Altered spinal cord activity during sexual stimulation in women with SCI: a pilot fMRI study.
Alexander, Marcalee; Kozyrev, Natalie; Figley, Chase R; Richards, J Scott
2017-01-01
The objective of this study was to assess the feasibility of the use of functional magnetic resonance imaging (fMRI) to evaluate the spinal activation during sexual response of the thoracic, lumbar and sacral spinal cord. This is a laboratory-based pilot study in human females at a University-based medical center in the United States. In three healthy spinal cord injury (SCI) females, spinal cord activations during sexual audiovisual stimulation (alone), genital self-stimulation (alone) and simultaneous audiovisual and genital self-stimulation (combined) were assessed and then compared with each subjects' remaining sensory and motor function. Spinal fMRI responses of the intermediolateral columns were found during audiovisual stimulation in both subjects with incomplete injuries, but they were not observed in the subject with a complete injury. Moreover, sacral responses to combined stimulation differed greatly between the subjects with complete and incomplete injuries. These results not only provide the first in vivo documentation of spinal fMRI responses associated with sexual arousal in women with SCIs, but also suggest that spinal cord fMRI is capable of distinguishing between injury subtypes. Therefore, although there are certain limitations associated with fMRI during sexual stimulation (for example, movement artifacts, an artificially controlled environment and so), these findings demonstrate the potential utility of incorporating spinal cord fMRI in future research to evaluate the impact of specific patterns of SCI on sexual responses and/or the effects of treatment.
Warbrick, Tracy; Reske, Martina; Shah, N Jon
2014-09-22
As cognitive neuroscience methods develop, established experimental tasks are used with emerging brain imaging modalities. Here transferring a paradigm (the visual oddball task) with a long history of behavioral and electroencephalography (EEG) experiments to a functional magnetic resonance imaging (fMRI) experiment is considered. The aims of this paper are to briefly describe fMRI and when its use is appropriate in cognitive neuroscience; illustrate how task design can influence the results of an fMRI experiment, particularly when that task is borrowed from another imaging modality; explain the practical aspects of performing an fMRI experiment. It is demonstrated that manipulating the task demands in the visual oddball task results in different patterns of blood oxygen level dependent (BOLD) activation. The nature of the fMRI BOLD measure means that many brain regions are found to be active in a particular task. Determining the functions of these areas of activation is very much dependent on task design and analysis. The complex nature of many fMRI tasks means that the details of the task and its requirements need careful consideration when interpreting data. The data show that this is particularly important in those tasks relying on a motor response as well as cognitive elements and that covert and overt responses should be considered where possible. Furthermore, the data show that transferring an EEG paradigm to an fMRI experiment needs careful consideration and it cannot be assumed that the same paradigm will work equally well across imaging modalities. It is therefore recommended that the design of an fMRI study is pilot tested behaviorally to establish the effects of interest and then pilot tested in the fMRI environment to ensure appropriate design, implementation and analysis for the effects of interest.
Hernández-Martin, Estefania; Marcano, Francisco; Casanova, Oscar; Modroño, Cristian; Plata-Bello, Julio; González-Mora, Jose Luis
2017-01-01
Abstract. Diffuse optical tomography (DOT) measures concentration changes in both oxy- and deoxyhemoglobin providing three-dimensional images of local brain activations. A pilot study, which compares both DOT and functional magnetic resonance imaging (fMRI) volumes through t-maps given by canonical statistical parametric mapping (SPM) processing for both data modalities, is presented. The DOT series were processed using a method that is based on a Bayesian filter application on raw DOT data to remove physiological changes and minimum description length application index to select a number of singular values, which reduce the data dimensionality during image reconstruction and adaptation of DOT volume series to normalized standard space. Therefore, statistical analysis is performed with canonical SPM software in the same way as fMRI analysis is done, accepting DOT volumes as if they were fMRI volumes. The results show the reproducibility and ruggedness of the method to process DOT series on group analysis using cognitive paradigms on the prefrontal cortex. Difficulties such as the fact that scalp–brain distances vary between subjects or cerebral activations are difficult to reproduce due to strategies used by the subjects to solve arithmetic problems are considered. T-images given by fMRI and DOT volume series analyzed in SPM show that at the functional level, both DOT and fMRI measures detect the same areas, although DOT provides complementary information to fMRI signals about cerebral activity. PMID:28386575
Karimpoor, Mahta; Tam, Fred; Strother, Stephen C.; Fischer, Corinne E.; Schweizer, Tom A.; Graham, Simon J.
2015-01-01
Neuropsychological tests behavioral tasks that very commonly involve handwriting and drawing are widely used in the clinic to detect abnormal brain function. Functional magnetic resonance imaging (fMRI) may be useful in increasing the specificity of such tests. However, performing complex pen-and-paper tests during fMRI involves engineering challenges. Previously, we developed an fMRI-compatible, computerized tablet system to address this issue. However, the tablet did not include visual feedback of hand position (VFHP), a human factors component that may be important for fMRI of certain patient populations. A real-time system was thus developed to provide VFHP and integrated with the tablet in an augmented reality display. The effectiveness of the system was initially tested in young healthy adults who performed various handwriting tasks in front of a computer display with and without VFHP. Pilot fMRI of writing tasks were performed by two representative individuals with and without VFHP. Quantitative analysis of the behavioral results indicated improved writing performance with VFHP. The pilot fMRI results suggest that writing with VFHP requires less neural resources compared to the without VFHP condition, to maintain similar behavior. Thus, the tablet system with VFHP is recommended for future fMRI studies involving patients with impaired brain function and where ecologically valid behavior is important. PMID:25859201
Basu, Tania; Bao, Pinglei; Lerner, Alexander; Anderson, Lindsey; Page, Kathleen; Stanczyk, Frank; Mishell, Daniel; Segall-Gutierrez, Penina
2016-10-01
The primary objective is to examine activation of food motivation centers in the brain before and 8 weeks after depo medroxyprogesterone acetate (DMPA) administration. This prospective experimental pilot study examined the effects of DMPA on food motivation centers utilizing functional magnetic resonance imaging (fMRI) in eight nonobese, ovulatory subjects. fMRI blood oxygen level dependent (BOLD) signal was measured using a 3-Tesla Scanner while participants viewed images of high-calorie foods, low-calorie foods and nonfood objects. fMRI scans were performed at baseline and 8 weeks after participants received one intramuscular dose of DMPA 150 mg. fMRI data were analyzed using the FMRIB Software Library. Changes in adiposity and circulating leptin and ghrelin levels were also measured. There was a greater BOLD signal response to food cues in brain regions associated with food motivation (anterior cingulate gyrus, orbitofrontal cortex) 8 weeks after DMPA administration compared to baseline (z>2.3, p<.05 whole-brain analysis clustered corrected). No statistically significant change was detected in circulating leptin or ghrelin levels or fat mass 8 weeks after DMPA administration. Analysis of differences in food motivation may guide the development of interventions to prevent weight gain in DMPA users. These data support a neural origin as one of the mechanisms underlying weight gain in DMPA users and may guide future research examining weight gain and contraception. Copyright © 2016 Elsevier Inc. All rights reserved.
Wade, Natasha E; Padula, Claudia B; Anthenelli, Robert M; Nelson, Erik; Eliassen, James; Lisdahl, Krista M
2017-12-01
Scant research has been conducted on neural mechanisms underlying stress processing in individuals with alcohol dependence (AD). We examined neural substrates of stress in AD individuals compared with controls using an fMRI task previously shown to induce stress, assessing amygdala functional connectivity to medial prefrontal cortex (mPFC). For this novel pilot study, 10 abstinent AD individuals and 11 controls completed a modified Trier stress task while undergoing fMRI acquisition. The amygdala was used as a seed region for whole-brain seed-based functional connectivity analysis. After controlling for family-wise error (p = 0.05), there was significantly decreased left and right amygdala connectivity with frontal (specifically mPFC), temporal, parietal, and cerebellar regions. Subjective stress, but not craving, increased from pre-to post-task. This study demonstrated decreased connectivity between the amygdala and regions important for stress and emotional processing in long-term abstinent individuals with AD. These results suggest aberrant stress processing in individuals with AD even after lengthy periods of abstinence.
Nenert, Rodolphe; Allendorfer, Jane B; Martin, Amber M; Banks, Christi; Ball, Angel; Vannest, Jennifer; Dietz, Aimee R; Szaflarski, Jerzy P
2017-07-18
BACKGROUND Recovery from post-stroke aphasia is a long and complex process with an uncertain outcome. Various interventions have been proposed to augment the recovery, including constraint-induced aphasia therapy (CIAT). CIAT has been applied to patients suffering from post-stroke aphasia in several unblinded studies to show mild-to-moderate linguistic gains. The aim of the present study was to evaluate the neuroimaging correlates of CIAT in patients with chronic aphasia related to left middle cerebral artery stroke. MATERIAL AND METHODS Out of 24 patients recruited in a pilot randomized blinded trial of CIAT, 19 patients received fMRI of language. Eleven of them received CIAT (trained) and eight served as a control group (untrained). Each patient participated in three fMRI sessions (before training, after training, and 3 months later) that included semantic decision and verb generation fMRI tasks, and a battery of language tests. Matching healthy control participants were also included (N=38; matching based on age, handedness, and sex). RESULTS Language testing showed significantly improved performance on Boston Naming Test (BNT; p<0.001) in both stroke groups over time and fMRI showed differences in the distribution of the areas involved in language production between groups that were not present at baseline. Further, regression analysis with BNT indicated changes in brain regions correlated with behavioral performance (temporal gyrus, postcentral gyrus, precentral gyrus, thalamus, left middle and superior frontal gyri). CONCLUSIONS Overall, our results suggest the possibility of language-related cortical plasticity following stroke-induced aphasia with no specific effect from CIAT training.
Sitaram, Ranganatha; Caria, Andrea; Veit, Ralf; Gaber, Tilman; Ruiz, Sergio; Birbaumer, Niels
2014-01-01
This pilot study aimed to explore whether criminal psychopaths can learn volitional regulation of the left anterior insula with real-time fMRI neurofeedback. Our previous studies with healthy volunteers showed that learned control of the blood oxygenation-level dependent (BOLD) signal was specific to the target region, and not a result of general arousal and global unspecific brain activation, and also that successful regulation modulates emotional responses, specifically to aversive picture stimuli but not neutral stimuli. In this pilot study, four criminal psychopaths were trained to regulate the anterior insula by employing negative emotional imageries taken from previous episodes in their lives, in conjunction with contingent feedback. Only one out of the four participants learned to increase the percent differential BOLD in the up-regulation condition across training runs. Subjects with higher Psychopathic Checklist-Revised (PCL:SV) scores were less able to increase the BOLD signal in the anterior insula than their lower PCL:SV counterparts. We investigated functional connectivity changes in the emotional network due to learned regulation of the successful participant, by employing multivariate Granger Causality Modeling (GCM). Learning to up-regulate the left anterior insula not only increased the number of connections (causal density) in the emotional network in the single successful participant but also increased the difference between the number of outgoing and incoming connections (causal flow) of the left insula. This pilot study shows modest potential for training psychopathic individuals to learn to control brain activity in the anterior insula. PMID:25352793
Mattioli, Flavia; Ambrosi, Claudia; Mascaro, Lorella; Scarpazza, Cristina; Pasquali, Patrizia; Frugoni, Marina; Magoni, Mauro; Biagi, Laura; Gasparotti, Roberto
2014-02-01
Early poststroke aphasia rehabilitation effects and their functional MRI (fMRI) correlates were investigated in a pilot, controlled longitudinal study. Twelve patients with mild/moderate aphasia (8 Broca, 3 anomic, and 1 Wernicke) were randomly assigned to daily language rehabilitation for 2 weeks (starting 2.2 [mean] days poststroke) or no rehabilitation. The Aachen Aphasia Test and fMRI recorded during an auditory comprehension task were performed at 3 time intervals: mean 2.2 (T1), 16.2 (T2), and 190 (T3) days poststroke. Groups did not differ in terms of age, education, aphasia severity, lesions volume, baseline fMRI activations, and in task performance during fMRI across examinations. Rehabilitated patients significantly improved in naming and written language tasks (P<0.05) compared with no rehabilitation group both at T2 and T3. Functional activity at T1 was reduced in language-related cortical areas (right and left inferior frontal gyrus and middle temporal gyrus, right inferior parietal lobule and superior temporal gyrus) in patients compared with controls. T2 and T3 follow-ups revealed a cortical activation increase, with significantly greater activation in the left hemisphere areas in rehabilitated patients at T2 and T3, and a time×treatment effect at T2 in the left inferior Broca area after rehabilitation. Left inferior frontal gyrus activation at T2 significantly correlated with naming improvement. Early poststroke aphasia treatment is useful, has durable effects, and may lead to early enhanced recruitment of brain areas, particularly the left inferior frontal gyrus, which persists in the chronic phase.
Wittmann, A; Schlagenhauf, F; John, T; Guhn, A; Rehbein, H; Siegmund, A; Stoy, M; Held, D; Schulz, I; Fehm, L; Fydrich, T; Heinz, A; Bruhn, H; Ströhle, A
2011-04-01
Agoraphobia (with and without panic disorder) is a highly prevalent and disabling anxiety disorder. Its neural complexity can be characterized by specific cues in fMRI studies. Therefore, we developed a fMRI paradigm with agoraphobia-specific stimuli. Pictures of potential agoraphobic situations were generated. Twenty-six patients, suffering from panic disorder and agoraphobia, and 22 healthy controls rated the pictures with respect to arousal, valence, and agoraphobia-related anxiety. The 96 pictures, which discriminated best between groups were chosen, split into two parallel sets and supplemented with matched neutral pictures from the International Affective Picture System. Reliability, criterion, and construct validity of the picture set were determined in a second sample (44 patients, 28 controls). The resulting event-related "Westphal-Paradigm" with cued and uncued pictures was tested in a fMRI pilot study with 16 patients. Internal consistency of the sets was very high; parallelism was given. Positive correlations of picture ratings with Mobility Inventory and Hamilton anxiety scores support construct validity. FMRI data revealed activations in areas associated with the fear circuit including amygdala, insula, and hippocampal areas. Psychometric properties of the Westphal-Paradigm meet necessary quality requirements for further scientific use. The paradigm reliably produces behavioral and fMRI patterns in response to agoraphobia-specific stimuli. To our knowledge, it is the first fMRI paradigm with these properties. This paradigm can be used to further characterize the functional neuroanatomy of panic disorder and agoraphobia and might be useful to contribute data to the differentiation of panic disorder and agoraphobia as related, but conceptually different clinical disorders.
Davis, Susan R; Davison, Sonia L; Gavrilescu, Maria; Searle, Karissa; Gogos, Andrea; Rossell, Susan L; Egan, Gary F; Bell, Robin J
2014-04-01
This study aims to investigate the effects of testosterone on cognitive performance during functional magnetic resonance imaging (fMRI) in healthy estrogen-treated postmenopausal women. This was an open-label study in which postmenopausal women on nonoral estrogen therapy were treated with transdermal testosterone for 26 weeks. Women performed tests of verbal fluency (number of words) and mental rotation (reaction time and accuracy) during pretreatment and posttreatment fMRI. Blood oxygen level-dependent (BOLD) signal intensity was measured during fMRI tasks. Nine women with a mean (SD) age of 55.4 (3.8) years completed the study. Twenty-six weeks of testosterone therapy was associated with significant decreases in BOLD intensity during the mental rotation task in the right superior parietal, left inferior parietal, and left precuneus regions, and during the verbal fluency task in the left inferior frontal gyrus, left lingual gyrus, and medial frontal gyrus (all P < 0.05), with no change in task performance, accuracy, or speed. Testosterone therapy is associated with reduced BOLD signal activation in key anatomical areas during fMRI verbal fluency and visuospatial tasks in healthy estrogen-treated postmenopausal women. Our interpretation is that testosterone therapy facilitates preservation of cognitive function with less neuronal recruitment.
fMRI of Parents of Children with Asperger Syndrome: A Pilot Study
ERIC Educational Resources Information Center
Baron-Cohen, Simon; Ring, Howard; Chitnis, Xavier; Wheelwright, Sally; Gregory, Lloyd, Williams, Steve; Brammer, Mick; Bullmore, Ed
2006-01-01
Background: People with autism or Asperger Syndrome (AS) show altered patterns of brain activity during visual search and emotion recognition tasks. Autism and AS are genetic conditions and parents may show the "broader autism phenotype." Aims: (1) To test if parents of children with AS show atypical brain activity during a visual search…
Nichols, Travis T.; Foulds, Jonathan; Yingst, Jessica; Veldheer, Susan; Hrabovsky, Shari; Richie, John; Eissenberg, Thomas; Wilson, Stephen J.
2015-01-01
Some individuals who try electronic cigarettes (e-cigarettes) continue to use long-term. Previous research has investigated the safety of e-cigarettes and their potential for use in smoking cessation, but comparatively little research has explored chronic or habitual e-cigarette use. In particular, the relationship between e-cigarette cues and craving is unknown. We sought to bridge this gap by developing a novel set of e-cigarette (salient) and electronic toothbrush (neutral) videos for use in cue-reactivity paradigms. Additionally, we demonstrate the utility of this approach in a pilot fMRI study of 7 experienced e-cigarette users. Participants were scanned while viewing the cue videos before and after 10 minute use of their own e-cigarettes (producing an 11.7 ng/ml increase in plasma nicotine concentration). A significant session (pre- and post-use) by video type (salient and neutral) interaction was exhibited in many sensorimotor areas commonly activated in other cue-reactivity paradigms. We did not detect significant cue-related activity in other brain regions notable in the craving literature. Possible reasons for this discrepancy are discussed, including the importance of matching cue stimuli to participants’ experiences. PMID:26478134
Nichols, Travis T; Foulds, Jonathan; Yingst, Jessica M; Veldheer, Susan; Hrabovsky, Shari; Richie, John; Eissenberg, Thomas; Wilson, Stephen J
2016-05-01
Some individuals who try electronic cigarettes (e-cigarettes) continue to use long-term. Previous research has investigated the safety of e-cigarettes and their potential for use in smoking cessation, but comparatively little research has explored chronic or habitual e-cigarette use. In particular, the relationship between e-cigarette cues and craving is unknown. We sought to bridge this gap by developing a novel set of e-cigarette (salient) and electronic toothbrush (neutral) videos for use in cue-reactivity paradigms. Additionally, we demonstrate the utility of this approach in a pilot fMRI study of 7 experienced e-cigarette users. Participants were scanned while viewing the cue videos before and after 10min use of their own e-cigarettes (producing an 11.7ng/ml increase in plasma nicotine concentration). A significant session (pre- and post-use) by video type (salient and neutral) interaction was exhibited in many sensorimotor areas commonly activated in other cue-reactivity paradigms. We did not detect significant cue-related activity in other brain regions notable in the craving literature. Possible reasons for this discrepancy are discussed, including the importance of matching cue stimuli to participants' experiences. Copyright © 2015 Elsevier Inc. All rights reserved.
Mura, Marco; Castagna, Alessandro; Fontani, Vania; Rinaldi, Salvatore
2012-01-01
Purpose This study assessed changes in functional dysmetria (FD) and in brain activation observable by functional magnetic resonance imaging (fMRI) during a leg flexion-extension motor task following brain stimulation with a single radioelectric asymmetric conveyer (REAC) pulse, according to the precisely defined neuropostural optimization (NPO) protocol. Population and methods Ten healthy volunteers were assessed using fMRI conducted during a simple motor task before and immediately after delivery of a single REAC-NPO pulse. The motor task consisted of a flexion-extension movement of the legs with the knees bent. FD signs and brain activation patterns were compared before and after REAC-NPO. Results A single 250-millisecond REAC-NPO treatment alleviated FD, as evidenced by patellar asymmetry during a sit-up motion, and modulated activity patterns in the brain, particularly in the cerebellum, during the performance of the motor task. Conclusion Activity in brain areas involved in motor control and coordination, including the cerebellum, is altered by administration of a REAC-NPO treatment and this effect is accompanied by an alleviation of FD. PMID:22536071
Wei, Dongfeng; Lv, Chenlong; Zhang, Junying; Peng, Dantao; Hu, Liangping; Zhang, Zhanjun; Wang, Yongyan
2015-01-01
The purpose of this study was to explore the effects of Xueshuan Xinmai tablets (XXMT) for the treatment of cognition, brain activation in the rehabilitation period of ischemic stroke patients. 28 adults patients, aged 50-80 years, in the rehabilitation period of ischemic stroke were divided into XXMT treatment group and placebo control group. Patients received 3 months treatment (oral 0.8 g, 3 times per day). Before and after treatment, all patients were evaluated by a series of neuropsychological tests followed by resting-state functional magnetic resonance imaging (fMRI). In the XXMT treatment group, the patients' episodic memory showed significant improvement. The resting-state fMRI analysis indicated that a significant decline in the fractional amplitude of low-frequency fluctuation value was observed in the bilateral middle cingulate gyrus. Yiqi Huoxue effect under XXMT administration has a favorable mediation on episodic memory, consequently suppresses the activation of the cingulate gyrus in the rehabilitation period of ischemic stroke patients.
Brain activation patterns elicited by the 'Faces Symbol Test' -- a pilot fMRI study.
Grabner, Rh; Popotnig, F; Ropele, S; Neuper, C; Gorani, F; Petrovic, K; Ebner, F; Strasser-Fuchs, S; Fazekas, F; Enzinger, C
2008-04-01
The Faces Symbol Test (FST) has recently been proposed as a brief and patient-friendly screening instrument for the assessment of cognitive dysfunction in patients with multiple sclerosis (MS). However, in contrast to well-established MS screening tests such as the Paced Auditory Serial Addition Test, the neural correlates of the FST have not been investigated so far. In the present study, we developed a functional MRI (fMRI) version of the FST to provide first data on brain regions and networks involved in this test. A sample of 19 healthy participants completed a version of the FST adapted for fMRI, requiring matching of faces and symbols in a multiple choice test and two further experimental conditions drawing on cognitive subcomponents (face matching and symbol matching). Imaging data showed a differential involvement of a fronto-parieto-occipital network in the three conditions. The most demanding FST condition elicited brain activation patterns related with sustained attention and executive control. These results suggest that the FST recruits brain networks critical for higher-order cognitive functions often impaired in MS patients.
Dissociable Neural Mechanisms Underlying the Modulation of Pain and Anxiety? An fMRI Pilot Study
Moseley, Graham Lorimer; Berna, Chantal; Ploner, Markus; Tracey, Irene
2014-01-01
The down-regulation of pain through beliefs is commonly discussed as a form of emotion regulation. In line with this interpretation, the analgesic effect has been shown to co-occur with reduced anxiety and increased activity in the ventrolateral prefrontal cortex (VLPFC), which is a key region of emotion regulation. This link between pain and anxiety modulation raises the question whether the two effects are rooted in the same neural mechanism. In this pilot fMRI study, we compared the neural basis of the analgesic and anxiolytic effect of two types of threat modulation: a “behavioral control” paradigm, which involves the ability to terminate a noxious stimulus, and a “safety signaling” paradigm, which involves visual cues that signal the threat (or absence of threat) that a subsequent noxious stimulus might be of unusually high intensity. Analgesia was paralleled by VLPFC activity during behavioral control. Safety signaling engaged elements of the descending pain control system, including the rostral anterior cingulate cortex that showed increased functional connectivity with the periaqueductal gray and VLPFC. Anxiety reduction, in contrast, scaled with dorsolateral prefrontal cortex activation during behavioral control but had no distinct neural signature during safety signaling. Our pilot data therefore suggest that analgesic and anxiolytic effects are instantiated in distinguishable neural mechanisms and differ between distinct stress- and pain-modulatory approaches, supporting the recent notion of multiple pathways subserving top-down modulation of the pain experience. Additional studies in larger cohorts are needed to follow up on these preliminary findings. PMID:25502237
Stochastic resonance therapy induces increased movement related caudate nucleus activity.
