cues changed over the course of training and after transfer. Pilots who trained with uncoordinated roll motion had significantly higher performance during training and after transfer, even though they experienced the false tilt cues. Furthermore, pilot control behavior significantly changed during the two sessions, as indicated by increasing visual and motion gains, and decreasing lead time constants. Pilots training without motion showed higher learning rates after transfer to the full coordinated roll motion case.
Feedback control laws for highly maneuverable aircraft
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.
1995-01-01
During this year, we concentrated our efforts on the design of controllers for lateral/directional control using mu synthesis. This proved to be a more difficult task than we anticipated and we are still working on the designs. In the lateral-directional control problem, the inputs are pilot lateral stick and pedal commands and the outputs are roll rate about the velocity vector and side slip angle. The control effectors are ailerons, rudder deflection, and directional thrust vectoring vane deflection which produces a yawing moment about the body axis. Our math model does not contain any provision for thrust vectoring of rolling moment. This has resulted in limitations of performance at high angles of attack. During 1994-95, the following tasks for the lateral-directional controllers were accomplished: (1) Designed both inner and outer loop dynamic inversion controllers. These controllers are implemented using accelerometer outputs rather than an a priori model of the vehicle aerodynamics; (2) Used classical techniques to design controllers for the system linearized by dynamics inversion. These controllers acted to control roll rate and Dutch roll response; (3) Implemented the inner loop dynamic inversion and classical controllers on the six DOF simulation; (4) Developed a lateral-directional control allocation scheme based on minimizing required control effort among the ailerons, rudder, and directional thrust vectoring; and (5) Developed mu outer loop controllers combined with classical inner loop controllers.
Autogenic-feedback training improves pilot performance during emergency flying conditions
NASA Technical Reports Server (NTRS)
Kellar, Michael A.; Folen, Raymond A.; Cowings, Patricia S.; Toscano, William B.; Hisert, Glen L.
1994-01-01
Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. This study examined the effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group comprised three pilots of HC-130 Hercules aircraft and four HH-65 Dolphin helicopter pilots; the control group comprised three pilots of HC-130's and six Dolphin helicopter pilots. During an initial flight, physiological data were recorded for each crew member and individual crew performance was rated by an instructor pilot. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training (AFT). The remaining subjects received no training. During a second flight, treatment subjects showed significant improvement in performance, while controls did not improve. The results indicate that AFT management of high states of physiological arousal may improve pilot performance during emergency flying conditions.
Autogenic-feedback training improves pilot performance during emergency flying conditions
NASA Technical Reports Server (NTRS)
Kellar, Michael A.; Folen, Raymond A.; Cowings, Patricia S.; Toscano, William B.; Hisert, Glen L.
1993-01-01
Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. The effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance was examined. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group comprised four pilots of HC-130 Hercules aircraft and four HH-65 Dolphin helicopter pilots; the control group comprised three pilots of HC-130's and six Dolphin helicopter pilots. During an initial flight physiological data were recorded for each crewmember and individual crew performance and rated by an instructor pilot. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training (AFT). The remaining subjects received no training. During a second flight, treatment subjects showed significant improvement in performance, while controls did not improve. The results indicate that AFT management of high states of physiological arousal may improve pilot performance during emergency flying conditions.
Flight test experience and controlled impact of a remotely piloted jet transport aircraft
NASA Technical Reports Server (NTRS)
Horton, Timothy W.; Kempel, Robert W.
1988-01-01
The Dryden Flight Research Center Facility of NASA Ames Research Center (Ames-Dryden) and the FAA conducted the controlled impact demonstration (CID) program using a large, four-engine, remotely piloted jet transport airplane. Closed-loop primary flight was controlled through the existing onboard PB-20D autopilot which had been modified for the CID program. Uplink commands were sent from a ground-based cockpit and digital computer in conjunction with an up-down telemetry link. These uplink commands were received aboard the airplane and transferred through uplink interface systems to the modified PB-20D autopilot. Both proportional and discrete commands were produced by the ground system. Prior to flight tests, extensive simulation was conducted during the development of ground-based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems; however, piloted flight tests were the primary method and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and systems required to accomplish the remotely piloted mission are discussed.
Aircraft loss-of-control prevention and recovery: A hybrid control strategy
NASA Astrophysics Data System (ADS)
Dongmo, Jean-Etienne Temgoua
The Complexity of modern commercial and military aircrafts has necessitated better protection and recovery systems. With the tremendous advances in computer technology, control theory and better mathematical models, a number of issues (Prevention, Reconfiguration, Recovery, Operation near critical points, ... etc) moderately addressed in the past have regained interest in the aeronautical industry. Flight envelope is essential in all flying aerospace vehicles. Typically, flying the vehicle means remaining within the flight envelope at all times. Operation outside the normal flight regime is usually subject to failure of components (Actuators, Engines, Deflection Surfaces) , pilots's mistakes, maneuverability near critical points and environmental conditions (crosswinds...) and in general characterized as Loss-Of-Control (LOC) because the aircraft no longer responds to pilot's inputs as expected. For the purpose of this work, (LOC) in aircraft is defined as the departure from the safe set (controlled flight) recognized as the maximum controllable (reachable) set in the initial flight envelope. The LOC can be reached either through failure, unintended maneuvers, evolution near irregular points and disturbances. A coordinated strategy is investigated and designed to ensure that the aircraft can maneuver safely in their constraint domain and can also recover from abnormal regime. The procedure involves the computation of the largest controllable (reachable) set (Safe set) contained in the initial prescribed envelope. The problem is posed as a reachability problem using Hamilton-Jacobi Partial Differential Equation (HJ-PDE) where a cost function is set to he minimized along trajectory departing from the given set. Prevention is then obtained by computing the controller which would allow the flight vehicle to remain in the maximum controlled set in a multi-objective set up. Then the recovery procedure is illustrated with a two-point boundary value problem. Once illustrate, a set of control strategies is designed for recovery purpose ranging from nonlinear smooth regulators with Hamilton Jacobi-Hellman (HJB) formulation to the switching controllers with High Order Sliding Mode Controllers (HOSMC). A coordinated strategy known as a high level supervisor is then implemented using the multi-models concept where models operate in specified safe regions of the state space.
75 FR 43395 - Airworthiness Directives; Aircraft Industries a.s. Model L 23 Super Blanik Gliders
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-26
... elevator in place and in jamming of the Pilot's elevator control system, and subsequent loss of elevator... elevator in place and in jamming of the Pilot's elevator control system, and subsequent loss of elevator... retaining the elevator in place and in jamming of the Pilot's elevator control system, and subsequent loss...
Closed-loop, pilot/vehicle analysis of the approach and landing task
NASA Technical Reports Server (NTRS)
Schmidt, D. K.; Anderson, M. R.
1985-01-01
Optimal-control-theoretic modeling and frequency-domain analysis is the methodology proposed to evaluate analytically the handling qualities of higher-order manually controlled dynamic systems. Fundamental to the methodology is evaluating the interplay between pilot workload and closed-loop pilot/vehicle performance and stability robustness. The model-based metric for pilot workload is the required pilot phase compensation. Pilot/vehicle performance and loop stability is then evaluated using frequency-domain techniques. When these techniques were applied to the flight-test data for thirty-two highly-augmented fighter configurations, strong correlation was obtained between the analytical and experimental results.
NASA Technical Reports Server (NTRS)
Beckman, Brian C. (Inventor)
1995-01-01
A virtual reality flight control system displays to the pilot the image of a scene surrounding a vehicle or pod having six degrees of freedom of acceleration or velocity control by the pilot and traveling through inertial space, the image itself including a superimposed figure providing the pilot an instant reference of orientation consisting of superimposed sets of geometric figures whose relative orientations provide the pilot an instantaneous feel or sense of orientation changes with respect to some fixed coordinate system. They include a first set of geometric figures whose orientations are fixed to the pilot's vehicle and a second set of geometric figures whose orientations are fixed with respect to a fixed or interstellar coordinate system. The first set of figures is a first set of orthogonal great circles about the three orthogonal axes of the flight vehicle or pod and centered at and surrounding the pilot's head, while the second set of figures is a second set of orthogonal great circles about the three orthogonal axes of a fixed or interstellar coordinate system, also centered at and surrounding the pilot's head.
NASA Technical Reports Server (NTRS)
Bull, John; Mah, Robert; Davis, Gloria; Conley, Joe; Hardy, Gordon; Gibson, Jim; Blake, Matthew; Bryant, Don; Williams, Diane
1995-01-01
Failures of aircraft primary flight-control systems to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. , DC-1O crash, B-747 crash, C-5 crash, B-52 crash, and others). Dryden Flight Research Center (DFRC) investigated the use of engine thrust for emergency flight control of several airplanes, including the B-720, Lear 24, F-15, C-402, and B-747. A series of three piloted simulation tests have been conducted at Ames Research Center to investigate propulsion control for safely landing a medium size jet transport which has experienced a total primary flight-control failure. The first series of tests was completed in July 1992 and defined the best interface for the pilot commands to drive the engines. The second series of tests was completed in August 1994 and investigated propulsion controlled aircraft (PCA) display requirements and various command modes. The third series of tests was completed in May 1995 and investigated PCA full-flight envelope capabilities. This report describes the concept of a PCA, discusses pilot controls, displays, and procedures; and presents the results of piloted simulation evaluations of the concept by a cross-section of air transport pilots.
NASA Technical Reports Server (NTRS)
Hanson, Curt; Miller, Chris; Wall, John H.; Vanzwieten, Tannen S.; Gilligan, Eric; Orr, Jeb S.
2015-01-01
An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority. Two NASA research pilots flew a total of twenty five constant pitch-rate trajectories using a prototype manual steering mode with and without adaptive control.
NASA Technical Reports Server (NTRS)
Goodrich, Kenneth H.
1993-01-01
A batch air combat simulation environment, the tactical maneuvering simulator (TMS), is presented. The TMS is a tool for developing and evaluating tactical maneuvering logics, but it can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS can simulate air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics, and propulsive characteristics equivalent to those used in high-fidelity piloted simulations. Data bases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system, the tactical autopilot (TA), is implemented in the aircraft simulation model. The TA converts guidance commands by computerized maneuvering logics from desired angle of attack and wind-axis bank-angle inputs to the inner loop control augmentation system of the aircraft. The capabilities and operation of the TMS and the TA are described.
Digital Family History Data Mining with Neural Networks: A Pilot Study.
Hoyt, Robert; Linnville, Steven; Thaler, Stephen; Moore, Jeffrey
2016-01-01
Following the passage of the Health Information Technology for Economic and Clinical Health (HITECH) Act of 2009, electronic health records were widely adopted by eligible physicians and hospitals in the United States. Stage 2 meaningful use menu objectives include a digital family history but no stipulation as to how that information should be used. A variety of data mining techniques now exist for these data, which include artificial neural networks (ANNs) for supervised or unsupervised machine learning. In this pilot study, we applied an ANN-based simulation to a previously reported digital family history to mine the database for trends. A graphical user interface was created to display the input of multiple conditions in the parents and output as the likelihood of diabetes, hypertension, and coronary artery disease in male and female offspring. The results of this pilot study show promise in using ANNs to data mine digital family histories for clinical and research purposes.
NASA Astrophysics Data System (ADS)
Trujillo, Eddie J.; Ellersick, Steven D.
2006-05-01
The Boeing Electronic Flight Bag (EFB) is a key element in the evolutionary process of an "e-enabled" flight deck. The EFB is designed to improve the overall safety, efficiency, and operation of the flight deck and corresponding airline operations by providing the flight crew with better information and enhanced functionality in a user-friendly digital format. The EFB is intended to increase the pilots' situational awareness of the airplane and systems, as well as improve the efficiency of information management. The system will replace documents and forms that are currently stored or carried onto the flight deck and put them, in digital format, at the crew's fingertips. This paper describes what the Boeing EFB is and the significant human factors and interface design issues, trade-offs, and decisions made during development of the display system. In addition, EFB formats, graphics, input control methods, challenges using COTS (commercial-off-the-shelf)-leveraged glass and formatting technology are discussed. The optical design requirements, display technology utilized, brightness control system, reflection challenge, and the resulting optical performance are presented.
Remotely piloted vehicles. Citations from the International Aerospace abstracts data base
NASA Technical Reports Server (NTRS)
Mauk, S. C.
1980-01-01
These citations from the international literature cover various aspects of remotely piloted vehicles. Included are articles concerning aircraft design, flight tests, aircraft control, cost effectiveness, automatic flight control, automatic pilots, and data links. Civil aviation applications are included, although military uses of remotely piloted vehicles are stressed. This updated bibliography contains 224 citations, 43 of which are new additions to the previous edition.
Commander Brand and Pilot Overmyer operate controls on forward flight deck
NASA Technical Reports Server (NTRS)
1982-01-01
On forward flight deck, Commander Brand and Pilot Overmyer operate controls from commanders and pilots seats. Overall view taken from the aft flight deck looking forward shows Overmyer pointing to data on Panel 7 (F7) CRT 1 screen.
DOT National Transportation Integrated Search
2001-05-01
Avionics devices designed to provide pilots with graphically displayed traffic information will enable pilots to acquire and verify the identity of any intruder aircraft within the general area, either before or in accordance with a controller-issued...
