Sample records for pilot flame monitoring

  1. 40 CFR Table 17 to Subpart Uuu of... - Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sensor, or infrared sensor to continuously detect the presence of a pilot flame. 2. Option 2: percent... flame zone Continuous parameter monitoring systems to measure and record the combustion zone temperature...

  2. 40 CFR Table 17 to Subpart Uuu of... - Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Reforming Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sensor, or infrared sensor to continuously detect the presence of a pilot flame. 2. Option 2: percent... flame zone Continuous parameter monitoring systems to measure and record the combustion zone temperature...

  3. An experimental study of the effect of a pilot flame on technically pre-mixed, self-excited combustion instabilities

    NASA Astrophysics Data System (ADS)

    O'Meara, Bridget C.

    Combustion instabilities are a problem facing the gas turbine industry in the operation of lean, pre-mixed combustors. Secondary flames known as "pilot flames" are a common passive control strategy for eliminating combustion instabilities in industrial gas turbines, but the underlying mechanisms responsible for the pilot flame's stabilizing effect are not well understood. This dissertation presents an experimental study of a pilot flame in a single-nozzle, swirl-stabilized, variable length atmospheric combustion test facility and the effect of the pilot on combustion instabilities. A variable length combustor tuned the acoustics of the system to excite instabilities over a range of operating conditions without a pilot flame. The inlet velocity was varied from 25 -- 50 m/s and the equivalence ratio was varied from 0.525 -- 0.65. This range of operating conditions was determined by the operating range of the combustion test facility. Stability at each operating condition and combustor length was characterized by measurements of pressure oscillations in the combustor. The effect of the pilot flame on the magnitude and frequency of combustor stability was then investigated. The mechanisms responsible for the pilot flame effect were studied using chemiluminescence flame images of both stable and unstable flames. Stable flame structure was investigated using stable flame images of CH* chemiluminescence emission. The effect of the pilot on stable flame metrics such as flame length, flame angle, and flame width was investigated. In addition, a new flame metric, flame base distance, was defined to characterize the effect of the pilot flame on stable flame anchoring of the flame base to the centerbody. The effect of the pilot flame on flame base anchoring was investigated because the improved stability with a pilot flame is usually attributed to improved flame anchoring through the recirculation of hot products from the pilot to the main flame base. Chemiluminescence images of unstable flames were used to identify several instability mechanisms and infer how these mechanisms are affected by the pilot flame. Flame images of cases in which the pilot flame did not eliminate the instability were investigated to understand why the pilot flame is not effective in certain cases. The phase of unstable pilot flame oscillations was investigated to determine how the phase of pilot flame oscillations may affect its ability to interfere with instability mechanisms in the main flame. A forced flame response study was conducted to determine the effect of inlet velocity oscillation amplitude on the pilot flame. The flame response was characterized by measurements of velocity oscillations in the injector and chemiluminescence intensity oscillations determined from flame images. As the forcing amplitude increases, the pilot flame's effect on the flame transfer function magnitude becomes weaker. Flame images show that as the forcing amplitude increases, the pilot flame oscillations increase, leading to an ineffective pilot. The results of the flame response portion of this study highlight the effect of instability amplitude on the ability of a pilot flame to eliminate a combustion instability.

  4. A Fiber-Optic Probe Design for Combustion Chamber Flame Detection Applications-Design Criteria, Performance Specifications, and Fabrication Technique

    NASA Technical Reports Server (NTRS)

    Borg, Stephen E.; Harper, Samuel E.

    2001-01-01

    This paper documents the design and development of the fiber-optic probes utilized in the flame detection systems used in NASA Langley Research Center's 8-Foot High Temperature Tunnel (8-ft HTT). Two independent flame detection systems are utilized to monitor the presence and stability of the main-burner and pilot-level flames during facility operation. Due to the harsh environment within the combustor, the successful development of a rugged and efficient fiber-optic probe was a critical milestone in the development of these flame detection systems. The final optical probe design for the two flame detection systems resulted from research that was conducted in Langley's 7-in High Temperature Pilot Tunnel (7-in HTT). A detailed description of the manufacturing process behind the optical probes used in the 8-ft HTT is provided in Appendix A of this report.

  5. 40 CFR 49.4166 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... burning pilot flame, electronically controlled automatic igniters, and monitoring system failures, using a... failure, electronically controlled automatic igniter failure, or improper monitoring equipment operation... and natural gas emissions in the event that natural gas recovered for pipeline injection must be...

  6. 40 CFR 49.4166 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... burning pilot flame, electronically controlled automatic igniters, and monitoring system failures, using a... failure, electronically controlled automatic igniter failure, or improper monitoring equipment operation... and natural gas emissions in the event that natural gas recovered for pipeline injection must be...

  7. 40 CFR 63.1324 - Batch process vents-monitoring equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... beam sensor, or infrared sensor) capable of continuously detecting the presence of a pilot flame is...) Where an incinerator is used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, the temperature monitoring...

  8. 40 CFR 63.1324 - Batch process vents-monitoring equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... beam sensor, or infrared sensor) capable of continuously detecting the presence of a pilot flame is...) Where an incinerator is used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, the temperature monitoring...

  9. 40 CFR 63.644 - Monitoring provisions for miscellaneous process vents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) of this section, each owner or operator of a Group 1 miscellaneous process vent that uses a... detecting the presence of a pilot flame is required. (3) Any boiler or process heater with a design heat... less than 44 megawatts design heat capacity where the vent stream is not introduced into the flame zone...

  10. 40 CFR 63.644 - Monitoring provisions for miscellaneous process vents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) of this section, each owner or operator of a Group 1 miscellaneous process vent that uses a... detecting the presence of a pilot flame is required. (3) Any boiler or process heater with a design heat... less than 44 megawatts design heat capacity where the vent stream is not introduced into the flame zone...

  11. Piloted Ignition to Flaming in Smoldering Fire-Retarded Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Putzeys, O.; Fernandez-Pello, A. C.; Urban, D. L.

    2007-01-01

    Experimental results are presented on the piloted transition from smoldering to flaming in the fire-retarded polyurethane foam Pyrell . The samples are small rectangular blocks with a square cross section, vertically placed in the wall of a vertical wind tunnel. Three of the vertical sample sides are insulated and the fourth side is exposed to an upward oxidizer flow of variable oxygen concentration and to a variable radiant heat flux. The gases emitted from the smoldering reaction pass upwards through a pilot, which consists of a coiled resistance heating wire. In order to compensate for the solid-phase and gas-phase effects of the fire retardants on the piloted transition from smoldering to flaming in Pyrell, it was necessary to assist the process by increasing the power supplied to the smolder igniter and the pilot (compared to that used for non-fire retarded foam). The experiments indicate that the piloted transition from smoldering to flaming occurs when the gaseous mixture at the pilot passes the lean flammability limit. It was found that increasing the oxygen concentration or the external heat flux increases the likelihood of a piloted transition from smoldering to flaming, and generally decreases the time delay to transition. The piloted transition to flaming is observed in oxygen concentrations of 23% and above in both low-density and high-density Pyrell. Comparisons with previous experiments show that the piloted transition from smoldering to flaming is possible under a wider range of external conditions (i.e. lower oxygen concentration) than the spontaneous transition from smoldering to flaming. The results show that the fire retardants in Pyrell are very effective in preventing the piloted transition to flaming in normal air, but Pyrell is susceptible to smoldering and the piloted transition to flaming in oxygen-enriched environments. Therefore, precautions should be taken in the design of applications of Pyrell in oxygen-enriched environments to reduce to the risk of a piloted transition to flaming.

  12. 40 CFR 63.1429 - Process vent monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the presence of a pilot flame. (3) Where a boiler or process heater of less than 44 megawatts design... series are used, a scrubbing liquid flow rate meter, or a pressure monitoring device, equipped with a continuous recorder, is required for each absorber in the series. An owner or operator may submit a request...

  13. 40 CFR 63.1429 - Process vent monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the presence of a pilot flame. (3) Where a boiler or process heater of less than 44 megawatts design... series are used, a scrubbing liquid flow rate meter, or a pressure monitoring device, equipped with a continuous recorder, is required for each absorber in the series. An owner or operator may submit a request...

  14. Temperature, Oxygen, and Soot-Volume-Fraction Measurements in a Turbulent C 2H 4-Fueled Jet Flame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, Sean P.; Guildenbecher, Daniel Robert; Winters, Caroline

    2015-09-01

    We present a detailed set of measurements from a piloted, sooting, turbulent C 2 H 4 - fueled diffusion flame. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (CARS) is used to monitor temperature and oxygen, while laser-induced incandescence (LII) is applied for imaging of the soot volume fraction in the challenging jet-flame environment at Reynolds number, Re = 20,000. Single-laser shot results are used to map the mean and rms statistics, as well as probability densities. LII data from the soot-growth region of the flame are used to benchmark the soot source term for one-dimensional turbulence (ODT) modeling of this turbulentmore » flame. The ODT code is then used to predict temperature and oxygen fluctuations higher in the soot oxidation region higher in the flame.« less

  15. Process and apparatus for igniting a burner in an inert atmosphere

    DOEpatents

    Coolidge, Dennis W.; Rinker, Franklin G.

    1994-01-01

    According to this invention there is provided a process and apparatus for the ignition of a pilot burner in an inert atmosphere without substantially contaminating the inert atmosphere. The process includes the steps of providing a controlled amount of combustion air for a predetermined interval of time to the combustor then substantially simultaneously providing a controlled mixture of fuel and air to the pilot burner and to a flame generator. The controlled mixture of fuel and air to the flame generator is then periodically energized to produce a secondary flame. With the secondary flame the controlled mixture of fuel and air to the pilot burner and the combustion air is ignited to produce a pilot burner flame. The pilot burner flame is then used to ignited a mixture of main fuel and combustion air to produce a main burner flame. The main burner flame then is used to ignite a mixture of process derived fuel and combustion air to produce products of combustion for use as an inert gas in a heat treatment process.

  16. 40 CFR 65.159 - Flare compliance determination and monitoring records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurements, and exit velocity determinations made during the flare compliance determination; and (3) All... pilot flame is continuously present during the hour. For transfer racks, hourly records are required only while the transfer vent stream is being vented. (d) Compliance records. (1) Each owner or operator...

  17. 40 CFR 65.159 - Flare compliance determination and monitoring records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measurements, and exit velocity determinations made during the flare compliance determination; and (3) All... pilot flame is continuously present during the hour. For transfer racks, hourly records are required only while the transfer vent stream is being vented. (d) Compliance records. (1) Each owner or operator...

  18. 40 CFR 65.159 - Flare compliance determination and monitoring records.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... measurements, and exit velocity determinations made during the flare compliance determination; and (3) All... pilot flame is continuously present during the hour. For transfer racks, hourly records are required only while the transfer vent stream is being vented. (d) Compliance records. (1) Each owner or operator...

  19. 40 CFR 65.159 - Flare compliance determination and monitoring records.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... measurements, and exit velocity determinations made during the flare compliance determination; and (3) All... pilot flame is continuously present during the hour. For transfer racks, hourly records are required only while the transfer vent stream is being vented. (d) Compliance records. (1) Each owner or operator...

  20. 40 CFR 65.159 - Flare compliance determination and monitoring records.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... measurements, and exit velocity determinations made during the flare compliance determination; and (3) All... pilot flame is continuously present during the hour. For transfer racks, hourly records are required only while the transfer vent stream is being vented. (d) Compliance records. (1) Each owner or operator...

  1. PDF investigations of turbulent non-premixed jet flames with thin reaction zones

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; Pope, Stephen

    2012-11-01

    PDF (probability density function) modeling studies are carried out for the Sydney piloted jet flames. These Sydney flames feature much thinner reaction zones in the mixture fraction space compared to those in the well-studied Sandia piloted jet flames. The performance of the different turbulent combustion models in the Sydney flames with thin reaction zones has not been examined extensively before, and this work aims at evaluating the capability of the PDF method to represent the thin turbulent flame structures in the Sydney piloted flames. Parametric and sensitivity PDF studies are performed with respect to the different models and model parameters. A global error parameter is defined to quantify the departure of the simulation results from the experimental data, and is used to assess the performance of the different set of models and model parameters.

  2. Parametric modeling studies of turbulent non-premixed jet flames with thin reaction zones

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng

    2013-11-01

    The Sydney piloted jet flame series (Flames L, B, and M) feature thinner reaction zones and hence impose greater challenges to modeling than the Sanida Piloted jet flames (Flames D, E, and F). Recently, the Sydney flames received renewed interest due to these challenges. Several new modeling efforts have emerged. However, no systematic parametric modeling studies have been reported for the Sydney flames. A large set of modeling computations of the Sydney flames is presented here by using the coupled large eddy simulation (LES)/probability density function (PDF) method. Parametric studies are performed to gain insight into the model performance, its sensitivity and the effect of numerics.

  3. Effect of flame-tube head structure on combustion chamber performance

    NASA Technical Reports Server (NTRS)

    Gu, Minqqi

    1986-01-01

    The experimental combustion performance of a premixed, pilot-type flame tube with various head structures is discussed. The test study covers an extensive area: efficiency of the combustion chamber, quality of the outlet temperature field, limit of the fuel-lean blowout, ignition performance at ground starting, and carbon deposition. As a result of these tests, a nozzle was found which fits the premixed pilot flame tube well. The use of this nozzle optimized the performance of the combustion chamber. The tested models had premixed pilot chambers with two types of air-film-cooling structures, six types of venturi-tube structures, and secondary fuel nozzles with two small spray-cone angles.

  4. Mixer assembly for a gas turbine engine having a pilot mixer with a corner flame stabilizing recirculation zone

    NASA Technical Reports Server (NTRS)

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor)

    2012-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer, and a pilot mixer having an annular housing in which a corner is formed between an aft portion of the housing and a bulkhead wall in which a corner recirculation zone is located to stabilize and anchor the flame of the pilot mixer. The pilot mixer can further include features to cool the annular housing, including in the area of the corner recirculation zone.

  5. Study on Combustion Oscillation of Premixed Flame with Pilot Fuel at Elevated Pressures

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Masaya; Yoshida, Shohei; Hirata, Yoshitaka; Kobayashi, Nariyoshi

    Acoustically-coupled combustion oscillation is studied for premixed flame with pilot fuel to be used in gas turbine combustors. Premixed gas is passed through swirl vanes and burnt with the centrally injected pilot fuel. The dependencies of pressure, fuel to air ratio, premixed fuel rate, inlet velocity and air temperature on the combustion oscillation are investigated. Two kinds of oscillation modes of ˜100Hz and ˜350Hz are activated according to inlet velocities. Fluctuating pressures are amplified when the premixed fuel rate is over ˜80% at elevated pressures. The fluctuating pressure peak moves to a higher premixed fuel ratio region with increased pressure or fuel to air ratio for the Helmholz type mode. Combustion oscillation occurs when the pilot fuel velocity is changed proportionally with the flame length.

  6. Fuel control for gas turbine with continuous pilot flame

    DOEpatents

    Swick, Robert M.

    1983-01-01

    An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.

  7. A ring stabilizer for lean premixed turbulent flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, M.R.; Kostiuk, L.W.; Cheng, R.K.

    1998-08-01

    In previous experiments on conical flame behavior in microgravity, which were conducted in drop-towers and in airplanes, the use of a pilot flame was not an option. To permit combustion of stable lean premixed conical flames without a pilot, a ring stabilizer was developed. Although similar types of bluff-body stabilization have been used in the past, the ring stabilizer is somewhat unique. It is designed to fit inside the burner exit port and has demonstrated to be highly effective in stabilizing flames over a very wide range of conditions (including ultra-lean flames at high flow-rates) without adversely affecting flame emissions.more » Unlike a simple rod stabilizer or a stagnation flame system, the benefit of having the stabilizer conform to the burner port is that there is very little leakage of the unburned fuel. The purpose of this brief communication is to offer this simple and highly useful device to the combustion research community. Presented are highlights of a parametric study that measured the stabilization limits and pollutant emissions of several different rings, and demonstrated their potential for use in practical systems.« less

  8. LES/PDF studies of joint statistics of mixture fraction and progress variable in piloted methane jet flames with inhomogeneous inlet flows

    NASA Astrophysics Data System (ADS)

    Zhang, Pei; Barlow, Robert; Masri, Assaad; Wang, Haifeng

    2016-11-01

    The mixture fraction and progress variable are often used as independent variables for describing turbulent premixed and non-premixed flames. There is a growing interest in using these two variables for describing partially premixed flames. The joint statistical distribution of the mixture fraction and progress variable is of great interest in developing models for partially premixed flames. In this work, we conduct predictive studies of the joint statistics of mixture fraction and progress variable in a series of piloted methane jet flames with inhomogeneous inlet flows. The employed models combine large eddy simulations with the Monte Carlo probability density function (PDF) method. The joint PDFs and marginal PDFs are examined in detail by comparing the model predictions and the measurements. Different presumed shapes of the joint PDFs are also evaluated.

  9. Comparison of carbon monoxide levels during heating of ice and water to boiling point with a camping stove.

    PubMed

    Leigh-Smith, Simon; Watt, Ian; McFadyen, Angus; Grant, Stan

    2004-01-01

    To determine whether using a camping stove to bring a pan of ice to boiling point produces higher carbon monoxide (CO) concentration than would bringing a pan of water to boiling point. The hypothesis was that ice would cause greater CO concentration because of its greater flame-cooling effect and, consequently, more incomplete combustion. This was a randomized, prospective observational study. After an initial pilot study, CO concentration was monitored during 10 trials for each of ice and water. A partially ventilated 200-L cardboard box model was developed and then used inside a chamber at -6 degrees C. Ice temperature and volume, water temperature and volume, pan size, and flame characteristics were all standardized. Temperature of the heated medium was monitored to determine time to boiling point. Carbon monoxide concentration was monitored every 30 seconds for the first 3 minutes, then every minute until the end of each 10-minute trial. There was no significant difference (P > .05) in CO production levels between ice and water. Each achieved a similar mean plateau level of approximately 400 ppm CO concentration with a similar rate of rise. However, significantly higher (P = .014) CO concentration occurred at 4 and 5 minutes when the flame underwent a yellow flare; this occurred only on 3 occasions when ice was the medium. There were no significant differences for CO production between bringing a pan of ice or water to boiling point. In a small number of ice trials, the presence of a yellow flame resulted in high CO concentration. Yellow flares might occur more often with ice or snow melting, but this has not been proven.

  10. Exposure to organophosphate flame retardants in spray polyurethane foam applicators: Role of dermal exposure.

    PubMed

    Bello, Anila; Carignan, Courtney C; Xue, Yalong; Stapleton, Heather M; Bello, Dhimiter

    2018-04-01

    Spray polyurethane foam (SPF) is a highly effective thermal insulation material that has seen considerable market growth in the past decade. Organophosphate flame retardants (PFRs) are added to SPF formulations to meet fire code requirements. A common flame retardant used in SPF formulations is tris 1-chloro 2-propyl phosphate (TCIPP), a suspected endocrine disruptor. Exposure monitoring efforts during SPF applications have focused primarily on the isocyanate component, a potent respiratory and dermal sensitizer. However, to our knowledge, there is no monitoring data for TCIPP. To characterize occupational exposures to TCIPP and other flame retardants during SPF insulation. Workers at four SPF insulation sites and one foam removal site (total n = 14) were recruited as part of this pilot study. Personal inhalation exposure to TCIPP was monitored with a CIP-10MI inhalable sampler and potential dermal exposure was assessed through the use of a glove dosimeter. Biomarkers of TCIPP and three other PFRs were measured in urine collected from workers pre-and post-shift. Linear mixed effect models were used to analyze associations of urinary biomarkers with inhalation and dermal exposures and paired t-tests were used to examine the difference on the means of urinary biomarkers pre-and post-shift. Chemical analysis of all species was performed with liquid chromatography-electrospray ionization tandem mass spectrometry. Geometric mean (GM) concentrations of TCIPP in personal air monitors and glove dosimeters collected from SPF applicators, 294.7 μg/m 3 and 18.8 mg/pair respectively. Overall, GM concentrations of the two TCIPP urinary biomarkers BCIPP and BCIPHIPP and (6.2 and 88.8 μg/mL) were 26-35 times higher than reported in the general population. Post-shift levels of TCIPP biomarkers were higher than pre-shift even though workers at insulation sites wore supplied air respirators, gloves and coveralls. The urinary biomarkers for the other PFRs were not elevated post shift. Concentrations of TCIPP on glove dosimeters were positively associated with post-shift urinary TCIPP biomarkers (p < 0.05) whereas concentrations in personal air samples were not. High levels of urinary biomarkers for TCIPP among SPF applicators, including post-shift, points to absorption of TCIPP during the work shift, in spite of the use of best industry exposure control practices. Dermal exposure appears to be an important, if not the primary exposure pathway for TCIPP, although inhalation or incidental ingestion of foam particles post-SPF application cannot be ruled out in this pilot study. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Flow field and scalar measurements in a series of turbulent partially-premixed dimethyl ether/air jet flames

    DOE PAGES

    Coriton, Bruno; Im, Seong -Kyun; Gamba, Mirko; ...

    2017-03-12

    Here, we present a series of benchmark flames consisting of six partially-premixed piloted dimethyl ether (DME)/air jet flames. These flames provide an opportunity to understand turbulence-flame interactions for oxygenated fuels and to develop predictive models for these interactions using a canonical burner geometry. The development of accurate models for DME/air flames would establish a foundation for studies of more complex oxygenated fuels. The flames are stabilized on a piloted jet burner similar to that of the partially-premixed methane/air jet flames that have been studied extensively within the context of the TNF Workshop. This series of six jet flames spans jetmore » exit Reynolds numbers, ReD, from 29,300 to 73,300 and stoichiometric mixture fractions, ξ st, from 0.35 to 0.60. Flame conditions range from very low probability of localized extinction to a high probability of localized extinction and subsequent re-ignition. Measurements in the flames are compared at downstream locations from 5 to 25 diameters above the nozzle exit. Mean and fluctuating velocity components are measured using stereo particle image velocimetry (SPIV). Simultaneous laser-induced fluorescence (LIF) imaging of OH and CH 2O provides insights into the distribution of these intermediate species in partially-premixed DME/air flames. OH LIF imaging is also combined with SPIV to investigate the strain rate field across the reaction zone.« less

  12. Flow field and scalar measurements in a series of turbulent partially-premixed dimethyl ether/air jet flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coriton, Bruno; Im, Seong -Kyun; Gamba, Mirko

    Here, we present a series of benchmark flames consisting of six partially-premixed piloted dimethyl ether (DME)/air jet flames. These flames provide an opportunity to understand turbulence-flame interactions for oxygenated fuels and to develop predictive models for these interactions using a canonical burner geometry. The development of accurate models for DME/air flames would establish a foundation for studies of more complex oxygenated fuels. The flames are stabilized on a piloted jet burner similar to that of the partially-premixed methane/air jet flames that have been studied extensively within the context of the TNF Workshop. This series of six jet flames spans jetmore » exit Reynolds numbers, ReD, from 29,300 to 73,300 and stoichiometric mixture fractions, ξ st, from 0.35 to 0.60. Flame conditions range from very low probability of localized extinction to a high probability of localized extinction and subsequent re-ignition. Measurements in the flames are compared at downstream locations from 5 to 25 diameters above the nozzle exit. Mean and fluctuating velocity components are measured using stereo particle image velocimetry (SPIV). Simultaneous laser-induced fluorescence (LIF) imaging of OH and CH 2O provides insights into the distribution of these intermediate species in partially-premixed DME/air flames. OH LIF imaging is also combined with SPIV to investigate the strain rate field across the reaction zone.« less

  13. Experimental investigation of piloted flameholders

    NASA Technical Reports Server (NTRS)

    Guo, C. F.; Zhang, Y. H.; Xie, Q. M.

    1986-01-01

    Four configurations of piloted flameholders were tested. The range of flame stabilization, flame propagation, pressure oscillation during ignition, and pressure drop of the configurations were determined. Some tests showed a very strong effect of inlet flow velocity profile and flameholder geometry on flame stabilization. These tests led to the following conclusions. (1) The use of a piloted flameholder in the turbofan augmentor may minimize the peak pressure rise during ignition. At the present experimental conditions, delta P/P asterisk over 2 is less than 10 percent; therefore, the use of a piloted flameholder is a good method to realize soft ignition. (2) The geometry of the piloted flameholder and the amount of fuel injected into the flameholder have a strong effect on the pressure oscillation during ignition of the fuel-air mixture in the secondary zone. (3) Compared with the V-gutter flameholder with holes in its wall, the V-gutter flameholder without holes not only has advantages such as simple structure and good rigidity but offers a wide combustion stability limit and a high capability of igniting the fuel-air mixture of the secondary zone.

  14. Combustor oscillating pressure stabilization and method

    DOEpatents

    Gemmen, R.S.; Richards, G.A.; Yip, M.T.J.; Robey, E.H.; Cully, S.R.; Addis, R.E.

    1998-08-11

    High dynamic pressure oscillations in hydrocarbon-fueled combustors typically occur when the transport time of the fuel to the flame front is at some fraction of the acoustic period. These oscillations are reduced to acceptably lower levels by restructuring or repositioning the flame front in the combustor to increase the transport time. A pilot flame front located upstream of the oscillating flame and pulsed at a selected frequency and duration effectively restructures and repositions the oscillating flame in the combustor to alter the oscillation-causing transport time. 7 figs.

  15. A spray flamelet/progress variable approach combined with a transported joint PDF model for turbulent spray flames

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Olguin, Hernan; Gutheil, Eva

    2017-05-01

    A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new insight into the local structure of this complex spray flame.

  16. Investigation of extinction and re-ignition in piloted turbulent non-premixed methane-air flames using LES and high-speed OH-LIF

    NASA Astrophysics Data System (ADS)

    Prasad, Vinayaka N.; Juddoo, Mrinal; Masri, Assaad R.; Jones, William P.; Luo, Kai H.

    2013-06-01

    Extinction and re-ignition processes observed experimentally in thin reaction zones of piloted turbulent non-premixed methane flames approaching blow-off are analysed using Large Eddy Simulation (LES) along with the Eulerian stochastic field method representing the unresolved sub-grid turbulence-chemistry interactions. Eight stochastic fields in conjunction with a reduced chemical mechanism involving 19 species are employed to perform simulations of the Sydney flames L, B and M, which exhibit increasing levels of extinction. The agreement of the flame statistics of the velocities, mixture fraction and selected reactive species were found to be encouraging and highlight the ability of the method to capture quantitatively the effects of increasing jet velocity in this series. In a subsequent analysis of the flame structure using the LES simulation data, the strong three-dimensionality of the flame was emphasised. Quantitative comparisons with recent measurements using high-speed Planar Laser-Induced Fluorescence of OH (OH-PLIF) were found to be in reasonably good agreement with LES simulations and confirm the previous observations that the rates of flame breakages are greater than those of flame closures. This study, which also represents the first successful numerical attempt to describe the entire flame series, highlights the potential and complementary capabilities of a hybrid LES and high-speed imaging approach to resolve issues such as the role of out-of-plane motion in the investigation of transient processes such as flame breakages and re-ignition.

  17. Flame Retardant Fibers for Human Space Exploration - Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    2017-01-01

    The National Aeronautics and Space Administration (NASA) has led in the development of unique flame retardant fibers for human spaceflight since the beginning of the Apollo program. After the Apollo 1 fire which killed Command Pilot Virgil I 'Gus' Grissom, Senior Pilot Edward H. White II, and Pilot Roger B. Chaffee from cardiac arrest on January 27, 1967, the accident investigators found severe third degree burns and melted spacesuits on the astronauts bodies. NASA immediately initiated an extensive research program aimed at developing flame retardant and flame resistant fibers for the enriched oxygen atmosphere of the Apollo crew cabin. Fibers are flame retardant when they have been modified by chemical and thermal treatments. Fibers are flame resistant when they are made of inherently flame resistant materials (i.e. glass, ceramic, highly aromatic polymers). Immediately after this tragic accident, NASA funded extensive research in specifically developing flame retardant fibers and fabrics. The early developmental efforts for human spaceflight were for the outer layer of the Apollo spacesuit. It was imperative that non-flammable fabrics be used in a 100% oxygen environment. Owens-Corning thus developed the Beta fiber that was immediately used in the Apollo program and later in the Space Shuttle program. Aside from the urgent need for protective fabrics for the spacesuit, NASA also needed flame retardant fabrics for both clothing and equipment inside the spacecraft. From the mid-1960s to the early 1980's, NASA contracted with many companies to develop inherently flame retardant fibers and flame retardant finishes for existing fibers. Fluorocarbons and aromatic polyamides were the polymers of great interest for the development of new inherently flame retardant fibers for enriched oxygen environments. These enriched environments varied for different space programs. For example, the Apollo program requirements were for materials that would not support combustion in a 70%/30% oxygen/nitrogen environment at 6.3 pounds per square inch (psi). The Skylab program flammability requirements were set at 80%/20% oxygen/nitrogen ratios at 5 psi. While many fibers produced under several NASA contracts were never used, a few have become commercial products. The intent of this paper is to present the developmental history of some of these new or modified textile fibers. These developmental efforts are presented at various levels of details depending on the source of the historical records.

  18. A direct numerical simulation study of flame structure and stabilization of an experimental high Ka CH 4/air premixed jet flame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    In the present work, a direct numerical simulation (DNS) of an experimental high Karlovitz number (Ka) CH 4/air piloted premixed flame was analyzed to study the inner structure and the stabilization mechanism of the turbulent flame. A reduced chemical mechanism for premixed CH 4/air combustion with NO x based on GRI-Mech3.0 was used, including 268 elementary reactions and 28 transported species. The evolution of the stretch factor, I0, indicates that the burning rate per unit flame surface area is considerably reduced in the near field and exhibits a minimum at x/D = 8. Downstream, the burning rate gradually increases. Themore » stretch factor is different between different species, suggesting the quenching of some reactions but not others. Comparison between the turbulent flame and strained laminar flames indicates that certain aspects of the mean flame structure can be represented surprisingly well by flamelets if changes in boundary conditions are accounted for and the strain rate of the mean flow is employed; however, the thickening of the flame due to turbulence is not captured. The spatial development of displacement speeds is studied at higher Ka than previous DNS. In contrast to almost all previous studies, the mean displacement speed conditioned on the flame front is negative in the near field, and the dominant contribution to the displacement speed is normal diffusion with the reaction contribution being secondary. Further downstream, reaction overtakes normal diffusion, contributing to a positive displacement speed. The negative displacement speed in the near field implies that the flame front situates itself in the pilot region where the inner structure of the turbulent flame is affected significantly, and the flame stabilizes in balance with the inward flow. Notably, in the upstream region of the turbulent flame, the main reaction contributing to the production of OH, H+O 2⇌O+OH (R35), is weak. Moreover, oxidation reactions, H 2+OH⇌H+H 2O (R79) and CO+OH⇌CO 2+H (R94), are influenced by H 2O and CO 2 from the pilot and are completely quenched. Hence, the entire radical pool of OH, H and O is affected. Furthermore, the fuel consumption layer remains comparably active and generates heat, mainly via the reaction CH 4+OH⇌CH 3+H 2O (R93).« less

  19. A direct numerical simulation study of flame structure and stabilization of an experimental high Ka CH 4/air premixed jet flame

    DOE PAGES

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    2017-03-17

    In the present work, a direct numerical simulation (DNS) of an experimental high Karlovitz number (Ka) CH 4/air piloted premixed flame was analyzed to study the inner structure and the stabilization mechanism of the turbulent flame. A reduced chemical mechanism for premixed CH 4/air combustion with NO x based on GRI-Mech3.0 was used, including 268 elementary reactions and 28 transported species. The evolution of the stretch factor, I0, indicates that the burning rate per unit flame surface area is considerably reduced in the near field and exhibits a minimum at x/D = 8. Downstream, the burning rate gradually increases. Themore » stretch factor is different between different species, suggesting the quenching of some reactions but not others. Comparison between the turbulent flame and strained laminar flames indicates that certain aspects of the mean flame structure can be represented surprisingly well by flamelets if changes in boundary conditions are accounted for and the strain rate of the mean flow is employed; however, the thickening of the flame due to turbulence is not captured. The spatial development of displacement speeds is studied at higher Ka than previous DNS. In contrast to almost all previous studies, the mean displacement speed conditioned on the flame front is negative in the near field, and the dominant contribution to the displacement speed is normal diffusion with the reaction contribution being secondary. Further downstream, reaction overtakes normal diffusion, contributing to a positive displacement speed. The negative displacement speed in the near field implies that the flame front situates itself in the pilot region where the inner structure of the turbulent flame is affected significantly, and the flame stabilizes in balance with the inward flow. Notably, in the upstream region of the turbulent flame, the main reaction contributing to the production of OH, H+O 2⇌O+OH (R35), is weak. Moreover, oxidation reactions, H 2+OH⇌H+H 2O (R79) and CO+OH⇌CO 2+H (R94), are influenced by H 2O and CO 2 from the pilot and are completely quenched. Hence, the entire radical pool of OH, H and O is affected. Furthermore, the fuel consumption layer remains comparably active and generates heat, mainly via the reaction CH 4+OH⇌CH 3+H 2O (R93).« less

  20. Numerical Investigation of Hydrogen and Kerosene Combustion in Supersonic Air Streams

    NASA Technical Reports Server (NTRS)

    Taha, A. A.; Tiwari, S. N.; Mohieldin, T. O.

    1999-01-01

    The effect of mixing schemes on the combustion of both gaseous hydrogen and liquid kerosene is investigated. Injecting pilot gaseous hydrogen parallel to the supersonic incoming air tends to maintain the stabilization of the main liquid kerosene, which is normally injected. Also the maximum kerosene equivalence ratio that can maintain stable flame can be increased by increasing the pilot energy level. The wedge flame holding contributes to an increased kerosene combustion efficiency by the generation of shock-jet interaction.

  1. Direct numerical simulation of a high Ka CH 4/air stratified premixed jet flame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haiou; Hawkes, Evatt R.; Savard, Bruno

    Here, direct numerical simulation (DNS) of a high Karlovitz number (Ka) CH 4/air stratified premixed jet flame was performed and used to provide insights into fundamentals of turbulent stratified premixed flames and their modelling implications. The flame exhibits significant stratification where the central jet has an equivalence ratio of 0.4, which is surrounded by a pilot flame with an equivalence ratio of 0.9. A reduced chemical mechanism for CH 4/air combustion based on GRI-Mech3.0 was used, including 268 elementary reactions and 28 transported species.

  2. Direct numerical simulation of a high Ka CH 4/air stratified premixed jet flame

    DOE PAGES

    Wang, Haiou; Hawkes, Evatt R.; Savard, Bruno; ...

    2018-04-24

    Here, direct numerical simulation (DNS) of a high Karlovitz number (Ka) CH 4/air stratified premixed jet flame was performed and used to provide insights into fundamentals of turbulent stratified premixed flames and their modelling implications. The flame exhibits significant stratification where the central jet has an equivalence ratio of 0.4, which is surrounded by a pilot flame with an equivalence ratio of 0.9. A reduced chemical mechanism for CH 4/air combustion based on GRI-Mech3.0 was used, including 268 elementary reactions and 28 transported species.

  3. Turbulent piloted partially-premixed flames with varying levels of O2/N2: stability limits and PDF calculations

    NASA Astrophysics Data System (ADS)

    Juddoo, Mrinal; Masri, Assaad R.; Pope, Stephen B.

    2011-12-01

    This paper reports measured stability limits and PDF calculations of piloted, turbulent flames of compressed natural gas (CNG) partially-premixed with either pure oxygen, or with varying levels of O2/N2. Stability limits are presented for flames of CNG fuel premixed with up to 20% oxygen as well as CNG-O2-N2 fuel where the O2 content is varied from 8 to 22% by volume. Calculations are presented for (i) Sydney flame B [Masri et al. 1988] which uses pure CNG as well as flames B15 to B25 where the CNG is partially-premixed with 15-25% oxygen by volume, respectively and (ii) Sandia methane-air (1:3 by volume) flame E [Barlow et al. 2005] as well as new flames E15 and E25 that are partially-premixed with 'reconstituted air' where the O2 content in nitrogen is 15 and 25% by volume, respectively. The calculations solve a transported PDF of composition using a particle-based Monte Carlo method and employ the EMST mixing model as well as detailed chemical kinetics. The addition of oxygen to the fuel increases stability, shortens the flames, broadens the reaction zone, and shifts the stoichiometric mixture fraction towards the inner side of the jet. It is found that for pure CNG flames where the reaction zone is narrow (∼0.1 in mixture fraction space), the PDF calculations fail to reproduce the correct level of local extinction on approach to blow-off. A broadening in the reaction zone up to about 0.25 in mixture fraction space is needed for the PDF/EMST approach to be able to capture these finite-rate chemistry effects. It is also found that for the same level of partial premixing, increasing the O2/N2 ratio increases the maximum levels of CO and NO but shifts the peak to richer mixture fractions. Over the range of oxygenation investigated here, stability limits have shown to improve almost linearly with increasing oxygen levels in the fuel and with increasing the contribution of release rate from the pilot.

  4. Design of "model-friendly" turbulent non-premixed jet burners for C2+ hydrocarbon fuels

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.

    2011-07-01

    Experimental measurements in laboratory-scale turbulent burners with well-controlled boundary and flow configurations can provide valuable data for validating models of turbulence-chemistry interactions applicable to the design and analysis of practical combustors. This paper reports on the design of two canonical nonpremixed turbulent jet burners for use with undiluted gaseous and liquid hydrocarbon fuels, respectively. Previous burners of this type have only been developed for fuels composed of H2, CO, and/or methane, often with substantial dilution. While both new burners are composed of concentric tubes with annular pilot flames, the liquid-fuel burner has an additional fuel vaporization step and an electrically heated fuel vapor delivery system. The performance of these burners is demonstrated by interrogating four ethylene flames and one flame fueled by a simple JP-8 surrogate. Through visual observation, it is found that the visible flame lengths show good agreement with standard empirical correlations. Rayleigh line imaging demonstrates that the pilot flame provides a spatially homogeneous flow of hot products along the edge of the fuel jet. Planar imaging of OH laser-induced fluorescence reveals a lack of local flame extinction in the high-strain near-burner region for fuel jet Reynolds numbers (Re) less than 20 000, and increasingly common extinction events for higher jet velocities. Planar imaging of soot laser-induced incandescence shows that the soot layers in these flames are relatively thin and are entrained into vortical flow structures in fuel-rich regions inside of the flame sheet.

  5. EVALUATION OF THE EFFICIENCY OF INDUSTRIAL FLARES: INFLUENCE OF GAS COMPOSITION

    EPA Science Inventory

    The report gives results of a pilot-scale evaluation of the efficiency of industrial flares. The work (1) evaluated the effects of additional gas mixtures on flare stability and efficiency with and without pilot assist and (2) correlated flame stability for the different gas mixt...

  6. Planar SiC MEMS flame ionization sensor for in-engine monitoring

    NASA Astrophysics Data System (ADS)

    Rolfe, D. A.; Wodin-Schwartz, S.; Alonso, R.; Pisano, A. P.

    2013-12-01

    A novel planar silicon carbide (SiC) MEMS flame ionization sensor was developed, fabricated and tested to measure the presence of a flame from the surface of an engine or other cooled surface while withstanding the high temperature and soot of a combustion environment. Silicon carbide, a ceramic semiconductor, was chosen as the sensor material because it has low surface energy and excellent mechanical and electrical properties at high temperatures. The sensor measures the conductivity of scattered charge carriers in the flame's quenching layer. This allows for flame detection, even when the sensor is situated several millimetres from the flame region. The sensor has been shown to detect the ionization of premixed methane and butane flames in a wide temperature range starting from room temperature. The sensors can measure both the flame chemi-ionization and the deposition of water vapour on the sensor surface. The width and speed of a premixed methane laminar flame front were measured with a series of two sensors fabricated on a single die. This research points to the feasibility of using either single sensors or arrays in internal combustion engine cylinders to optimize engine performance, or for using sensors to monitor flame stability in gas turbine applications.

  7. Numerical Investigation of Fuel Distribution Effect on Flow and Temperature Field in a Heavy Duty Gas Turbine Combustor

    NASA Astrophysics Data System (ADS)

    Deng, Xiaowen; Xing, Li; Yin, Hong; Tian, Feng; Zhang, Qun

    2018-03-01

    Multiple-swirlers structure is commonly adopted for combustion design strategy in heavy duty gas turbine. The multiple-swirlers structure might shorten the flame brush length and reduce emissions. In engineering application, small amount of gas fuel is distributed for non-premixed combustion as a pilot flame while most fuel is supplied to main burner for premixed combustion. The effect of fuel distribution on the flow and temperature field related to the combustor performance is a significant issue. This paper investigates the fuel distribution effect on the combustor performance by adjusting the pilot/main burner fuel percentage. Five pilot fuel distribution schemes are considered including 3 %, 5 %, 7 %, 10 % and 13 %. Altogether five pilot fuel distribution schemes are computed and deliberately examined. The flow field and temperature field are compared, especially on the multiple-swirlers flow field. Computational results show that there is the optimum value for the base load of combustion condition. The pilot fuel percentage curve is calculated to optimize the combustion operation. Under the combustor structure and fuel distribution scheme, the combustion achieves high efficiency with acceptable OTDF and low NOX emission. Besides, the CO emission is also presented.

  8. Utility gas turbine combustor viewing system: Volume 2, Engine operating envelope test: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morey, W.W.

    1988-12-01

    This report summarizes the development and field testing of a combustor viewing probe (CVP) as a flame diagnostic monitor for utility gas turbine engines. The prototype system is capable of providing a visual record of combustor flame images, recording flame spectral data, analyzing image and spectral data, and diagnosing certain engine malfunctions. The system should provide useful diagnostic information to utility plant operators, and reduced maintenance costs. The field tests demonstrated the ability of the CVP to monitor combustor flame condition and to relate changes in the engine operation with variations in the flame signature. Engine light off, run upmore » to full speed, the addition of load, and the effect of water injection for NO/sub x/ control could easily be identified on the video monitor. The viewing probe was also valuable in identifying hard startups and shutdowns, as well as transient effects that can seriously harm the engine.« less

  9. Utility gas turbine combustor viewing system: Volume 1, Conceptual design and initial field testing: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morey, W.W.

    1988-12-01

    This report summarizes the development and field testing of a combustor viewing probe (CVP) as a flame diagnostic monitor for utility gas turbine engines. The prototype system is capable of providing a visual record of combustor flame images, recording flame spectral data, analyzing image and spectral data, and diagnosing certain engine malfunctions. The system should provide useful diagnostic information to utility plant operators, and reduce maintenance costs. The field tests demonstrated the ability of the CVP to monitor combustor flame condition and to relate changes in the engine operation with variations in the flame signature. Engine light off, run upmore » to full speed, the addition of load, and the effect of water injection for NO/sub x/ control could easily be identified on the video monitor. The viewing probe was also valuable in identifying hard startups and shutdowns, as well as transient effects that can seriously harm the engine. 11 refs.« less

  10. Optically Based Flame Detection in the NASA Langley 8-ft High- Temperature Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Borg, Stephen E.

    2005-01-01

    Two optically based flame-detection systems have been developed for use in NASA Langley's 8-Foot High-Temperature Tunnel (8-ft HTT). These systems are used to detect the presence and stability of the main-burner and pilot-level flames during facility operation. System design considerations will be discussed, and a detailed description of the system components and circuit diagrams will be provided in the Appendices of this report. A more detailed description of the manufacturing process used in the fabrication of the fiber-optic probes is covered in NASA TM-2001-211233.

  11. Sooting turbulent jet flame: characterization and quantitative soot measurements

    NASA Astrophysics Data System (ADS)

    Köhler, M.; Geigle, K. P.; Meier, W.; Crosland, B. M.; Thomson, K. A.; Smallwood, G. J.

    2011-08-01

    Computational fluid dynamics (CFD) modelers require high-quality experimental data sets for validation of their numerical tools. Preferred features for numerical simulations of a sooting, turbulent test case flame are simplicity (no pilot flame), well-defined boundary conditions, and sufficient soot production. This paper proposes a non-premixed C2H4/air turbulent jet flame to fill this role and presents an extensive database for soot model validation. The sooting turbulent jet flame has a total visible flame length of approximately 400 mm and a fuel-jet Reynolds number of 10,000. The flame has a measured lift-off height of 26 mm which acts as a sensitive marker for CFD model validation, while this novel compiled experimental database of soot properties, temperature and velocity maps are useful for the validation of kinetic soot models and numerical flame simulations. Due to the relatively simple burner design which produces a flame with sufficient soot concentration while meeting modelers' needs with respect to boundary conditions and flame specifications as well as the present lack of a sooting "standard flame", this flame is suggested as a new reference turbulent sooting flame. The flame characterization presented here involved a variety of optical diagnostics including quantitative 2D laser-induced incandescence (2D-LII), shifted-vibrational coherent anti-Stokes Raman spectroscopy (SV-CARS), and particle image velocimetry (PIV). Producing an accurate and comprehensive characterization of a transient sooting flame was challenging and required optimization of these diagnostics. In this respect, we present the first simultaneous, instantaneous PIV, and LII measurements in a heavily sooting flame environment. Simultaneous soot and flow field measurements can provide new insights into the interaction between a turbulent vortex and flame chemistry, especially since soot structures in turbulent flames are known to be small and often treated in a statistical manner.

  12. Comparison of coherent anti-Stokes Raman-scattering thermometry with thermocouple measurements and model predictions in both natural-gas and coal-dust flames.

    PubMed

    Lückerath, R; Woyde, M; Meier, W; Stricker, W; Schnell, U; Magel, H C; Görres, J; Spliethoff, H; Maier, H

    1995-06-20

    Mobile coherent anti-Stokes Raman-scattering equipment was applied for single-shot temperature measurements in a pilot-scale furnace with a thermal power of 300 kW, fueled with either natural gas or coal dust. Average temperatures deduced from N(2) coherent anti-Stokes Raman-scattering spectra were compared with thermocouple readings for identical flame conditions. There were evident differences between the results of both techniques, mainly in the case of the natural-gas flame. For the coal-dust flame, a strong influence of an incoherent and a coherent background, which led to remarkable changes in the spectral shape of the N(2)Q-branch spectra, was observed. Therefore an algorithm had to be developed to correct the coal-dust flame spectra before evaluation. The measured temperature profiles at two different planes in the furnace were compared with model calculations.

  13. An Investigation of a Hybrid Mixing Model for PDF Simulations of Turbulent Premixed Flames

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Li, Shan; Wang, Hu; Ren, Zhuyin

    2015-11-01

    Predictive simulations of turbulent premixed flames over a wide range of Damköhler numbers in the framework of Probability Density Function (PDF) method still remain challenging due to the deficiency in current micro-mixing models. In this work, a hybrid micro-mixing model, valid in both the flamelet regime and broken reaction zone regime, is proposed. A priori testing of this model is first performed by examining the conditional scalar dissipation rate and conditional scalar diffusion in a 3-D direct numerical simulation dataset of a temporally evolving turbulent slot jet flame of lean premixed H2-air in the thin reaction zone regime. Then, this new model is applied to PDF simulations of the Piloted Premixed Jet Burner (PPJB) flames, which are a set of highly shear turbulent premixed flames and feature strong turbulence-chemistry interaction at high Reynolds and Karlovitz numbers. Supported by NSFC 51476087 and NSFC 91441202.

  14. Flame colour characterization in the visible and infrared spectrum using a digital camera and image processing

    NASA Astrophysics Data System (ADS)

    Huang, Hua-Wei; Zhang, Yang

    2008-08-01

    An attempt has been made to characterize the colour spectrum of methane flame under various burning conditions using RGB and HSV colour models instead of resolving the real physical spectrum. The results demonstrate that each type of flame has its own characteristic distribution in both the RGB and HSV space. It has also been observed that the averaged B and G values in the RGB model represent well the CH* and C*2 emission of methane premixed flame. Theses features may be utilized for flame measurement and monitoring. The great advantage of using a conventional camera for monitoring flame properties based on the colour spectrum is that it is readily available, easy to interface with a computer, cost effective and has certain spatial resolution. Furthermore, it has been demonstrated that a conventional digital camera is able to image flame not only in the visible spectrum but also in the infrared. This feature is useful in avoiding the problem of image saturation typically encountered in capturing the very bright sooty flames. As a result, further digital imaging processing and quantitative information extraction is possible. It has been identified that an infrared image also has its own distribution in both the RGB and HSV colour space in comparison with a flame image in the visible spectrum.

  15. The Interaction of High-Speed Turbulence with Flames: Turbulent Flame Speed

    DTIC Science & Technology

    2010-08-05

    AND ADDRESS(ES) 10. SPONSOR / MONITOR’S ACRONYM(S) 9 . SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 11. SPONSOR / MONITOR’S REPORT NUMBER(S...UL 38 A.Y. Poludnenko (202) 767-6582 05 -08-2010 Memorandum Report Turbulent premixed combustion Turbulence Flamelet Turbulent flame speed Office of...3.4. Stretch factor and the balance between ST and AT ...................................................................... 9 4. Flame surface

  16. 40 CFR 49.4167 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... which the pilot flame is not present, electronically controlled automatic igniter is not functioning, or... injection was temporarily infeasible for the current calendar month plus the previous consecutive eleven (11...

  17. 40 CFR 49.4167 - Recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... which the pilot flame is not present, electronically controlled automatic igniter is not functioning, or... injection was temporarily infeasible for the current calendar month plus the previous consecutive eleven (11...

  18. Turbulence radiation interaction in Reynolds-averaged Navier-Stokes simulations of nonpremixed piloted turbulent laboratory-scale flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, A.; Merci, B.; Roekaerts, D.

    2007-10-15

    Numerical simulation results are presented for two axisymmetric, nonluminous turbulent piloted jet diffusion flames: Sandia Flame D (SFD) and Delft Flame III (DFIII). Turbulence is represented by a Reynolds stress transport model, while chemistry is modeled by means of steady laminar flamelets. We use the preassumed PDF approach for turbulence-chemistry interaction. A weighted sum of gray gases model is used for the gas radiative properties. The radiative transfer equation is solved using the discrete ordinates method in the conservative finite-volume formulation. The radiative loss leads to a decrease in mean temperature, but does not significantly influence the flow and mixingmore » fields, in terms either of mean values or of rms values of fluctuations. A systematic analysis of turbulence-radiation interaction (TRI) is carried out. By considering five different TRI formulations, and comparing also with a simple optically thin model, individual TRI contributions are isolated and quantified. For both flames, effects are demonstrated of (1) influence of temperature fluctuations on the mean Planck function, (2) temperature and composition fluctuations on the mean absorption coefficient, and (3) correlation between absorption coefficient and Planck function. The strength of the last effect is stronger in DFIII than in SFD, because of stronger turbulence-chemistry interaction and lower mean temperature in DFIII. The impact of the choice of TRI model on the prediction of the temperature-sensitive minor species NO is determined in a postprocessing step with fixed flow and mixing fields. Best agreement for NO is obtained using the most complete representation of TRI. (author)« less

  19. Investigation of the effect of pilot burner on lean blow out performance of a staged injector

    NASA Astrophysics Data System (ADS)

    Yang, Jinhu; Zhang, Kaiyu; Liu, Cunxi; Ruan, Changlong; Liu, Fuqiang; Xu, Gang

    2014-12-01

    The staged injector has exhibited great potential to achieve low emissions and is becoming the preferable choice of many civil airplanes. Moreover, it is promising to employ this injector design in military engine, which requires most of the combustion air enters the combustor through injector to reduce smoke emission. However, lean staged injector is prone to combustion instability and extinction in low load operation, so techniques for broadening its stable operation ranges are crucial for its application in real engine. In this work, the LBO performance of a staged injector is assessed and analyzed on a single sector test section. The experiment was done in atmospheric environment with optical access. Kerosene-PLIF technique was used to visualize the spray distribution and common camera was used to record the flame patterns. Emphasis is put on the influence of pilot burner on LBO performance. The fuel to air ratios at LBO of six injectors with different pilot swirler vane angle were evaluated and the obtained LBO data was converted into data at idle condition. Results show that the increase of pilot swirler vane angle could promote the air assisted atomization, which in turn improves the LBO performance slightly. Flame patterns typical in the process of LBO are analyzed and attempts are made to find out the main factors which govern the extinction process with the assistance of spray distribution and numerical flow field results. It can be learned that the flame patterns are mainly influenced by structure of the flow field just behind the pilot burner when the fuel mass flow rate is high; with the reduction of fuel, atomization quality become more and more important and is the main contributing factor of LBO. In the end of the paper, conclusions are drawn and suggestions are made for the optimization of the present staged injector.

  20. Alternative Bio-Derived JP-8 Class Fuel and JP-8 Fuel: Flame Tube Combustor Test Results Compared using a GE TAPS Injector Configuration

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Tedder, Sarah A.; Anderson, Robert C.

    2016-01-01

    This paper presents results from tests in a flame tube facility, where a bio-derived alternate fuel was compared with JP-8 for emissions and general combustion performance. A research version of General Electric Aviation (GE) TAPS injector was used for the tests. Results include combustion efficiency from gaseous emission measurements, 2D planar laser-based imaging as well as basic flow visualization of the flame. Four inlet test conditions were selected that simulate various engine power conditions relevant to NASA Fundamental Aeronautics Supersonics Project and Environmentally Responsible Aviation Program. One inlet condition was a pilot-only test point. The other three inlet conditions incorporated fuel staging via a split between the pilot and main circuits of either 10%/90% or 20%/80%. For each engine power condition, three fuel mixes were used: 100% JP-8; 100% alternative; and a blend of the two, containing 75% alternative. Results for the inlet cases that have fuel split between pilot and main, indicate that fuel from the pilot appears to be evaporated by the time it reaches the dome exit. Main circuit liquid evaporates within a downstream distance equal to annulus height, no matter the fuel. Some fuel fluorescence images for a 10%/90% fuel staging case show a distinct difference between JP-8 and bio-derived fuel. OH PLIF results indicate that OH forms in a region more centrally-located for the JP-8 case downstream of the pilot, in its central recirculation region (CRZ). For the bio-derived Hydrotreated Renewable Jet (HRJ) fuel, however, we do not see much OH in the CRZ. The OH image structure near the dome exit is similar for the two fuels, but farther downstream the OH in the CRZ is much more apparent for the JP-8 than for the alternate fuel. For all conditions, there was no discernable difference between fuel types in combustion efficiency or emissions.

  1. Mid-infrared laser absorption tomography for quantitative 2D thermochemistry measurements in premixed jet flames

    NASA Astrophysics Data System (ADS)

    Wei, Chuyu; Pineda, Daniel I.; Paxton, Laurel; Egolfopoulos, Fokion N.; Spearrin, R. Mitchell

    2018-06-01

    A tomographic laser absorption spectroscopy technique, utilizing mid-infrared light sources, is presented as a quantitative method to spatially resolve species and temperature profiles in small-diameter reacting flows relevant to combustion systems. Here, tunable quantum and interband cascade lasers are used to spectrally resolve select rovibrational transitions near 4.98 and 4.19 μm to measure CO and {CO2}, respectively, as well as their vibrational temperatures, in piloted premixed jet flames. Signal processing methods are detailed for the reconstruction of axial and radial profiles of thermochemical structure in a canonical ethylene-air jet flame. The method is further demonstrated to quantitatively distinguish between different turbulent flow conditions.

  2. Area Monitoring for Detection of Leaks and/or Flames

    NASA Technical Reports Server (NTRS)

    Mian, Zahid F. (Inventor); Gamache, Ronald W. (Inventor); Glasser, Nick (Inventor)

    2015-01-01

    A solution for monitoring an area for the presence of a flame and/or a leak, such as from a pressurized fluid, is provided. An imaging device can be used that acquires image data based on electromagnetic radiation having wavelengths only corresponding to at least one region of the electromagnetic spectrum in which electromagnetic radiation from an ambient light source is less than the electromagnetic radiation emitted by at least one type of flame for which the presence within the area is being monitored. An acoustic device can be used that is configured to acquire acoustic data for the area and enhance acoustic signals in a range of frequencies corresponding to a leak of a pressurized fluid present in the area.

  3. Area Monitoring for Detection of Leaks And/Or Flames

    NASA Technical Reports Server (NTRS)

    Mian, Zahid F. (Inventor); Gamache, Ronald W. (Inventor); Glasser, Nicholas (Inventor)

    2017-01-01

    A solution for monitoring an area for the presence of a flame and/or a leak, such as from a pressurized fluid, is provided. An imaging device can be used that acquires image data based on electromagnetic radiation having wavelengths only corresponding to at least one region of the electromagnetic spectrum in which electromagnetic radiation from an ambient light source is less than the electromagnetic radiation emitted by at least one type of flame for which the presence within the area is being monitored. An acoustic device can be used that is configured to acquire acoustic data for the area and enhance acoustic signals in a range of frequencies corresponding to a leak of a pressurized fluid present in the area.

  4. Piloted Ignition of Polypropylene/Glass Composites in a Forced Air Flow

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, A. C.; Rich, D.; Lautenberger, C.; Stefanovich, A.; Metha, S.; Torero, J.; Yuan, Z.; Ross, H.

    2003-01-01

    The Forced Ignition and Spread Test (FIST) is being used to study the flammability characteristics of combustible materials in forced convective flows. The FIST methodology is based on the ASTM E-1321, Lateral Ignition and Flame Spread Test (LIFT) which is used to determine the ignition and flame spread characteristics of materials, and to produce 'Flammability Diagrams' of materials. The LIFT apparatus, however, relies on natural convection to bring air to the combustion zone and the fuel vapor to the pilot flame, and thus cannot describe conditions where the oxidizer flow velocity may change. The FIST on the other hand, by relying on a forced flow as the dominant transport mechanism, can be used to examine variable oxidizer flow characteristics, such as velocity, oxygen concentration, and turbulence intensity, and consequently has a wider applicability. Particularly important is its ability to determine the flammability characteristics of materials used in spacecraft since in the absence of gravity the only flow present is that forced by the HVAC of the space facility. In this paper, we report work on the use of the FIST approach on the piloted ignition of a blended polypropylene fiberglass (PP/GL) composite material exposed to an external radiant flux in a forced convective flow of air. The effect of glass concentration under varying external radiant fluxes is examined and compared qualitatively with theoretical predictions of the ignition process. The results are used to infer the effect of glass content on the fire safety characteristics of composites.

  5. Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF

    NASA Astrophysics Data System (ADS)

    Mueller, Dirk; Triebel, Wolfgang; Bochmann, Arne; Schmidl, Gabriele; Eckardt, Daniel; Burkert, Alfons; Roeper, Juergen; Schwerin, Malte

    2003-11-01

    Concentration profiles of OH, O2 and NO as well as temperature fields in diffusion flames of a length of approx. 300 mm and 40 mm in diameter used for gas-phase synthesis of fused silica have been determined by Planar Laser Induced Fluorescence (PLIF). The measurements have been carried out using a tunable spectrally narrowed KrF laser, whose wavelengths could be switched pulse-to-pulse. The laser beam was shaped as a light sheet into the flame at a fixed position. The flame area under investigation was monitored by moving the burner mounted on a stepper motor. By adapted synchronization the laser induced fluorescence was continuously recorded over the height of the flame perpendicular to the laser light sheet with an intensified CCD camera (10 fps, 8 bit dynamic range, 768 x 576 pixels). By image processing the spatial offset between images was corrected and superposed images were averaged and analyzed. This method allows to investigate the flame by recording 2D-fluorescence images including an automatic correction of intensity inhomogeneities of the laser light sheet. Based on the excited radical or molecule the fluorescence images were used to determine concentration and temperature distributions to build up a 2D-map of the flame. The PLIF experiment was calibrated with precise determination of the temperature at one coordinate of the flame by Spontaneous Vibrational Raman Scattering (VRS) of N2. As a result temperatures up to 3200 K could be determined with an accuracy better than 3% and a spatial resolution better than 1 mm. Temperature variations in the flame at different gas flows of fuel and oxidizer could be monitored sensitively. Also, the influence of different carrier gases like N2, Ar and He on the temperature distribution was investigated. Fluctuations in gas flow caused by turbulence could be monitored as well.

  6. Investigation of transient ignition process in a cavity based scramjet combustor using combined ethylene injectors

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Cai, Zun; Tong, Yiheng; Zheng, Hongtao

    2017-08-01

    Large Eddy Simulation (LES) and experiment were employed to investigate the transient ignition and flame propagation process in a rearwall-expansion cavity scramjet combustor using combined fuel injection schemes. The compressible supersonic solver and three ethylene combustion mechanisms were first validated against experimental data and results show in reasonably good agreement. Fuel injection scheme combining transverse and direct injectors in the cavity provides a benefit mixture distribution and could achieve a successful ignition. Four stages are illustrated in detail from both experiment and LES. After forced ignition in the cavity, initial flame kernel propagates upstream towards the cavity front edge and ignites the mixture, which acts as a continuous pilot flame, and then propagates downstream along the cavity shear layer rapidly to the combustor exit. Cavity shear layer flame stabilization mode can be concluded from the heat release rate and local high temperature distribution during the combustion process.

  7. An imaging spectrometer for microgravity application

    NASA Technical Reports Server (NTRS)

    Wong, Wallace K.