Kaut, Oliver; Becker, Benjamin; Schneider, Christine; Zhou, Feng; Fliessbach, Klaus; Hurlemann, René; Wüllner, Ullrich
2016-10-12
Whole-body vibration can be used to supplement canonical physical treatment. It is performed while probands stand on a vibrating platform. Therapeutic vibration can be generated as a stochastic vibratory pattern, referred to as stochastic resonance whole-body vibration (SR-WBV). Despite the widespread use of SR-WBV its neurophysiological mechanism is unclear. A randomized sham-controlled double-blinded trial was performed as a pilot study. The experimental group received 6 cycles of SR-WBV at a frequency of 7 Hz with the SR-Zeptor device, and the sham group received the same treatment at a frequency of 1 Hz. At baseline 1.5 T functional magnetic resonance imaging (fMRI) was performed in the resting state, together with a finger/foot tapping test. A second fMRI was carried out after SR-WBV as sham treatment in both groups. Subsequently, a second cycle of SR-WBV was performed as sham or verum with consecutive fMRI, followed by a final fMRI on day 2. Nineteen healthy volunteers were allocated to the experimental or sham group, respectively. Analyses of specific effects revealed a significant treatment × time interaction effect (p < 0.05, small-volume corrected (SVC FWE-corrected)) in the left caudate nucleus during intermediate difficulty when comparing pre- vs post-SR-WBV treatment in the verum group. This proof-of-concept study suggests the existence of cerebral effects of SR-WBV.
Leidy, Heather J; Lepping, Rebecca J; Savage, Cary R; Harris, Corey T
2011-10-01
This functional magnetic resonance imaging (fMRI) pilot study identified whether breakfast consumption would alter the neural activity in brain regions associated with food motivation and reward in overweight "breakfast skipping" (BS) adolescent girls and examined whether increased protein at breakfast would lead to additional alterations. Ten girls (Age: 15 ± 1 years; BMI percentile 93 ± 1%; BS 5 ± 1×/week) completed 3 testing days. Following the BS day, the participants were provided with, in randomized order, normal protein (NP; 18 ± 1 g protein) or higher protein (HP; 50 ± 1 g protein) breakfast meals to consume at home for 6 days. On day 7 of each pattern, the participants came to the laboratory to consume their respective breakfast followed by appetite questionnaires and an fMRI brain scan to identify brain activation responses to viewing food vs. nonfood images prior to lunch. Breakfast consumption led to enduring (i.e., 3-h post breakfast) reductions in neural activation in the hippocampus, amygdala, cingulate, and parahippocampus vs. BS. HP led to enduring reductions in insula and middle prefrontal cortex activation vs. NP. Hippocampal, amygdala, cingulate, and insular activations were correlated with appetite and inversely correlated with satiety. In summary, the addition of breakfast led to alterations in brain activation in regions previously associated with food motivation and reward with additional alterations following the higher-protein breakfast. These data suggest that increased dietary protein at breakfast might be a beneficial strategy to reduce reward-driven eating behavior in overweight teen girls. Due to the small sample size, caution is warranted when interpreting these preliminary findings.
Bokde, Arun L W; Cavedo, Enrica; Lopez-Bayo, Patricia; Lista, Simone; Meindl, Thomas; Born, Christine; Galluzzi, Samantha; Faltraco, Frank; Dubois, Bruno; Teipel, Stefan J; Reiser, Maximilian; Möller, Hans-Jürgen; Hampel, Harald
2016-03-30
A pilot study to investigate the effects of rivastigmine on the brain activation pattern due to visual attention tasks in a group of amnestic Mild Cognitive Impaired patients (aMCI). The design was an initial three-month double blind period with a rivastigmine and placebo arms, followed by a nine-month open-label period. All patients underwent serial functional magnetic resonance imaging (fMRI) at baseline, and after three and six months of follow-up. Primary endpoint was the effect of rivastigmine on functional brain changes during visual attention (face and location matching) tasks. There were five in the rivastigmine arm and two in the placebo arm. The face matching task showed higher activation of visual areas after three months of treatment but no differences compared to baseline at six months. The location matching task showed a higher activation along the dorsal visual pathway at both three and six months follow ups. Treatment with rivastigmine demonstrates a significant effect on brain activation of the dorsal visual pathway during a location matching task in patients with aMCI. Our data support the potential use of task fMRI to map specific treatment effects of cholinergic drugs during prodromal stages of Alzheimer's disease (AD). Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Spiegelhalder, Kai; Feige, Bernd; Paul, Dominik; Riemann, Dieter; van Elst, Ludger Tebartz; Seifritz, Erich; Hennig, Jürgen; Hornyak, Magdolna
2008-01-01
The pathology of restless legs syndrome (RLS) is still not understood. To investigate the pathomechanism of the disorder further we recorded a surface electromyogram (EMG) of the anterior tibial muscle during functional magnetic resonance imaging (fMRI) in patients with idiopathic RLS. Seven subjects with moderate to severe RLS were investigated in the present pilot study. Patients were lying supine in the scanner for over 50 min and were instructed not to move voluntarily. Sensory leg discomfort (SLD) was evaluated on a 10-point Likert scale. For brain image analysis, an algorithm for the calculation of tonic EMG values was developed. We found a negative correlation of tonic EMG and SLD (p <0.01). This finding provides evidence for the clinical experience that RLS-related subjective leg discomfort increases during muscle relaxation at rest. In the fMRI analysis, the tonic EMG was associated with activation in motor and somatosensory pathways and also in some regions that are not primarily related to motor or somatosensory functions. By using a newly developed algorithm for the investigation of muscle tone-related changes in cerebral activity, we identified structures that are potentially involved in RLS pathology. Our method, with some modification, may also be suitable for the investigation of phasic muscle activity that occurs during periodic leg movements.
Optimization of Contrast Detection Power with Probabilistic Behavioral Information
Cordes, Dietmar; Herzmann, Grit; Nandy, Rajesh; Curran, Tim
2012-01-01
Recent progress in the experimental design for event-related fMRI experiments made it possible to find the optimal stimulus sequence for maximum contrast detection power using a genetic algorithm. In this study, a novel algorithm is proposed for optimization of contrast detection power by including probabilistic behavioral information, based on pilot data, in the genetic algorithm. As a particular application, a recognition memory task is studied and the design matrix optimized for contrasts involving the familiarity of individual items (pictures of objects) and the recollection of qualitative information associated with the items (left/right orientation). Optimization of contrast efficiency is a complicated issue whenever subjects’ responses are not deterministic but probabilistic. Contrast efficiencies are not predictable unless behavioral responses are included in the design optimization. However, available software for design optimization does not include options for probabilistic behavioral constraints. If the anticipated behavioral responses are included in the optimization algorithm, the design is optimal for the assumed behavioral responses, and the resulting contrast efficiency is greater than what either a block design or a random design can achieve. Furthermore, improvements of contrast detection power depend strongly on the behavioral probabilities, the perceived randomness, and the contrast of interest. The present genetic algorithm can be applied to any case in which fMRI contrasts are dependent on probabilistic responses that can be estimated from pilot data. PMID:22326984
Beltz, Adriene M; Gates, Kathleen M; Engels, Anna S; Molenaar, Peter C M; Pulido, Carmen; Turrisi, Robert; Berenbaum, Sheri A; Gilmore, Rick O; Wilson, Stephen J
2013-04-01
The upsurge in alcohol use that often occurs during the first year of college has been convincingly linked to a number of negative psychosocial consequences and may negatively affect brain development. In this longitudinal functional magnetic resonance imaging (fMRI) pilot study, we examined changes in neural responses to alcohol cues across the first year of college in a normative sample of late adolescents. Participants (N=11) were scanned three times across their first year of college (summer, first semester, second semester), while completing a go/no-go task in which images of alcoholic and non-alcoholic beverages were the response cues. A state-of-the-art effective connectivity mapping technique was used to capture spatiotemporal relations among brain regions of interest (ROIs) at the level of the group and the individual. Effective connections among ROIs implicated in cognitive control were greatest at the second assessment (when negative consequences of alcohol use increased), and effective connections among ROIs implicated in emotion processing were lower (and response times were slower) when participants were instructed to respond to alcohol cues compared to non-alcohol cues. These preliminary findings demonstrate the value of a prospective effective connectivity approach for understanding adolescent changes in alcohol-related neural processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Szameitat, André J; Shen, Shan; Sterr, Annette
2009-07-31
An important aspect in functional imaging research employing magnetic resonance imaging (MRI) is how participants perceive the MRI scanning itself. For instance, the knowledge of how (un)comfortable MRI scanning is perceived may help institutional review boards (IRBs) or ethics committees to decide on the approval of a study, or researchers to design their experiments. We provide empirical data from our lab gained from 70 neurologically healthy mainly student subjects and from 22 mainly elderly patients suffering from motor deficits after brain damage. All participants took part in various basic research fMRI studies using a 3T MRI scanner. Directly after the scanning, all participants completed a questionnaire assessing their experience with the fMRI procedure. 87.2% of the healthy subjects and 77.3% of the patients rated the MRI procedure as acceptable to comfortable. In healthy subjects, males found the procedure more comfortable, while the opposite was true for patients. 12.1% of healthy subjects considered scanning durations between 30 and 60 min as too long, while no patient considered their 30 min scanning interval as too long. 93.4% of the healthy subjects would like to participate in an fMRI study again, with a significantly lower rate for the subjects who considered the scanning as too long. Further factors, such as inclusion of a diffusion tensor imaging (DTI) scan, age, and study duration had no effect on the questionnaire responses. Of the few negative comments, the main issues were noise, the restriction to keep still for the whole time, and occasional feelings of dizziness. MRI scanning in the basic research setting is an acceptable procedure for elderly and patient participants as well as young healthy subjects.
2009-01-01
Background An important aspect in functional imaging research employing magnetic resonance imaging (MRI) is how participants perceive the MRI scanning itself. For instance, the knowledge of how (un)comfortable MRI scanning is perceived may help institutional review boards (IRBs) or ethics committees to decide on the approval of a study, or researchers to design their experiments. Methods We provide empirical data from our lab gained from 70 neurologically healthy mainly student subjects and from 22 mainly elderly patients suffering from motor deficits after brain damage. All participants took part in various basic research fMRI studies using a 3T MRI scanner. Directly after the scanning, all participants completed a questionnaire assessing their experience with the fMRI procedure. Results 87.2% of the healthy subjects and 77.3% of the patients rated the MRI procedure as acceptable to comfortable. In healthy subjects, males found the procedure more comfortable, while the opposite was true for patients. 12.1% of healthy subjects considered scanning durations between 30 and 60 min as too long, while no patient considered their 30 min scanning interval as too long. 93.4% of the healthy subjects would like to participate in an fMRI study again, with a significantly lower rate for the subjects who considered the scanning as too long. Further factors, such as inclusion of a diffusion tensor imaging (DTI) scan, age, and study duration had no effect on the questionnaire responses. Of the few negative comments, the main issues were noise, the restriction to keep still for the whole time, and occasional feelings of dizziness. Conclusion MRI scanning in the basic research setting is an acceptable procedure for elderly and patient participants as well as young healthy subjects. PMID:19646238
Kim, Gwang-Won; Jeong, Gwang-Woo
2017-02-20
The aging process and menopausal transition are important factors in sexual dysfunction of menopausal women. No neuroimaging study has assessed the age- and menopause-related changes on brain activation areas associated with sexual arousal in menopausal women. The purpose of this study was to evaluate the time course of regional brain activity associated with sexual arousal evoked by visual stimulation in premenopausal and menopausal women, and further to assess the effect of menopause on the brain areas associated with sexual arousal in menopausal women using functional magnetic resonance imaging (fMRI). Thirty volunteers consisting of 15 premenopausal and 15 menopausal women underwent the fMRI. For the activation condition, volunteers viewed sexually arousing visual stimulation. The brain areas with significantly higher activation in premenopausal women compared with menopausal women included the thalamus, amygdala, and anterior cingulate cortex (ACC) using analysis of covariance adjusting for age (p<0.005). Blood-oxygen-level-dependent signal changes in the amygdala while viewing erotic video were positively correlated with estrogen levels in the two groups. Our findings suggest that reduced brain activity of the thalamus, amygdala, and ACC in menopausal women may be associated with menopause-related decrease in sexual arousal. These findings might help elucidate the neural mechanisms associated with sexual dysfunction in menopausal women. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Uggetti, Carla; Ausenda, Carlo D; Squarza, Silvia; Cadioli, Marcello; Grimoldi, Ludovico; Cerri, Cesare; Cariati, Maurizio
2016-08-01
The bilateral transfer of a motor skill is a physiological phenomenon: the development of a motor skill with one hand can trigger the development of the same ability of the other hand. The purpose of this study was to verify whether bilateral transfer is associated with a specific brain activation pattern using functional magnetic resonance imaging (fMRI). The motor task was implemented as the execution of the Nine Hole Peg Test. Fifteen healthy subjects (10 right-handers and five left-handers) underwent two identical fMRI runs performing the motor task with the non-dominant hand. Between the first and the second run, each subject was intensively trained for five minutes to perform the same motor task with the dominant hand. Comparing the two functional scans across the pool of subjects, a change of the motor activation pattern was observed. In particular, we observed, in the second run, a change in the activation pattern both in the cerebellum and in the cerebral cortex. We found activations in cortical areas involved in somatosensory integration, areas involved in procedural memory. Our study shows, in a small group of healthy subjects, the modification of the fMRI activation pathway of a motor task performed by the non-dominant hand after intensive exercise performing the same task with the dominant hand. © The Author(s) 2016.
Schaefer, Michael; Rumpel, Franziska; Sadrieh, Abdolkarim; Reimann, Martin; Denke, Claudia
2015-01-01
Numerous studies explore consumer perception of brands in a more or less passive way. This may still be representative for many situations or decisions we make each day. Nevertheless, sometimes we often actively search for and use information to make informed and reasoned choices, thus implying a rational and thinking consumer. Researchers suggested describing this distinction as low relative to high involvement consumer behavior. Although the involvement concept has been widely used to explain consumer behavior, behavioral and neural correlates of this concept are poorly understood. The current study aims to describe a behavioral measure that is associated with high involvement, the length of search behavior. A second aim of this study was to explore brain activations associated with involvement by employing functional magnetic resonance imaging (fMRI). We presented participants information cues for different products and told them that they had to answer questions with respect to these products at the end of the experiment. Participants were free to stop the information search if they think they gathered enough information or to continue with collecting information. Behavioral results confirmed our hypothesis of a relationship between searching behavior and personal involvement by demonstrating that the length of search correlated significantly with the degree of personal involvement of the participants. fMRI data revealed that personal involvement was associated with activation in BA44. Since this brain region is known to be involved in semantic memory, the results of this pilot study suggest that high involvement consumer behavior may be linked to cognitive load and attention towards a product.
Rubia, Katya
2018-01-01
This review focuses on the cognitive neuroscience of Attention Deficit Hyperactivity Disorder (ADHD) based on functional magnetic resonance imaging (fMRI) studies and on recent clinically relevant applications such as fMRI-based diagnostic classification or neuromodulation therapies targeting fMRI deficits with neurofeedback (NF) or brain stimulation. Meta-analyses of fMRI studies of executive functions (EFs) show that ADHD patients have cognitive-domain dissociated complex multisystem impairments in several right and left hemispheric dorsal, ventral and medial fronto-cingulo-striato-thalamic and fronto-parieto-cerebellar networks that mediate cognitive control, attention, timing and working memory (WM). There is furthermore emerging evidence for abnormalities in orbital and ventromedial prefrontal and limbic areas that mediate motivation and emotion control. In addition, poor deactivation of the default mode network (DMN) suggests an abnormal interrelationship between hypo-engaged task-positive and poorly “switched off” hyper-engaged task-negative networks, both of which are related to impaired cognition. Translational cognitive neuroscience in ADHD is still in its infancy. Pattern recognition analyses have attempted to provide diagnostic classification of ADHD using fMRI data with respectable classification accuracies of over 80%. Necessary replication studies, however, are still outstanding. Brain stimulation has been tested in heterogeneously designed, small numbered proof of concept studies targeting key frontal functional impairments in ADHD. Transcranial direct current stimulation (tDCS) appears to be promising to improve ADHD symptoms and cognitive functions based on some studies, but larger clinical trials of repeated stimulation with and without cognitive training are needed to test clinical efficacy and potential costs on non-targeted functions. Only three studies have piloted NF of fMRI-based frontal dysfunctions in ADHD using fMRI or near-infrared spectroscopy, with the two larger ones finding some improvements in cognition and symptoms, which, however, were not superior to the active control conditions, suggesting potential placebo effects. Neurotherapeutics seems attractive for ADHD due to their safety and potential longer-term neuroplastic effects, which drugs cannot offer. However, they need to be thoroughly tested for short- and longer-term clinical and cognitive efficacy and their potential for individualized treatment. PMID:29651240
Rubia, Katya
2018-01-01
This review focuses on the cognitive neuroscience of Attention Deficit Hyperactivity Disorder (ADHD) based on functional magnetic resonance imaging (fMRI) studies and on recent clinically relevant applications such as fMRI-based diagnostic classification or neuromodulation therapies targeting fMRI deficits with neurofeedback (NF) or brain stimulation. Meta-analyses of fMRI studies of executive functions (EFs) show that ADHD patients have cognitive-domain dissociated complex multisystem impairments in several right and left hemispheric dorsal, ventral and medial fronto-cingulo-striato-thalamic and fronto-parieto-cerebellar networks that mediate cognitive control, attention, timing and working memory (WM). There is furthermore emerging evidence for abnormalities in orbital and ventromedial prefrontal and limbic areas that mediate motivation and emotion control. In addition, poor deactivation of the default mode network (DMN) suggests an abnormal interrelationship between hypo-engaged task-positive and poorly "switched off" hyper-engaged task-negative networks, both of which are related to impaired cognition. Translational cognitive neuroscience in ADHD is still in its infancy. Pattern recognition analyses have attempted to provide diagnostic classification of ADHD using fMRI data with respectable classification accuracies of over 80%. Necessary replication studies, however, are still outstanding. Brain stimulation has been tested in heterogeneously designed, small numbered proof of concept studies targeting key frontal functional impairments in ADHD. Transcranial direct current stimulation (tDCS) appears to be promising to improve ADHD symptoms and cognitive functions based on some studies, but larger clinical trials of repeated stimulation with and without cognitive training are needed to test clinical efficacy and potential costs on non-targeted functions. Only three studies have piloted NF of fMRI-based frontal dysfunctions in ADHD using fMRI or near-infrared spectroscopy, with the two larger ones finding some improvements in cognition and symptoms, which, however, were not superior to the active control conditions, suggesting potential placebo effects. Neurotherapeutics seems attractive for ADHD due to their safety and potential longer-term neuroplastic effects, which drugs cannot offer. However, they need to be thoroughly tested for short- and longer-term clinical and cognitive efficacy and their potential for individualized treatment.
Morgan, Paul S; Sherar, Lauren B; Kingsnorth, Andrew P; Magistro, Daniele; Esliger, Dale W
2017-01-01
Background The recent surge in commercially available wearable technology has allowed real-time self-monitoring of behavior (eg, physical activity) and physiology (eg, glucose levels). However, there is limited neuroimaging work (ie, functional magnetic resonance imaging [fMRI]) to identify how people’s brains respond to receiving this personalized health feedback and how this impacts subsequent behavior. Objective Identify regions of the brain activated and examine associations between activation and behavior. Methods This was a pilot study to assess physical activity, sedentary time, and glucose levels over 14 days in 33 adults (aged 30 to 60 years). Extracted accelerometry, inclinometry, and interstitial glucose data informed the construction of personalized feedback messages (eg, average number of steps per day). These messages were subsequently presented visually to participants during fMRI. Participant physical activity levels and sedentary time were assessed again for 8 days following exposure to this personalized feedback. Results Independent tests identified significant activations within the prefrontal cortex in response to glucose feedback compared with behavioral feedback (P<.001). Reductions in mean sedentary time (589.0 vs 560.0 minutes per day, P=.014) were observed. Activation in the subgyral area had a moderate correlation with minutes of moderate-to-vigorous physical activity (r=0.392, P=.043). Conclusion Presenting personalized glucose feedback resulted in significantly more brain activation when compared with behavior. Participants reduced time spent sedentary at follow-up. Research on deploying behavioral and physiological feedback warrants further investigation. PMID:29117928
Marsh, Courtney A.; Berent-Spillson, Alison; Love, Tiffany; Persad, Carol C.; Pop-Busui, Rodica; Zubieta, Jon-Kar; Smith, Yolanda R.
2013-01-01
Objective To evaluate emotional processing in women with insulin-resistant polycystic ovary syndrome (IR-PCOS) and its relationship to glucose regulation and the mu-opioid system. Design Case-control pilot. Setting Tertiary referring medical center. Patient(s) Seven women with IR-PCOS and five non-insulin-resistant controls, aged 21–40 years, recruited from the general population. Intervention(s) Sixteen weeks of metformin (1,500 mg/day) in women with IR-PCOS. Main Outcome Measure(s) Assessment of mood, metabolic function, and neuronal activation during an emotional task using functional magnetic resonance imaging (fMRI), and mu-opioid receptor availability using positive emission tomography (PET). Result(s) We found that insulin-resistant PCOS patients [1] had greater limbic activation during an emotion task than controls (n = 5); [2] trended toward decreased positive affect and increased trait anxiety; [3] after metformin treatment, had limbic activation that no longer differed from controls; and [4] had positive correlations between fMRI limbic activation during emotional processing and mu-opioid binding potential. Conclusion(s) Patients with IR-PCOS had greater regional activation during an emotion task than the controls, although this resolved with metformin therapy. Alterations in mu-opioid neurotransmission may underlie limbic system activity and mood disorders in IR-PCOS. Clinical Trial Registration Number NCT00670800. PMID:23557757
Schaefer, Michael; Rumpel, Franziska; Sadrieh, Abdolkarim; Reimann, Martin; Denke, Claudia
2015-01-01
Numerous studies explore consumer perception of brands in a more or less passive way. This may still be representative for many situations or decisions we make each day. Nevertheless, sometimes we often actively search for and use information to make informed and reasoned choices, thus implying a rational and thinking consumer. Researchers suggested describing this distinction as low relative to high involvement consumer behavior. Although the involvement concept has been widely used to explain consumer behavior, behavioral and neural correlates of this concept are poorly understood. The current study aims to describe a behavioral measure that is associated with high involvement, the length of search behavior. A second aim of this study was to explore brain activations associated with involvement by employing functional magnetic resonance imaging (fMRI). We presented participants information cues for different products and told them that they had to answer questions with respect to these products at the end of the experiment. Participants were free to stop the information search if they think they gathered enough information or to continue with collecting information. Behavioral results confirmed our hypothesis of a relationship between searching behavior and personal involvement by demonstrating that the length of search correlated significantly with the degree of personal involvement of the participants. fMRI data revealed that personal involvement was associated with activation in BA44. Since this brain region is known to be involved in semantic memory, the results of this pilot study suggest that high involvement consumer behavior may be linked to cognitive load and attention towards a product. PMID:25859200
Brain response to taste in overweight children: A pilot feasibility study.