Reverse Engineering a Signaling Network Using Alternative Inputs
Tanaka, Hiromasa; Yi, Tau-Mu
2009-01-01
One of the goals of systems biology is to reverse engineer in a comprehensive fashion the arrow diagrams of signal transduction systems. An important tool for ordering pathway components is genetic epistasis analysis, and here we present a strategy termed Alternative Inputs (AIs) to perform systematic epistasis analysis. An alternative input is defined as any genetic manipulation that can activate the signaling pathway instead of the natural input. We introduced the concept of an “AIs-Deletions matrix” that summarizes the outputs of all combinations of alternative inputs and deletions. We developed the theory and algorithms to construct a pairwise relationship graph from the AIs-Deletions matrix capturing both functional ordering (upstream, downstream) and logical relationships (AND, OR), and then interpreting these relationships into a standard arrow diagram. As a proof-of-principle, we applied this methodology to a subset of genes involved in yeast mating signaling. This experimental pilot study highlights the robustness of the approach and important technical challenges. In summary, this research formalizes and extends classical epistasis analysis from linear pathways to more complex networks, facilitating computational analysis and reconstruction of signaling arrow diagrams. PMID:19898612
NASA Technical Reports Server (NTRS)
Waller, Jess; Saulsberry, Regor L.
2003-01-01
Pilot operated valves (POVs) are used to control the flow of hypergolic propellants monomethylhydrazine (fuel) and nitrogen tetroxide (oxidizer) to the Shuttle orbiter Primary Reaction Control Subsystem (PRCS) thrusters. The POV incorporates a two-stage design: a solenoid-actuated pilot stage, which in turn controls a pressure-actuated main stage. Isolation of propellant supply from the thruster chamber is accomplished in part by a captive polytetrafluoroethylene (PTFE) pilot seal retained inside a Custom 455.1 stainless steel cavity. Extrusion of the pilot seal restricts the flow of fuel around the pilot poppet, thus impeding or preventing the main valve stage from opening. It can also prevent the main stage from staying open with adequate force margin, particularly if there is gas in the main stage actuation cavity. During thruster operation on-orbit, fuel valve pilot seal extrusion is commonly indicated by low or erratic chamber pressure or failure of the thruster to fire upon command (Fail-Off). During ground turnaround, pilot seal extrusion is commonly indicated by slow gaseous nitrogen (GN2) main valve opening times (greater than 38 ms) or slow water main valve opening response times (greater than 33 ms). Poppet lift tests and visual inspection can also detect pilot seal extrusion during ground servicing; however, direct metrology on the pilot seat assembly provides the most quantitative and accurate means of identifying extrusion. Minimizing PRCS fuel valve pilot seal extrusion has become an important issue in the effort to improve PRCS reliability and reduce associated life cycle costs.
First-Order-hold interpolation digital-to-analog converter with application to aircraft simulation
NASA Technical Reports Server (NTRS)
Cleveland, W. B.
1976-01-01
Those who design piloted aircraft simulations must contend with the finite size and speed of the available digital computer and the requirement for simulation reality. With a fixed computational plant, the more complex the model, the more computing cycle time is required. While increasing the cycle time may not degrade the fidelity of the simulated aircraft dynamics, the larger steps in the pilot cue feedback variables (such as the visual scene cues), may be disconcerting to the pilot. The first-order-hold interpolation (FOHI) digital-to-analog converter (DAC) is presented as a device which offers smooth output, regardless of cycle time. The Laplace transforms of these three conversion types are developed and their frequency response characteristics and output smoothness are compared. The FOHI DAC exhibits a pure one-cycle delay. Whenever the FOHI DAC input comes from a second-order (or higher) system, a simple computer software technique can be used to compensate for the DAC phase lag. When so compensated, the FOHI DAC has (1) an output signal that is very smooth, (2) a flat frequency response in frequency ranges of interest, and (3) no phase error. When the input comes from a first-order system, software compensation may cause the FOHI DAC to perform as an FOHE DAC, which, although its output is not as smooth as that of the FOHI DAC, has a smoother output than that of the ZOH DAC.
An Analysis of Tower (Ground) Controller - Pilot Voice Communications
DOT National Transportation Integrated Search
1995-11-01
This report is based on an analysis of over 48 hours of pilot-controller communications recorded from the ground-control : frequency at twelve air traffic control towers. The analysis examined the complexity of controller instructions, that : is, how...
Crew workload in JASDF C-1 transport flights: I. Change in heart rate and salivary cortisol.
Kakimoto, Y; Nakamura, A; Tarui, H; Nagasawa, Y; Yagura, S
1988-06-01
The physiological responses of heart rate and salivary cortisol for six paired captains and co-pilots during JASDF scheduled transport flights were compared to assess crew workload. The relative change of both responses showed similar patterns and were influenced significantly by whether pilots were controlling the aircraft. Moreover, differences in flying experience and responsibility of captains and co-pilots influenced the two physiological responses; heart rate and salivary cortisol measures increased more for both captains and co-pilots while they were in control of the aircraft than when they were not. Compared to captains, co-pilots showed much higher activation and variability in relative change of heart rate and salivary cortisol between periods of controlling and non-controlling the aircraft. On the other hand, captains showed relatively constant responses comparing aircraft controlling and non-controlling periods, especially in the cruise phase of flight. Salivary cortisol may be a useful, non-invasive method of assess crew workload.
Mapping automotive like controls to a general aviation aircraft
NASA Astrophysics Data System (ADS)
Carvalho, Christopher G.
The purpose of this thesis was to develop fly-by-wire control laws enabling a general aviation aircraft to be flown with automotive controls, i.e. a steering wheel and gas/brake pedals. There was a six speed shifter used to change the flight mode of the aircraft. This essentially allows the pilot to have control over different aspects of the flight profile such as climb/descend or cruise. A highway in the sky was used to aid in the navigation since it is not intuitive to people without flight experience how to navigate from the sky or when to climb and descend. Many believe that general aviation could become as widespread as the automobile. Every person could have a personal aircraft at their disposal and it would be as easy to operate as driving an automobile. The goal of this thesis is to fuse the ease of drivability of a car with flight of a small general aviation aircraft. A standard automotive control hardware setup coupled with variably autonomous control laws will allow new pilots to fly a plane as easily as driving a car. The idea is that new pilots will require very little training to become proficient with these controls. Pilots with little time to stay current can maintain their skills simply by driving a car which is typically a daily activity. A human factors study was conducted to determine the feasibility of the applied control techniques. Pilot performance metrics were developed to compare candidates with no aviation background and experienced pilots. After analyzing the relative performance between pilots and non-pilots, it has been determined that the control system is robust and easy to learn. Candidates with no aviation experience whatsoever can learn to fly an aircraft as safely and efficiently as someone with hundreds of hours of flight experience using these controls.
Pilots strategically compensate for display enlargements in surveillance and flight control tasks.
Stelzer, Emily Muthard; Wickens, Christopher D
2006-01-01
Experiments were conducted to assess the impact of display size on flight control, airspace surveillance, and goal-directed target search. Research of 3-D displays has shown that display scale compression influences the perception of flight path deviation, though less is known about the causes that drive this effect. In addition, research on attention-based tasks has shown that information displaced to significant eccentricities can amplify effort, but it is unclear whether the effect generates a performance difference in complex displays. In Experiment 1, 16 pilots completed a low-fidelity flight control task under single- and dual-axis control. In Experiment 2, the control task from Experiment 1 was scaled up to a more realistic flight environment, and pilots performed hazard surveillance and target search tasks. For flight control, pilots exhibited less path error and greater stick activity with a large display, which was attributed both to greater enhanced resolution and to the fact that larger depictions of error lead to greater urgency in correcting deviations. Size did not affect hazard surveillance or search, as pilots were adaptive in altering scanning patterns in response to the enlargement of the displays. Although pilots were adaptive to display changes in search and surveillance, display size reduction diminished estimates of flight path deviation and control performance because of lowered resolution and control urgency. Care should be taken when manipulating display size, as size reduction can diminish control performance.
Controlling road rage : a literature review and pilot study
DOT National Transportation Integrated Search
1999-06-01
This report discusses results of a literature review and pilot study on how to prevent aggressive driving and road rage. The study "Controlling Road Rage: A Literature Review and Pilot Study" defines road rage as "an incident in which an angry or imp...
DOT National Transportation Integrated Search
2012-03-01
"The current experiment was intended to examine the effect of sensory information on pilot reactions to system : failures within a UAS control station simulation. This research also investigated the level of automation used in : controlling the aircr...
Handling qualities of large flexible control-configured aircraft
NASA Technical Reports Server (NTRS)
Swaim, R. L.
1980-01-01
The effects on handling qualities of low frequency symmetric elastic mode interaction with the rigid body dynamics of a large flexible aircraft was analyzed by use of a mathematical pilot modeling computer simulation. An extension of the optimal control model for a human pilot was made so that the mode interaction effects on the pilot's control task could be assessed. Pilot ratings were determined for a longitudinal tracking task with parametric variations in the undamped natural frequencies of the two lowest frequency symmetric elastic modes made to induce varying amounts of mode interaction. Relating numerical performance index values associated with the frequency variations used in several dynamic cases, to a numerical Cooper-Harper pilot rating has proved successful in discriminating when the mathematical pilot can or cannot separate rigid from elastic response in the tracking task.
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Turso, James A.; Shah, Neerav; Sowers, T. Shane; Owen, A. Karl
2005-01-01
A retrofit architecture for intelligent turbofan engine control and diagnostics that changes the fan speed command to maintain thrust is proposed and its demonstration in a piloted flight simulator is described. The objective of the implementation is to increase the level of autonomy of the propulsion system, thereby reducing pilot workload in the presence of anomalies and engine degradation due to wear. The main functions of the architecture are to diagnose the cause of changes in the engine s operation, warning the pilot if necessary, and to adjust the outer loop control reference signal in response to the changes. This requires that the retrofit control architecture contain the capability to determine the changed relationship between fan speed and thrust, and the intelligence to recognize the cause of the change in order to correct it or warn the pilot. The proposed retrofit architecture is able to determine the fan speed setting through recognition of the degradation level of the engine, and it is able to identify specific faults and warn the pilot. In the flight simulator it was demonstrated that when degradation is introduced into an engine with standard fan speed control, the pilot needs to take corrective action to maintain heading. Utilizing the intelligent retrofit control architecture, the engine thrust is automatically adjusted to its expected value, eliminating yaw without pilot intervention.
Occupational Stress and Hypertension among Railway Loco Pilots and Section Controllers.
Jayakumar, Devasigamoney
2017-01-01
A cross-sectional study on occupational stress was conducted on loco pilots in 2008, in view of loco pilots being one of the high strain jobs in Indian Railways. Subsequently, a comparative cross-sectional study on occupational stress was conducted among section controllers in 2011, which is another high strain job of Indian Railways. The studies were conducted to analyze and compare occupational stress and hypertension. A cross-sectional study on occupational stress and hypertension was conducted among 230 loco pilots in 2008, and subsequently, a comparative cross-sectional study was conducted among 82 section controllers in 2011. A closed end 24 item questionnaire on occupational stress was administered. Systolic blood pressure above 140 mmHg and diastolic blood pressure above 90 mmHg were considered as hypertension as per the VII Joint National Committee. Chi-square test and t -test were used for testing significance at P < 0.05. The mean stress score was 8.56 in loco pilots and 7.32 in section controllers. The number of loco pilots with more than 12 stress factors was 49 (21.3%) and the number of section controllers with more than 12 stress factors was 7 (8.5%). The number employees with more than 12 stress factors in different categories of loco pilots were 30 (32%) in the goods category, 12 (12%) in the mail/passenger category, and 7 (19%) in the shunter category, and 3 (11%) in the supervisory category and 4 (7%) in the on-board category of section controllers. The prevalence of hypertension in loco pilots was 36.52% (84) and in the section controllers was 53.66% (44). The prevalence of hypertension in the category with more than 12 stress factors was 30.61% (15) in the loco pilots and 28.57% (2) in the section controllers. The prevalence of hypertension in the both the study groups were higher in the older age, with a family history of hypertension, and with a body mass index of more than 25 kg/m 2 . The mean occupational stress and employees with more than 12 stress factors were higher in the loco pilots group. The goods category of loco pilots had highest stress factors. The prevalence of hypertension was high in the category with risk factors such as older age, family history of hypertension and BMI above 25 kg/m 2 .
NASA Technical Reports Server (NTRS)
Landis, Kenneth H.; Glusman, Steven I.
1985-01-01
The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstrator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase as a function of ACAS characteristics; display mode switching logic. Findings from the literature review and the analysis and synthesis of desired control laws are reported in Volume 2. Conclusions drawn from pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.
Piloted simulation of a ground-based time-control concept for air traffic control
NASA Technical Reports Server (NTRS)
Davis, Thomas J.; Green, Steven M.
1989-01-01
A concept for aiding air traffic controllers in efficiently spacing traffic and meeting scheduled arrival times at a metering fix was developed and tested in a real time simulation. The automation aid, referred to as the ground based 4-D descent advisor (DA), is based on accurate models of aircraft performance and weather conditions. The DA generates suggested clearances, including both top-of-descent-point and speed-profile data, for one or more aircraft in order to achieve specific time or distance separation objectives. The DA algorithm is used by the air traffic controller to resolve conflicts and issue advisories to arrival aircraft. A joint simulation was conducted using a piloted simulator and an advanced concept air traffic control simulation to study the acceptability and accuracy of the DA automation aid from both the pilot's and the air traffic controller's perspectives. The results of the piloted simulation are examined. In the piloted simulation, airline crews executed controller issued descent advisories along standard curved path arrival routes, and were able to achieve an arrival time precision of + or - 20 sec at the metering fix. An analysis of errors generated in turns resulted in further enhancements of the algorithm to improve the predictive accuracy. Evaluations by pilots indicate general support for the concept and provide specific recommendations for improvement.