    1995-01-01

    Flame structure is the result of complex interaction of mechanisms operating in both unwanted fires and controlled combustion systems. The scientific study of gas-jet diffusion flames in reduced-gravity environment is of interest because the effects of buoyancy on flow entrainment and acceleration are lessened. Measurements of flames have been restricted to cinematography, thermocouples, and radiometers. SSG, Inc. is developing an MWIR imaging spectrometer (MIS) for microgravity flame measurements. The device will be delivered to NASA Lewis at the end of this project to demonstrate flame measurements in the laboratory. With proper modifications, the MIS can be used to monitor a gas-jet flame under microgravity on a NASA Learjet or DC-9.

  8. Detection and analysis of emitted radiation for advanced monitoring and control of combustors

    NASA Astrophysics Data System (ADS)

    Ballester, J.; Sanz, A.; Hernandez, R.; Smolarz, A.

    2005-09-01

    The permanent optimization of combustion equipment could provide very important benefits in terms of efficiency, reliability and reduced pollution. However, current capabilities for monitoring and control of industrial flames are very limited; the lack of reliable diagnostic techniques is, most probably, the main obstacle to achieve those goals. Novel instrumentation systems based on the processing of the radiation emitted by the flames could help greatly to fill this gap, as radiation signals are known to contain very rich information about flame properties Optical sensors offer the benefit of being selective, rapid and able to gather data from extremely hostile environments. Passive optical sensors offer the further advantages of simplicity and low cost. With the rapidly growing capability of sensor hardware, there is an increased interest and need to develop data interpretation strategies that will allow optical flame emission data to be converted into meaningful combustor state information. The present work describes new results achieved on the use of optical sensors for the development of advanced monitoring systems of lean-premixed flames representative of gas turbine combustors. Different complementary signals have been analyzed: broad band emission using a Si photodiode, a narrow band around 310 nm measured with a photomultiplier and measurement of UV+VIS emission spectra. The signals have been processed using both conventional and advanced methods. The results obtained demonstrate that optical sensors can yield useful, instantaneous information on the actual flame properties, not available with the sensors currently used in practical combustion systems.

  9. Studies of the flow and turbulence fields in a turbulent pulsed jet flame using LES/PDF

    NASA Astrophysics Data System (ADS)

    Zhang, Pei; Masri, Assaad R.; Wang, Haifeng

    2017-09-01

    A turbulent piloted jet flame subject to a rapid velocity pulse in its fuel jet inflow is proposed as a new benchmark case for the study of turbulent combustion models. In this work, we perform modelling studies of this turbulent pulsed jet flame and focus on the predictions of its flow and turbulence fields. An advanced modelling strategy combining the large eddy simulation (LES) and the probability density function (PDF) methods is employed to model the turbulent pulsed jet flame. Characteristics of the velocity measurements are analysed to produce a time-dependent inflow condition that can be fed into the simulations. The effect of the uncertainty in the inflow turbulence intensity is investigated and is found to be very small. A method of specifying the inflow turbulence boundary condition for the simulations of the pulsed jet flame is assessed. The strategies for validating LES of statistically transient flames are discussed, and a new framework is developed consisting of different averaging strategies and a bootstrap method for constructing confidence intervals. Parametric studies are performed to examine the sensitivity of the predictions of the flow and turbulence fields to model and numerical parameters. A direct comparison of the predicted and measured time series of the axial velocity demonstrates a satisfactory prediction of the flow and turbulence fields of the pulsed jet flame by the employed modelling methods.

  10. Flame monitoring of a model swirl injector using 1D tunable diode laser absorption spectroscopy tomography

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Cao, Zhang; Li, Fangyan; Lin, Yuzhen; Xu, Lijun

    2017-05-01

    Distributions of temperature and H2O concentration in a swirling flame are critical to evaluate the performance of a gas turbine combustor. In this paper, 1D tunable diode laser absorption spectroscopy tomography (1D-TDLAST) was introduced to monitor swirling flames generated from a model swirl injector by simultaneously reconstructing the rotationally symmetric distributions of temperature and H2O concentration. The optical system was sufficiently simplified by introducing only one fan-beam illumination and a linear detector array of 12 equally-spaced photodetectors. The fan-beam illumination penetrated a cross section of interest in the swirling flame and the transmitted intensities were detected by the detector array. With the transmitted intensities in hand, projections were extracted and employed by a 1D tomographic algorithm to reconstruct the distributions of temperature and H2O concentration. The route of the precessing vortex core generated in the swirling flame can be easily inferred from the reconstructed profiles of temperature and H2O concentration at different heights above the nozzle of the swirl injector.

  11. Spot Radiative Ignition and Subsequent Three Dimensional Flame Spread Over Thin Cellulose Fuels

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Kashiwagi, T.; Kikuchi, M.; Fujita, O.; Ito, K.

    1999-01-01

    Spontaneous radiative ignition and transition to flame spread over thin cellulose fuel samples was studied aboard the USMP-3 STS-75 Space Shuttle mission, and in three test series in the 10 second Japan Microgravity Center (JAMIC). A focused beam from a tungsten/halogen lamp was used to ignite the center of the fuel sample while an external air flow was varied from 0 to 10 cm/s. Non-piloted radiative ignition of the paper was found to occur more easily in microgravity than in normal gravity. Ignition of the sample was achieved under all conditions studied (shuttle cabin air, 21%-50% O2 in JAMIC), with transition to flame spread occurring for all but the lowest oxygen and flow conditions. While radiative ignition in a quiescent atmosphere was achieved, the flame quickly extinguished in air. The ignition delay time was proportional to the gas-phase mixing time, which is estimated using the inverse flow rate. The ignition delay was a much stronger function of flow at lower oxygen concentrations. After ignition, the flame initially spread only upstream, in a fan-shaped pattern. The fan angle increased with increasing external flow and oxygen concentration from zero angle (tunneling flame spread) at the limiting 0.5 cm/s external air flow, to 90 degrees (semicircular flame spread) for external flows at and above 5 cm/s, and higher oxygen concentrations. The fan angle was shown to be directly related to the limiting air flow velocity. Despite the convective heating from the upstream flame, the downstream flame was inhibited due to the 'oxygen shadow' of the upstream flame for the air flow conditions studied. Downstream flame spread rates in air, measured after upstream flame spread was complete and extinguished, were slower than upstream flame spread rates at the same flow. The quench regime for the transition to flame spread was skewed toward the downstream, due to the augmenting role of diffusion for opposed flow flame spread, versus the canceling effect of diffusion at very low cocurrent flows.

  12. High pressure optical combustion probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, S.D.; Richards, G.A.

    1995-06-01

    The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod inmore » a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.« less

  13. Quantitative measurement of oxygen in microgravity combustion

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.

    1995-01-01

    This research combines two innovations in an experimental system which should result in a new capability for quantitative, nonintrusive measurement of major combustion species. Using a newly available vertical cavity surface-emitting diode laser (VCSEL) and an improved spatial scanning method, we plan to measure the temporal and spatial profiles of the concentrations and temperatures of molecular oxygen in a candle flame and in a solid fuel (cellulose sheet) system. The required sensitivity for detecting oxygen is achieved by the use of high frequency wavelength modulation spectroscopy (WMS). Measurements will be performed in the NASA Lewis 2.2-second Drop Tower Facility. The objective of this research is twofold. First, we want to develop a better understanding of the relative roles of diffusion and reaction of oxygen in microgravity combustion. As the primary oxidizer species, oxygen plays a major role in controlling the observed properties of flames, including flame front speed (in solid or liquid flames), extinguishment characteristics, flame size, and flame temperature. The second objective is to develop better diagnostics based on diode laser absorption which can be of real value in microgravity combustion research. We will also demonstrate diode lasers' potential usefulness for compact, intrinsically-safe monitoring sensors aboard spacecraft. Such sensors could be used to monitor any of the major cabin gases as well as important pollutants.

  14. Development of a Test Protocol for Spacecraft Post-Fire Atmospheric Cleanup and Monitoring

    NASA Technical Reports Server (NTRS)

    Zuniga, David; Hornung, Steven D.; Haas, Jon P.; Graf, John C.

    2009-01-01

    Detecting and extinguishing fires, along with post-fire atmospheric cleaning and monitoring, are vital components of a spacecraft fire response system. Preliminary efforts focused on the technology evaluation of these systems under realistic conditions are described in this paper. While the primary objective of testing is to determine a smoke mitigation filter s performance, supplemental evaluations measuring the smoke-filled chamber handheld commercial off-the-shelf (COTS) atmospheric monitoring devices (combustion product monitors) are also conducted. The test chamber consists of a 1.4 cubic meter (50 cu. ft.) volume containing a smoke generator. The fuel used to generate the smoke is a mixture of polymers in quantities representative of materials involved in a circuit board fire as a typical spacecraft fire. Two fire conditions were examined: no flame and flame. No flame events are produced by pyrolyzing the fuel mixture in a quartz tube furnace with forced ventilation to produce a white, lingering-type smoke. Flame events ignite the smoke at the outlet of the tube furnace producing combustion characterized by a less opaque smoke with black soot. Electrochemical sensor measurements showed carbon monoxide is a major indicator of each fire. Acid gas measurements were recorded, but cross interferents are currently uncharacterized. Electrochemical sensor measurements and sample acquisition techniques from photoacoustic sensors are being improved. Overall, this research shows fire characterization using traditional analytical chemistry techniques is required to verify measurements recorded using COTS atmospheric monitoring devices.

  15. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hai; Kook, Sanghoon; Doom, Jeffrey

    2010-10-01

    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogatemore » fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation model to accurately predict gas temperatures and thus soot formation rates. When including such a radiation model, the LES model predicts mean soot concentrations within 30% in the ethylene jet flame.« less

  16. Flame quality monitor system for fixed firing rate oil burners

    DOEpatents

    Butcher, Thomas A.; Cerniglia, Philip

    1992-01-01

    A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

  17. 40 CFR 65.147 - Flares.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sensor, or infrared sensor) capable of continuously detecting that at least one pilot flame or the flare... millimeters of mercury (30 inches of mercury), but the standard temperature for determining the volume... cubic meter) (megajoules per kilocalories), where the standard temperature for gram mole per standard...

  18. 40 CFR 65.147 - Flares.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sensor, or infrared sensor) capable of continuously detecting that at least one pilot flame or the flare... millimeters of mercury (30 inches of mercury), but the standard temperature for determining the volume... cubic meter) (megajoules per kilocalories), where the standard temperature for gram mole per standard...

  19. 40 CFR 65.147 - Flares.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sensor, or infrared sensor) capable of continuously detecting that at least one pilot flame or the flare... millimeters of mercury (30 inches of mercury), but the standard temperature for determining the volume... cubic meter) (megajoules per kilocalories), where the standard temperature for gram mole per standard...

  20. 40 CFR 65.147 - Flares.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sensor, or infrared sensor) capable of continuously detecting that at least one pilot flame or the flare... millimeters of mercury (30 inches of mercury), but the standard temperature for determining the volume... cubic meter) (megajoules per kilocalories), where the standard temperature for gram mole per standard...

  1. System and method for optical monitoring of a combustion flame

    DOEpatents

    Brown, Dale M; Sandvik, Peter M; Fedison, Jeffrey B; Matocha, Kevin S; Johnson, Thomas E

    2006-09-26

    An optical spectrometer for combustion flame temperature determination includes at least two photodetectors positioned for receiving light from a combustion flame, each of the at least two photodetectors having a different, overlapping bandwidth for detecting a respective output signal in an ultraviolet emission band; and a computer for subtracting a respective output signal of a first one of the at least two photodetectors from a respective output signal of a second one of the at least two photodetectors to obtain a segment signal, and using the segment signal to determine the combustion flame temperature.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpetis, Adionos N.; Chen, J. Y.; Barlow, Robert S.

    Previously unpublished results from multiscalar point measurements in the series of piloted CH{sub 4}/air jet flames [R.S. Barlow, J.H. Frank, Proc. Combust. Inst. 27 (1998) 1087-1095] are presented and analyzed. The emphasis is on features of the data that reveal the relative importance of molecular diffusion and turbulent transport in these flames. The complete series A-F is considered. This includes laminar, transitional, and turbulent flames spanning a range in Reynolds number from 1100 to 44,800. Results on conditional means of species mass fractions, the differential diffusion parameter, and the state of the water-gas shift reaction all show that there ismore » an evolution in these flames from a scalar structure dominated by molecular diffusion to one dominated by turbulent transport. Long records of 6000 single-point samples at each of several selected locations in flame D are used to quantify the cross-stream (radial) dependence of conditional statistics of measured scalars. The cross-stream dependence of the conditional scalar dissipation is determined from 6000-shot, line-imaging measurements at selected locations. The cross-stream dependence of reactive scalars, which is most significant in the near field of the jet flame, is attributed to radial differences in both convective and local time scales of the flow. Results illustrate some potential limitations of common modeling assumptions when applied to laboratory-scale flames and, thus, provide a more complete context for interpretation of comparisons between experiments and model calculations.« less

  3. 40 CFR 49.144 - Control equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... remote notification system if the pilot flame fails. (B) An electronically controlled auto-ignition... emissions; (iv) The pit flare is equipped with an electronically controlled auto-ignition system with a... electronically controlled auto-ignition system must be repaired or replaced before the pit flare is utilized...

  4. 40 CFR 49.144 - Control equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... remote notification system if the pilot flame fails. (B) An electronically controlled auto-ignition... emissions; (iv) The pit flare is equipped with an electronically controlled auto-ignition system with a... electronically controlled auto-ignition system must be repaired or replaced before the pit flare is utilized...

  5. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  6. An improved multiple flame photometric detector for gas chromatography.

    PubMed

    Clark, Adrian G; Thurbide, Kevin B

    2015-11-20

    An improved multiple flame photometric detector (mFPD) is introduced, based upon interconnecting fluidic channels within a planar stainless steel (SS) plate. Relative to the previous quartz tube mFPD prototype, the SS mFPD provides a 50% reduction in background emission levels, an orthogonal analytical flame, and easier more sensitive operation. As a result, sulfur response in the SS mFPD spans 4 orders of magnitude, yields a minimum detectable limit near 9×10(-12)gS/s, and has a selectivity approaching 10(4) over carbon. The device also exhibits exceptionally large resistance to hydrocarbon response quenching. Additionally, the SS mFPD uniquely allows analyte emission monitoring in the multiple worker flames for the first time. The findings suggest that this mode can potentially further improve upon the analytical flame response of sulfur (both linear HSO, and quadratic S2) and also phosphorus. Of note, the latter is nearly 20-fold stronger in S/N in the collective worker flames response and provides 6 orders of linearity with a detection limit of about 2.0×10(-13)gP/s. Overall, the results indicate that this new SS design notably improves the analytical performance of the mFPD and can provide a versatile and beneficial monitoring tool for gas chromatography. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Concurrent Pilot Instrument Monitoring in the Automated Multi-Crew Airline Cockpit.

    PubMed

    Jarvis, Stephen R

    2017-12-01

    Pilot instrument monitoring has been described as "inadequate," "ineffective," and "insufficient" after multicrew aircraft accidents. Regulators have called for improved instrument monitoring by flight crews, but scientific knowledge in the area is scarce. Research has tended to investigate the monitoring of individual pilots when in the pilot-flying role; very little research has looked at crew monitoring, or that of the "monitoring-pilot" role despite it being half of the apparent problem. Eye-tracking data were collected from 17 properly constituted and current Boeing 737 crews operating in a full motion simulator. Each crew flew four realistic flight segments, with pilots swapping between the pilot-flying and pilot-monitoring roles, with and without the autopilot engaged. Analysis was performed on the 375 maneuvering-segments prior to localizer intercept. Autopilot engagement led to significantly less visual dwell time on the attitude director indicator (mean 212.8-47.8 s for the flying pilot and 58.5-39.8 s for the monitoring-pilot) and an associated increase on the horizontal situation indicator (18-52.5 s and 36.4-50.5 s). The flying-pilots' withdrawal of attention from the primary flight reference and increased attention to the primary navigational reference was paralleled rather than complemented by the monitoring-pilot, suggesting that monitoring vulnerabilities can be duplicated in the flight deck. Therefore it is possible that accident causes identified as "inadequate" or "insufficient" monitoring, are in fact a result of parallel monitoring.Jarvis SR. Concurrent pilot instrument monitoring in the automated multi-crew airline cockpit. Aerosp Med Hum Perform. 2017; 88(12):1100-1106.

  8. Investigation of buoyancy effects on turbulent nonpremixed jet flames by using normal and low-gravity conditions

    NASA Astrophysics Data System (ADS)

    Idicheria, Cherian Alex

    An experimental study was performed with the aim of investigating the structure of transitional and turbulent nonpremixed jet flames under different gravity conditions. In particular, the focus was to determine the effect of buoyancy on the mean and fluctuating characteristics of the jet flames. Experiments were conducted under three gravity levels, viz. 1 g, 20 mg and 100 mug. The milligravity and microgravity conditions were achieved by dropping a jet-flame rig in the UT-Austin 1.25-second and the NASA-Glenn Research Center 2.2-second drop towers, respectively. The principal diagnostics employed were time-resolved, cinematographic imaging of the visible soot luminosity and planar laser Mie scattering (PLMS). For the cinematographic flame luminosity imaging experiments, the flames studied were piloted nonpremixed propane, ethylene and methane jet flames at source Reynolds numbers ranging from 2000 to 10500. From the soot luminosity images, mean and root-mean square (RMS) images were computed, and volume rendering of the image sequences was used to investigate the large-scale structure evolution and flame tip dynamics. The relative importance of buoyancy was quantified with the parameter, xL , as defined by Becker and Yamazaki [1978]. The results show, in contrast to previous microgravity studies, that the high Reynolds number flames have the same flame length irrespective of the gravity level. The RMS fluctuations and volume renderings indicate that the large-scale structure and flame tip dynamics are essentially identical to those of purely momentum driven flames provided xL is approximately less than 2. The volume-renderings show that the luminous structure celerities (normalized by jet exit velocity) are approximately constant for xL < 6, but are substantially larger for xL > 8. The celerity values for xL > 8 are seen to follow a x3/2L scaling, which can be predicted with a simplified momentum equation analysis for the buoyancy-dominated regime. The underlying turbulent structure and mean mixture fraction characteristics were investigated in nonreacting and reacting jets with a PLMS diagnostic system developed for the UT-Austin 1.25-second drop tower. (Abstract shortened by UMI.)

  9. Spectral response of a UV flame sensor for a modern turbojet aircraft engine

    NASA Astrophysics Data System (ADS)

    Schneider, William E.; Minott, George L.

    1989-12-01

    A flame sensor is incorporated into the F404 turbojet's afterburner section in order to monitor operations. The sensor contains a gaseous-discharge-type UV detector tube. Attention is presently given to the results of a study of the relationship between the flame and the sensor at temperatures of up to 400 F, using a double monochromator-based spectroradiometric system optimized for spectral response measurements in the 200-300 nm wavelength range. Modifications have been instituted as a result of these tests which guarantee a sufficiently high sensor output signal level, irrespective of variability in afterburner flame irradiance associated with differences in engine operating conditions.

  10. Brominated flame retardant exposure of aircraft personnel.

    PubMed

    Strid, Anna; Smedje, Greta; Athanassiadis, Ioannis; Lindgren, Torsten; Lundgren, Håkan; Jakobsson, Kristina; Bergman, Åke

    2014-12-01

    The use of brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) in aircraft is the result of high fire safety demands. Personnel working in or with aircraft might therefore be exposed to several BFRs. Previous studies have reported PBDE exposure in flight attendants and in passengers. One other group that may be subjected to significant BFR exposure via inhalation, are the aircraft maintenance workers. Personnel exposure both during flights and maintenance of aircraft, are investigated in the present study. Several BFRs were present in air and dust sampled during both the exposure scenarios; PBDEs, hexabromocyclododecane (HBCDD), decabromodiphenyl ethane (DBDPE) and 1,2-bis (2,4,6-tribromophenoxy) ethane. PBDEs were also analyzed in serum from pilots/cabin crew, maintenance workers and from a control group of individuals without any occupational aircraft exposure. Significantly higher concentrations of PBDEs were found in maintenance workers compared to pilots/cabin crew and control subjects with median total PBDE concentrations of 19, 6.8 and 6.6 pmol g(-1) lipids, respectively. Pilots and cabin crew had similar concentrations of most PBDEs as the control group, except for BDE-153 and BDE-154 which were significantly higher. Results indicate higher concentrations among some of the pilots compared to the cabin crew. It is however, evident that the cabin personnel have lower BFR exposures compared to maintenance workers that are exposed to such a degree that their blood levels are significantly different from the control group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A Novel Strategy for Numerical Simulation of High-speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Sheikhi, M. R. H.; Drozda, T. G.; Givi, P.

    2003-01-01

    The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high-speed reacting turbulent flows. We have just completed Year 1 of this research. This is the Final Report on our activities during the period: January 1, 2003 to December 31, 2003. 2002. In the efforts during the past year, LES is conducted of the Sandia Flame D, which is a turbulent piloted nonpremixed methane jet flame. The subgrid scale (SGS) closure is based on the scalar filtered mass density function (SFMDF) methodology. The SFMDF is basically the mass weighted probability density function (PDF) of the SGS scalar quantities. For this flame (which exhibits little local extinction), a simple flamelet model is used to relate the instantaneous composition to the mixture fraction. The modelled SFMDF transport equation is solved by a hybrid finite-difference/Monte Carlo scheme.

  12. Burner ignition system

    DOEpatents

    Carignan, Forest J.

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  13. Light collection device for flame emission detectors

    DOEpatents

    Woodruff, Stephen D.; Logan, Ronald G.; Pineault, Richard L.

    1990-01-01

    A light collection device for use in a flame emission detection system such as an on-line, real-time alkali concentration process stream monitor is disclosed which comprises a sphere coated on its interior with a highly diffuse reflective paint which is positioned over a flame emission source, and one or more fiber optic cables which transfer the light generated at the interior of the sphere to a detecting device. The diffuse scattering of the light emitted by the flame uniformly distributes the light in the sphere, and the collection efficiency of the device is greater than that obtainable in the prior art. The device of the present invention thus provides enhanced sensitivity and reduces the noise associated with flame emission detectors, and can achieve substantial improvements in alkali detection levels.

  14. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reaction flows

    NASA Technical Reports Server (NTRS)

    Magnotti, F.; Diskin, G.; Matulaitis, J.; Chinitz, W.

    1984-01-01

    The use of silane (SiH4) as an effective ignitor and flame stabilizing pilot fuel is well documented. A reliable chemical kinetic mechanism for prediction of its behavior at the conditions encountered in the combustor of a SCRAMJET engine was calculated. The effects of hydrogen addition on hydrocarbon ignition and flame stabilization as a means for reduction of lengthy ignition delays and reaction times were studied. The ranges of applicability of chemical kinetic models of hydrogen-air combustors were also investigated. The CHARNAL computer code was applied to the turbulent reaction rate modeling.

  15. Scalar mixing in LES/PDF of a high-Ka premixed turbulent jet flame

    NASA Astrophysics Data System (ADS)

    You, Jiaping; Yang, Yue

    2016-11-01

    We report a large-eddy simulation (LES)/probability density function (PDF) study of a high-Ka premixed turbulent flame in the Lund University Piloted Jet (LUPJ) flame series, which has been investigated using direct numerical simulation (DNS) and experiments. The target flame, featuring broadened preheat and reaction zones, is categorized into the broken reaction zone regime. In the present study, three widely used mixing modes, namely the Interaction by Exchange with the Mean (IEM), Modified Curl (MC), and Euclidean Minimum Spanning Tree (EMST) models are applied to assess their performance through detailed a posteriori comparisons with DNS. A dynamic model for the time scale of scalar mixing is formulated to describe the turbulent mixing of scalars at small scales. Better quantitative agreement for the mean temperature and mean mass fractions of major and minor species are obtained with the MC and EMST models than with the IEM model. The multi-scalar mixing in composition space with the three models are analyzed to assess the modeling of the conditional molecular diffusion term. In addition, we demonstrate that the product of OH and CH2O concentrations can be a good surrogate of the local heat release rate in this flame. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11521091 and 91541204).

  16. 40 CFR 49.4165 - Control equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., except for § 60.18(c)(2) and (f)(2) for those utility flares operated with an electronically controlled...) Equipped with one of the following: (A) A continuous burning pilot flame. (B) An electronically controlled... electronically controlled automatic igniter, such as a chart recorder, data logger or similar devices; (vi...

  17. 40 CFR 49.4165 - Control equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., except for § 60.18(c)(2) and (f)(2) for those utility flares operated with an electronically controlled...) Equipped with one of the following: (A) A continuous burning pilot flame. (B) An electronically controlled... electronically controlled automatic igniter, such as a chart recorder, data logger or similar devices; (vi...

  18. Properties of a novel linear sulfur response mode in a multiple flame photometric detector.

    PubMed

    Clark, Adrian G; Thurbide, Kevin B

    2014-01-24

    A new linear sulfur response mode was established in the multiple flame photometric detector (mFPD) by monitoring HSO* emission in the red spectral region above 600nm. Optimal conditions for this mode were found by using a 750nm interference filter and oxygen flows to the worker flames of this device that were about 10mL/min larger than those used for monitoring quadratic S2* emission. By employing these parameters, this mode provided a linear response over about 4 orders of magnitude, with a detection limit near 5.8×10(-11)gS/s and a selectivity of sulfur over carbon of about 3.5×10(3). Specifically, the minimum detectable masses for 10 different sulfur analytes investigated ranged from 0.4 to 3.6ng for peak half-widths spanning 4-6s. The response toward ten different sulfur compounds was examined and produced an average reproducibility of 1.7% RSD (n=10) and an average equimolarity value of 1.0±0.1. In contrast to this, a conventional single flame S2* mode comparatively yielded respective values of 6.7% RSD (n=10) and 1.1±0.4. HSO* emission in the mFPD was also found to be relatively much less affected by response quenching due to hydrocarbons compared to a conventional single flame S2* emission mode. Results indicate that this new alternative linear mFPD response mode could be beneficial for sulfur monitoring applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Gas chromatography/mass spectrometry comprehensive analysis of organophosphorus, brominated flame retardants, by-products and formulation intermediates in water.

    PubMed

    Cristale, Joyce; Quintana, Jordi; Chaler, Roser; Ventura, Francesc; Lacorte, Silvia

    2012-06-08

    A multiresidue method based on gas chromatography coupled to quadrupole mass spectrometry was developed to determine organophosphorus flame retardants, polybromodiphenyl ethers (BDEs 28, 47, 99, 100, 153, 154, 183 and 209), new brominated flame retardants, bromophenols, bromoanilines, bromotoluenes and bromoanisoles in water. Two ionization techniques (electron ionization--EI, and electron capture negative ionization--ECNI) and two acquisition modes (selected ion monitoring--SIM, and selected reaction monitoring--SRM) were compared as regards to mass spectral characterization, sensitivity and quantification capabilities. The highest sensitivity, at expenses of identification capacity, was obtained by GC-ECNI-MS/SIM for most of the compounds analyzed, mainly for PBDEs and decabromodiphenyl ethane while GC-EI-MS/MS in SRM was the most selective technique and permitted the identification of target compounds at the pg level, and identification capabilities increased when real samples were analyzed. This method was further used to evaluate the presence and behavior of flame retardants within a drinking water treatment facility. Organophosphorus flame retardants were the only compounds detected in influent waters at levels of 0.32-0.03 μg L⁻¹, and their elimination throughout the different treatment stages was evaluated. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Effects of porous insert on flame dynamics in a lean premixed swirl-stabilized combustor

    NASA Astrophysics Data System (ADS)

    Brown, Marcus; Agrawal, Ajay; Allen, James; Kornegay, John

    2016-11-01

    In this study, we investigated different methods of determining the effect a porous insert has on flame dynamics during lean premixed combustion. A metallic porous insert is used to mitigate instabilities in a swirl-stabilized combustor. Thermoacoustic instabilities are seen as negative consequences of lean premixed combustion and eliminating them is the motivation for our research. Three different diagnostics techniques with high-speed Photron SA5 cameras were used to monitor flame characteristics. Particle image velocimetry (PIV) was used to observe vortical structures and recirculation zones within the combustor. Using planar laser induced fluorescence (PLIF), we were able to observe changes in the reaction zones during instabilities. Finally, utilizing a color high-speed camera, visual images depicting a flame's oscillations during the instability were captured. Using these monitoring techniques, we are able to support the claims made in previous studies stating that the porous insert in the combustor significantly reduces the thermoacoustic instability. Funding for this research was provided by the NSF REU site Grant EEC 1358991 and NASA Grant NNX13AN14A.

  1. Optical diagnostics in gas turbine combustors

    NASA Astrophysics Data System (ADS)

    Woodruff, Steven D.

    1999-01-01

    Deregulation of the power industry and increasingly tight emission controls are pushing gas turbine manufacturers to develop engines operating at high pressure for efficiency and lean fuel mixtures to control NOx. This combination also gives rise to combustion instabilities which threaten engine integrity through acoustic pressure oscillations and flashback. High speed imaging and OH emission sensors have been demonstrated to be invaluable tools in characterizing and monitoring unstable combustion processes. Asynchronous imaging technique permit detailed viewing of cyclic flame structure in an acoustic environment which may be modeled or utilized in burner design . The response of the flame front to the acoustic pressure cycle may be tracked with an OH emission monitor using a sapphire light pipe for optical access. The OH optical emission can be correlated to pressure sensor data for better understanding of the acoustical coupling of the flame. Active control f the combustion cycle can be implemented using an OH emission sensor for feedback.

  2. Computational flow field in energy efficient engine (EEE)

    NASA Astrophysics Data System (ADS)

    Miki, Kenji; Moder, Jeff; Liou, Meng-Sing

    2016-11-01

    In this paper, preliminary results for the recently-updated Open National Combustor Code (Open NCC) as applied to the EEE are presented. The comparison between two different numerical schemes, the standard Jameson-Schmidt-Turkel (JST) scheme and the advection upstream splitting method (AUSM), is performed for the cold flow and the reacting flow calculations using the RANS. In the cold flow calculation, the AUSM scheme predicts a much stronger reverse flow in the central recirculation zone. In the reacting flow calculation, we test two cases: gaseous fuel injection and liquid spray injection. In the gaseous fuel injection case, the overall flame structures of the two schemes are similar to one another, in the sense that the flame is attached to the main nozzle, but is detached from the pilot nozzle. However, in the exit temperature profile, the AUSM scheme shows a more uniform profile than that of the JST scheme, which is close to the experimental data. In the liquid spray injection case, we expect different flame structures in this scenario. We will give a brief discussion on how two numerical schemes predict the flame structures inside the Eusing different ways to introduce the fuel injection. Supported by NASA's Transformational Tools and Technologies project.

  3. Computational Flow Field in Energy Efficient Engine (EEE)

    NASA Technical Reports Server (NTRS)

    Miki, Kenji; Moder, Jeff; Liou, Meng-Sing

    2016-01-01

    In this paper, preliminary results for the recently-updated Open National Combustion Code (Open NCC) as applied to the EEE are presented. The comparison between two different numerical schemes, the standard Jameson-Schmidt-Turkel (JST) scheme and the advection upstream splitting method (AUSM), is performed for the cold flow and the reacting flow calculations using the RANS. In the cold flow calculation, the AUSM scheme predicts a much stronger reverse flow in the central recirculation zone. In the reacting flow calculation, we test two cases: gaseous fuel injection and liquid spray injection. In the gaseous fuel injection case, the overall flame structures of the two schemes are similar to one another, in the sense that the flame is attached to the main nozzle, but is detached from the pilot nozzle. However, in the exit temperature profile, the AUSM scheme shows a more uniform profile than that of the JST scheme, which is close to the experimental data. In the liquid spray injection case, we expect different flame structures in this scenario. We will give a brief discussion on how two numerical schemes predict the flame structures inside the EEE using different ways to introduce the fuel injection.

  4. Ignition and flame stabilization of a strut-jet RBCC combustor with small rocket exhaust.

    PubMed

    Hu, Jichao; Chang, Juntao; Bao, Wen

    2014-01-01

    A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.

  5. Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust

    PubMed Central

    2014-01-01

    A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes. PMID:24578655

  6. Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelepouga, Serguei A; Rue, David M; Saveliev, Alexei V

    2011-03-15

    A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

  7. Investigation of flameholding mechanisms in a kerosene-fueled scramjet combustor

    NASA Astrophysics Data System (ADS)

    Wang, Yu-hang; Song, Wen-yan; Shi, De-yong

    2017-11-01

    Laser-induced fluorescence and high-speed photography were employed to investigate the kerosene flame stabilization mechanism in a cavity-based scramjet combustor with an inlet condition corresponds to flight Mach number of 4. Pilot hydrogen was used to ignite the kerosene fuel. The PLIF results of kerosene distribution in the reacting cases showed that the mixing process was dramatically enhanced compared to the non-reacting cases. Sharp OH gradients were observed in the shear layer and the aft region of cavity, which indicated that the flame was located at these positions. A portion of hot products participated in the recirculation of the cavity and preheated the kerosene-air mixture in the leading edge. The heated mixture was ignited in the mid-cavity and the reaction zone spread into the mainstream flow. Due to the competition between the local flame speed and the local flow speed, the high-speed images showed that the spreading location was in fluctuation. This movement was observed to cause a low-frequency wall pressure fluctuation.

  8. USMP-4 MGBX ELF, Doi and Lindsey with glovebox experiment

    NASA Image and Video Library

    1997-11-29

    STS087-330-009 (19 November – 5 December 1997) --- Astronauts Takao Doi (left) and Steven W. Lindsey check out the Enclosed Laminar Flames (ELF) experiment on the mid-deck of the Earth-orbiting Space Shuttle Columbia. ELF has been designed to examine the effect of different air flow velocities on the stability of laminar (non-turbulent) flames. Enclosed laminar flames are commonly found in combustion systems such as power plant and gas turbine combustors, and jet engine afterburners. It is hoped that results of this investigation may help to optimize the performance of industrial combustors, including pollutant emissions and heat transfer. The microgravity environment of space makes a perfect setting for a laboratory involving combustion, an activity that creates convection in normal gravity. In microgravity, scientists can study subtle processes ordinarily masked by the effects of gravity. Doi is an international mission specialist representing Japan's National Space Development Agency (NASDA) and Lindsey is the pilot. Both are alumni of NASA's 1995 class of Astronaut Candidates (ASCAN).

  9. Bismaleimide resins for flame resistant honeycomb sandwich panels

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A 60 kg batch of Resin M751 was produced in pilot plant scale. The resin was delivered to the prepreg company as an NMP solution. 100 kg of glass-fabric prepregs were fabricated. Prepreg characteristics and curing cycles for laminate fabrication were provided. A new batch of Resin M756 (Code M756 - 2) was synthesized.

  10. “Lichens Lite?” chemical analysis of lichens for tracking 26 pollutants

    Treesearch

    Sarah Jovan; Susan Will-Wolf; Michael Amacher

    2015-01-01

    Lichen chemistry can be used to estimate concentrations of environmental contaminants, ranging from heavy metals and fertilizers to polycyclic aromatic hydrocarbons, dioxins, pesticides, herbicides, and flame retardants. We conducted a pilot looking at 26 metals and nutrient anions in 5 widespread lichen species across the upper Midwest, including: As, Al, Ba, Ca, Cd,...

  11. Use of Chemi-Ionization to Calculate Temperature of Hydrocarbon Flame

    NASA Astrophysics Data System (ADS)

    Shaikin, A. P.; Galiev, I. R.

    2018-04-01

    In the present paper, we have experimentally studied the dependences of the maximum temperature of the hydrocarbon flame on the electron current (due to the flame chemi-ionization), the width of the turbulent combustion zone, and the amount and composition of the air-fuel mixture in the combustion chamber of variable volume. Based on the proposed formula, we have been also able to estimate the temperature and compare with its experimental value showing that the convergence has been more than 85% at an excess air factor value ranging from 0.8 to 1.15. The obtained results can be used to predict and monitor the maximum flame temperature in the combustion chamber of an internal combustion engine and other power plants by using the ionization probe.

  12. Detection of iron atoms by emission spectroscopy and laser-induced fluorescence in solid propellant flames.

    PubMed

    Vilmart, G; Dorval, N; Orain, M; Lambert, D; Devillers, R; Fabignon, Y; Attal-Tretout, B; Bresson, A

    2018-05-10

    Planar laser-induced fluorescence on atomic iron is investigated in this paper, and a measurement strategy is proposed to monitor the fluorescence of iron atoms with good sensitivity. A model is proposed to fit the experimental fluorescence spectra, and good agreement is found between simulated and experimental spectra. Emission and laser-induced fluorescence measurements are performed in the flames of ammonium perchlorate composite propellants containing iron-based catalysts. A fluorescence signal from iron atoms after excitation at 248 nm is observed for the first time in propellant flames. Images of the spatial distribution of iron atoms are recorded in the flame in which turbulent structures are generated. Iron fluorescence is detected up to 1.0 MPa, which opens the way to application in propellant combustion.

  13. Physical and Chemical Processes in Flames

    DTIC Science & Technology

    2010-02-15

    7. "An efficient reduced mechanism for methane oxidation with NOx chemistry ," by T. F. Lu and C. K. Law, Paper No. C17, Fifth US Combustion Meeting... Mechanical and Aerospace Engineering Princeton University Princeton, NJ 08544 9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...TERMS Laminar flame speeds; ignition temperatures; extinction limits; mechanism reduction; skeletal mechanism ; CO/H2 oxidation; ethy lene oxidation

  14. Flame filtering and perimeter localization of wildfires using aerial thermal imagery

    NASA Astrophysics Data System (ADS)

    Valero, Mario M.; Verstockt, Steven; Rios, Oriol; Pastor, Elsa; Vandecasteele, Florian; Planas, Eulàlia

    2017-05-01

    Airborne thermal infrared (TIR) imaging systems are being increasingly used for wild fire tactical monitoring since they show important advantages over spaceborne platforms and visible sensors while becoming much more affordable and much lighter than multispectral cameras. However, the analysis of aerial TIR images entails a number of difficulties which have thus far prevented monitoring tasks from being totally automated. One of these issues that needs to be addressed is the appearance of flame projections during the geo-correction of off-nadir images. Filtering these flames is essential in order to accurately estimate the geographical location of the fuel burning interface. Therefore, we present a methodology which allows the automatic localisation of the active fire contour free of flame projections. The actively burning area is detected in TIR georeferenced images through a combination of intensity thresholding techniques, morphological processing and active contours. Subsequently, flame projections are filtered out by the temporal frequency analysis of the appropriate contour descriptors. The proposed algorithm was tested on footages acquired during three large-scale field experimental burns. Results suggest this methodology may be suitable to automatise the acquisition of quantitative data about the fire evolution. As future work, a revision of the low-pass filter implemented for the temporal analysis (currently a median filter) was recommended. The availability of up-to-date information about the fire state would improve situational awareness during an emergency response and may be used to calibrate data-driven simulators capable of emitting short-term accurate forecasts of the subsequent fire evolution.

  15. Ignitability analysis using the cone calorimeter and lift apparatus

    Treesearch

    Mark A. Dietenberger

    1996-01-01

    The irradiance plotted as function of time to ignition for wood materials tested in the Cone Calorimeter (ASTM E1354) differs signiticantly from that tested in the Lateral Ignition and Flame spread Test (LIFT) apparatus (ASTM E1321). This difference in piloted ignitabilty is primarily due to the difference in forced convective cooling of the specimen tested in both...

  16. 40 CFR 60.563 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... item as follows: (1) A temperature monitoring device to measure and record continuously the operating temperature to within 1 percent (relative to degrees Celsius) or ±0.5 °C (±0.9 °F), whichever is greater. (2) A flame monitoring device, such as a thermocouple, an ultraviolet sensor, an infrared beam sensor...

  17. 40 CFR 60.563 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... item as follows: (1) A temperature monitoring device to measure and record continuously the operating temperature to within 1 percent (relative to degrees Celsius) or ±0.5 °C (±0.9 °F), whichever is greater. (2) A flame monitoring device, such as a thermocouple, an ultraviolet sensor, an infrared beam sensor...

  18. 40 CFR 60.563 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... item as follows: (1) A temperature monitoring device to measure and record continuously the operating temperature to within 1 percent (relative to degrees Celsius) or ±0.5 °C (±0.9 °F), whichever is greater. (2) A flame monitoring device, such as a thermocouple, an ultraviolet sensor, an infrared beam sensor...

  19. 40 CFR 60.563 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... item as follows: (1) A temperature monitoring device to measure and record continuously the operating temperature to within 1 percent (relative to degrees Celsius) or ±0.5 °C (±0.9 °F), whichever is greater. (2) A flame monitoring device, such as a thermocouple, an ultraviolet sensor, an infrared beam sensor...

  20. 40 CFR 60.563 - Monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... item as follows: (1) A temperature monitoring device to measure and record continuously the operating temperature to within 1 percent (relative to degrees Celsius) or ±0.5 °C (±0.9 °F), whichever is greater. (2) A flame monitoring device, such as a thermocouple, an ultraviolet sensor, an infrared beam sensor...

  1. 40 CFR 63.1383 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manufacturing facility must prepare for each glass-melting furnace, rotary spin manufacturing line, and flame... glass-melting furnace, the owner or operator shall install, calibrate, maintain, and continuously... monitors. (v) A triboelectric bag leak detection system shall be installed, operated, adjusted, and...

  2. Pilots' monitoring strategies and performance on automated flight decks: an empirical study combining behavioral and eye-tracking data.

    PubMed

    Sarter, Nadine B; Mumaw, Randall J; Wickens, Christopher D

    2007-06-01

    The objective of the study was to examine pilots' automation monitoring strategies and performance on highly automated commercial flight decks. A considerable body of research and operational experience has documented breakdowns in pilot-automation coordination on modern flight decks. These breakdowns are often considered symptoms of monitoring failures even though, to date, only limited and mostly anecdotal data exist concerning pilots' monitoring strategies and performance. Twenty experienced B-747-400 airline pilots flew a 1-hr scenario involving challenging automation-related events on a full-mission simulator. Behavioral, mental model, and eye-tracking data were collected. The findings from this study confirm that pilots monitor basic flight parameters to a much greater extent than visual indications of the automation configuration. More specifically, they frequently fail to verify manual mode selections or notice automatic mode changes. In other cases, they do not process mode annunciations in sufficient depth to understand their implications for aircraft behavior. Low system observability and gaps in pilots' understanding of complex automation modes were shown to contribute to these problems. Our findings describe and explain shortcomings in pilot's automation monitoring strategies and performance based on converging behavioral, eye-tracking, and mental model data. They confirm that monitoring failures are one major contributor to breakdowns in pilot-automation interaction. The findings from this research can inform the design of improved training programs and automation interfaces that support more effective system monitoring.

  3. Continuous on-line steam quality monitoring system of the Bacman Geothermal Production Field, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solis, R.P.; Chavez, F.C.; Garcia, S.E.

    1997-12-31

    In any operating geothermal power plant, steam quality is one of the most important parameters being monitored. In the Bacon-Manito Geothermal Production Field (BGPF), an online steam quality monitoring system have been installed in two operating power plants which provides an accurate, efficient and continuous real-time data which is more responsive to the various requirements of the field operation. The system utilizes sodium as an indicator of steam purity. Sodium concentration is read by the flame photometer located at the interface after aspirating a sample of the condensed steam through a continuous condensate sampler. The condensate has been degassed throughmore » a condensate-NCG separator. The flame photometer analog signal is then converted by a voltage-to-current converter/transmitter and relayed to the processor which is located at the control center through electrical cable to give a digital sodium concentration read-out at the control panel. The system features a high and high-high sodium level alarm, a continuous strip-chart recorder and a central computer for data capture, retrieval, and processing for further interpretation. Safety devices, such as the flame-off indicator at the control center and the automatic fuel cut-off device along the fuel line, are incorporated in the system.« less

  4. Expertise and responsibility effects on pilots' reactions to flight deck alerts in a simulator.

    PubMed

    Zheng, Yiyuan; Lu, Yanyu; Yang, Zheng; Fu, Shan

    2014-11-01

    Flight deck alerts provide system malfunction information designed to lead corresponding pilot reactions aimed at guaranteeing flight safety. This study examined the roles of expertise and flight responsibility and their relationship to pilots' reactions to flight deck alerts. There were 17 pilots composing 12 flight crews that were assigned into pairs according to flight hours and responsibilities. The experiment included 9 flight scenarios and was carried out in a CRJ-200 flight simulator. Pilot performance was recorded by a wide angle video camera, and four kinds of reactions to alerts were defined for analysis. Pilots tended to have immediate reactions to uninterrupted cautions, with a turning off rate as high as 75%. However, this rate decreased sharply when pilots encountered interrupted cautions and warnings; they also exhibited many wrong reactions to warnings. Pilots with more expertise had more reactions to uninterrupted cautions than those with less expertise, both as pilot flying and pilot monitoring. Meanwhile, the pilot monitoring, regardless of level of expertise, exhibited more reactions than the pilot flying. In addition, more experienced pilots were more likely to have wrong reactions to warnings while acting as the monitoring pilot. These results suggest that both expertise and flight responsibility influence pilots' reactions to alerts. Considering crew pairing strategy, when a pilot flying is a less experienced pilot, a more experience pilot is suggested to be the monitoring pilot. The results of this study have implications for understanding pilots' behaviors to flight deck alerts, calling for specialized training and design of approach alarms on the flight deck.

  5. 40 CFR 63.1383 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... facility must prepare for each glass-melting furnace, rotary spin manufacturing line, and flame attenuation... initial performance tests. (b)(1) Where a baghouse is used to control PM emissions from a glass-melting... baghouse), the system instrumentation and alarm may be shared among the monitors. (v) A triboelectric bag...

  6. Homogeneous Iron Phosphate Nanoparticles by Combustion of Sprays

    PubMed Central

    Rudin, Thomas; Pratsinis, Sotiris E.

    2013-01-01

    Low-cost synthesis of iron phosphate nanostructured particles is attractive for large scale fortification of basic foods (rice, bread, etc.) as well as for Li-battery materials. This is achieved here by flame-assisted and flame spray pyrolysis (FASP and FSP) of inexpensive precursors (iron nitrate, phosphate), solvents (ethanol), and support gases (acetylene and methane). The iron phosphate powders produced here were mostly amorphous and exhibited excellent solubility in dilute acid, an indicator of relative iron bioavailability. The amorphous and crystalline fractions of such powders were determined by X-ray diffraction (XRD) and their cumulative size distribution by X-ray disk centrifuge. Fine and coarse size fractions were obtained also by sedimentation and characterized by microscopy and XRD. The coarse size fraction contained maghemite Fe2O3 while the fine was amorphous iron phosphate. Furthermore, the effect of increased production rate (up to 11 g/h) on product morphology and solubility was explored. Using increased methane flow rates through the ignition/pilot flame of the FSP-burner and inexpensive powder precursors resulted in also homogeneous iron phosphate nanoparticles essentially converting the FSP to a FASP process. The powders produced by FSP at increased methane flow had excellent solubility in dilute acid as well. Such use of methane or even natural gas might be economically attractive for large scale flame-synthesis of nanoparticles. PMID:23407874

  7. Combustion monitoring of a water tube boiler using a discriminant radial basis network.

    PubMed

    Sujatha, K; Pappa, N

    2011-01-01

    This research work includes a combination of Fisher's linear discriminant (FLD) analysis and a radial basis network (RBN) for monitoring the combustion conditions for a coal fired boiler so as to allow control of the air/fuel ratio. For this, two-dimensional flame images are required, which were captured with a CCD camera; the features of the images-average intensity, area, brightness and orientation etc of the flame-are extracted after preprocessing the images. The FLD is applied to reduce the n-dimensional feature size to a two-dimensional feature size for faster learning of the RBN. Also, three classes of images corresponding to different burning conditions of the flames have been extracted from continuous video processing. In this, the corresponding temperatures, and the carbon monoxide (CO) emissions and those of other flue gases have been obtained through measurement. Further, the training and testing of Fisher's linear discriminant radial basis network (FLDRBN), with the data collected, have been carried out and the performance of the algorithms is presented. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Vigilance impossible: Diligence, distraction, and daydreaming all lead to failures in a practical monitoring task.

    PubMed

    Casner, Stephen M; Schooler, Jonathan W

    2015-09-01

    In laboratory studies of vigilance, participants watch for unusual events in a "sit and stare" fashion as their performance typically declines over time. But watch keepers in practical settings seldom approach monitoring in such simplistic ways and controlled environments. We observed airline pilots performing routine monitoring duties in the cockpit. Unlike laboratory studies, pilots' monitoring did not deteriorate amidst prolonged vigils. Monitoring was frequently interrupted by other pop-up tasks and misses followed. However, when free from these distractions, pilots reported copious mind wandering. Pilots often confined their mind wandering to times in which their monitoring performance would not conspicuously suffer. But when no convenient times were available, pilots mind wandered anyway and misses ensued. Real-world monitors may be caught between a continuous vigilance approach that is doomed to fail, a dynamic environment that cannot be fully controlled, and what may be an irresistible urge to let one's thoughts drift. Published by Elsevier Inc.

  9. Critical mass flux for flaming ignition of wood as a function of external radiant heat flux and moisture content

    Treesearch

    S. McAllister; M. Finney; J. Cohen

    2011-01-01

    Extreme weather often contributes to crown fires, where the fire spreads from one tree crown to the next as a series of piloted ignitions. An important aspect in predicting crown fires is understanding the ignition of fuel particles. The ignition criterion considered in this work is the critical mass flux criterion - that a sufficient amount of pyrolysis gases must be...

  10. Critical mass flux for flaming ignition of dead, dry wood as a function of exernal radiant heat flux

    Treesearch

    Sara McAllister; Mark Finney; Jack Cohen

    2010-01-01

    Extreme weather often contributes to crown fires, where the fire spreads from one tree crown to the next as a series of piloted ignitions. An important aspect in predicting crown fires is understanding the ignition of fuel particles. The ignition criterion considered in this work is the critical mass flux criterion - that a sufficient amount of pyrolysis gases must be...

  11. Development of TDLAS sensor for diagnostics of CO, H2O and soot concentrations in reactor core of pilot-scale gasifier

    NASA Astrophysics Data System (ADS)

    Sepman, A.; Ögren, Y.; Gullberg, M.; Wiinikka, H.

    2016-02-01

    This paper reports on the development of the tunable diode laser absorption spectroscopy sensor near 4350 cm-1 (2298 nm) for measurements of CO and H2O mole fractions and soot volume fraction under gasification conditions. Due to careful selection of the molecular transitions [CO ( υ″ = 0 → υ' = 2) R34-R36 and H2O at 4349.337 cm-1], a very weak (negligible) sensitivity of the measured species mole fractions to the temperature distribution inside the high-temperature zone (1000 K < T < 1900 K) of the gasification process is achieved. The selected transitions are covered by the tuning range of single diode laser. The CO and H2O concentrations measured in flat flames generally agree better than 10 % with the results of 1-D flame simulations. Calibration-free absorption measurements of studied species in the reactor core of atmospheric pilot-scale entrained-flow gasifier operated at 0.1 MW power are reported. Soot concentration is determined from the measured broadband transmittance. The estimated uncertainties in the reactor core CO and H2O measurements are 15 and 20 %, respectively. The reactor core average path CO mole fractions are in quantitative agreement with the µGC CO concentrations sampled at the gasifier output.

  12. 40 CFR 141.40 - Monitoring requirements for unregulated contaminants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monitoring to be completed Reserved i Reserved i Reserved i Reserved i Reserved i Reserved i Column headings... Pesticides and Flame Retardants in Drinking Water by Solid Phase Extraction and Capillary Column Gas... Water by Solid Phase Extraction and Capillary Column Gas Chromatography/Mass Spectrometry (GC/MS...

  13. Training monitoring skills in helicopter pilots.

    PubMed

    Potter, Brian A; Blickensderfer, Elizabeth L; Boquet, Albert J

    2014-05-01

    Prior research has indicated that ineffective pilot monitoring has been associated with aircraft accidents. Despite this finding, empirical research concerning pilot monitoring skill training programs is nearly nonexistent. E-learning may prove to be an effective method to foster nontechnical flight skills, including monitoring. This study examined the effect of using e-learning to enhance helicopter aircrew monitoring skill performance. The design was a posttest only field study. Forty-four helicopter pilots completed either an e-learning training module or a control activity and then flew two scenarios in a high-fidelity flight simulator. Learner reactions and knowledge gained were assessed immediately following the e-learning module. Two observer raters assessed behaviors and performance outcomes using recordings of the simulation flights. Subjects who completed the e-learning training module scored almost twice as high as did the control group on the administered knowledge test (experimental group, mean = 92.8%; control group, mean = 47.7%) and demonstrated up to 150% more monitoring behaviors during the simulated flights than the control subjects. In addition, the participating pilots rated the course highly. The results supported the hypothesis that a relatively inexpensive and brief training course implemented through e-learning can foster monitoring skill development among helicopter pilots.

  14. LES-Modeling of a Partially Premixed Flame using a Deconvolution Turbulence Closure

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Wu, Hao; Ihme, Matthias

    2015-11-01

    The modeling of the turbulence/chemistry interaction in partially premixed and multi-stream combustion remains an outstanding issue. By extending a recently developed constrained minimum mean-square error deconvolution (CMMSED) method, to objective of this work is to develop a source-term closure for turbulent multi-stream combustion. In this method, the chemical source term is obtained from a three-stream flamelet model, and CMMSED is used as closure model, thereby eliminating the need for presumed PDF-modeling. The model is applied to LES of a piloted turbulent jet flame with inhomogeneous inlets, and simulation results are compared with experiments. Comparisons with presumed PDF-methods are performed, and issues regarding resolution and conservation of the CMMSED method are examined. The author would like to acknowledge the support of funding from Stanford Graduate Fellowship.

  15. Aircraft Engine-Monitoring System And Display

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Person, Lee H., Jr.

    1992-01-01

    Proposed Engine Health Monitoring System and Display (EHMSD) provides enhanced means for pilot to control and monitor performances of engines. Processes raw sensor data into information meaningful to pilot. Provides graphical information about performance capabilities, current performance, and operational conditions in components or subsystems of engines. Provides means to control engine thrust directly and innovative means to monitor performance of engine system rapidly and reliably. Features reduce pilot workload and increase operational safety.

  16. Flame and flameless atomic-absorption determination of tellurium in geological materials

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.; Hubert, A.E.

    1978-01-01

    The sample is digested with a solution of hydrobromic acid and bromine and the excess of bromine is expelled. After dilution of the solution to approximately 3 M in hydrobromic acid, ascorbic acid is added to reduce iron(III) before extraction of tellurium into methyl isobutyl ketone (MIBK). An oxidizing air-acetylene flame is used to determine tellurium in the 0.1-20 ppm range. For samples containing 4-200 ppb of tellurium, a carbon-rod atomizer is used after the MIBK extract has been washed with 0.5 M hydrobromic acid to remove the residual iron. The flame procedure is useful for rapid preliminary monitoring, and the flameless procedure can determine tellurium at very low concentrations. ?? 1978.

  17. Precision closed bomb calorimeter for testing flame and gas producing initiators

    NASA Technical Reports Server (NTRS)

    Carpenter, D. R., Jr.; Taylor, A. C., Jr.

    1972-01-01

    A calorimeter has been developed under this study to help meet the needs of accurate performance monitoring of electrically or mechanically actuated flame and gas producing devices, such as squib-type initiators. A ten cubic centimeter closed bomb (closed volume) calorimeter was designed to provide a standard pressure trace and to measure a nominal 50 calorie output, using the basic components of a Parr Model 1411 calorimeter. Two prototype bombs were fabricated, pressure tested to 2600 psi, and extensively evaluated.

  18. The influence of chemical mechanisms on PDF calculations of non-premixed turbulent flames

    NASA Astrophysics Data System (ADS)

    Pope, Stephen B.

    2005-11-01

    A series of calculations is reported of the Barlow & Frank non-premixed piloted jet flames D, E and F, with the aim of determining the level of description of the chemistry necessary to account accurately for the turbulence-chemistry interactions observed in these flames. The calculations are based on the modeled transport equation for the joint probability density function of velocity, turbulence frequency and composition (enthalpy and species mass fractions). Seven chemical mechanisms for methane are investigated, ranging from a five-step reduced mechanism to the 53-species GRI 3.0 mechanism. The results show that, for C-H-O species, accurate results are obtained with the GRI 2.11 and GRI 3.0 mechanisms, as well as with 12 and 15-step reduced mechanisms based on GRI 2.11. But significantly inaccurate calculations result from use of the 5-step reduced mechanism (based on GRI 2.11), and from two different 16-species skeletal mechanisms. As has previously been observed, GRI 3.0 over-predicts NO by up to a factor of two; whereas NO is calculated reasonably accurately by GRI 2.11 and the 15-step reduced mechanism.

  19. Assessment of dynamic closure for premixed combustion large eddy simulation

    NASA Astrophysics Data System (ADS)

    Langella, Ivan; Swaminathan, Nedunchezhian; Gao, Yuan; Chakraborty, Nilanjan

    2015-09-01

    Turbulent piloted Bunsen flames of stoichiometric methane-air mixtures are computed using the large eddy simulation (LES) paradigm involving an algebraic closure for the filtered reaction rate. This closure involves the filtered scalar dissipation rate of a reaction progress variable. The model for this dissipation rate involves a parameter βc representing the flame front curvature effects induced by turbulence, chemical reactions, molecular dissipation, and their interactions at the sub-grid level, suggesting that this parameter may vary with filter width or be a scale-dependent. Thus, it would be ideal to evaluate this parameter dynamically by LES. A procedure for this evaluation is discussed and assessed using direct numerical simulation (DNS) data and LES calculations. The probability density functions of βc obtained from the DNS and LES calculations are very similar when the turbulent Reynolds number is sufficiently large and when the filter width normalised by the laminar flame thermal thickness is larger than unity. Results obtained using a constant (static) value for this parameter are also used for comparative evaluation. Detailed discussion presented in this paper suggests that the dynamic procedure works well and physical insights and reasonings are provided to explain the observed behaviour.

  20. Grid Resolution Effects on LES of a Piloted Methane-Air Flame

    DTIC Science & Technology

    2009-05-20

    respectively. In the LES momen- tum equation , Eq.(3), the Smagorinsky model is used to obtain the deviatoric part of the unclosed SGS stress τi j... accurately predicted from integra- tion of their LES evolution equations ; and (ii), the flamelet parametrization should adequately approximate the... effect of the complex small-scale turbulence/chemistry interactions is modeled in an affordable way by a combustion model. A question of how a particular

  1. Active control: an investigation method for combustion instabilities

    NASA Astrophysics Data System (ADS)

    Poinsot, T.; Yip, B.; Veynante, D.; Trouvé, A.; Samaniego, J. M.; Candel, S.

    1992-07-01

    Closed-loop active control methods and their application to combustion instabilities are discussed. In these methods the instability development is impeded with a feedback control loop: the signal provided by a sensor monitoring the flame or pressure oscillations is processed and sent back to actuators mounted on the combustor or on the feeding system. Different active control systems tested on a non-premixed multiple-flame turbulent combustor are described. These systems can suppress all unstable plane modes of oscillation (i.e. low frequency modes). The active instability control (AIC) also constitutes an original and powerful technique for studies of mechanisms leading to instability or resulting from the instability. Two basic applications of this kind are described. In the first case the flame is initially controlled with AIC, the feedback loop is then switched off and the growth of the instability is analysed through high speed Schlieren cinematography and simultaneous sound pressure and reaction rate measurements. Three phases are identified during th growth of the oscillations: (1) a linear phase where acoustic waves induce a flapping motion of the flame sheets without interaction between sheets, (2) a modulation phase, where flame sheets interact randomly and (3) a nonlinear phase where the flame sheets are broken and a limit cycle is reached. In the second case we investigate different types of flame extinctions associated with combustion instability. It is shown that pressure oscillations may lead to partial or total extinctions. Extinctions occur in various forms but usually follow a rapid growth of pressure oscillations. The flame is extinguished during the modulation phase observed in the initiation experiments. In these studies devoted to transient instability phenomena, the control system constitutes a unique investigation tool because it is difficult to obtain the same information by other means. Implications for modelling and prediction of combustion instabilities are discussed.

  2. Active Job Monitoring in Pilots

    NASA Astrophysics Data System (ADS)

    Kuehn, Eileen; Fischer, Max; Giffels, Manuel; Jung, Christopher; Petzold, Andreas

    2015-12-01

    Recent developments in high energy physics (HEP) including multi-core jobs and multi-core pilots require data centres to gain a deep understanding of the system to monitor, design, and upgrade computing clusters. Networking is a critical component. Especially the increased usage of data federations, for example in diskless computing centres or as a fallback solution, relies on WAN connectivity and availability. The specific demands of different experiments and communities, but also the need for identification of misbehaving batch jobs, requires an active monitoring. Existing monitoring tools are not capable of measuring fine-grained information at batch job level. This complicates network-aware scheduling and optimisations. In addition, pilots add another layer of abstraction. They behave like batch systems themselves by managing and executing payloads of jobs internally. The number of real jobs being executed is unknown, as the original batch system has no access to internal information about the scheduling process inside the pilots. Therefore, the comparability of jobs and pilots for predicting run-time behaviour or network performance cannot be ensured. Hence, identifying the actual payload is important. At the GridKa Tier 1 centre a specific tool is in use that allows the monitoring of network traffic information at batch job level. This contribution presents the current monitoring approach and discusses recent efforts and importance to identify pilots and their substructures inside the batch system. It will also show how to determine monitoring data of specific jobs from identified pilots. Finally, the approach is evaluated.