Bohon, Cara
2017-01-01
Understanding the neural response to food and food cues during early stages of weight gain in childhood may help us determine the drive processes involved in unhealthy eating behavior and risk for obesity. Healthy weight and overweight children ages 6-8 (N = 18; 10 with BMI between 5th and 85th %ile and 8 with BMI >85th %ile) underwent fMRI scans while anticipating and receiving tastes of chocolate milkshake. Parents completed a Children's Eating Behaviour Questionnaire. Results reveal greater response to milkshake taste receipt in overweight children in the right insula, operculum, precentral gyrus, and angular gyrus, and bilateral precuneus and posterior cingulate. No group differences were found for brain response to a visual food cue. Exploratory analyses revealed interactions between self-report measures of eating behavior and weight status on brain response to taste. This pilot study provides preliminary evidence of feasibility of studying young children's taste processing and suggests a possible developmental shift in brain response to taste.
Brain response to taste in overweight children: A pilot feasibility study
Bohon, Cara
2017-01-01
Understanding the neural response to food and food cues during early stages of weight gain in childhood may help us determine the drive processes involved in unhealthy eating behavior and risk for obesity. Healthy weight and overweight children ages 6–8 (N = 18; 10 with BMI between 5th and 85th %ile and 8 with BMI >85th %ile) underwent fMRI scans while anticipating and receiving tastes of chocolate milkshake. Parents completed a Children’s Eating Behaviour Questionnaire. Results reveal greater response to milkshake taste receipt in overweight children in the right insula, operculum, precentral gyrus, and angular gyrus, and bilateral precuneus and posterior cingulate. No group differences were found for brain response to a visual food cue. Exploratory analyses revealed interactions between self-report measures of eating behavior and weight status on brain response to taste. This pilot study provides preliminary evidence of feasibility of studying young children’s taste processing and suggests a possible developmental shift in brain response to taste. PMID:28235080
Moulier, Virginie; Fonteille, Véronique; Pélégrini-Issac, Mélanie; Cordier, Bernard; Baron-Laforêt, Sophie; Boriasse, Emeline; Durand, Emmanuel; Stoléru, Serge
2012-02-01
Gonadotropin-releasing hormone (GnRH) agonists, such as leuprorelin, are recommended in the patients with pedophilia at highest risk of offending. However, the cerebral mechanisms of the effects of these testosterone-decreasing drugs are poorly known. This study aimed to identify changes caused by leuprorelin in a pedophilic patient's brain responses to pictures representing children. Clinical, endocrine, and fMRI investigations were done of a man with pedophilia before leuprorelin therapy and 5 months into leuprorelin therapy. Patient was compared with an age-matched healthy control also assessed 5 months apart. Before therapy, pictures of boys elicited activation in the left calcarine fissure, left insula, anterior cingulate cortex, and left cerebellar vermis. Five months into therapy, all the above-mentioned activations had disappeared. No such activations and, consequently, no such decreases occurred in the healthy control. The results of this pilot study suggest that leuprorelin decreased activity in regions known to mediate the perceptual, motivational, and affective responses to visual sexual stimuli.
Hand grips strength effect on motor function in human brain using fMRI: a pilot study
NASA Astrophysics Data System (ADS)
Ismail, S. S.; Mohamad, M.; Syazarina, S. O.; Nafisah, W. Y.
2014-11-01
Several methods of motor tasks for fMRI scanning have been evolving from simple to more complex tasks. Motor tasks on upper extremity were applied in order to excite the increscent of motor activation on contralesional and ipsilateral hemispheres in brain. The main objective of this study is to study the different conditions for motor tasks on upper extremity that affected the brain activation. Ten healthy right handed with normal vision (3 male and 7 female, age range=20-30 years, mean=24.6 years, SD=2.21) participated in this study. Prior to the scanning, participants were trained on hand grip tasks using rubber ball and pressure gauge tool outside the scanner. During fMRI session, a block design with 30-s task blocks and alternating 30-s rest periods was employed while participants viewed a computer screen via a back projection-mirror system and instructed to follow the instruction by gripping their hand with normal and strong grips using a rubber ball. Statistical Parametric mapping (SPM8) software was used to determine the brain activation. Both tasks activated the primary motor (M1), supplementary motor area (SMA), dorsal and ventral of premotor cortex area (PMA) in left hemisphere while in right hemisphere the area of primary motor (M1) somatosensory was activated. However, the comparison between both tasks revealed that the strong hand grip showed the higher activation at M1, PMA and SMA on left hemisphere and also the area of SMA on right hemisphere. Both conditions of motor tasks could provide insights the functional organization on human brain.
James, G. Andrew; Lu, Zhong-Lin; VanMeter, John W.; Sathian, K.; Hu, Xiaoping P.; Butler, Andrew J.
2013-01-01
Background A promising paradigm in human neuroimaging is the study of slow (<0.1 Hz) spontaneous fluctuations in the hemodynamic response measured by functional magnetic resonance imaging (fMRI). Spontaneous activity (i.e., resting state) refers to activity that cannot be attributed to specific inputs or outputs, that is, activity intrinsically generated by the brain. Method This article presents pilot data examining neural connectivity in patients with poststroke hemiparesis before and after 3 weeks of upper extremity rehabilitation in the Accelerated Skill Acquisition Program (ASAP). Resting-state fMRI data acquired pre and post therapy were analyzed using an exploratory adaptation of structural equation modeling (SEM) to evaluate therapy-related changes in motor network effective connectivity. Results Each ASAP patient showed behavioral improvement. ASAP patients also showed increased influence of the affected hemisphere premotor cortex (a-PM) upon the unaffected hemisphere premotor cortex (u-PM) following therapy. The influence of a-PM on affected hemisphere primary motor cortex (a-M1) also increased with therapy for 3 of 5 patients, including those with greatest behavioral improvement. Conclusions Our findings suggest that network analyses of resting-state fMRI constitute promising tools for functional characterization of functional brain disorders, for intergroup comparisons, and potentially for assessing effective connectivity within single subjects; all of which have important implications for stroke rehabilitation. PMID:19740732
Fleck, David E; Ernest, Nicholas; Adler, Caleb M; Cohen, Kelly; Eliassen, James C; Norris, Matthew; Komoroski, Richard A; Chu, Wen-Jang; Welge, Jeffrey A; Blom, Thomas J; DelBello, Melissa P; Strakowski, Stephen M
2017-06-01
Individualized treatment for bipolar disorder based on neuroimaging treatment targets remains elusive. To address this shortcoming, we developed a linguistic machine learning system based on a cascading genetic fuzzy tree (GFT) design called the LITHium Intelligent Agent (LITHIA). Using multiple objectively defined functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy ( 1 H-MRS) inputs, we tested whether LITHIA could accurately predict the lithium response in participants with first-episode bipolar mania. We identified 20 subjects with first-episode bipolar mania who received an adequate trial of lithium over 8 weeks and both fMRI and 1 H-MRS scans at baseline pre-treatment. We trained LITHIA using 18 1 H-MRS and 90 fMRI inputs over four training runs to classify treatment response and predict symptom reductions. Each training run contained a randomly selected 80% of the total sample and was followed by a 20% validation run. Over a different randomly selected distribution of the sample, we then compared LITHIA to eight common classification methods. LITHIA demonstrated nearly perfect classification accuracy and was able to predict post-treatment symptom reductions at 8 weeks with at least 88% accuracy in training and 80% accuracy in validation. Moreover, LITHIA exceeded the predictive capacity of the eight comparator methods and showed little tendency towards overfitting. The results provided proof-of-concept that a novel GFT is capable of providing control to a multidimensional bioinformatics problem-namely, prediction of the lithium response-in a pilot data set. Future work on this, and similar machine learning systems, could help assign psychiatric treatments more efficiently, thereby optimizing outcomes and limiting unnecessary treatment. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Increase of frontal neuronal activity in chronic neglect after training in virtual reality.
Ekman, U; Fordell, H; Eriksson, J; Lenfeldt, N; Wåhlin, A; Eklund, A; Malm, J
2018-05-16
A third of patients with stroke acquire spatial neglect associated with poor rehabilitation outcome. New effective rehabilitation interventions are needed. Scanning training combined with multisensory stimulation to enhance the rehabilitation effect is suggested. In accordance, we have designed a virtual-reality based scanning training that combines visual, audio and sensori-motor stimulation called RehAtt ® . Effects were shown in behavioural tests and activity of daily living. Here, we use fMRI to evaluate the change in brain activity during Posner's Cuing Task (attention task) after RehAtt ® intervention, in patients with chronic neglect. Twelve patients (mean age = 72.7 years, SD = 6.1) with chronic neglect (persistent symptoms >6 months) performed the interventions 3 times/wk during 5 weeks, in total 15 hours. Training effects on brain activity were evaluated using fMRI task-evoked responses during the Posner's cuing task before and after the intervention. Patients improved their performance in the Posner fMRI task. In addition, patients increased their task-evoked brain activity after the VR interventions in an extended network including pre-frontal and temporal cortex during attentional cueing, but showed no training effects during target presentations. The current pilot study demonstrates that a novel multisensory VR intervention has the potential to benefit patients with chronic neglect in respect of behaviour and brain changes. Specifically, the fMRI results show that strategic processes (top-down control during attentional cuing) were enhanced by the intervention. The findings increase knowledge of the plasticity processes underlying positive rehabilitation effects from RehAtt ® in chronic neglect. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lorenz, Romy; Monti, Ricardo Pio; Violante, Inês R.; Anagnostopoulos, Christoforos; Faisal, Aldo A.; Montana, Giovanni; Leech, Robert
2016-01-01
Functional neuroimaging typically explores how a particular task activates a set of brain regions. Importantly though, the same neural system can be activated by inherently different tasks. To date, there is no approach available that systematically explores whether and how distinct tasks probe the same neural system. Here, we propose and validate an alternative framework, the Automatic Neuroscientist, which turns the standard fMRI approach on its head. We use real-time fMRI in combination with modern machine-learning techniques to automatically design the optimal experiment to evoke a desired target brain state. In this work, we present two proof-of-principle studies involving perceptual stimuli. In both studies optimization algorithms of varying complexity were employed; the first involved a stochastic approximation method while the second incorporated a more sophisticated Bayesian optimization technique. In the first study, we achieved convergence for the hypothesized optimum in 11 out of 14 runs in less than 10 min. Results of the second study showed how our closed-loop framework accurately and with high efficiency estimated the underlying relationship between stimuli and neural responses for each subject in one to two runs: with each run lasting 6.3 min. Moreover, we demonstrate that using only the first run produced a reliable solution at a group-level. Supporting simulation analyses provided evidence on the robustness of the Bayesian optimization approach for scenarios with low contrast-to-noise ratio. This framework is generalizable to numerous applications, ranging from optimizing stimuli in neuroimaging pilot studies to tailoring clinical rehabilitation therapy to patients and can be used with multiple imaging modalities in humans and animals. PMID:26804778
Lorenz, Romy; Monti, Ricardo Pio; Violante, Inês R; Anagnostopoulos, Christoforos; Faisal, Aldo A; Montana, Giovanni; Leech, Robert
2016-04-01
Functional neuroimaging typically explores how a particular task activates a set of brain regions. Importantly though, the same neural system can be activated by inherently different tasks. To date, there is no approach available that systematically explores whether and how distinct tasks probe the same neural system. Here, we propose and validate an alternative framework, the Automatic Neuroscientist, which turns the standard fMRI approach on its head. We use real-time fMRI in combination with modern machine-learning techniques to automatically design the optimal experiment to evoke a desired target brain state. In this work, we present two proof-of-principle studies involving perceptual stimuli. In both studies optimization algorithms of varying complexity were employed; the first involved a stochastic approximation method while the second incorporated a more sophisticated Bayesian optimization technique. In the first study, we achieved convergence for the hypothesized optimum in 11 out of 14 runs in less than 10 min. Results of the second study showed how our closed-loop framework accurately and with high efficiency estimated the underlying relationship between stimuli and neural responses for each subject in one to two runs: with each run lasting 6.3 min. Moreover, we demonstrate that using only the first run produced a reliable solution at a group-level. Supporting simulation analyses provided evidence on the robustness of the Bayesian optimization approach for scenarios with low contrast-to-noise ratio. This framework is generalizable to numerous applications, ranging from optimizing stimuli in neuroimaging pilot studies to tailoring clinical rehabilitation therapy to patients and can be used with multiple imaging modalities in humans and animals. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Neurobiological differences in mental rotation and instrument interpretation in airline pilots.
Sladky, Ronald; Stepniczka, Irene; Boland, Edzard; Tik, Martin; Lamm, Claus; Hoffmann, André; Buch, Jan-Philipp; Niedermeier, Dominik; Field, Joris; Windischberger, Christian
2016-06-21
Airline pilots and similar professions require reliable spatial cognition abilities, such as mental imagery of static and moving three-dimensional objects in space. A well-known task to investigate these skills is the Shepard and Metzler mental rotation task (SMT), which is also frequently used during pre-assessment of pilot candidates. Despite the intuitive relationship between real-life spatial cognition and SMT, several studies have challenged its predictive value. Here we report on a novel instrument interpretation task (IIT) based on a realistic attitude indicator used in modern aircrafts that was designed to bridge the gap between the abstract SMT and a cockpit environment. We investigated 18 professional airline pilots using fMRI. No significant correlation was found between SMT and IIT task accuracies. Contrasting both tasks revealed higher activation in the fusiform gyrus, angular gyrus, and medial precuneus for IIT, whereas SMT elicited significantly stronger activation in pre- and supplementary motor areas, as well as lateral precuneus and superior parietal lobe. Our results show that SMT skills per se are not sufficient to predict task accuracy during (close to) real-life instrument interpretation. While there is a substantial overlap of activation across the task conditions, we found that there are important differences between instrument interpretation and non-aviation based mental rotation.
Neurobiological differences in mental rotation and instrument interpretation in airline pilots
Sladky, Ronald; Stepniczka, Irene; Boland, Edzard; Tik, Martin; Lamm, Claus; Hoffmann, André; Buch, Jan-Philipp; Niedermeier, Dominik; Field, Joris; Windischberger, Christian
2016-01-01
Airline pilots and similar professions require reliable spatial cognition abilities, such as mental imagery of static and moving three-dimensional objects in space. A well-known task to investigate these skills is the Shepard and Metzler mental rotation task (SMT), which is also frequently used during pre-assessment of pilot candidates. Despite the intuitive relationship between real-life spatial cognition and SMT, several studies have challenged its predictive value. Here we report on a novel instrument interpretation task (IIT) based on a realistic attitude indicator used in modern aircrafts that was designed to bridge the gap between the abstract SMT and a cockpit environment. We investigated 18 professional airline pilots using fMRI. No significant correlation was found between SMT and IIT task accuracies. Contrasting both tasks revealed higher activation in the fusiform gyrus, angular gyrus, and medial precuneus for IIT, whereas SMT elicited significantly stronger activation in pre- and supplementary motor areas, as well as lateral precuneus and superior parietal lobe. Our results show that SMT skills per se are not sufficient to predict task accuracy during (close to) real-life instrument interpretation. While there is a substantial overlap of activation across the task conditions, we found that there are important differences between instrument interpretation and non-aviation based mental rotation. PMID:27323913
Mueller, Karsten; Arelin, Katrin; Möller, Harald E; Sacher, Julia; Kratzsch, Jürgen; Luck, Tobias; Riedel-Heller, Steffi; Villringer, Arno; Schroeter, Matthias L
2016-02-01
Brain-derived neurotrophic factor (BDNF) has been discussed to be involved in plasticity processes in the human brain, in particular during aging. Recently, aging and its (neurodegenerative) diseases have increasingly been conceptualized as disconnection syndromes. Here, connectivity changes in neural networks (the connectome) are suggested to be the most relevant and characteristic features for such processes or diseases. To further elucidate the impact of aging on neural networks, we investigated the interaction between plasticity processes, brain connectivity, and healthy aging by measuring levels of serum BDNF and resting-state fMRI data in 25 young (mean age 24.8 ± 2.7 (SD) years) and 23 old healthy participants (mean age, 68.6 ± 4.1 years). To identify neural hubs most essentially related to serum BDNF, we applied graph theory approaches, namely the new data-driven and parameter-free approach eigenvector centrality (EC) mapping. The analysis revealed a positive correlation between serum BDNF and EC in the premotor and motor cortex in older participants in contrast to young volunteers, where we did not detect any association. This positive relationship between serum BDNF and EC appears to be specific for older adults. Our results might indicate that the amount of physical activity and learning capacities, leading to higher BDNF levels, increases brain connectivity in (pre)motor areas in healthy aging in agreement with rodent animal studies. Pilot results have to be replicated in a larger sample including behavioral data to disentangle the cause for the relationship between BDNF levels and connectivity. Copyright © 2016 Elsevier Inc. All rights reserved.
Callan, Daniel E; Terzibas, Cengiz; Cassel, Daniel B; Callan, Akiko; Kawato, Mitsuo; Sato, Masa-Aki
2013-05-15
In this fMRI study we investigate neural processes related to the action observation network using a complex perceptual-motor task in pilots and non-pilots. The task involved landing a glider (using aileron, elevator, rudder, and dive brake) as close to a target as possible, passively observing a replay of one's own previous trial, passively observing a replay of an expert's trial, and a baseline do nothing condition. The objective of this study is to investigate two types of motor simulation processes used during observation of action: imitation based motor simulation and error-feedback based motor simulation. It has been proposed that the computational neurocircuitry of the cortex is well suited for unsupervised imitation based learning, whereas, the cerebellum is well suited for error-feedback based learning. Consistent with predictions, pilots (to a greater extent than non-pilots) showed significant differential activity when observing an expert landing the glider in brain regions involved with imitation based motor simulation (including premotor cortex PMC, inferior frontal gyrus IFG, anterior insula, parietal cortex, superior temporal gyrus, and middle temporal MT area) than when observing one's own previous trial which showed significant differential activity in the cerebellum (only for pilots) thought to be concerned with error-feedback based motor simulation. While there was some differential brain activity for pilots in regions involved with both Execution and Observation of the flying task (potential Mirror System sites including IFG, PMC, superior parietal lobule) the majority was adjacent to these areas (Observation Only Sites) (predominantly in PMC, IFG, and inferior parietal loblule). These regions showing greater activity for observation than for action may be involved with processes related to motor-based representational transforms that are not necessary when actually carrying out the task. Copyright © 2013 Elsevier Inc. All rights reserved.
Response inhibition in pedophilia: an FMRI pilot study.
Habermeyer, Benedikt; Esposito, Fabrizio; Händel, Nadja; Lemoine, Patrick; Kuhl, Hans Christian; Klarhöfer, Markus; Mager, Ralph; Mokros, Andreas; Dittmann, Volker; Seifritz, Erich; Graf, Marc
2013-01-01
The failure to inhibit pleasurable but inappropriate urges is associated with frontal lobe pathology and has been suggested as a possible cause of pedophilic behavior. However, imaging and neuropsychological findings about frontal pathology in pedophilia are heterogeneous. In our study we therefore address inhibition behaviorally and by means of functional imaging, aiming to assess how inhibition in pedophilia is related to a differential recruitment of frontal brain areas. Eleven pedophilic subjects and 7 nonpedophilic controls underwent fMRI while performing a go/no-go task composed of neutral letters. Pedophilic subjects showed a slower reaction time and less accurate visual target discrimination. fMRI voxel-level ANOVA revealed as a main effect of the go/no-go task an activation of prefrontal and parietal brain regions in the no-go condition, while the left anterior cingulate, precuneus and gyrus angularis became more activated in the go condition. In addition, a group × task interaction was found in the left precuneus and gyrus angularis. This interaction was based on an attenuated deactivation of these brain regions in the pedophilic group during performance of the no-go condition. The positive correlation between blood oxygen level-dependent imaging signal and reaction time in these brain areas indicates that attenuated deactivation is related to the behavioral findings. Slower reaction time and less accurate visual target discrimination in pedophilia was accompanied by attenuated deactivation of brain areas belonging to the default mode network. Our findings thus support the notion that behavioral differences might also derive from self-related processes and not necessarily from frontal lobe pathology. © 2013 S. Karger AG, Basel.
Jatzko, Alexander; Schmitt, Andrea; Demirakca, Traute; Weimer, Erik; Braus, Dieter F
2006-03-01
This study was designed to investigate the circuitry underlying movie-induced positive emotional processing in subjects with chronic PTSD. Ten male subjects with chronic PTSD and ten matched controls were studied. In an fMRI-paradigm a sequence of a wellknown Walt Disney cartoon with positive emotional valence was shown. PTSD subjects showed an increased activation in the right posterior temporal, precentral and superior frontal cortex. Controls recruited more emotion-related regions bilateral in the temporal pole and areas of the left fusiform and parahippocampal gyrus. This pilot study is the first to reveal alterations in the processing of positive emotions in PTSD possibly reflecting a neuronal correlate of the symptom of emotional numbness in PTSD.
Moran, Lauren V; Stoeckel, Luke E; Wang, Kristina; Caine, Carolyn E; Villafuerte, Rosemond; Calderon, Vanessa; Baker, Justin T; Ongur, Dost; Janes, Amy C; Evins, A Eden; Pizzagalli, Diego A
2018-03-01
Nicotine improves attention and processing speed in individuals with schizophrenia. Few studies have investigated the effects of nicotine on cognitive control. Prior functional magnetic resonance imaging (fMRI) research demonstrates blunted activation of dorsal anterior cingulate cortex (dACC) and rostral anterior cingulate cortex (rACC) in response to error and decreased post-error slowing in schizophrenia. Participants with schizophrenia (n = 13) and healthy controls (n = 12) participated in a randomized, placebo-controlled, crossover study of the effects of transdermal nicotine on cognitive control. For each drug condition, participants underwent fMRI while performing the stop signal task where participants attempt to inhibit prepotent responses to "go (motor activation)" signals when an occasional "stop (motor inhibition)" signal appears. Error processing was evaluated by comparing "stop error" trials (failed response inhibition) to "go" trials. Resting-state fMRI data were collected prior to the task. Participants with schizophrenia had increased nicotine-induced activation of right caudate in response to errors compared to controls (DRUG × GROUP effect: p corrected < 0.05). Both groups had significant nicotine-induced activation of dACC and rACC in response to errors. Using right caudate activation to errors as a seed for resting-state functional connectivity analysis, relative to controls, participants with schizophrenia had significantly decreased connectivity between the right caudate and dACC/bilateral dorsolateral prefrontal cortices. In sum, we replicated prior findings of decreased post-error slowing in schizophrenia and found that nicotine was associated with more adaptive (i.e., increased) post-error reaction time (RT). This proof-of-concept pilot study suggests a role for nicotinic agents in targeting cognitive control deficits in schizophrenia.