Henin, Simon; Fein, Dovid; Smouha, Eric; Parra, Lucas C
2016-01-01
Tinnitus correlates with elevated hearing thresholds and reduced cochlear compression. We hypothesized that reduced peripheral input leads to elevated neuronal gain resulting in the perception of a phantom sound. The purpose of this pilot study was to test whether compensating for this peripheral deficit could reduce the tinnitus percept acutely using customized auditory stimulation. To further enhance the effects of auditory stimulation, this intervention was paired with high-definition transcranial direct current stimulation (HD-tDCS). A randomized sham-controlled, single blind study was conducted in a clinical setting on adult participants with chronic tinnitus (n = 14). Compensatory auditory stimulation (CAS) and HD-tDCS were administered either individually or in combination in order to access the effects of both interventions on tinnitus perception. CAS consisted of sound exposure typical to daily living (20-minute sound-track of a TV show), which was adapted with compressive gain to compensate for deficits in each subject's individual audiograms. Minimum masking levels and the visual analog scale were used to assess the strength of the tinnitus percept immediately before and after the treatment intervention. CAS reduced minimum masking levels, and visual analog scale trended towards improvement. Effects of HD-tDCS could not be resolved with the current sample size. The results of this pilot study suggest that providing tailored auditory stimulation with frequency-specific gain and compression may alleviate tinnitus in a clinical population. Further experimentation with longer interventions is warranted in order to optimize effect sizes.
Experiment design for pilot identification in compensatory tracking tasks
NASA Technical Reports Server (NTRS)
Wells, W. R.
1976-01-01
A design criterion for input functions in laboratory tracking tasks resulting in efficient parameter estimation is formulated. The criterion is that the statistical correlations between pairs of parameters be reduced in order to minimize the problem of nonuniqueness in the extraction process. The effectiveness of the method is demonstrated for a lower order dynamic system.
Multimodal Interaction with Speech, Gestures and Haptic Feedback in a Media Center Application
NASA Astrophysics Data System (ADS)
Turunen, Markku; Hakulinen, Jaakko; Hella, Juho; Rajaniemi, Juha-Pekka; Melto, Aleksi; Mäkinen, Erno; Rantala, Jussi; Heimonen, Tomi; Laivo, Tuuli; Soronen, Hannu; Hansen, Mervi; Valkama, Pellervo; Miettinen, Toni; Raisamo, Roope
We demonstrate interaction with a multimodal media center application. Mobile phone-based interface includes speech and gesture input and haptic feedback. The setup resembles our long-term public pilot study, where a living room environment containing the application was constructed inside a local media museum allowing visitors to freely test the system.
ERIC Educational Resources Information Center
Massachusetts Inst. of Tech., Cambridge. Sensory Aids Evaluation and Development Center.
Projects and activities reviewed include the DOTSYS production of the first braille book from teletypsetter input, the use of DOTSYS, mechanical and electronic features of the high speed braille embosser developed at the Massachusetts Institute of Technology, and the pilot demonstration program for Perkins School for the Blind. Also surveyed are…
78 FR 70954 - Transport Format for the Submission of Regulatory Study Data; Notice of Pilot Project
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-27
... extensible modern technology. SDS XML is an extension of the CDISC Operational Data Model, which is a vendor... many to be an outdated transport technology for transferring data across different hardware and... public meeting was to solicit input from industry, technology vendors, and other members of the public...
The Development and Evaluation of a Portion Plate for Youth: A Pilot Study
ERIC Educational Resources Information Center
Bohnert, Amy M.; Randall, Edin T.; Tharp, Stephanie; Germann, Julie
2011-01-01
Objective: To develop and evaluate a portion plate for adolescents (Nutri-plate). Methods: Sixteen African American adolescents (mean age = 12.94 years; 66% male) were randomized to participate in either plate design or nutrition education sessions. Adolescents' input was used to create the Nutri-plate, and participants' food selection and intake…
Evaluation of Visual Alerts in the Maritime Domain
2008-09-01
qwe ” for neutral. These letters were chosen as the input for reporting contact type for a few reasons. During the pilot study it was observed that...reported on the reporting display to the right of the tactical display as “asd” for “hostile” and “ qwe ” for “neutral”. The report was immediately
An experimental study of human pilot's scanning behavior
NASA Technical Reports Server (NTRS)
Washizu, K.; Tanaka, K.; Osawa, T.
1982-01-01
The scanning behavior and the control behavior of the pilot who manually controls the two-variable system, which is the most basic one of multi-variable systems are investigated. Two control tasks which simulate the actual airplane attitude and airspeed control were set up. In order to simulate the change of the situation where the pilot is placed, such as changes of flight phase, mission and others, the subject was requested to vary the weightings, as his control strategy, upon each task. Changes of human control dynamics and his canning properties caused by the modification of the situation were investigated. By making use of the experimental results, the optimal model of the control behavior and the scanning behavior of the pilot in the two-variable system is proposed from the standpoint of making the performance index minimal.
46 CFR 96.40-1 - Pilot boarding equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Pilot boarding equipment. 96.40-1 Section 96.40-1... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Pilot Boarding Equipment § 96.40-1 Pilot boarding equipment. (a) This section applies to each vessel that normally embarks or disembarks a pilot from a pilot...
46 CFR 195.40-1 - Pilot boarding equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Pilot boarding equipment. 195.40-1 Section 195.40-1... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Pilot Boarding Equipment § 195.40-1 Pilot boarding equipment. (a) This section applies to each vessel that normally embarks or disembarks a pilot from a pilot...
46 CFR 96.40-1 - Pilot boarding equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Pilot boarding equipment. 96.40-1 Section 96.40-1... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Pilot Boarding Equipment § 96.40-1 Pilot boarding equipment. (a) This section applies to each vessel that normally embarks or disembarks a pilot from a pilot...
46 CFR 195.40-1 - Pilot boarding equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Pilot boarding equipment. 195.40-1 Section 195.40-1... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Pilot Boarding Equipment § 195.40-1 Pilot boarding equipment. (a) This section applies to each vessel that normally embarks or disembarks a pilot from a pilot...
Cooper, Cindy L; Whitehead, Amy; Pottrill, Edward; Julious, Steven A; Walters, Stephen J
2018-04-01
External pilot trials are recommended for testing the feasibility of main or confirmatory trials. However, there is little evidence that progress in external pilot trials actually predicts randomisation and attrition rates in the main trial. To assess the use of external pilot trials in trial design, we compared randomisation and attrition rates in publicly funded randomised controlled trials with rates in their pilots. Randomised controlled trials for which there was an external pilot trial were identified from reports published between 2004 and 2013 in the Health Technology Assessment Journal. Data were extracted from published papers, protocols and reports. Bland-Altman plots and descriptive statistics were used to investigate the agreement of randomisation and attrition rates between the full and external pilot trials. Of 561 reports, 41 were randomised controlled trials with pilot trials and 16 met criteria for a pilot trial with sufficient data. Mean attrition and randomisation rates were 21.1% and 50.4%, respectively, in the pilot trials and 16.8% and 65.2% in the main. There was minimal bias in the pilot trial when predicting the main trial attrition and randomisation rate. However, the variation was large: the mean difference in the attrition rate between the pilot and main trial was -4.4% with limits of agreement of -37.1% to 28.2%. Limits of agreement for randomisation rates were -47.8% to 77.5%. Results from external pilot trials to estimate randomisation and attrition rates should be used with caution as comparison of the difference in the rates between pilots and their associated full trial demonstrates high variability. We suggest using internal pilot trials wherever appropriate.
Whitehead, Amy; Pottrill, Edward; Julious, Steven A; Walters, Stephen J
2018-01-01
Background/aims: External pilot trials are recommended for testing the feasibility of main or confirmatory trials. However, there is little evidence that progress in external pilot trials actually predicts randomisation and attrition rates in the main trial. To assess the use of external pilot trials in trial design, we compared randomisation and attrition rates in publicly funded randomised controlled trials with rates in their pilots. Methods: Randomised controlled trials for which there was an external pilot trial were identified from reports published between 2004 and 2013 in the Health Technology Assessment Journal. Data were extracted from published papers, protocols and reports. Bland–Altman plots and descriptive statistics were used to investigate the agreement of randomisation and attrition rates between the full and external pilot trials. Results: Of 561 reports, 41 were randomised controlled trials with pilot trials and 16 met criteria for a pilot trial with sufficient data. Mean attrition and randomisation rates were 21.1% and 50.4%, respectively, in the pilot trials and 16.8% and 65.2% in the main. There was minimal bias in the pilot trial when predicting the main trial attrition and randomisation rate. However, the variation was large: the mean difference in the attrition rate between the pilot and main trial was −4.4% with limits of agreement of −37.1% to 28.2%. Limits of agreement for randomisation rates were −47.8% to 77.5%. Conclusion: Results from external pilot trials to estimate randomisation and attrition rates should be used with caution as comparison of the difference in the rates between pilots and their associated full trial demonstrates high variability. We suggest using internal pilot trials wherever appropriate. PMID:29361833
NASA Technical Reports Server (NTRS)
Hinton, David A.; Lohr, Gary W.
1988-01-01
Studies have shown that radio communications between pilots and air traffic control contribute to high pilot workload and are subject to various errors. These errors result from congestion on the voice radio channel, and missed and misunderstood messages. The use of digital data link has been proposed as a means of reducing this workload and error rate. A critical factor, however, in determining the potential benefit of data link will be the interface between future data link systems and the operator of those systems, both in the air and on the ground. The purpose of this effort was to evaluate the pilot interface with various levels of data link capability, in simulated general aviation, single-pilot instrument flight rule operations. Results show that the data link reduced demands on pilots' short-term memory, reduced the number of communication transmissions, and permitted the pilots to more easily allocate time to critical cockpit tasks while receiving air traffic control messages. The pilots who participated unanimously indicated a preference for data link communications over voice-only communications. There were, however, situations in which the pilot preferred the use of voice communications, and the ability for pilots to delay processing the data link messages, during high workload events, caused delays in the acknowledgement of messages to air traffic control.
Development of ADOCS controllers and control laws. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Landis, Kenneth H.; Glusman, Steven I.
1985-01-01
The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstrator aircraft that will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered during the study are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase as a function of SCAS characteristics; display mode switching logic. Volume 1 is an Executive Summary of the study. Conclusions drawn from analysis of pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.
Hewson, D J; McNair, P J; Marshall, R N
2000-08-01
Flying an aircraft requires a considerable degree of coordination, particularly during aerobatic activities such as rolls, loops and turns. Only one previous study has examined the magnitude of muscle activity required to fly an aircraft, and that was restricted to takeoff and landing maneuvers. The aim of this study was to examine the phasing of muscle activation and control forces of novice and experienced pilots during more complex simulated flight maneuvers. There were 12 experienced and 9 novice pilots who were tested on an Aermacchi flight simulator while performing a randomized set of rolling, looping, and turning maneuvers. Four different runaway trim settings were used to increase the difficulty of the turns (elevator-up, elevator-down, aileron-left, and aileron-right). Variables recorded included aircraft attitude, pilot applied forces, and electromyographic (EMG) activity. Discriminant function analysis was used to distinguish between novice and experienced pilots. Over all maneuvers, 70% of pilots were correctly classified as novice or experienced. Better levels of classification were achieved when maneuvers were analyzed individually (67-91%), although the maneuvers that required the greatest force application, elevator-up turns, were unable to discriminate between novice and experienced pilots. There were no differences in the phasing of muscle activity between experienced and novice pilots. The only consistent difference in EMG activity between novice and experienced pilots was the reduced EMG activity in the wrist extensors of experienced pilots (p < 0.05). The increased wrist extensor activity of the novice pilots is indicative of a distal control strategy, whereby distal muscles with smaller motor units are used to perform a task that requires precise control. Muscle activity sensors could be used to detect the onset of high G maneuvers prior to any change in aircraft attitude and control G-suit inflation accordingly.
Interactive stereo games to improve vision in children with amblyopia using dichoptic stimulation
NASA Astrophysics Data System (ADS)
Herbison, Nicola; Ash, Isabel M.; MacKeith, Daisy; Vivian, Anthony; Purdy, Jonathan H.; Fakis, Apostolos; Cobb, Sue V.; Hepburn, Trish; Eastgate, Richard M.; Gregson, Richard M.; Foss, Alexander J. E.
2015-03-01
Amblyopia is a common condition affecting 2% of all children and traditional treatment consists of either wearing a patch or penalisation. We have developed a treatment using stereo technology, not to provide a 3D image but to allow dichoptic stimulation. This involves presenting an image with the same background to both eyes but with features of interest removed from the image presented to the normal eye with the aim to preferentially stimulated visual development in the amblyopic, or lazy, eye. Our system, called I-BiT can use either a game or a video (DVD) source as input. Pilot studies show that this treatment is effective with short treatment times and has proceeded to randomised controlled clinical trial. The early indications are that the treatment has a high degree of acceptability and corresponding good compliance.
NASA Technical Reports Server (NTRS)
Stewart, Eric C.