  3. Launch of the Apollo 17 lunar landing mission

    NASA Image and Video Library

    1972-12-07

    S72-55482 (7 Dec. 1972) --- The huge, 363-feet tall Apollo 17 (Spacecraft 114/Lunar Module 12/Saturn 512) space vehicle is launched from Pad A., Launch Complex 39, Kennedy Space Center (KSC), Florida, at 12:33 a.m. (EST), Dec. 7, 1972. Apollo 17, the final lunar landing mission in NASA's Apollo program, was the first nighttime liftoff of the Saturn V launch vehicle. Aboard the Apollo 17 spacecraft were astronaut Eugene A. Cernan, commander; astronaut Ronald E. Evans, command module pilot; and scientist-astronaut Harrison H. Schmitt, lunar module pilot. Flame from the five F-1 engines of the Apollo/Saturn first (S-1C) stage illuminates the nighttime scene. A two-hour and 40-minute hold delayed the Apollo 17 launching.

  4. Launch of the Apollo 17 lunar landing mission

    NASA Image and Video Library

    1972-09-07

    S72-55070 (7 Dec. 1972) --- The huge, 363-feet tall Apollo 17 (Spacecraft 114/Lunar Module 12/Saturn 512) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida, at 12:33 a.m. (EST), Dec. 7, 1972. Apollo 17, the final lunar landing mission in NASA's Apollo program, was the first nighttime liftoff of the Saturn V launch vehicle. Aboard the Apollo 17 spacecraft were astronaut Eugene A. Cernan, commander; astronaut Ronald E. Evans, command module pilot; and scientist-astronaut Harrison H. Schmitt, lunar module pilot. Flame from the five F-1 engines of the Apollo/Saturn first (S-1C) stage illuminates the nighttime scene. A two-hour and 40-minute hold delayed the Apollo 17 launching.

  5. Shuttle Environmental Assurance: Brominated Flame Retardants - Concerns, Drivers, Potential Impacts and Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia

    2010-01-01

    Brominated Flame Retardants (BFRs) are widely used in the manufacture of electrical and electronic components and as additives in formulations for foams, plastics and rubbers. The United States (US) and the European Union (EU)have increased regulation and monitoring of of targeted BFRs, such as Polybrominated Diphenyl Ethers (PBDEs) due to the bioaccumulative effects in humans and animals. In response, manufacturers and vendors of BFR-containing materials are changing flame-retardant additives, sometimes without notifying BFR users. In some instances, Deca-bromodiphenylether (Deca-BDE) and other families of flame retardants are being used as replacement flame retardants for penta-BDE and octa-BDE. The reformulation of the BFR-containing material typically results in the removal of the targeted PBDE and replacement with a non-PBDE chemical or non-targeted PBDE. Many users of PBDE -based materials are concerned that vendors will perform reformulation and not inform the end user. Materials performance such as flammability, adhesion , and tensile strength may be altered due to reformulation. The requalification of newly formulated materials may be required, or replacement materials may have to be identified and qualified. The Shuttle Enviornmental Assurance (SEA) team indentified a risk to the Space Shuttle Program associated with the possibility that targeted PBDEs may be replaced without notification. Resultant decreases in flame retardancy, Liquid Oxygen (LOX) compatibility, or material performance could have serious consequences.

  6. Increasing Operational Stability in Low NOX GT Combustor Using Fuel Rich Concentric Pilot Combustor

    NASA Astrophysics Data System (ADS)

    Levy, Yeshayahou; Erenburg, Vladimir; Sherbaum, Valery; Ovcharenko, Vitali; Rosentsvit, Leonid; Chudnovsky, Boris; Herszage, Amiel; Talanker, Alexander

    2012-03-01

    Lean combustion is a method in which combustion takes place under low equivalence ratio and relatively low combustion temperatures. As such, it has the potential to lower the effect of the relatively high activation energy nitrogen-oxygen reactions which are responsible for substantial NOX formation during combustion processes. However, lowering temperature reduces the reaction rate and deteriorates combustion stability. The objective of the present study is to reduce the lower equivalence ratio limit of the stable combustion operational boundary in lean Gas Turbine (GT) combustors while still maintaining combustion stability. A lean premixed gaseous combustor was equipped with a surrounding concentric pilot flame operating under rich conditions, thus generating a hot stream of combustion products with significant amount of reactive radicals. The main combustor's fuel-air composition was varied from stoichiometric to lean mixtures. The pilot's mixture composition was also varied by changing the air flow rate, within a limited rich mixtures range. The pilot fuel flow rate was always lower than five percent of the total fuel supply at the specific stage of the experiments.

  7. Human biological monitoring of suspected endocrine-disrupting compounds

    PubMed Central

    Faniband, Moosa; Lindh, Christian H; Jönsson, Bo AG

    2014-01-01

    Endocrine-disrupting compounds are exogenous agents that interfere with the natural hormones of the body. Human biological monitoring is a powerful method for monitoring exposure to endocrine disrupting compounds. In this review, we describe human biological monitoring systems for different groups of endocrine disrupting compounds, polychlorinated biphenyls, brominated flame retardants, phthalates, alkylphenols, pesticides, metals, perfluronated compounds, parabens, ultraviolet filters, and organic solvents. The aspects discussed are origin to exposure, metabolism, matrices to analyse, analytical determination methods, determinants, and time trends. PMID:24369128

  8. Critical mass flux for flaming ignition of dead, dry wood as a function of external radiant heat flux and oxidizer flow velocity

    Treesearch

    Sara McAllister; Mark Finney; Jack Cohen

    2010-01-01

    Extreme weather often contributes to crown fires, where the fire spreads from one tree crown to the next as a series of piloted ignitions. An important aspect in predicting crown fires is understanding the ignition of fuel particles. The ignition criterion considered in this work is the critical mass flux criterion – that a sufficient amount of pyrolysis gases must be...

  9. Occurence of legacy and novel brominated flame retardants in food and feed in France for the period 2014 to 2016.

    PubMed

    Vénisseau, A; Bichon, E; Brosseaud, A; Vaccher, V; Lesquin, E; Larvor, F; Durand, S; Dervilly-Pinel, G; Marchand, P; Le Bizec, B

    2018-09-01

    Determination of the occurrence levels of legacy and novel BFRs is today required to better understand the trends of BFRs contamination in food consecutive to the EU PBDEs restrictions and to proceed to a recent human food exposure in parallel. Therefore, concentrations of a large set of brominated flame retardants (BFRs) (n = 27) including PBDEs, HBCDDs, TBBPA and novel flame retardants (nBFRs) have been determined in more than 600 food and feed samples collected between 2014 and 2016 in the context of French monitoring plans. Although legacy BFRs had already been studied in France, such a survey constituted the very first determination of nBFRs occurrence in foodstuffs at the national level. The concentration levels measured in fish and fish products were in general higher than in the other food categories. PBDEs were detected in 70% of the samples and were observed as the most abundant congeners (representing 80% of the sum of the monitored BFRs), while α-HBCDD could also be considered as a predominant congener (up to 26% of the sum of the monitored BFRs in fishes). nBFRs concentration levels were most of the time below the LOQ, except PBT, PBBz and HBBz which were more frequently detected at low levels. Also investigated in the study, BRPs exhibited high concentration levels in crustaceous (maximum value > 2700 pg/g ww). Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Flashback Detection Sensor for Hydrogen Augmented Natural Gas Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, J.D.; Chorpening, B.T.; Sidwell, T.

    2007-05-01

    The use of hydrogen augmented fuel is being investigated by various researchers as a method to extend the lean operating limit, and potentially reduce thermal NOx formation in natural gas fired lean premixed (LPM) combustion systems. The resulting increase in flame speed during hydrogen augmentation, however, increases the propensity for flashback in LPM systems. Real-time in-situ monitoring of flashback is important for the development of control strategies for use of hydrogen augmented fuel in state-of-the-art combustion systems, and for the development of advanced hydrogen combustion systems. The National Energy Technology Laboratory (NETL) and Woodward Industrial Controls are developing a combustionmore » control and diagnostics sensor (CCADS), which has already been demonstrated as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff. Since CCADS is a flame ionization sensor technique, the low ion concentration produced in pure hydrogen combustion raises concerns of whether CCADS can be used to monitor flashback in hydrogen augmented combustion. This paper discusses CCADS tests conducted at 0.2-0.6 MPa (2-6 atm), demonstrating flashback detection with fuel compositions up to 80% hydrogen (by volume) mixed with natural gas. NETL’s Simulation Validation (SimVal) combustor offers full optical access to pressurized combustion during these tests. The CCADS data and high-speed video show the reaction zone moves upstream into the nozzle as the hydrogen fuel concentration increases, as is expected with the increased flame speed of the mixture. The CCADS data and video also demonstrate the opportunity for using CCADS to provide the necessary in-situ monitor to control flashback and lean blowoff in hydrogen augmented combustion applications.« less

  11. Pilot-scale incineration of wastes with high content of chlorinated and non-halogenated organophosphorus flame retardants used as alternatives for PBDEs.

    PubMed

    Matsukami, Hidenori; Kose, Tomohiro; Watanabe, Mafumi; Takigami, Hidetaka

    2014-09-15

    Chlorinated and non-halogenated organophosphorus flame retardants (OPFRs) including tris(2-chloroisopropyl) phosphate (TCIPP), diethylene glycol bis(di(2-chloroisopropyl) phosphate) (DEG-BDCIPP), triphenyl phosphate (TPHP), and bisphenol A bis(diphenyl phosphate) (BPA-BDPP) have been used increasingly as alternatives to polybrominated diphenyl ethers and other brominated flame retardants. For this study, five batches of incineration experiments of wastes containing approximately 1% of TCIPP, DEG-BDCIPP, TPHP, and BPA-BDPP were conducted using a pilot-scale incinerator. Destruction and emission behaviors of OPFRs were investigated along with the effects on behaviors of unintentional persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (dl-PCBs), hexachlorobenzene (HCB), pentachlorobenzene (PeCB), and pentachlorophenol (PCP). Incineration conditions were chosen according to current regulations for waste incinerators in Japan and UNEP. The OPFRs in the input materials were mainly destroyed in the primary combustion with destruction efficiencies greater than 99.999%. Concentrations of the OPFRs in the exhaust gases and ash were, respectively, <0.01-0.048 μg m(-3) and <0.5-68 μg kg(-1). Almost all of the total phosphorus in the input materials was partitioned into the ash, but less into final exit gases, indicating negligible emissions of volatile phosphorus compounds during incineration. Inputs of chlorinated OPFRs did not affect the formation markedly. Destruction and emission behaviors of unintentional POPs were investigated. Emissions of such POPs in exhaust gases and the ash were lower than the Japanese and international standards. Results show that even in wastes with high contents of chlorinated and non-halogenated OPFRs, waste incineration by the current regulations for the waste incinerators can control environmental emissions of OPFRs and unintentional POPs. Incineration is regarded as a best available technology (BAT) for waste management systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Detection of system failures in multi-axes tasks. [pilot monitored instrument approach

    NASA Technical Reports Server (NTRS)

    Ephrath, A. R.

    1975-01-01

    The effects of the pilot's participation mode in the control task on his workload level and failure detection performance were examined considering a low visibility landing approach. It is found that the participation mode had a strong effect on the pilot's workload, the induced workload being lowest when the pilot acted as a monitoring element during a coupled approach and highest when the pilot was an active element in the control loop. The effects of workload and participation mode on failure detection were separated. The participation mode was shown to have a dominant effect on the failure detection performance, with a failure in a monitored (coupled) axis being detected significantly faster than a comparable failure in a manually controlled axis.

  13. Development of processes and techniques for molding thermally stable, fire-retardant, low-smoke-emitting polymeric materials

    NASA Technical Reports Server (NTRS)

    Silverman, B.

    1979-01-01

    All available newly developed nonmetallic thermally stable polymers were examined for the development of processes and techniques by compression molding, injection molding, or thermoforming cabin interior parts. Efforts were directed toward developing molding techniques of new polymers to economically produce usable nonmetallic molded parts. Data on the flame resistant characteristics of the materials were generated from pilot plant batches. Preliminary information on the molding characteristics of the various thermoplastic materials was obtained by producing actual parts.

  14. Occupational exposure of air crews to tricresyl phosphate isomers and organophosphate flame retardants after fume events.

    PubMed

    Schindler, Birgit Karin; Weiss, Tobias; Schütze, Andre; Koslitz, Stephan; Broding, Horst Christoph; Bünger, Jürgen; Brüning, Thomas

    2013-04-01

    Aircraft cabin air can possibly be contaminated by tricresyl phosphates (TCP) from jet engine oils during fume events. o-TCP, a known neurotoxin, has been addressed to be an agent that might cause the symptoms reported by cabin crews after fume events. A total of 332 urine samples of pilots and cabin crew members in common passenger airplanes, who reported fume/odour during their last flight, were analysed for three isomers of tricresyl phosphate metabolites as well as dialkyl and diaryl phosphate metabolites of four flame retardants. None of the samples contained o-TCP metabolites above the limit of detection (LOD 0.5 μg/l). Only one sample contained metabolites of m- and p-tricresyl phosphates with levels near the LOD. Median metabolite levels of tributyl phosphate (TBP), tris-(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPP) (DBP 0.28 μg/l; BCEP 0.33 μg/l; DPP 1.1 μg/l) were found to be significantly higher than in unexposed persons from the general population. Median tris-(2-chloropropyl) phosphate (TCPP) metabolite levels were significantly not higher in air crews than in controls. Health complaints reported by air crews can hardly be addressed to o-TCP exposure in cabin air. Elevated metabolite levels for TBP, TCEP and TPP in air crews might occur due to traces of hydraulic fluid in cabin air (TBP, TPP) or due to release of commonly used flame retardants from the highly flame protected environment in the airplane. A slight occupational exposure of air crews to organophosphates was shown.

  15. An experimental study of the stable and unstable operation of an LPP gas turbine combustor

    NASA Astrophysics Data System (ADS)

    Dhanuka, Sulabh Kumar

    A study was performed to better understand the stable operation of an LPP combustor and formulate a mechanism behind the unstable operation. A unique combustor facility was developed at the University of Michigan that incorporates the latest injector developed by GE Aircraft Engines and enables operation at elevated pressures with preheated air at flow-rates reflective of actual conditions. The large optical access has enabled the use of a multitude of state-of-the-art laser diagnostics such as PIV and PLIF, and has shed invaluable light not only into the GE injector specifically but also into gas turbine combustors in general. Results from Particle Imaging Velocimetry (PIV) have illustrated the role of velocity, instantaneous vortices, and key recirculation zones that are all critical to the combustor's operation. It was found that considerable differences exist between the iso-thermal and reacting flows, and between the instantaneous and mean flow fields. To image the flame, Planar Laser Induced Fluorescence (PLIF) of the formaldehyde radical was successfully utilized for the first time in a Jet-A flame. Parameters regarding the flame's location and structure have been obtained that assist in interpreting the velocity results. These results have also shown that some of the fuel injected from the main fuel injectors actually reacts in the diffusion flame of the pilot. The unstable operation of the combustor was studied in depth to obtain the stability limits of the combustor, behavior of the flame dynamics, and frequencies of the oscillations. Results from simultaneous pressure and high speed chemiluminescence images have shown that the low frequency dynamics can be characterized as flashback oscillations. The results have also shown that the stability of the combustor can be explained by simple and well established premixed flame stability mechanisms. This study has allowed the development of a model that describes the instability mechanism and accurately captures the frequencies of the oscillations. By demonstrating how these classical understandings can be applied to the extremely complicated flow within LPP gas turbine combustors, new insight has been provided that will aid in the development of the next generation of cleaner, more stable gas turbine combustors.

  16. Flight physiology training experiences and perspectives: survey of 117 pilots.

    PubMed

    Patrão, Luís; Zorro, Sara; Silva, Jorge; Castelo-Branco, Miguel; Ribeiro, João

    2013-06-01

    Human factors and awareness of flight physiology play a crucial role in flight safety. Even so, international legislation is vague relative to training requirements in hypoxia and altitude physiology. Based on a previously developed survey, an adapted questionnaire was formulated and released online for Portuguese pilots. Specific questions regarding the need for pilot attention monitoring systems were added to the original survey. There were 117 pilots, 2 of whom were women, who completed the survey. Most of the pilots had a light aviation license and flew in unpressurized cabins at a maximum ceiling of 10,000 ft (3048 m). The majority of the respondents never experienced hypoxic symptoms. In general, most of the individuals agreed with the importance of an introductory hypoxia course without altitude chamber training (ACT) for all pilot populations, and with a pilot monitoring system in order to increase flight safety. Generally, most of the pilots felt that hypoxia education and training for unpressurized aircraft is not extensive enough. However, almost all the respondents were willing to use a flight physiology monitoring system in order to improve flight safety.

  17. An innovative approach to the development of a portable unit for analytical flame characterization in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Dubinskiy, Mark A.; Kamal, Mohammed M.; Misra, Prabhaker

    1995-01-01

    The availability of manned laboratory facilities in space offers wonderful opportunities and challenges in microgravity combustion science and technology. In turn, the fundamentals of microgravity combustion science can be studied via spectroscopic characterization of free radicals generated in flames. The laser-induced fluorescence (LIF) technique is a noninvasive method of considerable utility in combustion physics and chemistry suitable for monitoring not only specific species and their kinetics, but it is also important for imaging of flames. This makes LIF one of the most important tools for microgravity combustion science. Flame characterization under microgravity conditions using LIF is expected to be more informative than other methods aimed at searching for effects like pumping phenomenon that can be modeled via ground level experiments. A primary goal of our work consisted in working out an innovative approach to devising an LIF-based analytical unit suitable for in-space flame characterization. It was decided to follow two approaches in tandem: (1) use the existing laboratory (non-portable) equipment and determine the optimal set of parameters for flames that can be used as analytical criteria for flame characterization under microgravity conditions; and (2) use state-of-the-art developments in laser technology and concentrate some effort in devising a layout for the portable analytical equipment. This paper presents an up-to-date summary of the results of our experiments aimed at the creation of the portable device for combustion studies in a microgravity environment, which is based on a portable UV tunable solid-state laser for excitation of free radicals normally present in flames in detectable amounts. A systematic approach has allowed us to make a convenient choice of species under investigation, as well as the proper tunable laser system, and also enabled us to carry out LIF experiments on free radicals using a solid-state laser tunable in the UV.

  18. Seated at the pilots station, astronaut Scott J. Horowitz uses a mirror to monitor the vertical

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Seated at the pilots station, astronaut Scott J. Horowitz uses a mirror to monitor the vertical stabilizer and the aft cargo bay area during the entry phase of the flight. Horowitz, pilot, joined four other astronauts and an international payload specialist for 16 days of scientific research in Earth-orbit.

  19. The Application of Biocybernetic Techniques to Enhance Pilot Performance during Tactical missions.

    DTIC Science & Technology

    1979-10-01

    and observe the altitude indicator ( meatball ) at the end of the runway. At touchdown, the pilot must apply thrust until the arresting hook catches. 103...l PILOT TASES 3 ~ CRITICALI DIFFICULTY J.[ 27 COMMAND TYRUST FOR BOLTER LT SAFETY" D’ENM .....MM................. ...... I.26 MONITOR MEATBALL FLT...THRUST FOR BOLTER ............................................................................ X MONITOR MEATBALL

  20. STS-103 crew pose in front of Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During Terminal Countdown Demonstration Test (TDCT) activities at Launch Pad 39B, the STS-103 crew pose in front of the flame trench, which is situated underneath the Mobile Launcher Platform holding Space Shuttle Discovery. Standing left to right are Mission Specialists Claude Nicollier of Switzerland, who is with the European Space Agency (ESA), C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Pilot Scott J. Kelly, Commander Curtis L. Brown Jr., and Mission Specialists Jean-Frangois Clervoy of France, also with ESA, and Steven L. Smith. One of the solid rocket boosters and the external tank that are attached to Discovery can be seen in the photo. The flame trench is made of concrete and refractory brick, and contains an orbiter flame deflector on one side and solid rocket booster flame deflector on the other. The deflectors protect the flame trench floor and pad surface from the intense heat of launch. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  1. KSC-99pp1324

    NASA Image and Video Library

    1999-11-16

    During Terminal Countdown Demonstration Test (TDCT) activities at Launch Pad 39B, the STS-103 crew pose in front of the flame trench, which is situated underneath the Mobile Launcher Platform holding Space Shuttle Discovery. Standing left to right are Mission Specialists Claude Nicollier of Switzerland, who is with the European Space Agency (ESA), C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Pilot Scott J. Kelly, Commander Curtis L. Brown Jr., and Mission Specialists Jean-François Clervoy of France, also with ESA, and Steven L. Smith. One of the solid rocket boosters and the external tank that are attached to Discovery can be seen in the photo. The flame trench is made of concrete and refractory brick, and contains an orbiter flame deflector on one side and solid rocket booster flame deflector on the other. The deflectors protect the flame trench floor and pad surface from the intense heat of launch. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST

  2. Reusable rocket engine optical condition monitoring

    NASA Technical Reports Server (NTRS)

    Wyett, L.; Maram, J.; Barkhoudarian, S.; Reinert, J.

    1987-01-01

    Plume emission spectrometry and optical leak detection are described as two new applications of optical techniques to reusable rocket engine condition monitoring. Plume spectrometry has been used with laboratory flames and reusable rocket engines to characterize both the nominal combustion spectra and anomalous spectra of contaminants burning in these plumes. Holographic interferometry has been used to identify leaks and quantify leak rates from reusable rocket engine joints and welds.

  3. On the pilot's behavior of detecting a system parameter change

    NASA Technical Reports Server (NTRS)

    Morizumi, N.; Kimura, H.

    1986-01-01

    The reaction of a human pilot, engaged in compensatory control, to a sudden change in the controlled element's characteristics is described. Taking the case where the change manifests itself as a variance change of the monitored signal, it is shown that the detection time, defined to be the time elapsed until the pilot detects the change, is related to the monitored signal and its derivative. Then, the detection behavior is modeled by an optimal controller, an optimal estimator, and a variance-ratio test mechanism that is performed for the monitored signal and its derivative. Results of a digital simulation show that the pilot's detection behavior can be well represented by the model proposed here.

  4. Subsurface Monitoring of CO2 Sequestration - A Review and Look Forward

    NASA Astrophysics Data System (ADS)

    Daley, T. M.

    2012-12-01

    The injection of CO2 into subsurface formations is at least 50 years old with large-scale utilization of CO2 for enhanced oil recovery (CO2-EOR) beginning in the 1970s. Early monitoring efforts had limited measurements in available boreholes. With growing interest in CO2 sequestration beginning in the 1990's, along with growth in geophysical reservoir monitoring, small to mid-size sequestration monitoring projects began to appear. The overall goals of a subsurface monitoring plan are to provide measurement of CO2 induced changes in subsurface properties at a range of spatial and temporal scales. The range of spatial scales allows tracking of the location and saturation of the plume with varying detail, while finer temporal sampling (up to continuous) allows better understanding of dynamic processes (e.g. multi-phase flow) and constraining of reservoir models. Early monitoring of small scale pilots associated with CO2-EOR (e.g., the McElroy field and the Lost Hills field), developed many of the methodologies including tomographic imaging and multi-physics measurements. Large (reservoir) scale sequestration monitoring began with the Sleipner and Weyburn projects. Typically, large scale monitoring, such as 4D surface seismic, has limited temporal sampling due to costs. Smaller scale pilots can allow more frequent measurements as either individual time-lapse 'snapshots' or as continuous monitoring. Pilot monitoring examples include the Frio, Nagaoka and Otway pilots using repeated well logging, crosswell imaging, vertical seismic profiles and CASSM (continuous active-source seismic monitoring). For saline reservoir sequestration projects, there is typically integration of characterization and monitoring, since the sites are not pre-characterized resource developments (oil or gas), which reinforces the need for multi-scale measurements. As we move beyond pilot sites, we need to quantify CO2 plume and reservoir properties (e.g. pressure) over large scales, while still obtaining high resolution. Typically the high-resolution (spatial and temporal) tools are deployed in permanent or semi-permanent borehole installations, where special well design may be necessary, such as non-conductive casing for electrical surveys. Effective utilization of monitoring wells requires an approach of modular borehole monitoring (MBM) were multiple measurements can be made. An example is recent work at the Citronelle pilot injection site where an MBM package with seismic, fluid sampling and distributed fiber sensing was deployed. For future large scale sequestration monitoring, an adaptive borehole-monitoring program is proposed.

  5. STS-107 Flight Day 8 Highlights

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This video shows the activities of the STS-107 crew (Rick Husband, Commander; William McCool, Pilot; Kalpana Chawla, David Brown, Michael Anderson, Laurel Clark, Mission Specialists, Ilan Ramon, Payload Specialist) during flight day 8 of the Columbia orbiter's final flight. The primary activities of flight day 8 are spaceborne experiments. Some background information is given on the SOFBALL (Structure of Flame Balls at Low Lewis-Number) microgravity experiment as footage of the flame balls is shown. The video also shows the MEIDEX (Mediterranean Israeli Dust Experiment) calibrating on the Moon. The six STARS (Space Technology and Research Students) international student experiments are profiled, including experiments on carpenter bees (Liechtenstein), spiders (Australia), silkworms (China), ants (United States), crystal growth (Israel), and fish embryos (Japan). A commercial experiment on roses is also profiled. Astronaut Clark gives a tour of the SpaceHab RDM (Research Double Module), in the space shuttle's payload bay. Astronauts McCool and Ramon take turns on an exercise machine. The video includes a partly cloudy view of the Pacific Ocean.

  6. Apollo 11 Launched Via Saturn V Rocket

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Developed by the Marshall Space Flight Center (MSFC), the Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man's first lunar landing. Aboard the spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  7. Apollo 11 Launched Via Saturn V Rocket

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man's first lunar landing. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  8. Pilot performance in zero-visibility precision approach. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Ephrath, A. R.

    1975-01-01

    The pilot's short-term decisions regarding performance assessment and failure monitoring is examined. The performance of airline pilots who flew simulated zero-visibility landing approaches is reported. Results indicate that the pilot's mode of participation in the control task has a strong effect on his workload, the induced workload being lowest when the pilot acts as a monitor during a coupled approach and highest when the pilot is an active element in the control loop. A marked increase in workload at altitudes below 500 ft. is documented at all participation modes; this increase is inversely related to distance-to-go. The participation mode is shown to have a dominant effect on failure-detection performance, with a failure in a monitored (coupled) axis being detected faster than a comparable failure in a manually-controlled axis. Touchdown performance is also documented. It is concluded that the conventional instrument panel and its associated displays are inadequate for zero-visibility operations in the final phases of the landing approach.

  9. Nontarget approach for environmental monitoring by GC × GC-HRTOFMS in the Tokyo Bay basin.

    PubMed

    Zushi, Yasuyuki; Hashimoto, Shunji; Tanabe, Kiyoshi

    2016-08-01

    In this study, we developed an approach for sequential nontarget and target screening for the rapid and efficient analysis of multiple samples as an environmental monitoring using a comprehensive two-dimensional gas chromatograph coupled to a high resolution time-of-flight mass spectrometer (GC × GC-HRTOFMS). A key feature of the approach was the construction of an accurate mass spectral database learned from the sample via nontarget screening. To enhance the detection power in the nontarget screening, a global spectral deconvolution procedure based on non-negative matrix factorization was applied. The approach was applied to the monitoring of rivers in the Tokyo Bay basin. The majority of the compounds detected by the nontarget screening were alkyl chain-based compounds (55%). In the quantitative target screening based on the output from the nontarget screening, particularly high levels of organophosphorus flame retardants (median concentrations of 31, 116 and 141 ng l(-1) for TDCPP, TCIPP and TBEP, respectively) were observed among the target compounds. Flame retardants used for household furniture and building materials were detected in river basins where buildings and arterial traffic were dominated. The developed GC × GC-HRTOFMS approach was efficient and effective for environmental monitoring and provided valuable new information on various aspects of monitoring in the context of environmental management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Analytical validation applied to simultaneous determination of solvents dichloromethane (DCM), methyl isobutyl ketone (MIBK), tetrahydrofuran (THF) and toluene (TOL) in urine by headspace extraction and injection on chromatographic system with a flame ionization detector

    NASA Astrophysics Data System (ADS)

    Muna, E. D. M.; Pereira, R. P.

    2016-07-01

    The determination of the volatile organic solvents dichloromethane (DCM), methyl isobutyl ketone (MIBK), tetrahydrofuran (THF) and toluene (TOL) is applied on toxicological monitoring of employees in various industrial activities. The gas chromatography technique with flame ionization detector and headspace injection system has been applied. The analytical procedure developed allows the simultaneous determination of the above-mentioned solvents and the accuracy of the method was tested following the INMETRO guidelines through the DOQ-CGRE 008 Rev.04-July/2011.

  11. National Forest Health Monitoring Program Maryland and Massachusetts Street Tree Monitoring Pilot Projects

    Treesearch

    Buckelew Cumming Anne; Daniel Twardus; William Smith

    2006-01-01

    Urban forests have many components: park trees, small woodlands, riparian buffers, street trees, and others. While some communities conduct city-wide inventories of street tree populations, there has been no comprehensive, statewide sampling to characterize the structure, health, and function of street tree populations. A statewide Street Tree Monitoring pilot study...

  12. Piloting the future: Results from a pilot study for changes in the animal sampling program for the national antibiotic resistance monitoring system (NARMS)

    USDA-ARS?s Scientific Manuscript database

    A well recognized monitoring system for antimicrobial resistance in the U. S. is the National Antimicrobial Resistance Monitoring System (NARMS). It was established in 1996 among the Food and Drug Administration (FDA), USDA, and Centers for Disease Control and Prevention (CDC). FDA coordinates the ...

  13. Organophosphate flame retardants and plasticizers in indoor dust, air and window wipes in newly built low-energy preschools.

    PubMed

    Persson, Josefin; Wang, Thanh; Hagberg, Jessika

    2018-07-01

    The construction of extremely airtight and energy efficient low-energy buildings is achieved by using functional building materials, such as age-resistant plastics, insulation, adhesives, and sealants. Additives such as organophosphate flame retardants (OPFRs) can be added to some of these building materials as flame retardants and plasticizers. Some OPFRs are considered persistent, bioaccumulative and toxic. Therefore, in this pilot study, the occurrence and distribution of nine OPFRs were determined for dust, air, and window wipe samples collected in newly built low-energy preschools with and without environmental certifications. Tris(1,3-dichloroisopropyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) were detected in all indoor dust samples at concentrations ranging from 0.014 to 10μg/g and 0.0069 to 79μg/g, respectively. Only six OPFRs (predominantly chlorinated OPFRs) were detected in the indoor air. All nine OPFRs were found on the window surfaces and the highest concentrations, which occurred in the reference preschool, were measured for 2-ethylhexyl diphenyl phosphate (EHDPP) (maximum concentration: 1500ng/m 2 ). Interestingly, the OPFR levels in the environmental certified low-energy preschools were lower than those in the reference preschool and the non-certified low-energy preschool, probably attributed to the usage of environmental friendly and low-emitting building materials, interior decorations, and consumer products. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Prediction of fire growth on furniture using CFD

    NASA Astrophysics Data System (ADS)

    Pehrson, Richard David

    A fire growth calculation method has been developed that couples a computational fluid dynamics (CFD) model with bench scale cone calorimeter test data for predicting the rate of flame spread on compartment contents such as furniture. The commercial CFD code TASCflow has been applied to solve time averaged conservation equations using an algebraic multigrid solver with mass weighted skewed upstream differencing for advection. Closure models include k-e for turbulence, eddy breakup for combustion following a single step irreversible reaction with Arrhenius rate constant, finite difference radiation transfer, and conjugate heat transfer. Radiation properties are determined from concentrations of soot, CO2 and H2O using the narrow band model of Grosshandler and exponential wide band curve fit model of Modak. The growth in pyrolyzing area is predicted by treating flame spread as a series of piloted ignitions based on coupled gas-fluid boundary conditions. The mass loss rate from a given surface element follows the bench scale test data for input to the combustion prediction. The fire growth model has been tested against foam-fabric mattresses and chairs burned in the furniture calorimeter. In general, agreement between model and experiment for peak heat release rate (HRR), time to peak HRR, and total energy lost is within +/-20%. Used as a proxy for the flame spread velocity, the slope of the HRR curve predicted by model agreed with experiment within +/-20% for all but one case.

  15. Shock tube measurements of specific reaction rates in branched chain CH4-CO-O2 system

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Brokaw, R. S.

    1974-01-01

    Rate constants of two elementary bimolecular reactions involved in the oxidation of methane were determined by monitoring the exponential growth of CO flame band emission behind incident shocks in three suitably chosen gas mixtures.

  16. The optimization of aircraft seat cushion fire-blocking layers. Full Scale: Test description and results

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Duskin, F. E.

    1982-01-01

    Full-scale burn tests were conducted on thirteen different seat cushion configurations in a cabin fire simulator. The fire source used was a quartz lamp radiant energy panel with a propane pilot flame. During each test, data were recorded for cushion temperatures, radiant heat flux, rate of weight loss of test specimens, and cabin temperatures. When compared to existing passenger aircraft seat cushions, the test specimens incorporating a fire barrier and those fabricated from advance materials, using improved construction methods, exhibited significantly greater fire resistance.

  17. Models for interrupted monitoring of a stochastic process

    NASA Technical Reports Server (NTRS)

    Palmer, E.

    1977-01-01

    As computers are added to the cockpit, the pilot's job is changing from of manually flying the aircraft, to one of supervising computers which are doing navigation, guidance and energy management calculations as well as automatically flying the aircraft. In this supervisorial role the pilot must divide his attention between monitoring the aircraft's performance and giving commands to the computer. Normative strategies are developed for tasks where the pilot must interrupt his monitoring of a stochastic process in order to attend to other duties. Results are given as to how characteristics of the stochastic process and the other tasks affect the optimal strategies.

  18. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction.

    PubMed

    Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen

    2016-01-01

    To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm(-1) (1343.3 nm) and 7185.6 cm(-1) (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.

  19. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction

    NASA Astrophysics Data System (ADS)

    Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen

    2016-01-01

    To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm-1 (1343.3 nm) and 7185.6 cm-1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.

  20. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H{sub 2}O mole fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Lijun, E-mail: lijunxu@buaa.edu.cn; Liu, Chang; Jing, Wenyang

    2016-01-15

    To monitor two-dimensional (2D) distributions of temperature and H{sub 2}O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H{sub 2}O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm{sup −1} (1343.3 nm) and 7185.6 cm{sup −1} (1391.67 nm), respectively. The tomographicmore » sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H{sub 2}O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H{sub 2}O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.« less

  1. The influence of ATC message length and timing on pilot communication

    NASA Technical Reports Server (NTRS)

    Morrow, Daniel; Rodvold, Michelle

    1993-01-01

    Pilot-controller communication is critical to safe and efficient flight. It is often a challenging component of piloting, which is reflected in the number of incidents and accidents involving miscommunication. Our previous field study identified communication problems that disrupt routine communication between pilots and controllers. The present part-task simulation study followed up the field results with a more controlled investigation of communication problems. Pilots flew a simulation in which they were frequently vectored by Air Traffic Control (ATC), requiring intensive communication with the controller. While flying, pilots also performed a secondary visual monitoring task. We examined the influence of message length (one message with four commands vs. two messages with two commands each) and noncommunication workload on communication accuracy and length. Longer ATC messages appeared to overload pilot working memory, resulting in more incorrect or partial readbacks, as well as more requests to repeat the message. The timing between the two short messages also influenced communication. The second message interfered with memory for or response to the first short message when it was delivered too soon after the first message. Performing the secondary monitoring task did not influence communication. Instead, communication reduced monitoring accuracy.

  2. In situ optical measurements for characterization of flame species and remote sensing

    NASA Astrophysics Data System (ADS)

    Cullum, Brian Michael

    1998-12-01

    The following dissertation describes the use of spectroscopic techniques for both characterization of combustion intermediates and remote chemical sensing. The primary techniques that have been used for these measurements include, laser-induced fluorescence (LIF), time resolved LIF, resonance enhanced multiphoton ionization (REMPI) and Raman spectroscopy. A simple and quantitative means of measuring the efficiency of halogenated flame retardants is described, using laser-induced fluorescence (LIF). Intensity based LIF measurements of OH radical have been used to quantitatively measure the efficacy of halogenated flame retardant/polymer plaques. Temporally resolved LIF has been used to determine the extent to which the chemical kinetic theory of flame retardation applies to the effect of these compounds on combustion. We have shown that LIF of OH radicals is a very sensitive means of measuring the efficiency of these flame retardants as well as the giving information about the nature of flame retardation. In addition, we have developed a technique for the introduction of insoluble polymer plaques into a flame for fluorescence analysis. A high power pulsed Nd:YAG laser is used to ablate the sample into the flame while a second pulse from a dye laser is used to measure the LIF of OH radicals. Spectroscopic techniques are also very useful for trace remote analysis of environmental pollutants via optical fibers. A simple fiber-optic probe suitable for remote analysis using resonance enhanced multiphoton ionization (REMPI) has been developed for this purpose and is used to determine the toluene/gasoline concentration in water samples via a headspace measurement. The limit of detection for toluene in water using this probe is 0.54 ppb (wt/wt) with a sample standard deviation of 0.02 ppb (wt/wt). Another technique that has great potential for optical sensing is fluorescence lifetime imaging. A new method for measuring fluorescence lifetime images of quickly decaying species has been developed. This method employs a high powered pulsed laser that excites the fluorescent species in a dual pulse manner, and a non-gated charge coupled device (CCD) for detection of the fluorescence. Unlike other fluorescence lifetime imaging methods, this technique has the potential of monitoring fluorescent species with picosecond lifetimes.

  3. Monitoring of WEEE plastics in regards to brominated flame retardants using handheld XRF.

    PubMed

    Aldrian, Alexia; Ledersteger, Alfred; Pomberger, Roland

    2015-02-01

    This contribution is focused on the on-site determination of the bromine content in waste electrical and electronic equipment (WEEE), in particular waste plastics from television sets (TV) and personal computer monitors (PC) using a handheld X-ray fluorescence (XRF) device. The described approach allows the examination of samples in regards to the compliance with legal specifications for polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) directly after disassembling and facilitates the sorting out of plastics with high contents of brominated flame retardants (BFRs). In all, over 3000 pieces of black (TV) and 1600 pieces of grey (PC) plastic waste were analysed with handheld XRF technique for this study. Especially noticeable was the high percentage of pieces with a bromine content of over 50,000ppm for TV (7%) and PC (39%) waste plastics. The applied method was validated by comparing the data of handheld XRF with results obtained by GC-MS. The results showed the expected and sufficiently accurate correlation between these two methods. It is shown that handheld XRF technique is an effective tool for fast monitoring of large volumes of WEEE plastics in regards to BFRs for on-site measurements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Monitoring of pre-frontal oxygen status in helicopter pilots using near-infrared spectrophotometers

    PubMed Central

    Kikukawa, Azusa; Kobayashi, Asao; Miyamoto, Yoshinori

    2008-01-01

    Background There are few in-flight studies of cognition-related cerebral oxygen status in helicopter pilots. Methods Four male helicopter pilots volunteered for nine sorties during visual flight in a BK117 and UH-60J. The pilots' pre-frontal oxy-hemoglobin (O2Hb) and deoxy-hemoglobin (HHb) concentration were continuously monitored from the right/left sections of the forehead using near-infrared spectrophotometers with a consideration of motion artifacts. Results The concentration of O2Hb progressively increased (13.98 μmol•L-1 as a maximum increased concentration) in both the right/left sections of the forehead from the basal level during the heightened cognitive demand of helicopter flight. There was comparatively little change (4.32 μmol•L-1 as a maximum increased concentration) in HHb concentration during measurement of helicopter flight. HHb changes were apparently not affected by a heightened cognitive demand of helicopter pilots. Conclusion These results demonstrate that near-infrared spectroscopy, especially O2Hb measurements, provides a sensitive method for the monitoring of cognitive demand (maneuvers) in helicopter pilots. PMID:18616829

  5. Recent Prospects in the Inline Monitoring of Nanocomposites and Nanocoatings by Optical Technologies.

    PubMed

    Bugnicourt, Elodie; Kehoe, Timothy; Latorre, Marcos; Serrano, Cristina; Philippe, Séverine; Schmid, Markus

    2016-08-19

    Nanostructured materials have emerged as a key research field in order to confer materials with unique or enhanced properties. The performance of nanocomposites depends on a number of parameters, but the suitable dispersion of nanoparticles remains the key in order to obtain the full nanocomposites' potential in terms of, e.g., flame retardance, mechanical, barrier, thermal properties, etc. Likewise, the performance of nanocoatings to obtain, for example, tailored surface affinity with selected liquids (e.g., for self-cleaning ability or anti-fog properties), protective effects against flame propagation, ultra violet (UV) radiation or gas permeation, is highly dependent on the nanocoating's thickness and homogeneity. In terms of recent advances in the monitoring of nanocomposites and nanocoatings, this review discusses commonly-used offline characterization approaches, as well as promising inline systems. All in all, having good control over both the dispersion and thickness of these materials would help with reaching optimal and consistent properties to allow nanocomposites to extend their use.

  6. Recent Prospects in the Inline Monitoring of Nanocomposites and Nanocoatings by Optical Technologies

    PubMed Central

    Bugnicourt, Elodie; Kehoe, Timothy; Latorre, Marcos; Serrano, Cristina; Philippe, Séverine; Schmid, Markus

    2016-01-01

    Nanostructured materials have emerged as a key research field in order to confer materials with unique or enhanced properties. The performance of nanocomposites depends on a number of parameters, but the suitable dispersion of nanoparticles remains the key in order to obtain the full nanocomposites’ potential in terms of, e.g., flame retardance, mechanical, barrier, thermal properties, etc. Likewise, the performance of nanocoatings to obtain, for example, tailored surface affinity with selected liquids (e.g., for self-cleaning ability or anti-fog properties), protective effects against flame propagation, ultra violet (UV) radiation or gas permeation, is highly dependent on the nanocoating’s thickness and homogeneity. In terms of recent advances in the monitoring of nanocomposites and nanocoatings, this review discusses commonly-used offline characterization approaches, as well as promising inline systems. All in all, having good control over both the dispersion and thickness of these materials would help with reaching optimal and consistent properties to allow nanocomposites to extend their use. PMID:28335278

  7. Two-step tomographic reconstructions of temperature and species concentration in a flame based on laser absorption measurements with a rotation platform

    NASA Astrophysics Data System (ADS)

    Xia, Huihui; Kan, Ruifeng; Xu, Zhenyu; He, Yabai; Liu, Jianguo; Chen, Bing; Yang, Chenguang; Yao, Lu; Wei, Min; Zhang, Guangle

    2017-03-01

    We present a system for accurate tomographic reconstruction of the combustion temperature and H2O vapor concentration of a flame based on laser absorption measurements, in combination with an innovative two-step algebraic reconstruction technique. A total of 11 collimated laser beams generated from outputs of fiber-coupled diode lasers formed a two-dimensional 5 × 6 orthogonal beam grids and measured at two H2O absorption transitions (7154.354/7154.353 cm-1 and 7467.769 cm-1). The measurement system was designed on a rotation platform to achieve a two-folder improvement in spatial resolution. Numerical simulation showed that the proposed two-step algebraic reconstruction technique for temperature and concentration, respectively, greatly improved the reconstruction accuracy of species concentration when compared with a traditional calculation. Experimental results demonstrated the good performances of the measurement system and the two-step reconstruction technique for applications such as flame monitoring and combustion diagnosis.

  8. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-16

    The Apollo 11 mission, the first lunar landing mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man’s first lunar landing. This high angle view of the launch was provided by a ‘fisheye’ camera mounted on the launch tower. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  9. Apollo 11 Launched Via Saturn V Rocket

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man's first lunar landing. The Saturn V was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard the spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  10. Apollo 11 Launched Via the Saturn V Rocket-High Angle View

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first lunar landing mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man's first lunar landing. This high angle view of the launch was provided by a `fisheye' camera mounted on the launch tower. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  11. EMAP WESTERN UNITED STATES LANDSCAPE CHARACTERIZATION SOUTHERN ROCKIES PILOT STUDY AREA DATA AND PRODUCT BROWSER

    EPA Science Inventory

    The United States Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP) is conducting a pilot study in the western United States. This study will advance the science of ecological monitoring and demonstrate techniques for regional-scale assessme...

  12. EMAP WESTERN UNITED STATES LANDSCAPE CHARACTERIZATION NORTHWEST OREGON PILOT STUDY AREA DATA AND PRODUCT BROWSER

    EPA Science Inventory

    The United States Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP) is conducting a pilot study in the western United States. This study will advance the science of ecological monitoring and demonstrate techniques for regional-scale assessme...

  13. Astronaut Andrew M. Allen monitors Columbia's systems from pilots station

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Andrew M. Allen monitors Columbia's systems from the pilot's station during the entry phase of the STS-62 mission. The fast-speed 35mm film highlights the many controls and displays and the cathode ray tubes on the forward flight deck.

  14. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM-SURFACE WATERS WESTERN PILOT STUDY: FIELD OPERATIONS MANUAL FOR WADEABLE STREAMS

    EPA Science Inventory

    This document describes field procedures that were used during the Environmental Monitoring and Assessment Program (EMAP) Western Pilot Study, conducted from 1999 through 2004. Objectives for EMAP involve developing appropriate scientific and technical tools for evaluating ecolo...

  15. Theoretical Prediction of Microgravity Ignition Delay of Polymeric Fuels in Low Velocity Flows

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, A. C.; Torero, J. L.; Zhou, Y. Y.; Walther, D.; Ross, H. D.

    2001-01-01

    A new flammability apparatus and protocol, FIST (Forced Flow Ignition and Flame Spread Test), is under development. Based on the LIFT (Lateral Ignition and Flame Spread Test) protocol, FIST better reflects the environments expected in spacebased facilities. The final objective of the FIST research is to provide NASA with a test methodology that complements the existing protocol and provides a more comprehensive assessment of material flammability of practical materials for space applications. Theoretical modeling, an extensive normal gravity data bank and a few validation space experiments will support the testing methodology. The objective of the work presented here is to predict the ignition delay and critical heat flux for ignition of solid fuels in microgravity at airflow velocities below those induced in normal gravity. This is achieved through the application of a numerical model previously developed of piloted ignition of solid polymeric materials exposed to an external radiant heat flux. The model predictions will provide quantitative results about ignition of practical materials in the limiting conditions expected in space facilities. Experimental data of surface temperature histories and ignition delay obtained in the KC-135 aircraft are used to determine the critical pyrolysate mass flux for ignition and this value is subsequently used to predict the ignition delay and the critical heat flux for ignition of the material. Surface temperature and piloted ignition delay calculations for Polymethylmethacrylate (PMMA) and a Polypropylene/Fiberglass (PP/GL) composite were conducted under both reduced and normal gravity conditions. It was found that ignition delay times are significantly shorter at velocities below those induced by natural convection.

  16. Forest Fire Mapping

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Fire Logistics Airborne Mapping Equipment (FLAME) system, mounted in a twin-engine and airplane operated by the U.S. Forest Service (USFS) of the U.S. Department of Agriculture (USDA), is an airborne instrument for detecting and pinpointing forest fires that might escape ground detection. The FLAME equipment rack includes the operator interface, a video monitor, the system's control panel and film output. FLAME's fire detection sensor is an infrared line scanner system that identifies fire boundaries. Sensor's information is correlated with the aircraft's position and altitude at the time the infrared imagery is acquired to fix the fire's location on a map. System can be sent to a fire locale anywhere in the U.S. at the request of a regional forester. USFS felt a need for a more advanced system to deliver timely fire information to fire management personnel in the decade of the 1990s. The Jet Propulsion Laboratory (JPL) conducted a study, jointly sponsored by NASA and USDA, on what advanced technologies might be employed to produce an end-to-end thermal infrared fire detection and mapping system. That led to initiation of the Firefly system, currently in development at JPL and targeted for operational service beginning in 1992. Firefly will employ satellite-reference position fixing and provide performance superior to FLAME.

  17. OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartula, Renata J.; Ghandhi, Jaal B.; Sanders, Scott T.; Mierkiewicz, Edwin J.; Roesler, Fred L.; Harlander, John M.

    2007-12-01

    We demonstrate measurements of OH absorption spectra in the post-flame zone of a McKenna burner using spatial heterodyne spectroscopy (SHS). SHS permits high-resolution, high-throughput measurements. In this case the spectra span ~308-310 nm with a resolution of 0.03 nm, even though an extended source (extent of ~2×10-7 m2 rad2) was used. The high spectral resolution is important for interpreting spectra when multiple absorbers are present for inferring accurate gas temperatures from measured spectra and for monitoring weak absorbers. The present measurement paves the way for absorption spectroscopy by SHS in practical combustion devices, such as reciprocating and gas-turbine engines.

  18. Molecular oxygen detection in low pressure flames using cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Goldman, A.; Rahinov, I.; Cheskis, S.

    2006-03-01

    Cavity ring down spectroscopy is used for measurement of the concentration profiles of oxygen in the low pressure (30 Torr) methane/nitrogen/oxygen flames. Three different equivalence ratios are used: 0.8, 1.0 and 1.17. Molecular oxygen concentration is monitored via rotational spectrum of b1 Σ g +←X3 Σ g - (v‧=0-v‧‧=0) transition, also known as atmospheric A band, located near 750 nm. The P(15)P(15) line is used for concentration measurements. The sensitivity reached is 2.2×10-8 cm-1. The concentration profiles are in a good agreement with the ones calculated using GRI-3.0 mechanism.

  19. Apparatus and method for combusting low quality fuel

    DOEpatents

    Brushwood, John Samuel; Pillsbury, Paul; Foote, John; Heilos, Andreas

    2003-11-04

    A gas turbine (12) capable of combusting a low quality gaseous fuel having a ratio of flammability limits less than 2, or a heat value below 100 BTU/SCF. A high quality fuel is burned simultaneously with the low quality fuel to eliminate instability in the combustion flame. A sensor (46) is used to monitor at least one parameter of the flame indicative of instability. A controller (50) having the sensor signal (48) as input is programmed to control the relative flow rates of the low quality and high quality fuels. When instability is detected, the flow rate of high quality fuel is automatically increased in relation to the flow rate of low quality fuel to restore stability.

  20. RESULTS FROM EXPOSURE MONITORING PERFORMED DURING THE 1997 BALTIMORE PM PILOT STUDY

    EPA Science Inventory

    An eighteen day winter-time ambient and personal exposure monitoring study of particulate matter (PM) was conducted as part of an.integrated epidemiological-exposure pilot study of an aged population. Goals of the study were to determine the feasibility of performing active per...

  1. Investigation of Neural-Immune Profiling, Transcriptomics and Proteomics and Clinical Tools in Assessing Navy Dolphin Health

    DTIC Science & Technology

    2007-12-21

    Evaluation of brominated flame retardants in relationship to bottlenose dolphin immunity. The Toxicologist (Supplement to Toxicological Sciences) 2006; 90(S-1...Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average I hour...Aquarium & Institute for Exploration 55 Coogan Blvd. Mystic, CT 06355 9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S

  2. INDOOR, OUTDOOR, AND PERSONAL EXPOSURE MONITORING OF PARTICULATE AIR POLLUTION: THE BALTIMORE ELDERLY EPIDEMIOLOGY-EXPOSURE PILOT STUDY

    EPA Science Inventory

    A 17-day pilot study investigating potential PM exposures of an elderly population was conducted near Baltimore, Maryland. Collection of residential indoor, residential outdoor, and ambient monitoring data associated with the subjects living at a common retirement facility was...

  3. Astronaut Andrew Allen monitors Columbia's systems from pilots station

    NASA Image and Video Library

    1994-03-05

    STS062-41-025 (18 March 1994) --- Astronaut Andrew M. Allen monitors Columbia's systems from the pilot's station during the entry phase of the STS-62 mission. The fast-speed 35mm film highlights the many controls and displays and the cathode ray tubes on the forward flight deck.

  4. An Experimental Investigation of Premixed Combustion in Extreme Turbulence

    NASA Astrophysics Data System (ADS)

    Wabel, Timothy Michael

    This work has explored various aspects of high Reynolds number combustion that have received much previous speculation. A new high-Reynolds number premixed Bunsen burner, called Hi-Pilot, was designed to produce turbulence intensities in the extreme range of turbulence. The burner was modified several times in order to prevent boundary layer separation in the nozzle, and a large co-flow was designed that was capable of maintaining reactions over the entire flame surface. Velocity and turbulence characteristics were measured using a combination of Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). Flame structure was studied using a combination of formaldehyde (CH2O), hydroxyl (OH), and the CH radical. Planar Laser Induced Fluorescence (PLIF). The spatial Overlap of formaldehyde and OH PLIF qualitatively measures the reaction rate between formaldehyde molecules and OH radicals, and is a measure of the reaction layers of the flame. CH PLIF provides an alternative measure of the reaction zone, and was measured to compare with the Overlap PLIF results. Reaction layers are the full-width at half-maximum of the Overlap or CH PLIF signal, and extinction events were defined as regions where the PLIF signal drops below this threshold. Preheat structures were measured using formaldehyde PLIF, and are defined as beginning at 35% of the local maximum PLIF signal, and continue up to the leading edge of the reaction layer. Previous predictions of regime diagram boundaries were tested at the largest values of turbulent Reynolds number to date. The Overlap and CH PLIF diagnostics allowed extensive testing of the predicted broken reaction zones boundary of Peters. Measurements indicated that all run conditions are in the Broadened Preheat - Thin Reaction layers regime, but several conditions are expected to display a broken reaction zone structure. Therefore the work shows that Peters's predicted boundary is not correct, and therefore a Karlovitz number of 100 is not a valid criteria for broken reactions in the Bunsen geometry. Several measures of the turbulent burning velocity, including the global consumption speed and the extent of flamelet wrinkling, were measured at these conditions. Reaction layers for the burning velocity measurements were provided by the OH PLIF. The measurements showed that the global consumption speed continues to increase for all levels of turbulence intensity u'/SL. In contrast, the flame surface wrinkling rapidly increases the flame surface area for u'/SL < 10, but the flame surface area does not increase further at larger turbulence intensities. This indicates that the flame is not in the laminar flamelet regime, and the consumption rate per unit of flame surface area must be increased. The turbulent diffusivity is thought to be the mechanism enhancing the consumption rate, which is a scenario first hypothesized by Damkohler. The flame structure and burning velocity measurements motivated the measurements of the evolution of turbulence through regions of very thick preheat layers. This measurement utilized simultaneous PIV and formaldehyde PLIF in order to obtain conditioned statistics of the turbulence as a function of eta, the distance from the reaction layer. Together, the results tell a consistent story, and deepen our understanding of premixed combustion at large turbulent Reynolds number.

  5. Lean blowoff detection sensor

    DOEpatents

    Thornton, Jimmy [Morgantown, WV; Straub, Douglas L [Morgantown, WV; Chorpening, Benjamin T [Morgantown, WV; Huckaby, David [Morgantown, WV

    2007-04-03

    Apparatus and method for detecting incipient lean blowoff conditions in a lean premixed combustion nozzle of a gas turbine. A sensor near the flame detects the concentration of hydrocarbon ions and/or electrons produced by combustion and the concentration monitored as a function of time are used to indicate incipient lean blowoff conditions.

  6. Mineral resource of the month: antimony

    USGS Publications Warehouse

    ,

    2008-01-01

    The article describes the characteristics and industrial uses of antimony. Antimony, which is produced as a byproduct of mining other metals such as gold, lead or silver, is used in everything from flame retardants, batteries, ceramics and glass. It is also used in glass for television picture tubes, computer monitors, pigments and catalysts.

  7. 30 CFR 250.1629 - Additional production and fuel gas system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed... explosive limit. One approved method of providing adequate ventilation is a change of air volume each 5... detection systems shall be capable of continuous monitoring. Fire-detection systems and portions of...

  8. 30 CFR 250.1629 - Additional production and fuel gas system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed... explosive limit. One approved method of providing adequate ventilation is a change of air volume each 5... detection systems shall be capable of continuous monitoring. Fire-detection systems and portions of...

  9. 40 CFR 63.1384 - Performance test requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... performance test, the owner or operator must monitor and record the glass pull rate for each glass-melting furnace and, if different, the glass pull rate for each rotary spin manufacturing line and flame attenuation manufacturing line. Record the glass pull rate every 15 minutes during any performance test...

  10. 40 CFR 63.1384 - Performance test requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... parameter. (3) During each performance test, the owner or operator must monitor and record the glass pull rate for each glass-melting furnace and, if different, the glass pull rate for each rotary spin manufacturing line and flame attenuation manufacturing line. Record the glass pull rate every 15 minutes during...

  11. 40 CFR 63.1384 - Performance test requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... parameter. (3) During each performance test, the owner or operator must monitor and record the glass pull rate for each glass-melting furnace and, if different, the glass pull rate for each rotary spin manufacturing line and flame attenuation manufacturing line. Record the glass pull rate every 15 minutes during...

  12. A Sustainable Alternative to a Breast Milk Monitoring Program: Using NHANES Serum Data to Estimate Breast Milk PBDE Concentrations

    EPA Science Inventory

    Polybrominated diphenyl ethers (PBDEs) are high-production-volume chemicals that have been widely used as flame retardants in a variety of consumer products. PBDE concentrations in the environment, wildlife, and humans have been increasing for several decades. Concentrations in t...

  13. Large eddy simulation of turbulent premixed combustion using tabulated detailed chemistry and presumed probability density function

    NASA Astrophysics Data System (ADS)

    Zhang, Hongda; Han, Chao; Ye, Taohong; Ren, Zhuyin

    2016-03-01

    A method of chemistry tabulation combined with presumed probability density function (PDF) is applied to simulate piloted premixed jet burner flames with high Karlovitz number using large eddy simulation. Thermo-chemistry states are tabulated by the combination of auto-ignition and extended auto-ignition model. To evaluate the predictive capability of the proposed tabulation method to represent the thermo-chemistry states under the condition of different fresh gases temperature, a-priori study is conducted by performing idealised transient one-dimensional premixed flame simulations. Presumed PDF is used to involve the interaction of turbulence and flame with beta PDF to model the reaction progress variable distribution. Two presumed PDF models, Dirichlet distribution and independent beta distribution, respectively, are applied for representing the interaction between two mixture fractions that are associated with three inlet streams. Comparisons of statistical results show that two presumed PDF models for the two mixture fractions are both capable of predicting temperature and major species profiles, however, they are shown to have a significant effect on the predictions for intermediate species. An analysis of the thermo-chemical state-space representation of the sub-grid scale (SGS) combustion model is performed by comparing correlations between the carbon monoxide mass fraction and temperature. The SGS combustion model based on the proposed chemistry tabulation can reasonably capture the peak value and change trend of intermediate species. Aspects regarding model extensions to adequately predict the peak location of intermediate species are discussed.

  14. Cabin Pressure Monitors Notify Pilots to Save Lives

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In 2013, San Diego-based Aviation Technology Inc. obtained an exclusive license for the technology behind the cabin pressure monitor invented at Kennedy Space Center and built its own version of the product. The Alt Alert is designed to save lives by alerting aircraft pilots and crews when cabin pressure becomes dangerously low.

  15. AeroVironment's Jim Daley, Rik Meininger, Derek Lisoski and Wyatt Sadler (clockwise from bottom left) closely monitor systems testing of the Pathfinder-Plus.

    NASA Image and Video Library

    2004-09-17

    AeroVironment's test director Jim Daley, backup pilot Rik Meininger, stability and controls engineer Derek Lisoski and pilot Wyatt Sadler (clockwise from bottom left) closely monitor systems testing of the Pathfinder-Plus solar aircraft from the control station.

  16. Feasibility of using a personal digital assistant to self-monitor diet and fluid intake: a pilot study.

    PubMed

    Welch, Janet; Dowell, Shannon; Johnson, Cynthia S

    2007-01-01

    The feasibility of using an electronic device to self-monitor diet and fluid intake was assessed using the treatment implementation model. The three patients on hemodialysis who participated in this pilot study were asked to self-monitor diet and fluid intake for 12 weeks with a personal digital assistant. The intervention was delivered as intended; however, participants reported problems with usability, and compliance to self-monitoring was lower than desirable. Further adjustments to the intervention will be made before testing efficacy.

  17. Gas detection for alternate-fuel vehicle facilities.

    PubMed

    Ferree, Steve

    2003-05-01

    Alternative fuel vehicles' safety is driven by local, state, and federal regulations in which fleet owners in key metropolitan [table: see text] areas convert much of their fleet to cleaner-burning fuels. Various alternative fuels are available to meet this requirement, each with its own advantages and requirements. This conversion to alternative fuels leads to special requirements for safety monitoring in the maintenance facilities and refueling stations. A comprehensive gas and flame monitoring system needs to meet the needs of both the user and the local fire marshal.

  18. Simultaneous determination of 16 brominated flame retardants in food and feed of animal origin by fast gas chromatography coupled to tandem mass spectrometry using atmospheric pressure chemical ionisation.