Deng, Huiqiong; Durfee, William K; Nuckley, David J; Rheude, Brandon S; Severson, Amy E; Skluzacek, Katie M; Spindler, Kristen K; Davey, Cynthia S; Carey, James R
2012-02-01
Telerehabilitation allows rehabilitative training to continue remotely after discharge from acute care and can include complex tasks known to create rich conditions for neural change. The purposes of this study were: (1) to explore the feasibility of using telerehabilitation to improve ankle dorsiflexion during the swing phase of gait in people with stroke and (2) to compare complex versus simple movements of the ankle in promoting behavioral change and brain reorganization. This study was a pilot randomized controlled trial. Training was done in the participant's home. Testing was done in separate research labs involving functional magnetic resonance imaging (fMRI) and multi-camera gait analysis. Sixteen participants with chronic stroke and impaired ankle dorsiflexion were assigned randomly to receive 4 weeks of telerehabilitation of the paretic ankle. Participants received either computerized complex movement training (track group) or simple movement training (move group). Behavioral changes were measured with the 10-m walk test and gait analysis using a motion capture system. Brain reorganization was measured with ankle tracking during fMRI. Dorsiflexion during gait was significantly larger in the track group compared with the move group. For fMRI, although the volume, percent volume, and intensity of cortical activation failed to show significant changes, the frequency count of the number of participants showing an increase versus a decrease in these values from pretest to posttest measurements was significantly different between the 2 groups, with the track group decreasing and the move group increasing. Limitations of this study were that no follow-up test was conducted and that a small sample size was used. The results suggest that telerehabilitation, emphasizing complex task training with the paretic limb, is feasible and can be effective in promoting further dorsiflexion in people with chronic stroke.
NASA Astrophysics Data System (ADS)
Sofina, T.; Kamil, W. A.; Ahmad, A. H.
2014-11-01
The aims of this study are to image and investigate the areas of brain response to laser-induced heat pain, to analyse for any difference in the brain response when a subject is alone and when her loved one is present next to the MRI gantry. Pain stimuli was delivered using Th-YAG laser to four female subjects. Blood-Oxygenation-Level-Dependent (BOLD) fMRI experiment was performed using blocked design paradigm with five blocks of painful (P) stimuli and five blocks of non-painful (NP) stimuli arranged in pseudorandom order with an 18 seconds rest (R) between each stimulation phase. Brain images were obtained from 3T Philips Achieva MRI scanner using 32-channel SENSE head coil. A T1-weighted image (TR/TE/slice/FOV = 9ms/4ms/4mm slices/240×240mm) was obtained for verification of brain anatomical structures. An echo-planar-imaging sequence were used for the functional scans (TR/TE/slice/flip/FOV=2000ms/35ms/4mm slices/90°/220×220mm). fMRI data sets were analysed using SPM 8.0 involving preprocessing steps followed by t-contrast analysis for individuals and FFX analysis. In both with and without-loved-one conditions, neuronal responses were seen in the somatosensory gyrus, supramarginal gyrus, thalamus and insula regions, consistent with pain-related areas. FFX analysis showed that the presence of loved one produced more activation in the frontal and supramarginal gyrus during painful and non-painful stimulations compared to absence of a loved one. Brain response to pain is modulated by the presence of a loved one, causing more activation in the cognitive/emotional area i.e. 'love hurts'.
Menon, Samir; Zhu, Jack; Goyal, Deeksha; Khatib, Oussama
2017-07-01
Haptic interfaces compatible with functional magnetic resonance imaging (Haptic fMRI) promise to enable rich motor neuroscience experiments that study how humans perform complex manipulation tasks. Here, we present a large-scale study (176 scans runs, 33 scan sessions) that characterizes the reliability and performance of one such electromagnetically actuated device, Haptic fMRI Interface 3 (HFI-3). We outline engineering advances that ensured HFI-3 did not interfere with fMRI measurements. Observed fMRI temporal noise levels with HFI-3 operating were at the fMRI baseline (0.8% noise to signal). We also present results from HFI-3 experiments demonstrating that high resolution fMRI can be used to study spatio-temporal patterns of fMRI blood oxygenation dependent (BOLD) activation. These experiments include motor planning, goal-directed reaching, and visually-guided force control. Observed fMRI responses are consistent with existing literature, which supports Haptic fMRI's effectiveness at studying the brain's motor regions.
2017-01-01
A novel robotic mirror therapy system was recently developed to provide proprioceptive stimulus to the hemiplegic arm during a mirror therapy. Validation of the robotic mirror therapy system was performed to confirm its synchronicity prior to the clinical study. The mean error angle range between the intact arm and the robot was 1.97 to 4.59 degrees. A 56-year-old male who had right middle cerebral artery infarction 11 months ago received the robotic mirror therapy for ten 30-minute sessions during 2 weeks. Clinical evaluation and functional magnetic resonance imaging (fMRI) studies were performed before and after the intervention. At the follow-up evaluation, the thumb finding test score improved from 2 to 1 for eye level and from 3 to 1 for overhead level. The Albert's test score on the left side improved from 6 to 11. Improvements were sustained at 2-month follow-up. The fMRI during the passive motion revealed a considerable increase in brain activity at the lower part of the right superior parietal lobule, suggesting the possibility of proprioception enhancement. The robotic mirror therapy system may serve as a useful treatment method for patients with supratentorial stroke to facilitate recovery of proprioceptive deficit and hemineglect. PMID:28875598
Sex differences in extinction recall in posttraumatic stress disorder: A pilot fMRI study
Shvil, Erel; Sullivan, Gregory M.; Schafer, Scott; Markowitz, John C.; Campeas, Miriam; Wager, Tor D.; Milad, Mohammed R.; Neria, Yuval
2014-01-01
Recent research has found that individuals with posttraumatic stress disorder (PTSD) exhibit an impaired memory of fear extinction compounded by deficient functional activation of key nodes of the fear network including the amygdala, hippocampus, ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortex (dACC). Research has shown these regions are sexually dimorphic and activate differentially in healthy men and women during fear learning tasks. To explore biological markers of sex differences following exposure to psychological trauma, we used a fear learning and extinction paradigm together with functional magnetic resonance imaging (fMRI) and skin conductance response (SCR) to assess 31 individuals with PTSD (18 women; 13 men) and 25 matched trauma-exposed healthy control subjects (13 women; 12 men). Whereas no sex differences appeared within the trauma-exposed healthy control group, both psychophysiological and neural activation patterns within the PTSD group indicated deficient recall of extinction memory among men and not among women. Men with PTSD exhibited increased activation in the left rostral dACC during extinction recall compared with women with PTSD. These findings highlight the importance of tracking sex differences in fear extinction when characterizing the underlying neurobiological mechanisms of PTSD psychopathology. PMID:24560771
Diler, Rasim Somer; de Almeida, Jorge Renner Cardoso; Ladouceur, Cecile; Birmaher, Boris; Axelson, David; Phillips, Mary
2013-12-30
Failure to distinguish bipolar depression (BDd) from the unipolar depression of major depressive disorder (UDd) in adolescents has significant clinical consequences. We aimed to identify differential patterns of functional neural activity in BDd versus UDd and employed two (fearful and happy) facial expression/ gender labeling functional magnetic resonance imaging (fMRI) experiments to study emotion processing in 10 BDd (8 females, mean age=15.1 ± 1.1) compared to age- and gender-matched 10 UDd and 10 healthy control (HC) adolescents who were age- and gender-matched to the BDd group. BDd adolescents, relative to UDd, showed significantly lower activity to both intense happy (e.g., insula and temporal cortex) and intense fearful faces (e.g., frontal precentral cortex). Although the neural regions recruited in each group were not the same, both BDd and UDd adolescents, relative to HC, showed significantly lower neural activity to intense happy and mild happy faces, but elevated neural activity to mild fearful faces. Our results indicated that patterns of neural activity to intense positive and negative emotional stimuli can help differentiate BDd from UDd in adolescents. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Bleyenheuft, Yannick; Dricot, Laurence; Gilis, Nathalie; Kuo, Hsing-Ching; Grandin, Cécile; Bleyenheuft, Corinne; Gordon, Andrew M.; Friel, Kathleen M.
2016-01-01
Intensive rehabilitation interventions have been shown to be efficacious in improving upper extremity function in children with unilateral spastic cerebral palsy (USCP). These interventions are based on motor learning principles and engage children in skillful movements. Improvements in upper extremity function are believed to be associated with neuroplastic changes. However, these neuroplastic changes have not been well-described in children with cerebral palsy, likely due to challenges in defining and implementing the optimal tools and tests in children. Here we documented the implementation of three different neurological assessments (diffusion tensor imaging-DTI, transcranial magnetic stimulation-TMS and functional magnetic resonance imaging-fMRI) before and after a bimanual intensive treatment (HABIT-ILE) in two children with USCP presenting differential corticospinal developmental reorganization (ipsilateral and contralateral). The aim of the study was to capture neurophysiological changes and to document the complementary relationship between these measures, the potential measurable changes and the feasibility of applying these techniques in children with USCP. Independent of cortical reorganization, both children showed increases in activation and size of the motor areas controlling the affected hand, quantified with different techniques. In addition, fMRI provided additional unexpected changes in the reward circuit while using the affected hand. PMID:26183338
Percik, Ruth; Cina, Jenny; Even, Batel; Gitler, Asaf; Geva, Diklah; Seluk, Lior; Livny, Abigail
2018-02-07
Despite the thorough mapping of brain pathways involved in eating behavior, no treatment aimed at modulating eating dysregulation from its neurocognitive root has been established yet. We aimed to evaluate the effect of N.I.R. H.E.G. (Near Infra-Red Hemoencephalography) neurofeedback training on appetite control, weight and food-related brain activity. Six healthy male participants with overweight or mild obesity went through 10 N.I.R. H.E.G. neurofeedback sessions designed to practice voluntary activation of the prefrontal cortex. Weight, eating behavior, appetite control and brain activity related to food and self-inhibition based on fMRI were evaluated before and after neurofeedback training. Our study group demonstrated a positive trend of increased self-control and inhibition related to food behavior, reduced weight and increased activation during an fMRI response-inhibition task (Go-No-Go - GNG) in the predefined region of interest (ROI): superior orbitofrontal cortex (sOFC). N.I.R. H.E.G. holds a promising potential as a feasible neurofeedback platform for modulation of cortical brain circuits involved in self-control and eating behavior and should be further evaluated and developed as a brain modifying device for the treatment and prevention of obesity. Copyright © 2018. Published by Elsevier Ltd.
Social reinforcement can regulate localized brain activity.
Mathiak, Krystyna A; Koush, Yury; Dyck, Miriam; Gaber, Tilman J; Alawi, Eliza; Zepf, Florian D; Zvyagintsev, Mikhail; Mathiak, Klaus
2010-11-01
Social learning is essential for adaptive behavior in humans. Neurofeedback based on functional magnetic resonance imaging (fMRI) trains control over localized brain activity. It can disentangle learning processes at the neural level and thus investigate the mechanisms of operant conditioning with explicit social reinforcers. In a pilot study, a computer-generated face provided a positive feedback (smiling) when activity in the anterior cingulate cortex (ACC) increased and gradually returned to a neutral expression when the activity dropped. One female volunteer without previous experience in fMRI underwent training based on a social reinforcer. Directly before and after the neurofeedback runs, neural responses to a cognitive interference task (Simon task) were recorded. We observed a significant increase in activity within ACC during the neurofeedback blocks, correspondent with the a-priori defined anatomical region of interest. In the course of the neurofeedback training, the subject learned to regulate ACC activity and could maintain the control even without direct feedback. Moreover, ACC was activated significantly stronger during Simon task after the neurofeedback training when compared to before. Localized brain activity can be controlled by social reward. The increased ACC activity transferred to a cognitive task with the potential to reduce cognitive interference. Systematic studies are required to explore long-term effects on social behavior and clinical applications.
Vigaru, Bogdan; Sulzer, James; Gassert, Roger
2016-01-01
Our hands and fingers are involved in almost all activities of daily living and, as such, have a disproportionately large neural representation. Functional magnetic resonance imaging investigations into the neural control of the hand have revealed great advances, but the harsh MRI environment has proven to be a challenge to devices capable of delivering a large variety of stimuli necessary for well-controlled studies. This paper presents a fMRI-compatible haptic interface to investigate the neural mechanisms underlying precision grasp control. The interface, located at the scanner bore, is controlled remotely through a shielded electromagnetic actuation system positioned at the end of the scanner bed and then through a high stiffness, low inertia cable transmission. We present the system design, taking into account requirements defined by the biomechanics and dynamics of the human hand, as well as the fMRI environment. Performance evaluation revealed a structural stiffness of 3.3 N/mm, renderable forces up to 94 N, and a position control bandwidth of at least 19 Hz. MRI-compatibility tests showed no degradation in the operation of the haptic interface or the image quality. A preliminary fMRI experiment during a pilot study validated the usability of the haptic interface, illustrating the possibilities offered by this device. PMID:26441454
Krivitzky, Lauren S; Roebuck-Spencer, Tresa M; Roth, Robert M; Blackstone, Kaitlin; Johnson, Chad P; Gioia, Gerard
2011-11-01
The current pilot study examined functional magnetic resonance imaging (fMRI) activation in children with mild traumatic brain injury (mTBI) during tasks of working memory and inhibitory control, both of which are vulnerable to impairment following mTBI. Thirteen children with symptomatic mTBI and a group of controls completed a version of the Tasks of Executive Control (TEC) during fMRI scanning. Both groups showed greater prefrontal activation in response to increased working memory load. Activation patterns did not differ between groups on the working memory aspects of the task, but children with mTBI showed greater activation in the posterior cerebellum with the addition of a demand for inhibitory control. Children with mTBI showed greater impairment on symptom report and "real world" measures of executive functioning, but not on traditional "paper and pencil" tasks. Likewise, cognitive testing did not correlate significantly with imaging results, whereas increased report of post-concussive symptoms were correlated with increased cerebellar activation. Overall, results provide some evidence for the utility of symptom report as an indicator of recovery and the hypothesis that children with mTBI may experience disrupted neural circuitry during recovery. Limitations of the study included a small sample size, wide age range, and lack of in-scanner accuracy data.
Breaking down the barriers: fMRI applications in pain, analgesia and analgesics
Borsook, David; Becerra, Lino R
2006-01-01
This review summarizes functional magnetic resonance imaging (fMRI) findings that have informed our current understanding of pain, analgesia and related phenomena, and discusses the potential role of fMRI in improved therapeutic approaches to pain. It is divided into 3 main sections: (1) fMRI studies of acute and chronic pain. Physiological studies of pain have found numerous regions of the brain to be involved in the interpretation of the 'pain experience'; studies in chronic pain conditions have identified a significant CNS component; and fMRI studies of surrogate models of chronic pain are also being used to further this understanding. (2) fMRI studies of endogenous pain processing including placebo, empathy, attention or cognitive modulation of pain. (3) The use of fMRI to evaluate the effects of analgesics on brain function in acute and chronic pain. fMRI has already provided novel insights into the neurobiology of pain. These insights should significantly advance therapeutic approaches to chronic pain. PMID:16982005
Higher landing accuracy in expert pilots is associated with lower activity in the caudate nucleus.
Adamson, Maheen M; Taylor, Joy L; Heraldez, Daniel; Khorasani, Allen; Noda, Art; Hernandez, Beatriz; Yesavage, Jerome A
2014-01-01
The most common lethal accidents in General Aviation are caused by improperly executed landing approaches in which a pilot descends below the minimum safe altitude without proper visual references. To understand how expertise might reduce such erroneous decision-making, we examined relevant neural processes in pilots performing a simulated landing approach inside a functional MRI scanner. Pilots (aged 20-66) were asked to "fly" a series of simulated "cockpit view" instrument landing scenarios in an MRI scanner. The scenarios were either high risk (heavy fog-legally unsafe to land) or low risk (medium fog-legally safe to land). Pilots with one of two levels of expertise participated: Moderate Expertise (Instrument Flight Rules pilots, n = 8) or High Expertise (Certified Instrument Flight Instructors or Air-Transport Pilots, n = 12). High Expertise pilots were more accurate than Moderate Expertise pilots in making a "land" versus "do not land" decision (CFII: d' = 3.62 ± 2.52; IFR: d' = 0.98 ± 1.04; p<.01). Brain activity in bilateral caudate nucleus was examined for main effects of expertise during a "land" versus "do not land" decision with the no-decision control condition modeled as baseline. In making landing decisions, High Expertise pilots showed lower activation in the bilateral caudate nucleus (0.97 ± 0.80) compared to Moderate Expertise pilots (1.91 ± 1.16) (p<.05). These findings provide evidence for increased "neural efficiency" in High Expertise pilots relative to Moderate Expertise pilots. During an instrument approach the pilot is engaged in detailed examination of flight instruments while monitoring certain visual references for making landing decisions. The caudate nucleus regulates saccade eye control of gaze, the brain area where the "expertise" effect was observed. These data provide evidence that performing "real world" aviation tasks in an fMRI provide objective data regarding the relative expertise of pilots and brain regions involved in it.
Nam, Hyung Seok; Koh, Sukgyu; Beom, Jaewon; Kim, Yoon Jae; Park, Jang Woo; Koh, Eun Sil; Chung, Sun Gun; Kim, Sungwan
2017-10-01
A novel robotic mirror therapy system was recently developed to provide proprioceptive stimulus to the hemiplegic arm during a mirror therapy. Validation of the robotic mirror therapy system was performed to confirm its synchronicity prior to the clinical study. The mean error angle range between the intact arm and the robot was 1.97 to 4.59 degrees. A 56-year-old male who had right middle cerebral artery infarction 11 months ago received the robotic mirror therapy for ten 30-minute sessions during 2 weeks. Clinical evaluation and functional magnetic resonance imaging (fMRI) studies were performed before and after the intervention. At the follow-up evaluation, the thumb finding test score improved from 2 to 1 for eye level and from 3 to 1 for overhead level. The Albert's test score on the left side improved from 6 to 11. Improvements were sustained at 2-month follow-up. The fMRI during the passive motion revealed a considerable increase in brain activity at the lower part of the right superior parietal lobule, suggesting the possibility of proprioception enhancement. The robotic mirror therapy system may serve as a useful treatment method for patients with supratentorial stroke to facilitate recovery of proprioceptive deficit and hemineglect. © 2017 The Korean Academy of Medical Sciences.
Using fMRI to study reward processing in humans: past, present, and future
Wang, Kainan S.; Smith, David V.
2016-01-01
Functional magnetic resonance imaging (fMRI) is a noninvasive tool used to probe cognitive and affective processes. Although fMRI provides indirect measures of neural activity, the advent of fMRI has allowed for 1) the corroboration of significant animal findings in the human brain, and 2) the expansion of models to include more common human attributes that inform behavior. In this review, we briefly consider the neural basis of the blood oxygenation level dependent signal to set up a discussion of how fMRI studies have applied it in examining cognitive models in humans and the promise of using fMRI to advance such models. Specifically, we illustrate the contribution that fMRI has made to the study of reward processing, focusing on the role of the striatum in encoding reward-related learning signals that drive anticipatory and consummatory behaviors. For instance, we discuss how fMRI can be used to link neural signals (e.g., striatal responses to rewards) to individual differences in behavior and traits. While this functional segregation approach has been constructive to our understanding of reward-related functions, many fMRI studies have also benefitted from a functional integration approach that takes into account how interconnected regions (e.g., corticostriatal circuits) contribute to reward processing. We contend that future work using fMRI will profit from using a multimodal approach, such as combining fMRI with noninvasive brain stimulation tools (e.g., transcranial electrical stimulation), that can identify causal mechanisms underlying reward processing. Consequently, advancements in implementing fMRI will promise new translational opportunities to inform our understanding of psychopathologies. PMID:26740530
Neural Mechanisms of Recognizing Camouflaged Objects: A Human fMRI Study
2015-07-30
Unlimited Final Report: Neural Mechanisms of Recognizing Camouflaged Objects: A Human fMRI Study The views, opinions and/or findings contained in this...27709-2211 Visual search, Camouflage, Functional magnetic resonance imaging ( fMRI ), Perceptual learning REPORT DOCUMENTATION PAGE 11. SPONSOR...ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Neural Mechanisms of Recognizing Camouflaged Objects: A Human fMRI Study
Gawryluk, Jodie R.; Mazerolle, Erin L.; D'Arcy, Ryan C. N.
2014-01-01
Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows for visualization of activated brain regions. Until recently, fMRI studies have focused on gray matter. There are two main reasons white matter fMRI remains controversial: (1) the blood oxygen level dependent (BOLD) fMRI signal depends on cerebral blood flow and volume, which are lower in white matter than gray matter and (2) fMRI signal has been associated with post-synaptic potentials (mainly localized in gray matter) as opposed to action potentials (the primary type of neural activity in white matter). Despite these observations, there is no direct evidence against measuring fMRI activation in white matter and reports of fMRI activation in white matter continue to increase. The questions underlying white matter fMRI activation are important. White matter fMRI activation has the potential to greatly expand the breadth of brain connectivity research, as well as improve the assessment and diagnosis of white matter and connectivity disorders. The current review provides an overview of the motivation to investigate white matter fMRI activation, as well as the published evidence of this phenomenon. We speculate on possible neurophysiologic bases of white matter fMRI signals, and discuss potential explanations for why reports of white matter fMRI activation are relatively scarce. We end with a discussion of future basic and clinical research directions in the study of white matter fMRI. PMID:25152709
Deng, Huiqiong; Durfee, William K.; Nuckley, David J.; Rheude, Brandon S.; Severson, Amy E.; Skluzacek, Katie M.; Spindler, Kristen K.; Davey, Cynthia S.