1991-01-01
An analysis of flight measurements made near a wake vortex was conducted to explore the feasibility of providing a pilot with useful wake avoidance information. The measurements were made with relatively low cost flow and motion sensors on a light airplane flying near the wake vortex of a turboprop airplane weighing approximately 90000 lbs. Algorithms were developed which removed the response of the airplane to control inputs from the total airplane response and produced parameters which were due solely to the flow field of the vortex. These parameters were compared with values predicted by potential theory. The results indicated that the presence of the vortex could be detected by a combination of parameters derived from the simple sensors. However, the location and strength of the vortex cannot be determined without additional and more accurate sensors.
Computer simulation of multiple pilots flying a modern high performance helicopter
NASA Technical Reports Server (NTRS)
Zipf, Mark E.; Vogt, William G.; Mickle, Marlin H.; Hoelzeman, Ronald G.; Kai, Fei; Mihaloew, James R.
1988-01-01
A computer simulation of a human response pilot mechanism within the flight control loop of a high-performance modern helicopter is presented. A human response mechanism, implemented by a low order, linear transfer function, is used in a decoupled single variable configuration that exploits the dominant vehicle characteristics by associating cockpit controls and instrumentation with specific vehicle dynamics. Low order helicopter models obtained from evaluations of the time and frequency domain responses of a nonlinear simulation model, provided by NASA Lewis Research Center, are presented and considered in the discussion of the pilot development. Pilot responses and reactions to test maneuvers are presented and discussed. Higher level implementation, using the pilot mechanisms, are discussed and considered for their use in a comprehensive control structure.
Detection of system failures in multi-axes tasks. [pilot monitored instrument approach
NASA Technical Reports Server (NTRS)
Ephrath, A. R.
1975-01-01
The effects of the pilot's participation mode in the control task on his workload level and failure detection performance were examined considering a low visibility landing approach. It is found that the participation mode had a strong effect on the pilot's workload, the induced workload being lowest when the pilot acted as a monitoring element during a coupled approach and highest when the pilot was an active element in the control loop. The effects of workload and participation mode on failure detection were separated. The participation mode was shown to have a dominant effect on the failure detection performance, with a failure in a monitored (coupled) axis being detected significantly faster than a comparable failure in a manually controlled axis.
46 CFR 58.25-80 - Automatic pilots and ancillary steering gear.
Code of Federal Regulations, 2010 CFR
2010-10-01
... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-80 Automatic pilots and ancillary steering gear. (a) Automatic pilots and ancillary steering gear, and steering-gear control systems, must be arranged to allow immediate resumption of manual operation of the steering-gear control system required in...
46 CFR 58.25-80 - Automatic pilots and ancillary steering gear.
Code of Federal Regulations, 2011 CFR
2011-10-01
... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-80 Automatic pilots and ancillary steering gear. (a) Automatic pilots and ancillary steering gear, and steering-gear control systems, must be arranged to allow immediate resumption of manual operation of the steering-gear control system required in...
Identification of pilot-vehicle dynamics from simulation and flight test
NASA Technical Reports Server (NTRS)
Hess, Ronald A.
1990-01-01
The paper discusses an identification problem in which a basic feedback control structure, or pilot control strategy, is hypothesized. Identification algorithms are employed to determine the particular form of pilot equalization in each feedback loop. It was found that both frequency- and time-domain identification techniques provide useful information.
Translating Climate Projections for Bridge Engineering
NASA Astrophysics Data System (ADS)
Anderson, C.; Takle, E. S.; Krajewski, W.; Mantilla, R.; Quintero, F.
2015-12-01
A bridge vulnerability pilot study was conducted by Iowa Department of Transportation (IADOT) as one of nineteen pilots supported by the Federal Highway Administration Climate Change Resilience Pilots. Our pilot study team consisted of the IADOT senior bridge engineer who is the preliminary design section leader as well as climate and hydrological scientists. The pilot project culminated in a visual graphic designed by the bridge engineer (Figure 1), and an evaluation framework for bridge engineering design. The framework has four stages. The first two stages evaluate the spatial and temporal resolution needed in climate projection data in order to be suitable for input to a hydrology model. The framework separates streamflow simulation error into errors from the streamflow model and from the coarseness of input weather data series. In the final two stages, the framework evaluates credibility of climate projection streamflow simulations. Using an empirically downscaled data set, projection streamflow is generated. Error is computed in two time frames: the training period of the empirical downscaling methodology, and an out-of-sample period. If large errors in projection streamflow were observed during the training period, it would indicate low accuracy and, therefore, low credibility. If large errors in streamflow were observed during the out-of-sample period, it would mean the approach may not include some causes of change and, therefore, the climate projections would have limited credibility for setting expectations for changes. We address uncertainty with confidence intervals on quantiles of streamflow discharge. The results show the 95% confidence intervals have significant overlap. Nevertheless, the use of confidence intervals enabled engineering judgement. In our discussions, we noted the consistency in direction of change across basins, though the flood mechanism was different across basins, and the high bound of bridge lifetime period quantiles exceeded that of the historical period. This suggested the change was not isolated, and it systemically altered the risk profile. One suggestion to incorporate engineering judgement was to consider degrees of vulnerability using the median discharge of the historical period and the upper bound discharge for the bridge lifetime period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Randy M; Hill, David E; Gorman, Bryan L
As a proof of concept tested in an operational context, the Global Radiological Source Sorting, Tracking, and Monitoring (GRadSSTraM) Project successfully demonstrated that radio frequency identification (RFID) and Web 2.0* technologies can be deployed to track controlled shipments between the United States and the European Union. Between November 2009 and May 2010, a total of 19 shipments were successfully shipped from Oak Ridge National Laboratory (ORNL) by the U.S. Postal Service (USPS) and tracked to their delivery at England's National Physical Laboratory (NPL) by the United Kingdom Royal Mail. However, the project can only be viewed as a qualified successmore » as notable shortcomings were observed. Although the origin and terminus of all RFID-enabled shipments were recorded and no shipments were lost, not all the waypoints between ORNL and NPL were incorporated into the pilot. Given limited resources, the project team was able to install RFID listeners/actuators at three waypoints between the two endpoints. Although it is likely that all shipments followed the same route between ORNL and NPL, it cannot be determined beyond question that all 19 shipments were routed on identical itineraries past the same three waypoints. The pilot also raises the distinct possibility that unattended RFID tracking alone, without positive confirmation that a tagged item has been properly recorded by an RFID reader, does not meet a rigorous standard for shipping controlled items. Indeed, the proof of concept test strongly suggests that a multifaceted approach to tracking may be called for, including tracking methods that are capable of reading and accepting multiple inputs for individual items [e.g., carrier-provided tracking numbers, Universal Product Codes (UPCs), and RFID tags]. For controlled items, another apparent requirement is a confirmation feature, human or otherwise, which can certify that an item's RFID tag, UPC, or tracking number has been recorded.« less
Crossland, Michael D; Thomas, Rachel; Unwin, Hilary; Bharani, Seelam; Gothwal, Vijaya K; Quartilho, Ana; Bunce, Catey; Dahlmann-Noor, Annegret
2017-06-21
Low vision and blindness adversely affect education and independence of children and young people. New 'assistive' technologies such as tablet computers can display text in enlarged font, read text out to the user, allow speech input and conversion into typed text, offer document and spreadsheet processing and give access to wide sources of information such as the internet. Research on these devices in low vision has been limited to case series. We will carry out a pilot randomised controlled trial (RCT) to assess the feasibility of a full RCT of assistive technologies for children/young people with low vision. We will recruit 40 students age 10-18 years in India and the UK, whom we will randomise 1:1 into two parallel groups. The active intervention will be Apple iPads; the control arm will be the local standard low-vision aid care. Primary outcomes will be acceptance/usage, accessibility of the device and trial feasibility measures (time to recruit children, lost to follow-up). Exploratory outcomes will be validated measures of vision-related quality of life for children/young people as well as validated measures of reading and educational outcomes. In addition, we will carry out semistructured interviews with the participants and their teachers. NRES reference 15/NS/0068; dissemination is planned via healthcare and education sector conferences and publications, as well as via patient support organisations. NCT02798848; IRAS ID 179658, UCL reference 15/0570. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Crossland, Michael D; Thomas, Rachel; Unwin, Hilary; Bharani, Seelam; Gothwal, Vijaya K; Quartilho, Ana; Bunce, Catey
2017-01-01
Introduction Low vision and blindness adversely affect education and independence of children and young people. New ‘assistive’ technologies such as tablet computers can display text in enlarged font, read text out to the user, allow speech input and conversion into typed text, offer document and spreadsheet processing and give access to wide sources of information such as the internet. Research on these devices in low vision has been limited to case series. Methods and analysis We will carry out a pilot randomised controlled trial (RCT) to assess the feasibility of a full RCT of assistive technologies for children/young people with low vision. We will recruit 40 students age 10–18 years in India and the UK, whom we will randomise 1:1 into two parallel groups. The active intervention will be Apple iPads; the control arm will be the local standard low-vision aid care. Primary outcomes will be acceptance/usage, accessibility of the device and trial feasibility measures (time to recruit children, lost to follow-up). Exploratory outcomes will be validated measures of vision-related quality of life for children/young people as well as validated measures of reading and educational outcomes. In addition, we will carry out semistructured interviews with the participants and their teachers. Ethics and dissemination NRES reference 15/NS/0068; dissemination is planned via healthcare and education sector conferences and publications, as well as via patient support organisations. Trial registration number NCT02798848; IRAS ID 179658, UCL reference 15/0570. PMID:28637740
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brummert, A.C.
1990-09-01
A carbon dioxide pilot test was conducted in the Griffithsville Field, Lincoln County, West Virginia, on a 90-acre tract containing nine 10-acre, normal, five-spot patterns arranged in a 3 {times} 3 matrix. This post-flood simulation study evaluates the initial pressure buildup phase of water injection, the carbon dioxide injection phase, and the chase water injection phase. Core data, geophysical well logs, fluid property data, well test data, and injection/production histories were used in setting up the data input record for the reservoir simulator. The reservoir simulator was IMEX, a four-component, black-oil reservoir simulator. 23 refs., 15 figs., 3 tabs.
A comparison of washout filters using a human dynamic orientation model. M.S. Thesis
NASA Technical Reports Server (NTRS)
Riedel, S. A.
1977-01-01
The Ormsby model of human dynamic orientation, a discrete time computer program, was used to provide a vestibular explanation for observed differences between two washout schemes. These washout schemes, a linear washout and a nonlinear washout, were subjectively evaluated. It was found that the linear washout presented false rate cues, causing pilots to rate the simulation fidelity of the linear scheme much lower than the nonlinear scheme. By inputting these motion histories into the Ormsby model, it was shown that the linear filter causes discontinuities in the pilot's perceived angular velocity, resulting in the sensation of an anomalous rate cue. This phenomenon does not occur with the use of the nonlinear filter.
Hydraulic actuator mechanism to control aircraft spoiler movements through dual input commands
NASA Technical Reports Server (NTRS)
Irick, S. C. (Inventor)
1981-01-01
An aircraft flight spoiler control mechanism is described. The invention enables the conventional, primary spoiler control system to retain its operational characteristics while accommodating a secondary input controlled by a conventional computer system to supplement the settings made by the primary input. This is achieved by interposing springs between the primary input and the spoiler control unit. The springs are selected to have a stiffness intermediate to the greater force applied by the primary control linkage and the lesser resistance offered by the spoiler control unit. Thus, operation of the primary input causes the control unit to yield before the springs, yet, operation of the secondary input, acting directly on the control unit, causes the springs to yield and absorb adjustments before they are transmitted into the primary control system.
Yasuda, Kazuhiro; Kaibuki, Naomi; Harashima, Hiroaki; Iwata, Hiroyasu
2017-06-01
Impaired balance in patients with hemiparesis caused by stroke is frequently related to deficits in the central integration of afferent inputs, and traditional rehabilitation reinforces excessive visual reliance by focusing on visual compensation. The present study investigated whether a balance task involving a haptic biofeedback (BF) system, which provided supplementary vibrotactile sensory cues associated with center-of-foot-pressure displacement, improved postural control in patients with stroke. Seventeen stroke patients were assigned to two groups: the Vibrotactile BF and Control groups. During the balance task (i.e., standing on a foam mat), participants in the Vibrotactile BF group tried to stabilize their postural sway while wearing the BF system around the pelvic girdle. In the Control group, participants performed an identical postural task without the BF system. Pre- and post-test measurements of postural control using a force plate revealed that the stability of bipedal posture in the Vibrotactile BF group was markedly improved compared with that in the Control group. A balance task involving a vibrotactile BF system improved postural stability in patients with stroke immediately. This confirms the potential of a haptic-based BF system for balance training, both in routine clinical practice and in everyday life.