    PubMed

    Bichon, E; Guiffard, I; Vénisseau, A; Lesquin, E; Vaccher, V; Brosseaud, A; Marchand, P; Le Bizec, B

    2016-08-12

    A gas chromatography tandem mass spectrometry method using atmospheric pressure chemical ionisation was developed for the monitoring of 16 brominated flame retardants (7 usually monitored polybromodiphenylethers (PBDEs) and BDE #209 and 8 additional emerging and novel BFRs) in food and feed of animal origin. The developed analytical method has decreased the run time by three compared to conventional strategies, using a 2.5m column length (5% phenyl stationary phase, 0.1mm i.d., 0.1μmf.t.), a pulsed split injection (1:5) with carrier gas helium flow rate at 0.48mLmin(-1) in one run of 20 min. For most BFRs, analytical data were compared with the current analytical strategy relying on GC/EI/HRMS (double sector, R=10000 at 10% valley). Performances in terms of sensitivity were found to meet the Commission recommendation (118/2014/EC) for nBFRs. GC/APCI/MS/MS represents a promising alternative for multi-BFRs analysis in complex matrices, in that it allows the monitoring of a wider list of contaminants in a single injection and a shorter run time. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A queueing model of pilot decision making in a multi-task flight management situation

    NASA Technical Reports Server (NTRS)

    Walden, R. S.; Rouse, W. B.

    1977-01-01

    Allocation of decision making responsibility between pilot and computer is considered and a flight management task, designed for the study of pilot-computer interaction, is discussed. A queueing theory model of pilot decision making in this multi-task, control and monitoring situation is presented. An experimental investigation of pilot decision making and the resulting model parameters are discussed.

  20. Experiential study on temperature and emission performance of micro burner during porous media combustion

    NASA Astrophysics Data System (ADS)

    Janvekar, Ayub Ahmed; Abdullah, M. Z.; Ahmad, Z. A.; Abas, A.; Ismail, A. K.; Hussien, A. A.; Kataraki, P. S.; Ishak, M. H. H.; Mazlan, M.; Zubair, A. F.

    2018-05-01

    Addition of porous materials in reaction zone give rise to significant improvements in combustion performance. In this work, a dual layered micro porous media burner was tested for stable flame and emissions. Reaction and preheat layer was made up of discrete (zirconia) and foam (porcelain) type of materials respectively. Three different thickness of reaction zone was tested, each with 10, 20 and 30mm. Interestingly, only 20mm thick layer can able to show better thermal efficiency of 72% as compared to 10 and 30mm. Best equivalence ratio came out to be 0.7 for surface and 0.6 for submerged flame conditions. Moreover, emission was continuously monitored to detect presence of NOx and CO, which were under controlled limits.

  1. Repetitive laser ignition by optical breakdown of a LOX/H2 rocket combustion chamber with multi-injector head configuration

    NASA Astrophysics Data System (ADS)

    Börner, Michael; Manfletti, Chiara; Kroupa, Gerhard; Oschwald, Michael

    2017-09-01

    This paper reports on the repetitive laser ignition by optical breakdown within an experimental rocket combustion chamber. Ignition was performed by focusing a laser pulse generated by a miniaturized diode-pumped Nd:YAG laser system. The system, which delivers 33.2 mJ in 2.3 ns, was mounted directly to the combustion chamber. The ignition process and flame stabilization was investigated using an optical probe system monitoring the flame attachment across the 15 coaxial injector configuration. 1195 successful ignitions were performed proving the reliability of this laser ignition system and its applicability to the propellant combination LOX/hydrogen at temperatures of T_{{{H}_{ 2} }} = 120-282 K and T_{{{O}_{ 2} }} = 110-281 K.

  2. National Forest Health Monitoring Program, Monitoring Urban Forests in Indiana: Pilot Study 2002, Part 1: Analysis of Field Methods and Data Collection

    Treesearch

    US Forest Service, Northeastern Area, State and Private Forestry

    2006-01-01

    This report highlights findings from the first statewide urban forest health monitoring pilot study conducted in the State of Indiana in 2002. The report is in two parts. Part One summarizes analysis of the field methods and data collected on the urban nonforest plots of one panel in Indiana, and Part Two expands these data to statewide urban forest estimates with the...

  3. National Forest Health Monitoring Program Monitoring Urban Forests in Indiana: Pilot Study 2002, Part 1: Analysis of Field Methods and Data Collection

    Treesearch

    Matt Lake; Philip Marshall; Manfred Mielke; Anne Buckelew Cumming; Daniel Twardus

    2006-01-01

    This report highlights findings from the first statewide urban forest health monitoring pilot study conducted in the State of Indiana in 2002. The report is in two parts: Part One summarizes analysis of the field methods and data collected on the urban nonforest plots of one panel in Indiana, and Part Two expands these data to statewide urban forest estimates with the...

  4. Lessons from the polybrominated diphenyl ethers (PBDEs): precautionary principle, primary prevention, and the value of community-based body-burden monitoring using breast milk.

    PubMed

    Hooper, Kim; She, Jianwen

    2003-01-01

    Levels of chemicals in humans (body burdens) are useful indicators of environmental quality and of community health. Chemical body burdens are easily monitored using breast milk samples collected from first-time mothers (primiparae) with infants 2-8 weeks of age. Currently, there is no body-burden monitoring program using breast milk in the United States, although ad hoc systems operate successfully in several European countries. In this article we describe the value of such monitoring and important considerations of how it might be accomplished, drawing from our experiences with pilot monitoring projects. Breast milk has several advantages as a sampling matrix: It is simple and noninvasive, with samples collected by the mother. It monitors body burdens in reproductive-age women and it estimates in utero and nursing-infant exposures, all important to community health. Time-trend data from breast milk monitoring serve as a warning system that identifies chemicals whose body burdens and human exposures are increasing. Time trends also serve as a report card on how well past regulatory actions have reduced environmental chemical exposures. Body-burden monitoring using breast milk should include educational programs that encourage breast-feeding. Finally, and most important, clean breast milk matters to people and leads to primary prevention--the limiting of chemical exposures. We illustrate these advantages with polybrominated diphenyl ethers (PBDEs), a formerly obscure group of brominated flame retardants that rose to prominence and were regulated in Sweden when residue levels were found to be rapidly increasing in breast milk. A community-based body-burden monitoring program using breast milk could be set up in the United States in collaboration with the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC). WIC has a large number of lactating first-time mothers: It has 6,000 clinics nationwide and serves almost half (47%) the infants born in the United States. Educational programs (e.g., those run by WIC) are needed that encourage breast-feeding, especially in lower-income communities where breast-feeding rates are low and where breast-feeding may help protect the infant from the effects of environmental chemical exposures. Education is also needed about reducing chemical body burdens. A body-burden monitoring program would provide valuable data on time trends, background levels, and community hot spots in need of mitigation and follow-up health studies; develop analytic methods for new chemicals of concern; and archive breast milk samples for future analyses of other agents.

  5. Resource Conservation and Recovery Act, Part B permit application [of the Waste Isolation Pilot Plant (WIPP)]. Volume 11, Chapter D, Appendix D4--Chapter D, Appendix D17: Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-01

    This volume contains appendices D4 through D17 which cover the following: Waste Isolation Pilot Plant site environmental report; ecological monitoring program at the Waste Isolation Pilot Plant; site characterization; regional and site geology and hydrology; general geology; dissolution features; ground water hydrology; typical carbon sorption bed efficiency; VOC monitoring plan for bin-room tests; chemical compatibility analysis of waste forms and container materials; probable maximum precipitation; WHIP supplementary roof support system room 1, panel 1; and corrosion risk assessment of the Waste Isolation Pilot Plant ``humid`` test bins.

  6. A Experimental Study of the Growth of Laser Spark and Electric Spark Ignited Flame Kernels.

    NASA Astrophysics Data System (ADS)

    Ho, Chi Ming

    1995-01-01

    Better ignition sources are constantly in demand for enhancing the spark ignition in practical applications such as automotive and liquid rocket engines. In response to this practical challenge, the present experimental study was conducted with the major objective to obtain a better understanding on how spark formation and hence spark characteristics affect the flame kernel growth. Two laser sparks and one electric spark were studied in air, propane-air, propane -air-nitrogen, methane-air, and methane-oxygen mixtures that were initially at ambient pressure and temperature. The growth of the kernels was monitored by imaging the kernels with shadowgraph systems, and by imaging the planar laser -induced fluorescence of the hydroxyl radicals inside the kernels. Characteristic dimensions and kernel structures were obtained from these images. Since different energy transfer mechanisms are involved in the formation of a laser spark as compared to that of an electric spark; a laser spark is insensitive to changes in mixture ratio and mixture type, while an electric spark is sensitive to changes in both. The detailed structures of the kernels in air and propane-air mixtures primarily depend on the spark characteristics. But the combustion heat released rapidly in methane-oxygen mixtures significantly modifies the kernel structure. Uneven spark energy distribution causes remarkably asymmetric kernel structure. The breakdown energy of a spark creates a blast wave that shows good agreement with the numerical point blast solution, and a succeeding complex spark-induced flow that agrees reasonably well with a simple puff model. The transient growth rates of the propane-air, propane-air -nitrogen, and methane-air flame kernels can be interpreted in terms of spark effects, flame stretch, and preferential diffusion. For a given mixture, a spark with higher breakdown energy produces a greater and longer-lasting enhancing effect on the kernel growth rate. By comparing the growth rates of the appropriate mixtures, the positive and negative effects of preferential diffusion and flame stretch on the developing flame are clearly demonstrated.

  7. A Study of Flame Propagation on Water-Mist Laden Gas Mixtures in Microgravity

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, A.; Riedel, E. P.; McKinnon, J. T.

    1999-01-01

    The use of water mists (very fine water sprays) for fire suppression is currently receiving increased attention as a replacement technology for halogen-based chemical agents-such as Halon 1301 (CF3Br)--the manufacturing of which has been banned by the Montreal Protocol due to their high ozone depletion potential. Water mist technology has been found effective for a wide range of applications such as Class B pool fires, shipboard machinery, aircraft cabins, computers, and electronic equipment. There are five distinct mechanisms by which water droplets may interact with a flame. First, the high enthalpy of vaporization of water (2450 kJ/kg) leads to heat removal from the flame front as the liquid droplets turn to steam. Second, as water vaporizes its volume increases approximately three orders of magnitude, which leads to the dilution of the oxygen and vaporized fuel required to maintain the flame. The third effect is the recombination of H-atoms and other radicals on the droplet surface. A fourth effect of water mists in fires is the retardation of surface propagation rates due to the wetting of walls and surfaces. The last potential impact of fine water mists affects the radiative propagation of the fire by forming an optically thick barrier to infrared radiation which prevents ignition of the unburned regions. Unfortunately, little fundamental information exists on the interaction of a flame with a water mist. To date, there is no widely accepted interpretation of the critical concentration of droplets required to suppress a flame or of the fundamental mechanisms involved in flame extinguishment by water mists. One of the main obstacles to obtaining such understanding is the difficulty of providing a simple, well-defined experimental setup for the flame front/water mist interaction. Some of the difficulty stems from the problem of generating, distributing and maintaining a homogeneous concentration of droplets throughout a chamber while gravity depletes the concentration and alters the droplet size by coalescence and agglomeration mechanisms. Experiments conducted in the absence of gravity provide an ideal environment to study the interaction of water mists and flames by eliminating these distorting effects. In addition, microgravity eliminates the complex flow patterns induced between the flame front and the water droplets. The long duration and quality of microgravity in space flights provide the required conditions to perform the setup and monitoring of flame suppression experiments. Consequently, a series of experiments have been identified to be performed on the Combustion Module (CM-2) in the Space Shuttle. These consist of measuring the extinguishing capability of a water mist on a premixed flame propagating along a tube. These experiments should provide the necessary data to obtain further understanding of the water mist suppression phenomena that can be later used to design and manufacture appropriate fire suppression systems. In preparation for the orbital flights, experiments have been conducted on low-gravity ground facilities to obtain the preliminary data necessary to define the scientific objectives and technical issues of the spacecraft experiments.

  8. Brominated flame retardants in Chinese air before and after the phase out of polybrominated diphenyl ethers

    NASA Astrophysics Data System (ADS)

    Li, Wen-Long; Qi, Hong; Ma, Wan-Li; Liu, Li-Yan; Zhang, Zhi; Mohammed, Mohammed O. A.; Song, Wei-Wei; Zhang, Zifeng; Li, Yi-Fan

    2015-09-01

    Brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs) and novel non-BDE flame retardants (NBFRs), were analyzed in Chinese air during China's POPs Soil and Air Monitoring Program Phase I (SAMP-I) and Phase II (SAMP-II). The levels of Σ12PBDEs and Σ6NBFRs in urban sites were significantly higher than those in rural sites and background sites. The higher detection rate and concentrations of high molecular weight PBDEs and NBFRs in Phase II indicated the changing of the commercial pattern of BFRs after the phase out of PBDEs in China. Temperature was the major factor affecting the seasonal variations of molecular weight BFRs in atmosphere. A significant correlation between BFRs concentration and gross domestic product (GDP) was observed, with the GDP parameter explained 59.4% and 72.7% of the total variability for Octa-BDEs and low molecular weight NBFRs, respectively. Our findings indicated an evolving commercial usage of BFRs from SAMP-I to SAMP-II, i.e. shifting from lower molecular weight to higher molecular weight congeners in China.

  9. A Sustainable Alternative to a U.S. Breast Milk Monitoring Program: Using NHANES Serum Data to Estimate Breast Milk PBDE Concentrations

    EPA Science Inventory

    Polybrominated diphenyl ethers (PBDEs) are high-production-volume chemicals that have been widely used as flame retardants in a variety of consumer products. PBDE concentrations in the environment, wildlife, and humans have been increasing for several decades. Concentrations in t...

  10. EMPACT: THE LAS VEGAS INTERAGENCY PILOT PROGRAM

    EPA Science Inventory

    ENPACT: The Las Vegas Interagency Pilot Project

    The Las Vegas Interagency Pilot Project of the EMPACT program has involved eleven efforts. These efforts are described in brief on the poster presentation. They include: Las Vegas Environmental Monitoring Inventory, the Qual...

  11. Interrupted monitoring of a stochastic process

    NASA Technical Reports Server (NTRS)

    Palmer, E.

    1977-01-01

    Normative strategies are developed for tasks where the pilot must interrupt his monitoring of a stochastic process in order to attend to other duties. Results are given as to how characteristics of the stochastic process and the other tasks affect the optimal strategies. The optimum strategy is also compared to the strategies used by subjects in a pilot experiment.

  12. Comparison of Pilots' Situational Awareness While Monitoring Autoland Approaches Using Conventional and Advanced Flight Display Formats

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Busquets, Anthony M.

    2000-01-01

    A simulation experiment was performed to assess situation awareness (SA) and workload of pilots while monitoring simulated autoland operations in Instrument Meteorological Conditions with three advanced display concepts: two enhanced electronic flight information system (EFIS)-type display concepts and one totally synthetic, integrated pictorial display concept. Each concept incorporated sensor-derived wireframe runway and iconic depictions of sensor-detected traffic in different locations on the display media. Various scenarios, involving conflicting traffic situation assessments, main display failures, and navigation/autopilot system errors, were used to assess the pilots' SA and workload during autoland approaches with the display concepts. From the results, for each scenario, the integrated pictorial display concept provided the pilots with statistically equivalent or substantially improved SA over the other display concepts. In addition to increased SA, subjective rankings indicated that the pictorial concept offered reductions in overall pilot workload (in both mean ranking and spread) over the two enhanced EFIS-type display concepts. Out of the display concepts flown, the pilots ranked the pictorial concept as the display that was easiest to use to maintain situational awareness, to monitor an autoland approach, to interpret information from the runway and obstacle detecting sensor systems, and to make the decision to go around.

  13. Display/control requirements for automated VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, W. C.; Kleinman, D. L.; Young, L. R.

    1976-01-01

    A systematic design methodology for pilot displays in advanced commercial VTOL aircraft was developed and refined. The analyst is provided with a step-by-step procedure for conducting conceptual display/control configurations evaluations for simultaneous monitoring and control pilot tasks. The approach consists of three phases: formulation of information requirements, configuration evaluation, and system selection. Both the monitoring and control performance models are based upon the optimal control model of the human operator. Extensions to the conventional optimal control model required in the display design methodology include explicit optimization of control/monitoring attention; simultaneous monitoring and control performance predictions; and indifference threshold effects. The methodology was applied to NASA's experimental CH-47 helicopter in support of the VALT program. The CH-47 application examined the system performance of six flight conditions. Four candidate configurations are suggested for evaluation in pilot-in-the-loop simulations and eventual flight tests.

  14. Adapting an ambient monitoring program to the challenge of managing emerging pollutants in the San Francisco Estuary.

    PubMed

    Hoenicke, Rainer; Oros, Daniel R; Oram, John J; Taberski, Karen M

    2007-09-01

    While over seven million organic and inorganic compounds that have been indexed by the American Chemical Society's Chemical Abstracts Service in their CAS Registry are commercially available, most pollution monitoring programs focus only on those chemical stressors for which regulatory benchmarks exist, and have been traditionally considered responsible for the most significant human and environmental health risks. Until the late 1990s, the San Francisco Estuary Regional Monitoring Program was no exception in that regard. After a thorough external review, the monitoring program responded to the need for developing a pro-active surveillance approach for emerging pollutants in recognition of the fact that the potential for the growing list of widely used chemical compounds to alter the integrity of water is high. We describe (1) the scientific and analytical bases underlying a new surveillance monitoring approach; (2) summarize approaches used and results obtained from a forensic retrospective; (3) present the growing data set on emerging pollutants from surveillance monitoring and related efforts in the San Francisco Bay Area to characterize newly targeted compounds in wastewater streams, sediment, storm water runoff, and biota; and (4) suggest next steps in monitoring program development and applied research that could move beyond traditional approaches of pollutant characterization. Based on the forensic analysis of archived chromatograms and chemical and toxicological properties of candidate compounds, we quantified a variety of synthetic organic compounds which had previously not been targeted for analysis. Flame retardant compounds, pesticides and insecticide synergists, insect repellents, pharmaceuticals, personal care product ingredients, plasticizers, non-ionic surfactants, and other manufacturing ingredients were detected in water, sediment, and/or biological tissue samples. Several of these compounds, especially polybrominated diphenyl ether flame retardants, exhibited concentrations of environmental concern. We also describe environmental management challenges associated with emerging pollutants and how pro-active surveillance monitoring might assist in implementing a more holistic approach to pollution prevention and control before emerging pollutants become a burden on future generations.

  15. A pilot trial of ambulatory monitoring of gastric motility using a modified magnetic capsule endoscope.

    PubMed

    Kim, Hee Man; Choi, Ja Sung; Cho, Jae Hee

    2014-04-30

    The magnetic capsule endoscope has been modified to be fixed inside the stomach and to monitor the gastric motility. This pilot trial was designed to investigate the feasibility of the magnetic capsule endoscope for monitoring gastric motility. The magnetic capsule endoscope was swallowed by the healthy volunteer and maneuvered by the external magnet on his abdomen surface inside the stomach. The magnetic capsule endoscope transmitted image of gastric peristalsis. This simple trial suggested that the real-time ambulatory monitoring of gastric motility should be feasible by using the magnetic capsule endoscope.

  16. Priority and emerging flame retardants in rivers: occurrence in water and sediment, Daphnia magna toxicity and risk assessment.

    PubMed

    Cristale, Joyce; García Vázquez, Alejandro; Barata, Carlos; Lacorte, Silvia

    2013-09-01

    The occurrence, partitioning and risk of eight polybrominated diphenyl ethers (PBDEs), nine new brominated (NBFRs) and ten organophosphorus flame retardants (OPFRs) were evaluated in three Spanish rivers suffering different anthropogenic pressures (Nalón, Arga and Besòs). OPFRs were ubiquitous contaminants in water (ΣOPFRs ranging from 0.0076 to 7.2μgL(-1)) and sediments (ΣOPFRs ranging 3.8 to 824μgkg(-1)). Brominated flame retardants were not detected in waters, whereas ΣPBDEs ranged from 88 to 812μgkg(-1) and decabromodiphenyl ethane (DBDPE) reached 435μgkg(-1) in sediments from the River Besòs, the most impacted river. The occurrence of flame retardants in river water and sediment was clearly associated with human activities, since the highest levels occurred near urban and industrial zones and after wastewater treatment plants discharge. Daphnia magna toxicity was carried out for OPFRs, the most ubiquitous flame retardants, considering individual compounds and mixtures. Toxicity of nine tested OPFRs differed largely among compounds, with EC50 values ranging over three magnitude orders (0.31-381mgL(-1)). Results evidenced that these compounds act by non-polar narcosis, since their toxicity was proportional to their lipophilicity (Kow). Furthermore, their joint toxicity was additive, which means that single and joint toxicity can be predicted knowing their concentration levels in water using quantitative structure activity relationships (QSARs) and predictive mixture models. Based on these results, a risk assessment considering joint effect was performed calculating and summing risk quotients (RQs) for the water and sediment samples. No significant risk to D. magna (ΣRQs <1) was observed for any of the monitored rivers. © 2013.

  17. Evaluation of a strapless heart rate monitor during simulated flight tasks.

    PubMed

    Wang, Zhen; Fu, Shan

    2016-01-01

    Pilots are under high task demands during flight. Monitoring pilot's physiological status is very important in the evaluation of pilot's workload and flight safety. Recently, physiological status monitor (PSM) has been embedded into a watch that can be used without a conventional chest strap. This makes it possible to unobtrusively monitor, log and transmit pilot's physiological measurements such as heart rate (HR) during flight tasks. The purpose of this study is to validate HR recorded by a strapless heart rate watch against criterion ECG-derived HR. Ten commercial pilots (mean ± SD : age: 39.1 ± 7.8 years; total flight hours 7173.2 ± 5270.9 hr) performed three routinely trained flight tasks in a full flight simulator: wind shear go-around (WG), takeoff and climb (TC), and hydraulic failure (HF). For all tasks combined (overall) and for each task, differences between the heart rate watch measurements and the criterion data were small (mean difference [95% CI]: overall: -0.71 beats/min [-0.85, -0.57]; WG: -0.90 beats/min [-1.15, -0.65]; TC: -0.69 beats/min [-0.98, -0.40]; HF: -0.61 beats/min [-0.80, -0.42]). There were high correlations between the heart rate watch measurements and the ECG-derived HR for all tasks (r ≥ 0.97, SEE < 3). Bland-Altman plots also show high agreements between the watch measurements and the criterion HR. These results suggest that the strapless heart rate watch provides valid measurements of HR during simulated flight tasks and could be a useful tool for pilot workload evaluation.

  18. Development of a Field-Deployable Psychomotor Vigilance Test to Monitor Helicopter Pilot Performance.

    PubMed

    McMahon, Terry W; Newman, David G

    2016-04-01

    Flying a helicopter is a complex psychomotor skill. Fatigue is a serious threat to operational safety, particularly for sustained helicopter operations involving high levels of cognitive information processing and sustained time on task. As part of ongoing research into this issue, the object of this study was to develop a field-deployable helicopter-specific psychomotor vigilance test (PVT) for the purpose of daily performance monitoring of pilots. The PVT consists of a laptop computer, a hand-operated joystick, and a set of rudder pedals. Screen-based compensatory tracking task software includes a tracking ball (operated by the joystick) which moves randomly in all directions, and a second tracking ball which moves horizontally (operated by the rudder pedals). The 5-min test requires the pilot to keep both tracking balls centered. This helicopter-specific PVT's portability and integrated data acquisition and storage system enables daily field monitoring of the performance of individual helicopter pilots. The inclusion of a simultaneous foot-operated tracking task ensures divided attention for helicopter pilots as the movement of both tracking balls requires simultaneous inputs. This PVT is quick, economical, easy to use, and specific to the operational flying task. It can be used for performance monitoring purposes, and as a general research tool for investigating the psychomotor demands of helicopter operations. While reliability and validity testing is warranted, data acquired from this test could help further our understanding of the effect of various factors (such as fatigue) on helicopter pilot performance, with the potential of contributing to helicopter operational safety.

  19. Concentrations in air of organobromine, organochlorine and organophosphate flame retardants in Toronto, Canada

    NASA Astrophysics Data System (ADS)

    Shoeib, Mahiba; Ahrens, Lutz; Jantunen, Liisa; Harner, Tom

    2014-12-01

    Concentrations of organobromine (BFRs), organochlorine (CFRs) and organophosphate esters flame retardants and plasticizers (PFRs) in air were monitored for over one year at an urban site in Toronto, Canada during 2010-2011. The mean value for polybrominated diphenyl ethers (BDEs) (gas + particle phase) was 38 pg/m3 with BDE-47 and BDE-99 as the dominant congeners. The mean concentrations in air for ∑non-BDE (BFRs and CFRs), was 9.6 pg/m3 - about four times lower than the BDEs. The brominated FRs: TBP-AE, BTBPE, EH-TBB, BEH-TEBP and the chlorinated syn- and anti-DP were detected frequently, ranging from 87% to 96%. Highest concentrations in air among all flame retardant classes were observed for the Σ-PFRs. The yearly mean concentration in air for ΣPFRs was 2643 pg/m3 with detection frequency higher than 80%. Except for TBP-AE and b- DBE-DBCH, non-BDEs (BFRs, CFRs and PFRs) were mainly associated with the particle phase. BDE concentrations in air were positively correlated with temperature indicating that volatilization from local sources was an important factor controlling levels in air. This correlation did not hold for most BFRs, CFRs and PFRs which were mainly on particles. For these compounds, air concentrations in Toronto are likely related to emissions from point sources and advective inputs. This study highlights the importance of urban air monitoring for FRs. Urban air can be considered a sentinel for detecting changes in the use and application of FRs in commercial products.

  20. A simulation evaluation of the engine monitoring and control system display

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1990-01-01

    The Engine Monitoring and Control System (E-MACS) display is a new concept for an engine instrument display, the purpose of which is to provide an enhanced means for a pilot to control and monitor aircraft engine performance. It provides graphically-presented information about performance capabilities, current performance, and engine component or subsystem operational conditions relative to nominal conditions. The concept was evaluated by sixteen pilot-subjects against a traditional, state-of-the-art electronic engine display format. The results of this evaluation showed a substantial pilot preference for the E-MACS display relative to the traditional display. The results of the failure detection portion of the evaluation showed a 100 percent detection rate for the E-MACS display relative to a 57 percent rate for the traditional display. From these results, it is concluded that by providing this type of information in the cockpit, a reduction in pilot workload and an enhanced ability for detecting degraded or off-nominal conditions is probable, thus leading to an increase in operational safety.

  1. Pilot installation of a bridge scour monitoring site at FM 1157 Mustang Creek

    DOT National Transportation Integrated Search

    1999-12-01

    A pilot installation was implemented at the Mustang Creek bridge crossing on FM 1157 in the Yoakum District, Jackson County, Texas. This pilot installation was developed in two phases. Phase 1 used a rather limited datalogger that lacked the ability ...

  2. Apollo 11 Launched Via Saturn V Rocket - High Angle View

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon. This high angle view of the launch was provided by a `fisheye' camera mounted on the launch tower. The Saturn V was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard the spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  3. Large eddy simulation of piloted pulverised coal combustion using extended flamelet/progress variable model

    NASA Astrophysics Data System (ADS)

    Wen, Xu; Luo, Kun; Jin, Hanhui; Fan, Jianren

    2017-09-01

    An extended flamelet/progress variable (EFPV) model for simulating pulverised coal combustion (PCC) in the context of large eddy simulation (LES) is proposed, in which devolatilisation, char surface reaction and radiation are all taken into account. The pulverised coal particles are tracked in the Lagrangian framework with various sub-models and the sub-grid scale (SGS) effects of turbulent velocity and scalar fluctuations on the coal particles are modelled by the velocity-scalar joint filtered density function (VSJFDF) model. The presented model is then evaluated by LES of an experimental piloted coal jet flame and comparing the numerical results with the experimental data and the results from the eddy break up (EBU) model. Detailed quantitative comparisons are carried out. It is found that the proposed model performs much better than the EBU model on radial velocity and species concentrations predictions. Comparing against the adiabatic counterpart, we find that the predicted temperature is evidently lowered and agrees well with the experimental data if the conditional sampling method is adopted.

  4. High-resolution climate monitoring on a mountain island: the Saguaro National Park pilot study

    Treesearch

    Michael A. Crimmins

    2005-01-01

    A pilot project to identify climate monitoring needs within Saguaro National Park began in fall 2003. Nine weather stations were deployed across the complex topography of the park to provide insight into the spatial and temporal patterns of climate within the park management unit. This project will provide a valuable baseline for park management and may highlight...

  5. Assessing I-Grid(TM) web-based monitoring for power quality and reliability benchmarking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divan, Deepak; Brumsickle, William; Eto, Joseph

    2003-04-30

    This paper presents preliminary findings from DOEs pilot program. The results show how a web-based monitoring system can form the basis for aggregation of data and correlation and benchmarking across broad geographical lines. A longer report describes additional findings from the pilot, including impacts of power quality and reliability on customers operations [Divan, Brumsickle, Eto 2003].

  6. 78 FR 49774 - Petitions for Modification of Application of Existing Mandatory Safety Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... the well. (7) Calibrate the methane monitors on the longwall, continuous mining machine, or cutting..., test methane levels with a hand- held methane detector at least every 10 minutes from the time that... methane levels are less than 1.0 percent in all areas that will be exposed to flames and sparks from the...

  7. 49 CFR 571.304 - Standard No. 304; Compressed natural gas fuel container integrity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... system over the entire liner, including the domes. Hoop wrapped means winding of filament in a....3Number and placement of thermocouples. To monitor flame temperature, place three thermocouples so that... average ambient wind velocity at the CNG fuel container during the period specified in S8.3.6 of this...

  8. 49 CFR 571.304 - Standard No. 304; Compressed natural gas fuel container integrity.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... system over the entire liner, including the domes. Hoop wrapped means winding of filament in a....3Number and placement of thermocouples. To monitor flame temperature, place three thermocouples so that... average ambient wind velocity at the CNG fuel container during the period specified in S8.3.6 of this...

  9. 49 CFR 571.304 - Standard No. 304; Compressed natural gas fuel container integrity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... system over the entire liner, including the domes. Hoop wrapped means winding of filament in a....3Number and placement of thermocouples. To monitor flame temperature, place three thermocouples so that... average ambient wind velocity at the CNG fuel container during the period specified in S8.3.6 of this...

  10. Quantitative Measurement of Oxygen in Microgravity Combustion

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.

    1997-01-01

    A low-gravity environment, in space or in ground-based facilities such as drop towers, provides a unique setting for studying combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as for better characterization of dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Due to restrictions associated with performing measurements in reduced gravity, diagnostic methods which have been applied to microgravity combustion studies have generally been limited to capture of flame emissions on film or video, laser Schlieren imaging and (intrusive) temperature measurements using thermocouples. Given the development of detailed theoretical models, more sophisticated diagnostic methods are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion processes as well as provide accurate feedback to improve the predictive capabilities of the models. When the demands of space flight are considered, the need for improved diagnostic systems which are rugged, compact, reliable, and operate at low power becomes apparent. The objective of this research is twofold. First, we want to develop a better understanding of the relative roles of diffusion and reaction of oxygen in microgravity combustion. As the primary oxidizer species, oxygen plays a major role in controlling the observed properties of flames, including flame front speed (in solid or liquid flames), extinguishment characteristics, flame size and flame temperature. The second objective is to develop better diagnostics based on diode laser absorption which can be of real value in both microgravity combustion research and as a sensor on-board Spacelab as either an air quality monitor or as part of a fire detection system. In our prior microgravity work, an eight line-of-sight fiber optic system measured water vapor mole fractions in the NASA Lewis 2.2-sec Drop Tower. In that system, the laser and all electronics resided at the top of the drop tower and was connected via a fiber optic cable to the rig, on which a 'pitch and catch' set of fiber collimating lenses were used to transmit the laser beam across a jet diffusion flame. This system required eight independent detection/demodulation units and had poor spatial resolution. This research builds on this earlier work, resulting in an improved capability for quantitative, nonintrusive measurement of major combustion species. A vertical cavity surface-emitting diode laser (VCSEL) and a continuous spatial scanning method permit the measurement of temporal and spatial profiles of the concentrations and temperatures of molecular oxygen. High detection sensitivity is achieved with wavelength modulation spectroscopy (WMS). One-g experiments are performed using a slot diffusion flame. Microgravity measurements on a solid fuel (cellulose sheet) system are planned for the NASA Lewis 2.2-second Drop Tower Facility.

  11. Simulator evaluation of displays for a revised takeoff performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B.; Srivatsan, Raghavachari; Person, Lee H., Jr

    1992-01-01

    Cockpit displays for a Takeoff Performance Monitoring System (TOPMS) to provide pilots with graphic and alphanumeric information pertinent to their decision to continue or abort a takeoff are evaluated. Revised head-down and newly developed head-up displays were implemented on electronic screens in the real-time Transport Systems Research Vehicle (TSRV) Simulator for the Boeing 737 airplane at the Langley Research Center and evaluated by 17 NASA, U.S. Air Force, airline, and industry pilots. Both types of displays were in color, but they were not dependent upon it. The TOPMS head-down display is composed of a runway graphic overlaid with symbolic status and advisory information related to both the expected takeoff point and the predicted stop point (in the event an abort becomes necessary). In addition, an overall Situation Advisory Flag indicates a preferred course of action based on analysis of the various elements of airplane performance and system status. A simpler head-up display conveys most of this same information and relates it to the visual scene. The evaluation pilots found the displays to be credible, easy to monitor, and appropriate for the task. In particular, the pilots said the head-up display was monitored with very little effort and did not obstruct or distract them from monitoring the simulated out-the-window runway scene. This report augments NASA TP-2908, 1989.

  12. Annual report of groundwater monitoring at Centralia, Kansas, in 2010.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, L. M.

    In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater was sampled twicemore » yearly from September 2005 until September 2007 for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation processes (reductive dechlorination) in the subsurface environment (Argonne 2006, 2007a, 2008a). The results from the two-year sampling program demonstrated the presence of carbon tetrachloride contamination at levels exceeding the KDHE Tier 2 risk-based screening level (RBSL) of 5 {micro}g/L for this compound, in a localized groundwater plume that has shown little movement. The relative concentrations of chloroform, the primary degradation product of carbon tetrachloride, suggested that some degree of reductive dechlorination or natural biodegradation was talking place in situ at the former CCC/USDA facility on a localized scale. The CCC/USDA subsequently developed an Interim Measure Conceptual Design (Argonne 2007b), proposing a pilot test of the Adventus EHC technology for in situ chemical reduction (ISCR). The proposed interim measure (IM) was approved by the KDHE in November 2007 (KDHE 2007). Implementation of the pilot test occurred in November-December 2007. The objective was to create highly reducing conditions that would enhance both chemical and biological reductive dechlorination in the injection test area (Argonne 2009a). The KDHE (2008a) requested that sitewide monitoring continue until a final remedy is selected (as part of a Corrective Action Study [CAS] evaluation) and implemented. In response to this request, the established sampling across the site and additional sampling in the IM pilot test area continued in 2008 (Argonne 2008b, 2009a,b). On the basis of results of the 2005-2008 sitewide monitoring and the 2008 IM pilot test monitoring, the CCC/USDA recommended a revised sampling program for both the wider site and the IM pilot test area (Section 4.2 in Argonne 2009b). The elements of this interim monitoring plan are as follows: (1) Annual sampling of twelve monitoring points across the site (Figure 1.1) and five outlying IM pilot test monitoring points (PMP4, PMP5, PMP6, PMP7, PMP9; Figure 1.2); and (2) Twice yearly sampling of five IM pilot test monitoring points inside the injection area (PMP1-PMP3, PMP8, MW02; Figure 1.2). With the approval of the KDHE (2009), the initial groundwater sampling for VOCs and geochemical analyses under the interim monitoring plan outlined above was conducted in 2009 (Argonne 2010). The present report documents the findings of the 2010 monitoring events, conducted on April 5 and September 19-21, 2010.« less

  13. Pilot monitoring program: geologic input for the hillslope component (includes a discussion of Caspar Creek geology and geomorphology)

    Treesearch

    T. E. Spittler

    1995-01-01

    The California Department of Conservation, Division of Mines and Geology (DMG) is submitting this report and accompanying maps to the California Department of Forestry and Fire Protection (CDF) to fulfill Interagency Agreement number 8CA38400, Pilot Monitoring Program -- Geologic Input for the Hillslope Component. Under this agreement, DMG has assisted CDF in the...

  14. Field-Scale Evaluation of Monitored Natural Attenuation for Dissolved Chlorinated Solvent Plumes

    DTIC Science & Technology

    2009-04-01

    biological in-situ treatment, an air sparging pilot study, and a phytoremediation study. The innovative technology studies were conducted within the source... phytoremediation (June to September 1997), reductive anaerobic biological in-situ treatment technology (RABITT; 1998), and groundwater recirculation wells...u g / L ) Measured Concentrations in 1381MWS09 Air Sparge Pilot Test (1996/1997) Phytoremediation Pilot Test (1997) RABITT Pilot Test (1998

  15. Engine monitoring display study

    NASA Technical Reports Server (NTRS)

    Hornsby, Mary E.

    1992-01-01

    The current study is part of a larger NASA effort to develop displays for an engine-monitoring system to enable the crew to monitor engine parameter trends more effectively. The objective was to evaluate the operational utility of adding three types of information to the basic Boeing Engine Indicating and Crew Alerting System (EICAS) display formats: alphanumeric alerting messages for engine parameters whose values exceed caution or warning limits; alphanumeric messages to monitor engine parameters that deviate from expected values; and a graphic depiction of the range of expected values for current conditions. Ten training and line pilots each flew 15 simulated flight scenarios with five variants of the basic EICAS format; these variants included different combinations of the added information. The pilots detected engine problems more quickly when engine alerting messages were included in the display; adding a graphic depiction of the range of expected values did not affect detection speed. The pilots rated both types of alphanumeric messages (alert and monitor parameter) as more useful and easier to interpret than the graphic depiction. Integrating engine parameter messages into the EICAS alerting system appears to be both useful and preferred.

  16. Unstrained and strained flamelets for LES of premixed combustion

    NASA Astrophysics Data System (ADS)

    Langella, Ivan; Swaminathan, Nedunchezhian

    2016-05-01

    The unstrained and strained flamelet closures for filtered reaction rate in large eddy simulation (LES) of premixed flames are studied. The required sub-grid scale (SGS) PDF in these closures is presumed using the Beta function. The relative performances of these closures are assessed by comparing numerical results from large eddy simulations of piloted Bunsen flames of stoichiometric methane-air mixture with experimental measurements. The strained flamelets closure is observed to underestimate the burn rate and thus the reactive scalars mass fractions are under-predicted with an over-prediction of fuel mass fraction compared with the unstrained flamelet closure. The physical reasons for this relative behaviour are discussed. The results of unstrained flamelet closure compare well with experimental data. The SGS variance of the progress variable required for the presumed PDF is obtained by solving its transport equation. An order of magnitude analysis of this equation suggests that the commonly used algebraic model obtained by balancing source and sink in this transport equation does not hold. This algebraic model is shown to underestimate the SGS variance substantially and the implications of this variance model for the filtered reaction rate closures are highlighted.

  17. Detection of G-Induced Loss of Consciousness (G-LOC) prognosis through EMG monitoring on gastrocnemius muscle in flight.

    PubMed

    Booyong Choi; Yongkyun Lee; Taehwan Cho; Hyojin Koo; Dongsoo Kim

    2015-08-01

    G-Induced Loss of Consciousness (G-LOC) is mainly caused by the sudden acceleration in the direction of +Gz axis from the fighter pilots, and is considered as an emergent situation of which fighter pilots are constantly aware. In order to resist against G-LOC, fighter pilots are subject to run Anti-G straining maneuver (AGSM), which includes L-1 respiration maneuvering and muscular contraction of the whole body. The purpose of this study is to create a G-LOC warning alarm prior to G-LOC by monitoring the Electromyogram (EMG) of the gastrocnemius muscle on the calf, which goes under constant muscular contraction during the AGSM process. EMG data was retrieved from pilots and pilot trainees of the Korean Air Force, during when subjects were under high G-trainings on a human centrifugal simulator. Out of the EMG features, integrated absolute value (IAV), reflecting muscle contraction, and waveform length (WL), reflecting muscle contraction and fatigue, have shown a rapid decay during the alarm phase, 3 seconds before G-LOC, compared to that of a normal phase withstanding G-force. Such results showed consistency amongst pilots and pilot trainees who were under G-LOC. Based on these findings, this study developed an algorithm which can detect G-LOC prognosis during flight, and at the same time, generate warning signals. The probability of G-LOC occurrence is detected through monitoring the decay trend and degree of the IVA and WL value of when the pilot initiates AGSM during sudden acceleration above 6G. Conclusively, this G-LOC prognosis detecting and warning system is a customized, real-time countermeasure which enhanced the accuracy of detecting G-LOC.

  18. Does pan diameter influence carbon monoxide levels during heating of water to boiling point with a camping stove?

    PubMed

    Leigh-Smith, Simon; Stevenson, Richard; Watt, Martin; Watt, Ian; McFadyen, Angus; Grant, Stan

    2004-01-01

    To determine whether pan diameter influences carbon monoxide (CO) concentration during heating of water to boiling point with a camping stove. The hypothesis was that increasing pan diameter increases CO concentration because of greater flame dispersal and a larger flame. This was a randomized, prospective study. A Coleman Dual Fuel 533 stove was used to heat pans of water to boiling point, with CO concentration monitored every 30 seconds for 5 minutes. The stove was inside a partially ventilated 200-L cardboard box model that was inside an environmental chamber at -6 degrees C. Water temperature, water volume, and flame characteristics were all standardized. Ten trials were performed for each of 2 pan diameters (base diameters of 165 mm [small] and 220 mm [large]). There was a significant difference (P = .002) between the pans for CO levels at each measurement interval from 60 seconds onward. These differences were markedly larger after 90 seconds, with a mean difference of 185 ppm (95% CI 115, 276 ppm) for all the results from 120 seconds onwards. This study has shown that there is significantly higher CO production with a large-diameter pan compared with a small-diameter pan. These findings were evident by using a camping stove to heat water to boiling point when a maximum blue flame was present throughout. Thus, in enclosed environments it is recommended that small-diameter pans be used in an attempt to prevent high CO levels.

  19. Occurrence and sources of brominated and organophosphorus flame retardants in dust from different indoor environments in Barcelona, Spain.

    PubMed

    Cristale, Joyce; Hurtado, Alba; Gómez-Canela, Cristian; Lacorte, Silvia

    2016-08-01

    In this study, the simultaneous presence of eight polybrominated diphenyl ethers (PBDEs), nine new brominated flame retardants (NBFRs) and ten organophosphorus flame retardants (OPFRs) was investigated in dust samples collected from different indoor environments (homes, schools, theatres, a university and a Research Institute) in Barcelona, Spain. OPFRs were detected at the highest concentrations followed by PBDEs. ∑OPFRs ranged from 2053 to 72,090ngg(-1) and tris(2-chloroisopropyl) phosphate (TCIPP) was the most abundant compound. BDE-209 was the main PBDE congener detected (up to 14,990ngg(-1)), while other PBDEs ranged from 2.6 to 118ngg(-1). Among the studied NBFRs, decabromodiphenyl ethane (DBDPE - up to 4432ngg(-1)) followed by bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP - up to 508ngg(-1)) were detected at the highest concentration, whereas a lower detection frequency was observed for 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), pentabromotoluene (PBT) and hexabromobenzene (HBB). The levels and profile of flame retardants (FRs) were characteristic of each environment, where theatres followed by homes presented the highest concentrations and schools had the lowest levels. Principal Component Analysis permitted to identify the main sources and distribution of all FRs, according to specific uses in each environment. The simultaneous presence of all FR families in indoor dust points to the need to monitor these compounds to minimize human exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Great Basin Integrated Landscape Monitoring Pilot Summary Report

    USGS Publications Warehouse

    Finn, Sean P.; Kitchell, Kate; Baer, Lori Anne; Bedford, David R.; Brooks, Matthew L.; Flint, Alan L.; Flint, Lorraine E.; Matchett, J.R.; Mathie, Amy; Miller, David M.; Pilliod, David S.; Torregrosa, Alicia; Woodward, Andrea

    2010-01-01

    The Great Basin Integrated Landscape Monitoring Pilot project (GBILM) was one of four regional pilots to implement the U.S. Geological Survey (USGS) Science Thrust on Integrated Landscape Monitoring (ILM) whose goal was to observe, understand, and predict landscape change and its implications on natural resources at multiple spatial and temporal scales and address priority natural resource management and policy issues. The Great Basin is undergoing rapid environmental change stemming from interactions among global climate trends, increasing human populations, expanding and accelerating land and water uses, invasive species, and altered fire regimes. GBLIM tested concepts and developed tools to store and analyze monitoring data, understand change at multiple scales, and forecast landscape change. The GBILM endeavored to develop and test a landscape-level monitoring approach in the Great Basin that integrates USGS disciplines, addresses priority management questions, catalogs and uses existing monitoring data, evaluates change at multiple scales, and contributes to development of regional monitoring strategies. GBILM functioned as an integrative team from 2005 to 2010, producing more than 35 science and data management products that addressed pressing ecosystem drivers and resource management agency needs in the region. This report summarizes the approaches and methods of this interdisciplinary effort, identifies and describes the products generated, and provides lessons learned during the project.

  1. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Bhatia, Pramod; Singh, Ravinder

    2017-06-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  2. Thermal spraying of polyethylene-based polymers: Processing and characterization

    NASA Astrophysics Data System (ADS)

    Otterson, David Mark

    This research explores the development of a flame-spray process map as it relates to polymers. This work provides a more complete understanding of the thermal history of the coating material from injection, to deposition and finally to cooling. This was accomplished through precise control of the processing conditions during deposition. Mass flow meters were used to monitor air and fuel flows as they were systematically changed, while temperatures were simultaneously monitored along the length of the flame. A process model was then implemented that incorporated this information along with measured particle velocities, particle size distribution, the polymer's melting temperature and its enthalpy of melting. This computational model was then used to develop a process map that described particle softening, melting and decomposition phenomena as a function of particle size and standoff distance. It demonstrated that changes in particle size caused significant variations in particle states achieved in-flight. A series of experiments were used to determine the range of spray parameters within which a cohesive coating without visible signs of degradation could be sprayed. These results provided additional information that complimented the computational processing map. The boundaries established by these results were the basis for a Statistical Design of Experiments that tested the effects that subtle processing changes had on coating properties. A series of processing maps were developed that combined the computational and the experimental results to describe the manner in which processing parameters interact to determine the degree of melting, polymer degradation and coating porosity. Strong interactions between standoff distance and traverse rate can cause the polymer to degrade and form pores in the coating. A clear picture of the manner in which particle size and standoff distance interact to determine particle melting was provided by combining the computational processing map with the collected splats and microstructures. Finally, a strong interaction was observed between standoff distance and flame length, which is determined by the air:fuel ratio. When flame length exceeds the standoff distance, polymer degradation results from excessive heating of the substrate. A descriptive model of the process is then provided to highlight the importance of these interactions. (Abstract shortened by UMI.)

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blijderveen, Maarten van; University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede; Bramer, Eddy A.

    Highlights: Black-Right-Pointing-Pointer We model piloted ignition times of wood and plastics. Black-Right-Pointing-Pointer The model is applied on a packed bed. Black-Right-Pointing-Pointer When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of themore » used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.« less

  4. Retaining U.S. Air Force Pilots When the Civilian Demand for Pilots Is Growing

    DTIC Science & Technology

    2016-01-01

    pilot retention and determine the changes in ARP and AP that could offset those effects. It also simulates the effects of eliminating AP for pilots...array of compensation policies for pilots, thereby providing the USAF with an empirically based analytical platform to determine the special and...greatly from the input and support of our project monitor, Maj Ryan Theiss, Chief, Rated Force Policy-Mobility Forces (HQ USAF/A1PPR), as well as Lt

  5. Experimental studies of the emissions characteristics of nonpremixed gas-air flames of various configurations

    NASA Astrophysics Data System (ADS)

    Bandaru, Ramarao Venkat

    2000-10-01

    Flow structure plays an important role in the mixing and chemical reaction processes in turbulent jet diffusion flames, which in turn influence the formation of pollutants. Fundamental studies on pollutant formation have mainly focussed on vertical, straight jet, turbulent flames. However, in many practical combustion systems such as boilers and furnaces, flames of various configurations are used. In the present study, along with vertical straight jet flames, pollutant emissions characteristics of crossflow flames and precessing jet flames are studied. In vertical, straight jet flames, in-flame temperature and NO concentration measurements were made to ascertain the influence of flame radiation on NO x emissions observed in earlier studies. Radiation affects flame temperatures and this is seen in the measured temperature fields in, undiluted and diluted, methane and ethylene flames. Measured NO distribution fields in undiluted methane and ethylene flames inversely correlated with the temperature, and thereby explaining the observed relationship between flame radiation and NO x emissions. Flames in most practical combustion devices have complex mixing characteristics. One such configuration is the crossflow flame, where the flame is subjected to a crossflow stream. The presence of twin counter-rotating vortices in the flames leading to increased entrainment rates and shorter residence times (i.e. shorter flame lengths). The variation of NOx emissions characteristics of crossflow flames from those of straight jet flames depends on the sooting propensity of the fuel used. Additionally, the nearfield region of the flame (i.e., region near the burner exit) has a strong influence on the CO and unburned hydrocarbon emissions, and on the NO2-to-NO x ratios. Another flame configuration used in the present study is the precessing jet flame. In the practical implementation of this unique flame configuration, the fuel jet precesses about the burner axis due to natural fluid mechanical instability occurring inside the burner at a sudden expansion. Studies have shown that these flames emit up to 70% less NOx than straight jet flames. In precessing jet flames, the turbulent mixing scales are several times larger than those of straight jet flames.

  6. Laminar Diffusion Flame Studies (Ground- and Space-Based Studies)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Laminar diffusion flames are of interest because they provide model flame systems that are far more tractable for analysis and experiments than more practical turbulent diffusion flames. Certainly, understanding flame processes within laminar diffusion flames must precede understanding these processes in more complex turbulent diffusion flames. In addition, many properties of laminar diffusion flames are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Laminar jet diffusion flame shapes (luminous flame boundaries) have been of particular interest since the classical study of Burke and Schumann because they are a simple nonintrusive measurement that is convenient for evaluating flame structure predictions. Thus, consideration of laminar flame shapes is undertaken in the following, emphasizing conditions where effects of gravity are small, due to the importance of such conditions to practical applications. Another class of interesting properties of laminar diffusion flames are their laminar soot and smoke point properties (i.e., the flame length, fuel flow rate, characteristic residence time, etc., at the onset of soot appearance in the flame (the soot point) and the onset of soot emissions from the flame (the smoke point)). These are useful observable soot properties of nonpremixed flames because they provide a convenient means to rate several aspects of flame sooting properties: the relative propensity of various fuels to produce soot in flames; the relative effects of fuel structure, fuel dilution, flame temperature and ambient pressure on the soot appearance and emission properties of flames; the relative levels of continuum radiation from soot in flames; and effects of the intrusion of gravity (or buoyant motion) on emissions of soot from flames. An important motivation to define conditions for soot emissions is that observations of laminar jet diffusion flames in critical environments, e.g., space shuttle and space station facilities, cannot involve soot emitting flames in order to ensure that test chamber windows used for experimental observations are not blocked by soot deposits, thereby compromising unusually valuable experimental results. Another important motivation to define conditions where soot is present in diffusion flames is that flame chemistry, transport and radiation properties are vastly simplified when soot is absent, making such flames far more tractable for detailed numerical simulations than corresponding soot-containing flames. Motivated by these observations, the objectives of this phase of the investigation were as follows: (1) Observe flame-sheet shapes (the location of the reaction zone near phi=1) of nonluminous (soot free) laminar jet diffusion flames in both still and coflowing air and use these results to develop simplified models of flame-sheet shapes for these conditions; (2) Observe luminous flame boundaries of luminous (soot-containing) laminar jet diffusion flames in both still and coflowing air and use these results to develop simplified models of luminous flame boundaries for these conditions. In order to fix ideas here, maximum luminous flame boundaries at the laminar smoke point conditions were sought, i.e., luminous flame boundaries at the laminar smoke point; (3) Observe effects of coflow on laminar soot- and smoke-point conditions because coflow has been proposed as a means to control soot emissions and minimize the presence of soot in diffusion flames.

  7. Flame Shapes of Luminous NonBuoyant Laminar Coflowing Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.

    1999-01-01

    Laminar diffusion flames are of interest as model flame systems that are more tractable for analysis and experiments than practical turbulent diffusion flames. Certainly understanding laminar flames must precede understanding more complex turbulent flames while man'y laminar diffusion flame properties are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Laminar diffusion flame shapes have been of interest since the classical study of Burke and Schumann because they involve a simple nonintrusive measurement that is convenient for evaluating flame structure predictions. Motivated by these observations, the shapes of laminar flames were considered during the present investigation. The present study was limited to nonbuoyant flames because most practical flames are not buoyant. Effects of buoyancy were minimized by observing flames having large flow velocities at small pressures. Present methods were based on the study of the shapes of nonbu,3yant round laminar jet diffusion flames of Lin et al. where it was found that a simple analysis due to Spalding yielded good predictions of the flame shapes reported by Urban et al. and Sunderland et al.

  8. Automatic targeting of plasma spray gun

    DOEpatents

    Abbatiello, Leonard A.; Neal, Richard E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is provided. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun.

  9. AlGaN Ultraviolet Detectors for Dual-Band UV Detection

    NASA Technical Reports Server (NTRS)

    Miko, Laddawan; Franz, David; Stahle, Carl M.; Yan, Feng; Guan, Bing

    2010-01-01

    This innovation comprises technology that has the ability to measure at least two ultraviolet (UV) bands using one detector without relying on any external optical filters. This allows users to build a miniature UVA and UVB monitor, as well as to develop compact, multicolor imaging technologies for flame temperature sensing, air-quality control, and terrestrial/counter-camouflage/biosensing applications.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, L. M.

    In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater was sampledmore » twice yearly from September 2005 until September 2007 for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The results from the two-year sampling program demonstrated the presence of carbon tetrachloride contamination at levels exceeding the KDHE Tier 2 risk-based screening level (RBSL) of 5 {micro}g/L for this compound in a localized groundwater plume that has shown little movement. The relative concentrations of chloroform, the primary degradation product of carbon tetrachloride, suggested that some degree of reductive dechlorination or natural biodegradation was taking place in situ at the former CCC/USDA facility on a localized scale. The CCC/USDA subsequently developed an Interim Measure Conceptual Design (Argonne 2007b), proposing a pilot test of the Adventus EHC technology for in situ chemical reduction (ISCR). The proposed interim measure (IM) was approved by the KDHE in November 2007 (KDHE 2007). Implementation of the pilot test occurred in November-December 2007. The objective was to create highly reducing conditions that would enhance both chemical and biological reductive dechlorination in the injection test area (Argonne 2009a). The KDHE (2008a) has requested that sitewide monitoring continue at Centralia until a final remedy has been selected (as part of a Corrective Action Study [CAS] evaluation) and implemented for this site. In response to this request, twice-yearly sampling of 10 monitoring wells and 6 piezometers (Figure 1.1) previously approved by the KDHE for monitoring of the groundwater at Centralia (KDHE 2005a,b) was continued in 2008. The sampling events under this extension of the two-year (2005-2007) monitoring program occurred in March and September 2008 (Argonne 2008b, 2009b). Additional piezometers specifically installed to evaluate the progress of the IM pilot test (PMP1-PMP9; Figure 1.2) were also sampled in 2008; the results of these analyses were reported and discussed separately (Argonne 2009a). On the basis of results of the 2005-2008 sitewide monitoring and the 2008 IM pilot test monitoring, the CCC/USDA recommended a revised sampling program to address both of the continuing monitoring objectives until a CAS for Centralia is developed (Section 4.2 in Argonne 2009b). The elements of this interim monitoring plan are as follows: (1) Annual sampling of twelve previously established (before the pilot test) monitoring points (locations identified in Figure 1.3) and the five outlying pilot test monitoring points (PMP4, PMP5, PMP6, PMP7, PMP9; Figure 1.4); and (2) Sampling twice yearly at the five pilot test monitoring points inside the injection area (PMP1-PMP3, PMP8, MW02; Figure 1.4). With the approval of the KDHE (2009), groundwater sampling for analyses of VOCs and selected other geochemical parameters was conducted at Centralia under the interim monitoring program outlined above in April and October 2009. This report documents the findings of the 2009 monitoring events.« less

  11. Triple flames and flame stabilization

    NASA Technical Reports Server (NTRS)

    Broadwell, James E.

    1994-01-01

    It is now well established that when turbulent jet flames are lifted, combustion begins, i.e., the flame is stabilized, at an axial station where the fuel and air are partially premixed. One might expect, therefore, that the beginning of the combustion zone would be a triple flame. Such flames have been described; however, other experiments provide data that are difficult to reconcile with the presence of triple flames. In particular, laser images of CH and OH, marking combustion zones, do not exhibit shapes typical of triple flames, and, more significantly, the lifted flame appears to have a propagation speed that is an order of magnitude higher than the laminar flame speed. The speed of triple flames studied thus far exceeds the laminar value by a factor less than two. The objective of the present task is the resolution of the apparent conflict between the experiments and the triple flame characteristics, and the clarification of the mechanisms controlling flame stability. Being investigated are the resolution achieved in the experiments, the flow field in the neighborhood of the stabilization point, propagation speeds of triple flames, laboratory flame unsteadiness, and the importance of flame ignition limits in the calculation of triple flames that resemble lifted flames.

  12. Candle Flames in Non-Buoyant Atmospheres

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Shu, Y.; Tien, J. S.

    1999-01-01

    This paper addresses the behavior of a candle flame in a long-duration, quiescent microgravity environment both on the space Shuttle and the Mir Orbiting Station (OS). On the Shuttle, the flames became dim blue after an initial transient where there was significant yellow (presumably soot) in the flame. The flame lifetimes were typically less than 60 seconds. The safety-mandated candlebox that contained the candle flame inhibited oxygen transport to the flame and thus limited the flame lifetime. 'Me flames on the Mir OS were similar, except that the yellow luminosity persisted longer into the flame lifetime because of a higher initial oxygen concentration. The Mir flames burned for as long as 45 minutes. The difference in the flame lifetime between the Shuttle and Mir flames was primarily the redesigned candlebox that did not inhibit oxygen transport to the flame. In both environments, the flame intensity and the height-to-width ratio gradually decreased as the ambient oxygen content in the sealed chamber slowly decreased. Both sets of experiments showed spontaneous, axisymmetric flame oscillations just prior to extinction. The paper also presents a numerical model of candle flame. The model is detailed in the gas-phase, but uses a simplified liquid/wick phase. 'Me model predicts a steady flame with a shape and size quantitatively similar to the Shuttle and Mir flames. ne model also predicts pre-extinction flame oscillations if the decrease in ambient oxygen is small enough.

  13. Fire Hazards from Combustible Ammunition, Methodology Development. Phase I

    DTIC Science & Technology

    1980-06-01

    5.3 Flame Length , Flame Diameter and Mass Burning Rate 37 5.4 Flame Emissive Power 41 5.5 Fire Plume Axial Gas Velocity 41 5.6 Flame Temperature...B.2 Exit Velocity 93 B.3 Rate of Energy Flow 93 B.4 Chamber Characteristics 94 B.5 Flame Length 95 B.6 Flame Lift Angle 95 B.7 Summary 97...Viewing Flame in Test Series 5 17. Flame Length Scaling 18. Scaling Trends for Mass Burning Rate 19. Effective Flame Emissive Power versus Flame

  14. Determination of methylamines in air using activated charcoal traps and gas chromatographic analysis with an alkali flame detector (AFD)

    NASA Astrophysics Data System (ADS)

    Fuselli, Sergio; Benedetti, Giorgio; Mastrangeli, Renato

    A method is described for trapping and analysing airborne methylamines (MMA, DMA and TMA) by means of a 20/35 mesh activated charcoal traps and subsequent GLSC analysis of collected sample using 0.1 N NaOH acqueous solution. The method described may be applied to monitoring methylamines in air in industrial areas, with an Alkali Flame Detector; sensitivities of approx. 0.005 ppmv for each of the three methylamines analysed are reached. Trapping efficiency is compared with that of Tenax GC 60/80 mesh and 60/80 Carbopack B which uses thermal desorption of air samples before GLSC analysis. The Tenax GC trap method enables TMA recovery only with a sensitivity of 0.0001 ppmv. Recovery obtained with 60/80 Carbopack B traps is practically zero.

  15. Models of Pilot Behavior and Their Use to Evaluate the State of Pilot Training

    NASA Astrophysics Data System (ADS)

    Jirgl, Miroslav; Jalovecky, Rudolf; Bradac, Zdenek

    2016-07-01

    This article discusses the possibilities of obtaining new information related to human behavior, namely the changes or progressive development of pilots' abilities during training. The main assumption is that a pilot's ability can be evaluated based on a corresponding behavioral model whose parameters are estimated using mathematical identification procedures. The mean values of the identified parameters are obtained via statistical methods. These parameters are then monitored and their changes evaluated. In this context, the paper introduces and examines relevant mathematical models of human (pilot) behavior, the pilot-aircraft interaction, and an example of the mathematical analysis.