2012-01-01
Background Telerehabilitation allows rehabilitative training to continue remotely after discharge from acute care and can include complex tasks known to create rich conditions for neural change. Objectives The purposes of this study were: (1) to explore the feasibility of using telerehabilitation to improve ankle dorsiflexion during the swing phase of gait in people with stroke and (2) to compare complex versus simple movements of the ankle in promoting behavioral change and brain reorganization. Design This study was a pilot randomized controlled trial. Setting Training was done in the participant's home. Testing was done in separate research labs involving functional magnetic resonance imaging (fMRI) and multi-camera gait analysis. Patients Sixteen participants with chronic stroke and impaired ankle dorsiflexion were assigned randomly to receive 4 weeks of telerehabilitation of the paretic ankle. Intervention Participants received either computerized complex movement training (track group) or simple movement training (move group). Measurements Behavioral changes were measured with the 10-m walk test and gait analysis using a motion capture system. Brain reorganization was measured with ankle tracking during fMRI. Results Dorsiflexion during gait was significantly larger in the track group compared with the move group. For fMRI, although the volume, percent volume, and intensity of cortical activation failed to show significant changes, the frequency count of the number of participants showing an increase versus a decrease in these values from pretest to posttest measurements was significantly different between the 2 groups, with the track group decreasing and the move group increasing. Limitations Limitations of this study were that no follow-up test was conducted and that a small sample size was used. Conclusions The results suggest that telerehabilitation, emphasizing complex task training with the paretic limb, is feasible and can be effective in promoting further dorsiflexion in people with chronic stroke. PMID:22095209
Zhang, Junying; Xu, Kai; Wei, Dongfeng; Guo, Rongjuan; Li, He; Wang, Yongyan; Zhang, Zhanjun
2015-01-01
Observing the effects of a drug on episodic memory and the underlying brain function has extreme significance in evaluating its therapeutic value in treating amnestic mild cognitive impairment (aMCI). To observe the effects of Bushen capsule (BSC), a Chinese herbal medicine, on episodic memory in aMCI and further explore the underlying mechanism. 44 aMCI patients from hospitals and local communities in Beijing were randomly divided into the BSC treatment group (22 patients orally treated with BSC) and the placebo group (22 patients treated with placebo). The duration of intervention lasted for 3 months. Before and after the 3 months treatment, neuropsychological tests and fMRI examinations were carried out to assess cognitive ability and brain activation changes, respectively. Compared to the placebo group, the BSC group presented a significant increase in the AVLT(N5) (p = 0.003) and Stroop (C-B) time (p = 0.002). fMRI results showed a reduction of brain negative activation in the right middle temporal gyrus and a positive activation enhancement in the right putamen among the BSC group after treatment. Meanwhile, the variation in activation values in the right middle temporal gyrus was significantly correlated with the improvement in test values of AVLT(N5), and the variation in deactivation values in the right putamen was significantly correlated with the improvement in test values of Stroop (C-B) time. BSC can improve the behavioral performances of episodic memory in aMCI; this effect may be related to its modulation on the activations of the temporal lobe and the putamen under episodic memory encoding task.
Asaad, Mazen; Lee, Jin Hyung
2018-05-18
Alzheimer's disease is a leading healthcare challenge facing our society today. Functional magnetic resonance imaging (fMRI) of the brain has played an important role in our efforts to understand how Alzheimer's disease alters brain function. Using fMRI in animal models of Alzheimer's disease has the potential to provide us with a more comprehensive understanding of the observations made in human clinical fMRI studies. However, using fMRI in animal models of Alzheimer's disease presents some unique challenges. Here, we highlight some of these challenges and discuss potential solutions for researchers interested in performing fMRI in animal models. First, we briefly summarize our current understanding of Alzheimer's disease from a mechanistic standpoint. We then overview the wide array of animal models available for studying this disease and how to choose the most appropriate model to study, depending on which aspects of the condition researchers seek to investigate. Finally, we discuss the contributions of fMRI to our understanding of Alzheimer's disease and the issues to consider when designing fMRI studies for animal models, such as differences in brain activity based on anesthetic choice and ways to interrogate more specific questions in rodents beyond those that can be addressed in humans. The goal of this article is to provide information on the utility of fMRI, and approaches to consider when using fMRI, for studies of Alzheimer's disease in animal models. © 2018. Published by The Company of Biologists Ltd.
A guide to using functional magnetic resonance imaging to study Alzheimer's disease in animal models
Asaad, Mazen
2018-01-01
ABSTRACT Alzheimer's disease is a leading healthcare challenge facing our society today. Functional magnetic resonance imaging (fMRI) of the brain has played an important role in our efforts to understand how Alzheimer's disease alters brain function. Using fMRI in animal models of Alzheimer's disease has the potential to provide us with a more comprehensive understanding of the observations made in human clinical fMRI studies. However, using fMRI in animal models of Alzheimer's disease presents some unique challenges. Here, we highlight some of these challenges and discuss potential solutions for researchers interested in performing fMRI in animal models. First, we briefly summarize our current understanding of Alzheimer's disease from a mechanistic standpoint. We then overview the wide array of animal models available for studying this disease and how to choose the most appropriate model to study, depending on which aspects of the condition researchers seek to investigate. Finally, we discuss the contributions of fMRI to our understanding of Alzheimer's disease and the issues to consider when designing fMRI studies for animal models, such as differences in brain activity based on anesthetic choice and ways to interrogate more specific questions in rodents beyond those that can be addressed in humans. The goal of this article is to provide information on the utility of fMRI, and approaches to consider when using fMRI, for studies of Alzheimer's disease in animal models. PMID:29784664
Curley, Louise E; Kydd, Rob R; Robertson, Michelle C; Pillai, Avinesh; McNair, Nicolas; Lee, HeeSeung; Kirk, Ian J; Russell, Bruce R
2015-08-01
A novel group of designer drugs containing benzylpiperazine (BZP) and/or trifluoromethylphenylpiperazine (TFMPP) have been available worldwide for more than a decade; however, their effects on human brain function have not been extensively described. In a double-blind, placebo-controlled crossover study, the acute effects of BZP and TFMPP (alone and in combination) on the neural networks involved in executive function were investigated using an event-related Stroop functional magnetic resonance imaging (fMRI) paradigm. Thirteen healthy participants aged 18-40 years undertook the Stroop task 90 min after taking an oral dose of either BZP (200 mg), TFMPP (either 50 or 60 mg), BZP + TFMPP (100 + 30 mg) or placebo. A change in activity in neural regions reflects an increase in local demand for oxygen, due to an increase in neuronal activity. Relative to placebo, an increase in neural activation was observed in the dorsal striatum following BZP, and in the thalamus following TFMPP, when performing the Stroop task. These data suggest that additional compensatory resources were recruited to maintain performance during the Stroop task. When BZP and TFMPP were administered together, both the dorsal striatum and thalamus were activated. However, the combination of BZP/TFMPP attenuated activation in the caudate, possibly due to TFMPP's indirect effects on dopamine release via 5HT2C receptors.
Bleyenheuft, Yannick; Dricot, Laurence; Gilis, Nathalie; Kuo, Hsing-Ching; Grandin, Cécile; Bleyenheuft, Corinne; Gordon, Andrew M; Friel, Kathleen M
2015-01-01
Intensive rehabilitation interventions have been shown to be efficacious in improving upper extremity function in children with unilateral spastic cerebral palsy (USCP). These interventions are based on motor learning principles and engage children in skillful movements. Improvements in upper extremity function are believed to be associated with neuroplastic changes. However, these neuroplastic changes have not been well-described in children with cerebral palsy, likely due to challenges in defining and implementing the optimal tools and tests in children. Here we documented the implementation of three different neurological assessments (diffusion tensor imaging-DTI, transcranial magnetic stimulation-TMS and functional magnetic resonance imaging-fMRI) before and after a bimanual intensive treatment (HABIT-ILE) in two children with USCP presenting differential corticospinal developmental reorganization (ipsilateral and contralateral). The aim of the study was to capture neurophysiological changes and to document the complementary relationship between these measures, the potential measurable changes and the feasibility of applying these techniques in children with USCP. Independent of cortical reorganization, both children showed increases in activation and size of the motor areas controlling the affected hand, quantified with different techniques. In addition, fMRI provided additional unexpected changes in the reward circuit while using the affected hand. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Higher Landing Accuracy in Expert Pilots is Associated with Lower Activity in the Caudate Nucleus
Adamson, Maheen M.; Taylor, Joy L.; Heraldez, Daniel; Khorasani, Allen; Noda, Art; Hernandez, Beatriz; Yesavage, Jerome A.
2014-01-01
The most common lethal accidents in General Aviation are caused by improperly executed landing approaches in which a pilot descends below the minimum safe altitude without proper visual references. To understand how expertise might reduce such erroneous decision-making, we examined relevant neural processes in pilots performing a simulated landing approach inside a functional MRI scanner. Pilots (aged 20–66) were asked to “fly” a series of simulated “cockpit view” instrument landing scenarios in an MRI scanner. The scenarios were either high risk (heavy fog–legally unsafe to land) or low risk (medium fog–legally safe to land). Pilots with one of two levels of expertise participated: Moderate Expertise (Instrument Flight Rules pilots, n = 8) or High Expertise (Certified Instrument Flight Instructors or Air-Transport Pilots, n = 12). High Expertise pilots were more accurate than Moderate Expertise pilots in making a “land” versus “do not land” decision (CFII: d′ = 3.62±2.52; IFR: d′ = 0.98±1.04; p<.01). Brain activity in bilateral caudate nucleus was examined for main effects of expertise during a “land” versus “do not land” decision with the no-decision control condition modeled as baseline. In making landing decisions, High Expertise pilots showed lower activation in the bilateral caudate nucleus (0.97±0.80) compared to Moderate Expertise pilots (1.91±1.16) (p<.05). These findings provide evidence for increased “neural efficiency” in High Expertise pilots relative to Moderate Expertise pilots. During an instrument approach the pilot is engaged in detailed examination of flight instruments while monitoring certain visual references for making landing decisions. The caudate nucleus regulates saccade eye control of gaze, the brain area where the “expertise” effect was observed. These data provide evidence that performing “real world” aviation tasks in an fMRI provide objective data regarding the relative expertise of pilots and brain regions involved in it. PMID:25426935
Sex differences in extinction recall in posttraumatic stress disorder: a pilot fMRI study.
Shvil, Erel; Sullivan, Gregory M; Schafer, Scott; Markowitz, John C; Campeas, Miriam; Wager, Tor D; Milad, Mohammed R; Neria, Yuval
2014-09-01
Recent research has found that individuals with posttraumatic stress disorder (PTSD) exhibit an impaired memory of fear extinction compounded by deficient functional activation of key nodes of the fear network including the amygdala, hippocampus, ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortex (dACC). Research has shown these regions are sexually dimorphic and activate differentially in healthy men and women during fear learning tasks. To explore biological markers of sex differences following exposure to psychological trauma, we used a fear learning and extinction paradigm together with functional magnetic resonance imaging (fMRI) and skin conductance response (SCR) to assess 31 individuals with PTSD (18 women; 13 men) and 25 matched trauma-exposed healthy control subjects (13 women; 12 men). Whereas no sex differences appeared within the trauma-exposed healthy control group, both psychophysiological and neural activation patterns within the PTSD group indicated deficient recall of extinction memory among men and not among women. Men with PTSD exhibited increased activation in the left rostral dACC during extinction recall compared with women with PTSD. These findings highlight the importance of tracking sex differences in fear extinction when characterizing the underlying neurobiological mechanisms of PTSD psychopathology. Copyright © 2014 Elsevier Inc. All rights reserved.
Ely, Alice V; Childress, Anna Rose; Jagannathan, Kanchana; Lowe, Michael R
2015-12-01
Normal weight historical dieters (HDs) are prone to future weight gain, and show higher levels of brain activation in reward-related regions after having eaten than nondieters (NDs) in response to food stimuli (Ely, Childress, Jagannathan, & Lowe, 2014), a similar pattern to that seen in obesity. We hypothesized that HDs are differentially sensitive after eating to rewards in general, and thus extended prior findings by comparing the same groups' brain activation when viewing romantic pictures compared to neutral stimuli while being scanned in a blood oxygenation level-dependent (BOLD) fMRI paradigm in a fasted and fed state. Results show that 1) in fed relative to fasted conditions, both HDs and NDs were more responsive in areas related to reward and 2) in HDs, greater fed versus fasted activation extended to areas linked to perception and goal-directed behavior. HDs relative to NDs were more responsive to romantic cues in the superior frontal gyrus when fasted and the middle temporal gyrus when fed. This pattern of response is similar to HDs' activation when viewing highly palatable food cues, and is consistent with research showing overlapping brain-based responses to sex, drugs and food. Copyright © 2015 Elsevier Ltd. All rights reserved.
Daud Albasini, Omar A.; Oboe, Roberto; Tonin, Paolo; Paolucci, Stefano; Sandrini, Giorgio; Piron, Lamberto
2013-01-01
Background. Haptic robots allow the exploitation of known motor learning mechanisms, representing a valuable option for motor treatment after stroke. The aim of this feasibility multicentre study was to test the clinical efficacy of a haptic prototype, for the recovery of hand function after stroke. Methods. A prospective pilot clinical trial was planned on 15 consecutive patients enrolled in 3 rehabilitation centre in Italy. All the framework features of the haptic robot (e.g., control loop, external communication, and graphic rendering for virtual reality) were implemented into a real-time MATLAB/Simulink environment, controlling a five-bar linkage able to provide forces up to 20 [N] at the end effector, used for finger and hand rehabilitation therapies. Clinical (i.e., Fugl-Meyer upper extremity scale; nine hold pegboard test) and kinematics (i.e., time; velocity; jerk metric; normalized jerk of standard movements) outcomes were assessed before and after treatment to detect changes in patients' motor performance. Reorganization of cortical activation was detected in one patient by fMRI. Results and Conclusions. All patients showed significant improvements in both clinical and kinematic outcomes. Additionally, fMRI results suggest that the proposed approach may promote a better cortical activation in the brain. PMID:24319496
Turolla, Andrea; Daud Albasini, Omar A; Oboe, Roberto; Agostini, Michela; Tonin, Paolo; Paolucci, Stefano; Sandrini, Giorgio; Venneri, Annalena; Piron, Lamberto
2013-01-01
Background. Haptic robots allow the exploitation of known motor learning mechanisms, representing a valuable option for motor treatment after stroke. The aim of this feasibility multicentre study was to test the clinical efficacy of a haptic prototype, for the recovery of hand function after stroke. Methods. A prospective pilot clinical trial was planned on 15 consecutive patients enrolled in 3 rehabilitation centre in Italy. All the framework features of the haptic robot (e.g., control loop, external communication, and graphic rendering for virtual reality) were implemented into a real-time MATLAB/Simulink environment, controlling a five-bar linkage able to provide forces up to 20 [N] at the end effector, used for finger and hand rehabilitation therapies. Clinical (i.e., Fugl-Meyer upper extremity scale; nine hold pegboard test) and kinematics (i.e., time; velocity; jerk metric; normalized jerk of standard movements) outcomes were assessed before and after treatment to detect changes in patients' motor performance. Reorganization of cortical activation was detected in one patient by fMRI. Results and Conclusions. All patients showed significant improvements in both clinical and kinematic outcomes. Additionally, fMRI results suggest that the proposed approach may promote a better cortical activation in the brain.
Kraus, Thomas; Kiess, Olga; Hösl, Katharina; Terekhin, Pavel; Kornhuber, Johannes; Forster, Clemens
2013-09-01
It has recently been shown that electrical stimulation of sensory afferents within the outer auditory canal may facilitate a transcutaneous form of central nervous system stimulation. Functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) effects in limbic and temporal structures have been detected in two independent studies. In the present study, we investigated BOLD fMRI effects in response to transcutaneous electrical stimulation of two different zones in the left outer auditory canal. It is hypothesized that different central nervous system (CNS) activation patterns might help to localize and specifically stimulate auricular cutaneous vagal afferents. 16 healthy subjects aged between 20 and 37 years were divided into two groups. 8 subjects were stimulated in the anterior wall, the other 8 persons received transcutaneous vagus nervous stimulation (tVNS) at the posterior side of their left outer auditory canal. For sham control, both groups were also stimulated in an alternating manner on their corresponding ear lobe, which is generally known to be free of cutaneous vagal innervation. Functional MR data from the cortex and brain stem level were collected and a group analysis was performed. In most cortical areas, BOLD changes were in the opposite direction when comparing anterior vs. posterior stimulation of the left auditory canal. The only exception was in the insular cortex, where both stimulation types evoked positive BOLD changes. Prominent decreases of the BOLD signals were detected in the parahippocampal gyrus, posterior cingulate cortex and right thalamus (pulvinar) following anterior stimulation. In subcortical areas at brain stem level, a stronger BOLD decrease as compared with sham stimulation was found in the locus coeruleus and the solitary tract only during stimulation of the anterior part of the auditory canal. The results of the study are in line with previous fMRI studies showing robust BOLD signal decreases in limbic structures and the brain stem during electrical stimulation of the left anterior auditory canal. BOLD signal decreases in the area of the nuclei of the vagus nerve may indicate an effective stimulation of vagal afferences. In contrast, stimulation at the posterior wall seems to lead to unspecific changes of the BOLD signal within the solitary tract, which is a key relay station of vagal neurotransmission. The results of the study show promise for a specific novel method of cranial nerve stimulation and provide a basis for further developments and applications of non-invasive transcutaneous vagus stimulation in psychiatric patients. Copyright © 2013 Elsevier Inc. All rights reserved.
Gruber, Staci A.; Sagar, Kelly A.; Dahlgren, Mary Kathryn; Gonenç, Atilla; Conn, Nina A.; Winer, Jeffrey P.; Penetar, David; Lukas, Scott E.
2015-01-01
Objective Citicoline is an endogenous nucleotide that has historically been used to treat stroke, traumatic brain injury, and cognitive dysfunction. Research has also shown that citicoline treatment is associated with improved cognitive performance in substance-abusing populations. We hypothesized that marijuana (MJ) smokers who received citicoline would demonstrate improvement in cognitive performance as well as increased neural efficiency during tasks of cognitive control relative to those who received placebo. Method The current study tested this hypothesis by examining the effects of citicoline in treatment-seeking chronic MJ smokers. In an 8-week double-blind, placebo-controlled study, 19 MJ smokers were randomly assigned via a double-blind procedure to the citicoline (8 Males, 2 Females) or placebo group (9 Males, 0 Females). All participants completed fMRI scanning at baseline and after 8 weeks of treatment during two cognitive measures of inhibitory processing, the Multi Source Interference Test (MSIT) and Stroop Color Word Test, and also completed the Barratt Impulsiveness Scale (BIS-11), a self-report measure of impulsivity. Results Following the 8 week trial, MJ smokers treated with citicoline demonstrated significantly lower levels of behavioral impulsivity, improved task accuracy on both the MSIT and Stroop tasks, and exhibited significantly different patterns of brain activation relative to baseline levels and relative to those who received placebo. Conclusions Findings suggest that citicoline may facilitate the treatment of MJ use disorders by improving the cognitive skills necessary to fully engage in comprehensive treatment programs. PMID:26658924
Functional neuroimaging for addiction medicine: From mechanisms to practical considerations.
Ekhtiari, Hamed; Faghiri, Ashkan; Oghabian, Mohammad-Ali; Paulus, Martin P
2016-01-01
During last 20 years, neuroimaging with functional magnetic resonance imaging (fMRI) in people with drug addictions has introduced a wide range of quantitative biomarkers from brain's regional or network level activities during different cognitive functions. These quantitative biomarkers could be potentially used for assessment, planning, prediction, and monitoring for "addiction medicine" during screening, acute intoxication, admission to a program, completion of an acute program, admission to a long-term program, and postgraduation follow-up. In this chapter, we have briefly reviewed main neurocognitive targets for fMRI studies associated with addictive behaviors, main study types using fMRI among drug dependents, and potential applications for fMRI in addiction medicine. Main challenges and limitations for extending fMRI studies and evidences aiming at clinical applications in addiction medicine are also discussed. There is still a significant gap between available evidences from group-based fMRI studies and personalized decisions during daily practices in addiction medicine. It will be important to fill this gap with large-scale clinical trials and longitudinal studies using fMRI measures with a well-defined strategic plan for the future. © 2016 Elsevier B.V. All rights reserved.
Bauer, Prisca R; Reitsma, Johannes B; Houweling, Bernard M; Ferrier, Cyrille H; Ramsey, Nick F
2014-05-01
Recent studies have shown that fMRI (functional magnetic resonance imaging) may be of value for pre-surgical assessment of language lateralisation. The aim of this study was to systematically review and analyse the available literature. A systematic electronic search for studies comparing fMRI with Wada testing was conducted in the PubMed database between March 2009 and November 2011. Studies involving unilateral Wada testing, study population consisting exclusively of children younger than 12 years of age or involving five patients or fewer were excluded. 22 studies (504 patients) were included. A random effects meta-analysis was conducted to obtain pooled estimates of the positive and negative predictive values of the fMRI using the Wada test as the reference standard. The impact of several study features on the performance of fMRI was assessed. The results showed that 81% of patients were correctly classified as having left or right language dominance or mixed language representation. Techniques were discordant in 19% of patients. fMRI and Wada test agreed in 94% for typical language lateralisation and in 51% for atypical language lateralisation. Language production or language comprehension tasks and different regions of interest did not yield statistically significant different results. It can be concluded that fMRI is reliable when there is strong left-lateralised language. The Wada test is warranted when fMRI fails to show clear left-lateralisation.
Smitha, K A; Arun, K M; Rajesh, P G; Thomas, B; Kesavadas, C
2017-06-01
Language is a cardinal function that makes human unique. Preservation of language function poses a great challenge for surgeons during resection. The aim of the study was to assess the efficacy of resting-state fMRI in the lateralization of language function in healthy subjects to permit its further testing in patients who are unable to perform task-based fMRI. Eighteen healthy right-handed volunteers were prospectively evaluated with resting-state fMRI and task-based fMRI to assess language networks. The laterality indices of Broca and Wernicke areas were calculated by using task-based fMRI via a voxel-value approach. We adopted seed-based resting-state fMRI connectivity analysis together with parameters such as amplitude of low-frequency fluctuation and fractional amplitude of low-frequency fluctuation (fALFF). Resting-state fMRI connectivity maps for language networks were obtained from Broca and Wernicke areas in both hemispheres. We performed correlation analysis between the laterality index and the z scores of functional connectivity, amplitude of low-frequency fluctuation, and fALFF. Pearson correlation analysis between signals obtained from the z score of fALFF and the laterality index yielded a correlation coefficient of 0.849 ( P < .05). Regression analysis of the fALFF with the laterality index yielded an R 2 value of 0.721, indicating that 72.1% of the variance in the laterality index of task-based fMRI could be predicted from the fALFF of resting-state fMRI. The present study demonstrates that fALFF can be used as an alternative to task-based fMRI for assessing language laterality. There was a strong positive correlation between the fALFF of the Broca area of resting-state fMRI with the laterality index of task-based fMRI. Furthermore, we demonstrated the efficacy of fALFF for predicting the laterality of task-based fMRI. © 2017 by American Journal of Neuroradiology.
ERIC Educational Resources Information Center
Parsons, Michael W.; Haut, Marc W.; Lemieux, Susan K.; Moran, Maria T.; Leach, Sharon G.
2006-01-01
The existence of a rostrocaudal gradient of medial temporal lobe (MTL) activation during memory encoding has historically received support from positron emission tomography studies, but less so from functional MRI (FMRI) studies. More recently, FMRI studies have demonstrated that characteristics of the stimuli can affect the location of activation…
Altered Dynamics of the fMRI Response to Faces in Individuals with Autism
ERIC Educational Resources Information Center
Kleinhans, Natalia M.; Richards, Todd; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth
2016-01-01
Abnormal fMRI habituation in autism spectrum disorders (ASDs) has been proposed as a critical component in social impairment. This study investigated habituation to fearful faces and houses in ASD and whether fMRI measures of brain activity discriminate between ASD and typically developing (TD) controls. Two identical fMRI runs presenting masked…
Lying about Facial Recognition: An fMRI Study
ERIC Educational Resources Information Center
Bhatt, S.; Mbwana, J.; Adeyemo, A.; Sawyer, A.; Hailu, A.; VanMeter, J.