Spatially Common Sparsity Based Adaptive Channel Estimation and Feedback for FDD Massive MIMO
NASA Astrophysics Data System (ADS)
Gao, Zhen; Dai, Linglong; Wang, Zhaocheng; Chen, Sheng
2015-12-01
This paper proposes a spatially common sparsity based adaptive channel estimation and feedback scheme for frequency division duplex based massive multi-input multi-output (MIMO) systems, which adapts training overhead and pilot design to reliably estimate and feed back the downlink channel state information (CSI) with significantly reduced overhead. Specifically, a non-orthogonal downlink pilot design is first proposed, which is very different from standard orthogonal pilots. By exploiting the spatially common sparsity of massive MIMO channels, a compressive sensing (CS) based adaptive CSI acquisition scheme is proposed, where the consumed time slot overhead only adaptively depends on the sparsity level of the channels. Additionally, a distributed sparsity adaptive matching pursuit algorithm is proposed to jointly estimate the channels of multiple subcarriers. Furthermore, by exploiting the temporal channel correlation, a closed-loop channel tracking scheme is provided, which adaptively designs the non-orthogonal pilot according to the previous channel estimation to achieve an enhanced CSI acquisition. Finally, we generalize the results of the multiple-measurement-vectors case in CS and derive the Cramer-Rao lower bound of the proposed scheme, which enlightens us to design the non-orthogonal pilot signals for the improved performance. Simulation results demonstrate that the proposed scheme outperforms its counterparts, and it is capable of approaching the performance bound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy G. Garn; Dave H. Meikrantz; Mitchell R. Greenhalgh
2008-09-01
An annular centrifugal contactor pilot plant incorporating 30 stages of commercial 5 cm CINC V-02 units has been built and operated at INL during the past year. The pilot plant includes an automated process control and data acquisitioning system. The primary purpose of the pilot plant is to evaluate the performance of a large number of inter-connected centrifugal contactors and obtain temperature profile measurements within a 30-stage cascade. Additional solvent extraction flowsheet testing using stable surrogates is also being considered. Preliminary hydraulic testing was conducted with all 30 contactors interconnected for continuous counter-current flow. Hydraulic performance and system operational testsmore » were conducted successfully but with higher single-stage rotor speeds found necessary to maintain steady interstage flow at flowrates of 1 L/min and higher. Initial temperature profile measurements were also completed in this configuration studying the performance during single aqueous and two-phase counter-current flow at ambient and elevated inlet solution temperatures. Temperature profile testing of two discreet sections of the cascade required additional feed and discharge connections. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 were the solution feeds for all the testing described in this report. Numerous temperature profiles were completed using a newly constructed 30-stage centrifugal contactor pilot plant. The automated process control and data acquisition system worked very well throughout testing. Temperature data profiles for an array of total flowrates (FT) and contactor rpm values for both single-phase and two-phase systems have been collected with selected profiles and comparisons reported. Total flowrates (FT) ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Solution inlet temperatures ranging from ambient up to 50° C were tested. Ambient temperature testing shows that a small amount of heat is added to the processed solution by the mechanical energy of the contactors. The temperature profiles match the ambient temperature of the laboratory but are nearly 10° C higher toward the middle of the cascade. Heated input solution testing provides temperature profiles with smaller temperature gradients and are more influenced by the temperature of the inlet solutions than the ambient laboratory temperature. The temperature effects of solution mixing, even at 4000 rpm, were insignificant in any of the studies conducted on lamp oil and water.« less
Manual and automatic flight control during severe turbulence penetration
NASA Technical Reports Server (NTRS)
Johnston, D. E.; Klein, R. H.; Hoh, R. H.
1976-01-01
An analytical and experimental investigation of possible contributing factors in jet aircraft turbulence upsets was conducted. Major contributing factors identified included autopilot and display deficiencies, the large aircraft inertia and associated long response time, and excessive pilot workload. An integrated flight and thrust energy management director system was synthesized. The system was incorporated in a moving-base simulation and evaluated using highly experienced airline pilots. The evaluation included comparison of pilot workload and flight performance during severe turbulence penetration utilizing four control/display concepts: manual control with conventional full panel display, conventional autopilot (A/P-A) with conventional full panel display, improved autopilot (A/P-B) with conventional full panel display plus thrust director display, and longitudinal flight director with conventional full panel display plus thrust director display. Simulation results show improved performance, reduced pilot workload, and a pilot preference for the autopilot system controlling to the flight director command and manual control of thrust following the trim thrust director.
Piloted Evaluation of an Integrated Methodology for Propulsion and Airframe Control Design
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.; Garg, Sanjay; Mattern, Duane L.; Ranaudo, Richard J.; Odonoghue, Dennis P.
1994-01-01
An integrated methodology for propulsion and airframe control has been developed and evaluated for a Short Take-Off Vertical Landing (STOVL) aircraft using a fixed base flight simulator at NASA Lewis Research Center. For this evaluation the flight simulator is configured for transition flight using a STOVL aircraft model, a full nonlinear turbofan engine model, simulated cockpit and displays, and pilot effectors. The paper provides a brief description of the simulation models, the flight simulation environment, the displays and symbology, the integrated control design, and the piloted tasks used for control design evaluation. In the simulation, the pilots successfully completed typical transition phase tasks such as combined constant deceleration with flight path tracking, and constant acceleration wave-off maneuvers. The pilot comments of the integrated system performance and the display symbology are discussed and analyzed to identify potential areas of improvement.
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr.; Day, Richard E.
1961-01-01
A simulator study and flight tests were performed to determine the levels of static stability and damping necessary to enable a pilot to control the longitudinal and lateral-directional dynamics of a vehicle for short periods of time. Although a basic set of aerodynamic characteristics was used, the study was conducted so that the results would be applicable to a wide range of flight conditions and configurations. Novel piloting techniques were found which enabled the pilot to control the vehicle at conditions that were otherwise uncontrollable. The influence of several critical factors in altering the controllability limits was also investigated. Several human transfer functions were used which gave fairly good representations of the controllability limits determined experimentally for the short-period longitudinal, directional, and lateral modes. A transfer function with approximately the same gain and phase angle as the pilot at the controlling frequencies along the controllability limits was also derived.
Robust crossfeed design for hovering rotorcraft. M.S. Thesis
NASA Technical Reports Server (NTRS)
Catapang, David R.
1993-01-01
Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust.' A new low-order matching method is presented here to design robost crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw, and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily-used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.
Prediction of aircraft handling qualities using analytical models of the human pilot
NASA Technical Reports Server (NTRS)
Hess, R. A.
1982-01-01
The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion for determining the susceptibility of an aircraft to pilot-induced oscillations (PIO) is formulated. Finally, a model-based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.
Prediction of aircraft handling qualities using analytical models of the human pilot
NASA Technical Reports Server (NTRS)
Hess, R. A.
1982-01-01
The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion for determining the susceptibility of an aircraft to pilot induced oscillations is formulated. Finally, a model based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.
An analytical approach for predicting pilot induced oscillations
NASA Technical Reports Server (NTRS)
Hess, R. A.
1981-01-01
The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion or determining the susceptability of an aircraft to pilot induced oscillations (PIO) is formulated. Finally, a model-based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.
An Analysis of TRACON (Terminal Radar Approach Control) Controller-Pilot Voice Communication
DOT National Transportation Integrated Search
1996-06-01
The purpose of this analysis was to examine pilot-controller communication practices in the TRACONI (Terminal Radar Approach : Control) environment. Forty-eight hours of communications recorded on the voice tapes from eight TRACONs were analyzed. : T...
NASA Technical Reports Server (NTRS)
Hanson, Curt
2014-01-01
An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority.
Method and apparatus for loss of control inhibitor systems
NASA Technical Reports Server (NTRS)
A'Harrah, Ralph C. (Inventor)
2007-01-01
Active and adaptive systems and methods to prevent loss of control incidents by providing tactile feedback to a vehicle operator are disclosed. According to the present invention, an operator gives a control input to an inceptor. An inceptor sensor measures an inceptor input value of the control input. The inceptor input is used as an input to a Steady-State Inceptor Input/Effector Output Model that models the vehicle control system design. A desired effector output from the inceptor input is generated from the model. The desired effector output is compared to an actual effector output to get a distortion metric. A feedback force is generated as a function of the distortion metric. The feedback force is used as an input to a feedback force generator which generates a loss of control inhibitor system (LOCIS) force back to the inceptor. The LOCIS force is felt by the operator through the inceptor.
NASA Technical Reports Server (NTRS)
Kimball, G., Jr.
1980-01-01
A simulator comparison of the velocity vector control wheel steering (VCWS) system and a decoupled longitudinal control system is presented. The piloting task was to use the electronic attitude direction indicator (EADI) to capture and maintain a 3 degree glide slope in the presence of wind shear and to complete the landing using the perspective runway included on the EADI. The decoupled control system used constant prefilter and feedback gains to provide steady state decoupling of flight path angle, pitch angle, and forward velocity. The decoupled control system improved the pilots' ability to control airspeed and flight path angle during the final stages of an approach made in severe wind shear. The system also improved their ability to complete safe landings. The pilots preferred the decoupled control system in severe winds and, on a pilot rating scale, rated the approach and landing task with the decoupled control system as much as 3 to 4 increments better than use of the VCWS system.
Pilot modeling and closed-loop analysis of flexible aircraft in the pitch tracking task
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1983-01-01
The issue addressed in the appropriate modeling technique for pilot vehicle analysis of large flexible aircraft, when the frequency separation between the rigid-body mode and the dynamic aeroelastic modes is reduced. This situation was shown to have significant effects on pitch-tracking performance and subjective rating of the task, obtained via fixed base simulation. Further, the dynamics in these cases are not well modeled with a rigid-body-like model obtained by including only 'static elastic' effects, for example. It is shown that pilot/vehicle analysis of this data supports the hypothesis that an appropriate pilot-model structure is an optimal-control pilot model of full order. This is in contrast to the contention that a representative model is of reduced order when the subject is controlling high-order dynamics as in a flexible vehicle. The key appears to be in the correct assessment of the pilot's objective of attempting to control 'rigid-body' vehicle response, a response that must be estimated by the pilot from observations contaminated by aeroelastic dynamics. Finally, a model-based metric is shown to correlate well with the pilot's subjective ratings.
Cosmic Radiation and Cataracts in Airline Pilots
NASA Astrophysics Data System (ADS)
Rafnsson, V.; Olafsdottir, E.; Hrafnkelsson, J.; de Angelis, G.; Sasaki, H.; Arnarson, A.; Jonasson, F.
Nuclear cataracts have been associated with ionising radiation exposure in previous studies. A population based case-control study on airline pilots has been performed to investigate whether employment as a commercial pilot and consequent exposure to cosmic radiation were associated to lens opacification, when adjusted for known risk factors for cataracts. Cases of opacification of the ocular lens were found in surveys among pilots and a random sample of the Icelandic population. Altogether 445 male subjects underwent a detailed eye examination and answered a questionnaire. Information from the airline company on the 79 pilots employment time, annual hours flown per aircraft type, the timetables and the flight profiles made calculation of individual cumulated radiation dose (mSv) possible. Lens opacification were classified and graded according to WHO simplified cataracts grading system using slit lamp. The odds ratio from logistic regression of nuclear cataracts risk among cases and controls was 3.02 (95% CI 1.44 to 6.35) for pilots compared with non-pilots, adjusted for age, smoking and sunbathing habits, whereas that of cortical cataracts risk among cases and controls was lower than unity (non significant) for pilots compared with non-pilots in a logistic regression analysis adjusted for same factors. Length of employment as a pilot and cumulated radiation dose (mSv) were significantly related to the risk of nuclear cataracts. So the association between radiation exposure of pilots and the risk of nuclear cataracts, adjusted for age, smoking and sunbathing habits, indicates that cosmic radiation may be cause of nuclear cataract among commercial pilots.
NASA Technical Reports Server (NTRS)
Phatak, A. V.
1980-01-01
A systematic analytical approach to the determination of helicopter IFR precision approach requirements is formulated. The approach is based upon the hypothesis that pilot acceptance level or opinion rating of a given system is inversely related to the degree of pilot involvement in the control task. A nonlinear simulation of the helicopter approach to landing task incorporating appropriate models for UH-1H aircraft, the environmental disturbances and the human pilot was developed as a tool for evaluating the pilot acceptance hypothesis. The simulated pilot model is generic in nature and includes analytical representation of the human information acquisition, processing, and control strategies. Simulation analyses in the flight director mode indicate that the pilot model used is reasonable. Results of the simulation are used to identify candidate pilot workload metrics and to test the well known performance-work-load relationship. A pilot acceptance analytical methodology is formulated as a basis for further investigation, development and validation.
Occupational Stress and Hypertension among Railway Loco Pilots and Section Controllers
Jayakumar, Devasigamoney
2017-01-01
Introduction: A cross-sectional study on occupational stress was conducted on loco pilots in 2008, in view of loco pilots being one of the high strain jobs in Indian Railways. Subsequently, a comparative cross-sectional study on occupational stress was conducted among section controllers in 2011, which is another high strain job of Indian Railways. Objective: The studies were conducted to analyze and compare occupational stress and hypertension. Setting and Design: A cross-sectional study on occupational stress and hypertension was conducted among 230 loco pilots in 2008, and subsequently, a comparative cross-sectional study was conducted among 82 section controllers in 2011. Materials and Methods: A closed end 24 item questionnaire on occupational stress was administered. Systolic blood pressure above 140 mmHg and diastolic blood pressure above 90 mmHg were considered as hypertension as per the VII Joint National Committee. Chi-square test and t-test were used for testing significance at P < 0.05. Results: The mean stress score was 8.56 in loco pilots and 7.32 in section controllers. The number of loco pilots with more than 12 stress factors was 49 (21.3%) and the number of section controllers with more than 12 stress factors was 7 (8.5%). The number employees with more than 12 stress factors in different categories of loco pilots were 30 (32%) in the goods category, 12 (12%) in the mail/passenger category, and 7 (19%) in the shunter category, and 3 (11%) in the supervisory category and 4 (7%) in the on-board category of section controllers. The prevalence of hypertension in loco pilots was 36.52% (84) and in the section controllers was 53.66% (44). The prevalence of hypertension in the category with more than 12 stress factors was 30.61% (15) in the loco pilots and 28.57% (2) in the section controllers. The prevalence of hypertension in the both the study groups were higher in the older age, with a family history of hypertension, and with a body mass index of more than 25 kg/m2. The mean occupational stress and employees with more than 12 stress factors were higher in the loco pilots group. The goods category of loco pilots had highest stress factors. The prevalence of hypertension was high in the category with risk factors such as older age, family history of hypertension and BMI above 25 kg/m2. PMID:29391744
Control and optimization system
Xinsheng, Lou
2013-02-12
A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This project overview comprises the following: project history; WIPP fact sheet; legal actions required; major WIPP milestones; low-level waste volumes; nuclear waste transportation; WIPP site selection; and questions and answers from the Department of Energy request for public input prior to public meetings in Roswell and Hobbs, New Mexico.