  16. In silico vs. Over the Clouds: On-the-Fly Mental State Estimation of Aircraft Pilots, Using a Functional Near Infrared Spectroscopy Based Passive-BCI

    PubMed Central

    Gateau, Thibault; Ayaz, Hasan; Dehais, Frédéric

    2018-01-01

    There is growing interest for implementing tools to monitor cognitive performance in naturalistic work and everyday life settings. The emerging field of research, known as neuroergonomics, promotes the use of wearable and portable brain monitoring sensors such as functional near infrared spectroscopy (fNIRS) to investigate cortical activity in a variety of human tasks out of the laboratory. The objective of this study was to implement an on-line passive fNIRS-based brain computer interface to discriminate two levels of working memory load during highly ecological aircraft piloting tasks. Twenty eight recruited pilots were equally split into two groups (flight simulator vs. real aircraft). In both cases, identical approaches and experimental stimuli were used (serial memorization task, consisting in repeating series of pre-recorded air traffic control instructions, easy vs. hard). The results show pilots in the real flight condition committed more errors and had higher anterior prefrontal cortex activation than pilots in the simulator, when completing cognitively demanding tasks. Nevertheless, evaluation of single trial working memory load classification showed high accuracy (>76%) across both experimental conditions. The contributions here are two-fold. First, we demonstrate the feasibility of passively monitoring cognitive load in a realistic and complex situation (live piloting of an aircraft). In addition, the differences in performance and brain activity between the two experimental conditions underscore the need for ecologically-valid investigations. PMID:29867411

  17. In silico vs. Over the Clouds: On-the-Fly Mental State Estimation of Aircraft Pilots, Using a Functional Near Infrared Spectroscopy Based Passive-BCI.

    PubMed

    Gateau, Thibault; Ayaz, Hasan; Dehais, Frédéric

    2018-01-01

    There is growing interest for implementing tools to monitor cognitive performance in naturalistic work and everyday life settings. The emerging field of research, known as neuroergonomics, promotes the use of wearable and portable brain monitoring sensors such as functional near infrared spectroscopy (fNIRS) to investigate cortical activity in a variety of human tasks out of the laboratory. The objective of this study was to implement an on-line passive fNIRS-based brain computer interface to discriminate two levels of working memory load during highly ecological aircraft piloting tasks. Twenty eight recruited pilots were equally split into two groups (flight simulator vs. real aircraft). In both cases, identical approaches and experimental stimuli were used (serial memorization task, consisting in repeating series of pre-recorded air traffic control instructions, easy vs. hard). The results show pilots in the real flight condition committed more errors and had higher anterior prefrontal cortex activation than pilots in the simulator, when completing cognitively demanding tasks. Nevertheless, evaluation of single trial working memory load classification showed high accuracy (>76%) across both experimental conditions. The contributions here are two-fold. First, we demonstrate the feasibility of passively monitoring cognitive load in a realistic and complex situation (live piloting of an aircraft). In addition, the differences in performance and brain activity between the two experimental conditions underscore the need for ecologically-valid investigations.

  18. Simulations of normal and inverse laminar diffusion flames under oxygen enhancement and gravity variation

    NASA Astrophysics Data System (ADS)

    Bhatia, P.; Katta, V. R.; Krishnan, S. S.; Zheng, Y.; Sunderland, P. B.; Gore, J. P.

    2012-10-01

    Steady-state global chemistry calculations for 20 different flames were carried out using an axisymmetric Computational Fluid Dynamics (CFD) code. Computational results for 16 flames were compared with flame images obtained at the NASA Glenn Research Center. The experimental flame data for these 16 flames were taken from Sunderland et al. [4] which included normal and inverse diffusion flames of ethane with varying oxidiser compositions (21, 30, 50, 100% O2 mole fraction in N2) stabilised on a 5.5 mm diameter burner. The test conditions of this reference resulted in highly convective inverse diffusion flames (Froude numbers of the order of 10) and buoyant normal diffusion flames (Froude numbers ∼0.1). Additionally, six flames were simulated to study the effect of oxygen enhancement on normal diffusion flames. The enhancement in oxygen resulted in increased flame temperatures and the presence of gravity led to increased gas velocities. The effect of gravity-variation and oxygen enhancement on flame shape and size of normal diffusion flames was far more pronounced than for inverse diffusion flames. For normal-diffusion flames, their flame-lengths decreased (1 to 2 times) and flames-widths increased (2 to 3 times) when going from earth-gravity to microgravity, and flame height decreased by five times when going from air to a pure oxygen environment.

  19. Checklists and Monitoring in the Cockpit: Why Crucial Defenses Sometimes Fail

    NASA Technical Reports Server (NTRS)

    Dismukes, R. Key; Berman, Ben

    2010-01-01

    Checklists and monitoring are two essential defenses against equipment failures and pilot errors. Problems with checklist use and pilots failures to monitor adequately have a long history in aviation accidents. This study was conducted to explore why checklists and monitoring sometimes fail to catch errors and equipment malfunctions as intended. Flight crew procedures were observed from the cockpit jumpseat during normal airline operations in order to: 1) collect data on monitoring and checklist use in cockpit operations in typical flight conditions; 2) provide a plausible cognitive account of why deviations from formal checklist and monitoring procedures sometimes occur; 3) lay a foundation for identifying ways to reduce vulnerability to inadvertent checklist and monitoring errors; 4) compare checklist and monitoring execution in normal flights with performance issues uncovered in accident investigations; and 5) suggest ways to improve the effectiveness of checklists and monitoring. Cognitive explanations for deviations from prescribed procedures are provided, along with suggestions for countermeasures for vulnerability to error.

  20. Flame and Soot Boundaries of Laminar Jet Diffusion Flames. Appendix A

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2002-01-01

    The shapes (flame-sheet and luminous-flame boundaries) or steady weakly buoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K. ambient pressures of 4-50 kPa, jet-exit Reynolds numbers of 3-54, initial air/fuel velocity ratios of 0-9, and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at microgravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary-layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 of the lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions because of the presence of luminous soot particles in the fuel-lean region of the flames.

  1. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z. G. (Technical Monitor)

    2001-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smokepoint conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smokepoint conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  2. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames. Appendix K

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue C02 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  3. Candle Flames in Microgravity Experiment

    NASA Image and Video Library

    1992-07-09

    Closeup view inside glovebox showing a candle flame. The Candle Flames in Microgravity experiment is carried onboard Columbia to examine whether candle flames can be sustained in space; to study the interaction and physical properties of diffusion flames. In space, where buoyancy-driven convection is reduced, the role diffusion plays in sustaining candle flames can be isolated. Results have implications for other diffusion flame studies. Diffusion flames are the most common type of flame on Earth.

  4. Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.

    2002-01-01

    This is the final report of a research program considering interactions between flow and soot properties within laminar diffusion flames. Laminar diffusion flames were considered because they provide model flame systems that are far more tractable for theoretical and experimental studies than more practical turbulent diffusion flames. In particular, understanding the transport and chemical reaction processes of laminar flames is a necessary precursor to understanding these processes in practical turbulent flames and many aspects of laminar diffusion flames have direct relevance to turbulent diffusion flames through application of the widely recognized laminar flamelet concept of turbulent diffusion flames. The investigation was divided into three phases, considering the shapes of nonbuoyant round laminar jet diffusion flames in still air, the shapes of nonbuoyant round laminar jet diffusion flames in coflowing air, and the hydrodynamic suppression of soot formation in laminar diffusion flames.

  5. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller.

    PubMed

    Soons, Zita I T A; van den IJssel, Jan; van der Pol, Leo A; van Straten, Gerrit; van Boxtel, Anton J B

    2009-04-01

    This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst others the headspace and tubing to the analyzer. These gas phase dynamics are modelled using knowledge of the system in order to reconstruct oxygen consumption. The second aspect is to evaluate performance of the monitoring and control system with the required modifications of the oxygen consumption calculation on pilot-scale. In pilot-scale fed-batch cultivation good monitoring and control performance is obtained enabling a doubled concentration of bulk vaccine compared to standard batch production.

  6. "Tower, Am I Cleared to Land?": Problematic Communication in Aviation Discourse

    ERIC Educational Resources Information Center

    Howard, John W., III

    2008-01-01

    This study examined problematic communication in pilot-air traffic controller (ATC) interaction. More than 15 hours of pilot-ATC dialogue were collected by monitoring control tower frequencies at 15 U.S. airports. The transcribed data yielded a total of 34 ATCs, 270 pilots, and 1,799 turns of talk. Analyses revealed that (a) communication…

  7. Developing a monitoring and verification plan with reference to the Australian Otway CO2 pilot project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodds, K.; Daley, T.; Freifeld, B.

    2009-05-01

    The Australian Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) is currently injecting 100,000 tons of CO{sub 2} in a large-scale test of storage technology in a pilot project in southeastern Australia called the CO2CRC Otway Project. The Otway Basin, with its natural CO{sub 2} accumulations and many depleted gas fields, offers an appropriate site for such a pilot project. An 80% CO{sub 2} stream is produced from a well (Buttress) near the depleted gas reservoir (Naylor) used for storage (Figure 1). The goal of this project is to demonstrate that CO{sub 2} can be safely transported, stored underground, andmore » its behavior tracked and monitored. The monitoring and verification framework has been developed to monitor for the presence and behavior of CO{sub 2} in the subsurface reservoir, near surface, and atmosphere. This monitoring framework addresses areas, identified by a rigorous risk assessment, to verify conformance to clearly identifiable performance criteria. These criteria have been agreed with the regulatory authorities to manage the project through all phases addressing responsibilities, liabilities, and to assure the public of safe storage.« less

  8. Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, R. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.

    2000-01-01

    The laminar smoke-point properties of nonbuoyant round laminar jet diffusion flames were studied emphasizing results from long duration (100-230 s) experiments at microgravity carried -out on- orbit in the Space Shuttle Columbia. Experimental conditions included ethylene-and propane-fueled flames burning in still air at an ambient temperature of 300 K, initial jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-1630 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. The onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with first soot emissions along the flame axis and open-tip flames with first soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip; nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well-correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than earlier tests of nonbuoyant flames at microgravity using ground-based facilities and of buoyant flames at normal gravity due to reduced effects of unsteadiness, flame disturbances and buoyant motion. For example, laminar smoke-point flame lengths from ground-based microgravity measurements were up to 2.3 times longer and from buoyant flame measurements were up to 6.4 times longer than the present measurements at comparable conditions. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure, which is a somewhat slower variation than observed during earlier tests both at microgravity using ground-based facilities and at normal gravity.

  9. Smoke-Point Properties of Non-Buoyant Round Laminar Jet Diffusion Flames. Appendix J

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.

    2000-01-01

    The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity, the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and non-buoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smoke-point flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during earlier tests both at microgravity (using ground-based facilities) and at normal gravity.

  10. Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames. Appendix B

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.; Ross, H. D. (Technical Monitor)

    2000-01-01

    The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smokepoint flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during earlier tests both at microgravity (using ground-based facilities) and at normal gravity,

  11. Suppression of Soot Formation and Shapes of Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.

    2001-01-01

    Laminar nonpremixed (diffusion) flames are of interest because they provide model flame systems that are far more tractable for analysis and experiments than practical turbulent flames. In addition, many properties of laminar diffusion flames are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Finally, laminar diffusion flame shapes have been of interest since the classical study of Burke and Schumann because they involve a simple nonintrusive measurement that is convenient for evaluating flame shape predictions. Motivated by these observations, the shapes of round hydrocarbon-fueled laminar jet diffusion flames were considered, emphasizing conditions where effects of buoyancy are small because most practical flames are not buoyant. Earlier studies of shapes of hydrocarbon-fueled nonbuoyant laminar jet diffusion flames considered combustion in still air and have shown that flames at the laminar smoke point are roughly twice as long as corresponding soot-free (blue) flames and have developed simple ways to estimate their shapes. Corresponding studies of hydrocarbon-fueled weakly-buoyant laminar jet diffusion flames in coflowing air have also been reported. These studies were limited to soot-containing flames at laminar smoke point conditions and also developed simple ways to estimate their shapes but the behavior of corresponding soot-free flames has not been addressed. This is unfortunate because ways of selecting flame flow properties to reduce soot concentrations are of great interest; in addition, soot-free flames are fundamentally important because they are much more computationally tractable than corresponding soot-containing flames. Thus, the objectives of the present investigation were to observe the shapes of weakly-buoyant laminar jet diffusion flames at both soot-free and smoke point conditions and to use the results to evaluate simplified flame shape models. The present discussion is brief.

  12. On the critical flame radius and minimum ignition energy for spherical flame initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zheng; Burke, M. P.; Ju, Yiguang

    2011-01-01

    Spherical flame initiation from an ignition kernel is studied theoretically and numerically using different fuel/oxygen/helium/argon mixtures (fuel: hydrogen, methane, and propane). The emphasis is placed on investigating the critical flame radius controlling spherical flame initiation and its correlation with the minimum ignition energy. It is found that the critical flame radius is different from the flame thickness and the flame ball radius and that their relationship depends strongly on the Lewis number. Three different flame regimes in terms of the Lewis number are observed and a new criterion for the critical flame radius is introduced. For mixtures with Lewis numbermore » larger than a critical Lewis number above unity, the critical flame radius is smaller than the flame ball radius but larger than the flame thickness. As a result, the minimum ignition energy can be substantially over-predicted (under-predicted) based on the flame ball radius (the flame thickness). The results also show that the minimum ignition energy for successful spherical flame initiation is proportional to the cube of the critical flame radius. Furthermore, preferential diffusion of heat and mass (i.e. the Lewis number effect) is found to play an important role in both spherical flame initiation and flame kernel evolution after ignition. It is shown that the critical flame radius and the minimum ignition energy increase significantly with the Lewis number. Therefore, for transportation fuels with large Lewis numbers, blending of small molecule fuels or thermal and catalytic cracking will significantly reduce the minimum ignition energy.« less

  13. Flame analysis using image processing techniques

    NASA Astrophysics Data System (ADS)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  14. ADVANCED RESERVOIR CHARACTERIZATION IN THE ANTELOPE SHALE TO ESTABLISH THE VIABILITY OF CO2 ENHANCED OIL RECOVERY IN CALIFORNIA'S MONTEREY FORMATION SILICEOUS SHALES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasquale R. Perri

    2003-05-15

    This report describes the evaluation, design, and implementation of a DOE funded CO{sub 2} pilot project in the Lost Hills Field, Kern County, California. The pilot consists of four inverted (injector-centered) 5-spot patterns covering approximately 10 acres, and is located in a portion of the field, which has been under waterflood since early 1992. The target reservoir for the CO{sub 2} pilot is the Belridge Diatomite. The pilot location was selected based on geologic considerations, reservoir quality and reservoir performance during the waterflood. A CO{sub 2} pilot was chosen, rather than full-field implementation, to investigate uncertainties associated with CO{sub 2}more » utilization rate and premature CO{sub 2} breakthrough, and overall uncertainty in the unproven CO{sub 2} flood process in the San Joaquin Valley. A summary of the design and objectives of the CO{sub 2} pilot are included along with an overview of the Lost Hills geology, discussion of pilot injection and production facilities, and discussion of new wells drilled and remedial work completed prior to commencing injection. Actual CO{sub 2} injection began on August 31, 2000 and a comprehensive pilot monitoring and surveillance program has been implemented. Since the initiation of CO{sub 2} injection, the pilot has been hampered by excessive sand production in the pilot producers due to casing damage related to subsidence and exacerbated by the injected CO{sub 2}. Therefore CO{sub 2} injection was very sporadic in 2001 and 2002 and we experienced long periods of time with no CO{sub 2} injection. As a result of the continued mechanical problems, the pilot project was terminated on January 30, 2003. This report summarizes the injection and production performance and the monitoring results through December 31, 2002 including oil geochemistry, CO{sub 2} injection tracers, crosswell electromagnetic surveys, crosswell seismic, CO{sub 2} injection profiling, cased hole resistivity, tiltmetering results, and corrosion monitoring results. Although the Lost Hills CO{sub 2} pilot was not successful, the results and lessons learned presented in this report may be applicable to evaluate and design other potential San Joaquin Valley CO{sub 2} floods.« less

  15. On use of CO{sub 2} chemiluminescence for combustion metrics in natural gas fired reciprocating engines.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, S. B.; Bihari, B.; Biruduganti, M.

    Flame chemiluminescence is widely acknowledged to be an indicator of heat release rate in premixed turbulent flames that are representative of gas turbine combustion. Though heat release rate is an important metric for evaluating combustion strategies in reciprocating engine systems, its correlation with flame chemiluminescence is not well studied. To address this gap an experimental study was carried out in a single-cylinder natural gas fired reciprocating engine that could simulate turbocharged conditions with exhaust gas recirculation. Crank angle resolved spectra (266-795 nm) of flame luminosity were measured for various operational conditions by varying the ignition timing for MBT conditions andmore » by holding the speed at 1800 rpm and Brake Mean effective Pressure (BMEP) at 12 bar. The effect of dilution on CO*{sub 2}chemiluminescence intensities was studied, by varying the global equivalence ratio (0.6-1.0) and by varying the exhaust gas recirculation rate. It was attempted to relate the measured chemiluminescence intensities to thermodynamic metrics of importance to engine research -- in-cylinder bulk gas temperature and heat release rate (HRR) calculated from measured cylinder pressure signals. The peak of the measured CO*{sub 2} chemiluminescence intensities coincided with peak pressures within {+-}2 CAD for all test conditions. For each combustion cycle, the peaks of heat release rate, spectral intensity and temperature occurred in that sequence, well separated temporally. The peak heat release rates preceded the peak chemiluminescent emissions by 3.8-9.5 CAD, whereas the peak temperatures trailed by 5.8-15.6 CAD. Such a temporal separation precludes correlations on a crank-angle resolved basis. However, the peak cycle heat release rates and to a lesser extent the peak cycle temperatures correlated well with the chemiluminescent emission from CO*{sub 2}. Such observations point towards the potential use of flame chemiluminescence to monitor peak bulk gas temperatures as well as peak heat release rates in natural gas fired reciprocating engines.« less

  16. Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.

    1999-01-01

    The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness. Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding (1979); this approach provided Successful Correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.

  17. Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames. Appendix H

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Ross, Howard B. (Technical Monitor)

    2000-01-01

    The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness, Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding; this approach provided successful correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.

  18. System and Method for Providing Model-Based Alerting of Spatial Disorientation to a Pilot

    NASA Technical Reports Server (NTRS)

    Johnson, Steve (Inventor); Conner, Kevin J (Inventor); Mathan, Santosh (Inventor)

    2015-01-01

    A system and method monitor aircraft state parameters, for example, aircraft movement and flight parameters, applies those inputs to a spatial disorientation model, and makes a prediction of when pilot may become spatially disoriented. Once the system predicts a potentially disoriented pilot, the sensitivity for alerting the pilot to conditions exceeding a threshold can be increased and allow for an earlier alert to mitigate the possibility of an incorrect control input.

  19. 30 CFR 57.22227 - Approved testing devices (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Methane monitoring devices and portable, battery-powered, self-contained devices used for measuring methane, other gases, and contaminants in mine air shall be approved by MSHA under the applicable... shall not be used to test for methane except as supplementary devices. (2) Flame safety lamps shall not...

  20. 30 CFR 57.22227 - Approved testing devices (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Methane monitoring devices and portable, battery-powered, self-contained devices used for measuring methane, other gases, and contaminants in mine air shall be approved by MSHA under the applicable... shall not be used to test for methane except as supplementary devices. (2) Flame safety lamps shall not...

  1. 30 CFR 57.22227 - Approved testing devices (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Methane monitoring devices and portable, battery-powered, self-contained devices used for measuring methane, other gases, and contaminants in mine air shall be approved by MSHA under the applicable... shall not be used to test for methane except as supplementary devices. (2) Flame safety lamps shall not...

  2. Temporal trends of hexabromocyclododecanes (HBCDs) and polybrominated diphenyl ethers (PBDEs) and detection of two novel flame retardants in marine mammals from Hong Kong, South China.

    PubMed

    Lam, James C W; Lau, Ridge K F; Murphy, Margaret B; Lam, Paul K S

    2009-09-15

    Concentrations of hexabromocyclododecanes (HBCDs), polybrominated diphenyl ethers (PBDEs), and three novel flame retardants, namely2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB), bis-(2-ethylhexyl)-tetrabromophthalate (TBPH), and hexachlorocyclopentadienyldibromocyclooctane (HCDBCO), were determined in blubber samples of Indo-Pacific humpback dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides). The levels of HBCDs and PBDEs in cetacean samples ranged from 4.1 to 519 and 103 to 51,100 ng/g lw, respectively. A significant increasing trend of SigmaHBCDs was observed in dolphin samples from 1997 to 2007 with an estimated annual rate of 5%, whereas no significant temporal trends of SigmaPBDEs appeared over the sampling period. This pattern may be attributed to the increasing usage of HBCDs following the restriction/voluntary withdrawal of the production and use of PBDE commercial mixtures in several countries. HCDBCO was not found in the blubber samples. This is the first report of the presence of TBB and TBPH, two new flame retardants that have previously been identified in house dust from the U.S., in marine mammals; concentrations of these compounds in dolphins and porpoises ranged from the instrumental detection limit (IDL) (<0.04) to 70 and IDL (<0.04) to 3859 ng/g lw, respectively. Levels of TBPH were comparable to SigmaHBCDs in porpoise samples. The presence of these novel flame retardants in top-trophic-level marine organisms raises concern about their release into the environment and indicates the need for further monitoring of these compounds in other environmental matrices.

  3. Field Effects of Buoyancy on a Premixed Turbulent Flame Studied by Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Cheng, Robert K.

    2003-01-01

    Typical laboratory flames for the scientific investigation of flame/turbulence interactions are prone to buoyancy effects. Buoyancy acts on these open flame systems and provides upstream feedbacks that control the global flame properties as well as local turbulence/flame interactions. Consequently the flame structures, stabilization limits, and turbulent reaction rates are directly or indirectly coupled with buoyancy. The objective of this study is to characterize the differences between premixed turbulent flames pointing upwards (1g), pointing downwards (-1g), and in microgravity (mg). The configuration is an inverted conical flame stabilized by a small cone-shaped bluff body that we call CLEAN Flames (Cone-Stabilized Lean Flames). We use two laser diagnostics to capture the velocity and scalar fields. Particle image velocimetry (PIV) measures the mean and root mean square velocities and planar imaging by the flame fronts method outlines the flame wrinkle topology. The results were obtained under typical conditions of small domestic heating systems such as water heaters, ovens, and furnaces. Significant differences between the 1g and -1g flames point to the need for including buoyancy contributions in theoretical and numerical calculations. In Earth gravity, there is a complex coupling of buoyancy with the turbulent flow and heat release in the flame. An investigation of buoyancy-free flames in microgravity will provide the key to discern gravity contributions. Data obtained in microgravity flames will provide the benchmark for interpreting and analyzing 1g and -1g flame results.

  4. Rayleigh-Taylor Unstable Flames -- Fast or Faster?

    NASA Astrophysics Data System (ADS)

    Hicks, E. P.

    2015-04-01

    Rayleigh-Taylor (RT) unstable flames play a key role in the explosions of supernovae Ia. However, the dynamics of these flames are still not well understood. RT unstable flames are affected by both the RT instability of the flame front and by RT-generated turbulence. The coexistence of these factors complicates the choice of flame speed subgrid models for full-star Type Ia simulations. Both processes can stretch and wrinkle the flame surface, increasing its area and, therefore, the burning rate. In past research, subgrid models have been based on either the RT instability or turbulence setting the flame speed. We evaluate both models, checking their assumptions and their ability to correctly predict the turbulent flame speed. Specifically, we analyze a large parameter study of 3D direct numerical simulations of RT unstable model flames. This study varies both the simulation domain width and the gravity in order to probe a wide range of flame behaviors. We show that RT unstable flames are different from traditional turbulent flames: they are thinner rather than thicker when turbulence is stronger. We also show that none of the several different types of turbulent flame speed models accurately predicts measured flame speeds. In addition, we find that the RT flame speed model only correctly predicts the measured flame speed in a certain parameter regime. Finally, we propose that the formation of cusps may be the factor causing the flame to propagate more quickly than predicted by the RT model.

  5. Experimental and LES investigation of premixed methane/air flame propagating in a tube with a thin obstacle

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Guo, Shilong; Li, Yanchao; Zhang, Yutao

    2017-03-01

    In this paper, an experimental and numerical investigation of premixed methane/air flame dynamics in a closed combustion vessel with a thin obstacle is described. In the experiment, high-speed video photography and a pressure transducer are used to study the flame shape changes and pressure dynamics. In the numerical simulation, four sub-grid scale viscosity models and three sub-grid scale combustion models are evaluated for their individual prediction compared with the experimental data. High-speed photographs show that the flame propagation process can be divided into five stages: spherical flame, finger-shaped flame, jet flame, mushroom-shaped flame and bidirectional propagation flame. Compared with the other sub-grid scale viscosity models and sub-grid scale combustion models, the dynamic Smagorinsky-Lilly model and the power-law flame wrinkling model are better able to predict the flame behaviour, respectively. Thus, coupling the dynamic Smagorinsky-Lilly model and the power-law flame wrinkling model, the numerical results demonstrate that flame shape change is a purely hydrodynamic phenomenon, and the mushroom-shaped flame and bidirectional propagation flame are the result of flame-vortex interaction. In addition, the transition from "corrugated flamelets" to "thin reaction zones" is observed in the simulation.

  6. Opposed-flow Flame Spread Over Solid Fuels in Microgravity: the Effect of Confined Spaces

    NASA Astrophysics Data System (ADS)

    Wang, Shuangfeng; Hu, Jun; Xiao, Yuan; Ren, Tan; Zhu, Feng

    2015-09-01

    Effects of confined spaces on flame spread over thin solid fuels in a low-speed opposing flow is investigated by combined use of microgravity experiments and computations. The flame behaviors are observed to depend strongly on the height of the flow tunnel. In particular, a non-monotonic trend of flame spread rate versus tunnel height is found, with the fastest flame occurring in the 3 cm high tunnel. The flame length and the total heat release rate from the flame also change with tunnel height, and a faster flame has a larger length and a higher heat release rate. The computation analyses indicate that a confined space modifies the flow around the spreading flame. The confinement restricts the thermal expansion and accelerates the flow in the streamwise direction. Above the flame, the flow deflects back from the tunnel wall. This inward flow pushes the flame towards the fuel surface, and increases oxygen transport into the flame. Such a flow modification explains the variations of flame spread rate and flame length with tunnel height. The present results suggest that the confinement effects on flame behavior in microgravity should be accounted to assess accurately the spacecraft fire hazard.

  7. Flame Spread Along Free Edges of Thermally Thin Samples in Microgravity

    NASA Technical Reports Server (NTRS)

    Mell, W. E.; Olson, S. L.; Kashiwagi, T.

    2000-01-01

    The effects of imposed flow velocity on flame spread along open edges of a thermally thin cellulosic sample in microgravity are studied experimentally and theoretically. In this study, the sample is ignited locally at the middle of the 4 cm wide sample and subsequent flame spread reaches both open edges of the sample. The following flame behaviors are observed in the experiments and predicted by the numerical calculation; in order of increased imposed flow velocity: (1) ignition but subsequent flame spread is not attained, (2) flame spreads upstream (opposed mode) without any downstream flame, and (3) the upstream flame and two separate downstream flames traveling along the two open edges (concurrent mode). Generally, the upstream and downstream edge flame spread rates are faster than the central flame spread rate for an imposed flow velocity of up to 5 cm/s. This is due to greater oxygen supply from the outer free stream to the edge flames than the central flames, For the upstream edge flame, the greater oxygen supply results in a flame spread rate that is nearly independent of, or decreases gradually, with the imposed flow velocity. The spread rate of the downstream edge, however, increases significantly with the imposed flow velocity.

  8. Abnormal glucose levels found in transportation accidents : final report.

    DOT National Transportation Integrated Search

    2000-06-01

    Purpose. The Federal Aviation Administration's Office of Aviation Medicine (OAM) is responsible for the certification of pilots with diabetic conditions. Therefore, it is essential for OAM to monitor pilots involved in fatal accidents for abnormal gl...

  9. Laminar soot processes

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Lin, K.-C.; Faeth, G. M.

    1995-01-01

    Soot processes within hydrocarbon fueled flames are important because they affect the durability and performance of propulsion systems, the hazards of unwanted fires, the pollutant and particulate emissions from combustion processes, and the potential for developing computational combustion. Motivated by these observations, the present investigation is studying soot processes in laminar diffusion and premixed flames in order to better understand the soot and thermal radiation emissions of luminous flames. Laminar flames are being studied due to their experimental and computational tractability, noting the relevance of such results to practical turbulent flames through the laminar flamelet concept. Weakly-buoyant and nonbuoyant laminar diffusion flames are being considered because buoyancy affects soot processes in flames while most practical flames involve negligible effects of buoyancy. Thus, low-pressure weakly-buoyant flames are being observed during ground-based experiments while near atmospheric pressure nonbuoyant flames will be observed during space flight experiments at microgravity. Finally, premixed laminar flames also are being considered in order to observe some aspects of soot formation for simpler flame conditions than diffusion flames. The main emphasis of current work has been on measurements of soot nucleation and growth in laminar diffusion and premixed flames.

  10. Precipitation-Static-Reduction Research

    DTIC Science & Technology

    1943-03-31

    if» 85 z \\ PRECIPITATION-STATIC-REDUCTION RESEARCH study of the effects of flame length , flame spacing, and burner spacing on B shows that there...unod: Flame length *. The visual length of the flame from the burner tip to the flame tip when examined in a darkened room against a black background...Postlve and Negative Flames The use of the second flame-conduction coefficient, B, facilitates considerably the study of the effect of flame length , spacing

  11. Experimental study on the flame behaviors of premixed methane/air mixture in horizontal rectangular ducts

    NASA Astrophysics Data System (ADS)

    Chen, Dongliang; Sun, Jinhua; Chen, Sining; Liu, Yi; Chu, Guanquan

    2007-01-01

    In order to explore the flame propagation characteristics and tulip flame formation mechanism of premixed methane/air mixture in horizontal rectangular ducts, the techniques of Schlieren and high-speed video camera are used to study the flame behaviors of the premixed gases in a closed duct and opened one respectively, and the propagation characteristics in both cases and the formation mechanism of the tulip flame are analyzed. The results show that, the propagation flame in a closed duct is prior to form a tulip flame structure than that in an opened duct, and the tulip flame structure formation in a closed duct is related to the flame propagation velocity decrease. The sharp decrease of the flame propagation velocity is one of the reasons to the tulip flame formation, and the decrease of the flame propagation velocity is due to the decrease of the burned product flow velocity mainly.

  12. Public health implications of components of plastics manufacture. Flame retardants.

    PubMed Central

    Pearce, E M; Liepins, R

    1975-01-01

    The four processes involved in the flammability of materials are described and related to the various flame retardance mechanisms that may operate. Following this the four practical approaches used in improving flame retardance of materials are described. Each approach is illustrated with a number of typical examples of flame retardants or synthetic procedures used. This overview of flammability, flame retardance, and flame retardants used is followed by a more detailed examination of most of the plastics manufactured in the United States during 1973, their consumption patterns, and the primary types of flame retardants used in the flame retardance of the most used plastics. The main types of flame retardants are illustrated with a number of typical commercial examples. Statistical data on flame retardant market size, flame retardant growth in plastics, and price ranges of common flame retardants are presented. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. PMID:1175568

  13. Propagation of a Free Flame in a Turbulent Gas Stream

    NASA Technical Reports Server (NTRS)

    Mickelsen, William R; Ernstein, Norman E

    1956-01-01

    Effective flame speeds of free turbulent flames were measured by photographic, ionization-gap, and photomultiplier-tube methods, and were found to have a statistical distribution attributed to the nature of the turbulent field. The effective turbulent flame speeds for the free flame were less than those previously measured for flames stabilized on nozzle burners, Bunsen burners, and bluff bodies. The statistical spread of the effective turbulent flame speeds was markedly wider in the lean and rich fuel-air-ratio regions, which might be attributed to the greater sensitivity of laminar flame speed to flame temperature in those regions. Values calculated from the turbulent free-flame-speed analysis proposed by Tucker apparently form upper limits for the statistical spread of free-flame-speed data. Hot-wire anemometer measurements of the longitudinal velocity fluctuation intensity and longitudinal correlation coefficient were made and were employed in the comparison of data and in the theoretical calculation of turbulent flame speed.

  14. Pilots 2.0: DIRAC pilots for all the skies

    NASA Astrophysics Data System (ADS)

    Stagni, F.; Tsaregorodtsev, A.; McNab, A.; Luzzi, C.

    2015-12-01

    In the last few years, new types of computing infrastructures, such as IAAS (Infrastructure as a Service) and IAAC (Infrastructure as a Client), gained popularity. New resources may come as part of pledged resources, while others are opportunistic. Most of these new infrastructures are based on virtualization techniques. Meanwhile, some concepts, such as distributed queues, lost appeal, while still supporting a vast amount of resources. Virtual Organizations are therefore facing heterogeneity of the available resources and the use of an Interware software like DIRAC to hide the diversity of underlying resources has become essential. The DIRAC WMS is based on the concept of pilot jobs that was introduced back in 2004. A pilot is what creates the possibility to run jobs on a worker node. Within DIRAC, we developed a new generation of pilot jobs, that we dubbed Pilots 2.0. Pilots 2.0 are not tied to a specific infrastructure; rather they are generic, fully configurable and extendible pilots. A Pilot 2.0 can be sent, as a script to be run, or it can be fetched from a remote location. A pilot 2.0 can run on every computing resource, e.g.: on CREAM Computing elements, on DIRAC Computing elements, on Virtual Machines as part of the contextualization script, or IAAC resources, provided that these machines are properly configured, hiding all the details of the Worker Nodes (WNs) infrastructure. Pilots 2.0 can be generated server and client side. Pilots 2.0 are the “pilots to fly in all the skies”, aiming at easy use of computing power, in whatever form it is presented. Another aim is the unification and simplification of the monitoring infrastructure for all kinds of computing resources, by using pilots as a network of distributed sensors coordinated by a central resource monitoring system. Pilots 2.0 have been developed using the command pattern. VOs using DIRAC can tune pilots 2.0 as they need, and extend or replace each and every pilot command in an easy way. In this paper we describe how Pilots 2.0 work with distributed and heterogeneous resources providing the necessary abstraction to deal with different kind of computing resources.

  15. Effects of Buoyancy on Lean Premixed V-Flames Part I: Laminar and Turblent Flame Structure

    NASA Technical Reports Server (NTRS)

    Cheng, Robert K.; Bedat, Benoit; Kostiuk, Larry W.

    1998-01-01

    Laser schlieren and planar laser-induced fluorescence techniques have been used to investigate laminar and turbulent v-flames in +g, -g, and micro g under flow conditions that span the regimes of momentum domination (Ri < 0. 1) and buoyancy domination (Ri > 0.1). Overall flame features shown by schlieren indicate that buoyancy dominates the entire flow field for conditions close to Ri = 1. With decreasing Ri, buoyancy effects are observed only in the far-field regions. Analyses of the mean flame angles demonstrate that laminar and turbulent flames do not have similar responses to buoyancy. Difference in the laminar +g and -g flame angles decrease with Ri (i.e., increasing Re) and converge to the microgravity flame angle at the momentum limit (Ri - 0). This is consistent with the notion that the effects of buoyancy diminish with increasing flow momentum. The +g and -g turbulent flame angles, however, do not converge at Ri = 0. As shown by OH-PLIF images, the inconsistency in +g and -g turbulent flame angles is associated with the differences in flame wrinkles. Turbulent flame wrinkles evolve more slowly in +g than in -g. The difference in flame wrinkle structures, however, cannot be explained in terms of buoyancy effects on flame instability mechanisms. It seems to be associated with the field effects of buoyancy that stretches the turbulent flame brushes in +g and compresses the flame brush in -g. Flame wrinkling offers a mechanism through which the flame responds to the field effects of buoyancy despite increasing flow momentum. These observations point to the need to include both upstream and downstream contributions in theoretical analysis of flame turbulence interactions.

  16. Characteristics of Non-Premixed Turbulent Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Hegde, U.; Yuan, Z. G.; Stocker, D. P.; Bahadori, M. Y.

    2001-01-01

    This project is concerned with the characteristics of turbulent hydrocarbon (primarily propane) gas-jet diffusion flames in microgravity. A microgravity environment provides the opportunity to study the structure of turbulent diffusion flames under momentum-dominated conditions (large Froude number) at moderate Reynolds number which is a combination not achievable in normal gravity. This paper summarizes progress made since the last workshop. Primarily, the features of flame radiation from microgravity turbulent jet diffusion flames in a reduced gravity environment are described. Tests were conducted for non-premixed, nitrogen diluted propane flames burning in quiescent air in the NASA Glenn 5.18 Second Zero Gravity Facility. Measured flame radiation from wedge-shaped, axial slices of the flame are compared for microgravity and normal gravity flames. Results from numerical computations of the flame using a k-e model for the turbulence are also presented to show the effects of flame radiation on the thermal field. Flame radiation is an important quantity that is impacted by buoyancy as has been shown in previous studies by the authors and also by Urban et al. It was found that jet diffusion flames burning under microgravity conditions have significantly higher radiative loss (about five to seven times higher) compared to their normal gravity counterparts because of larger flame size in microgravity and larger convective heat loss fraction from the flame in normal gravity. These studies, however, were confined to laminar flames. For the case of turbulent flames, the flame radiation is a function of time and both the time-averaged and time-dependent components are of interest. In this paper, attention is focused primarily on the time-averaged level of the radiation but the turbulent structure of the flame is also assessed from considerations of the radiation power spectra.

  17. Studies of Premixed Laminar and Turbulent Flames at Microgravity

    NASA Technical Reports Server (NTRS)

    Abid, M.; Aung, K.; Ronney, P. D.; Sharif, J. A.; Wu, M.-S.

    1999-01-01

    Several topics relating to combustion limits in premixed flames at reduced gravity have been studied. These topics include: (1) flame balls; (2) numerical simulation of flame ball and planar flame structure and stability; (3) experimental simulation of buoyancy effects in premixed flames using aqueous autocatalytic reactions; and (4) premixed flame propagation in Hele-Shaw cells.

  18. RAYLEIGH–TAYLOR UNSTABLE FLAMES—FAST OR FASTER?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, E. P., E-mail: eph2001@columbia.edu

    2015-04-20

    Rayleigh–Taylor (RT) unstable flames play a key role in the explosions of supernovae Ia. However, the dynamics of these flames are still not well understood. RT unstable flames are affected by both the RT instability of the flame front and by RT-generated turbulence. The coexistence of these factors complicates the choice of flame speed subgrid models for full-star Type Ia simulations. Both processes can stretch and wrinkle the flame surface, increasing its area and, therefore, the burning rate. In past research, subgrid models have been based on either the RT instability or turbulence setting the flame speed. We evaluate bothmore » models, checking their assumptions and their ability to correctly predict the turbulent flame speed. Specifically, we analyze a large parameter study of 3D direct numerical simulations of RT unstable model flames. This study varies both the simulation domain width and the gravity in order to probe a wide range of flame behaviors. We show that RT unstable flames are different from traditional turbulent flames: they are thinner rather than thicker when turbulence is stronger. We also show that none of the several different types of turbulent flame speed models accurately predicts measured flame speeds. In addition, we find that the RT flame speed model only correctly predicts the measured flame speed in a certain parameter regime. Finally, we propose that the formation of cusps may be the factor causing the flame to propagate more quickly than predicted by the RT model.« less

  19. Coupling of wrinkled laminar flames with gravity

    NASA Technical Reports Server (NTRS)

    Bedat, Benoit; Kostiuk, Larry W.; Cheng, Robert K.

    1995-01-01

    The overall objective of our research is to understand flame-gravity coupling processes in laminar and low turbulent Reynolds number, Re(sub l), premixed flames (i.e. wrinkled- laminar flames). The approach we have developed is to compare the flowfields and mean flame properties under different gravitational orientations. Key to our study is the investigation of microgravity (mu g) flames. These mu g experiments provide vital information to reconcile the differences between flames in normal gravity (+g, flame pointing upward) and reverse gravity (-g, flame pointing downwards). Traditionally, gravity effects are assumed to be insignificant or circumvented in the laboratory, therefore, not much is available in the literature on the behavior of -g flames.

  20. Monitoring of WEEE plastics in regards to brominated flame retardants using handheld XRF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldrian, Alexia, E-mail: alexia.aldrian@unileoben.ac.at; Ledersteger, Alfred, E-mail: a.ledersteger@saubermacher.at; Pomberger, Roland, E-mail: roland.pomberger@unileoben.ac.at

    Highlights: • Specification of an empirical factor for conversion from bromine to PBB and PBDE. • The handheld XRF device was validated for this particular application. • A very large number of over 4600 pieces of monitor housings was analysed. • The recyclable fraction mounts up to 85% for TV but only 53% of PC waste plastics. • A high percentage of pieces with bromine contents of over 50,000 ppm was obtained. - Abstract: This contribution is focused on the on-site determination of the bromine content in waste electrical and electronic equipment (WEEE), in particular waste plastics from television setsmore » (TV) and personal computer monitors (PC) using a handheld X-ray fluorescence (XRF) device. The described approach allows the examination of samples in regards to the compliance with legal specifications for polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) directly after disassembling and facilitates the sorting out of plastics with high contents of brominated flame retardants (BFRs). In all, over 3000 pieces of black (TV) and 1600 pieces of grey (PC) plastic waste were analysed with handheld XRF technique for this study. Especially noticeable was the high percentage of pieces with a bromine content of over 50,000 ppm for TV (7%) and PC (39%) waste plastics. The applied method was validated by comparing the data of handheld XRF with results obtained by GC–MS. The results showed the expected and sufficiently accurate correlation between these two methods. It is shown that handheld XRF technique is an effective tool for fast monitoring of large volumes of WEEE plastics in regards to BFRs for on-site measurements.« less

  1. The Effects of Angular Orientation on Flame Spread over Thin Materials

    DTIC Science & Technology

    1999-12-01

    Notation 7 5 Upward Spread With Burnout 8 6a Observed Flame Lengths on Napkins, Increments 2.5 cm 9 6b Observed Flame Lengths on Pet Film, Increments...Frequency of Extinguishment During Flame Spread 21 15 Flame Spread Velocity 21 VI 16 Flame Length Measured Parallel to the Surface 22 17 Comparison of... flame length (Lf) were measured from a video recording of the test. Despite erratic burn fronts with discontinuous flaming regions, the maximum

  2. An investigation of plasma enhanced combustion

    NASA Astrophysics Data System (ADS)

    Kim, Woo Kyung

    This study examines the use of plasma discharges in flame stabilization. Three different types of plasma discharges are applied to a lifted jet diffusion flame in coflow, and evaluated for their abilities to enhance flame stabilization. A single electrode corona discharge (SECD) is found to maintain the flame at a 20 % higher coflow speed than that without the discharge. A dielectric barrier discharge (DBD) results in flame stabilization at up to 50 % higher coflow speed. Finally, an ultra short-pulsed repetitive discharge (USRD) is found to increase the stability limit by nearly ten-fold. The stabilization process is sensitive to the positioning of the discharge in the flow field, and the optimal position of the discharge is mapped into mixture fraction space. The result shows that the local mixture fraction at the optimal position is much leaner than that of a conventional lifted jet flame. Parametric studies are conducted in a plasma-assisted methane/air premixed flame system using USRD. Criteria for optimal electrode selection are suggested. Platinum provides the best result at low frequency operation (< 20 kHz) but tungsten shows better performance at high frequency operation (> 20 kHz). The increase in the flame stability limit is also investigated. The flame stability limit extends from an equivalence ratio of 0.7 to 0.47. Nitric oxide (NO) concentration in the premixed flame is measured. The discharge is a potential source of NO. Under certain conditions, we observed the presence of a cold pre-flame, located between the discharge and the main flame. It is found that the pre-flame partially consumes some NO. The flame kernel structure and ignition mechanism of plasma-assisted premixed combustion are discussed. It is observed that the pre-flame has an abundance of OH radicals. The key physics of the flame ignition is the diffusion of an OH stream (from the pre-flame) into the surrounding combustible mixture to form the main flame. Lastly, the proposed flame kernel structure is numerically validated using the OPPDIF code. The simulation shows that possibly three reaction zones, one pre-flame and two main flames, exist in this flame configuration.

  3. The chemistry of dimethacrylate-styrene networks, and, Development of flame retardant, halogen-free fiber reinforced vinyl ester composites

    NASA Astrophysics Data System (ADS)

    Rosario, Astrid Christa

    One of the major classes of polymer matrix resins under consideration for structural composite applications in the infrastructure and construction industries is vinyl ester resin. Vinyl ester resin is comprised of low molecular weight poly(hydroxyether) oligomers with methacrylate endgroups diluted with styrene monomer. The methacrylate endgroups cure with styrene via free radical copolymerization to yield thermoset networks. The copolymerization behavior of these networks was monitored by Fourier Transform Infrared Spectroscopy (FTIR) at various cure conditions. Reactions of the carbon-carbon double bonds of the methacrylate (943 cm-1) and styrene (910 cm-1 ) were followed independently. Oligomers possessing number average molecular weights of 700 g/mole were studied with systematically increasing levels of styrene. The Mortimer-Tidwell reactivity ratios indicated that at low conversion more styrene was incorporated into the network at lower cure temperatures. The experimental vinyl ester-styrene network compositions deviated significantly from those predicted by the Meyer-Lowry integrated copolymer equation at higher conversion, implying that the reactivity ratios for these networks may change with conversion. The kinetic data were used to provide additional insight into the physical and mechanical properties of these materials. In addition to establishing the copolymerization kinetics of these materials, the development of halogen free fiber reinforced vinyl ester composites exhibiting good flame properties was of interest. Flame retardant vinyl ester resins are used by many industries for applications requiring good thermal resistance. The current flame-retardant technology is dependent on brominated vinyl esters, which generate high levels of smoke and carbon monoxide. A series of halogen free binder systems has been developed and dispersed in the vinyl ester to improve flame retardance. The binder approach enables the vinyl ester resin to maintain its low temperature viscosity so that fabrication of composites via Vacuum Assisted Resin Transfer Molding (VARTM) is possible. The first binder system investigated was a polycaprolactone layered silicate nanocomposite, which was prepared via intercalative polymerization. Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) data indicated a mixed morphology of exfoliated and intercalated structures. The mechanical properties and the normalized peak heat release rates were comparable to the neat vinyl ester resin. Alternative binder systems possessing inherent flame retardance were also investigated. A series of binders comprised of novolac, bisphenol A diphosphate, and montmorillonite clay were developed and dispersed into the vinyl ester matrix. Cone calorimetry showed reductions in the peak heat release rate comparable to the brominated resin. Keywords: dimethacrylate; vinyl ester; network; reactivity ratios; nanocomposites; layered silicates; exfoliated; thermoset matrix resin; flame retardant

  4. Burner rig study of variables involved in hole plugging of air cooled turbine engine vanes

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1983-01-01

    The effects of combustion gas composition, flame temperatures, and cooling air mass flow on the plugging of film cooling holes by a Ca-Fe-P-containing deposit were investigated. The testing was performed on film-cooled vanes exposed to the combustion gases of an atmospheric Mach 0.3 burner rig. The extent of plugging was determined by measurement of the open hole area at the conclusion of the tests as well as continuous monitoring of some of the tests using stop-action photography. In general, as the P content increased, plugging rates also increased. The plugging was reduced by increasing flame temperature and cooling air mass flow rates. At times up to approximately 2 hours little plugging was observed. This apparent incubation period was followed by rapid plugging, reaching in several hours a maximum closure whose value depended on the conditions of the test.

  5. Molecular structure stability of short-chain chlorinated paraffins (SCCPs): Evidence from lattice compatibility and Simha-Somcynsky theories

    NASA Astrophysics Data System (ADS)

    Yumak, A.; Boubaker, K.; Petkova, P.; Yahsi, U.

    2015-10-01

    In is known that short-chain chlorinated paraffins (SCCPs) are highly complex technical mixtures of polychlorinated n-alkanes with single chlorine content. Due to their physical properties (viscosity, flame resistance) they are used in many different applications, such as lubricant additives, metal processing, leather fat-liquoring, plastics softening, PVC plasticizing and flame retardants in paints, adhesives and sealants. SCCPs are studied here in terms of processing-linked molecular structure stability, under Simha and Somcynsky-EOS theory calculations and elements from Simha-Somcynsky-related Lattice Compatibility Theory. Analyses were carried out on 1-chloropropane, 2-chloropropane, 1-chlorobutane, 2-chlorobutane, 1-chloro 2-methylane, and 2-chloro 2-methylane as (SCCPs) universal representatives. This paper gives evidence to this stability and reviews the current state of knowledge and highlights the need for further research in order to improve future (SCCPs) monitoring efforts.

  6. Polydisperse effects in jet spray flames

    NASA Astrophysics Data System (ADS)

    Weinberg, Noam; Greenberg, J. Barry

    2018-01-01

    A laminar jet polydisperse spray diffusion flame is analysed mathematically for the first time using an extension of classical similarity solutions for gaseous jet flames. The analysis enables a comparison to be drawn between conditions for flame stability or flame blow-out for purely gaseous flames and for spray flames. It is found that, in contrast to the Schmidt number criteria relevant to gas flames, droplet size and initial spray polydispersity play a critical role in determining potential flame scenarios. Some qualitative agreement for lift-off height is found when comparing predictions of the theory and sparse independent experimental evidence from the literature.

  7. Waste Isolation Pilot Plant No-migration variance petition. Addendum: Volume 7, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-03-01

    This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program.

  8. Work zone performance measures pilot test.

    DOT National Transportation Integrated Search

    2011-04-01

    Currently, a well-defined and validated set of metrics to use in monitoring work zone performance do not : exist. This pilot test was conducted to assist state DOTs in identifying what work zone performance : measures can and should be targeted, what...

  9. In-flight physiological monitoring of student pilots.

    DOT National Transportation Integrated Search

    1967-08-01

    Records of heart rate (ECG), lateral eye movements (EOG) and vocal interchange between student and instructor were taken on magnetic tape during all of every flight throughout a conventional private pilot training syllabus. Six men (33-45 years of ag...

  10. Radiant extinction of gaseous diffusion flames

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Agrawal, Sanjay; Shamim, Tariq; Pickett, Kent; Sacksteder, Kurt R.; Baum, Howard R.

    1995-01-01

    The absence of buoyancy-induced flows in microgravity significantly alters the fundamentals of many combustion processes. Substantial differences between normal-gravity and microgravity flames have been reported during droplet combustion, flame spread over solids, candle flames, and others. These differences are more basic than just in the visible flame shape. Longer residence time and higher concentration of combustion products create a thermochemical environment which changes the flame chemistry. Processes such as flame radiation, that are often ignored under normal gravity, become very important and sometimes even controlling. This is particularly true for conditions at extinction of a microgravity diffusion flame. Under normal-gravity, the buoyant flow, which may be characterized by the strain rate, assists the diffusion process to transport the fuel and oxidizer to the combustion zone and remove the hot combustion products from it. These are essential functions for the survival of the flame which needs fuel and oxidizer. Thus, as the strain rate is increased, the diffusion flame which is 'weak' (reduced burning rate per unit flame area) at low strain rates is initially 'strengthened' and eventually it may be 'blown-out'. Most of the previous research on diffusion flame extinction has been conducted at the high strain rate 'blow-off' limit. The literature substantially lacks information on low strain rate, radiation-induced, extinction of diffusion flames. At the low strain rates encountered in microgravity, flame radiation is enhanced due to: (1) build-up of combustion products in the flame zone which increases the gas radiation, and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which further increases the flame radiation. It is expected that this radiative heat loss will extinguish the already 'weak' diffusion flame under certain conditions. Identifying these conditions (ambient atmosphere, fuel flow rate, fuel type, etc.) is important for spacecraft fire safety. Thus, the objective is to experimentally and theoretically investigate the radiation-induced extinction of diffusion flames in microgravity and determine the effect of flame radiation on the 'weak' microgravity diffusion flame.

  11. Effects of H{sub 2} enrichment on the propagation characteristics of CH{sub 4}-air triple flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briones, Alejandro M.; Aggarwal, Suresh K.; Katta, Viswanath R.

    The effects of H{sub 2} enrichment on the propagation of laminar CH{sub 4}-air triple flames in axisymmetric coflowing jets are numerically investigated. A comprehensive, time-dependent computational model, which employs a detailed description of chemistry and transport, is used to simulate the transient ignition and flame propagation phenomena. Flames are ignited in a jet-mixing layer far downstream of the burner. Following ignition, a well-defined triple flame is formed that propagates upstream along the stoichiometric mixture fraction line with a nearly constant displacement velocity. As the flame approaches the burner, it transitions to a double flame, and subsequently to a burner-stabilized nonpremixedmore » flame. Predictions are validated using measurements of the displacement flame velocity. As the H{sub 2} concentration in the fuel blend is increased, the displacement flame velocity and local triple flame speed increase progressively due to the enhanced chemical reactivity, diffusivity, and preferential diffusion caused by H{sub 2} addition. In addition, the flammability limits associated with the triple flames are progressively extended with the increase in H{sub 2} concentration. The flame structure and flame dynamics are also markedly modified by H{sub 2} enrichment, which substantially increases the flame curvature and mixture fraction gradient, as well as the hydrodynamic and curvature-induced stretch near the triple point. For all the H{sub 2}-enriched methane-air flames investigated in this study, there is a negative correlation between flame speed and stretch, with the flame speed decreasing almost linearly with stretch, consistent with previous studies. The H{sub 2} addition also modifies the flame sensitivity to stretch, as it decreases the Markstein number (Ma), implying an increased tendency toward diffusive-thermal instability (i.e. Ma {yields} 0). These results are consistent with the previously reported experimental results for outwardly propagating spherical flames burning a mixture of natural gas and hydrogen. (author)« less

  12. Effects of Buoyancy on Laminar and Turbulent Premixed V-Flame

    NASA Technical Reports Server (NTRS)

    Cheng, Robert K.; Bedat, Benoit

    1997-01-01

    Turbulent combustion occurs naturally in almost all combustion systems and involves complex dynamic coupling of chemical and fluid mechanical processes. It is considered as one of the most challenging combustion research problems today. Though buoyancy has little effect on power generating systems operating under high pressures (e.g., IC engines and turbines), flames in atmospheric burners and the operation of small to medium furnaces and boilers are profoundly affected by buoyancy. Changes in burner orientation impacts on their blow-off, flash-back and extinction limits, and their range of operation, burning rate, heat transfer, and emissions. Theoretically, buoyancy is often neglected in turbulent combustion models. Yet the modeling results are routinely compared with experiments of open laboratory flames that are obviously affected by buoyancy. This inconsistency is an obstacle to reconciling experiments and theories. Consequently, a fundamental understanding of the coupling between turbulent flames and buoyancy is significant to both turbulent combustion science and applications. The overall effect of buoyancy relates to the dynamic interaction between the flame and its surrounding, i.e., the so-called elliptical problem. The overall flame shape, its flowfield, stability, and mean and local burning rates are dictated by both upstream and downstream boundary conditions. In steady propagating premixed flames, buoyancy affects the products region downstream of the flame zone. These effects are manifested upstream through the mean and fluctuating pressure fields to influence flame stretch and flame wrinkling. Intuitively, the effects buoyancy should diminish with increasing flow momentum. This is the justification for excluding buoyancy in turbulent combustion models that treats high Reynolds number flows. The objectives of our experimental research program is to elucidate flame-buoyancy coupling processes in laminar and turbulent premixed flames, and to characterize microgravity (micro g) premixed flames. The results are used to derive appropriate scaling parameters for guiding the development of theoretical models to include the effects of buoyancy. Knowledge gain from the analysis will also contribute to further understanding of the elliptical nature of premixed flames. Our current emphasis is to examine the momentum limit above which the effects of buoyancy would become insignificant. This is accomplished by comparing the flowfields and the mean properties of normal gravity flames (+g), and reversed gravity flames (-g, up-side-down flames) at different flow velocities and turbulence intensities. Microgravity (micro g) flames experiments provide the key reference data to reconcile the differences between flames in +g and -g. As flame configuration has significant impact on premixed flames characteristics we have studied axi-symmetric conical flames and plane-symmetric rod-stabilized v-flames. The two configurations produce distinct features that dictates how the flames couple with buoyancy. In a conical flame, the hot products plume completely envelopes the flame cone and shields the flame from direct interaction with the ambient air. The plume originates at the burner rim and generates a divergent flowfield. In comparison, the products region of v-flames forms between the twin flame sheets and it is convergent towards the center-plane. Interaction with ambient air is limited to the two end regions of the stabilized rod and beyond the flame sheets.

  13. Comparison of PDF and Moment Closure Methods in the Modeling of Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Norris, Andrew T.; Hsu, Andrew T.

    1994-01-01

    In modeling turbulent reactive flows, Probability Density Function (PDF) methods have an advantage over the more traditional moment closure schemes in that the PDF formulation treats the chemical reaction source terms exactly, while moment closure methods are required to model the mean reaction rate. The common model used is the laminar chemistry approximation, where the effects of turbulence on the reaction are assumed negligible. For flows with low turbulence levels and fast chemistry, the difference between the two methods can be expected to be small. However for flows with finite rate chemistry and high turbulence levels, significant errors can be expected in the moment closure method. In this paper, the ability of the PDF method and the moment closure scheme to accurately model a turbulent reacting flow is tested. To accomplish this, both schemes were used to model a CO/H2/N2- air piloted diffusion flame near extinction. Identical thermochemistry, turbulence models, initial conditions and boundary conditions are employed to ensure a consistent comparison can be made. The results of the two methods are compared to experimental data as well as to each other. The comparison reveals that the PDF method provides good agreement with the experimental data, while the moment closure scheme incorrectly shows a broad, laminar-like flame structure.

  14. Computational Fluid Dynamics Modeling of the Operation of a Flame Ionization Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huckaby, E.D.; Chorpening, B.T.; Thornton, J.D.

    The sensors and controls research group at the United States Department of Energy (DOE) National Energy Technology Laboratory (NETL) is continuing to develop the Combustion Control and Diagnostics Sensor (CCADS) for gas turbine applications. CCADS uses the electrical conduction of the charged species generated during the combustion process to detect combustion instabilities and monitor equivalence ratio. As part of this effort, combustion models are being developed which include the interaction between the electric field and the transport of charged species. The primary combustion process is computed using a flame wrinkling model (Weller et. al. 1998) which is a component ofmore » the OpenFOAM toolkit (Jasak et. al. 2004). A sub-model for the transport of charged species is attached to this model. The formulation of the charged-species model similar that applied by Penderson and Brown (1993) for the simulation of laminar flames. The sub-model consists of an additional flux due to the electric field (drift flux) added to the equations for the charged species concentrations and the solution the electric potential from the resolved charge density. The subgrid interactions between the electric field and charged species transport have been neglected. Using the above procedure, numerical simulations are performed and the results compared with several recent CCADS experiments.« less

  15. Soot Formation in Purely-Curved Premixed Flames and Laminar Flame Speeds of Soot-Forming Flames

    NASA Technical Reports Server (NTRS)

    Buchanan, Thomas; Wang, Hai

    2005-01-01

    The research addressed here is a collaborative project between University of Delaware and Case Western Reserve University. There are two basic and related scientific objectives. First, we wish to demonstrate the suitability of spherical/cylindrical, laminar, premixed flames in the fundamental study of the chemical and physical processes of soot formation. Our reasoning is that the flame standoff distance in spherical/cylindrical flames under microgravity can be substantially larger than that in a flat burner-stabilized flame. Therefore the spherical/cylindrical flame is expected to give better spatial resolution to probe the soot inception and growth chemistry than flat flames. Second, we wish to examine the feasibility of determining the laminar flame speed of soot forming flames. Our basic assumption is that under the adiabatic condition (in the absence of conductive heat loss), the amount and dynamics of soot formed in the flame is unique for a given fuel/air mixture. The laminar flame speed can be rigorously defined as long as the radiative heat loss can be determined. This laminar flame speed characterizes the flame soot formation and dynamics in addition to the heat release rate. The research involves two integral parts: experiments of spherical and cylindrical sooting flames in microgravity (CWRU), and the computational counterpart (UD) that aims to simulate sooting laminar flames, and the sooting limits of near adiabatic flames. The computations work is described in this report, followed by a summary of the accomplishments achieved to date. Details of the microgra+ experiments will be discussed in a separate, final report prepared by the co-PI, Professor C-J. Sung of CWRU. Here only a brief discussion of these experiments will be given.

  16. Unsteady Spherical Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Berhan, S.; Chernovsky, M.; Sacksteder, Kurt R.