2009-01-01
Novel deception detection techniques have been in creation for centuries. Functional magnetic resonance imaging (fMRI) is a neuroscience technology that non-invasively measures brain activity associated with behavior and cognition. A number of investigators have explored the utilization and efficiency of fMRI in deception detection. In this study,…
NASA Astrophysics Data System (ADS)
Hu, Jin; Tian, Jie; Pan, Xiaohong; Liu, Jiangang
2007-03-01
The purpose of this paper is to compare between EEG source localization and fMRI during emotional processing. 108 pictures for EEG (categorized as positive, negative and neutral) and 72 pictures for fMRI were presented to 24 healthy, right-handed subjects. The fMRI data were analyzed using statistical parametric mapping with SPM2. LORETA was applied to grand averaged ERP data to localize intracranial sources. Statistical analysis was implemented to compare spatiotemporal activation of fMRI and EEG. The fMRI results are in accordance with EEG source localization to some extent, while part of mismatch in localization between the two methods was also observed. In the future we should apply the method for simultaneous recording of EEG and fMRI to our study.
Loveland, Katherine A; Steinberg, Joel L; Pearson, Deborah A; Mansour, Rosleen; Reddoch, Stacy
2008-10-01
One of the most widely reported developmental deficits associated with autism is difficulty perceiving and expressing emotion appropriately. Brain activation associated with performance on a new task, the Emotional Congruence Task, requires judging affective congruence of facial expression and voice, compared with their sex congruence. Participants in this pilot study were adolescents with normal IQ (n = 5) and autism or without (n = 4) autism. In the emotional congruence condition, as compared to the sex congruence of voice and face, controls had significantly more activation than the Autism group in the orbitofrontal cortex, the superior temporal, parahippocampal, and posterior cingulate gyri and occipital regions. Unlike controls, the Autism group did not have significantly greater prefrontal activation during the emotional congruence condition, but did during the sex congruence condition. Results indicate the Emotional Congruence Task can be used successfully to assess brain activation and behavior associated with integration of auditory and visual information for emotion. While the numbers in the groups are small, the results suggest that brain activity while performing the Emotional Congruence Task differed between adolescents with and without autism in fronto-limbic areas and in the superior temporal region. These findings must be confirmed using larger samples of participants.
Intersession reliability of fMRI activation for heat pain and motor tasks
Quiton, Raimi L.; Keaser, Michael L.; Zhuo, Jiachen; Gullapalli, Rao P.; Greenspan, Joel D.
2014-01-01
As the practice of conducting longitudinal fMRI studies to assess mechanisms of pain-reducing interventions becomes more common, there is a great need to assess the test–retest reliability of the pain-related BOLD fMRI signal across repeated sessions. This study quantitatively evaluated the reliability of heat pain-related BOLD fMRI brain responses in healthy volunteers across 3 sessions conducted on separate days using two measures: (1) intraclass correlation coefficients (ICC) calculated based on signal amplitude and (2) spatial overlap. The ICC analysis of pain-related BOLD fMRI responses showed fair-to-moderate intersession reliability in brain areas regarded as part of the cortical pain network. Areas with the highest intersession reliability based on the ICC analysis included the anterior midcingulate cortex, anterior insula, and second somatosensory cortex. Areas with the lowest intersession reliability based on the ICC analysis also showed low spatial reliability; these regions included pregenual anterior cingulate cortex, primary somatosensory cortex, and posterior insula. Thus, this study found regional differences in pain-related BOLD fMRI response reliability, which may provide useful information to guide longitudinal pain studies. A simple motor task (finger-thumb opposition) was performed by the same subjects in the same sessions as the painful heat stimuli were delivered. Intersession reliability of fMRI activation in cortical motor areas was comparable to previously published findings for both spatial overlap and ICC measures, providing support for the validity of the analytical approach used to assess intersession reliability of pain-related fMRI activation. A secondary finding of this study is that the use of standard ICC alone as a measure of reliability may not be sufficient, as the underlying variance structure of an fMRI dataset can result in inappropriately high ICC values; a method to eliminate these false positive results was used in this study and is recommended for future studies of test–retest reliability. PMID:25161897
Chang, Hing-Chiu; Gaur, Pooja; Chou, Ying-hui; Chu, Mei-Lan; Chen, Nan-kuei
2014-01-01
Functional magnetic resonance imaging (fMRI) is a non-invasive and powerful imaging tool for detecting brain activities. The majority of fMRI studies are performed with single-shot echo-planar imaging (EPI) due to its high temporal resolution. Recent studies have demonstrated that, by increasing the spatial-resolution of fMRI, previously unidentified neuronal networks can be measured. However, it is challenging to improve the spatial resolution of conventional single-shot EPI based fMRI. Although multi-shot interleaved EPI is superior to single-shot EPI in terms of the improved spatial-resolution, reduced geometric distortions, and sharper point spread function (PSF), interleaved EPI based fMRI has two main limitations: 1) the imaging throughput is lower in interleaved EPI; 2) the magnitude and phase signal variations among EPI segments (due to physiological noise, subject motion, and B0 drift) are translated to significant in-plane aliasing artifact across the field of view (FOV). Here we report a method that integrates multiple approaches to address the technical limitations of interleaved EPI-based fMRI. Firstly, the multiplexed sensitivity-encoding (MUSE) post-processing algorithm is used to suppress in-plane aliasing artifacts resulting from time-domain signal instabilities during dynamic scans. Secondly, a simultaneous multi-band interleaved EPI pulse sequence, with a controlled aliasing scheme incorporated, is implemented to increase the imaging throughput. Thirdly, the MUSE algorithm is then generalized to accommodate fMRI data obtained with our multi-band interleaved EPI pulse sequence, suppressing both in-plane and through-plane aliasing artifacts. The blood-oxygenation-level-dependent (BOLD) signal detectability and the scan throughput can be significantly improved for interleaved EPI-based fMRI. Our human fMRI data obtained from 3 Tesla systems demonstrate the effectiveness of the developed methods. It is expected that future fMRI studies requiring high spatial-resolvability and fidelity will largely benefit from the reported techniques.
Presurgical language fMRI: Clinical practices and patient outcomes in epilepsy surgical planning.
Benjamin, Christopher F A; Li, Alexa X; Blumenfeld, Hal; Constable, R Todd; Alkawadri, Rafeed; Bickel, Stephan; Helmstaedter, Christoph; Meletti, Stefano; Bronen, Richard; Warfield, Simon K; Peters, Jurriaan M; Reutens, David; Połczyńska, Monika; Spencer, Dennis D; Hirsch, Lawrence J
2018-03-12
The goal of this study was to document current clinical practice and report patient outcomes in presurgical language functional MRI (fMRI) for epilepsy surgery. Epilepsy surgical programs worldwide were surveyed as to the utility, implementation, and efficacy of language fMRI in the clinic; 82 programs responded. Respondents were predominantly US (61%) academic programs (85%), and evaluated adults (44%), adults and children (40%), or children only (16%). Nearly all (96%) reported using language fMRI. Surprisingly, fMRI is used to guide surgical margins (44% of programs) as well as lateralize language (100%). Sites using fMRI for localization most often use a distance margin around activation of 10mm. While considered useful, 56% of programs reported at least one instance of disagreement with other measures. Direct brain stimulation typically confirmed fMRI findings (74%) when guiding margins, but instances of unpredicted decline were reported by 17% of programs and 54% reported unexpected preservation of function. Programs reporting unexpected decline did not clearly differ from those which did not. Clinicians using fMRI to guide surgical margins do not typically map known language-critical areas beyond Broca's and Wernicke's. This initial data shows many clinical teams are confident using fMRI not only for language lateralization but also to guide surgical margins. Reported cases of unexpected language preservation when fMRI activation is resected, and cases of language decline when it is not, emphasize a critical need for further validation. Comprehensive studies comparing commonly-used fMRI paradigms to predict stimulation mapping and post-surgical language decline remain of high importance. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Inferences of Others' Competence Reduces Anticipation of Pain When under Threat.
Tedeschi, Ellen; Weber, Jochen; Prévost, Charlotte; Mischel, Walter; Mobbs, Dean
2015-10-01
On a daily basis, we place our lives in the hands of strangers. From dentists to pilots, we make inferences about their competence to perform their jobs and consequently to keep us from harm. Here we explore whether the perceived competence of others can alter one's anticipation of pain. In two studies, participants (Receivers) believed their chances of experiencing an aversive stimulus were directly dependent on the performance of another person (Players). We predicted that perceiving the Players as highly competent would reduce Receivers' anxiety when anticipating the possibility of an electric shock. Results confirmed that high competence ratings consistently corresponded with lower reported anxiety, and complementary fMRI data showed that increased competence perception was further expressed as decreased activity in the bilateral posterior insula, a region localized to actual pain stimulation. These studies suggest that inferences of competence act as predictors of protection and reduce the expectation of negative outcomes.
Tracking brain arousal fluctuations with fMRI
Chang, Catie; Leopold, David A.; Schölvinck, Marieke Louise; Mandelkow, Hendrik; Picchioni, Dante; Liu, Xiao; Ye, Frank Q.; Turchi, Janita N.; Duyn, Jeff H.
2016-01-01
Changes in brain activity accompanying shifts in vigilance and arousal can interfere with the study of other intrinsic and task-evoked characteristics of brain function. However, the difficulty of tracking and modeling the arousal state during functional MRI (fMRI) typically precludes the assessment of arousal-dependent influences on fMRI signals. Here we combine fMRI, electrophysiology, and the monitoring of eyelid behavior to demonstrate an approach for tracking continuous variations in arousal level from fMRI data. We first characterize the spatial distribution of fMRI signal fluctuations that track a measure of behavioral arousal; taking this pattern as a template, and using the local field potential as a simultaneous and independent measure of cortical activity, we observe that the time-varying expression level of this template in fMRI data provides a close approximation of electrophysiological arousal. We discuss the potential benefit of these findings for increasing the sensitivity of fMRI as a cognitive and clinical biomarker. PMID:27051064
Kallioniemi, Elisa; Pitkänen, Minna; Könönen, Mervi; Vanninen, Ritva; Julkunen, Petro
2016-11-01
Although the relationship between neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) has been widely studied in motor mapping, it is unknown how the motor response type or the choice of motor task affect this relationship. Centers of gravity (CoGs) and response maxima were measured with blood-oxygen-level dependent (BOLD) and arterial spin labeling (ASL) fMRI during motor tasks against nTMS CoGs and response maxima, which were mapped with motor evoked potentials (MEPs) and silent periods (SPs). No differences in motor representations (CoGs and response maxima) were observed in lateral-medial direction (p=0.265). fMRI methods localized the motor representation more posterior than nTMS (p<0.001). This was not affected by the BOLD fMRI motor task (p>0.999) nor nTMS response type (p>0.999). ASL fMRI maxima did not differ from the nTMS nor BOLD fMRI CoGs (p≥0.070), but the ASL CoG was deeper in comparison to other methods (p≤0.042). The BOLD fMRI motor task did not influence the depth of the motor representation (p≥0.745). The median Euclidean distances between the nTMS and fMRI motor representations varied between 7.7mm and 14.5mm and did not differ between the methods (F≤1.23, p≥0.318). The relationship between fMRI and nTMS mapped excitatory (MEP) and inhibitory (SP) responses, and whether the choice of motor task affects this relationship, have not been studied before. The congruence between fMRI and nTMS is good. The choice of nTMS motor response type nor BOLD fMRI motor task had no effect on this relationship. Copyright © 2016 Elsevier B.V. All rights reserved.
Compressed Sensing for fMRI: Feasibility Study on the Acceleration of Non-EPI fMRI at 9.4T
Kim, Seong-Gi; Ye, Jong Chul
2015-01-01
Conventional functional magnetic resonance imaging (fMRI) technique known as gradient-recalled echo (GRE) echo-planar imaging (EPI) is sensitive to image distortion and degradation caused by local magnetic field inhomogeneity at high magnetic fields. Non-EPI sequences such as spoiled gradient echo and balanced steady-state free precession (bSSFP) have been proposed as an alternative high-resolution fMRI technique; however, the temporal resolution of these sequences is lower than the typically used GRE-EPI fMRI. One potential approach to improve the temporal resolution is to use compressed sensing (CS). In this study, we tested the feasibility of k-t FOCUSS—one of the high performance CS algorithms for dynamic MRI—for non-EPI fMRI at 9.4T using the model of rat somatosensory stimulation. To optimize the performance of CS reconstruction, different sampling patterns and k-t FOCUSS variations were investigated. Experimental results show that an optimized k-t FOCUSS algorithm with acceleration by a factor of 4 works well for non-EPI fMRI at high field under various statistical criteria, which confirms that a combination of CS and a non-EPI sequence may be a good solution for high-resolution fMRI at high fields. PMID:26413503
Comparison of fMRI data analysis by SPM99 on different operating systems.
Shinagawa, Hideo; Honda, Ei-ichi; Ono, Takashi; Kurabayashi, Tohru; Ohyama, Kimie
2004-09-01
The hardware chosen for fMRI data analysis may depend on the platform already present in the laboratory or the supporting software. In this study, we ran SPM99 software on multiple platforms to examine whether we could analyze fMRI data by SPM99, and to compare their differences and limitations in processing fMRI data, which can be attributed to hardware capabilities. Six normal right-handed volunteers participated in a study of hand-grasping to obtain fMRI data. Each subject performed a run that consisted of 98 images. The run was measured using a gradient echo-type echo planar imaging sequence on a 1.5T apparatus with a head coil. We used several personal computer (PC), Unix and Linux machines to analyze the fMRI data. There were no differences in the results obtained on several PC, Unix and Linux machines. The only limitations in processing large amounts of the fMRI data were found using PC machines. This suggests that the results obtained with different machines were not affected by differences in hardware components, such as the CPU, memory and hard drive. Rather, it is likely that the limitations in analyzing a huge amount of the fMRI data were due to differences in the operating system (OS).
ERIC Educational Resources Information Center
Liang, Chun-Yu; Xu, Zhi-Yuan; Mei, Wei; Wang, Li-Li; Xue, Li; Lu, De Jian; Zhao, Hu
2012-01-01
Previous functional magnetic resonance imaging (fMRI) studies have identified activation in the prefrontal-parietal-sub-cortical circuit during feigned memory impairment when comparing with truthful telling. Here, we used fMRI to determine whether neural activity can differentiate between answering correctly, answering randomly, answering…
ERIC Educational Resources Information Center
Steinbrink, Claudia; Groth, Katarina; Lachmann, Thomas; Riecker, Axel
2012-01-01
This fMRI study investigated phonological vs. auditory temporal processing in developmental dyslexia by means of a German vowel length discrimination paradigm (Groth, Lachmann, Riecker, Muthmann, & Steinbrink, 2011). Behavioral and fMRI data were collected from dyslexics and controls while performing same-different judgments of vowel duration in…
Zotev, Vadim; Yuan, Han; Misaki, Masaya; Phillips, Raquel; Young, Kymberly D.; Feldner, Matthew T.; Bodurka, Jerzy
2016-01-01
Real-time fMRI neurofeedback (rtfMRI-nf) is an emerging approach for studies and novel treatments of major depressive disorder (MDD). EEG performed simultaneously with an rtfMRI-nf procedure allows an independent evaluation of rtfMRI-nf brain modulation effects. Frontal EEG asymmetry in the alpha band is a widely used measure of emotion and motivation that shows profound changes in depression. However, it has never been directly related to simultaneously acquired fMRI data. We report the first study investigating electrophysiological correlates of the rtfMRI-nf procedure, by combining the rtfMRI-nf with simultaneous and passive EEG recordings. In this pilot study, MDD patients in the experimental group (n = 13) learned to upregulate BOLD activity of the left amygdala using an rtfMRI-nf during a happy emotion induction task. MDD patients in the control group (n = 11) were provided with a sham rtfMRI-nf. Correlations between frontal EEG asymmetry in the upper alpha band and BOLD activity across the brain were examined. Average individual changes in frontal EEG asymmetry during the rtfMRI-nf task for the experimental group showed a significant positive correlation with the MDD patients' depression severity ratings, consistent with an inverse correlation between the depression severity and frontal EEG asymmetry at rest. The average asymmetry changes also significantly correlated with the amygdala BOLD laterality. Temporal correlations between frontal EEG asymmetry and BOLD activity were significantly enhanced, during the rtfMRI-nf task, for the amygdala and many regions associated with emotion regulation. Our findings demonstrate an important link between amygdala BOLD activity and frontal EEG asymmetry during emotion regulation. Our EEG asymmetry results indicate that the rtfMRI-nf training targeting the amygdala is beneficial to MDD patients. They further suggest that EEG-nf based on frontal EEG asymmetry in the alpha band would be compatible with the amygdala-based rtfMRI-nf. Combination of the two could enhance emotion regulation training and benefit MDD patients. PMID:26958462
Menon, Samir; Brantner, Gerald; Aholt, Chris; Kay, Kendrick; Khatib, Oussama
2013-01-01
A challenging problem in motor control neuroimaging studies is the inability to perform complex human motor tasks given the Magnetic Resonance Imaging (MRI) scanner's disruptive magnetic fields and confined workspace. In this paper, we propose a novel experimental platform that combines Functional MRI (fMRI) neuroimaging, haptic virtual simulation environments, and an fMRI-compatible haptic device for real-time haptic interaction across the scanner workspace (above torso ∼ .65×.40×.20m(3)). We implement this Haptic fMRI platform with a novel haptic device, the Haptic fMRI Interface (HFI), and demonstrate its suitability for motor neuroimaging studies. HFI has three degrees-of-freedom (DOF), uses electromagnetic motors to enable high-fidelity haptic rendering (>350Hz), integrates radio frequency (RF) shields to prevent electromagnetic interference with fMRI (temporal SNR >100), and is kinematically designed to minimize currents induced by the MRI scanner's magnetic field during motor displacement (<2cm). HFI possesses uniform inertial and force transmission properties across the workspace, and has low friction (.05-.30N). HFI's RF noise levels, in addition, are within a 3 Tesla fMRI scanner's baseline noise variation (∼.85±.1%). Finally, HFI is haptically transparent and does not interfere with human motor tasks (tested for .4m reaches). By allowing fMRI experiments involving complex three-dimensional manipulation with haptic interaction, Haptic fMRI enables-for the first time-non-invasive neuroscience experiments involving interactive motor tasks, object manipulation, tactile perception, and visuo-motor integration.
A new vibrator to stimulate muscle proprioceptors in fMRI.
Montant, Marie; Romaiguère, Patricia; Roll, Jean-Pierre
2009-03-01
Studying cognitive brain functions by functional magnetic resonance imaging (fMRI) requires appropriate stimulation devices that do not interfere with the magnetic fields. Since the emergence of fMRI in the 90s, a number of stimulation devices have been developed for the visual and auditory modalities. Only few devices, however, have been developed for the somesthesic modality. Here, we present a vibration device for studying somesthesia that is compatible with high magnetic field environments and that can be used in fMRI machines. This device consists of a poly vinyl chloride (PVC) vibrator containing a wind turbine and of a pneumatic apparatus that controls 1-6 vibrators simultaneously. Just like classical electromagnetic vibrators, our device stimulates muscle mechanoreceptors (muscle spindles) and generates reliable illusions of movement. We provide the fMRI compatibility data (phantom test), the calibration curve (vibration frequency as a function of air flow), as well as the results of a kinesthetic test (perceived speed of the illusory movement as a function of vibration frequency). This device was used successfully in several brain imaging studies using both fMRI and magnetoencephalography.
Zhang, Jing; Liang, Lichen; Anderson, Jon R; Gatewood, Lael; Rottenberg, David A; Strother, Stephen C
2008-01-01
As functional magnetic resonance imaging (fMRI) becomes widely used, the demands for evaluation of fMRI processing pipelines and validation of fMRI analysis results is increasing rapidly. The current NPAIRS package, an IDL-based fMRI processing pipeline evaluation framework, lacks system interoperability and the ability to evaluate general linear model (GLM)-based pipelines using prediction metrics. Thus, it can not fully evaluate fMRI analytical software modules such as FSL.FEAT and NPAIRS.GLM. In order to overcome these limitations, a Java-based fMRI processing pipeline evaluation system was developed. It integrated YALE (a machine learning environment) into Fiswidgets (a fMRI software environment) to obtain system interoperability and applied an algorithm to measure GLM prediction accuracy. The results demonstrated that the system can evaluate fMRI processing pipelines with univariate GLM and multivariate canonical variates analysis (CVA)-based models on real fMRI data based on prediction accuracy (classification accuracy) and statistical parametric image (SPI) reproducibility. In addition, a preliminary study was performed where four fMRI processing pipelines with GLM and CVA modules such as FSL.FEAT and NPAIRS.CVA were evaluated with the system. The results indicated that (1) the system can compare different fMRI processing pipelines with heterogeneous models (NPAIRS.GLM, NPAIRS.CVA and FSL.FEAT) and rank their performance by automatic performance scoring, and (2) the rank of pipeline performance is highly dependent on the preprocessing operations. These results suggest that the system will be of value for the comparison, validation, standardization and optimization of functional neuroimaging software packages and fMRI processing pipelines.
HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).
Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming
Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.
HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).
Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming
2015-12-01
Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.
fMRI Validation of fNIRS Measurements During a Naturalistic Task
Noah, J. Adam; Ono, Yumie; Nomoto, Yasunori; Shimada, Sotaro; Tachibana, Atsumichi; Zhang, Xian; Bronner, Shaw; Hirsch, Joy
2015-01-01
We present a method to compare brain activity recorded with near-infrared spectroscopy (fNIRS) in a dance video game task to that recorded in a reduced version of the task using fMRI (functional magnetic resonance imaging). Recently, it has been shown that fNIRS can accurately record functional brain activities equivalent to those concurrently recorded with functional magnetic resonance imaging for classic psychophysical tasks and simple finger tapping paradigms. However, an often quoted benefit of fNIRS is that the technique allows for studying neural mechanisms of complex, naturalistic behaviors that are not possible using the constrained environment of fMRI. Our goal was to extend the findings of previous studies that have shown high correlation between concurrently recorded fNIRS and fMRI signals to compare neural recordings obtained in fMRI procedures to those separately obtained in naturalistic fNIRS experiments. Specifically, we developed a modified version of the dance video game Dance Dance Revolution (DDR) to be compatible with both fMRI and fNIRS imaging procedures. In this methodology we explain the modifications to the software and hardware for compatibility with each technique as well as the scanning and calibration procedures used to obtain representative results. The results of the study show a task-related increase in oxyhemoglobin in both modalities and demonstrate that it is possible to replicate the findings of fMRI using fNIRS in a naturalistic task. This technique represents a methodology to compare fMRI imaging paradigms which utilize a reduced-world environment to fNIRS in closer approximation to naturalistic, full-body activities and behaviors. Further development of this technique may apply to neurodegenerative diseases, such as Parkinson’s disease, late states of dementia, or those with magnetic susceptibility which are contraindicated for fMRI scanning. PMID:26132365
Shim, Woo H; Suh, Ji-Yeon; Kim, Jeong K; Jeong, Jaeseung; Kim, Young R
2016-01-01
Neurological recovery after stroke has been extensively investigated to provide better understanding of neurobiological mechanism, therapy, and patient management. Recent advances in neuroimaging techniques, particularly functional MRI (fMRI), have widely contributed to unravel the relationship between the altered neural function and stroke-affected brain areas. As results of previous investigations, the plastic reorganization and/or gradual restoration of the hemodynamic fMRI responses to neural stimuli have been suggested as relevant mechanisms underlying the stroke recovery process. However, divergent study results and modality-dependent outcomes have clouded the proper interpretation of variable fMRI signals. Here, we performed both evoked and resting state fMRI (rs-fMRI) to clarify the link between the fMRI phenotypes and post-stroke functional recovery. The experiments were designed to examine the altered neural activity within the contra-lesional hemisphere and other undamaged brain regions using rat models with large unilateral stroke, which despite the severe injury, exhibited nearly full recovery at ∼6 months after stroke. Surprisingly, both blood oxygenation level-dependent and blood volume-weighted (CBVw) fMRI activities elicited by electrical stimulation of the stroke-affected forelimb were completely absent, failing to reveal the neural origin of the behavioral recovery. In contrast, the functional connectivity maps showed highly robust rs-fMRI activity concentrated in the contra-lesional ventromedial nucleus of thalamus (VM). The negative finding in the stimuli-induced fMRI study using the popular rat middle cerebral artery model denotes weak association between the fMRI hemodynamic responses and neurological improvement. The results strongly caution the indiscreet interpretation of stroke-affected fMRI signals and demonstrate rs-fMRI as a complementary tool for efficiently characterizing stroke recovery.