An Investigation of the Effects of Boundary Avoidance on Pilot Tracking
2006-12-01
for the most pressing tracking task. 14 2.2.4 System Plant A simple second order system was used to provide representative aircraft system... plant , a small pulse was input into the system at the onset of the simulation. 2.2.5 Model Results The values used by the author in both the...13 2.2.4 System Plant
Morgan, Sarah L; Palagi, Patricia M; Fernandes, Pedro L; Koperlainen, Eija; Dimec, Jure; Marek, Diana; Larcombe, Lee; Rustici, Gabriella; Attwood, Teresa K; Via, Allegra
2017-01-01
One of the main goals of the ELIXIR-EXCELERATE project from the European Union's Horizon 2020 programme is to support a pan-European training programme to increase bioinformatics capacity and competency across ELIXIR Nodes. To this end, a Train-the-Trainer (TtT) programme has been developed by the TtT subtask of EXCELERATE's Training Platform, to try to expose bioinformatics instructors to aspects of pedagogy and evidence-based learning principles, to help them better design, develop and deliver high-quality training in future. As a first step towards such a programme, an ELIXIR-EXCELERATE TtT (EE-TtT) pilot was developed, drawing on existing 'instructor training' models, using input both from experienced instructors and from experts in bioinformatics, the cognitive sciences and educational psychology. This manuscript describes the process of defining the pilot programme, illustrates its goals, structure and contents, and discusses its outcomes. From Jan 2016 to Jan 2017, we carried out seven pilot EE-TtT courses (training more than sixty new instructors), collaboratively drafted the training materials, and started establishing a network of trainers and instructors within the ELIXIR community. The EE-TtT pilot represents an essential step towards the development of a sustainable and scalable ELIXIR TtT programme. Indeed, the lessons learned from the pilot, the experience gained, the materials developed, and the analysis of the feedback collected throughout the seven pilot courses have both positioned us to consolidate the programme in the coming years, and contributed to the development of an enthusiastic and expanding ELIXIR community of instructors and trainers.
Morgan, Sarah L; Koperlainen, Eija; Dimec, Jure; Marek, Diana; Larcombe, Lee; Rustici, Gabriella; Attwood, Teresa K; Via, Allegra
2017-01-01
One of the main goals of the ELIXIR-EXCELERATE project from the European Union’s Horizon 2020 programme is to support a pan-European training programme to increase bioinformatics capacity and competency across ELIXIR Nodes. To this end, a Train-the-Trainer (TtT) programme has been developed by the TtT subtask of EXCELERATE’s Training Platform, to try to expose bioinformatics instructors to aspects of pedagogy and evidence-based learning principles, to help them better design, develop and deliver high-quality training in future. As a first step towards such a programme, an ELIXIR-EXCELERATE TtT (EE-TtT) pilot was developed, drawing on existing ‘instructor training’ models, using input both from experienced instructors and from experts in bioinformatics, the cognitive sciences and educational psychology. This manuscript describes the process of defining the pilot programme, illustrates its goals, structure and contents, and discusses its outcomes. From Jan 2016 to Jan 2017, we carried out seven pilot EE-TtT courses (training more than sixty new instructors), collaboratively drafted the training materials, and started establishing a network of trainers and instructors within the ELIXIR community. The EE-TtT pilot represents an essential step towards the development of a sustainable and scalable ELIXIR TtT programme. Indeed, the lessons learned from the pilot, the experience gained, the materials developed, and the analysis of the feedback collected throughout the seven pilot courses have both positioned us to consolidate the programme in the coming years, and contributed to the development of an enthusiastic and expanding ELIXIR community of instructors and trainers. PMID:28928938
Intelligent Pilot Aids for Flight Re-Planning in Emergencies
NASA Technical Reports Server (NTRS)
Pritchett, Amy R.; Ockerman, Jennifer
2005-01-01
Effective and safe control of an aircraft may be difficult or nearly impossible for a pilot following an unexpected system failure. Without prior training, the pilot must ascertain on the fly those changes in both manual control technique and procedures that will lead to a safe landing of the aircraft. Sophisticated techniques for determining the required control techniques are now available. Likewise, a body of literature on pilot decision making provides formalisms for examining how pilots approach discrete decisions framed as the selection between options. However, other aspects of behavior, such as the task of route planning and guidance, are not as well studied. Not only is the pilot faced with possible performance changes to the aircraft dynamics, but he or she is also tasked to create a plan of actions that will effectively take the aircraft down to a safe landing. In this plan, the many actions that the pilot can perform are closely intertwined with the trajectory of the aircraft, making it difficult to accurately predict the final outcome. Coupled with the vast number of potential actions to be taken, this problem may seem intractable. This is reflected in the lack of a pre-specified procedure capable of giving pilots the ability to find a resolution for this task. This report summarizes a multi-year effort to examine methods to aid pilots in planning an approach and arrival to an airport following an aircraft systems failure. Ultimately, we hypothesize that automatic assistance to pilots can be provided in real-time in the form of improving pilot control of a damaged aircraft and providing pilots with procedural directives suitable for critical flight conditions; such systems may also benefit pilot training and procedure design. To achieve this result, a systematic, comprehensive research program was followed, building on prior research. This approach included a pencil-and-paper study with airline pilots examining methods of representing a flight route in an immediately understandable manner, and in a manner that would allow the pilot to modify an automatically-generated route and/or detect any inappropriate elements in an automatically-generated route. Likewise, a flight simulator study examined different cockpit systems for the relative merits of providing pilots with any of a variety of automated functions for emergency flight planning. The results provide specific guidance for the design of such systems.
Design and pilot evaluation of the RAH-66 Comanche Core AFCS
NASA Technical Reports Server (NTRS)
Fogler, Donald L., Jr.; Keller, James F.
1993-01-01
This paper addresses the design and pilot evaluation of the Core Automatic Flight Control System (AFCS) for the Reconnaissance/Attack Helicopter (RAH-66) Comanche. During the period from November 1991 through February 1992, the RAH-66 Comanche control laws were evaluated through a structured pilot acceptance test using a motion base simulator. Design requirements, descriptions of the control law design, and handling qualities data collected from ADS-33 maneuvers are presented.
Analysis of routine pilot-controller communication
NASA Technical Reports Server (NTRS)
Morrow, Daniel G.; Lee, Alfred; Rodvold, Michelle
1990-01-01
Although pilot-controller communication is central to aviation safety, this area of aviation human factors has not been extensively researched. Most research has focused on what kinds of communication problems occur. A more complete picture of communication problems requires understanding how communication usually works in routine operations. A sample of routine pilot-controller communication in the TRACON environment is described. After describing several dimensions of routine communication, three kinds of communication problems are treated: inaccuracies such as incorrect readbacks, procedural deviations such as missing callsigns and readbacks, and nonroutine transactions where pilot and controller must deal with misunderstandings or other communication problems. Preliminary results suggest these problems are not frequent events in daily operations. However, analysis of the problems that do occur suggest some factors that may cause them.
Multiple curved descending approaches and the air traffic control problem
NASA Technical Reports Server (NTRS)
Hart, S. G.; Mcpherson, D.; Kreifeldt, J.; Wemple, T. E.
1977-01-01
A terminal area air traffic control simulation was designed to study ways of accommodating increased air traffic density. The concepts that were investigated assumed the availability of the microwave landing system and data link and included: (1) multiple curved descending final approaches; (2) parallel runways certified for independent and simultaneous operation under IFR conditions; (3) closer spacing between successive aircraft; and (4) a distributed management system between the air and ground. Three groups each consisting of three pilots and two air traffic controllers flew a combined total of 350 approaches. Piloted simulators were supplied with computer generated traffic situation displays and flight instruments. The controllers were supplied with a terminal area map and digital status information. Pilots and controllers also reported that the distributed management procedure was somewhat more safe and orderly than the centralized management procedure. Flying precision increased as the amount of turn required to intersect the outer mark decreased. Pilots reported that they preferred the alternative of multiple curved descending approaches with wider spacing between aircraft to closer spacing on single, straight in finals while controllers preferred the latter option. Both pilots and controllers felt that parallel runways are an acceptable way to accommodate increased traffic density safely and expeditiously.
NASA Technical Reports Server (NTRS)
Hess, Ronald A.
1994-01-01
The NASA High-Angle-of Attack Research Vehicle (HARV), a modified F-18 aircraft, experienced handling qualities problems in recent flight tests at NASA Dryden Research Center. Foremost in these problems was the tendency of the pilot-aircraft system to exhibit a potentially dangerous phenomenon known as a pilot-induced oscillation (PIO). When they occur, PIO's can severely restrict performance, sharply dimish mission capabilities, and can even result in aircraft loss. A pilot/vehicle analysis was undertaken with the goal of reducing these PIO tendencies and improving the overall vehicle handling qualities with as few changes as possible to the existing feedback/feedforward flight control laws. Utilizing a pair of analytical pilot models developed by the author, a pilot/vehicle analysis of the existing longitudinal flight control system was undertaken. The analysis included prediction of overall handling qualities levels and PIO susceptability. The analysis indicated that improvement in the flight control system was warranted and led to the formulation of a simple control stick command shaping filter. Analysis of the pilot/vehicle system with the shaping filter indicated significant improvements in handling qualities and PIO tendencies could be achieved. A non-real time simulation of the modified control system was undertaken with a realistic, nonlinear model of the current HARV. Special emphasis was placed upon those details of the command filter implementation which could effect safety of flight. The modified system is currently awaiting evaluation in the real-time, pilot-in-the-loop, Dual-Maneuvering-Simulator (DMS) facility at Langley.
NASA Astrophysics Data System (ADS)
Pavel, Marilena D.; Masarati, Pierangelo; Gennaretti, Massimo; Jump, Michael; Zaichik, Larisa; Dang-Vu, Binh; Lu, Linghai; Yilmaz, Deniz; Quaranta, Giuseppe; Ionita, Achim; Serafini, Jacopo
2015-07-01
Understanding, predicting and supressing the inadvertent aircraft oscillations caused by Aircraft/Rotorcraft Pilot Couplings (A/RPC) is a challenging problem for designers. These are potential instabilities that arise from the effort of controlling aircraft with high response actuation systems. The present paper reviews, updates and discusses desirable practices to be used during the design process for unmasking A/RPC phenomena. These practices are stemming from the European Commission project ARISTOTEL Aircraft and Rotorcraft Pilot Couplings - Tools and Techniques for Alleviation and Detection (2010-2013) and are mainly related to aerodynamic and structural modelling of the aircraft/rotorcraft, pilot modelling and A/RPC prediction criteria. The paper proposes new methodologies for precluding adverse A/RPCs events taking into account the aeroelasticity of the structure and pilot biodynamic interaction. It is demonstrated that high-frequency accelerations due to structural elasticity cause negative effects on pilot control, since they lead to involuntary body and limb-manipulator system displacements and interfere with pilot's deliberate control activity (biodynamic interaction) and, finally, worsen handling quality ratings.
Theoretical linear approach to the combined man-manipulator system in manual control of an aircraft
NASA Technical Reports Server (NTRS)
Brauser, K.
1981-01-01
An approach to the calculation of the dynamic characteristics of the combined man manipulator system in manual aircraft control was derived from a model of the neuromuscular system. This model combines the neuromuscular properties of man with the physical properties of the manipulator system which is introduced as pilot manipulator model into the manual aircraft control. The assumption of man as a quasilinear and time invariant control operator adapted to operating states, depending on the flight phases, of the control system gives rise to interesting solutions of the frequency domain transfer functions of both the man manipulator system and the closed loop pilot aircraft control system. It is shown that it is necessary to introduce the complete precision pilot manipulator model into the closed loop pilot aircraft transfer function in order to understand the well known handling quality criteria, and to derive these criteria directly from human operator properties.
1977-04-01
U* AFFDL-TR-77-7 0 VOLUME III " VALIDATION OF MIL-F-9490D - GENERAL SPECIFICATION FOR FLIGHT CONTROL SYSTEM "FOR PILOTED MILITARY AIRCRAFT VOLUME...ý A1O 1 C I\\.FFBL Ti(-77-7. Vol. III f Validatio~n of UL-P-9-490D#,*. General Spacificatior "~inal 1’l -_t e for Flight ContrsA Zyn’om for Piloted...cation MIL-F-9490D (USAF), "Flight Control Systems - Design, Installation and Test of Piloted Aircraft, General Specifications for," dated 6 June 1975, by
An application of adaptive learning to malfunction recovery
NASA Technical Reports Server (NTRS)
Cruz, R. E.