    2001-01-01

    The absence of buoyancy-induced flows in microgravity (mu-g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and (mu-g) flames have been reported in experiments on candle flames, flame spread over solids, droplet combustion, and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the "weak" (low burning rate per unit flame area) mu-g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in mu-g will burn indefinitely. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the mu-g experiments and modeling because: (i) It reduces the complexity by making the problem one-dimensional; (ii) The spherical diffusion flame completely encloses the soot which is formed on the fuel rich side of the reaction zone. This increases the importance of flame radiation because now both soot and gaseous combustion products co-exist inside the high temperature spherical diffusion flame. (iii) For small fuel injection velocities, as is usually the case for a pyrolyzing solid, the diffusion flame in mu-g around the solid naturally develops spherical symmetry. Thus, spherical diffusion flames are of interest to fires in mu-g and identifying conditions that lead to radiation-induced extinction is important for spacecraft fire safety.

  17. Flames in vortices & tulip-flame inversion

    NASA Astrophysics Data System (ADS)

    Dold, J. W.

    This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.

  18. Laminar Premixed and Diffusion Flames (Ground-Based Study)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Ground-based studies of soot processes in laminar flames proceeded in two phases, considering laminar premixed flames and laminar diffusion flames, in turn. The test arrangement for laminar premixed flames involved round flat flame burners directed vertically upward at atmospheric pressure. The test arrangement for laminar jet diffusion flames involved a round fuel port directed vertically upward with various hydrocarbon fuels burning at atmospheric pressure in air. In both cases, coflow was used to prevent flame oscillations and measurements were limited to the flame axes. The measurements were sufficient to resolve soot nucleation, growth and oxidation rates, as well as the properties of the environment needed to evaluate mechanisms of these processes. The experimental methods used were also designed to maintain capabilities for experimental methods used in corresponding space-based experiments. This section of the report will be limited to consideration of flame structure for both premixed and diffusion flames.

  19. 78 FR 50399 - Spectrum Monitoring Pilot Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... National Telecommunications and Information Administration (NTIA) to design and conduct a pilot program to... to Congress for fiscal year (FY) 2014 seeks an initial $7.5 million research and development... design, features, deployment options, operational parameters, expected utility, potential benefits, and...

  20. Turbulent premixed combustion in V-shaped flames: Characteristics of flame front

    NASA Astrophysics Data System (ADS)

    Kheirkhah, S.; Gülder, Ö. L.

    2013-05-01

    Flame front characteristics of turbulent premixed V-shaped flames were investigated experimentally using the Mie scattering and the particle image velocimetry techniques. The experiments were performed at mean streamwise exit velocities of 4.0, 6.2, and 8.6 m/s, along with fuel-air equivalence ratios of 0.7, 0.8, and 0.9. Effects of vertical distance from the flame-holder, mean streamwise exit velocity, and fuel-air equivalence ratio on statistics of the distance between the flame front and the vertical axis, flame brush thickness, flame front curvature, and angle between tangent to the flame front and the horizontal axis were studied. The results show that increasing the vertical distance from the flame-holder and the fuel-air equivalence ratio increase the mean and root-mean-square (RMS) of the distance between the flame front and the vertical axis; however, increasing the mean streamwise exit velocity decreases these statistics. Spectral analysis of the fluctuations of the flame front position depicts that the normalized and averaged power-spectrum-densities collapse and show a power-law relation with the normalized wave number. The flame brush thickness is linearly correlated with RMS of the distance between the flame front and the vertical axis. Analysis of the curvature of the flame front data shows that the mean curvature is independent of the experimental conditions tested and equals to zero. Values of the inverse of the RMS of flame front curvature are similar to those of the integral length scale, suggesting that the large eddies in the flow make a significant contribution in wrinkling of the flame front. Spectral analyses of the flame front curvature as well as the angle between tangent to the flame front and the horizontal axis show that the power-spectrum-densities feature a peak. Value of the inverse of the wave number pertaining to the peak is larger than that of the integral length scale.

  1. On the role of radiation and dimensionality in predicting flow opposed flame spread over thin fuels

    NASA Astrophysics Data System (ADS)

    Kumar, Chenthil; Kumar, Amit

    2012-06-01

    In this work a flame-spread model is formulated in three dimensions to simulate opposed flow flame spread over thin solid fuels. The flame-spread model is coupled to a three-dimensional gas radiation model. The experiments [1] on downward spread and zero gravity quiescent spread over finite width thin fuel are simulated by flame-spread models in both two and three dimensions to assess the role of radiation and effect of dimensionality on the prediction of the flame-spread phenomena. It is observed that while radiation plays only a minor role in normal gravity downward spread, in zero gravity quiescent spread surface radiation loss holds the key to correct prediction of low oxygen flame spread rate and quenching limit. The present three-dimensional simulations show that even in zero gravity gas radiation affects flame spread rate only moderately (as much as 20% at 100% oxygen) as the heat feedback effect exceeds the radiation loss effect only moderately. However, the two-dimensional model with the gas radiation model badly over-predicts the zero gravity flame spread rate due to under estimation of gas radiation loss to the ambient surrounding. The two-dimensional model was also found to be inadequate for predicting the zero gravity flame attributes, like the flame length and the flame width, correctly. The need for a three-dimensional model was found to be indispensable for consistently describing the zero gravity flame-spread experiments [1] (including flame spread rate and flame size) especially at high oxygen levels (>30%). On the other hand it was observed that for the normal gravity downward flame spread for oxygen levels up to 60%, the two-dimensional model was sufficient to predict flame spread rate and flame size reasonably well. Gas radiation is seen to increase the three-dimensional effect especially at elevated oxygen levels (>30% for zero gravity and >60% for normal gravity flames).

  2. CW Laser radar for combustion diagnostics

    NASA Astrophysics Data System (ADS)

    Malmqvist, Elin; Brydegaard, Mikkel; Aldén, Marcus; Bood, Joakim

    2018-04-01

    A CW-laser radar system developed for combustion diagnostics is described. The system is based on triangulation to attain range information. A portable system has been constructed and here we show some result from measurements in various flames, for example Rayleigh scattering thermometry and monitoring of particle distributions with high temporal and spatial resolution. The concept can equally well be based on pulsed lasers, allowing suppression of background emission through gated detection.

  3. Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine

    DOEpatents

    Ziminsky, Willy Steve [Simpsonville, SC; Krull, Anthony Wayne [Anderson, SC; Healy, Timothy Andrew , Yilmaz, Ertan

    2011-05-17

    A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.

  4. Digital holographic interferometry applied to the investigation of ignition process.

    PubMed

    Pérez-Huerta, J S; Saucedo-Anaya, Tonatiuh; Moreno, I; Ariza-Flores, D; Saucedo-Orozco, B

    2017-06-12

    We use the digital holographic interferometry (DHI) technique to display the early ignition process for a butane-air mixture flame. Because such an event occurs in a short time (few milliseconds), a fast CCD camera is used to study the event. As more detail is required for monitoring the temporal evolution of the process, less light coming from the combustion is captured by the CCD camera, resulting in a deficient and underexposed image. Therefore, the CCD's direct observation of the combustion process is limited (down to 1000 frames per second). To overcome this drawback, we propose the use of DHI along with a high power laser in order to supply enough light to increase the speed capture, thus improving the visualization of the phenomenon in the initial moments. An experimental optical setup based on DHI is used to obtain a large sequence of phase maps that allows us to observe two transitory stages in the ignition process: a first explosion which slightly emits visible light, and a second stage induced by variations in temperature when the flame is emerging. While the last stage can be directly monitored by the CCD camera, the first stage is hardly detected by direct observation, and DHI clearly evidences this process. Furthermore, our method can be easily adapted for visualizing other types of fast processes.

  5. A Computational Investigation of Sooting Limits of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lecoustre, V. R.; Chao, B. H.; Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.

    2007-01-01

    Limiting conditions for soot particle inception in spherical diffusion flames were investigated numerically. The flames were modeled using a one-dimensional, time accurate diffusion flame code with detailed chemistry and transport and an optically thick radiation model. Seventeen normal and inverse flames were considered, covering a wide range of stoichiometric mixture fraction, adiabatic flame temperature, and residence time. These flames were previously observed to reach their sooting limits after 2 s of microgravity. Sooting-limit diffusion flames with residence times longer than 200 ms were found to have temperatures near 1190 K where C/O = 0.6, whereas flames with shorter residence times required increased temperatures. Acetylene was found to be a reasonable surrogate for soot precursor species in these flames, having peak mole fractions of about 0.01.

  6. Stability and Behaviors of Methane/Propane and Hydrogen Micro Flames

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Takamitsu; Kinoshita, Koichiro; Kitamura, Hideki; Tanigawa, Ryoichi

    The flame stability limits essentially define the fundamental operation of the combustion system. Recently the micro diffusion flame has been remarked. The critical conditions of the flame stability limit are highly dependent on nozzle diameter, species of fuel and so on. The micro diffusion flame of Methane/Propane and Hydrogen is formed by using the micro-scale nozzle of which inner diameter is less than 1mm. The configurations and behaviors of the flame are observed directly and visualized by the high speed video camera The criteria of stability limits are proposed for the micro diffusion flame. The objectives of the present study are to get further understanding of lifting/blow-off for the micro diffusion flame. The results obtained are as follows. (1) The behaviors of the flames are classified into some regions for each diffusion flame. (2) The micro diffusion flame of Methane/Propane cannot be sustained, when the nozzle diameter is less than 0.14 mm. (3) The diffusion flame cannot be sustained below the critical fuel flow rate. (4) The minimum flow which is formed does not depends on the average jet velocity, but on the fuel flow rate. (5) the micro flame is laminar. The flame length is decided by fuel flow rate.

  7. On the Structure and Stabilization Mechanisms of Planar and Cylindrical Premixed Flames

    NASA Technical Reports Server (NTRS)

    Eng, James A.; Zhu, Delin; Law, Chung K.

    1993-01-01

    The configurational simplicity of the stationary one-dimensional flames renders them intrinsically attractive for fundamental flame structure studies. The possibility and fidelity of studies of such flames on earth, however, have been severely restricted by the unidirectional nature of the gravity vector. To demonstrate these complications, let us first consider the premixed flame. Here a stationary, one-dimensional flame can be established by using the flat-flame burner. We next consider nonpremixed flames. First it may be noted that in an unbounded gravity-free environment, the only stationary one-dimensional flame is the spherical flame. Indeed, this is a major motivation for the study of microgravity droplet combustion, in which the gas-phase processes can be approximated to be quasi-steady because of the significant disparity between the gas and liquid densities for subcritical combustion. In view of the above considerations, an experimental and theoretical program on cylindrical and spherical premixed and nonpremixed flames in microgravity has been initiated. For premixed flames, we are interested in: (1) assessing the heat loss versus flow divergence as the dominant stabilization mechanism; (2) determining the laminar flame speed by using this configuration; and (3) understanding the development of flamefront instability and the effects of the flame curvature on the burning intensity.

  8. Turbulent structure and emissions of strongly-pulsed jet diffusion flames

    NASA Astrophysics Data System (ADS)

    Fregeau, Mathieu

    This current research project studied the turbulent flame structure, the fuel/air mixing, the combustion characteristics of a nonpremixed pulsed (unsteady) and unpulsed (steady) flame configuration for both normal- and microgravity conditions, as well as the flame emissions in normal gravity. The unsteady flames were fully-modulated, with the fuel flow completely shut off between injection pulses using an externally controlled valve, resulting in the generation of compact puff-like flame structures. Conducting experiments in normal and microgravity environments enabled separate control over the relevant Richardson and Reynolds numbers to clarify the influence of buoyancy on the flame behavior, mixing, and structure. Experiments were performed in normal gravity in the laboratory at the University of Washington and in microgravity using the NASA GRC 2.2-second Drop Tower facility. High-speed imaging, as well as temperature and emissions probes were used to determine the large-scale structure dynamics, the details of the flame structure and oxidizer entrainment, the combustion temperatures, and the exhaust emissions of the pulsed and steady flames. Of particular interest was the impact of changes in flame structure due to pulsing on the combustion characteristics of this system. The turbulent flame puff celerity (i.e., the bulk velocity of the puffs) was strongly impacted by the jet-off time, increasing markedly as the time between pulses was decreased, which caused the degree of puff interaction to increase and the strongly-pulsed flame to more closely resemble a steady flame. This increase occurred for all values of injection time as well as for constant fuelling rate and in both the presence and absence of buoyancy. The removal of positive buoyancy in microgravity resulted in a decrease in the flame puff celerity in all cases, amounting to as much as 40%, for both constant jet injection velocity and constant fuelling rate. The mean flame length of the strongly-pulsed flames was not strongly impacted by buoyancy. This lack of sensitivity to buoyancy was consistent with offsetting changes in flame puff celerity and time to burnout for the microgravity versus normal-gravity cases. The emissions of CO and NO were examined in the vicinity of the visible flame tip and at the combustor exit for strongly-pulsed flames. The highest exhaust-point emission indices of CO for compact, isolated puffs were as much as a factor of six higher than those of elongated flames with longer injection times. The amount of CO decreased substantially with a decreased amount of flame puff interaction. The higher CO levels for pulsed flames with the shortest injection times were consistent with quenching due to the very rapid mixing and dilution with excess air for the most compact flame puffs. The injection time for which steady-flame emission levels were attained was comparable to the injection time for which the visible flame length approached the flame length of steady flames. The CO emissions, for a given fuelling rate, were strongly dependent on both the injection time and jet-off time for a jet-on fraction less than approximately 50%. The NO levels were generally proportional to the fuelling rate. This work indicates that there are specific combinations of injection time and jet-off time that considerably change the fuel/air mixing, resulting in emissions comparable to those of the steady flame while the flame length is significantly shorter. This points the potential utility of the strongly-pulsed injection technique in the development of compact, low emissions combustors involving turbulent diffusion flames. (Abstract shortened by UMI.)

  9. Oscillatory Extinction Of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Yoo, S. W.; Christianson, E. W.

    2003-01-01

    Since extinction has been observed in an oscillatory manner in Le greater than 1 premixed flames, it is not unreasonable to expect that extinction could occur in an unsteady manner for diffusion flames. Indeed, near-limit oscillations have been observed experimentally under microgravity conditions for both candle flames and droplet flames. Furthermore, the analysis of Cheatham and Matalon on the unsteady behavior of diffusion flames with heat loss, identified an oscillatory regime which could be triggered by either a sufficiently large Lewis number (even without heat loss) or an appreciable heat loss (even for Le=1). In light of these recent understanding, the present investigation aims to provide a well-controlled experiment that can unambiguously demonstrate the oscillation of diffusion flames near both the transport- and radiation-induced limits. That is, since candle and jet flames are stabilized through flame segments that are fundamentally premixed in nature, and since premixed flames are prone to oscillate, there is the possibility that the observed oscillation of these bulk diffusion flames could be triggered and sustained by the oscillation of the premixed flame segments. Concerning the observed oscillatory droplet extinction, it is well-known that gas-phase oscillation in heterogeneous burning can be induced by and is thereby coupled with condensed-phase unsteadiness. Consequently, a convincing experiment on diffusion flame oscillation must exclude any ingredients of premixed flames and other sources that may either oscillate themselves or promote the oscillation of the diffusion flame. The present experiment on burner-generated spherical flames with a constant reactant supply endeavored to accomplish this goal. The results are further compared with those from computational simulation for further understanding and quantification of the flame dynamics and extinction.

  10. Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame – an analysis of flame stretch and flame thickening [Direct numerical simulations of a high Ka laboratory premixed jet flame - an analysis of flame stretch and flame thickening

    DOE PAGES

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.; ...

    2017-02-23

    This article reports an analysis of the first detailed chemistry direct numerical simulation (DNS) of a high Karlovitz number laboratory premixed flame. The DNS results are first compared with those from laser-based diagnostics with good agreement. The subsequent analysis focuses on a detailed investigation of the flame area, its local thickness and their rates of change in isosurface following reference frames, quantities that are intimately connected. The net flame stretch is demonstrated to be a small residual of large competing terms: the positive tangential strain term and the negative curvature stretch term. The latter is found to be driven bymore » flame speed–curvature correlations and dominated in net by low probability highly curved regions. Flame thickening is demonstrated to be substantial on average, while local regions of flame thinning are also observed. The rate of change of the flame thickness (as measured by the scalar gradient magnitude) is demonstrated, analogously to flame stretch, to be a competition between straining tending to increase gradients and flame speed variations in the normal direction tending to decrease them. The flame stretch and flame thickness analyses are connected by the observation that high positive tangential strain rate regions generally correspond with low curvature regions; these regions tend to be positively stretched in net and are relatively thinner compared with other regions. Finally, high curvature magnitude regions (both positive and negative) generally correspond with lower tangential strain; these regions are in net negatively stretched and thickened substantially.« less

  11. Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame – an analysis of flame stretch and flame thickening [Direct numerical simulations of a high Ka laboratory premixed jet flame - an analysis of flame stretch and flame thickening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    This article reports an analysis of the first detailed chemistry direct numerical simulation (DNS) of a high Karlovitz number laboratory premixed flame. The DNS results are first compared with those from laser-based diagnostics with good agreement. The subsequent analysis focuses on a detailed investigation of the flame area, its local thickness and their rates of change in isosurface following reference frames, quantities that are intimately connected. The net flame stretch is demonstrated to be a small residual of large competing terms: the positive tangential strain term and the negative curvature stretch term. The latter is found to be driven bymore » flame speed–curvature correlations and dominated in net by low probability highly curved regions. Flame thickening is demonstrated to be substantial on average, while local regions of flame thinning are also observed. The rate of change of the flame thickness (as measured by the scalar gradient magnitude) is demonstrated, analogously to flame stretch, to be a competition between straining tending to increase gradients and flame speed variations in the normal direction tending to decrease them. The flame stretch and flame thickness analyses are connected by the observation that high positive tangential strain rate regions generally correspond with low curvature regions; these regions tend to be positively stretched in net and are relatively thinner compared with other regions. Finally, high curvature magnitude regions (both positive and negative) generally correspond with lower tangential strain; these regions are in net negatively stretched and thickened substantially.« less

  12. Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl

    NASA Astrophysics Data System (ADS)

    Liao, Ying-Hao

    This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO emissions. The elevated NO emissions are due to a longer combustion residence time due to the flow recirculation within the swirl-induced recirculation zone. The reaction zone structure, based on OH planar laser-induced fluorescence (PLIF) is broadly consistent with the observation of luminous flame structure for these types of flames. In many cases, the reaction zone exhibits discontinuities at the instantaneous flame tip in the early period of fuel injection. These discontinuities in the reaction zone likely result from the non-ignition of injected fuel, due to a relatively slower reaction rate in comparison with the mixing rate. The discontinuity in the OH zone is generally seen to diminish with increased swirl level. Statistics generated from the OH PLIF signals show that the reaction zone area generally increases with increased swirl level, consistent with a broader and more convoluted OH-zone structure for flames with swirl. The reaction zone area for swirled flames generally exhibits a higher degree of fluctuation, suggesting a relatively stronger impact of flow turbulence on the flame structure for flames with swirl.

  13. Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santavicca, Dom; Lieuwen, Tim

    Actual gas turbine combustors for power generation applications employ multi-nozzle combustor configurations. Researchers at Penn State and Georgia Tech have extended previous work on the flame response in single-nozzle combustors to the more realistic case of multi-nozzle combustors. Research at Georgia Tech has shown that asymmetry of both the flow field and the acoustic forcing can have a significant effect on flame response and that such behavior is important in multi-flame configurations. As a result, the structure of the flame and its response to forcing is three-dimensional. Research at Penn State has led to the development of a three-dimensional chemiluminescencemore » flame imaging technique that can be used to characterize the unforced (steady) and forced (unsteady) flame structure of multi-nozzle combustors. Important aspects of the flame response in multi-nozzle combustors which are being studied include flame-flame and flame-wall interactions. Research at Penn State using the recently developed three-dimensional flame imaging technique has shown that spatial variations in local flame confinement must be accounted for to accurately predict global flame response in a multi-nozzle can combustor.« less

  14. Effects of Buoyancy on the Flowfields of Lean Premixed Turbulent V-Flames

    NASA Technical Reports Server (NTRS)

    Cheng, R. K.; Greenberg, P.; Bedat, B.; Yegian, D. T.

    1999-01-01

    Open laboratory turbulent flames used for investigating fundament flame turbulence interactions are greatly affected by buoyancy. Though much of our current knowledge is based on observations made in these open flames, the effects of buoyancy are usually not included in data interpretation, numerical analysis or theories. This inconsistency remains an obstacle to merging experimental observations and theoretical predictions. To better understanding the effects of buoyancy, our research focuses on steady lean premixed flames propagating in fully developed turbulence. We hypothesize that the most significant role of buoyancy forces on these flames is to influence their flowfields through a coupling with mean and fluctuating pressure fields. Changes in flow pattern alter the mean aerodynamic stretch and in turn affect turbulence fluctuation intensities both upstream and downstream of the flame zone. Consequently, flame stabilization, reaction rates, and turbulent flame processes are all affected. This coupling relates to the elliptical problem that emphasizes the importance of the upstream, wall and downstream boundary conditions in determining all aspects of flame propagation. Therefore, buoyancy has the same significance as other parameters such as flow configuration, flame geometry, means of flame stabilization, flame shape, enclosure size, mixture conditions, and flow conditions.

  15. Lean limit phenomena

    NASA Technical Reports Server (NTRS)

    Law, C. K.

    1984-01-01

    The concept of flammability limits in the presence of flame interaction, and the existence of negative flame speeds are discussed. Downstream interaction between two counterflow premixed flames of different stoichiometries are experimentally studied. Various flame configurations are observed and quantified; these include the binary system of two lean or rich flames, the triplet system of a lean and a rich flame separated by a diffusion flame, and single diffusion flames with some degree of premixedness. Extinction limits are determined for methane/air and butane/air mixtures over the entire range of mixture concentrations. The results show that the extent of flame interaction depends on the separation distance between the flames which are functions of the mixtures' concentrations, the stretch rate, and the effective Lewis numbers (Le). In particular, in a positively-stretched flow field Le 1 ( 1) mixtures tend to interact strongly (weakly), while the converse holds for flames in a negatively-stretched flow. Also established was the existence of negative flames whose propagation velocity is in the same general direction as that of the bulk convective flow, being supported by diffusion alone. Their existence demonstrates the tendency of flames to resist extinction, and further emphasizes the possibility of very lean or rich mixtures to undergo combustion.

  16. Preparation and characterizations of flame retardant polyamide 66 fiber

    NASA Astrophysics Data System (ADS)

    Li, Y. Y.; Liu, K.; Xiao, R.

    2017-06-01

    The polyamide 66 (PA66) is one of the most important thermoplastic materials, but it has the drawback of flammability. So the flame retardant PA66 was prepared by condensation polymerization using nylon salt and DOPO-based flame retardant in this paper. Then the flame retardant PA66 fiber was manufactured via melt spinning. The properties of flame retardant PA66 and flame retardant PA66 fiber were investigated by relative viscosity, differential scanning calorimetry (DSC), tensile test, vertical burning test (UL94) and limiting oxygen index (LOI) test. Although the loading of the DOPO-based flame retardant decreased the molecular weight, the melting temperature, the crystallinity and the mechanical properties of flame retardant PA66, the flame retardancy properties improved. The flame retardant PA66 loaded with 5.5 wt% of DOPO-based flame retardant can achieve a UL94 V-0 rating with a LOI value of 32.9%. The tenacity at break decreased from 4.51 cN·dtex-1 for PA66 fiber to 2.82 cN·dtex-1 for flame retardant PA66 fiber which still satisfied the requirements for fabrics. The flame retardant PA66 fiber expanded the application of PA66 materials which had a broad developing prospect.

  17. Shapes of Buoyant and Nonbuoyant Methane Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, Peter B.; Yuan, Zeng-Guang; Urban, David L.

    1997-01-01

    Laminar gas jet diffusion flames represent a fundamental combustion configuration. Their study has contributed to numerous advances in combustion, including the development of analytical and computational combustion tools. Laminar jet flames are pertinent also to turbulent flames by use of the laminar flamelet concept. Investigations into the shapes of noncoflowing microgravity laminar jet diffusion flames have primarily been pursued in the NASA Lewis 2.2-second drop tower, by Cochran and coworkers and by Bahadori and coworkers. These studies were generally conducted at atmospheric pressure; they involved soot-containing flames and reported luminosity lengths and widths instead of the flame-sheet dimensions which are of Greater value to theory evaluation and development. The seminal model of laminar diffusion flames is that of Burke and Schumann, who solved the conservation of momentum equation for a jet flame in a coflowing ambient by assuming the velocity of fuel, oxidizer and products to be constant throughout. Roper and coworkers improved upon this model by allowing for axial variations of velocity and found flame shape to be independent of coflow velocity. Roper's suggestion that flame height should be independent of gravity level is not supported by past or present observations. Other models have been presented by Klajn and Oppenheim, Markstein and De Ris, Villermaux and Durox, and Li et al. The common result of all these models (except in the buoyant regime) is that flame height is proportional to fuel mass flowrate, with flame width proving much more difficult to predict. Most existing flame models have been compared with shapes of flames containing soot, which is known to obscure the weak blue emission of flame sheets. The present work involves measurements of laminar gas jet diffusion flame shapes. Flame images have been obtained for buoyant and nonbuoyant methane flames burning in quiescent air at various fuel flow-rates, burner diameters and ambient pressures. Soot concentrations were minimized by selecting conditions at low flowrates and low ambient pressures; this allows identification of actual flame sheets associated with blue emissions of CH and CO2. The present modeling effort follows that of Roper and is useful in explaining many of the trends observed.

  18. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM: AGROECOSYSTEM 1992 PILOT PLAN

    EPA Science Inventory

    The Agroecosystem Resource Group (ARG) of the Environmental Protection Monitoring and Assessment Program (EMAP) has developed a five year program strategy for implementation of a suite of indicators for monitoring agroecosystem status and trends. he five-year period (1991-1995) i...

  19. Salivary alpha-amylase activity and stress in Japan air self-defense force cargo pilots involved in Iraq reconstruction.

    PubMed

    Iizuka, Naotaka; Awano, Shuji; Ansai, Toshihiro

    2012-01-01

    This study aimed to verify whether salivary α-amylase enzyme activity (Amy) is useful as a biomarker of stress in pilots working in a stressful environment. The subjects in this study were nine Japan air self-defense force pilots who participated in Iraq reconstruction support activity in Kuwait. Amy was measured using a portable salivary amylase monitor at preflight, postflight, and on stand-by day. In addition, the state-trait anxiety inventory was administered with state scores (STAI-S) compared to Amy levels. There were greater differences in Amy levels at baseline compared to STAI-S scores between subjects on the stand-by day. Amy levels at preflight tended to increase compared to those on stand-by day as did STAI-S. The change in Amy level at postflight varied among the pilots. The Amy levels of four subjects at postflight were elevated compared to levels at preflight, while the STAI-S scores for all pilots at postflight were lower than at preflight. This study suggests that the Amy level of pilots can reflect subtle individual differences in response to the psychological and physiological stress of a flight task. Thus, monitoring Amy level may be useful for stress evaluation of pilots working in a stressful environment, providing data that might be used as an impetus for addressing stress management for this population. Copyright © 2012 Wiley Periodicals, Inc.

  20. Radiant Extinction Of Gaseous Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Berhan, S.; Chernovsky, M.; Atreya, A.; Baum, Howard R.; Sacksteder, Kurt R.

    2003-01-01

    The absence of buoyancy-induced flows in microgravity (mu:g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and :g flames have been reported in experiments on candle flames [1, 2], flame spread over solids [3, 4], droplet combustion [5,6], and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the Aweak@ (low burning rate per unit flame area) :g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in :g will burn indefinitely [1]. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the :g experiments and modeling because: (i) It reduces the complexity by making the problem one-dimensional. (ii) The spherical diffusion flame completely encloses the soot which is formed on the fuel rich side of the reaction zone. This increases the importance of flame radiation because now both soot and gaseous combustion products co-exist inside the high temperature spherical diffusion flame. (iii) For small fuel injection velocities, as is usually the case for a pyrolyzing solid, the diffusion flame in :g around the solid naturally develops spherical symmetry. Thus, spherical diffusion flames are of interest to fires in :g and identifying conditions that lead to radiation-induced extinction is important for spacecraft fire safety.

  1. Laser-saturated fluorescence measurements in laminar sooting diffusion flames

    NASA Technical Reports Server (NTRS)

    Wey, Changlie

    1993-01-01

    The hydroxyl radical is known to be one of the most important intermediate species in the combustion processes. The hydroxyl radical has also been considered a dominant oxidizer of soot particles in flames. In this investigation the hydroxyl concentration profiles in sooting diffusion flames were measured by the laser-saturated fluorescence (LSF) method. The temperature distributions in the flames were measured by the two-line LSF technique and by thermocouple. In the sooting region the OH fluorescence was too weak to make accurate temperature measurements. The hydroxyl fluorescence profiles for all four flames presented herein show that the OH fluorescence intensities peaked near the flame front. The OH fluorescence intensity dropped sharply toward the dark region of the flame and continued declining to the sooting region. The OH fluorescence profiles also indicate that the OH fluorescence decreased with increasing height in the flames for all flames investigated. Varying the oxidizer composition resulted in a corresponding variation in the maximum OH concentration and the flame temperature. Furthermore, it appears that the maximum OH concentration for each flame increased with increasing flame temperature.

  2. Experimental study on flame pattern formation and combustion completeness in a radial microchannel

    NASA Astrophysics Data System (ADS)

    Fan, Aiwu; Minaev, Sergey; Kumar, Sudarshan; Liu, Wei; Maruta, Kaoru

    2007-12-01

    Combustion behavior in a radial microchannel with a gap of 2.0 mm and a diameter of 50 mm was experimentally investigated. In order to simulate the heat recirculation, which is an essential strategy in microscale combustion devices, positive temperature gradients along the radial flow direction were given to the microchannel by an external heat source. A methane-air mixture was supplied from the center of the top plate through a 4.0 mm diameter delivery tube. A variety of flame patterns, including a stable circular flame and several unstable flame patterns termed unstable circular flame, single and double pelton-like flames, traveling flame and triple flame, were observed in the experiments. The regime diagram of all these flame patterns is presented in this paper. Some characteristics of the various flame patterns, such as the radii of stable and unstable circular flames, major combustion products and combustion efficiencies of all these flame patterns, were also investigated. Furthermore, the effect of the heat recirculation on combustion stability was studied by changing the wall temperature levels.

  3. The Effects of Gravity on Wrinkled Laminar Flames

    NASA Technical Reports Server (NTRS)

    Kostiuk, Larry W.; Zhou, Liming; Cheng, Robert K.

    1993-01-01

    The effects of gravity are significant to the dynamics of idealized unconfined open premixed flames. Moderate to low turbulence Reynolds number flames, i.e., wrinkled laminar flames, of various unconfined geometries have been used extensively for investigating fundamental processes of turbulent flame propagation and to validate theoretical models. Without the wall constraints, the flames are free to expand and interact with surrounding ambient air. The flow field in which the flame exists is determined by a coupling of burner geometry, flame orientation and the gravity field. These complex interactions raise serious questions regarding the validity of comparing the experimental data of open flames with current theoretical and numerical models that do not include the effects of gravity nor effects of the larger aerodynamic flowfield. Therefore, studies of wrinkled laminar flame in microgravity are needed for a better understanding of the role of gravity on flame characteristics such as the orientation, mean aerodynamics stretch, flame wrinkle size and burning rate. Our approach to characterize and quantify turbulent flame structures under microgravity is to exploit qualitative and quantitative flow visualization techniques coupled with video recording and computer controlled image analysis technologies. The experiments will be carried out in the 2.2 second drop tower at the NASA Lewis Research Center. The longest time scales of typical wrinkled laminar flames in the geometries considered here are in the order of 10 msec. Hence, the duration of the drop is sufficient to obtain the amount of statistical data necessary for characterize turbulent flame structures.

  4. Effects of Structure and Hydrodynamics on the Sooting Behavior of Spherical Microgravity Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Axelbaum, R. L.; Urban, D. L.

    1999-01-01

    Recent experimental, numerical and analytical work has shown that the stoichiometric mixture fraction (Z(sub st)) can have a profound effect on soot formation in diffusion flames. These findings were obtained at constant flame temperature (T(sub ad)), employing the approach described in Du and Axelbaum (1995, 1996). For example, a fuel mixture containing 1 mole of ethylene and 11.28 moles of nitrogen burning in pure oxygen ((Z(sub st)) = 0.78) has the same adiabatic flame temperature (2370 K) as that of pure ethylene burning in air ((Z(sub st)) = 0.064). An important finding of these works was that at sufficiently high (Z(sub st)), flames remain blue as strain rate approaches zero in counterflow flames, or as flame height and residence time approach infinity in coflowing flames. Lin and Faeth (1996a) coined the term permanently blue to describe such flames. Two theories have been proposed to explain the appearance of permanently-blue flames at high (Z(sub st)). They are based on (1) hydrodynamics and (2) flame structure. Previous experimental studies in normal gravity are not definitive as to which, if either, mechanism is dominant because both hydrodynamics and structure suppress soot formation at high (Z(sub st)) in coflowing and counterflowing diffusion flames. In counterflow flames with (Z(sub st)) < 0.5 streamlines at the flame sheet are directed toward the fuel. Newly formed soot is convected into richer regions, favoring soot growth over oxidation. For (Z(sub st)) > 0.5, convection at the flame is toward the oxidizer, thus enhancing soot oxidization. Thus, in counterflow flames, hydrodynamics causes soot to be convected towards the oxidizer at high (Z(sub st)) which suppresses soot formation. Axelbaum and co-workers maintain that while the direction of convection can impact soot growth and oxidation, these processes alone cannot cause permanently-blue flames. Soot growth and oxidation are dependent on the existence of soot particles and the presence of soot is invariably accompanied by yellow luminosity. Soot-particle inception, on the other hand, arises from gas-phase reactions and its dependence on flow direction is weak, similar to that of other gas-phase reactions in flames. For example, when the flame moves across the stagnation plane no significant changes in flame chemistry are observed. Furthermore, since the soot-inception zone has a finite thickness, soot has been produced in counterflow flames with (Z(sub st)) > 0.5. For large (Z(sub st)) the fuel concentration decreases and oxygen concentration increases in the soot forming regions of the flame. This yields a shift in the OH profile toward the fuel side of the flame, and this shift can dramatically influence soot inception because it essentially narrows the soot inception zone. Soot-free (permanently-blue) conditions can be realized when the structure of the flame is adjusted to the extent that significant oxidizing species exist on the fuel side of the flame at temperatures above the critical temperature for soot inception, ca. 1250 K. In previously considered flames it was impossible to independently vary flame structure and convection direction. In contrast, spherical diffusion flames (which generally require microgravity) allow both properties to be varied independently. We altered structure (Z(sub st)) by exchanging inert between the oxidizer and the fuel and we independently varied convection direction at the flame sheet by interchanging the injected and ambient gases. In this work we established four flames: (a) ethylene issuing into air, (b) diluted ethylene issuing into oxygen, (c) air issuing into ethylene, and (d) oxygen issuing into diluted ethylene. (Z(sub st)) is 0.064 in flames (a) and (c) and 0.78 in flames (b) and (d). The convection direction is from fuel to oxidizer in flames (a) and (b) and from oxidizer to fuel in flames (c) and (d). Under the assumption of equal diffusivities of all species and heat, the stoichiometric contours of these flames have identical temperatures and nitrogen concentrations.

  5. Human Exposures to PAHs: an Eastern United States Pilot Study

    EPA Science Inventory

    Personal exposure monitoring for select polycyclic aromatic hydrocarbons (PAHs) was performed as part of the National Human Exposure Assessment Survey (NHEXAS) Pilot Study in Baltimore, MD and in four surrounding counties (NHEXAS-Maryland). An objective of this effort was to esta...

  6. LONG-TERM IMPACTS OF ORTHOPHOSPHATE TREATMENT ON COPPER

    EPA Science Inventory

    Laboratory, pilot, and field data collected support the theoretical "cupric hydroxide" copper solubility model. For the short time frames inherent in laboratory and pilot studies of copper solubility and in initial field monitoring for the LCR from Tier 1 soldered copper sites, c...

  7. Impact of heat release on strain rate field in turbulent premixed Bunsen flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coriton, Bruno Rene Leon; Frank, Jonathan H.

    2016-08-10

    The effects of combustion on the strain rate field are investigated in turbulent premixed CH 4/air Bunsen flames using simultaneous tomographic PIV and OH LIF measurements. Tomographic PIV provides three-dimensional velocity measurements, from which the complete strain rate tensor is determined. The OH LIF measurements are used to determine the position of the flame surface and the flame-normal orientation within the imaging plane. This combination of diagnostic techniques enables quantification of divergence as well as flame-normal and tangential strain rates, which are otherwise biased using only planar measurements. Measurements are compared in three lean-to-stoichiometric flames that have different amounts ofmore » heat release and Damköhler numbers greater than unity. The effects of heat release on the principal strain rates and their alignment relative to the local flame normal are analyzed. The extensive strain rate preferentially aligns with the flame normal in the reaction zone, which has been indicated by previous studies. The strength of this alignment increases with increasing heat release and, as a result, the flame-normal strain rate becomes highly extensive. These effects are associated with the gas expansion normal to the flame surface, which is largest for the stoichiometric flame. In the preheat zone, the compressive strain rate has a tendency to align with the flame normal. Away from the flame front, the flame – strain rate alignment is arbitrary in both the reactants and products. The flame-tangential strain rate is on average positive across the flame front, and therefore the turbulent strain rate field contributes to the enhancement of scalar gradients as in passive scalar turbulence. As a result, increases in heat release result in larger positive values of the divergence as well as flame-normal and tangential strain rates, the tangential strain rate has a weaker dependence on heat release than the flame-normal strain rate and the divergence.« less

  8. Cool Flame Quenching

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Chapek, Richard

    2001-01-01

    Cool flame quenching distances are generally presumed to be larger than those associated with hot flames, because the quenching distance scales with the inverse of the flame propagation speed, and cool flame propagation speeds are often times slower than those associated with hot flames. To date, this presumption has never been put to a rigorous test, because unstirred, non-isothermal cool flame studies on Earth are complicated by natural convection. Moreover, the critical Peclet number (Pe) for quenching of cool flames has never been established and may not be the same as that associated with wall quenching due to conduction heat loss in hot flames, Pe approx. = 40-60. The objectives of this ground-based study are to: (1) better understand the role of conduction heat loss and species diffusion on cool flame quenching (i.e., Lewis number effects), (2) determine cool flame quenching distances (i.e, critical Peclet number, Pe) for different experimental parameters and vessel surface pretreatments, and (3) understand the mechanisms that govern the quenching distances in premixtures that support cool flames as well as hot flames induced by spark-ignition. Objective (3) poses a unique fire safety hazard if conditions exist where cool flame quenching distances are smaller than those associated with hot flames. For example, a significant, yet unexplored risk, can occur if a multi-stage ignition (a cool flame that transitions to a hot flame) occurs in a vessel size that is smaller than that associated with the hot quenching distance. To accomplish the above objectives, a variety of hydrocarbon-air mixtures will be tested in a static reactor at elevated temperature in the laboratory (1g). In addition, reactions with chemical induction times that are sufficiently short will be tested aboard NASA's KC-135 microgravity (mu-g) aircraft. The mu-g results will be compared to a numerical model that includes species diffusion, heat conduction, and a skeletal kinetic mechanism, following the work on diffusion-controlled cool flames by Fairlie et,al., 2000.

  9. A high-pressure premixed flat-flame burner for chemical process studies. [of pollutant formation in hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.

    1978-01-01

    A premixed flat-flame burner was designed and tested with methane-air mixtures at pressures from 1.1 to 20 atm and equivalence ratios from 0.7 to 1.1. Reactant velocity in the burner mixing chamber was used to characterize the range of stable flames at each pressure-equivalence-ratio condition. Color photographs of the flames were used to determine flame zone thickness and flame height. The results show that this burner can be used for chemical process studies in premixed high pressure methane-air flames up to 20 atm.

  10. Vortex/Flame Interactions in Microgravity Pulsed Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Y.; Hegde, U.; Stocker, D. P.

    1999-01-01

    The problem of vortex/flame interaction is of fundamental importance to turbulent combustion. These interactions have been studied in normal gravity. It was found that due to the interactions between the imposed disturbances and buoyancy induced instabilities, several overall length scales dominated the flame. The problem of multiple scales does not exist in microgravity for a pulsed laminar flame, since there are no buoyancy induced instabilities. The absence of buoyant convection therefore provides an environment to study the role of vortices interacting with flames in a controlled manner. There are strong similarities between imposed and naturally occurring perturbations, since both can be described by the same spatial instability theory. Hence, imposing a harmonic disturbance on a microgravity laminar flame creates effects similar to those occurring naturally in transitional/turbulent diffusion flames observed in microgravity. In this study, controlled, large-scale, axisymmetric vortices are imposed on a microgravity laminar diffusion flame. The experimental results and predictions from a numerical model of transient jet diffusion flames are presented and the characteristics of pulsed flame are described.

  11. Turbulent premixed flames on fractal-grid-generated turbulence

    NASA Astrophysics Data System (ADS)

    Soulopoulos, N.; Kerl, J.; Sponfeldner, T.; Beyrau, F.; Hardalupas, Y.; Taylor, A. M. K. P.; Vassilicos, J. C.

    2013-12-01

    A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area.

  12. Stability analysis of confined V-shaped flames in high-velocity streams.

    PubMed

    El-Rabii, Hazem; Joulin, Guy; Kazakov, Kirill A

    2010-06-01

    The problem of linear stability of confined V-shaped flames with arbitrary gas expansion is addressed. Using the on-shell description of flame dynamics, a general equation governing propagation of disturbances of an anchored flame is obtained. This equation is solved analytically for V-flames anchored in high-velocity channel streams. It is demonstrated that dynamics of the flame disturbances in this case is controlled by the memory effects associated with vorticity generated by the perturbed flame. The perturbation growth rate spectrum is determined, and explicit analytical expressions for the eigenfunctions are given. It is found that the piecewise linear V structure is unstable for all values of the gas expansion coefficient. Despite the linearity of the basic pattern, however, evolutions of the V-flame disturbances are completely different from those found for freely propagating planar flames or open anchored flames. The obtained results reveal strong influence of the basic flow and the channel walls on the stability properties of confined V-flames.

  13. Effect of von Karman Vortex Shedding on Regular and Open-slit V-gutter Stabilized Turbulent Premixed Flames

    DTIC Science & Technology

    2012-04-01

    Both flame lengths shrink and large scale disruptions occur downstream with vortex shedding carrying reaction zones. Flames in both flameholders...9) the flame structure changes dramatically for both regular and open-slit V-gutter. Both flame lengths shrink and large scale disruptions occur...reduces the flame length . However, qualitatively the open-slit V-gutter appears to be more sensitive than the regular V-gutter. Both flames remain

  14. Experimental study on a comparison of typical premixed combustible gas-air flame propagation in a horizontal rectangular closed duct.

    PubMed

    Jin, Kaiqiang; Duan, Qiangling; Liew, K M; Peng, Zhongjing; Gong, Liang; Sun, Jinhua

    2017-04-05

    Research surrounding premixed flame propagation in ducts has a history of more than one hundred years. Most previous studies focus on the tulip flame formation and flame acceleration in pure gas fuel-air flame. However, the premixed natural gas-air flame may show different behaviors and pressure dynamics due to its unique composition. Natural gas, methane and acetylene are chosen here to conduct a comparison study on different flame behaviors and pressure dynamics, and to explore the influence of different compositions on premixed flame dynamics. The characteristics of flame front and pressure dynamics are recorded using high-speed schlieren photography and a pressure transducer, respectively. The results indicate that the compositions of the gas mixture greatly influence flame behaviors and pressure. Acetylene has the fastest flame tip speed and the highest pressure, while natural gas has a faster flame tip speed and higher pressure than methane. The Bychkov theory for predicting the flame skirt motion is verified, and the results indicate that the experimental data coincide well with theory in the case of equivalence ratios close to 1.00. Moreover, the Bychkov theory is able to predict flame skirt motion for acetylene, even outside of the best suitable expansion ratio range of 6

  15. Analysis of Fuel Vaporization, Fuel-Air Mixing, and Combustion in Integrated Mixer-Flame Holders

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Cline, M. C.

    2004-01-01

    Requirements to limit pollutant emissions from the gas turbine engines for the future High-Speed Civil Transport (HSCT) have led to consideration of various low-emission combustor concepts. One such concept is the Integrated Mixer-Flame Holder (IMFH). This report describes a series of IMFH analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. To meet the needs of this study, KIVA-II's boundary condition and chemistry treatments are modified. The study itself examines the relationships between fuel vaporization, fuel-air mixing, and combustion. Parameters being considered include: mixer tube diameter, mixer tube length, mixer tube geometry (converging-diverging versus straight walls), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases are run with and without combustion to examine the variations in fuel-air mixing and potential for flashback due to the above parameters. The degree of fuel-air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state. Results indicate that fuel-air mixing can be enhanced by a variety of means, the best being a combination of air inlet swirl and a converging-diverging mixer tube geometry. With the IMFH configuration utilized in the present study, flashback becomes more common as the mixer tube diameter is increased and is instigated by disturbances associated with the dilution hole flow.

  16. An Experimental Study of Unconfined Hydrogen/Oxygen and Hydrogen/Air Explosions

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Skinner, Troy; Blackwood, James; Hays, Michael; Bangham, Mike; Jackson, Austin

    2014-01-01

    Development tests are being conducted to characterize unconfined Hydrogen/air and Hydrogen/Oxygen blast characteristics. Most of the existing experiments for these types of explosions address contained explosions, like shock tubes. Therefore, the Hydrogen Unconfined Combustion Test Apparatus (HUCTA) has been developed as a gaseous combustion test device for determining the relationship between overpressure, impulse, and flame speed at various mixture ratios for unconfined reactions of hydrogen/oxygen and hydrogen/air. The system consists of a central platform plumbed to inject and mix component gasses into an attached translucent bag or balloon while monitoring hydrogen concentration. All tests are ignited with a spark with plans to introduce higher energy ignition sources in the future. Surrounding the platform are 9 blast pressure "Pencil" probes. Two high-speed cameras are used to observe flame speed within the combustion zone. The entire system is raised approx. 6 feet off the ground to remove any ground reflection from the measurements. As of this writing greater than 175 tests have been performed and include Design of Experiments test sets. Many of these early tests have used bags or balloons between approx. 340L and approx. 1850L to quantify the effect of gaseous mixture ratio on the properties of interest. All data acquisition is synchronized between the high-speed cameras, the probes, and the ignition system to observe flame and shock propagation. Successful attempts have been made to couple the pressure profile with the progress of the flame front within the combustion zone by placing a probe within the bag. Overpressure and impulse data obtained from these tests are used to anchor engineering analysis tools, CFD models and in the development of blast and fragment acceleration models.

  17. Recycling of plastic waste: Screening for brominated flame retardants (BFRs).

    PubMed

    Pivnenko, K; Granby, K; Eriksson, E; Astrup, T F

    2017-11-01

    Flame retardants are chemicals vital for reducing risks of fire and preventing human casualties and property losses. Due to the abundance, low cost and high performance of bromine, brominated flame retardants (BFRs) have had a significant share of the market for years. Physical stability on the other hand, has resulted in dispersion and accumulation of selected BFRs in the environment and receiving biota. A wide range of plastic products may contain BFRs. This affects the quality of waste plastics as secondary resource: material recycling may potentially reintroduce the BFRs into new plastic product cycles and lead to increased exposure levels, e.g. through use of plastic packaging materials. To provide quantitative and qualitative data on presence of BFRs in plastics, we analysed bromophenols (tetrabromobisphenol A (TBBPA), dibromophenols (2,4- and 2,6-DBP) and 2,4,6-tribromophenol (2,4,6-TBP)), hexabromocyclododecane stereoisomers (α-, β-, and γ-HBCD), as well as selected polybrominated diphenyl ethers (PBDEs) in samples of household waste plastics, virgin and recycled plastics. A considerable number of samples contained BFRs, with highest concentrations associated with acrylonitrile butadiene styrene (ABS, up to 26,000,000ngTBBPA/g) and polystyrene (PS, up to 330,000ng∑HBCD/g). Abundancy in low concentrations of some BFRs in plastic samples suggested either unintended addition in plastic products or degradation of higher molecular weight BFRs. The presence of currently restricted flame retardants (PBDEs and HBCD) identified in the plastic samples illustrates that circular material flows may be contaminated for extended periods. The screening clearly showed a need for improved documentation and monitoring of the presence of BFRs in plastic waste routed to recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. This is the interior of the Sycamore High School (Cincinnati, Ohio) students' experiment to observe the flame spreading on a 100 percent cotton T-shirt under low-g. This image is from a digital still camera; higher resolution is not available.

  19. A Pilot System for Environmental Monitoring Through Domestic Animals

    NASA Technical Reports Server (NTRS)

    Schwabe, Calvin W.; Sawyer, John; Martin, Wayne

    1971-01-01

    A pilot system for environmental monitoring is in its early phases of development in Northern California. It is based upon the existing nation wide Federal-State Market Cattle Testing (14CT) program for brucellosis in cattle. This latter program depends upon the collection of blood program at the time of identified cattle. As the cattle Population of California is broadly distributed throughout the state, we intend to utilize these blood samples to biologically monitor the distribution and intensity of selected environmental pollutants. In a 2-year preliminary trial, the feasibility of retrieving, utilizing for a purpose similar to this, and tracing back to their geographic areas of origin of MCT samples have been demonstrated.

  20. [Hemodynamics variation in hypertensive pilots of polar transport aviation on different flight phases].

    PubMed

    Solov'eva, K B; Dolbin, I V; Koroleva, E B

    2013-01-01

    The purpose was to study in-flight blood pressure (BP) and heart rate (HR) in polar transport aviation pilots afflicted with essential hypertension. A total of 30 pilots were distributed into 2 groups: hypertensive pilots and those who, though generally healthy were, because of some conditions and lifestyle, predisposed to the cardiovascular risk (CVR). The examination included establishment of personal CVR factors, electrocardiography, bicycle ergometry, echocardiography, off-duty 24-hour BP and HR monitoring, and in-flight BP and HR monitoring. Maximum BP and HR values were higher in hypertensive pilots as compared with the control group. In the first group, maximum systolic BP (sBP) on the rise measured 202 mm Hg vs. 179 mm Hg in the control group. The highest HR on the rise was also registered in the first group (164 beats/min vs. 127 beats/min in the control). At landing, maximum sBP and HR made up 253 and 163 mm Hg, 150 and 141 beats/min values in groups first and second, respectively. To summarize, in the harsh weather conditions of Far North hypertensive pilots experience particularly heavy hemodynamic stresses during flight and, consequently, must be allowed to fly only if their hypertension is under control.

  1. Monitoring diver kinematics with dielectric elastomer sensors

    NASA Astrophysics Data System (ADS)

    Walker, Christopher R.; Anderson, Iain A.

    2017-04-01

    Diving, initially motivated for food purposes, is crucial to the oil and gas industry, search and rescue, and is even done recreationally by millions of people. There is a growing need however, to monitor the health and activity of divers. The Divers Alert Network has reported on average 90 fatalities per year since 1980. Furthermore an estimated 1000 divers require recompression treatment for dive-related injuries every year. One means of monitoring diver activity is to integrate strain sensors into a wetsuit. This would provide kinematic information on the diver potentially improving buoyancy control assessment, providing a platform for gesture communication, detecting panic attacks and monitoring diver fatigue. To explore diver kinematic monitoring we have coupled dielectric elastomer sensors to a wetsuit worn by the pilot of a human-powered wet submarine. This provided a unique platform to test the performance and accuracy of dielectric elastomer strain sensors in an underwater application. The aim of this study was to assess the ability of strain sensors to monitor the kinematics of a diver. This study was in collaboration with the University of Auckland's human-powered submarine team, Team Taniwha. The pilot, completely encapsulated in a hull, pedals to propel the submarine forward. Therefore this study focused on leg motion as that is the primary motion of the submarine pilot. Four carbon-filled silicone dielectric elastomer sensors were fabricated and coupled to the pilot's wetsuit. The first two sensors were attached over the knee joints, with the remaining two attached between the pelvis and thigh. The goal was to accurately measure leg joint angles thereby determining the position of each leg relative to the hip. A floating data acquisition unit monitored the sensors and transmitted data packets to a nearby computer for real-time processing. A GoPro Hero 4 silver edition was used to capture the experiments and provide a means of post-validation. The ability of the sensors to measure joint angles was assessed by examining GoPro footage in the image processing software, ImageJ. This paper applies dielectric elastomer sensor technology to monitoring the leg motion of a diver. The experimental set-up and results are presented and discussed.

  2. Self Induced Buoyant Blow Off in Upward Flame Spread on Thin Solid Fuels

    NASA Technical Reports Server (NTRS)

    Johnston, Michael C.; T'ien, James S.; Muff, Derek E.; Olson, Sandra L.; Ferkul, Paul V.

    2013-01-01

    Upward flame spread experiments were conducted on a thin fabric cloth consisting of 75% cotton and 25% fiberglass. The sample is sandwiched symmetrically with stainless steel plates with the exposed width varying between 2 to 8.8 cm from test to test and >1.5m tall. The bottom edge was ignited resulting in a symmetric two sided flame. For the narrower samples (. 5cm), two sided flame growth would proceed until reaching some limiting value (15-30 cm depending on sample width). Fluctuation or instability of the flame base on one side would initially become visible and then the flame base would retreat downstream and cause extinguishment on one side. Detailed examination of the still images shows that the fuel continues to vaporize from the extinguished side due to the thermally thin nature of the fuel. But, due to the remaining inert fiberglass mesh, which acts as a flashback arrestor, the extinguished side was not able to be reignited by the remaining flame. The remaining flame would then shrink in length due to the reduced heat transfer to the solid to a shorter length. The one-sided flame will spread stably with a constant speed and a constant flame length to the end of the sample. A constant length flame implies that the pyrolysis front and the burnt out fronts move at the same speed. For the wider samples (. 7cm), no one-sided extinction is observed. Two-sided flames spread all the way to the top of the sample. For these wider widths, the flames are still growing and have not reached their limiting length if it exists. Care was taken to minimize the amount of non-symmetries in the experimental configuration. Repeated tests show that blow-off can occur on either side of the sample. The flame growth is observed to be very symmetric during the growth phase and grew to significant length (>10cm) before extinction of the flame on one side. Our proposed explanation of this unusual phenomenon (i.e. stronger two ]sided flame cannot exist but weaker one-sided flame can) is as follows: The observed one-sided extinction is a blow- off induced by buoyant entrainment. It is known that the flammable diffusion flame regime is bounded by quenching and blow ]off limits when varying incoming air velocity. The narrowest samples tested (between 2 and 5 cm) begin within the flammable range, but as the flame grows, the buoyancy driven air velocity increases at the neighborhood of the flame base. The initially stable flame crosses the extinguishment boundary resulting in a flame blow-off. When one-side of the flame extinguishes, the remaining side shrinks due to the reduced heat transfer to the solid. This reduces the induced velocity and the flame becomes stable. It is proposed that this may have implications to upward flame growth beyond this experiment.

  3. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM - AGROECOSYSTEM PILOT FIELD PROGRAM PLAN - 1993

    EPA Science Inventory

    The Agroecosystem Resource Group (ARG) of the Environmental Monitoring and Assessment Program (EMAP) has developed a five-year (1991-1995) strategy for the development, evaluation, and implementation of a suite of indicators for monitoring agroecosystem status and trends on a reg...

  4. Microseismic monitoring of CO2 injection at the Penn West Enhanced Oil Recovery pilot project, Canada: implications for detection of wellbore leakage.

    PubMed

    Martínez-Garzón, Patricia; Bohnhoff, Marco; Kwiatek, Grzegorz; Zambrano-Narváez, Gonzalo; Chalaturnyk, Rick

    2013-09-02

    A passive seismic monitoring campaign was carried out in the frame of a CO2-Enhanced Oil Recovery (EOR) pilot project in Alberta, Canada. Our analysis focuses on a two-week period during which prominent downhole pressure fluctuations in the reservoir were accompanied by a leakage of CO2 and CH4 along the monitoring well equipped with an array of short-period borehole geophones. We applied state of the art seismological processing schemes to the continuous seismic waveform recordings. During the analyzed time period we did not find evidence of induced micro-seismicity associated with CO2 injection. Instead, we identified signals related to the leakage of CO2 and CH4, in that seven out of the eight geophones show a clearly elevated noise level framing the onset time of leakage along the monitoring well. Our results confirm that micro-seismic monitoring of reservoir treatment can contribute towards improved reservoir monitoring and leakage detection.

  5. Microseismic Monitoring of CO2 Injection at the Penn West Enhanced Oil Recovery Pilot Project, Canada: Implications for Detection of Wellbore Leakage

    PubMed Central

    Martínez-Garzón, Patricia; Bohnhoff, Marco; Kwiatek, Grzegorz; Zambrano-Narváez, Gonzalo; Chalaturnyk, Rick

    2013-01-01

    A passive seismic monitoring campaign was carried out in the frame of a CO2-Enhanced Oil Recovery (EOR) pilot project in Alberta, Canada. Our analysis focuses on a two-week period during which prominent downhole pressure fluctuations in the reservoir were accompanied by a leakage of CO2 and CH4 along the monitoring well equipped with an array of short-period borehole geophones. We applied state of the art seismological processing schemes to the continuous seismic waveform recordings. During the analyzed time period we did not find evidence of induced micro-seismicity associated with CO2 injection. Instead, we identified signals related to the leakage of CO2 and CH4, in that seven out of the eight geophones show a clearly elevated noise level framing the onset time of leakage along the monitoring well. Our results confirm that micro-seismic monitoring of reservoir treatment can contribute towards improved reservoir monitoring and leakage detection. PMID:24002229

  6. Structure of Soot-Containing Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Mortazavi, S.; Sunderland, P. B.; Jurng, J.; Koylu, U. O.; Faeth, G. M.

    1993-01-01

    The structure and soot properties of nonbuoyant and weakly-buoyant round jet diffusion flames were studied, considering ethylene, propane and acetylene burning in air at pressures of 0.125-2.0 atm. Measurements of flame structure included radiative heat loss fractions, flame shape and temperature distributions in the fuel-lean (overfire) region. These measurements were used to evaluate flame structure predictions based on the conserved-scalar formalism in conjunction with the laminar flamelet concept, finding good agreement betweem predictions and measurements. Soot property measurements included laminar smoke points, soot volume function distributions using laser extinction, and soot structure using thermophoretic sampling and analysis by transmission electron microscopy. Nonbuoyant flames were found to exhibit laminar smoke points like buoyant flames but their properties are very different; in particular, nonbuoyant flames have laminar smoke point flame lengths and residence times that are shorter and longer, respectively, than buoyant flames.

  7. An Experimental Study of Turbulent Nonpremixed Jet Flames in Crossflow Under Low-Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Boxx, Isaac G.; Idicheria, Cherian A.; Clemens, Noel T.

    2002-11-01

    We will present results of a study of turbulent nonpremixed jet flames in crossflow under normal and low gravity conditions. This enables us to experimentally separate the competing influences of initial jet-to-crossflow momentum ratio and buoyancy effects on the flame structure. The low gravity conditions (10-30 milli-g) are achieved by dropping a self-contained jet flame rig in the University of Texas 1.25-second drop tower facility. This rig uses a small blow-through wind tunnel to create the crossflow. The jet flames issue from an orifice that is flush with the wall. High-speed CCD imaging of jet flame luminosity is the primary diagnostic. We present results for hydrocarbon jet flames with initial jet-to-crossflow momentum ratios of 10-20. Results such as flame trajectory, flame length, large scale structure and flame tip dynamics will be presented.

  8. PREMIXED FLAME PROPAGATION AND MORPHOLOGY IN A CONSTANT VOLUME COMBUSTION CHAMBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hariharan, A; Wichman, IS

    2014-06-04

    This work presents an experimental and numerical investigation of premixed flame propagation in a constant volume rectangular channel with an aspect ratio of six (6) that serves as a combustion chamber. Ignition is followed by an accelerating cusped finger-shaped flame-front. A deceleration of the flame is followed by the formation of a "tulip"-shaped flame-front. Eventually, the flame is extinguished when it collides with the cold wall on the opposite channel end. Numerical computations are performed to understand the influence of pressure waves, instabilities, and flow field effects causing changes to the flame structure and morphology. The transient 2D numerical simulationmore » results are compared with transient 3D experimental results. Issues discussed are the appearance of oscillatory motions along the flame front and the influences of gravity on flame structure. An explanation is provided for the formation of the "tulip" shape of the premixed flame front.« less

  9. Laminar and Turbulent Gaseous Diffusion Flames. Appendix C

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Recent measurements and predictions of the properties of homogeneous (gaseous) laminar and turbulent non-premixed (diffusion) flames are discussed, emphasizing results from both ground- and space-based studies at microgravity conditions. Initial considerations show that effects of buoyancy not only complicate the interpretation of observations of diffusion flames but at times mislead when such results are applied to the non-buoyant diffusion flame conditions of greatest practical interest. This behavior motivates consideration of experiments where effects of buoyancy are minimized; therefore, methods of controlling the intrusion of buoyancy during observations of non-premixed flames are described, considering approaches suitable for both normal laboratory conditions as well as classical microgravity techniques. Studies of laminar flames at low-gravity and microgravity conditions are emphasized in view of the computational tractability of such flames for developing methods of predicting flame structure as well as the relevance of such flames to more practical turbulent flames by exploiting laminar flamelet concepts.