Research with Transcranial Magnetic Stimulation in the Treatment of Aphasia
Martin, Paula I; Naeser, Margaret A.; Ho, Michael; Treglia, Ethan; Kaplan, Elina; Baker, Errol H.; Pascual-Leone, Alvaro
2010-01-01
Repetitive transcranial magnetic stimulation (rTMS) has been used to improve language behavior, including naming, in stroke patients with chronic, nonfluent aphasia. Part 1 of this paper reviews functional imaging studies related to language recovery in aphasia. Part 2 reviews the rationale for using rTMS to treat nonfluent aphasia (based on functional imaging); and presents our current rTMS protocol. We present language results from our rTMS studies, and imaging results from overt naming fMRI scans obtained pre- and post- a series of rTMS treatments. Part 3 presents results from a pilot study where rTMS treatments were followed immediately by constraint-induced language therapy. Part 4 reviews our diffusion tensor imaging study that examined possible connectivity of arcuate fasciculus to different parts of Broca’s area (pars triangularis, PTr; pars opercularis, POp); and to ventral premotor cortex (vPMC). The potential role of mirror neurons in R POp and vPMC in aphasia recovery is discussed. PMID:19818232
Increased fMRI signal with age in familial Alzheimer’s disease mutation carriers
Braskie, Meredith N.; Medina, Luis D.; Rodriguez-Agudelo, Yaneth; Geschwind, Daniel H.; Macias-Islas, Miguel Angel; Cummings, Jeffrey L.; Bookheimer, Susan Y.; Ringman, John M.
2010-01-01
Although many Alzheimer’s disease (AD) patients have a family history of the disease, it is rarely inherited in a predictable way. Functional magnetic resonance imaging (fMRI) studies of non-demented adults carrying familial AD mutations provide an opportunity to prospectively identify brain differences associated with early AD-related changes. We compared fMRI activity of 18 non-demented autosomal dominant AD mutation carriers with fMRI activity in 8 of their non-carrier relatives as they performed a novelty encoding task in which they viewed novel and repeated images. Because age of disease onset is relatively consistent within families, we also correlated fMRI activity with subjects’ distance from the median age of diagnosis for their family. Mutation carriers did not show significantly different voxelwise fMRI activity from non-carriers as a group. However, as they approached their family age of disease diagnosis, only mutation carriers showed increased fMRI activity in the fusiform and middle temporal gyri. This suggests that during novelty encoding, increased fMRI activity in the temporal lobe may relate to incipient AD processes. PMID:21129823
Trinh, Victoria T; Fahim, Daniel K; Maldaun, Marcos V C; Shah, Komal; McCutcheon, Ian E; Rao, Ganesh; Lang, Frederick; Weinberg, Jeffrey; Sawaya, Raymond; Suki, Dima; Prabhu, Sujit S
2014-01-01
We wanted to study the role of functional MRI (fMRI) in preventing neurological injury in awake craniotomy patients as this has not been previously studied. To examine the role of fMRI as an intraoperative adjunct during awake craniotomy procedures. Preoperative fMRI was carried out routinely in 214 patients undergoing awake craniotomy with direct cortical stimulation (DCS). In 40% of our cases (n = 85) fMRI was utilized for the intraoperative localization of the eloquent cortex. In the other 129 cases significant noise distortion, poor task performance and nonspecific BOLD activation precluded the surgeon from using the fMRI data. Compared with DCS, fMRI had a sensitivity and specificity, respectively, of 91 and 64% in Broca's area, 93 and 18% in Wernicke's area and 100 and 100% in motor areas. A new intraoperative neurological deficit during subcortical dissection was predictive of a worsened deficit following surgery (p < 0.001). The use of fMRI for intraoperative localization was, however, not significant in preventing worsened neurological deficits, both in the immediate postoperative period (p = 1.00) and at the 3-month follow-up (p = 0.42). The routine use of fMRI was not useful in identifying language sites as performed and, more importantly, practiced tasks failed to prevent neurological deficits following awake craniotomy procedures. © 2014 S. Karger AG, Basel.
Functional Magnetic Resonance Imaging Methods
Chen, Jingyuan E.; Glover, Gary H.
2015-01-01
Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581
Silva, Guilherme; Citterio, Alberto
2017-10-01
Introduction Previous studies have shown that the arcuate fasciculus has a leftward asymmetry in right-handers that could be correlated with the language lateralisation defined by functional magnetic resonance imaging. Nonetheless, information about the asymmetry of the other fibres that constitute the dorsal language pathway is scarce. Objectives This study investigated the asymmetry of the white-matter tracts involved in the dorsal language pathway through the diffusion tensor imaging (DTI) technique, in relation to language hemispheric dominance determined by task-dependent functional magnetic resonance imaging (fMRI). Methods We selected 11 patients (10 right-handed) who had been studied with task-dependent fMRI for language areas and DTI and who had no language impairment or structural abnormalities that could compromise magnetic resonance tractography of the fibres involved in the dorsal language pathway. Laterality indices (LI) for fMRI and for the volumes of each tract were calculated. Results In fMRI, all the right-handers had left hemispheric lateralisation, and the ambidextrous subject presented right hemispheric dominance. The arcuate fasciculus LI was strongly correlated with fMRI LI ( r = 0.739, p = 0.009), presenting the same lateralisation of fMRI in seven subjects (including the right hemispheric dominant). It was not asymmetric in three cases and had opposite lateralisation in one case. The other tracts presented predominance for rightward lateralisation, especially superior longitudinal fasciculus (SLF) II/III (nine subjects), but their LI did not correlate (directly or inversely) with fMRI LI. Conclusion The fibres that constitute the dorsal language pathway have an asymmetric distribution in the cerebral hemispheres. Only the asymmetry of the arcuate fasciculus is correlated with fMRI language lateralisation.
Electrophysiological correlates of the BOLD signal for EEG-informed fMRI
Murta, Teresa; Leite, Marco; Carmichael, David W; Figueiredo, Patrícia; Lemieux, Louis
2015-01-01
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG–fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological–haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (EEG–fMRI mapping), or exploring a range of EEG-derived quantities to determine which best explain colocalised BOLD fluctuations (local EEG–fMRI coupling). While reviewing studies of different forms of brain activity (epileptic and nonepileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG–fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations. PMID:25277370
Functional magnetic resonance imaging (FMRI) with auditory stimulation in songbirds.
Van Ruijssevelt, Lisbeth; De Groof, Geert; Van der Kant, Anne; Poirier, Colline; Van Audekerke, Johan; Verhoye, Marleen; Van der Linden, Annemie
2013-06-03
The neurobiology of birdsong, as a model for human speech, is a pronounced area of research in behavioral neuroscience. Whereas electrophysiology and molecular approaches allow the investigation of either different stimuli on few neurons, or one stimulus in large parts of the brain, blood oxygenation level dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) allows combining both advantages, i.e. compare the neural activation induced by different stimuli in the entire brain at once. fMRI in songbirds is challenging because of the small size of their brains and because their bones and especially their skull comprise numerous air cavities, inducing important susceptibility artifacts. Gradient-echo (GE) BOLD fMRI has been successfully applied to songbirds (1-5) (for a review, see (6)). These studies focused on the primary and secondary auditory brain areas, which are regions free of susceptibility artifacts. However, because processes of interest may occur beyond these regions, whole brain BOLD fMRI is required using an MRI sequence less susceptible to these artifacts. This can be achieved by using spin-echo (SE) BOLD fMRI (7,8) . In this article, we describe how to use this technique in zebra finches (Taeniopygia guttata), which are small songbirds with a bodyweight of 15-25 g extensively studied in behavioral neurosciences of birdsong. The main topic of fMRI studies on songbirds is song perception and song learning. The auditory nature of the stimuli combined with the weak BOLD sensitivity of SE (compared to GE) based fMRI sequences makes the implementation of this technique very challenging.
Schallmo, Michael-Paul; Grant, Andrea N; Burton, Philip C; Olman, Cheryl A
2016-08-01
Although V1 responses are driven primarily by elements within a neuron's receptive field, which subtends about 1° visual angle in parafoveal regions, previous work has shown that localized fMRI responses to visual elements reflect not only local feature encoding but also long-range pattern attributes. However, separating the response to an image feature from the response to the surrounding stimulus and studying the interactions between these two responses demands both spatial precision and signal independence, which may be challenging to attain with fMRI. The present study used 7 Tesla fMRI with 1.2-mm resolution to measure the interactions between small sinusoidal grating patches (targets) at 3° eccentricity and surrounds of various sizes and orientations to test the conditions under which localized, context-dependent fMRI responses could be predicted from either psychophysical or electrophysiological data. Targets were presented at 8%, 16%, and 32% contrast while manipulating (a) spatial extent of parallel (strongly suppressive) or orthogonal (weakly suppressive) surrounds, (b) locus of attention, (c) stimulus onset asynchrony between target and surround, and (d) blocked versus event-related design. In all experiments, the V1 fMRI signal was lower when target stimuli were flanked by parallel versus orthogonal context. Attention amplified fMRI responses to all stimuli but did not show a selective effect on central target responses or a measurable effect on orientation-dependent surround suppression. Suppression of the V1 fMRI response by parallel surrounds was stronger than predicted from psychophysics but showed a better match to previous electrophysiological reports.
Richards, Todd; Webb, Sara Jane; Murias, Michael; Merkle, Kristen; Kleinhans, Natalia M.; Johnson, L. Clark; Poliakov, Andrew; Aylward, Elizabeth; Dawson, Geraldine
2013-01-01
Brain activity patterns during face processing have been extensively explored with functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs). ERP source localization adds a spatial dimension to the ERP time series recordings, which allows for a more direct comparison and integration with fMRI findings. The goals for this study were (1) to compare the spatial descriptions of neuronal activity during face processing obtained with fMRI and ERP source localization using low-resolution electro-magnetic tomography (LORETA), and (2) to use the combined information from source localization and fMRI to explore how the temporal sequence of brain activity during face processing is summarized in fMRI activation maps. fMRI and high-density ERP data were acquired in separate sessions for 17 healthy adult males for a face and object processing task. LORETA statistical maps for the comparison of viewing faces and viewing houses were coregistered and compared to fMRI statistical maps for the same conditions. The spatial locations of face processing-sensitive activity measured by fMRI and LORETA were found to overlap in a number of areas including the bilateral fusiform gyri, the right superior, middle and inferior temporal gyri, and the bilateral precuneus. Both the fMRI and LORETA solutions additionally demon-strated activity in regions that did not overlap. fMRI and LORETA statistical maps of face processing-sensitive brain activity were found to converge spatially primarily at LORETA solution latencies that were within 18 ms of the N170 latency. The combination of data from these techniques suggested that electrical brain activity at the latency of the N170 is highly represented in fMRI statistical maps. PMID:19322649
Technical Note: Independent component analysis for quality assurance in functional MRI.
Astrakas, Loukas G; Kallistis, Nikolaos S; Kalef-Ezra, John A
2016-02-01
Independent component analysis (ICA) is an established method of analyzing human functional MRI (fMRI) data. Here, an ICA-based fMRI quality control (QC) tool was developed and used. ICA-based fMRI QC tool to be used with a commercial phantom was developed. In an attempt to assess the performance of the tool relative to preexisting alternative tools, it was used seven weeks before and eight weeks after repair of a faulty gradient amplifier of a non-state-of-the-art MRI unit. More specifically, its performance was compared with the AAPM 100 acceptance testing and quality assurance protocol and two fMRI QC protocols, proposed by Freidman et al. ["Report on a multicenter fMRI quality assurance protocol," J. Magn. Reson. Imaging 23, 827-839 (2006)] and Stocker et al. ["Automated quality assurance routines for fMRI data applied to a multicenter study," Hum. Brain Mapp. 25, 237-246 (2005)], respectively. The easily developed and applied ICA-based QC protocol provided fMRI QC indices and maps equally sensitive to fMRI instabilities with the indices and maps of other established protocols. The ICA fMRI QC indices were highly correlated with indices of other fMRI QC protocols and in some cases theoretically related to them. Three or four independent components with slow varying time series are detected under normal conditions. ICA applied on phantom measurements is an easy and efficient tool for fMRI QC. Additionally, it can protect against misinterpretations of artifact components as human brain activations. Evaluating fMRI QC indices in the central region of a phantom is not always the optimal choice.
Real-time fMRI: a tool for local brain regulation.
Caria, Andrea; Sitaram, Ranganatha; Birbaumer, Niels
2012-10-01
Real-time fMRI permits simultaneous measurement and observation of brain activity during an ongoing task. One of the most challenging applications of real-time fMRI in neuroscientific and clinical research is the possibility of acquiring volitional control of localized brain activity using real-time fMRI-based neurofeedback protocols. Real-time fMRI allows the experimenter to noninvasively manipulate brain activity as an independent variable to observe the effects on behavior. Real-time fMRI neurofeedback studies demonstrated that learned control of the local brain activity leads to specific changes in behavior. Here, the authors describe the implementation and application of real-time fMRI with particular emphasis on the self-regulation of local brain activity and the investigation of brain-function relationships. Real-time fMRI represents a promising new approach to cognitive neuroscience that could complement traditional neuroimaging techniques by providing more causal insights into the functional role of circumscribed brain regions in behavior.
Sources and implications of whole-brain fMRI signals in humans
Power, Jonathan D; Plitt, Mark; Laumann, Timothy O; Martin, Alex
2016-01-01
Whole-brain fMRI signals are a subject of intense interest: variance in the global fMRI signal (the spatial mean of all signals in the brain) indexes subject arousal, and psychiatric conditions such as schizophrenia and autism have been characterized by differences in the global fMRI signal. Further, vigorous debates exist on whether global signals ought to be removed from fMRI data. However, surprisingly little research has focused on the empirical properties of whole-brain fMRI signals. Here we map the spatial and temporal properties of the global signal, individually, in 1000+ fMRI scans. Variance in the global fMRI signal is strongly linked to head motion, to hardware artifacts, and to respiratory patterns and their attendant physiologic changes. Many techniques used to prepare fMRI data for analysis fail to remove these uninteresting kinds of global signal fluctuations. Thus, many studies include, at the time of analysis, prominent global effects of yawns, breathing changes, and head motion, among other signals. Such artifacts will mimic dynamic neural activity and will spuriously alter signal covariance throughout the brain. Methods capable of isolating and removing global artifactual variance while preserving putative “neural” variance are needed; this paper adopts no position on the topic of global signal regression. PMID:27751941
Impact of Short Social Training on Prosocial Behaviors: An fMRI Study.
Lukinova, Evgeniya; Myagkov, Mikhail
2016-01-01
Efficient brain-computer interfaces (BCIs) are in need of knowledge about the human brain and how it interacts, plays games, and socializes with other brains. A breakthrough can be achieved by revealing the microfoundations of sociality, an additional component of the utility function reflecting the value of contributing to group success derived from social identity. Building upon our previous behavioral work, we conduct a series of functional magnetic resonance imaging (fMRI) experiments (N = 10 in the Pilot Study and N = 15 in the Main Study) to measure whether and how sociality alters the functional activation of and connectivity between specific systems in the brain. The overarching hypothesis of this study is that sociality, even in a minimal form, serves as a natural mechanism of sustainable cooperation by fostering interaction between brain regions associated with social cognition and those related to value calculation. We use group-based manipulations to induce varying levels of sociality and compare behavior in two social dilemmas: Prisoner's Dilemma and variations of Ultimatum Game. We find that activation of the right inferior frontal gyrus, a region previously associated with cognitive control and modulation of the valuation system, is correlated with activity in the medial prefrontal cortex (mPFC) to a greater degree when participants make economic decisions in a game with an acquaintance, high sociality condition, compared to a game with a random individual, low sociality condition. These initial results suggest a specific biological mechanism through which sociality facilitates cooperation, fairness and provision of public goods at the cost of individual gain. Future research should examine neural dynamics in the brain during the computation of utility in the context of strategic games that involve social interaction for a larger sample of subjects.
Impact of Short Social Training on Prosocial Behaviors: An fMRI Study
Lukinova, Evgeniya; Myagkov, Mikhail
2016-01-01
Efficient brain–computer interfaces (BCIs) are in need of knowledge about the human brain and how it interacts, plays games, and socializes with other brains. A breakthrough can be achieved by revealing the microfoundations of sociality, an additional component of the utility function reflecting the value of contributing to group success derived from social identity. Building upon our previous behavioral work, we conduct a series of functional magnetic resonance imaging (fMRI) experiments (N = 10 in the Pilot Study and N = 15 in the Main Study) to measure whether and how sociality alters the functional activation of and connectivity between specific systems in the brain. The overarching hypothesis of this study is that sociality, even in a minimal form, serves as a natural mechanism of sustainable cooperation by fostering interaction between brain regions associated with social cognition and those related to value calculation. We use group-based manipulations to induce varying levels of sociality and compare behavior in two social dilemmas: Prisoner’s Dilemma and variations of Ultimatum Game. We find that activation of the right inferior frontal gyrus, a region previously associated with cognitive control and modulation of the valuation system, is correlated with activity in the medial prefrontal cortex (mPFC) to a greater degree when participants make economic decisions in a game with an acquaintance, high sociality condition, compared to a game with a random individual, low sociality condition. These initial results suggest a specific biological mechanism through which sociality facilitates cooperation, fairness and provision of public goods at the cost of individual gain. Future research should examine neural dynamics in the brain during the computation of utility in the context of strategic games that involve social interaction for a larger sample of subjects. PMID:27458349
Guan, Min; Ma, Lijia; Li, Li; Yan, Bin; Zhao, Lu; Tong, Li; Dou, Shewei; Xia, Linjie; Wang, Meiyun; Shi, Dapeng
2015-01-01
A pilot study has shown that real-time fMRI (rtfMRI) neurofeedback could be an alternative approach for chronic pain treatment. Considering the relative small sample of patients recruited and not strictly controlled condition, it is desirable to perform a replication as well as a double-blinded randomized study with a different control condition in chronic pain patients. Here we conducted a rtfMRI neurofeedback study in a subgroup of pain patients - patients with postherpetic neuralgia (PHN) and used a different sham neurofeedback control. We explored the feasibility of self-regulation of the rostral anterior cingulate cortex (rACC) activation in patients with PHN through rtfMRI neurofeedback and regulation of pain perception. Sixteen patients (46-71 years) with PHN were randomly allocated to a experimental group (n = 8) or a control group (n = 8). 2 patients in the control group were excluded for large head motion. The experimental group was given true feedback information from their rACC whereas the control group was given sham feedback information from their posterior cingulate cortex (PCC). All subjects were instructed to perform an imagery task to increase and decrease activation within the target region using rtfMRI neurofeedback. Online analysis showed 6/8 patients in the experimental group were able to increase and decrease the blood oxygen level dependent (BOLD) fMRI signal magnitude during intermittent feedback training. However, this modulation effect was not observed in the control group. Offline analysis showed that the percentage of BOLD signal change of the target region between the last and first training in the experimental group was significantly different from the control group's and was also significantly different than 0. The changes of pain perception reflected by numerical rating scale (NRS) in the experimental group were significantly different from the control group. However, there existed no significant correlations between BOLD signal change and NRS change. Patients with PHN could learn to voluntarily control over activation in rACC through rtfMRI neurofeedback and alter their pain perception level. The present study may provide new evidence that rtfMRI neurofeedback training may be a supplemental approach for chronic clinical pain management.
Li, Li; Yan, Bin; Zhao, Lu; Tong, Li; Dou, Shewei; Xia, Linjie; Wang, Meiyun; Shi, Dapeng
2015-01-01
Background A pilot study has shown that real-time fMRI (rtfMRI) neurofeedback could be an alternative approach for chronic pain treatment. Considering the relative small sample of patients recruited and not strictly controlled condition, it is desirable to perform a replication as well as a double-blinded randomized study with a different control condition in chronic pain patients. Here we conducted a rtfMRI neurofeedback study in a subgroup of pain patients – patients with postherpetic neuralgia (PHN) and used a different sham neurofeedback control. We explored the feasibility of self-regulation of the rostral anterior cingulate cortex (rACC) activation in patients with PHN through rtfMRI neurofeedback and regulation of pain perception. Methods Sixteen patients (46–71 years) with PHN were randomly allocated to a experimental group (n = 8) or a control group (n = 8). 2 patients in the control group were excluded for large head motion. The experimental group was given true feedback information from their rACC whereas the control group was given sham feedback information from their posterior cingulate cortex (PCC). All subjects were instructed to perform an imagery task to increase and decrease activation within the target region using rtfMRI neurofeedback. Results Online analysis showed 6/8 patients in the experimental group were able to increase and decrease the blood oxygen level dependent (BOLD) fMRI signal magnitude during intermittent feedback training. However, this modulation effect was not observed in the control group. Offline analysis showed that the percentage of BOLD signal change of the target region between the last and first training in the experimental group was significantly different from the control group’s and was also significantly different than 0. The changes of pain perception reflected by numerical rating scale (NRS) in the experimental group were significantly different from the control group. However, there existed no significant correlations between BOLD signal change and NRS change. Conclusion Patients with PHN could learn to voluntarily control over activation in rACC through rtfMRI neurofeedback and alter their pain perception level. The present study may provide new evidence that rtfMRI neurofeedback training may be a supplemental approach for chronic clinical pain management. PMID:25848773
McGraw, P; Mathews, V P; Wang, Y; Phillips, M D
2001-05-01
Functional MR imaging (fMRI) has been a useful tool in the evaluation of language both in normal individuals and patient populations. The purpose of this article is to use various models of language as a framework to review fMRI studies. Specifically, fMRI language studies are subdivided into the following categories: word generation or fluency, passive listening, orthography, phonology, semantics, and syntax.