1986-01-01
A self-organizing controller is developed for a simplified two-dimensional aircraft model. The Controller learns how to pilot the aircraft through a navigational mission without exceeding pre-established position and velocity limits. The controller pilots the aircraft by activating one of eight directional actuators at all times. By continually monitoring the aircraft's position and velocity with respect to the mission, the controller progressively modifies its decision rules to improve the aircraft's performance. When the controller has learned how to pilot the aircraft, two actuators fail permanently. Despite this malfunction, the controller regains proficiency at its original task. The experimental results reported show the controller's capabilities for self-organizing control, learning, and malfunction recovery.
Data-linked pilot reply time on controller workload and communication in a simulated terminal option
DOT National Transportation Integrated Search
2001-05-01
This report describes an analysis of air traffic control communication and workload in a simulated terminal radar approach : control environment. The objective of this study was to investigate how pilot-to-controller data-link acknowledgment time : m...
Marmarelis, Vasilis Z.; Zanos, Theodoros P.; Berger, Theodore W.
2010-01-01
This paper presents a new modeling approach for neural systems with point-process (spike) inputs and outputs that utilizes Boolean operators (i.e. modulo 2 multiplication and addition that correspond to the logical AND and OR operations respectively, as well as the AND_NOT logical operation representing inhibitory effects). The form of the employed mathematical models is akin to a “Boolean-Volterra” model that contains the product terms of all relevant input lags in a hierarchical order, where terms of order higher than first represent nonlinear interactions among the various lagged values of each input point-process or among lagged values of various inputs (if multiple inputs exist) as they reflect on the output. The coefficients of this Boolean-Volterra model are also binary variables that indicate the presence or absence of the respective term in each specific model/system. Simulations are used to explore the properties of such models and the feasibility of their accurate estimation from short data-records in the presence of noise (i.e. spurious spikes). The results demonstrate the feasibility of obtaining reliable estimates of such models, with excitatory and inhibitory terms, in the presence of considerable noise (spurious spikes) in the outputs and/or the inputs in a computationally efficient manner. A pilot application of this approach to an actual neural system is presented in the companion paper (Part II). PMID:19517238
NASA Technical Reports Server (NTRS)
Yildiz, Yildiray; Kolmanovsky, Ilya V.
2010-01-01
This paper proposes a control allocation technique that can help pilots recover from pilot induced oscillations (PIO). When actuators are rate-saturated due to aggressive pilot commands, high gain flight control systems or some anomaly in the system, the effective delay in the control loop may increase depending on the nature of the cause. This effective delay increase manifests itself as a phase shift between the commanded and actual system signals and can instigate PIOs. The proposed control allocator reduces the effective time delay by minimizing the phase shift between the commanded and the actual attitude accelerations. Simulation results are reported, which demonstrate phase shift minimization and recovery from PIOs. Conversion of the objective function to be minimized and constraints to a form that is suitable for implementation is given.
"Tower, Am I Cleared to Land?": Problematic Communication in Aviation Discourse
ERIC Educational Resources Information Center
Howard, John W., III
2008-01-01
This study examined problematic communication in pilot-air traffic controller (ATC) interaction. More than 15 hours of pilot-ATC dialogue were collected by monitoring control tower frequencies at 15 U.S. airports. The transcribed data yielded a total of 34 ATCs, 270 pilots, and 1,799 turns of talk. Analyses revealed that (a) communication…
14 CFR 135.247 - Pilot qualifications: Recent experience.
Code of Federal Regulations, 2014 CFR
2014-01-01
... as the sole manipulator of the flight controls in an aircraft of the same category and class and, if... controls in an aircraft of the same category and class and, if a type rating is required, of the same type... to a pilot in command of a turbine-powered airplane that is type certificated for more than one pilot...
14 CFR 135.247 - Pilot qualifications: Recent experience.
Code of Federal Regulations, 2013 CFR
2013-01-01
... as the sole manipulator of the flight controls in an aircraft of the same category and class and, if... controls in an aircraft of the same category and class and, if a type rating is required, of the same type... to a pilot in command of a turbine-powered airplane that is type certificated for more than one pilot...
14 CFR 135.247 - Pilot qualifications: Recent experience.
Code of Federal Regulations, 2012 CFR
2012-01-01
... as the sole manipulator of the flight controls in an aircraft of the same category and class and, if... controls in an aircraft of the same category and class and, if a type rating is required, of the same type... to a pilot in command of a turbine-powered airplane that is type certificated for more than one pilot...
A Piloted Evaluation of Damage Accommodating Flight Control Using a Remotely Piloted Vehicle
NASA Technical Reports Server (NTRS)
Cunningham, Kevin; Cox, David E.; Murri, Daniel G.; Riddick, Stephen E.
2011-01-01
Toward the goal of reducing the fatal accident rate of large transport airplanes due to loss of control, the NASA Aviation Safety Program has conducted research into flight control technologies that can provide resilient control of airplanes under adverse flight conditions, including damage and failure. As part of the safety program s Integrated Resilient Aircraft Control Project, the NASA Airborne Subscale Transport Aircraft Research system was designed to address the challenges associated with the safe and efficient subscale flight testing of research control laws under adverse flight conditions. This paper presents the results of a series of pilot evaluations of several flight control algorithms used during an offset-to-landing task conducted at altitude. The purpose of this investigation was to assess the ability of various flight control technologies to prevent loss of control as stability and control characteristics were degraded. During the course of 8 research flights, data were recorded while one task was repeatedly executed by a single evaluation pilot. Two generic failures, which degraded stability and control characteristics, were simulated inflight for each of the 9 different flight control laws that were tested. The flight control laws included three different adaptive control methodologies, several linear multivariable designs, a linear robust design, a linear stability augmentation system, and a direct open-loop control mode. Based on pilot Cooper-Harper Ratings obtained for this test, the adaptive flight control laws provided the greatest overall benefit for the stability and control degradation scenarios that were considered. Also, all controllers tested provided a significant improvement in handling qualities over the direct open-loop control mode.
Ebner, Marc; Hameroff, Stuart
2011-01-01
Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on "autopilot"). Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the "conscious pilot") suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious "auto-pilot" cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways "gap junctions" in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of synchrony, within which the contents of perception are represented and contained. This mobile zone can be viewed as a model of the neural correlate of consciousness in the brain.
An Analysis of En Route Controller-Pilot Voice Communications
DOT National Transportation Integrated Search
1993-03-01
The purposes of this analysis were to examine current pilot-controller communication practices in the en route : environment. Forty-eight hours of voice tapes from eight different Air Route Traffic Control Centers (ARTCCs) were : examined. There were...
Analysis of reportable events in Kansas City air route traffic control center
DOT National Transportation Integrated Search
2017-02-10
The implementation of ControllerPilot Datalink Communications (CPDLC) in domestic en route airspace will change the controllers and pilots : tasks, which will, in turn change the types of observed errors. This study characterizes the current...
Development of a coding form for approach control/pilot voice communications.
DOT National Transportation Integrated Search
1995-05-01
The Aviation Topics Speech Acts Taxonomy (ATSAT) is a tool for categorizing pilot/controller communications according to their purpose and for classifying communication errors. Air traffic controller communications that deviate from FAA Air Traffic C...
A pilot rating scale for evaluating failure transients in electronic flight control systems
NASA Technical Reports Server (NTRS)
Hindson, William S.; Schroeder, Jeffery A.; Eshow, Michelle M.
1990-01-01
A pilot rating scale was developed to describe the effects of transients in helicopter flight-control systems on safety-of-flight and on pilot recovery action. The scale was applied to the evaluation of hardovers that could potentially occur in the digital flight-control system being designed for a variable-stability UH-60A research helicopter. Tests were conducted in a large moving-base simulator and in flight. The results of the investigation were combined with existing airworthiness criteria to determine quantitative reliability design goals for the control system.
Wang, Linjie; Cao, Yi; Tan, Cheng; Zhao, Qi; He, Siyang; Niu, Dongbin; Tang, Guohua; Zou, Peng; Xing, Lei
2017-01-01
Explore the different vestibular physiologic response retention patterns after Coriolis acceleration training in student pilots and extend the results for use with Chinese astronauts in the future. Twelve healthy control male subjects were screened from males familiar with vestibular training and who physically resembled the astronauts. Fourteen student pilots were selected from 23 participants by rotational vestibular function tests. All subjects were exposed to five-day continuous or intermittent Coriolis acceleration training. Subjective motion sickness (MS) symptom scores, electrocardiography, electrogastrography (EGG), post-rotatory nystagmus and renin-angiotensin system responses were measured before, during and after rotational vestibular function tests at different times after vestibular training. Subjects could tolerate 10 min or 15 min of vestibular with mild MS symptoms. Retention of vestibular autonomic responses (retention of MS symptom scores, heart rate variability, power density of EGG, variations in levels of arginine vasopressin) were approximately 1 week for control subjects and approximately 5 weeks for student pilots. Decreases in slow-phase velocity of post-rotatory nystagmus were maintained for 14 weeks for control subjects and 9 weeks for student pilots. Retention of the vestibulo-autonomic reaction after vestibular training was different for control subjects and student pilots. All parameters related to autonomic responses could be maintained at low levels after vestibular training for approximately 1 week for control subjects and approximately 5 weeks for student pilots. Uncoupling patterns between post-rotatory nystagmus and the vestibulo-autonomic reaction may be helpful in the design of clinical rehabilitation plans for balance-disorder patients and for exploration of artificial gravity in future space missions.
NASA Technical Reports Server (NTRS)
Grantham, William D.; Williams, Robert H.
1987-01-01
For the case of an approach-and-landing piloting task emphasizing response to the landing flare, pilot opinion and performance parameters derived from jet transport aircraft six-degree-of-freedom ground-based and in-flight simulators were compared in order to derive data for the flight-controls/flying-qualities engineers. The data thus obtained indicate that ground simulation results tend to be conservative, and that the effect of control sensitivity is more pronounced for ground simulation. The pilot also has a greater tendency to generate pilot-induced oscillation in ground-based simulation than in flight.
AIRCRAFT REACTOR CONTROL SYSTEM APPLICABLE TO TURBOJET AND TURBOPROP POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorker, G.E.
1955-07-19
Control systems proposed for direct cycle nuclear powered aircraft commonly involve control of engine speed, nuclear energy input, and chcmical energy input. A system in which these parameters are controlled by controlling the total energy input, the ratio of nuclear and chemical energy input, and the engine speed is proposed. The system is equally applicable to turbojet or turboprop applications. (auth)
Systems and methods for compensating for electrical converter nonlinearities
Perisic, Milun; Ransom, Ray M.; Kajouke, Lateef A.
2013-06-18
Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module coupled between the input interface and the output interface, and a control module. The control module determines a duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface. The control module determines an input power error at the input interface and adjusts the duty cycle control value in a manner that is influenced by the input power error, resulting in a compensated duty cycle control value. The control module operates switching elements of the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value.
NASA Technical Reports Server (NTRS)
Hess, R. A.
1976-01-01
Paramount to proper utilization of electronic displays is a method for determining pilot-centered display requirements. Display design should be viewed fundamentally as a guidance and control problem which has interactions with the designer's knowledge of human psychomotor activity. From this standpoint, reliable analytical models of human pilots as information processors and controllers can provide valuable insight into the display design process. A relatively straightforward, nearly algorithmic procedure for deriving model-based, pilot-centered display requirements was developed and is presented. The optimal or control theoretic pilot model serves as the backbone of the design methodology, which is specifically directed toward the synthesis of head-down, electronic, cockpit display formats. Some novel applications of the optimal pilot model are discussed. An analytical design example is offered which defines a format for the electronic display to be used in a UH-1H helicopter in a landing approach task involving longitudinal and lateral degrees of freedom.
Pilot performance in zero-visibility precision approach. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Ephrath, A. R.
1975-01-01
The pilot's short-term decisions regarding performance assessment and failure monitoring is examined. The performance of airline pilots who flew simulated zero-visibility landing approaches is reported. Results indicate that the pilot's mode of participation in the control task has a strong effect on his workload, the induced workload being lowest when the pilot acts as a monitor during a coupled approach and highest when the pilot is an active element in the control loop. A marked increase in workload at altitudes below 500 ft. is documented at all participation modes; this increase is inversely related to distance-to-go. The participation mode is shown to have a dominant effect on failure-detection performance, with a failure in a monitored (coupled) axis being detected faster than a comparable failure in a manually-controlled axis. Touchdown performance is also documented. It is concluded that the conventional instrument panel and its associated displays are inadequate for zero-visibility operations in the final phases of the landing approach.
Fuzzy logic control and optimization system
Lou, Xinsheng [West Hartford, CT
2012-04-17
A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-20
... wheel or stick controls, is not appropriate for a sidestick controller, because pilot forces are applied... Forces for Sidestick Control AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... instead of a conventional wheel or control stick. This kind of controller is designed to be operated using...