  10. Relative Radiation Density and Temperature Distribution of Rocket Flames

    DTIC Science & Technology

    1951-07-10

    traversed along the axis of the flame image to determine the flame length and the position of the Mach nodes. Other traverses were made across the...variation is due to different stages of flame growth. Other variations especially those of 2 6• flame length , can be accounted for by dif- U L L ference...The temperature gradient is considerably less at the tip of the flame and by similar reasoning would give greater variation in flame length . The problem

  11. LONG-TERM IMPACTS OF ORTHOPHOSPHATE TREATMENT ON COPPER LEVELS - PRESENTATION

    EPA Science Inventory

    Laboratory, pilot, and field data collected support the theoretical "cupric hydroxide" copper solubility model. For the short time frames inherent in laboratory and pilot studies of copper solubility and in initial field monitoring for the LCR from Tier 1 soldered copper sites, c...

  12. Long-Term Effects of Orthophosphate Treatment on Copper Concentration

    EPA Science Inventory

    Laboratory, pilot, and field data collected support the theoretical “cupric hydroxide” copper solubility model. For the short time frames inherent in laboratory and pilot studies of copper solubility, and in initial field monitoring for the LCR from Tier 1 soldered copper sites,...

  13. LONG-TERM IMPACTS OF ORTHOPHOSPHATE TREATMENT ON COPPER LEVELS

    EPA Science Inventory

    Laboratory, pilot, and field data collected support the theoretical “cupric hydroxide” copper solubility model. For the short time frames inherent in laboratory and pilot studies of copper solubility and in initial field monitoring for the LCR from Tier 1 soldered copper sites,...

  14. PERSONAL EXPOSURES TO POLYCYCLIC AROMATIC HYDROCARBONS ASSOCIATED WITH THE NHEXAS PILOT

    EPA Science Inventory

    Personal exposure monitoring for select polycyclic aromatic hydrocarbons (PAHs) was performed as part of the National Human Exposure Assessment Survey (NHEXAS) Pilot Study in Baltimore, MD. Twenty-four hour PM10 sample collections (~5.7 m3) were performed using personal envi...

  15. Structure of diffusion flames from a vertical burner

    Treesearch

    Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold

    2010-01-01

    Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...

  16. Turbulent Deflagrated Flame Interaction with a Fluidic Jet Flow for Deflagration-to-Detonation Flame Acceleration

    NASA Astrophysics Data System (ADS)

    Chambers, Jessica; McGarry, Joseph; Ahmed, Kareem

    2015-11-01

    Detonation is a high energetic mode of pressure gain combustion. Detonation combustion exploits the pressure rise to augment high flow momentum and thermodynamic cycle efficiencies. The driving mechanism of deflagrated flame acceleration to detonation is turbulence generation and induction. A fluidic jet is an innovative method for the production of turbulence intensities and flame acceleration. Compared to traditional obstacles, the jet reduces the pressure losses and heat soak effects while providing turbulence generation control. The investigation characterizes the turbulent flame-flow interactions. The focus of the study is on classifying the turbulent flame dynamics and the temporal evolution of turbulent flame regime. The turbulent flame-flow interactions are experimentally studied using a LEGO Detonation facility. Advanced high-speed laser diagnostics, particle image velocimetry (PIV), planar laser induced florescence (PLIF), and Schlieren imaging are used in analyzing the physics of the interaction and flame acceleration. Higher turbulence induction is observed within the turbulent flame after contact with the jet, leading to increased flame burning rates. The interaction with the fluidic jet results in turbulent flame transition from the thin reaction zones to the broken reaction regime.

  17. Forced and natural convection in laminar-jet diffusion flames. [normal-gravity, inverted-gravity and zero-gravity flames

    NASA Technical Reports Server (NTRS)

    Haggard, J. B., Jr.

    1981-01-01

    An experimental investigation was conducted on methane, laminar-jet, diffusion flames with coaxial, forced-air flow to examine flame shapes in zero-gravity and in situations where buoyancy aids (normal-gravity flames) or hinders (inverted-gravity flames) the flow velocities. Fuel nozzles ranged in size from 0.051 to 0.305 cm inside radius, while the coaxial, convergent, air nozzle had a 1.4 cm inside radius at the fuel exit plane. Fuel flows ranged from 1.55 to 10.3 cu cm/sec and air flows from 0 to 597 cu cm/sec. A computer program developed under a previous government contract was used to calculate the characteristic dimensions of normal and zero-gravity flames only. The results include a comparison between the experimental data and the computed axial flame lengths for normal gravity and zero gravity which showed good agreement. Inverted-gravity flame width was correlated with the ratio of fuel nozzle radius to average fuel velocity. Flame extinguishment upon entry into weightlessness was studied, and it was found that relatively low forced-air velocities (approximately 10 cm/sec) are sufficient to sustain methane flame combustion in zero gravity. Flame color is also discussed.

  18. A temporal PIV study of flame/obstacle generated vortex interactions within a semi-confined combustion chamber

    NASA Astrophysics Data System (ADS)

    Jarvis, S.; Hargrave, G. K.

    2006-01-01

    Experimental data obtained using a new multiple-camera digital particle image velocimetry (PIV) technique are presented for the interaction between a propagating flame and the turbulent recirculating velocity field generated during flame-solid obstacle interaction. The interaction between the gas movement and the obstacle creates turbulence by vortex shedding and local wake recirculations. The presence of turbulence in a flammable gas mixture can wrinkle a flame front, increasing the flame surface area and enhancing the burning rate. To investigate propagating flame/turbulence interaction, a novel multiple-camera digital PIV technique was used to provide high spatial and temporal characterization of the phenomenon for the turbulent flow field in the wake of three sequential obstacles. The technique allowed the quantification of the local flame speed and local flow velocity. Due to the accelerating nature of the explosion flow field, the wake flows develop 'transient' turbulent fields. Multiple-camera PIV provides data to define the spatial and temporal variation of both the velocity field ahead of the propagating flame and the flame front to aid the understanding of flame-vortex interaction. Experimentally obtained values for flame displacement speed and flame stretch are presented for increasing vortex complexity.

  19. A numerical study of three-dimensional flame propagation over thin solids in purely forced concurrent flow including gas-phase radiation

    NASA Astrophysics Data System (ADS)

    Feier, Ioan I., Jr.

    The effect of flame radiation on concurrent-flow flame spread over a thin solid sample of finite width in a low-speed wind tunnel is modeled using three-dimensional full Navier-Stokes equations and three-dimensional flame radiation transfer equations. The formulation includes the conservation of mass, momentum, energy, and species: fuel vapor, oxygen, carbon dioxide and water vapor. The SN discrete ordinates method is used to solve the radiation transfer equation with a mean absorption coefficient kappa = Ckappa p, where kappap is the Planck mean absorption coefficient of the gas mixture. The varying parameter C has a value between 0 and 1; C represents the strength of flame radiation. In addition, the solid fuel absorptivity alpha is varied to ascertain the effect of flame radiation heat feedback to the solid. The flow tunnel modeled has a dimension of 10x10x30 cm, the solid fuel has a width of 6-cm with two 1-cm inert strips as edges. Incoming forced flow velocity (5 cm/s) of 21% oxygen is assumed. For comparison with the three-dimensional results, corresponding two-dimensional computations are also performed. Detailed spatial flame profiles, solid surface profiles, and heat fluxes are presented. Increasing the flame radiation strength decreases the flame length. Although flame radiation provides an additional heat transfer mechanism to preheat the solid, it is insufficient to offset the decreased convective heating due to the shorter flame; the net effect is a slower spread rate. The percentage of unreacted fuel vapor that escapes from the flame is under 2%. It is theorized that some of the pyrolyzed fuel vapor diffuses sideway and reacts at the flame edges. A radiative energy balance is analyzed also. Flame radiative feedback to the solid plays a more important role in two-dimensional flames. With high solid fuel absorptivity, a peak in the flame spread rate occurs at an intermediate value of flame radiation strength---due to the competition between two mechanisms: gas-radiation heat loss weakening the flame and the radiative feedback boosting the solid pyrolysis. Two-dimensional calculations suggest that a larger percentage of unreacted fuel vapor can escape from the flame when the flame radiation strength is high.

  20. Efficacy of using data from angler-caught Burbot to estimate population rate functions

    USGS Publications Warehouse

    Brauer, Tucker A.; Rhea, Darren T.; Walrath, John D.; Quist, Michael C.

    2018-01-01

    The effective management of a fish population depends on the collection of accurate demographic data from that population. Since demographic data are often expensive and difficult to obtain, developing cost‐effective and efficient collection methods is a high priority. This research evaluates the efficacy of using angler‐supplied data to monitor a nonnative population of Burbot Lota lota. Age and growth estimates were compared between Burbot collected by anglers and those collected in trammel nets from two Wyoming reservoirs. Collection methods produced different length‐frequency distributions, but no difference was observed in age‐frequency distributions. Mean back‐calculated lengths at age revealed that netted Burbot grew faster than angled Burbot in Fontenelle Reservoir. In contrast, angled Burbot grew slightly faster than netted Burbot in Flaming Gorge Reservoir. Von Bertalanffy growth models differed between collection methods, but differences in parameter estimates were minor. Estimates of total annual mortality (A) of Burbot in Fontenelle Reservoir were comparable between angled (A = 35.4%) and netted fish (33.9%); similar results were observed in Flaming Gorge Reservoir for angled (29.3%) and netted fish (30.5%). Beverton–Holt yield‐per‐recruit models were fit using data from both collection methods. Estimated yield differed by less than 15% between data sources and reservoir. Spawning potential ratios indicated that an exploitation rate of 20% would be required to induce recruitment overfishing in either reservoir, regardless of data source. Results of this study suggest that angler‐supplied data are useful for monitoring Burbot population dynamics in Wyoming and may be an option to efficiently monitor other fish populations in North America.

  1. Oxygen and Fuel Jet Diffusion Flame Studies in Microgravity Motivated by Spacecraft Oxygen Storage Fire Safety

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Yuan, Z.-G.; Krishnan, S. S.; Abshire, J. M.; Gore, J. P.

    2003-01-01

    Owing to the absence of past work involving flames similar to the Mir fire namely oxygen-enhanced, inverse gas-jet diffusion flames in microgravity the objectives of this work are as follows: 1. Observe the effects of enhanced oxygen conditions on laminar jet diffusion flames with ethane fuel. 2. Consider both earth gravity and microgravity. 3. Examine both normal and inverse flames. 4. Compare the measured flame lengths and widths with calibrated predictions of several flame shape models. This study expands on the work of Hwang and Gore which emphasized radiative emissions from oxygen-enhanced inverse flames in earth gravity, and Sunderland et al. which emphasized the shapes of normal and inverse oxygen-enhanced gas-jet diffusion flames in microgravity.

  2. Flashback flame arrester devices for fuel cargo tank vapor vents

    NASA Technical Reports Server (NTRS)

    Bjorklund, R. A.; Kushida, R. O.

    1981-01-01

    The flame quenching capability of four types of flame arresting devices suitable for installation on fuel cargo tank vents of marine transport vessels is evaluated. A single 30 mesh screen, a dual 20 mesh screen, a spiral wound crimped metal ribbon, and a packed bed of ballast rings were tested. Flame speed and flame penetration of the test arresters were determined. Eight fuels representative of bulk cargoes were tested. The test arresters quenched a minimum of three flashback flames from all eight fuels, with one exception: high speed ethylene flames penetrated the dual 20 mesh screen on three tests. The arresters withstood the sustained flame from a propane/air mixture for 30 minutes. None of the arresters withstood the sustained flame from an ethylene/air mixture for more than 7 minutes.

  3. Effects of C/O Ratio and Temperature on Sooting Limits of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lecoustre, V. R.; Sunderland, P. B.; Chao, B. H.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.

    2008-01-01

    Limiting conditions for soot particle inception in spherical diffusion flames were investigated numerically. The flames were modeled using a one-dimensional, time accurate diffusion flame code with detailed chemistry and transport and an optically thick radiation model. Seventeen normal and inverse flames were considered, covering a wide range of stoichiometric mixture fraction, adiabatic flame temperature, residence time and scalar dissipation rate. These flames were previously observed to reach their sooting limits after 2 s of microgravity. Sooting-limit diffusion flames with scalar dissipation rate lower than 2/s were found to have temperatures near 1400 K where C/O = 0.51, whereas flames with greater scalar dissipation rate required increased temperatures. This finding was valid across a broad range of fuel and oxidizer compositions and convection directions.

  4. Experimental Investigation of Premixed Turbulent Hydrocarbon/Air Bunsen Flames

    NASA Astrophysics Data System (ADS)

    Tamadonfar, Parsa

    Through the influence of turbulence, the front of a premixed turbulent flame is subjected to the motions of eddies that leads to an increase in the flame surface area, and the term flame wrinkling is commonly used to describe it. If it is assumed that the flame front would continue to burn locally unaffected by the stretch, then the total turbulent burning velocity is expected to increase proportionally to the increase in the flame surface area caused by wrinkling. When the turbulence intensity is high enough such that the stretch due to hydrodynamics and flame curvature would influence the local premixed laminar burning velocity, then the actual laminar burning velocity (that is, flamelet consumption velocity) should reflect the influence of stretch. To address this issue, obtaining the knowledge of instantaneous flame front structures, flame brush characteristics, and burning velocities of premixed turbulent flames is necessary. Two axisymmetric Bunsen-type burners were used to produce premixed turbulent flames, and three optical measurement techniques were utilized: Particle image velocimetry to measure the turbulence statistics; Rayleigh scattering method to measure the temperature fields of premixed turbulent flames, and Mie scattering method to visualize the flame front contours of premixed turbulent flames. Three hydrocarbons (methane, ethane, and propane) were used as the fuel in the experiments. The turbulence was generated using different perforated plates mounted upstream of the burner exit. A series of comprehensive parameters including the thermal flame front thickness, characteristic flame height, mean flame brush thickness, mean volume of the turbulent flame region, two-dimensional flame front curvature, local flame front angle, two-dimensional flame surface density, wrinkled flame surface area, turbulent burning velocity, mean flamelet consumption velocity, mean turbulent flame stretch factor, mean turbulent Markstein length and number, and mean fuel consumption rate were systematically evaluated from the experimental data. The normalized preheat zone and reaction zone thicknesses decreased with increasing non-dimensional turbulence intensity in ultra-lean premixed turbulent flames under a constant equivalence ratio of 0.6, whereas they increased with increasing equivalence ratios from 0.6 to 1.0 under a constant bulk flow velocity. The normalized preheat zone and reaction zone thicknesses showed no overall trend with increasing non-dimensional longitudinal integral length scale. The normalized preheat zone and reaction zone thicknesses decreased by increasing the Karlovitz number, suggesting that increasing the total stretch rate is the controlling mechanism in the reduction of flame front thickness for the experimental conditions studied in this thesis. In general, the leading edge and half-burning surface turbulent burning velocities were enhanced with increasing equivalence ratio from lean to stoichiometric mixtures, whereas they decreased with increasing equivalence ratio for rich mixtures. These velocities were enhanced with increasing total turbulence intensity. The leading edge and half-burning surface turbulent burning velocities for lean/stoichiometric mixtures were observed to be smaller than that for rich mixtures. The mean turbulent flame stretch factor displayed a dependence on the equivalence ratio and turbulence intensity. Results show that the mean turbulent flame stretch factors for lean/stoichiometric and rich mixtures were not equal when the unstrained premixed laminar burning velocity, non-dimensional bulk flow velocity, non-dimensional turbulence intensity, and non-dimensional longitudinal integral length scale were kept constant.

  5. STS-47 MS Davis and Pilot Brown monitor ISAIAH on OV-105's middeck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Mission Specialist (MS) N. Jan Davis (left) and Pilot Curtis L. Brown, Jr, monitor the Israel Space Agency Investigation About Hornets (ISAIAH) on the middeck of Endeavour, Orbiter Vehicle (OV) 105. ISAIAH, an enclosure located in locker MF43H, contains 180 female Oriental Hornets and will examine the effects of microgravity on the orientation, reproductive capability and social activity of the hornets. Also, the direction of comb-building by hornet workers in microgravity, as well as the structural integrity of the combs, will be examined.

  6. Integrated Performance Criteria for Housing and Building Hazard Mitigation.

    DTIC Science & Technology

    1984-07-01

    PAGES . Washington, D.C. 20472 15 14. MONITORING AGENCY NAME A ADORESS(If dil fnt from Controlling Ofice) IS. SECURITY CLASS. (of this report...not harm their neighbors In doing so. I As another example, In the case of fire, It would seem that initial attention was given to controlling flame...Francisco Earthquake. From there, efforts moved toward avoiding and controlling fires at the level of Individual structures, and more recently, of spaces

  7. Cockpit weather information needs

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along the route can be accomplished prior to pilot acceptance of the clearance. An ongoing multiphase test series is planned for testing and modifying the graphical weather system. Preliminary data shows that the nine test subjects considered the graphical presentation to be much better than their current weather information source for situation awareness, flight safety, and reroute decision making.

  8. Characteristics of Gaseous Diffusion Flames with High Temperature Combustion Air in Microgravity

    NASA Technical Reports Server (NTRS)

    Ghaderi, M.; Gupta, A. K.

    2003-01-01

    The characteristics of gaseous diffusion flames have been obtained using high temperature combustion air under microgravity conditions. The time resolved flame images under free fall microgravity conditions were obtained from the video images obtained. The tests results reported here were conducted using propane as the fuel and about 1000 C combustion air. The burner included a 0.686 mm diameter central fuel jet injected into the surrounding high temperature combustion air. The fuel jet exit Reynolds number was 63. Several measurements were taken at different air preheats and fuel jet exit Reynolds number. The resulting hybrid color flame was found to be blue at the base of the flame followed by a yellow color flame. The length and width of flame during the entire free fall conditions has been examined. Also the relative flame length and width for blue and yellow portion of the flame has been examined under microgravity conditions. The results show that the flame length decreases and width increases with high air preheats in microgravity condition. In microgravity conditions the flame length is larger with normal temperature combustion air than high temperature air.

  9. Suppression and Structure of Low Strain Rate Nonpremixed Flames

    NASA Technical Reports Server (NTRS)

    Hamins, Anthony; Bundy, Matthew; Park, Woe Chul; Lee, Ki Yong; Logue, Jennifer

    2003-01-01

    The agent concentration required to achieve suppression of low strain rate nonpremixed flames is an important fire safety consideration. In a microgravity environment such as a space platform, unwanted fires will likely occur in near quiescent conditions where strain rates are very low. Diffusion flames typically become more robust as the strain rate is decreased. When designing a fire suppression system for worst-case conditions, low strain rates should be considered. The objective of this study is to investigate the impact of radiative emission, flame strain, agent addition, and buoyancy on the structure and extinction of low strain rate nonpremixed flames through measurements and comparison with flame simulations. The suppression effectiveness of a suppressant (N2) added to the fuel stream of low strain rate methane-air diffusion flames was measured. Flame temperature measurements were attained in the high temperature region of the flame (T greater than 1200 K) by measurement of thin filament emission intensity. The time varying temperature was measured and simulated as the flame made the transition from normal to microgravity conditions and as the flame extinguished.

  10. Fast Hydrogen-Air Flames for Turbulence Driven Deflagration to Detonation Transition

    NASA Astrophysics Data System (ADS)

    Chambers, Jessica; Ahmed, Kareem

    2016-11-01

    Flame acceleration to Detonation produces several combustion modes as the Deflagration-to-Detonation Transition (DDT) is initiated, including fast deflagration, auto-ignition, and quasi-detonation. Shock flame interactions and turbulence levels in the reactant mixture drive rapid flame expansion, formation of a leading shockwave and post-shock conditions. An experimental study to characterize the developing shock and flame front behavior of propagating premixed hydrogen-air flames in a square channel is presented. To produce each flame regime, turbulence levels and flame propagation velocity are controlled using perforated plates in several configurations within the experimental facility. High speed optical diagnostics including Schlieren and Particle Image Velocimetry are used to capture the flow field. In-flow pressure measurements acquired post-shock, detail the dynamic changes that occur in the compressed gas directly ahead of the propagating flame. Emphasis on characterizing the turbulent post-shock environment of the various flame regimes helps identify the optimum conditions to initiate the DDT process. The study aims to further the understanding of complex physical mechanisms that drive transient flame conditions for detonation initiation. American Chemical Society.

  11. Brainwave Monitoring Software Improves Distracted Minds

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Neurofeedback technology developed at Langley Research Center to monitor pilot awareness inspired Peter Freer to develop software for improving student performance. His company, Fletcher, North Carolina-based Unique Logic and Technology Inc., has gone on to develop technology for improving workplace and sports performance, monitoring drowsiness, and encouraging relaxation.

  12. Local curvature measurements of a lean, partially premixed swirl-stabilised flame

    NASA Astrophysics Data System (ADS)

    Bayley, Alan E.; Hardalupas, Yannis; Taylor, Alex M. K. P.

    2012-04-01

    A swirl-stabilised, lean, partially premixed combustor operating at atmospheric conditions has been used to investigate the local curvature distributions in lifted, stable and thermoacoustically oscillating CH4-air partially premixed flames for bulk cold-flow Reynolds numbers of 15,000 and 23,000. Single-shot OH planar laser-induced fluorescence has been used to capture instantaneous images of these three different flame types. Use of binary thresholding to identify the reactant and product regions in the OH planar laser-induced fluorescence images, in order to extract accurate flame-front locations, is shown to be unsatisfactory for the examined flames. The Canny-Deriche edge detection filter has also been examined and is seen to still leave an unacceptable quantity of artificial flame-fronts. A novel approach has been developed for image analysis where a combination of a non-linear diffusion filter, Sobel gradient and threshold-based curve elimination routines have been used to extract traces of the flame-front to obtain local curvature distributions. A visual comparison of the effectiveness of flame-front identification is made between the novel approach, the threshold binarisation filter and the Canny-Deriche filter. The novel approach appears to most accurately identify the flame-fronts. Example histograms of the curvature for six flame conditions and of the total image area are presented and are found to have a broader range of local flame curvatures for increasing bulk Reynolds numbers. Significantly positive values of mean curvature and marginally positive values of skewness of the histogram have been measured for one lifted flame case, but this is generally accounted for by the effect of flame brush curvature. The mean local flame-front curvature reduces with increasing axial distance from the burner exit plane for all flame types. These changes are more pronounced in the lifted flames but are marginal for the thermoacoustically oscillating flames. It is concluded that additional fuel mixture fraction and velocimetry studies are required to examine whether processes such as the degree of partial-premixedness close to the burner exit plane, the velocity field and the turbulence field have a strong correlation with the curvature characteristics of the investigated flames.

  13. Studies of Flame Structure in Microgravity

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Sung, C. J.; Zhu, D. L.

    1997-01-01

    The present research endeavor is concerned with gaining fundamental understanding of the configuration, structure, and dynamics of laminar premixed and diffusion flames under conditions of negligible effects of gravity. Of particular interest is the potential to establish and hence study the properties of spherically- and cylindrically-symmetric flames and their response to external forces not related to gravity. For example, in an earlier experimental study of the burner-stabilized cylindrical premixed flames, the possibility of flame stabilization through flow divergence was established, while the resulting one-dimensional, adiabatic, stretchless flame also allowed an accurate means of determining the laminar flame speeds of combustible mixtures. We have recently extended our studies of the flame structure in microgravity along the following directions: (1) Analysis of the dynamics of spherical premixed flames; (2) Analysis of the spreading of cylindrical diffusion flames; (3) Experimental observation of an interesting dual luminous zone structure of a steady-state, microbuoyancy, spherical diffusion flame of air burning in a hydrogen/methane mixture environment, and its subsequent quantification through computational simulation with detailed chemistry and transport; (4) Experimental quantification of the unsteady growth of a spherical diffusion flame; and (5) Computational simulation of stretched, diffusionally-imbalanced premixed flames near and beyond the conventional limits of flammability, and the substantiation of the concept of extended limits of flammability. Motivation and results of these investigations are individually discussed.

  14. The mechanisms of flame holding in the wake of a bluff body

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Malik, S.

    1985-01-01

    The flame holding mechanism for lean methane- and lean propane-air flames is examined under conditions where the recirculation zone is absent. The main objective of this work is to study the holding process in detail in an attempt to determine the mechanism of flame holding and also the conditions where this mechanism is viable and when it fails and blow-off occurs. Inverted flames held in the wake of a flat strip were studied. Experiments with different sizes of flame holders were performed. The velocity flow field was determined using a laser Doppler velocimetry technique. Equation of continuity was used to calculate the flame temperature from the change in area of flow streamlines before and after the flame. Observations of the inverted flame itself were obtained using schlieren and direct photography. Results show that there are different mechanisms operative at the time of blow-off for lean propane and methane flames. Blow-off or extinction occurs for lean propane-air flame in spite of the reaction going to completion and the disparity between the heat loss and the gain in mass diffusion in the reaction zone i.e., Le 1.0 causes the flame to blow-off. For methane-air flame the controlling factor or blow-off is incomplete reaction due to higher blowing rate leading to reduced residence time in the reaction zone.

  15. Monitoring Indoor Exposure to Organophosphate Flame Retardants: Hand Wipes and House Dust

    PubMed Central

    Hoffman, Kate; Garantziotis, Stavros; Birnbaum, Linda S.

    2014-01-01

    Background: Organophosphate flame retardants (PFRs) are becoming popular replacements for the phased-out polybrominated diphenyl ether (PBDE) mixtures, and they are now commonly detected in indoor environments. However, little is known about human exposure to PFRs because they cannot be easily measured in blood or serum. Objectives: To investigate relationships between the home environment and internal exposure, we assessed associations between two PFRs, tris(1,3-dichloropropyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP), in paired hand wipe and dust samples and concentrations of their metabolites in urine samples (n = 53). We also assessed short-term variation in urinary metabolite concentrations (n = 11 participants; n = 49 samples). Methods: Adult volunteers in North Carolina, USA, completed questionnaires and provided urine, hand wipe, and household dust samples. PFRs and PBDEs were measured in hand wipes and dust, and bis(1,3-dichloropropyl) phosphate (BDCIPP) and diphenyl phosphate (DPHP), metabolites of TDCIPP and TPHP, were measured in urine. Results: TDCIPP and TPHP were detected frequently in hand wipes and dust (> 86.8%), with geometric mean concentrations exceeding those of PBDEs. Unlike PBDEs, dust TDCIPP and TPHP levels were not associated with hand wipes. However, hand wipe levels were associated with urinary metabolites. Participants with the highest hand wipe TPHP mass, for instance, had DPHP levels 2.42 times those of participants with the lowest levels (95% CI: 1.23, 4.77). Women had higher levels of DPHP, but not BDCIPP. BDCIPP and DPHP concentrations were moderately to strongly reliable over 5 consecutive days (intraclass correlation coefficients of 0.81 and 0.51, respectively). Conclusions: PFR exposures are widespread, and hand-to-mouth contact or dermal absorption may be important pathways of exposure. Citation: Hoffman K, Garantziotis S, Birnbaum LS, Stapleton HM. 2015. Monitoring indoor exposure to organophosphate flame retardants: hand wipes and house dust. Environ Health Perspect 123:160–165; http://dx.doi.org/10.1289/ehp.1408669 PMID:25343780

  16. Flame balls dynamics in divergent channel

    NASA Astrophysics Data System (ADS)

    Fursenko, R.; Minaev, S.

    2011-12-01

    A three-dimensional reaction-diffusion model for lean low-Lewis-number premixed flames with radiative heat losses propagating in divergent channel is studied numerically. Effects of inlet gas velocity and heat-loss intensity on flame structure at low Lewis numbers are investigated. It is found that continuous flame front exists at small heat losses and the separate flame balls settled within restricted domain inside the divergent channel at large heat losses. It is shown that the time averaged flame balls coordinate may be considered as important characteristic analogous to coordinate of continuous flame stabilized in divergent channel.

  17. Physiological effects of night vision goggle counterweights on neck musculature of military helicopter pilots.

    PubMed

    Harrison, Michael F; Neary, J Patrick; Albert, Wayne J; Veillette, Major Dan W; Forcest, Canadian; McKenzie, Neil P; Croll, James C

    2007-08-01

    Increased helmet-mounted mass and specific neck postures have been found to be a cause of increased muscular activity and stress. However, pilots who use night vision goggles (NVG) frequently use counterweight (CW) equipment such as a lead mass that is attached to the back of the flight helmet to provide balance to counter the weight of the NVG equipment mounted to the front of the flight helmet. It is proposed that this alleviates this stress. However, no study has yet investigated the physiological effects of CW during an extended period of time during which the pilots performed normal operational tasks. Thirty-one Canadian Forces pilots were monitored on consecutive days during a day and a NVG mission in a CH-146 flight simulator. Near infrared spectroscopy probes were attached bilaterally to the trapezius muscles and hemodynamics, i.e., total oxygenation index, total hemoglobin, oxyhemoglobin, and deoxyhemoglobin, were monitored for the duration of the mission. Pilots either wore CW (n = 25) or did not wear counterweights (nCW, n = 6) as per their usual operational practice. Levene's statistical tests were conducted to test for homogeneity and only total oxygenation index returned a significant result (p < or = 0.05). For the near infrared spectroscopy variables, significant differences were found to exist between CW and nCW pilots for total hemoglobin, deoxyhemoglobin, and oxyhemoglobin during NVG flights. The CW pilots displayed less metabolic and hemodynamic stress during simulated missions as compared to the nCW pilots. The results of this study would suggest that the use of CW equipment during NVG missions in military helicopter pilots does minimize the metabolic and hemodynamic responses of the trapezius muscles.

  18. Experimental study of turbulent flame kernel propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansour, Mohy; Peters, Norbert; Schrader, Lars-Uve

    2008-07-15

    Flame kernels in spark ignited combustion systems dominate the flame propagation and combustion stability and performance. They are likely controlled by the spark energy, flow field and mixing field. The aim of the present work is to experimentally investigate the structure and propagation of the flame kernel in turbulent premixed methane flow using advanced laser-based techniques. The spark is generated using pulsed Nd:YAG laser with 20 mJ pulse energy in order to avoid the effect of the electrodes on the flame kernel structure and the variation of spark energy from shot-to-shot. Four flames have been investigated at equivalence ratios, {phi}{submore » j}, of 0.8 and 1.0 and jet velocities, U{sub j}, of 6 and 12 m/s. A combined two-dimensional Rayleigh and LIPF-OH technique has been applied. The flame kernel structure has been collected at several time intervals from the laser ignition between 10 {mu}s and 2 ms. The data show that the flame kernel structure starts with spherical shape and changes gradually to peanut-like, then to mushroom-like and finally disturbed by the turbulence. The mushroom-like structure lasts longer in the stoichiometric and slower jet velocity. The growth rate of the average flame kernel radius is divided into two linear relations; the first one during the first 100 {mu}s is almost three times faster than that at the later stage between 100 and 2000 {mu}s. The flame propagation is slightly faster in leaner flames. The trends of the flame propagation, flame radius, flame cross-sectional area and mean flame temperature are related to the jet velocity and equivalence ratio. The relations obtained in the present work allow the prediction of any of these parameters at different conditions. (author)« less

  19. The discrete regime of flame propagation

    NASA Astrophysics Data System (ADS)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew

    The propagation of laminar dust flames in iron dust clouds was studied in a low-gravity envi-ronment on-board a parabolic flight aircraft. The elimination of buoyancy-induced convection and particle settling permitted measurements of fundamental combustion parameters such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. The discrete regime of flame propagation was observed by substitut-ing nitrogen present in air with xenon, an inert gas with a significantly lower heat conductivity. Flame propagation in the discrete regime is controlled by the heat transfer between neighbor-ing particles, rather than by the particle burning rate used by traditional continuum models of heterogeneous flames. The propagation mechanism of discrete flames depends on the spa-tial distribution of particles, and thus such flames are strongly influenced by local fluctuations in the fuel concentration. Constant pressure laminar dust flames were observed inside 70 cm long, 5 cm diameter Pyrex tubes. Equally-spaced plate assemblies forming rectangular chan-nels were placed inside each tube to determine the quenching distance defined as the minimum channel width through which a flame can successfully propagate. High-speed video cameras were used to measure the flame speed and a fiber optic spectrometer was used to measure the flame temperature. Experimental results were compared with predictions obtained from a numerical model of a three-dimensional flame developed to capture both the discrete nature and the random distribution of particles in the flame. Though good qualitative agreement was obtained between model predictions and experimental observations, residual g-jitters and the short reduced-gravity periods prevented further investigations of propagation limits in the dis-crete regime. The full exploration of the discrete flame phenomenon would require high-quality, long duration reduced gravity environment available only on orbital platforms.

  20. The Interaction of High-Speed Turbulence with Flames

    NASA Astrophysics Data System (ADS)

    Poludnenko, Alexei Y.; Oran, E. S.

    2010-01-01

    Interaction of flames with turbulence occurs in systems ranging from chemical flames on Earth to thermonuclear burning fronts, which are presently believed to be the key component of the explosion mechanism powering the type Ia supernovae. A number of important questions remains concerning the dynamics of turbulent flames in the presence of high-speed turbulence, the flame structure and stability, as well as the ability of the turbulent cascade to penetrate and disrupt the flame creating the distributed mode of burning. We present results of a systematic study of the dynamics and properties of turbulent flames formed under the action of high-speed turbulence using a simplified one-step kinetics similar to the one used to describe hydrogen combustion. This approach makes large-scale highly resolved simulations computationally feasible and it allows one to focus on the process of the turbulence-flame interaction in a simplified controlled setting. Numerical simulations were performed using the massively parallel reactive-flow code Athena-RFX. We discuss global properties of the turbulent flame in this regime (flame width, speed, etc.) and the internal structure of the flame brush. A method is presented for directly reconstructing the internal flame structure and it is shown that correct characterization of the flame regime can be very sensitive to the proper choice of the diagnostic method. We discuss the ability of the turbulent cascade to penetrate the internal flame structure. Finally, we also consider the processes that determine the turbulent burning velocity and identify two distinct regimes of flame evolution. This work was supported in part by the National Research Council, Naval Research Laboratory, and the Office of Naval Research, and by the National Science Foundation through the TeraGrid resources.

  1. Linear response of stretch-affected premixed flames to flow oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.Y.; Law, C.K.; Lieuwen, T.

    2009-04-15

    The linear response of 2D wedge-shaped premixed flames to harmonic velocity disturbances was studied, allowing for the influence of flame stretch manifested as variations in the local flame speed along the wrinkled flame front. Results obtained from analyzing the G-equation show that the flame response is mainly characterized by a Markstein number {sigma}{sub C}, which measures the curvature effect of the wrinkles, and a Strouhal number, St{sub f}, defined as the angular frequency of the disturbance normalized by the time taken for the disturbance to propagate the flame length. Flame stretch is found to become important when the disturbance frequencymore » satisfies {sigma}{sub C}St{sub f}{sup 2}{proportional_to} O(1), i.e. St{sub f}{proportional_to} O({sigma}{sub C}{sup -1/2}). Specifically, for disturbance frequencies below this order, stretch effects are small and the flame responds as an unstretched one. When the disturbance frequencies are of this order, the transfer function, defined as the ratio of the normalized fluctuation of the heat release rate to that of the velocity, is contributed mostly from fluctuations of the flame surface area, which is now affected by stretch. Finally, as the disturbance frequency increases to St{sub f}{proportional_to} O({sigma}{sub C}{sup -1}), i.e. {sigma}{sub C}St{sub f}{proportional_to} O(1), the direct contribution from the stretch-affected flame speed fluctuation to the transfer function becomes comparable to that of the flame surface area. The present study phenomenologically explains the experimentally observed filtering effect in which the flame wrinkles developed at the flame base decay along the flame surface for large frequency disturbances as well as for thermal-diffusively stable and weakly unstable mixtures. (author)« less

  2. Flame-Generated Vorticity Production in Premixed Flame-Vortex Interactions

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    2003-01-01

    In this study, we use detailed time-dependent, multi-dimensional numerical simulations to investigate the relative importance of the processes leading to FGV in flame-vortex interactions in normal gravity and microgravity and to determine if the production of vorticity in flames in gravity is the same as that in zero gravity except for the contribution of the gravity term. The numerical simulations will be performed using the computational model developed at NRL, FLAME3D. FLAME3D is a parallel, multi-dimensional (either two- or three-dimensional) flame model based on FLIC2D, which has been used extensively to study the structure and stability of premixed hydrogen and methane flames.

  3. Chemistry and toxicity of flame retardants for plastics.

    PubMed Central

    Liepins, R; Pearce, E M

    1976-01-01

    An overview of commercially used flame retardants is give. The most used flame retardants are illustrated and the seven major markets, which use 96% of all flame-retarded polymers, are described. Annual flame retardant growth rate for each major market is also projected. Toxicity data are reviewed on only those compositions that are considered commercially significant today. This includes 18 compounds or families of compounds and four inherently flame-retarded polymers. Toxicological studies of flame retardants for most synthetic materials are of recent origin and only a few of the compounds have been evaluated in any great detail. Considerable toxicological problems may exist in the manufacturing of some flame retardants, their by-products, and possible decomposition products. PMID:1026419

  4. Flex-flame burner and combustion method

    DOEpatents

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  5. Flame spread behavior over combustible thick solid of paper, bagasse and mixed paper/bagasse

    NASA Astrophysics Data System (ADS)

    Azahari Razali, Mohd; Mohd, Sofian; Sapit, Azwan; Nizam Mohammed, Akmal; Husaini Ismail, Ahmad; Faisal Hushim, Mohd; Jaat, Norrizam; Khalid, Amir

    2017-09-01

    Flame spread behavior on combustible solid is one of important research related to Fire Safety Engineering. Now, there are a lot of combustible solid composed from mixed materials. In this study, experiments have been conducted to investigate flame spread behavior over combustible solid composed by paper, bagasse and mixed paper/bagasse. Experimental data is captured by using video recording and examined flame spread shape and rate. From the results obtained, shows that the different materials produce different flame spread shape and rate. Different flame shape is seen between all types of samples. Flame spread rate of 100% paper is faster than the one of 100% bagasse. Based on the result, it is also inferred that the material composition can be influenced on the flame spread shape and flame spread rate of mixed paper/bagasse.

  6. A Burke-Schumann analysis of diffusion-flame structures supported by a burning droplet

    NASA Astrophysics Data System (ADS)

    Nayagam, Vedha; Dietrich, Daniel L.; Williams, Forman A.

    2017-07-01

    A Burke-Schumann description of three different regimes of combustion of a fuel droplet in an oxidising atmosphere, namely the premixed-flame regime, the partial-burning regime and the diffusion-flame regime, is presented by treating the fuel and oxygen leakage fractions through the flame as known parameters. The analysis shows that the burning-rate constant, the flame-standoff ratio, and the flame temperature in these regimes can be obtained from the classical droplet-burning results by suitable definitions of an effective ambient oxygen mass fraction and an effective fuel concentration in the droplet interior. The results show that increasing oxygen leakage alone through the flame lowers both the droplet burning rate and the flame temperature, whereas leakage of fuel alone leaves the burning rate unaffected while reducing the flame temperature and moving the flame closer to the droplet surface. Solutions for the partial-burning regime are shown to exist only for a limited range of fuel and oxygen leakage fractions.

  7. Mechanisms of microgravity flame spread over a thin solid fuel - Oxygen and opposed flow effects

    NASA Technical Reports Server (NTRS)

    Olson, S. L.

    1991-01-01

    Microgravity tests varying oxygen concentration and forced flow velocity have examined the importance of transport processes on flame spread over very thin solid fuels. Flame spread rates, solid phase temperature profiles and flame appearance for these tests are measured. A flame spread map is presented which indicates three distinct regions where different mechanisms control the flame spread process. In the near-quenching region (very low characteristic relative velocities) a new controlling mechanism for flame spread - oxidizer transport-limited chemical reaction - is proposed. In the near-limit, blowoff region, high opposed flow velocities impose residence time limitations on the flame spread process. A critical characteristic relative velocity line between the two near-limit regions defines conditions which result in maximum flammability both in terms of a peak flame spread rate and minimum oxygen concentration for steady burning. In the third region, away from both near-limit regions, the flame spread behavior, which can accurately be described by a thermal theory, is controlled by gas-phase conduction.

  8. A Role of the Reaction Kernel in Propagation and Stabilization of Edge Diffusion Flames of C1-C3 Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2003-01-01

    Diffusion flame stabilization is of essential importance in both Earth-bound combustion systems and spacecraft fire safety. Local extinction, re-ignition, and propagation processes may occur as a result of interactions between the flame zone and vortices or fire-extinguishing agents. By using a computational fluid dynamics code with a detailed chemistry model for methane combustion, the authors have revealed the chemical kinetic structure of the stabilizing region of both jet and flat-plate diffusion flames, predicted the flame stability limit, and proposed diffusion flame attachment and detachment mechanisms in normal and microgravity. Because of the unique geometry of the edge of diffusion flames, radical back-diffusion against the oxygen-rich entrainment dramatically enhanced chain reactions, thus forming a peak reactivity spot, i.e., reaction kernel, responsible for flame holding. The new results have been obtained for the edge diffusion flame propagation and attached flame structure using various C1-C3 hydrocarbons.

  9. Customization of home closed-loop insulin delivery in adult patients with type 1 diabetes, assisted with structured remote monitoring: the pilot WP7 Diabeloop study.

    PubMed

    Benhamou, Pierre Yves; Huneker, Erik; Franc, Sylvia; Doron, Maeva; Charpentier, Guillaume

    2018-06-01

    Improvement in closed-loop insulin delivery systems could result from customization of settings to individual needs and remote monitoring. This pilot home study evaluated the efficacy and relevance of this approach. A bicentric clinical trial was conducted for 3 weeks, using an MPC-based algorithm (Diabeloop Artificial Pancreas system) featuring five settings designed to modulate the reactivity of regulation. Remote monitoring was ensured by expert nurses with a web platform generating automatic Secured Information Messages (SIMs) and with a structured procedure. Endpoints were glucose metrics and description of impact of monitoring on regulation parameters. Eight patients with type 1 diabetes (six men, age 41.8 ± 11.4 years, HbA1c 7.7 ± 1.0%) were included. Time spent in the 70-180 mg/dl range was 70.2% [67.5; 76.9]. Time in hypoglycemia < 70 mg/dl was 2.9% [2.1; 3.4]. Eleven SIMs led to phone intervention. Original default settings were modified in all patients by the intervention of the nurses. This pilot trial suggests that the Diabeloop closed-loop system could be efficient regarding metabolic outcomes, whereas its telemedical monitoring feature could contribute to enhanced efficacy and safety. This study is registered at ClinicalTrials.gov with trial registration number NCT02987556.

  10. An experimental and numerical study of diffusion flames in cross-flow and quiescent environment at smoke point condition

    NASA Astrophysics Data System (ADS)

    Goh, Sien Fong

    An experimental and numerical study of a turbulent smoke point diffusion flame in a quiescent and cross-flow condition was performed. The fuel mass flow rate of a turbulent smoke point flame was determined at a quiescent condition and in cross-flow with velocity ranging from 2 to 4 m/s. This fuel mass flow rate is defined as the Critical Fuel Mass Flow Rate (CFMFR). At a fuel mass flow rate below the CFMFR the flame produces smoke. In the dilution study, an amount of inert gas (nitrogen) was added to the fuel stream to achieve the smoke point condition for ten different fractions of CFMFR. From this dilution study, three regions were defined, the chemically-dominated region, transition region, and momentum-dominated region. The first objective of this study was to determine the factors behind the distinction of these three regions. The second objective was to understand the effect of cross-flow velocity on the smoke point flame structure. The flame temperature, radiation, geometrical dimension of flame, velocity, and global emissions and in-flame species concentration were measured. The third objective was to study a numerical model that can simulate the turbulent smoke point flame structure. The dilution study showed that the flames in quiescent condition and in the 3.5 and 4 m/s cross-flow condition had the chemically-dominated region at 5% to 20% CFMFR, the transition region at 20% to 40% CFMFR, and the momentum-dominated region at 40% to 100% CFMFR. On the other hand, the flame in cross-flow of 2 to 3 m/s showed the chemically-dominated region at 5% to 10% CFMFR, the transition region at 10% to 30% CFMFR, and the momentum-dominated region at 30% to 100% CFMFR. The chemically-dominated flame had a sharp dual-peak structure for the flame temperature, CO2 and NO concentration profiles at 25% and 50% flame length. However, the momentum-dominated region flame exhibited a dual peak structure only at 25% flame length. The decrease of flow rate from 30% to 10% CFMFR showed an increase of flame length. The LII study showed that the soot concentration increased with the decrease of the turbulence intensity in the momentum dominated region (tested on the 100% and 60% CFMFR). The cross-flow velocity had a non-monotonic effects on the flame. The evidences could be observed from the flame length and the soot concentration results. The flame length showed a decrease when the cross-flow velocity increased from 2 to 3 m/s. The numerical model was fairly adequate in qualitatively predicting a smoke point turbulent diffusion flame structure in a cross-flow and quiescent condition. The model failed in the prediction of a laminar flame. The model showed a good agreement between experimental and numerical results for O 2 concentration and flame temperature. (Abstract shortened by UMI.)

  11. Pulsed Turbulent Diffusion Flames in a Coflow

    NASA Astrophysics Data System (ADS)

    Usowicz, James E.; Hermanson, James C.; Johari, Hamid

    2000-11-01

    Fully modulated diffusion flames were studied experimentally in a co-flow combustor using unheated ethylene fuel at atmospheric pressure. A fast solenoid valve was used to fully modulate (completely shut-off) the fuel flow. The fuel was released from a 2 mm diameter nozzle with injection times ranging from 2 to 750 ms. The jet exit Reynolds number was 2000 to 10,000 with a co-flow air velocity of up to 0.02 times the jet exit velocity. Establishing the effects of co-flow for the small nozzle and short injection times is required for future tests of pulsed flames under microgravity conditions. The very short injection times resulted in compact, burning puffs. The compact puffs had a mean flame length as little as 20flame for the same Reynolds number. As the injection time and fuel volume increased, elongated flames resembling starting jets resulted with a flame length comparable to that of a steady flame. For short injection times, the addition of an air co-flow resulted in an increase in flame length of nearly 50flames with longer injection times was correspondingly smaller. The effects of interaction of successive pulses on the flame length were most pronounced for the compact puffs. The emissions of unburned hydrocarbon and NOx from the pulsed flames were examined.

  12. Thermal-diffusional Instability in White Dwarf Flames: Regimes of Flame Pulsation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Guangzheng; Zhao, Yibo; Zhou, Cheng

    Thermal-diffusional pulsation behaviors in planar as well as outwardly and inwardly propagating white dwarf (WD) carbon flames are systematically studied. In the 1D numerical simulation, the asymptotic degenerate equation of state and simplified one-step reaction rates for nuclear reactions are used to study the flame propagation and pulsation in WDs. The numerical critical Zel’dovich numbers of planar flames at different densities ( ρ = 2, 3, and 4 × 10{sup 7} g cm{sup −3}) and of spherical flames (with curvature c = −0.01, 0, 0.01, and 0.05) at a particular density ( ρ = 2 × 10{sup 7} g cm{supmore » −3}) are presented. Flame front pulsation in different environmental densities and temperatures are obtained to form the regime diagram of pulsation, showing that carbon flames pulsate in the typical density of 2 × 10{sup 7} g cm{sup −3} and temperature of 0.6 × 10{sup 9} K. While being stable at higher temperatures, at relatively lower temperatures, the amplitude of the flame pulsation becomes larger. In outwardly propagating spherical flames the pulsation instability is enhanced and flames are also easier to quench due to pulsation at small radius, while the inwardly propagating flames are more stable.« less

  13. A Burke-Schumann Analysis of Dual-Flame Structure Supported by a Burning Droplet

    NASA Technical Reports Server (NTRS)

    Nayagam, V.; Dietrich, D.; Williams, F. A.

    2016-01-01

    Droplet combustion experiments carried out onboard the International Space Station (ISS), using pure fuels and fuel mixtures, have shown that quasi-steady burning can be sustained by a non-traditional flame configuration, namely a "cool flame" burning in the "partial-burning" regime where both fuel and oxygen leak through the low-temperature controlled flame-sheet. Recent experiments involving large, bi-component fuel (n-decane and hexanol, 50/50 by volume) droplets at elevated pressures show that the visible, hot flame becomes extremely weak while the burning rate remains relatively high, suggesting the possibility of simultaneous presence of "cool" and "hot" flames of roughly equal importance. The radiant output from these bi-component droplets is relatively high and cannot be accounted for only by the presence of a visible hot-flame. In this analysis we explore the theoretical possibility of a dual-flame structure, where one flame lies close to the droplet surface called the "cool-flame," and other farther away from the droplet surface, termed the "hot-flame." A Burke-Schumann analysis of this dual-structure seems to indicate such flame structures are possible over a narrow range of initial conditions. Theoretical results can be compared against available experimental data for pure and bi-component fuel droplet combustion to test how realistic the model may be.

  14. Quantitative Studies on the Propagation and Extinction of Near-Limit Premixed Flames under Normal- and Micro-gravity

    NASA Technical Reports Server (NTRS)

    Egolfopoulos, F. N.; Dong, Y.; Spedding, G.; Cuenot, B.; Poinsot, T.

    2001-01-01

    Strained laminar flames have been systematically studied, as the understanding of their structure and dynamic behavior is of relevance to turbulent combustion.. Most of these studies have been conducted in opposed-jet, stagnation-type flow configurations. Studies at high strain rates are important in quantifying and understanding the response of vigorously burning flames and determine extinction states. Studies of weakly strained flames can be of particular interest for all stoichiometries. For example, the laminar flame speeds, S(sup o)(sub u), can be accurately determined by using the counterflow technique only if measurements are obtained at very low strain rates. Furthermore, near-limit flames are stabilized by weak strain rates. Previous studies have shown that near-limit flames are particularly sensitive to chain mechanisms, thermal radiation, and unsteadiness. The stabilization and study of weakly strained flames is complicated by the presence of buoyancy that can render the flames unstable to the point of extinction. Thus, the use of microgravity (mu-g) becomes essential in order to provide meaningful insight into this important combustion regime. In our past studies the laminar flame speeds and extinction strain rates were directly measured at ultra-low strain rates. The laminar flame speeds were measured by having a positively strained planar flame undergoing a transition to a negatively strained Bunsen flame and by measuring the propagation speed during that transition. The extinction strain rates of near-limit flames were measured in mu-g. Results obtained for CH4/air and C3H8/air mixtures are in agreement with those obtained by Maruta et al.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, C.R.; Shaddix, C.R.; Smyth, K.C.

    This paper presents time-dependent numerical simulations of both steady and time-varying CH{sub 4}/air diffusion flames to examine the differences in combustion conditions which lead to the observed enhancement in soot production in the flickering flames. The numerical model solves the two-dimensional, time-dependent, reactive-flow Navier-Stokes equations coupled with submodels for soot formation and radiation transport. Qualitative comparisons between the experimental and computed steady flame show good agreement for the soot burnout height and overall flame shape except near the burner lip. Quantitative comparisons between experimental and computed radial profiles of temperature and soot volume fraction for the steady flame show goodmore » to excellent agreement at mid-flame heights, but some discrepancies near the burner lip and at high flame heights. For the time-varying CH{sub 4}/air flame, the simulations successfully predict that the maximum soot concentration increases by over four times compared to the steady flame with the same mean fuel and air velocities. By numerically tracking fluid parcels in the flowfield, the temperature and stoichiometry history were followed along their convective pathlines. Results for the pathline which passes through the maximum sooting region show that flickering flames exhibit much longer residence times during which the local temperatures and stoichiometries are favorable for soot production. The simulations also suggest that soot inception occurs later in flickering flames, and at slightly higher temperatures and under somewhat leaner conditions compared to the steady flame. The integrated soot model of Syed et al., which was developed from a steady CH{sub 4}/air flame, successfully predicts soot production in the time-varying CH{sub 4}/air flames.« less

  16. Suppression of Low Strain Rate Nonpremixed Flames by an Agent

    NASA Technical Reports Server (NTRS)

    Hamins, A.; Bundy, M.; Puri, I. K.; McGrattan, K.; Park, W. C.

    2001-01-01

    The agent concentration required to achieve the suppression of low strain rate nonpremixed flames is an important consideration for fire protection in a microgravity environment such as a space platform. Currently, there is a lack of understanding of the structure and extinction of low strain rate (<20 s(exp -1)) nonpremixed flames. The exception to this statement is the study by Maruta et al., who reported measurements of low strain rate suppression of methane-air diffusion flames with N2 added to the fuel stream under microgravity conditions. They found that the nitrogen concentration required to achieve extinction increased as the strain rate decreased until a critical value was obtained. As the strain rate was further decreased, the required N2 concentration decreased. This phenomenon was termed "turning point" behavior and was attributed to radiation-induced nonpremixed flame extinction. In terms of fire safety, a critical agent concentration assuring suppression under all flow conditions represents a fundamental limit for nonpremixed flames. Counterflow flames are a convenient configuration for control of the flame strain rate. In high and moderately strained near-extinction nonpremixed flames, analysis of flame structure typically neglects radiant energy loss because the flames are nonluminous and the hot gas species are confined to a thin reaction zone. In counterflowing CH4-air flames, for example, radiative heat loss fractions ranging from 1 to 6 percent have been predicted and measured. The objective of this study is to investigate the impact of radiative emission, flame strain, agent addition, and buoyancy on the structure and extinction of low strain rate nonpremixed flames through measurements and comparison with flame simulations. The suppression effectiveness of a number of suppressants (N2, CO2, or CF3Br) was considered as they were added to either the fuel or oxidizer streams of low strain rate methane-air diffusion flames.

  17. Ethanol turbulent spray flame response to gas velocity modulation

    NASA Astrophysics Data System (ADS)

    Fratalocchi, Virginia; Kok, Jim B. W.

    2018-01-01

    A numerical investigation of the interaction between a spray flame and an acoustic forcing of the velocity field is presented in this paper. In combustion systems, a thermoacoustic instability is the result of a process of coupling between oscillations in heat released and acoustic waves. When liquid fuels are used, the atomisation and the evaporation process also undergo the effects of such instabilities, and the computational fluid dynamics of these complex phenomena becomes a challenging task. In this paper, an acoustic perturbation is applied to the mass flow of the gas phase at the inlet and its effect on the evaporating fuel spray and on the flame front is investigated with unsteady Reynolds averaged Navier-Stokes numerical simulations. Two flames are simulated: a partially premixed ethanol/air spray flame and a premixed pre-vaporised ethanol/air flame, with and without acoustic forcing. The frequencies used to perturb the flames are 200 and 2500 Hz, which are representative for two different regimes. Those regimes are classified based on the Strouhal number St = (D/U)ff: at 200 Hz, St = 0.07, and at 2500 Hz, St = 0.8. The exposure of the flame to a 200 Hz signal results in a stretching of the flame which causes gas field fluctuations, a delay of the evaporation and an increase of the reaction rate. The coupling between the flame and the flow excitation is such that the flame breaks up periodically. At 2500 Hz, the evaporation rate increases but the response of the gas field is weak and the flame is more stable. The presence of droplets does not play a crucial role at 2500 Hz, as shown by a comparison of the discrete flame function in the case of spray and pre-vaporised flame. At low Strouhal number, the forced response of the pre-vaporised flame is much higher compared to that of the spray flame.

  18. Laser Diagnostic Analyses of Sooting Flames.

    DTIC Science & Technology

    1984-11-29

    flame front as expected. However the fuel flame length is considerably shorter than the luminous height, and the flame surface must cross the soot surface...very useful in understanding this behaviour and the fact that the fuel flame length increases only slightly on addition of diluent--while the visible

  19. Novel approaches to effects-based monitoring: 21st century tools for bio-effects prediction and surveillance

    EPA Science Inventory

    Effects-based monitoring (EBM) has been employed as a complement to chemical monitoring to help address knowledge gaps between chemical occurrence and biological effects. We have piloted several pathway-based approaches to EBM, that utilize modern bioinformatic and high throughpu...

  20. The Air Sensor Citizen Science Toolbox: A Collaboration in Community Air Quality Monitoring and Mapping?

    EPA Science Inventory

    Project GoalDevelop tools Citizen Scientists can use to assist them in conducting environmental monitoringResearch PlanIdentify a citizen science project as a potential pilot study locationEstablish their pollutant monitoring interestsDevelop a sensor package to meet their needs ...

  1. Design and performance of a new continuous-flow sample-introduction system for flame infrared-emission spectrometry: Applications in process analysis, flow injection analysis, and ion-exchange high-performance liquid chromatography.

    PubMed

    Lam, C K; Zhang, Y; Busch, M A; Busch, K W

    1993-06-01

    A new sample introduction system for the analysis of continuously flowing liquid streams by flame infrared-emission (FIRE) spectrometry has been developed. The system uses a specially designed purge cell to strip dissolved CO(2) from solution into a hydrogen gas stream that serves as the fuel for a hydrogen/air flame. Vibrationally excited CO(2) molecules present in the flame are monitored with a simple infrared filter (4.4 mum) photometer. The new system can be used to introduce analytes as a continuous liquid stream (process analysis mode) or on a discrete basis by sample injection (flow injection analysis mode). The key to the success of the method is the new purge-cell design. The small internal volume of the cell minimizes problems associated with purge-cell clean-out and produces sharp, reproducible signals. Spent analytical solution is continuously drained from the cell, making cell disconnection and cleaning between samples unnecessary. Under the conditions employed in this study, samples could be analyzed at a maximum rate of approximately 60/h. The new sample introduction system was successfully tested in both a process analysis- and a flow injection analysis mode for the determination of total inorganic carbon in Waco tap water. For the first time, flame infrared-emission spectrometry was successfully extended to non-volatile organic compounds by using chemical pretreatment with peroxydisulfate in the presence of silver ion to convert the analytes into dissolved carbon dioxide, prior to purging and detection by the FIRE radiometer. A test of the peroxydisulfate/Ag(+) reaction using six organic acids and five sugars indicated that all 11 compounds were oxidized to nearly the same extent. Finally, the new sample introduction system was used in conjunction with a simple filter FIRE radiometer as a detection system in ion-exchange high-performance liquid chromatography. Ion-exchange chromatograms are shown for two aqueous mixtures, one containing six organic acids and the second containing six mono-, di-, and trisaccharides.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Righettoni, Marco; Pratsinis, Sotiris E., E-mail: sotiris.pratsinis@ptl.mavt.ethz.ch

    Highlights: • Flame-made WO{sub 3} nanoparticles with closely controlled crystal and grain size. • Dynamic phase transition of annealing of pure and Si-doped WO{sub 3} by in situ XRD. • Irreversible evolution of WO{sub 3} crystallinity by heating/cooling during its annealing. • Si-doping alters the WO{sub 3} crystallinity dynamics and stabilizes nanosized WO{sub 3}. • Flame-made nano-WO{sub 3} can sense NO at the ppb level. - Abstract: Tungsten trioxide is a semiconductor with distinct applications in gas sensors, catalysis, batteries and pigments. As such the transition between its different crystal structures during its annealing are of interest, especially for sensormore » applications. Here, WO{sub 3} nanoparticles with closely controlled crystal and grain size (9–15 nm) and phase composition are made by flame spray pyrolysis and the formation of different WO{sub 3} phases during annealing is investigated. Most notably, the dynamic phase transition and crystal size evolution of WO{sub 3} during heating and cooling is monitored by in situ X-ray diffraction revealing how metastable WO{sub 3} phases can be captured stably. The effect of Si-doping is studied since it is used in practise to control crystal growth and phase transition during metal oxide synthesis and processing. Finally the influence of annealing on the WO{sub 3} sensing performance of NO, a lung inflammation tracer in the human breath, is explored at the ppb-level.« less

  3. Infrared Instrument for Detecting Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Ihlefeld, Curtis; Immer, Christopher; Oostdyk, Rebecca; Cox, Robert; Taylor, John

    2006-01-01

    The figure shows an instrument incorporating an infrared camera for detecting small hydrogen fires. The instrument has been developed as an improved replacement for prior infrared and ultraviolet instruments used to detect hydrogen fires. The need for this or any such instrument arises because hydrogen fires (e.g., those associated with leaks from tanks, valves, and ducts) pose a great danger, yet they emit so little visible light that they are mostly undetectable by the unaided human eye. The main performance advantage offered by the present instrument over prior hydrogen-fire-detecting instruments lies in its greater ability to avoid false alarms by discriminating against reflected infrared light, including that originating in (1) the Sun, (2) welding torches, and (3) deliberately ignited hydrogen flames (e.g., ullage-burn-off flames) that are nearby but outside the field of view intended to be monitored by the instrument. Like prior such instruments, this instrument is based mostly on the principle of detecting infrared emission above a threshold level. However, in addition, this instrument utilizes information on the spatial distribution of infrared light from a source that it detects. Because the combination of spatial and threshold information about a flame tends to constitute a unique signature that differs from that of reflected infrared light originating in a source not in the field of view, the incidence of false alarms is reduced substantially below that of related prior threshold- based instruments.

  4. Development of a Spherical Combustion Chamber for Measuring Laminar Flame Speeds in Navy Bulk Fuels and Biofuel Blends

    DTIC Science & Technology

    2011-12-01

    determine laminar flame speeds using the spherical flame method. An experimental combustion chamber, based on the constant-volume bomb method, was...INTENTIONALLY LEFT BLANK v ABSTRACT This thesis presents the results of an experimental study to determine laminar flame speeds using the spherical...for ethane/air flames at various pressures reproduced from [6]....................8 Figure 4. Experimentally determined laminar flame speed as a

  5. An Experimental and Theoretical Study of Radiative Extinction of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Wichman, Indrek S.

    1993-01-01

    The objective of this work is to investigate the radiation-induced rich extinction limits for diffusion flames. Radiative extinction is caused by the formation of particulates (e.g., soot) that drain chemical energy from the flame. We examine (mu)g conditions because there is a strong reason to believe that radiation-induced rich-limit extinction is not possible under normal-gravity conditions. In normal- g, the hot particulates formed in the fuel-rich flames are swept upward by buoyancy, out of the flame to the region above it, where their influence on the flame is negligible. However, in (mu)g the particulates remain in the flame vicinity, creating a strong energy sink that can, under suitable conditions, cause flame extinction.

  6. Flame behaviors of propane/air premixed flame propagation in a closed rectangular duct with a 90-deg bend

    NASA Astrophysics Data System (ADS)

    He, Xuechao; Sun, Jinhua; Yuen, K. K.; Ding, Yibin; Chen, Sining

    2008-11-01

    Experiments of flame propagation in a small, closed rectangular duct with a 90° bend were performed for a propane-air mixture. The high speed camera and Schlieren techniques were used to record images of flame propagation process in the combustion pipe. Meanwhile, the fine thermocouples and ion current probes were applied to measure the temperature distribution and reaction intensity of combustion. The characteristics of propane-air flame and its microstructure were analyzed in detail by the experimental results. In the test, the special tulip flame formation was observed. Around the bend, the flame tip proceeded more quickly at the lower side with the flame front elongated toward the axial direction. And transition to turbulent flame occurred. It was suggested that fluctuations of velocity, ion current and temperature were mainly due to the comprehensive effects of multi-wave and the intense of turbulent combustion.

  7. Flame surface statistics of constant-pressure turbulent expanding premixed flames

    NASA Astrophysics Data System (ADS)

    Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.

    2014-04-01

    In this paper we investigate the local flame surface statistics of constant-pressure turbulent expanding flames. First the statistics of local length ratio is experimentally determined from high-speed planar Mie scattering images of spherically expanding flames, with the length ratio on the measurement plane, at predefined equiangular sectors, defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we then convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at the corresponding area-ratio pdfs. It is found that both the length ratio and area ratio pdfs are near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis.

  8. Interaction of a vortex and a premixed flame

    NASA Technical Reports Server (NTRS)

    Ferziger, Joel H.; Rutland, Christopher J.

    1989-01-01

    The interaction of a vortex structure and a premixed flame is studied. The presence of pressure gradients in the vortex and density gradients in the flame result in a complicated interaction. This interaction has been examined when the flame and vortex are fully coupled and in two special cases where they are decoupled: a frozen flame case and a frozen vortex case. In the frozen flame case the main effect of the flame on the vortex is through the barocline torque term. This has been modeled for high Damkoehler numbers. In the frozen vortex case the main effect, at moderate Damkoehler numbers, is to convect the flame around the vortex. At low Damkoehler numbers, depending on the length scales, pockets of unburned gas can form or the flame structure can be significantly changed. The two frozen cases provide a basis for understanding the full interaction.

  9. 3D DNS of Turbulent Premixed Flame with over 50 Species and 300 Elementary Reactions

    NASA Astrophysics Data System (ADS)

    Shimura, Masayasu; Yenerdag, Basmil; Naka, Yoshitsugu; Nada, Yuzuru; Tanahashi, Mamoru

    2014-11-01

    Three-dimensional direct numerical simulation of methane-air premixed planar flame propagating in homogenous isotropic turbulence is conducted to investigate local flame structure in thin reaction zones. Detailed kinetic mechanism, GRI-Mech 3.0 which includes 53 species and 325 elementary reactions, is used to represent methane-air reaction, and temperature dependences of transport and thermal properties are considered. For a better understanding of the local flame structure in thin reaction zones regime, distributions of mass fractions of major species, heat release rate, temperature and turbulent structures are investigated. Characteristic flame structures, such as radical fingering and multi-layered-like flame structures, are observed. The most expected maximum heat release rate in flame elements is lower than that of laminar flame with same mixture. To clarify mechanism of the decrease in local heat release rate, effects of strain rates tangential to flame front on local heat release rate are investigated.

  10. An experimental study of the structure of laminar premixed flames of ethanol/methane/oxygen/argon

    PubMed Central

    Tran, L.S.; Glaude, P.A.; Battin-Leclerc, F.

    2013-01-01

    The structures of three laminar premixed stoichiometric flames at low pressure (6.7 kPa): a pure methane flame, a pure ethanol flame and a methane flame doped by 30% of ethanol, have been investigated and compared. The results consist of concentration profiles of methane, ethanol, O2, Ar, CO, CO2, H2O, H2, C2H6, C2H4, C2H2, C3H8, C3H6, p-C3H4, a-C3H4, CH2O, CH3HCO, measured as a function of the height above the burner by probe sampling followed by on-line gas chromatography analyses. Flame temperature profiles have been also obtained using a PtRh (6%)-PtRh (30%) type B thermocouple. The similarities and differences between the three flames were analyzed. The results show that, in these three flames, the concentration of the C2 intermediates is much larger than that of the C3 species. In general, mole fraction of all intermediate species in the pure ethanol flame is the largest, followed by the doped flame, and finally the pure methane flame. PMID:24092946

  11. Candle Flames in Microgravity Video

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video of a candle flame burning in space was taken by the Candle Flames in Microgravity (CFM) experiment on the Russian Mir space station. It is actually a composite of still photos from a 35mm camera since the video images were too dim. The images show a hemispherically shaped flame, primarily blue in color, with some yellow early int the flame lifetime. The actual flame is quite dim and difficult to see with the naked eye. Nearly 80 candles were burned in this experiment aboard Mir. NASA scientists have also studied how flames spread in space and how to detect fire in microgravity. Researchers hope that what they learn about fire and combustion from the flame ball experiments will help out here on Earth. Their research could help create things such as better engines for cars and airplanes. Since they use very weak flames, flame balls require little fuel. By studying how this works, engineers may be able to design engines that use far less fuel. In addition, microgravity flame research is an important step in creating new safety precautions for astronauts living in space. By understanding how fire works in space, the astronauts can be better prepared to fight it.

  12. The influence of fuel-air swirl intensity on flame structures of syngas swirl-stabilized diffusion flame

    NASA Astrophysics Data System (ADS)

    Shao, Weiwei; Xiong, Yan; Mu, Kejin; Zhang, Zhedian; Wang, Yue; Xiao, Yunhan

    2010-06-01

    Flame structures of a syngas swirl-stabilized diffusion flame in a model combustor were measured using the OH-PLIF method under different fuel and air swirl intensity. The flame operated under atmospheric pressure with air and a typical low heating-value syngas with a composition of 28.5% CO, 22.5% H2 and 49% N2 at a thermal power of 34 kW. Results indicate that increasing the air swirl intensity with the same fuel, swirl intensity flame structures showed little difference except a small reduction of flame length; but also, with the same air swirl intensity, fuel swirl intensity showed great influence on flame shape, length and reaction zone distribution. Therefore, compared with air swirl intensity, fuel swirl intensity appeared a key effect on the flame structure for the model combustor. Instantaneous OH-PLIF images showed that three distinct typical structures with an obvious difference of reaction zone distribution were found at low swirl intensity, while a much compacter flame structure with a single, stable and uniform reaction zone distribution was found at large fuel-air swirl intensity. It means that larger swirl intensity leads to efficient, stable combustion of the syngas diffusion flame.

  13. The Effect of Microgravity on Flame Spread over a Thin Fuel

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.

    1987-01-01

    A flame spreading over a thermally thin cellulose fuel was studied in a quiescent microgravity environment. Flame spread over two different fuel thicknesses was studied in ambient oxygen-nitrogen environments from the limiting oxygen concentration to 100 percent oxygen at 1 atm pressure. Comparative normal-gravity tests were also conducted. Gravity was found to play an important role in the mechanism of flame spread. In lower oxygen environments, the buoyant flow induced in normal gravity was found to accelerate the flame spread rate as compared to the microgravity flame spread rates. It was also found to stabilize the flame in oxidizer environments, where microgravity flames in a quiescent environment extinguish. In oxygen-rich environments, however, it was determined that gravity does not play an important role in the flame spread mechanism. Fuel thickness influences the flame spread rate in both normal gravity and microgravity. The flame spread rate varies inversely with fuel thickness in both normal gravity and in an oxygen-rich microgravity environment. In lower oxygen microgravity environments, however, the inverse relationship breaks down because finite-rate kinetics and heat losses become important. Two different extinction limits were found in microgravity for the two thicknesses of fuel. This is in contrast to the normal-gravity extinction limit, which was found to be independent of fuel thickness. In microgravity the flame is quenched because of excessive thermal losses, whereas in normal gravity the flame is extinguished by blowoff.

  14. Effects of equivalence ratio variation on lean, stratified methane-air laminar counterflow flames

    NASA Astrophysics Data System (ADS)

    Richardson, E. S.; Granet, V. E.; Eyssartier, A.; Chen, J. H.

    2010-11-01

    The effects of equivalence ratio variations on flame structure and propagation have been studied computationally. Equivalence ratio stratification is a key technology for advanced low emission combustors. Laminar counterflow simulations of lean methane-air combustion have been presented which show the effect of strain variations on flames stabilized in an equivalence ratio gradient, and the response of flames propagating into a mixture with a time-varying equivalence ratio. 'Back supported' lean flames, whose products are closer to stoichiometry than their reactants, display increased propagation velocities and reduced thickness compared with flames where the reactants are richer than the products. The radical concentrations in the vicinity of the flame are modified by the effect of an equivalence ratio gradient on the temperature profile and thermal dissociation. Analysis of steady flames stabilized in an equivalence ratio gradient demonstrates that the radical flux through the flame, and the modified radical concentrations in the reaction zone, contribute to the modified propagation speed and thickness of stratified flames. The modified concentrations of radical species in stratified flames mean that, in general, the reaction rate is not accurately parametrized by progress variable and equivalence ratio alone. A definition of stratified flame propagation based upon the displacement speed of a mixture fraction dependent progress variable was seen to be suitable for stratified combustion. The response times of the reaction, diffusion, and cross-dissipation components which contribute to this displacement speed have been used to explain flame response to stratification and unsteady fluid dynamic strain.

  15. Effects of boundary layer on flame propagation generated by forced ignition behind an incident shock wave

    NASA Astrophysics Data System (ADS)

    Ishihara, S.; Tamura, S.; Ishii, K.; Kataoka, H.

    2016-09-01

    To study the effects of the boundary layer on the deflagration to detonation transition (DDT) process, the mixture behind an incident shock wave was ignited using laser breakdown. Ignition timing was controlled so that the interaction of the resulting flame with a laminar or turbulent boundary layer could be examined. In the case of the interaction with a laminar boundary layer, wrinkling of the flame was observed after the flame reached the corner of the channel. On the other hand, interaction with the turbulent boundary layer distorted the flame front and increased the spreading rate of the flame followed by prompt DDT. The inner structure of the turbulent boundary layer plays an important role in the DDT process. The region that distorted the flame within the turbulent boundary layer was found to be the intermediate region 0.01< y/δ < 0.4, where y is the distance from the wall and δ is the boundary layer thickness. The flame disturbance by the turbulent motions is followed by the flame interaction with the inner layer near the wall, which in turn generates a secondary-ignition kernel that produced a spherical accelerating flame, which ultimately led to the onset of detonation. After the flame reached the intermediate region, the time required for DDT was independent of the ignition position. The effect of the boundary layer on the propagating flame, thus, became relatively small after the accelerating flame was generated.

  16. An experimental study of the velocity-forced flame response of a lean-premixed multi-nozzle can combustor for gas turbines

    NASA Astrophysics Data System (ADS)

    Szedlmayer, Michael Thomas

    The velocity forced flame response of a multi-nozzle, lean-premixed, swirl-stabilized, turbulent combustor was investigated at atmospheric pressure. The purpose of this study was to analyze the mechanisms that allowed velocity fluctuations to cause fluctuations in the rate of heat release in a gas turbine combustor experiencing combustion instability. Controlled velocity fluctuations were introduced to the combustor by a rotating siren device which periodically allowed the air-natural gas mixture to flow. The velocity fluctuation entering the combustor was measured using the two-microphone method. The resulting heat release rate fluctuation was measured using CH* chemiluminescence. The global response of the flame was quantified using the flame transfer function with the velocity fluctuation as the input and the heat release rate fluctuation as the output. Velocity fluctuation amplitude was initially maintained at 5% of the inlet velocity in order to remain in the linear response regime. Flame transfer function measurements were acquired at a wide range of operating conditions and forcing frequencies. The selected range corresponds to the conditions and instability frequencies typical of real gas turbine combustors. Multi-nozzle flame transfer functions were found to bear a qualitative similarity to the single-nozzle flame transfer functions in the literature. The flame transfer function gain exhibited alternating minima and maxima while the phase decreased linearly with increasing forcing frequency. Several normalization techniques were applied to all flame transfer function data in an attempt to collapse the data into a single curve. The best collapse was found to occur using a Strouhal number which was the ratio of the characteristic flame length to the wavelength of the forced disturbance. Critical values of Strouhal number are used to predict the shedding of vortical structures in shear layers. Because of the collapse observed when the flame transfer functions are plotted versus Strouhal number, vortical structures are thought to have a strong influence on the response of this multi-nozzle configuration. The structure of heat release rate fluctuations throughout the flame is analyzed using CH* chemiluminescence acquired with a high speed camera. Flames with a similar level of flame transfer function gain are found to exhibit similarity in the spatial distribution of their heat release rate fluctuations, regardless of the operating condition. Flames with high gain are found to have high amplitude fluctuations near the downstream end of the flame, with weak fluctuations near the flame base. The phase of the downstream fluctuations changes minimally across the downstream region, indicating that they occur inphase. Flames with low gain exhibit stronger fluctuations near the flame base, but weak fluctuations in the downstream region. The phase of the fluctuations near the flame base changes continuously along the flame axis, indicating that parts of the flame will fluctuate out-of-phase. Accordingly, from a global perspective, destructive interference between heat release rate fluctuations in different parts of the flame can be expected. The behavior observed in the flame is ascribed to the interaction of acoustic velocity fluctuations, vortical disturbances and swirl fluctuations. The response of the multi-nozzle flame to high amplitude velocity fluctuations was tested for a single operating condition. Based on the global flame response, most frequencies responded linearly over the tested range of amplitudes. Nonlinear effects were found to occur at three frequencies. The behaviors observed at these frequencies matched those observed in the literature and included flame response saturation and mode triggering. For conditions which responded linearly at all amplitudes, the structure of heat release rate fluctuations was found to remain nearly constant. For conditions with nonlinear behavior, the structure of the fluctuations was a function of the forcing amplitude, particularly in the downstream region. The behavior of the multi-nozzle flame was compared directly to that of a single-nozzle flame of the same nozzle design. The multi-nozzle characteristic flame length was found to be on average 10% longer than for the single-nozzle flame. The flame transfer functions from the two cases were found to exhibit qualitative similarity, where the frequencies at which the extrema occur are similar. The actual value of gain for the same operating condition and frequency does, however, vary by more than a factor of two in some cases. The phase value can also vary by as much as pi radians. These differences indicate that single-nozzle flame transfer functions should not be used directly to predict the instability driving force of real gas turbine combustors.

  17. UPPER MISSOURI RIVER ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM (EMAP-UMR): 2000 PILOT STUDY FINDINGS AND FURTHER DIRECTION

    EPA Science Inventory

    The EPA Office of Research and Development's Mid-Continent Ecology Division has undertaken an EMAP study to assess the condition of selected resources of the Upper Missouri River mainstem (riverine) aquatic habitats, riparian habitats, and reservoirs. In 2000, we completed pilot ...

  18. Numerical Simulation of an Enclosed Laminar Jet Diffusion Flame in Microgravity Environment: Comparison with ELF Data

    NASA Technical Reports Server (NTRS)

    Jia, Kezhong; Venuturumilli, Rajasekhar; Ryan, Brandon J.; Chen, Lea-Der

    2001-01-01

    Enclosed diffusion flames are commonly found in practical combustion systems, such as the power-plant combustor, gas turbine combustor, and jet engine after-burner. In these systems, fuel is injected into a duct with a co-flowing or cross-flowing air stream. The diffusion flame is found at the surface where the fuel jet and oxygen meet, react, and consume each other. In combustors, this flame is anchored at the burner (i.e., fuel jet inlet) unless adverse conditions cause the flame to lift off or blow out. Investigations of burner stability study the lift off, reattachment, and blow out of the flame. Flame stability is strongly dependent on the fuel jet velocity. When the fuel jet velocity is sufficiently low, the diffusion flame anchors at the burner rim. When the fuel jet velocity is increased, the flame base gradually moves downstream. However, when the fuel jet velocity increases beyond a critical value, the flame base abruptly jumps downstream. When this "jump" occurs, the flame is said to have reached its lift-off condition and the critical fuel jet velocity is called the lift-off velocity. While lifted, the flame is not attached to the burner and it appears to float in mid-air. Flow conditions are such that the flame cannot be maintained at the burner rim despite the presence of both fuel and oxygen. When the fuel jet velocity is further increased, the flame will eventually extinguish at its blowout condition. In contrast, if the fuel jet velocity of a lifted flame is reduced, the flame base moves upstream and abruptly returns to anchor at the burner rim. The fuel jet velocity at reattachment can be much lower than that at lift off, illustrating the hysteresis effect present in flame stability. Although there have been numerous studies of flame stability, the controlling mechanisms are not well understood. This uncertainty is described by Pitts in his review of various competing theories of lift off and blow out in turbulent jet diffusion flames. There has been some research on the stability of laminar flames, but most studies have focused on turbulent flames. It is also well known that the airflow around the fuel jet can significantly alter the lift off, reattachment and blow out of the jet diffusion flame. Buoyant convection is sufficiently strong in 1-g flames that it can dominate the flow-field, even at the burner rim. In normal-gravity testing, it is very difficult to delineate the effects of the forced airflow from those of the buoyancy-induced flow. Comparison of normal-gravity and microgravity flames provides clear indication of the influence of forced and buoyant flows on the flame stability. The overall goal of the Enclosed Laminar Flames (ELF) investigation (STS-87/USMP-4 Space Shuttle mission, November to December 1997) is to improve our understanding of the effects of buoyant convection on the structure and stability of co-flow diffusion flame, e.g., see http://zeta.lerc.nasa.gov/expr/elf.htm. The ELF hardware meets the experiment hardware limit of the 35-liter interior volume of the glovebox working area, and the 180x220-mm dimensions of the main door. The ELF experiment module is a miniature, fan-driven wind tunnel, equipped with a gas supply system. A 1.5-mm diameter nozzle is located on the duct's flow axis. The cross section of the duct is nominally a 76-mm square with rounded corners. The forced air velocity can be varied from about 0.2 to 0.9 m/s. The fuel flow can be set as high as 3 std. cubic centimeter (cc) per second, which corresponds to a nozzle exit velocity of up to 1.70 m/s. The ELF hardware and experimental procedure are discussed in detail in Brooker et al. The 1-g test results are repeated in several experiments following the STS-87 Mission. The ELF study is also relevant to practical systems because the momentum-dominated behavior of turbulent flames can be achieved in laminar flames in microgravity. The specific objectives of this paper are to evaluate the use reduced model for simulation of flame lift-off and blowout.

  19. Candle flames in microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Tien, J. S.

    1995-01-01

    The candle flame in both normal and microgravity is non-propagating. In microgravity, however, the candle flame is also non-convective where (excepting Stefan flow) pure diffusion is the only transport mode. It also shares many characteristics with another classical problem, that of isolated droplet combustion. Given their qualitatively similar flame shapes and the required heat feedback to condensed-phase fuels, the gas-phase flow and temperature fields should be relatively similar for a droplet and a candle in reduced gravity. Unless the droplet diameter is maintained somehow through non-intrusive replenishment of fuel, the quasi-steady burning characteristics of a droplet can be maintained for only a few seconds. In contrast, the candle flame in microgravity may achieve a nearly steady state over a much longer time and is therefore ideal for examining a number of combustion-related phenomena. In this paper, we examine candle flame behavior in both short-duration and long-duration, quiescent, microgravity environments. Interest in this type of flame, especially 'candle flames in weightlessness', is demonstrated by very frequent public inquiries. The question is usually posed as 'will a candle flame burn in zero gravity', or, 'will a candle burn indefinitely (or steadily) in zero gravity in a large volume of quiescent air'. Intuitive speculation suggests to some that, in the absence of buoyancy, the accumulation of products in the vicinity of the flame will cause flame extinction. The classical theory for droplet combustion with its spherically-shaped diffusion flame, however, shows that steady combustion is possible in the absence of buoyancy if the chemical kinetics are fast enough. Previous experimental studies of candle flames in reduced and microgravity environments showed the flame could survive for at least 5 seconds, but did not reach a steady state in the available test time.

  20. Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity

    NASA Technical Reports Server (NTRS)

    Takahashi, F.; Katta, V. R.

    2001-01-01

    Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.

  1. Chemical kinetic model uncertainty minimization through laminar flame speed measurements

    PubMed Central

    Park, Okjoo; Veloo, Peter S.; Sheen, David A.; Tao, Yujie; Egolfopoulos, Fokion N.; Wang, Hai

    2016-01-01

    Laminar flame speed measurements were carried for mixture of air with eight C3-4 hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, iso-butene, n-butane, and iso-butane) at the room temperature and ambient pressure. Along with C1-2 hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011, 158, 2358–2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C3 and C4 alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C3-4 hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C4 alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C4 alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel. PMID:27890938

  2. Chemical kinetic model uncertainty minimization through laminar flame speed measurements.

    PubMed

    Park, Okjoo; Veloo, Peter S; Sheen, David A; Tao, Yujie; Egolfopoulos, Fokion N; Wang, Hai

    2016-10-01

    Laminar flame speed measurements were carried for mixture of air with eight C 3-4 hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, iso -butene, n -butane, and iso -butane) at the room temperature and ambient pressure. Along with C 1-2 hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011, 158, 2358-2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C 3 and C 4 alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C 3-4 hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C 4 alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C 4 alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel.

  3. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    NASA Technical Reports Server (NTRS)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  4. Effect of Wind Velocity on Flame Spread in Microgravity

    NASA Technical Reports Server (NTRS)

    Prasad, Kuldeep; Olson, Sandra L.; Nakamura, Yuji; Fujita, Osamu; Nishizawa, Katsuhiro; Ito, Kenichi; Kashiwagi, Takashi; Simons, Stephen N. (Technical Monitor)

    2002-01-01

    A three-dimensional, time-dependent model is developed describing ignition and subsequent transition to flame spread over a thermally thin cellulosic sheet heated by external radiation in a microgravity environment. A low Mach number approximation to the Navier Stokes equations with global reaction rate equations describing combustion in the gas phase and the condensed phase is numerically solved. The effects of a slow external wind (1-20 cm/s) on flame transition are studied in an atmosphere of 35% oxygen concentration. The ignition is initiated at the center part of the sample by generating a line-shape flame along the width of the sample. The calculated results are compared with data obtained in the 10s drop tower. Numerical results exhibit flame quenching at a wind speed of 1.0 cm/s, two localized flames propagating upstream along the sample edges at 1.5 cm/s, a single line-shape flame front at 5.0 cm/s, three flames structure observed at 10.0 cm/s (consisting of a single line-shape flame propagating upstream and two localized flames propagating downstream along sample edges) and followed by two line-shape flames (one propagating upstream and another propagating downstream) at 20.0 cm/s. These observations qualitatively compare with experimental data. Three-dimensional visualization of the observed flame complex, fuel concentration contours, oxygen and reaction rate isosurfaces, convective and diffusive mass flux are used to obtain a detailed understanding of the controlling mechanism, Physical arguments based on lateral diffusive flux of oxygen, fuel depletion, oxygen shadow of the flame and heat release rate are constructed to explain the various observed flame shapes.

  5. An Experimental and Theoretical Study of Radiative Extinction of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Wichman, Indrek; Guenther, Mark; Ray, Anjan; Agrawal, Sanjay

    1993-01-01

    In a recent paper on 'Observations of candle flames under various atmospheres in microgravity' by Ross et al., it was found that for the same atmosphere, the burning rate per unit wick surface area and the flame temperature were considerably reduced in microgravity as compared with normal gravity. Also, the flame (spherical in microgravity) was much thicker and further removed from the wick. It thus appears that the flame becomes 'weaker' in microgravity due to the absence of buoyancy generated flow which serves to transport the oxidizer to the combustion zone and remove the hot combustion products from it. The buoyant flow, which may be characterized by the strain rate, assists the diffusion process to execute these essential functions for the survival of the flame. Thus, the diffusion flame is 'weak' at very low strain rates and as the strain rate increases the flame is initially 'strengthened' and eventually it may be 'blown out'. The computed flammability boundaries of T'ien show that such a reversal in material flammability occurs at strain rates around 5 sec. At very low or zero strain rates, flame radiation is expected to considerably affect this 'weak' diffusion flame because: (1) the concentration of combustion products which participate in gas radiation is high in the flame zone; and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which is usually responsible for a major portion of the radiative heat loss. We anticipate that flame radiation will eventually extinguish this flame. Thus, the objective of this project is to perform an experimental and theoretical investigation of radiation-induced extinction of diffusion flames under microgravity conditions. This is important for spacecraft fire safety.

  6. A feasibility pilot study on the use of text messages to track PTSD symptoms after a traumatic injury.

    PubMed

    Price, Matthew; Ruggiero, Kenneth J; Ferguson, Pamela L; Patel, Sachin K; Treiber, Frank; Couillard, Deborah; Fahkry, Samir M

    2014-01-01

    Monitoring posttraumatic stress disorder (PTSD) symptoms after a traumatic injury is beneficial for patients and providers. Text messages can be used to automatically monitor symptoms and impose minimal burden to patients and providers. The present study piloted such a strategy with traumatic injury patients. An automated daily text message was piloted to evaluate PTSD symptoms after discharge from the hospital. Twenty-nine patients who experienced a traumatic injury received 15 daily texts and were then followed up at 1-month and 3-months after discharge. 82.8% of the sample responded at least once and the average response rate per participant was 63.1%. Response rates were correlated with PTSD symptoms at baseline but not at any other time. Patient satisfaction with this approach was high. Text messages are a viable method to monitor PTSD symptoms after a traumatic injury. Such an approach should be evaluated on a larger scale as part of a more comprehensive early intervention for traumatic stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Post-injection feasibility study with the reflectivity method for the Ketzin pilot site, Germany (CO2 storage in a saline aquifer)

    NASA Astrophysics Data System (ADS)

    Ivanova, Alexandra; Kempka, Thomas; Huang, Fei; Diersch [Gil], Magdalena; Lüth, Stefan

    2016-04-01

    3D time-lapse seismic surveys (4D seismic) have proven to be a suitable technique for monitoring of injected CO2, because when CO2 replaces brine as a free gas it considerably affects elastic properties of porous media. Forward modeling of a 4D seismic response to the CO2-fluid substitution in a storage reservoir is an inevitable step in such studies. At the Ketzin pilot site (CO2 storage) 67 kilotons of CO2 were injected into a saline aquifer between 2008 and 2013. In order to track migration of CO2 at Ketzin, 3D time-lapse seismic data were acquired by means of a baseline pre-injection survey in 2005 and 3 monitor surveys: in 2009, 2012 and in 2015 (the 1st post-injection survey). Results of the 4D seismic forward modeling with the reflectivity method suggest that effects of the injected CO2 on the 4D seismic data at Ketzin are significant regarding both seismic amplitudes and time delays. These results prove the corresponding observations in the real 4D seismic data at the Ketzin pilot site. But reservoir heterogeneity and seismic resolution, as well as random and coherent seismic noise are negative factors to be considered in this interpretation. Results of the 4D seismic forward modeling with the reflectivity method support the conclusion that even small amounts of injected CO2 can be monitored in such post-injected saline aquifer as the CO2 storage reservoir at the Ketzin pilot site both qualitatively and quantitatively with considerable uncertainties (Lüth et al., 2015). Reference: Lueth, S., Ivanova, A., Kempka, T. (2015): Conformity assessment of monitoring and simulation of CO2 storage: A case study from the Ketzin pilot site. - International Journal of Greenhouse Gas Control, 42, p. 329-339.

  8. Prediction of an Apparent Flame Length in a Co-Axial Jet Diffusion Flame Combustor.

    DTIC Science & Technology

    1983-04-01

    This report is comprised of two parts. In Part I a predictive model for an apparent flame length in a co-axial jet diffusion flame combustor is...Overall mass transfer coefficient, evaluated from an empirically developed correlation, is employed to predict total flame length . Comparison of the...experimental and predicted data on total flame length shows a reasonable agreement within sixteen percent over the investigated air and fuel flow rate

  9. CARS Temperature Measurements in Sooting, Laminar Diffusion Flames.

    DTIC Science & Technology

    1984-07-30

    the flame. In preliminary calculations with coarse axial and radial grids, the flames all reached their respective AFT’s, and flame lengths were just...welded to the outside of the tube. Such rugenerative heat feedback is not part of the K? model. Calculated flame length is seen on Figure 11 to increase...heights in the measurements, Figure 6, and the calculated flame lengths , Figure 11, is seen to be reduced substantially with increasing dilution. When

  10. Modeling of Ceiling Fire Spread and Thermal Radiation.

    DTIC Science & Technology

    1981-10-01

    under a PMMA ceiling and flame lengths under an inert ceiling are found to be in reasonable agreement with full-scale behavior. Although fire spread...5 3 Flame Lengths under Full-Scale Ceilings 12 4 Correlation of Flame Length under Inert Ceilings 16 5 Correlation of Flame Length under No 234 Model...Ceilings 17 6 Correlation of Flame Length under No B8811 Model Ceilings 18 7 Correlation of Flame Length under No. 223 Model Ceilings 19 8

  11. Studies of Premixed Laminar and Turbulent Flames at Microgravity

    NASA Technical Reports Server (NTRS)

    Kwon, O. C.; Abid, M.; Porres, J.; Liu, J. B.; Ronney, P. D.; Struk, P. M.; Weiland, K. J.

    2003-01-01

    Several topics relating to premixed flame behavior at reduced gravity have been studied. These topics include: (1) flame balls; (2) flame structure and stability at low Lewis number; (3) experimental simulation of buoyancy effects in premixed flames using aqueous autocatalytic reactions; and (4) premixed flame propagation in Hele-Shaw cells. Because of space limitations, only topic (1) is discussed here, emphasizing results from experiments on the recent STS-107 Space Shuttle mission, along with numerical modeling efforts.

  12. Flight deck engine advisor

    NASA Technical Reports Server (NTRS)

    Shontz, W. D.; Records, R. M.; Antonelli, D. R.

    1992-01-01

    The focus of this project is on alerting pilots to impending events in such a way as to provide the additional time required for the crew to make critical decisions concerning non-normal operations. The project addresses pilots' need for support in diagnosis and trend monitoring of faults as they affect decisions that must be made within the context of the current flight. Monitoring and diagnostic modules developed under the NASA Faultfinder program were restructured and enhanced using input data from an engine model and real engine fault data. Fault scenarios were prepared to support knowledge base development activities on the MONITAUR and DRAPhyS modules of Faultfinder. An analysis of the information requirements for fault management was included in each scenario. A conceptual framework was developed for systematic evaluation of the impact of context variables on pilot action alternatives as a function of event/fault combinations.

  13. Modulation of a methane Bunsen flame by upstream perturbations

    NASA Astrophysics Data System (ADS)

    de Souza, T. Cardoso; Bastiaans, R. J. M.; De Goey, L. P. H.; Geurts, B. J.

    2017-04-01

    In this paper the effects of an upstream spatially periodic modulation acting on a turbulent Bunsen flame are investigated using direct numerical simulations of the Navier-Stokes equations coupled with the flamelet generated manifold (FGM) method to parameterise the chemistry. The premixed Bunsen flame is spatially agitated with a set of coherent large-scale structures of specific wave-number, K. The response of the premixed flame to the external modulation is characterised in terms of time-averaged properties, e.g. the average flame height ⟨H⟩ and the flame surface wrinkling ⟨W⟩. Results show that the flame response is notably selective to the size of the length scales used for agitation. For example, both flame quantities ⟨H⟩ and ⟨W⟩ present an optimal response, in comparison with an unmodulated flame, when the modulation scale is set to relatively low wave-numbers, 4π/L ≲ K ≲ 6π/L, where L is a characteristic scale. At the agitation scales where the optimal response is observed, the average flame height, ⟨H⟩, takes a clearly defined minimal value while the surface wrinkling, ⟨W⟩, presents an increase by more than a factor of 2 in comparison with the unmodulated reference case. Combined, these two response quantities indicate that there is an optimal scale for flame agitation and intensification of combustion rates in turbulent Bunsen flames.

  14. Effects of Flame Structure and Hydrodynamics on Soot Particle Inception and Flame Extinction in Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Axelbaum, R. L.; Chen, R.; Sunderland, P. B.; Urban, D. L.; Liu, S.; Chao, B. H.

    2001-01-01

    This paper summarizes recent studies of the effects of stoichiometric mixture fraction (structure) and hydrodynamics on soot particle inception and flame extinction in diffusion flames. Microgravity experiments are uniquely suited for these studies because, unlike normal gravity experiments, they allow structural and hydrodynamic effects to be independently studied. As part of this recent flight definition program, microgravity studies have been performed in the 2.2 second drop tower. Normal gravity counterflow studies also have been employed and analytical and numerical models have been developed. A goal of this program is to develop sufficient understanding of the effects of flame structure that flames can be "designed" to specifications - consequently, the program name Flame Design. In other words, if a soot-free, strong, low temperature flame is required, can one produce such a flame by designing its structure? Certainly, as in any design, there will be constraints imposed by the properties of the available "materials." For hydrocarbon combustion, the base materials are fuel and air. Additives could be considered, but for this work only fuel, oxygen and nitrogen are considered. Also, the structure of these flames is "designed" by varying the stoichiometric mixture fraction. Following this line of reasoning, the studies described are aimed at developing the understanding of flame structure that is needed to allow for optimum design.

  15. The Effects of Flame Structure on Extinction of CH4-O2-N2 Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Du, J.; Axelbaum, R. L.; Gokoglu, S. (Technical Monitor)

    1996-01-01

    The effects of flame structure on the extinction limits of CH4-O2-N2 counterflow diffusion flames were investigated experimentally and numerically by varying the stoichiometric mixture fraction Z(sub st), Z(sub st) was varied by varying free-stream concentrations, while the adiabatic flame temperature T(sub ad) was held fixed by maintaining a fixed amount of nitrogen at the flame. Z(sub st) was varied between 0.055 (methane-air flame) and 0.78 (diluted- methane-oxygen flame). The experimental results yielded an extinction strain rate K(sub ext) of 375/s for the methane-air flame, increasing monotonically to 1042/s for the diluted-methane-oxygen flame. Numerical results with a 58-step Cl mechanism yielded 494/s and 1488/s, respectively. The increase in K(sub ext) with Z(sub st) for a fixed T(sub ad) is explained by the shift in the O2 profile toward the region of maximum temperature and the subsequent increase in rates for chain-branching reactions. The flame temperature at extinction reached a minimum at Z(sub st) = 0.65, where it was 200 C lower than that of the methane-air flame. This significant increase in resistance to extinction is seen to correspond to the condition in which the OH and O production zones are centered on the location of maximum temperature.

  16. Port Needs Study (Vessel Traffic Services Benefits). Volume 2: Appendices. Part 2

    DTIC Science & Technology

    1991-08-01

    their pilots near Execution Rocks. Pilots for Long Island Sound are available from the Constitution State Pilots Association (Hartford, CT) , Northeast...conditions of weather and for dangerous cargoes, and may become a mandatory system in the near future. Recreational craft are asked to monitor VHF-FM...cameras have been installed atop the tower at Yerba Buena Island ( near VTC). One of the cameras is a Low Light Level (LLTV) type. These cameras

  17. Flame propagation in heterogeneous mixtures of fuel drops and air

    NASA Technical Reports Server (NTRS)

    Myers, G. D.; Lefebvre, A. H.

    1984-01-01

    Photographic methods are used to measure flame speeds in flowing mixtures of fuel props and air at atmospheric pressure. The fuels employed include a conventional fuel oil plus various blends JP 7 with stocks containing single-ring and mullti-ring aromatics. The results for stoichiometric mixtures show that flame propagation cannot occur in mixtures containing mean drop sizes larger than 300 to 400 microns, depending on the fuel type. For smaller drop sizes, down to around 60 microns, flame speed is inversely proportional to drop size, indicating that evaporation rates are limiting to flame speed. Below around 60 microns, the curves of flame speed versus mean drop size flatten out, thereby demonstrating that for finely atomized sprays flame speeds are much less dependent on evaporation rates, and are governed primarily by mixing and/or chemical reaction rates. The fuels exhibiting the highest flame speeds are those containing multi-ring aromatics. This is attributed to the higher radiative heat flux emanating from their soot-bearing flames which enhances the rate of evaporation of the fuel drops approaching the flame front.

  18. Thread angle dependency on flame spread shape over kenaf/polyester combined fabric

    NASA Astrophysics Data System (ADS)

    Azahari Razali, Mohd; Sapit, Azwan; Nizam Mohammed, Akmal; Nor Anuar Mohamad, Md; Nordin, Normayati; Sadikin, Azmahani; Faisal Hushim, Mohd; Jaat, Norrizam; Khalid, Amir

    2017-09-01

    Understanding flame spread behavior is crucial to Fire Safety Engineering. It is noted that the natural fiber exhibits different flame spread behavior than the one of the synthetic fiber. This different may influences the flame spread behavior over combined fabric. There is a research has been done to examined the flame spread behavior over kenaf/polyester fabric. It is seen that the flame spread shape is dependent on the thread angle dependency. However, the explanation of this phenomenon is not described in detail in that research. In this study, explanation about this phenomenon is given in detail. Results show that the flame spread shape is dependent on the position of synthetic thread. For thread angle, θ = 0°, the polyester thread is breaking when the flame approach to the thread and the kenaf thread tends to move to the breaking direction. This behavior produces flame to be ‘V’ shape. However, for thread angle, θ = 90°, the polyester thread melts while the kenaf thread decomposed and burned. At this angle, the distance between kenaf threads remains constant as flame approaches.

  19. Use of laser-induced spark for studying ignition stability and unburned hydrogen escaping from laminar diluted hydrogen diffusion jet flames

    NASA Astrophysics Data System (ADS)

    Phuoc, Tran X.; Chen, Ruey-Hung

    2007-08-01

    Ignition and unburned hydrogen escaping from hydrogen jet diffusion flames diluted with nitrogen up to 70% were experimentally studied. The successful ignition locations were about 2/3 of the flame length above the jet exit for undiluted flames and moved much closer to the exit for diluted flames. For higher levels of dilution or higher flow rates, there existed a region within which a diluted hydrogen diffusion flame can be ignited and burns with a stable liftoff height. This is contrary to previous findings that pure and diluted hydrogen jet diffusion cannot achieve a stable lifted flame configuration. With liftoff, the flame is noisy and short with significant amount of unburned hydrogen escaping into the product gases. If ignition is initiated below this region, the flame propagates upstream quickly and attaches to the burner rim. Results from measurements of unburned hydrogen in the combustion products showed that the amount of unburned hydrogen increased as the nitrogen dilution level was increased. Thus, hydrogen diffusion flame diluted with nitrogen cannot burn completely.

  20. Effects of buoyancy on gas jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Edelman, Raymond B.

    1993-01-01

    The objective of this effort was to gain a better understanding of the fundamental phenomena involved in laminar gas jet diffusion flames in the absence of buoyancy by studying the transient phenomena of ignition and flame development, (quasi-) steady-state flame characteristics, soot effects, radiation, and, if any, extinction phenomena. This involved measurements of flame size and development, as well as temperature and radiation. Additionally, flame behavior, color, and luminosity were observed and recorded. The tests quantified the effects of Reynolds number, nozzle size, fuel reactivity and type, oxygen concentration, and pressure on flame characteristics. Analytical and numerical modeling efforts were also performed. Methane and propane flames were studied in the 2.2 Second Drop Tower and the 5.18-Second Zero-Gravity Facility of NASA LeRC. In addition, a preliminary series of tests were conducted in the KC-135 research aircraft. Both micro-gravity and normal-gravity flames were studied in this program. The results have provided unique and new information on the behavior and characteristics of gas jet diffusion flames in micro-gravity environments.

  1. Gravitational Effects on Cellular Flame Structure

    NASA Technical Reports Server (NTRS)

    Dunsky, C. M.; Fernandez-Pello, A. C.

    1991-01-01

    An experimental investigation has been conducted of the effect of gravity on the structure of downwardly propagating, cellular premixed propane-oxygen-nitrogen flames anchored on a water-cooled porous-plug burner. The flame is subjected to microgravity conditions in the NASA Lewis 2.2-second drop tower, and flame characteristics are recorded on high-speed film. These are compared to flames at normal gravity conditions with the same equivalence ratio, dilution index, mixture flow rate, and ambient pressure. The results show that the cellular instability band, which is located in the rich mixture region, changes little under the absence of gravity. Lifted normal-gravity flames near the cellular/lifted limits, however, are observed to become cellular when gravity is reduced. Observations of a transient cell growth period following ignition point to heat loss as being an important mechanism in the overall flame stability, dominating the stabilizing effect of buoyancy for these downwardly-propagating burner-anchored flames. The pulsations that are observed in the plume and diffusion flame generated downstream of the premixed flame in the fuel rich cases disappear in microgravity, verifying that these fluctuations are gravity related.

  2. Direct numerical simulations of flow-chemistry interactions in statistically turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Arias, Paul; Uranakar, Harshavardhana; Chaudhuri, Swetaprovo; Im, Hong

    2015-11-01

    The effects of Damköhler number and Karlovitz number on the flame dynamics of three-dimensional statistically planar turbulent premixed flames are investigated by direct numerical simulation incorporating detailed chemistry and transport for a hydrogen-air mixture. The mean inlet velocity was dynamically adjusted to ensure a stable flame within the computational domain, allowing the investigation of time-averaged quantities of interest. A particular interest was on understanding the effects of turbulence on the displacement speed of the flame relative to the local fluid flow. Results show a linear dependence on the displacement speed as a function of total strain, consistent with earlier work on premixed-laminar flames. Additional analysis on the local flame thickness reveals that the effect of turbulence is twofold: (1) the increase in mixing results in flame thinning due to the enhancement of combustion at early onset of the flame, and (2) for large Reynolds number flows, the penetration of the turbulence far into the preheat zone and into the reaction zone results in localized flame broadening.

  3. Smoke Point in Co-flow Experiment

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Sunderland, Peter B.; Yuan, Zeng-Guang

    2009-01-01

    The Smoke Point In Co-flow Experiment (SPICE) determines the point at which gas-jet flames (similar to a butane-lighter flame) begin to emit soot (dark carbonaceous particulate formed inside the flame) in microgravity. Studying a soot emitting flame is important in understanding the ability of fires to spread and in control of soot in practical combustion systems space. Previous experiments show that soot dominates the heat emitted from flames in normal gravity and microgravity fires. Control of this heat emission is critical for prevention of the spread of fires on Earth and in space for the design of efficient combustion systems (jet engines and power generation boilers). The onset of soot emission from small gas jet flames (similar to a butane-lighter flame) will be studied to provide a database that can be used to assess the interaction between fuel chemistry and flow conditions on soot formation. These results will be used to support combustion theories and to assess fire behavior in microgravity. The Smoke Point In Co-flow Experiment (SPICE) will lead to a o improved design of practical combustors through improved control of soot formation; o improved understanding of and ability to predict heat release, soot production and emission in microgravity fires; o improved flammability criteria for selection of materials for use in the next generation of spacecraft. The Smoke Point In Co-flow Experiment (SPICE) will continue the study of fundamental phenomena related to understanding the mechanisms controlling the stability and extinction of jet diffusion flames begun with the Laminar Soot Processes (LSP) on STS-94. SPICE will stabilize an enclosed laminar flame in a co-flowing oxidizer, measure the overall flame shape to validate the theoretical and numerical predictions, measure the flame stabilization heights, and measure the temperature field to verify flame structure predictions. SPICE will determine the laminar smoke point properties of non-buoyant jet diffusion flames (i.e., the properties of the largest laminar jet diffusion flames that do not emit soot) for several fuels under different nozzle diameter/co-flow velocity configurations. Luminous flame shape measurements would also be made to verify models of the flame shapes under co-flow conditions. The smoke point is a simple measurement that has been found useful to study the influence of flow and fuel properties on the sooting propensity of flames. This information would help support current understanding of soot processes in laminar flames and by analogy in turbulent flames of practical interest.

  4. Experimental investigation of supersonic combustion in a strut-cavity based combustor

    NASA Astrophysics Data System (ADS)

    Sathiyamoorthy, K.; Danish, Tahzeeb Hassan; Srinivas, J.; Manjunath, P.

    2018-07-01

    Supersonic combustion was experimentally investigated in a strut-cavity based scramjet combustor with kerosene and pilot hydrogen as fuels. Strut-cavity is the space between two tandem struts in streamwise direction. The occurrence of cavity induced pressure oscillations in the strut-cavity was confirmed through cold flow experiments. The dominant modes of pressure oscillations were strongly influenced by the cavity aspect ratio. A ventilated rear wall (VRW), which is a new passive control device, was adopted in the strut-cavity. The strut-cavity with the VRW attenuated pressure oscillations better than the 'ramp rear wall' configuration. A scramjet combustor was realized with two strut-cavities in tandem for mixing enhancement and a strut-cavity with the VRW for flame stabilization. The combustor was tested at the following inlet conditions: total pressure of 4.89 bar, total temperature of 1517 K, and Mach number of 2. Supersonic combustion was observed. Steep increase in static pressure in the region of the strut-cavity with the VRW indicated that the flame was stabilized. The combustor was operated at a wide range of equivalence ratios (0.3-0.7) without inlet interactions. The total pressure at the combustor exit plane indicated that the flow was uniform, except at the central region. The total pressure loss and combustion efficiency of the combustor were evaluated for various equivalence ratios.

  5. Premixed Flames Under Microgravity and Normal Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Krikunova, Anastasia I.; Son, Eduard E.

    2018-03-01

    Premixed conical CH4-air flames were studied experimentally and numerically under normal straight, reversed gravity conditions and microgravity. Low-gravity experiments were performed in Drop tower. Classical Bunsen-type burner was used to find out features of gravity influence on the combustion processes. Mixture equivalence ratio was varied from 0.8 to 1.3. Wide range of flow velocity allows to study both laminar and weakly turbulized flames. High-speed flame chemoluminescence video-recording was used as diagnostic. The investigations were performed at atmospheric pressure. As results normalized flame height, laminar flame speed were measured, also features of flame instabilities were shown. Low- and high-frequency flame-instabilities (oscillations) have a various nature as velocity fluctuations, preferential diffusion instability, hydrodynamic and Rayleigh-Taylor ones etc., that was explored and demonstrated.

  6. The mechanisms of flame holding in the wake of a bluff body

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Malik, S.

    1984-01-01

    The flame holding mechanism for lean methane and lean propane air flames is examined under conditions where the recirculation zone is absent. The holding process is studied in detail in an attempt to determine the mechanism of flame holding and also the conditions where this mechanism is viable and when it fails and blow off occurs. Inverted flames held in the wake of a flat strip are studied. The velocity flow field is determined using a Laser Doppler Velocimetry technique. Equation of continuity is used to calculate the flame temperature from the change in area of flow streamlines before and after the flame. For methane air flame the controlling factor for blow off is incomplete reaction due to higher blowing rate leading to reduced residence time in the reaction zone.

  7. Effect of pressure on structure and NO sub X formation in CO-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.; Miller, I. M.

    1979-01-01

    A study was made of nitric oxide formation in a laminar CO-air diffusion flame over a pressure range from 1 to 50 atm. The carbon monoxide (CO) issued from a 3.06 mm diameter port coaxially into a coflowing stream of air confined within a 20.5 mm diameter chimney. Nitric oxide concentrations from the flame were measured at two carbon monoxide (fuel) flow rates: 73 standard cubic/min and 146 sccm. Comparison of the present data with data in the literature for a methane-air diffusion flame shows that for flames of comparable flame height (8 to 10 mm) and pseudoequivalence ratio (0.162), the molar emission index of a CO-air flame is significantly greater than that of a methane-air flame.

  8. Field Effects of Buoyancy on Lean Premixed Turbulent Flames

    NASA Technical Reports Server (NTRS)

    Cheng, R. K.; Johnson, M. R.; Greenberg, P. S.; Wernet, M. P.

    2003-01-01

    The study of field effects of buoyancy on premixed turbulent flames is directed towards the advancement of turbulent combustion theory and the development of cleaner combustion technologies. Turbulent combustion is considered the most important unsolved problem in combustion science and laboratory studies of turbulence flame processes are vital to theoretical development. Although buoyancy is dominant in laboratory flames, most combustion models are not yet capable to consider buoyancy effects. This inconsistency has impeded the validation of theories and numerical simulations with experiments. Conversely, the understanding of buoyancy effects is far too limited to help develop buoyant flame models. Our research is also relevant to combustion technology because lean premixed combustion is a proven method to reduce the formation of oxides of nitrogen (NOx). In industrial lean premixed combustion systems, their operating conditions make them susceptible to buoyancy thus affecting heat distribution, emissions, stability, flashback and blowoff. But little knowledge is available to guide combustion engineers as to how to avoid or overcome these problems. Our hypothesis is that through its influence on the mean pressure field, buoyancy has direct and indirect effects on local flame/turbulence interactions. Although buoyancy acts on the hot products in the farfield the effect is also felt in the nearfield region upstream of the flame. These changes also influence the generation and dissipation of turbulent kinetic energy inside the flame brush and throughout the flowfield. Moreover, the plume of an open flame is unstable and the periodic fluctuations make additional contributions to flame front dynamics in the farfield. Therefore, processes such as flame wrinkling, flow acceleration due to heat release and flame- generated vorticity are all affected. Other global flame properties (e.g. flame stabilization limits and flame speed) may all be coupled to buoyancy. This problem poses major challenges to combustion modeling due to its need for a computation domain extending into the farfield and full specifications of upstream, wall and downstream boundary conditions.

  9. Tulip flames: changes in shape of premixed flames propagating in closed tubes

    NASA Astrophysics Data System (ADS)

    Dunn-Rankin, D.; Sawyer, R. F.

    The experimental results that are the subject of this communication provide high-speed schlieren images of the closed-tube flame shape that has come to be known as the tulip flame. The schlieren images, along with in-chamber pressure records, help demonstrate the effects of chamber length, equivalence ratio, and igniter geometry on formation of the tulip flame. The pressure/time records show distinct features which correlate with flame shape changes during the transition to tulip. The measurements indicate that the basic tulip flame formation is a robust phenomenon that depends on little except the overall geometry of the combustion vessel.

  10. Flame Holder System

    NASA Technical Reports Server (NTRS)

    Haskin, Henry H. (Inventor); Vasquez, Peter (Inventor)

    2013-01-01

    A flame holder system includes a modified torch body and a ceramic flame holder. Catch pin(s) are coupled to and extend radially out from the torch body. The ceramic flame holder has groove(s) formed in its inner wall that correspond in number and positioning to the catch pin(s). Each groove starts at one end of the flame holder and can be shaped to define at least two 90.degree.turns. Each groove is sized to receive one catch pin therein when the flame holder is fitted over the end of the torch body. The flame holder is then manipulated until the catch pin(s) butt up against the end of the groove(s).

  11. The Crimea and the Donbass in Flames: The Influence of Russian Propaganda and the Ukraine Crisis

    DTIC Science & Technology

    2016-09-01

    RUSSIAN PROPAGANDA AND THE UKRAINE CRISIS 5. FUNDING NUMBERS 6. AUTHOR(S) James T. Hough 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES...establish a new norm or gives new significance to an old one. F. THESIS OVERVIEW AND DRAFT CHAPTER OUTLINE This thesis is organized into four

  12. Application of an Imaging Fourier-Transform Spectrometer for the Means of Combustion Diagnostics

    DTIC Science & Technology

    2012-06-14

    and P. McCready. Dial measurements of fugitive emissions from natural gas plants and the comparison with emission factor estimates. Proc. 15th...12-J02 Abstract A passive remote sensing technique for accurately monitoring the combustion effi- ciency of petrochemical flares is greatly desired. A...and the spatial distribu- tion of combustion by-products. The flame spectra were characterized by structured emissions from CO2, H2O and CO

  13. Synthesis of Diopside by Solution Combustion Process Using Glycine Fuel

    NASA Astrophysics Data System (ADS)

    Sherikar, Baburao N.; Umarji, A. M.

    Nano ceramic Diopside (CaMgSi2O6) powders are synthesized by Solution Combustion Process(SCS) using Calcium nitrate, Magnesium nitrate as oxidizer and glycine as fuel, fumed silica as silica source. Ammonium nitrate (AN) is used as extra oxidizer. Effect of AN on Diopside phase formation is investigated. The adiabatic flame temperatures are calculated theoretically for varying amount of AN according to thermodynamic concept and correlated with the observed flame temperatures. A “Multi channel thermocouple setup connected to computer interfaced Keithley multi voltmeter 2700” is used to monitor the thermal events during the process. An interpretation based on maximum combustion temperature and the amount of gases produced during reaction for various AN compositions has been proposed for the nature of combustion and its correlation with the characteristics of as synthesized powder. These powders are characterized by XRD, SEM showing that the powders are composed of polycrystalline oxides with crystallite size of 58nm to 74nm.

  14. Autonomous space processor for orbital debris

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Campbell, David; Brockman, Jeff P.; Carter, Bruce; Donelson, Leslie; John, Lawrence E.; Marine, Micky C.; Rodina, Dan D.

    1989-01-01

    This work continues to develop advanced designs toward the ultimate goal of a GETAWAY SPECIAL to demonstrate economical removal of orbital debris utilizing local resources in orbit. The fundamental technical feasibility was demonstrated last year through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design and a subscale model. During this reporting period, several improvements are made in the solar cutter, such as auto track capabilities, better quality reflectors and a more versatile framework. The major advance has been in the design, fabrication and working demonstration of a ROBOTIC ARM that has several degrees of freedom. The functions were specifically tailored for the orbital debris handling. These advances are discussed here. Also a small fraction of the resources were allocated towards research in flame augmentation in SCRAMJETS for the NASP. Here, the fundamental advance was the attainment of Mach numbers up to 0.6 in the flame zone and a vastly improved injection system; the current work is expected to achieve supersonic combustion in the laboratory and an advanced monitoring system.

  15. The use of optical pyrometers in axial flow turbines

    NASA Astrophysics Data System (ADS)

    Sellers, R. R.; Przirembel, H. R.; Clevenger, D. H.; Lang, J. L.

    1989-07-01

    An optical pyrometer system that can be used to measure metal temperatures over an extended range of temperature has been developed. Real-time flame discrimination permits accurate operation in the gas turbine environment with high flame content. This versatile capability has been used in a number of ways. In experimental engines, a fixed angle pyrometer has been used for turbine health monitoring for the automatic test stand abort system. Turbine blade creep capability has been improved by tailoring the burner profile based on measured blade temperatures. Fixed and traversing pyrometers were used extensively during engine development to map blade surface temperatures in order to assess cooling effectiveness and identify optimum configurations. Portable units have been used in turbine field inspections. A new low temperature pyrometer is being used as a diagnostic tool in the alternate turbopump design for the Space Shuttle main engine. Advanced engine designs will incorporate pyrometers in the engine control system to limit operation to safe temperatures.

  16. Monitoring gas concentrations in environmental and atmospheric applications using tunable diode lasers

    NASA Astrophysics Data System (ADS)

    Awtry, Andrew R.

    Two atmospheric chemistry processes that contribute to environmental concerns have been explored using mid-infrared, lead-salt diode lasers. Tunable diode laser absorption spectroscopy was used to determine concentrations of both NF3 and NH3. The focus of the NF3 research was to determine the magnitude of the nu1 absorption band in order to determine the effects of this molecule on global warming. Deposition velocity is a proportionality constant between concentration and vertical flux to a surface. The magnitude of this constant for NH 3 depositing onto water is experimentally determined using both a small cell (425 mL) and a large chamber (335 L). The results from the chamber are then incorporated into a model in an attempt to better understand the atmospheric contribution to aqueous concentrations. Near-infrared diode lasers were used in both integrated cavity output spectroscopy and cavity ringdown spectroscopy in an attempt to develop an air monitoring sensor. The following experiments were then performed determine the sensitivity, durability and dynamic range of these two techniques: flame characterization of HCN and C2H2 in a flame from a Wolfhard-Parker burner, obtaining isolated absorption features of CO, CO2, H 2O, HCN, NH3, CH4, and C2H4 in order to create calibration curves and determine detection limits, CO 2 classroom measurements, and CO2 isotope ratio measurements.

  17. Turbulent Jet Flames Into a Vitiated Coflow. PhD Thesis awarded Spring 2003

    NASA Technical Reports Server (NTRS)

    Holdeman, James D. (Technical Monitor); Cabra, Ricardo

    2004-01-01

    Examined is the vitiated coflow flame, an experimental condition that decouples the combustion processes of flows found in practical combustors from the associated recirculating fluid mechanics. The configuration consists of a 4.57 mm diameter fuel jet into a coaxial flow of hot combustion products from a lean premixed flame. The 210 mm diameter coflow isolates the jet flame from the cool ambient, providing a hot environment similar to the operating conditions of advanced combustors; this important high temperature element is lacking in the traditional laboratory experiments of jet flames into cool (room) air. A family of flows of increasing complexity is presented: 1) nonreacting flow, 2) all hydrogen flame (fuel jet and premixed coflow), and 3) set of methane flames. This sequence of experiments provides a convenient ordering of validation data for combustion models. Laser Raman-Rayleigh-LIF diagnostics at the Turbulent Diffusion Flame laboratory of Sandia National Laboratories produced instantaneous multiscalar point measurements. These results attest to the attractive features of the vitiated coflow burner and the well-defined boundary conditions provided by the coflow. The coflow is uniform and steady, isolating the jet flame from the laboratory air for a downstream distance ranging from z/d = 50-70. The statistical results show that differential diffusion effects in this highly turbulent flow are negligible. Complementing the comprehensive set of multiscalar measurements is a parametric study of lifted methane flames that was conducted to analyze flame sensitivity to jet and coflow velocity, as well as coflow temperature. The linear relationship found between the lift-off height and the jet velocity is consistent with previous experiments. New linear sensitivities were found correlating the lift-off height to coflow velocity and temperature. A blow-off study revealed that the methane flame blows off at a common coflow temperature (1260 K), regardless of coflow or jet velocity. An explanation for this phenomenon is that entrainment of ambient air at the high lift-off heights prevents autoignition. Analysis of the results suggests that flame stabilization occurs through a combination of flame propagation, autoignition, and localized extinction processes. Proposed is an expanded view of distributed reaction combustion based on analysis of the distributions of probe volume conditions at the stabilization region of the lifted hydrogen and methane flames. Turbulent eddies the size of the flame thickness mix fuel and hot coflow across the flame front, thereby enhancing the reaction zone with autoignition of reactants at elevated temperatures; this is the reverse effect of turbulent flames in ambient air, where intense turbulence in cool mixtures result in localized extinction. Each of the three processes (i.e., flame propagation, autoignition and localized extinction) contributes to flame stabilization in varying degrees, depending on flow conditions.

  18. 30 CFR 14.20 - Flame resistance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINING PRODUCTS REQUIREMENTS FOR THE APPROVAL OF FLAME-RESISTANT CONVEYOR BELTS Technical Requirements § 14.20 Flame resistance. Conveyor belts for use in underground coal mines must be flame-resistant and...

  19. Effects Of Electric Field On Hydrocarbon-Fueled Flames

    NASA Technical Reports Server (NTRS)

    Yuan, Z.-G.; Hegde, U.

    2003-01-01

    It has been observed that flames are susceptible to electric fields that are much weaker than the breakdown field strength of the flame gases. When an external electric field is imposed on a flame, the ions generated in the flame reaction zone drift in the direction of the electric forces exerted on them. The moving ions collide with the neutral species and change the velocity distribution in the affected region. This is often referred to as ionic wind effect. In addition, the removal of ions from the flame reaction zone can alter the chemical reaction pathway of the flame. On the other hand, the presence of space charges carried by moving ions affects the electric field distribution. As a result, the flame often changes its shape, location and color once an external electric field is applied. The interplay between the flame movement and the change of electric field makes it difficult to determine the flame location for a given configuration of electrodes and fuel source. In normal gravity, the buoyancy-induced flow often complicates the problem and hinders detailed study of the interaction between the flame and the electric field. In this work, the microgravity environment established at the 2.2 Second Drop Tower at the NASA Glenn Research Center is utilized to effectively remove the buoyant acceleration. The interaction between the flame and the electric field is studied in a one-dimensional domain. A specially designed electrode makes flame current measurements possible; thus, the mobility of ions, ion density, and ionic wind effect can be evaluated.

  20. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, V. R.

    2006-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated. A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

Top