Bioelectric Control of a 757 Class High Fidelity Aircraft Simulation
NASA Technical Reports Server (NTRS)
Jorgensen, Charles; Wheeler, Kevin; Stepniewski, Slawomir; Norvig, Peter (Technical Monitor)
2000-01-01
This paper presents results of a recent experiment in fine grain Electromyographic (EMG) signal recognition, We demonstrate bioelectric flight control of 757 class simulation aircraft landing at San Francisco International Airport. The physical instrumentality of a pilot control stick is not used. A pilot closes a fist in empty air and performs control movements which are captured by a dry electrode array on the arm, analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. A Vision Dome immersive display is used to create a VR world for the aircraft body mechanics and flight changes to pilot movements. Inner loop surfaces and differential aircraft thrust is controlled using a hybrid neural network architecture that combines a damage adaptive controller (Jorgensen 1998, Totah 1998) with a propulsion only based control system (Bull & Kaneshige 1997). Thus the 757 aircraft is not only being flown bioelectrically at the pilot level but also demonstrates damage adaptive neural network control permitting adaptation to severe changes in the physical flight characteristics of the aircraft at the inner loop level. To compensate for accident scenarios, the aircraft uses remaining control surface authority and differential thrust from the engines. To the best of our knowledge this is the first time real time bioelectric fine-grained control, differential thrust based control, and neural network damage adaptive control have been integrated into a single flight demonstration. The paper describes the EMG pattern recognition system and the bioelectric pattern recognition methodology.
Shillington, Alicia C; Col, Nananda; Bailey, Robert A; Jewell, Mark A
2015-01-01
Purpose To describe the process used to develop an evidence-based patient decision aid (PDA) that facilitates shared decision-making for treatment intensification in inadequately controlled type 2 diabetes mellitus (T2DM) consistent with International Patient Decision Aids Standards. Methods A PDA was developed by a multidisciplinary steering committee of clinicians, patient advocate, nurse, certified diabetes educators, and decision scientist, using a systematic development process. The process included defining the PDA scope and purpose, outlining the framework, content creation, and designing for integration into clinical practice. This was accomplished through a review of the literature and publically available educational materials and input from practicing clinicians and patients during development and iteratively refining content based on input. Patients with poorly controlled T2DM on metformin considering additional medication assessed the PDA during a pilot. Results Testing identified six preference-sensitive domains important for choosing T2DM treatment: degree of glycemic response, avoiding weight gain, hypoglycemia risk and other adverse events, avoiding injections, convenience of dose administration, blood glucose monitoring, and cost of therapy. Patient feedback guided content revision. Treatment options were offered after presenting medication class risk–benefit information and eliciting patient values, goals, and preferences. The PDA received the highest International Patient Decision Aids Standards global score to date, 88/100, with 100% of criteria fully met for the following dimensions: development process, disclosures, evaluation process, evidence quality, guidance for users, information quality, language/readability, testing, and eliciting patient values. Conclusion A PDA was developed to help T2DM patients make decisions regarding medication choice. This approach may be applicable to other chronic conditions. PMID:25995622
Gustafson, William Jr; Vogelmann, Andrew; Endo, Satoshi; Toto, Tami; Xiao, Heng; Li, Zhijin; Cheng, Xiaoping; Kim, Jinwon; Krishna, Bhargavi
2015-08-31
The Alpha 2 release is the second release from the LASSO Pilot Phase that builds upon the Alpha 1 release. Alpha 2 contains additional diagnostics in the data bundles and focuses on cases from spring-summer 2016. A data bundle is a unified package consisting of LASSO LES input and output, observations, evaluation diagnostics, and model skill scores. LES input include model configuration information and forcing data. LES output includes profile statistics and full domain fields of cloud and environmental variables. Model evaluation data consists of LES output and ARM observations co-registered on the same grid and sampling frequency. Model performance is quantified by skill scores and diagnostics in terms of cloud and environmental variables.
Four-dimensional guidance algorithms for aircraft in an air traffic control environment
NASA Technical Reports Server (NTRS)
Pecsvaradi, T.
1975-01-01
Theoretical development and computer implementation of three guidance algorithms are presented. From a small set of input parameters the algorithms generate the ground track, altitude profile, and speed profile required to implement an experimental 4-D guidance system. Given a sequence of waypoints that define a nominal flight path, the first algorithm generates a realistic, flyable ground track consisting of a sequence of straight line segments and circular arcs. Each circular turn is constrained by the minimum turning radius of the aircraft. The ground track and the specified waypoint altitudes are used as inputs to the second algorithm which generates the altitude profile. The altitude profile consists of piecewise constant flight path angle segments, each segment lying within specified upper and lower bounds. The third algorithm generates a feasible speed profile subject to constraints on the rate of change in speed, permissible speed ranges, and effects of wind. Flight path parameters are then combined into a chronological sequence to form the 4-D guidance vectors. These vectors can be used to drive the autopilot/autothrottle of the aircraft so that a 4-D flight path could be tracked completely automatically; or these vectors may be used to drive the flight director and other cockpit displays, thereby enabling the pilot to track a 4-D flight path manually.
Investigation of piloting aids for manual control of hypersonic maneuvers
NASA Technical Reports Server (NTRS)
Raney, David L.; Phillips, Michael R.; Person, Lee H., Jr.
1995-01-01
An investigation of piloting aids designed to provide precise maneuver control for an air-breathing hypersonic vehicle is described. Stringent constraints and nonintuitive high-speed flight effects associated with maneuvering in the hypersonic regime raise the question of whether manual control of such a vehicle should even be considered. The objectives of this research were to determine the extent of manual control that is desirable for a vehicle maneuvering in this regime and to identify the form of aids that must be supplied to the pilot to make such control feasible. A piloted real-time motion-based simulation of a hypersonic vehicle concept was used for this study, and the investigation focused on a single representative cruise turn maneuver. Piloting aids, which consisted of an auto throttle, throttle director, autopilot, flight director, and two head-up display configurations, were developed and evaluated. Two longitudinal control response types consisting of a rate-command/attitude-hold system and a load factor-rate/load-factor-hold system were also compared. The complete set of piloting aids, which consisted of the autothrottle, throttle director, and flight director, improved the average Cooper-Harper flying qualities ratings from 8 to 2.6, even though identical inner-loop stability and control augmentation was provided in all cases. The flight director was determined to be the most critical of these aids, and the cruise turn maneuver was unachievable to adequate performance specifications in the absence of this flight director.
A Flight Evaluation of the Factors which Influence the Selection of Landing Approach Speeds
NASA Technical Reports Server (NTRS)
Drinkwater, Fred J., III; Cooper, George E.
1958-01-01
The factors which influence the selection of landing approach speeds are discussed from the pilot's point of view. Concepts were developed and data were obtained during a landing approach flight investigation of a large number of jet airplane configurations which included straight-wing, swept-wing, and delta-wing airplanes as well as several applications of boundary-layer control. Since the fundamental limitation to further reductions in approach speed on most configurations appeared to be associated with the reduction in the pilot's ability to control flight path angle and airspeed, this problem forms the basis of the report. A simplified equation is presented showing the basic parameters which govern the flight path angle and airspeed changes, and pilot control techniques are discussed in relation to this equation. Attention is given to several independent aerodynamic characteristics which do not affect the flight path angle or airspeed directly but which determine to a large extent the effort and attention required of the pilot in controlling these factors during the approach. These include stall characteristics, stability about all axes, and changes in trim due to thrust adjustments. The report considers the relationship between piloting technique and all of the factors previously mentioned. A piloting technique which was found to be highly desirable for control of high-performance airplanes is described and the pilot's attitudes toward low-speed flight which bear heavily on the selection of landing approach speeds under operational conditions are discussed.
NASA Technical Reports Server (NTRS)
Fern, Lisa; Rorie, R. Conrad; Pack, Jessica S.; Shively, R. Jay; Draper, Mark H.
2015-01-01
A consortium of government, industry and academia is currently working to establish minimum operational performance standards for Detect and Avoid (DAA) and Control and Communications (C2) systems in order to enable broader integration of Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS). One subset of these performance standards will need to address the DAA display requirements that support an acceptable level of pilot performance. From a pilot's perspective, the DAA task is the maintenance of self separation and collision avoidance from other aircraft, utilizing the available information and controls within the Ground Control Station (GCS), including the DAA display. The pilot-in-the-loop DAA task requires the pilot to carry out three major functions: 1) detect a potential threat, 2) determine an appropriate resolution maneuver, and 3) execute that resolution maneuver via the GCS control and navigation interface(s). The purpose of the present study was to examine two main questions with respect to DAA display considerations that could impact pilots' ability to maintain well clear from other aircraft. First, what is the effect of a minimum (or basic) information display compared to an advanced information display on pilot performance? Second, what is the effect of display location on UAS pilot performance? Two levels of information level (basic, advanced) were compared across two levels of display location (standalone, integrated), for a total of four displays. The authors propose an eight-stage pilot-DAA interaction timeline from which several pilot response time metrics can be extracted. These metrics were compared across the four display conditions. The results indicate that the advanced displays had faster overall response times compared to the basic displays, however, there were no significant differences between the standalone and integrated displays. Implications of the findings on understanding pilot performance on the DAA task, the development of DAA display performance standards, as well as the need for future research are discussed.
Pilot evaluation of sailplane handling qualities
NASA Technical Reports Server (NTRS)
Bennett, A. G., Jr.
1978-01-01
The evaluation sailplanes were found generally deficient in the area of cockpit layout. The pilots indicated general dissatisfaction with high pitch sensitivity especially when coupled with inertially induced stick forces. While all sailplanes were judged satisfactory for centering thermals and in the ease of speed control in circling flight, pilot opinions diverged on the maneuvering response, pull-out characteristics from a dive, and on phugoid damping. Lateral-directional control problems were noted mainly during takeoff and landing for most sailplanes with the landing wheel ahead of center of gravity. Pilot opinion of in-flight lateral-directional stability and control was generally satisfactory. Five of the evaluation sailplanes exhibited a very narrow airspeed band in which perceptible stall warning buffet occurred. However, this characteristic was considered not objectionable when stall recovery was easy. The pilots objected to the characteristics of a wide airspeed band of stall warning followed by a stall with yawing and rolling tendency and substantial loss of altitude during the stall. Glide path control for the evaluation sailplanes was found to be generally objectionable.
MIMO channel estimation and evaluation for airborne traffic surveillance in cellular networks
NASA Astrophysics Data System (ADS)
Vahidi, Vahid; Saberinia, Ebrahim
2018-01-01
A channel estimation (CE) procedure based on compressed sensing is proposed to estimate the multiple-input multiple-output sparse channel for traffic data transmission from drones to ground stations. The proposed procedure consists of an offline phase and a real-time phase. In the offline phase, a pilot arrangement method, which considers the interblock and block mutual coherence simultaneously, is proposed. The real-time phase contains three steps. At the first step, it obtains the priori estimate of the channel by block orthogonal matching pursuit; afterward, it utilizes that estimated channel to calculate the linear minimum mean square error of the received pilots. Finally, the block compressive sampling matching pursuit utilizes the enhanced received pilots to estimate the channel more accurately. The performance of the CE procedure is evaluated by simulating the transmission of traffic data through the communication channel and evaluating its fidelity for car detection after demodulation. Simulation results indicate that the proposed CE technique enhances the performance of the car detection in a traffic image considerably.
Analysis of Controller-Pilot Voice Communications from Kansas City Air Route Traffic Control Center
DOT National Transportation Integrated Search
2017-07-01
The implementation of Controller Pilot Datalink Communications (CPDLC) in domestic en route airspace is a key enabling technology in the Next Generation Air Transportation System. The Federal Aviation Administration plans to implement en route CPDLC ...
An Analysis of Tower (Local) Controller - Pilot Voice Communications
DOT National Transportation Integrated Search
1994-06-01
The purposes of this analysis were to examine current pilot-controller communication practices in the terminal environment. Forty-nine hours of voice tapes from local positions in ten Air Traffic Control Towers (ATCTs) were examined. There were 8,444...
High-frequency matrix converter with square wave input
Carr, Joseph Alexander; Balda, Juan Carlos
2015-03-31
A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.
Remotely Piloted Aircraft for Research
NASA Technical Reports Server (NTRS)
Rezek, T. W.
1985-01-01
NASA Technical Memorandum presents overview of remotely-piloted research vehicle (RPRV) activities. Controlled from ground, vehicles allow new concepts tried without subjecting pilots to danger. Critical role of pilot in flight testing with RPRV's demonstrated repeatedly, and many system anomalies uncovered with no risk to human life.
NASA Technical Reports Server (NTRS)
Ranaudo, Richard J.; Martos, Borja; Norton, Bill W.; Gingras, David R.; Barnhart, Billy P.; Ratvasky, Thomas P.; Morelli, Eugene
2011-01-01
The utility of the Icing Contamination Envelope Protection (ICEPro) system for mitigating a potentially hazardous icing condition was evaluated by 29 pilots using the NASA Ice Contamination Effects Flight Training Device (ICEFTD). ICEPro provides real time envelope protection cues and alerting messages on pilot displays. The pilots participating in this test were divided into two groups; a control group using baseline displays without ICEPro, and an experimental group using ICEPro driven display cueing. Each group flew identical precision approach and missed approach procedures with a simulated failure case icing condition. Pilot performance, workload, and survey questionnaires were collected for both groups of pilots. Results showed that real time assessment cues were effective in reducing the number of potentially hazardous upset events and in lessening exposure to loss of control following an incipient upset condition. Pilot workload with the added ICEPro displays was not measurably affected, but pilot opinion surveys showed that real time cueing greatly improved their situation awareness of a hazardous aircraft state.
Handling qualities of large flexible control-configured aircraft
NASA Technical Reports Server (NTRS)
Swaim, R. L.
1979-01-01
The approach to an analytical study of flexible airplane longitudinal handling qualities was to parametrically vary the natural frequencies of two symmetric elastic modes to induce mode interactions with the rigid body dynamics. Since the structure of the pilot model was unknown for such dynamic interactions, the optimal control pilot modeling method is being applied and used in conjunction with pilot rating method.