Wu, Ruiqi; Yang, Pai-Feng; Chen, Li Min
2017-11-15
This study aims to understand how functional connectivity (FC) between areas 3b and S2 alters following input deprivation and the neuronal basis of disrupted FC of resting-state fMRI signals. We combined submillimeter fMRI with microelectrode recordings to localize the deafferented digit regions in areas 3b and S2 by mapping tactile stimulus-evoked fMRI activations before and after cervical dorsal column lesion in each male monkey. An average afferent disruption of 97% significantly reduced fMRI, local field potential (LFP), and spike responses to stimuli in both areas. Analysis of resting-state fMRI signal correlation, LFP coherence, and spike cross-correlation revealed significantly reduced functional connectivity between deafferented areas 3b and S2. The degrees of reductions in stimulus responsiveness and FC after deafferentation differed across fMRI, LFP, and spiking signals. The reduction of FC was much weaker than that of stimulus-evoked responses. Whereas the largest stimulus-evoked signal drop (∼80%) was observed in LFP signals, the greatest FC reduction was detected in the spiking activity (∼30%). fMRI signals showed mild reductions in stimulus responsiveness (∼25%) and FC (∼20%). The overall deafferentation-induced changes were quite similar in areas 3b and S2 across signals. Here we demonstrated that FC strength between areas 3b and S2 was much weakened by dorsal column lesion, and stimulus response reduction and FC disruption in fMRI covary with those of LFP and spiking signals in deafferented areas 3b and S2. These findings have important implications for fMRI studies aiming to probe FC alterations in pathological conditions involving deafferentation in humans. SIGNIFICANCE STATEMENT By directly comparing fMRI, local field potential, and spike signals in both tactile stimulation and resting states before and after severe disruption of dorsal column afferent, we demonstrated that reduction in fMRI responses to stimuli is accompanied by weakened resting-state fMRI functional connectivity (FC) in input-deprived and reorganized digit regions in area 3b of the S1 and S2. Concurrent reductions in local field potential and spike FC validated the use of resting-state fMRI signals for probing neural intrinsic FC alterations in pathological deafferented cortex, and indicated that disrupted FC between mesoscale functionally highly related regions may contribute to the behavioral impairments. Copyright © 2017 the authors 0270-6474/17/3711192-12$15.00/0.
2017-01-01
This study aims to understand how functional connectivity (FC) between areas 3b and S2 alters following input deprivation and the neuronal basis of disrupted FC of resting-state fMRI signals. We combined submillimeter fMRI with microelectrode recordings to localize the deafferented digit regions in areas 3b and S2 by mapping tactile stimulus-evoked fMRI activations before and after cervical dorsal column lesion in each male monkey. An average afferent disruption of 97% significantly reduced fMRI, local field potential (LFP), and spike responses to stimuli in both areas. Analysis of resting-state fMRI signal correlation, LFP coherence, and spike cross-correlation revealed significantly reduced functional connectivity between deafferented areas 3b and S2. The degrees of reductions in stimulus responsiveness and FC after deafferentation differed across fMRI, LFP, and spiking signals. The reduction of FC was much weaker than that of stimulus-evoked responses. Whereas the largest stimulus-evoked signal drop (∼80%) was observed in LFP signals, the greatest FC reduction was detected in the spiking activity (∼30%). fMRI signals showed mild reductions in stimulus responsiveness (∼25%) and FC (∼20%). The overall deafferentation-induced changes were quite similar in areas 3b and S2 across signals. Here we demonstrated that FC strength between areas 3b and S2 was much weakened by dorsal column lesion, and stimulus response reduction and FC disruption in fMRI covary with those of LFP and spiking signals in deafferented areas 3b and S2. These findings have important implications for fMRI studies aiming to probe FC alterations in pathological conditions involving deafferentation in humans. SIGNIFICANCE STATEMENT By directly comparing fMRI, local field potential, and spike signals in both tactile stimulation and resting states before and after severe disruption of dorsal column afferent, we demonstrated that reduction in fMRI responses to stimuli is accompanied by weakened resting-state fMRI functional connectivity (FC) in input-deprived and reorganized digit regions in area 3b of the S1 and S2. Concurrent reductions in local field potential and spike FC validated the use of resting-state fMRI signals for probing neural intrinsic FC alterations in pathological deafferented cortex, and indicated that disrupted FC between mesoscale functionally highly related regions may contribute to the behavioral impairments. PMID:29038239
Characterizing Response to Elemental Unit of Acoustic Imaging Noise: An fMRI Study
Luh, Wen-Ming; Talavage, Thomas M.
2010-01-01
Acoustic imaging noise produced during functional magnetic resonance imaging (fMRI) studies can hinder auditory fMRI research analysis by altering the properties of the acquired time-series data. Acoustic imaging noise can be especially confounding when estimating the time course of the hemodynamic response (HDR) in auditory event-related fMRI (fMRI) experiments. This study is motivated by the desire to establish a baseline function that can serve not only as a comparison to other quantities of acoustic imaging noise for determining how detrimental is one's experimental noise, but also as a foundation for a model that compensates for the response to acoustic imaging noise. Therefore, the amplitude and spatial extent of the HDR to the elemental unit of acoustic imaging noise (i.e., a single ping) associated with echoplanar acquisition were characterized and modeled. Results from this fMRI study at 1.5 T indicate that the group-averaged HDR in left and right auditory cortex to acoustic imaging noise (duration of 46 ms) has an estimated peak magnitude of 0.29% (right) to 0.48% (left) signal change from baseline, peaks between 3 and 5 s after stimulus presentation, and returns to baseline and remains within the noise range approximately 8 s after stimulus presentation. PMID:19304477
Richlan, Fabio; Gagl, Benjamin; Hawelka, Stefan; Braun, Mario; Schurz, Matthias; Kronbichler, Martin; Hutzler, Florian
2014-10-01
The present study investigated the feasibility of using self-paced eye movements during reading (measured by an eye tracker) as markers for calculating hemodynamic brain responses measured by functional magnetic resonance imaging (fMRI). Specifically, we were interested in whether the fixation-related fMRI analysis approach was sensitive enough to detect activation differences between reading material (words and pseudowords) and nonreading material (line and unfamiliar Hebrew strings). Reliable reading-related activation was identified in left hemisphere superior temporal, middle temporal, and occipito-temporal regions including the visual word form area (VWFA). The results of the present study are encouraging insofar as fixation-related analysis could be used in future fMRI studies to clarify some of the inconsistent findings in the literature regarding the VWFA. Our study is the first step in investigating specific visual word recognition processes during self-paced natural sentence reading via simultaneous eye tracking and fMRI, thus aiming at an ecologically valid measurement of reading processes. We provided the proof of concept and methodological framework for the analysis of fixation-related fMRI activation in the domain of reading research. © The Author 2013. Published by Oxford University Press.
Functional magnetic resonance imaging: basic principles and application in the neurosciences.
Labbé Atenas, T; Ciampi Díaz, E; Cruz Quiroga, J P; Uribe Arancibia, S; Cárcamo Rodríguez, C
2018-03-12
Functional magnetic resonance imaging (fMRI) is an advanced tool for the study of brain functions in healthy subjects and in neuropsychiatric patients. This tool makes it possible to identify and locate specific phenomena related to neuronal metabolism and activity. Starting with the detection of changes in the blood supply to a region that participates in a function, more complex approaches have been developed to study the dynamics of neuronal networks. Studies examining the brain at rest or involved in different tasks have provided evidence related to the onset, development, and/or response to treatment in various diseases. The diversity of the possible artifacts associated with image registration as well as the complexity of the analytical experimental designs has generated abundant debate about the technique behind fMRI. This article aims to introduce readers to the fundamentals underlying fMRI, to explain how fMRI studies are interpreted, and to discuss fMRI's contributions to the study of the mechanisms underlying diverse diseases of the nervous system. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Sozda, Christopher N.; Larson, Michael J.; Kaufman, David A.S.; Schmalfuss, Ilona M.; Perlstein, William M.
2011-01-01
Continuous monitoring of one’s performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. PMID:21756946
Sozda, Christopher N; Larson, Michael J; Kaufman, David A S; Schmalfuss, Ilona M; Perlstein, William M
2011-10-01
Continuous monitoring of one's performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. Copyright © 2011 Elsevier B.V. All rights reserved.
fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI.
Niranjan, Arun; Christie, Isabel N; Solomon, Samuel G; Wells, Jack A; Lythgoe, Mark F
2016-10-01
The use of functional magnetic resonance imaging (fMRI) in mice is increasingly prevalent, providing a means to non-invasively characterise functional abnormalities associated with genetic models of human diseases. The predominant stimulus used in task-based fMRI in the mouse is electrical stimulation of the paw. Task-based fMRI in mice using visual stimuli remains underexplored, despite visual stimuli being common in human fMRI studies. In this study, we map the mouse brain visual system with BOLD measurements at 9.4T using flashing light stimuli with medetomidine anaesthesia. BOLD responses were observed in the lateral geniculate nucleus, the superior colliculus and the primary visual area of the cortex, and were modulated by the flashing frequency, diffuse vs focussed light and stimulus context. Negative BOLD responses were measured in the visual cortex at 10Hz flashing frequency; but turned positive below 5Hz. In addition, the use of interleaved snapshot GE-EPI improved fMRI image quality without diminishing the temporal contrast-noise-ratio. Taken together, this work demonstrates a novel methodological protocol in which the mouse brain visual system can be non-invasively investigated using BOLD fMRI. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Long, Zhiying; Chen, Kewei; Wu, Xia; Reiman, Eric; Peng, Danling; Yao, Li
2009-02-01
Spatial Independent component analysis (sICA) has been widely used to analyze functional magnetic resonance imaging (fMRI) data. The well accepted implicit assumption is the spatially statistical independency of intrinsic sources identified by sICA, making the sICA applications difficult for data in which there exist interdependent sources and confounding factors. This interdependency can arise, for instance, from fMRI studies investigating two tasks in a single session. In this study, we introduced a linear projection approach and considered its utilization as a tool to separate task-related components from two-task fMRI data. The robustness and feasibility of the method are substantiated through simulation on computer data and fMRI real rest data. Both simulated and real two-task fMRI experiments demonstrated that sICA in combination with the projection method succeeded in separating spatially dependent components and had better detection power than pure model-based method when estimating activation induced by each task as well as both tasks.
Effect of Adolescent Bariatric Surgery on the Brain and Cognition: A Pilot Study.
Pearce, Alaina L; Mackey, Eleanor; Cherry, J Bradley C; Olson, Alexandra; You, Xiaozhen; Magge, Sheela N; Mietus-Snyder, Michele; Nadler, Evan P; Vaidya, Chandan J
2017-11-01
Neurocognitive deficits in pediatric obesity relate to poor developmental outcomes. We sought preliminary evidence for changes in brain and cognitive functioning relevant to obesogenic behavior following vertical sleeve gastrectomy (VSG) in adolescents relative to wait-listed (WL) and healthy controls (HC). Thirty-six adolescents underwent fMRI twice 4 months apart, during executive, reward, and episodic memory encoding, in addition to behavioral testing for reward-related decision making. VSG adolescents lost weight, while WL gained weight and HC did not change between time points. Gains in executive and reward-related performance were larger in VSG than control groups. Group × Time interaction (P < 0.05 corrected) in left prefrontal cortex during N-back showed greater presurgical activation and postsurgical reduction comparable to HC levels but increased in WL between time points. Similarly, left striatal parametric response to reward value reduced after surgery to HC levels; WL did not change. Memory-related medial temporal activation did not change in any group. Results provide pilot evidence for functional brain changes induced by VSG in adolescents with severe obesity. Weight loss and gain were paralleled by reduced and increased prefrontal activation, respectively, suggesting neural plasticity related to metabolic change. © 2017 The Obesity Society.
Test-retest reliability of an fMRI paradigm for studies of cardiovascular reactivity.
Sheu, Lei K; Jennings, J Richard; Gianaros, Peter J
2012-07-01
We examined the reliability of measures of fMRI, subjective, and cardiovascular reactions to standardized versions of a Stroop color-word task and a multisource interference task. A sample of 14 men and 12 women (30-49 years old) completed the tasks on two occasions, separated by a median of 88 days. The reliability of fMRI BOLD signal changes in brain areas engaged by the tasks was moderate, and aggregating fMRI BOLD signal changes across the tasks improved test-retest reliability metrics. These metrics included voxel-wise intraclass correlation coefficients (ICCs) and overlap ratio statistics. Task-aggregated ratings of subjective arousal, valence, and control, as well as cardiovascular reactions evoked by the tasks showed ICCs of 0.57 to 0.87 (ps < .001), indicating moderate-to-strong reliability. These findings support using these tasks as a battery for fMRI studies of cardiovascular reactivity. Copyright © 2012 Society for Psychophysiological Research.
NEURAL SUBSTRATES OF CUE-REACTIVITY: ASSOCIATION WITH TREATMENT OUTCOMES AND RELAPSE
Courtney, Kelly E.; Schacht, Joseph P.; Hutchison, Kent; Roche, Daniel J.O.; Ray, Lara A.
2016-01-01
Given the strong evidence for neurological alterations at the basis of drug dependence, functional magnetic resonance imaging (fMRI) represents an important tool in the clinical neuroscience of addiction. fMRI cue-reactivity paradigms represent an ideal platform to probe the involvement of neurobiological pathways subserving the reward/motivation system in addiction and potentially offer a translational mechanism by which interventions and behavioral predictions can be tested. Thus, this review summarizes the research that has applied fMRI cue-reactivity paradigms to the study of adult substance use disorder treatment responses. Studies utilizing fMRI cue-reactivity paradigms for the prediction of relapse, and as a means to investigate psychosocial and pharmacological treatment effects on cue-elicited brain activation are presented within four primary categories of substances: alcohol, nicotine, cocaine, and opioids. Lastly, suggestions for how to leverage fMRI technology to advance addiction science and treatment development are provided. PMID:26435524
Loitfelder, Marisa; Fazekas, Franz; Koschutnig, Karl; Fuchs, Siegrid; Petrovic, Katja; Ropele, Stefan; Pichler, Alexander; Jehna, Margit; Langkammer, Christian; Schmidt, Reinhold; Neuper, Christa; Enzinger, Christian
2014-01-01
Extrapolations from previous cross-sectional fMRI studies suggest cerebral functional changes with progression of Multiple Sclerosis (MS), but longitudinal studies are scarce. We assessed brain activation changes over time in MS patients using a cognitive fMRI paradigm and examined correlations with clinical and cognitive status and brain morphology. 13 MS patients and 15 healthy controls (HC) underwent MRI including fMRI (go/no-go task), neurological and neuropsychological exams at baseline (BL) and follow-up (FU; minimum 12, median 20 months). We assessed estimates of and changes in fMRI activation, total brain and subcortical grey matter volumes, cortical thickness, and T2-lesion load. Bland-Altman (BA) plots served to assess fMRI signal variability. Cognitive and disability levels remained largely stable in the patients. With the fMRI task, both at BL and FU, patients compared to HC showed increased activation in the insular cortex, precuneus, cerebellum, posterior cingulate cortex, and occipital cortex. At BL, patients vs. HC also had lower caudate nucleus, thalamus and putamen volumes. Over time, patients (but not HC) demonstrated fMRI activity increments in the left inferior parietal lobule. These correlated with worse single-digit-modality test (SDMT) performance. BA-plots attested to reproducibility of the fMRI task. In the patients, the right caudate nucleus decreased in volume which again correlated with worsening SDMT performance. Given preserved cognitive performance, the increased activation at BL in the patients may be viewed as largely adaptive. In contrast, the negative correlation with SDMT performance suggests increasing parietal activation over time to be maladaptive. Several areas with purported relevance for cognition showed decreased volumes at BL and right caudate nucleus volume decline correlated with decreasing SDMT performance. This highlights the dynamics of functional changes and the strategic importance of specific brain areas for cognitive processes in MS.
2012-10-01
Yurgelun-Todd DA, Killgore WD. Fear-related activity in the prefrontal cortex increases with age during adolescence: a preliminary fMRI study . Neurosci...associated with altered brain activation during visual perception of high-calorie foods: An fMRI study . Abstract presented at the 25th Annual Meeting of the...Fereira MD, Nasello AG, Savoia M, et al. Police officers under attack: resilience implications of an fMRI study . J Psychiatr Res 2011; 45:727–734. 22
Functional Brain Activation Differences in Stuttering Identified with a Rapid fMRI Sequence
ERIC Educational Resources Information Center
Loucks, Torrey; Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.
2011-01-01
The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech…
Brown, E. Sherwood; Lu, Hanzhang; Denniston, Daren; Uh, Jinsoo; Thomas, Binu P.; Carmody, Thomas J.; Auchus, Richard J.; Diaz-Arrastia, Ramon; Tamminga, Carol
2013-01-01
Background Corticosteroid excess is associated with declarative memory impairment and hippocampal atrophy. These findings are clinically important because approximately 1% of the population receives prescription corticosteroids at any time, and major depressive disorder is associated with elevated cortisol levels and hippocampal atrophy. In animals, hippocampal changes with corticosteroids are blocked by phenytoin. The objective of the current study was to extend these preclinical findings to humans. We examined whether phenytoin attenuated the effects of hydrocortisone on declarative memory. Functional magnetic resonance imaging (fMRI) assessed task-related hippocampal activation. Methods A randomized, double-blind, placebo-controlled, within-subject crossover study was conducted in 17 healthy adult volunteers. Participants received hydrocortisone (2.5 days), phenytoin (3.5 days), both medications together, or placebo, with 21-day washouts between conditions. Differences between treatments were estimated using a mixed-effects repeated measures analysis. Results Fifteen participants had data from at least two treatment conditions and were used in the analysis. Basal cortisol levels negatively correlated with fMRI BOLD activation in the para-hippocampus with a similar trend observed in the hippocampus. Decrease in declarative memory with hydrocortisone was blocked with concomitant phenytoin administration. Relative to the placebo condition, a significant decrease in hippocampal BOLD activation was observed with hydrocortisone and phenytoin alone, and the two medications in combination. Declarative memory did not show significant correlations with hippocampal activation. Limitations The modest sample size, which limited our statistical power, was a limitation. Conclusions Findings from this pilot study suggest phenytoin attenuated effects of corticosteroids memory in humans, but potentiated the reduction in hippocampal activation. PMID:23453674
Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).
Wong, Chung-Ki; Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Luo, Qingfei; Bodurka, Jerzy
2016-04-01
Head motions during functional magnetic resonance imaging (fMRI) impair fMRI data quality and introduce systematic artifacts that can affect interpretation of fMRI results. Electroencephalography (EEG) recordings performed simultaneously with fMRI provide high-temporal-resolution information about ongoing brain activity as well as head movements. Recently, an EEG-assisted retrospective motion correction (E-REMCOR) method was introduced. E-REMCOR utilizes EEG motion artifacts to correct the effects of head movements in simultaneously acquired fMRI data on a slice-by-slice basis. While E-REMCOR is an efficient motion correction approach, it involves an independent component analysis (ICA) of the EEG data and identification of motion-related ICs. Here we report an automated implementation of E-REMCOR, referred to as aE-REMCOR, which we developed to facilitate the application of E-REMCOR in large-scale EEG-fMRI studies. The aE-REMCOR algorithm, implemented in MATLAB, enables an automated preprocessing of the EEG data, an ICA decomposition, and, importantly, an automatic identification of motion-related ICs. aE-REMCOR has been used to perform retrospective motion correction for 305 fMRI datasets from 16 subjects, who participated in EEG-fMRI experiments conducted on a 3T MRI scanner. Performance of aE-REMCOR has been evaluated based on improvement in temporal signal-to-noise ratio (TSNR) of the fMRI data, as well as correction efficiency defined in terms of spike reduction in fMRI motion parameters. The results show that aE-REMCOR is capable of substantially reducing head motion artifacts in fMRI data. In particular, when there are significant rapid head movements during the scan, a large TSNR improvement and high correction efficiency can be achieved. Depending on a subject's motion, an average TSNR improvement over the brain upon the application of aE-REMCOR can be as high as 27%, with top ten percent of the TSNR improvement values exceeding 55%. The average correction efficiency over the 305 fMRI scans is 18% and the largest achieved efficiency is 71%. The utility of aE-REMCOR on the resting state fMRI connectivity of the default mode network is also examined. The motion-induced position-dependent error in the DMN connectivity analysis is shown to be reduced when aE-REMCOR is utilized. These results demonstrate that aE-REMCOR can be conveniently and efficiently used to improve fMRI motion correction in large clinical EEG-fMRI studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
A Hierarchical Model for Simultaneous Detection and Estimation in Multi-subject fMRI Studies
Degras, David; Lindquist, Martin A.
2014-01-01
In this paper we introduce a new hierarchical model for the simultaneous detection of brain activation and estimation of the shape of the hemodynamic response in multi-subject fMRI studies. The proposed approach circumvents a major stumbling block in standard multi-subject fMRI data analysis, in that it both allows the shape of the hemodynamic response function to vary across region and subjects, while still providing a straightforward way to estimate population-level activation. An e cient estimation algorithm is presented, as is an inferential framework that not only allows for tests of activation, but also for tests for deviations from some canonical shape. The model is validated through simulations and application to a multi-subject fMRI study of thermal pain. PMID:24793829
van Hulst, Branko M; de Zeeuw, Patrick; Lupas, Kellina; Bos, Dienke J; Neggers, Sebastiaan F W; Durston, Sarah
2015-01-01
Reward processing has been implicated in developmental disorders. However, the classic task to probe reward anticipation, the monetary incentive delay task, has an abstract coding of reward and no storyline and may therefore be less appropriate for use with developmental populations. We modified the task to create a version appropriate for use with children. We investigated whether this child-friendly version could elicit ventral striatal activation during reward anticipation in typically developing children and young adolescents (aged 9.5-14.5). In addition, we tested whether our performance-based measure of reward sensitivity was associated with anticipatory activity in ventral striatum. Reward anticipation was related to activity in bilateral ventral striatum. Moreover, we found an association between individual reward sensitivity and activity in ventral striatum. We conclude that this task assesses ventral striatal activity in a child-friendly paradigm. The combination with a performance-based measure of reward sensitivity potentially makes the task a powerful tool for developmental imaging studies of reward processing.
Effects of hypoglycemia on human brain activation measured with fMRI.
Anderson, Adam W; Heptulla, Rubina A; Driesen, Naomi; Flanagan, Daniel; Goldberg, Philip A; Jones, Timothy W; Rife, Fran; Sarofin, Hedy; Tamborlane, William; Sherwin, Robert; Gore, John C
2006-07-01
Functional magnetic resonance imaging (fMRI) was used to measure the effects of acute hypoglycemia caused by passive sensory stimulation on brain activation. Visual stimulation was used to generate blood-oxygen-level-dependent (BOLD) contrast, which was monitored during hyperinsulinemic hypoglycemic and euglycemic clamp studies. Hypoglycemia (50 +/- 1 mg glucose/dl) decreased the fMRI signal relative to euglycemia in 10 healthy human subjects: the fractional signal change was reduced by 28 +/- 12% (P < .05). These changes were reversed when euglycemia was restored. These data provide a basis of comparison for studies that quantify hypoglycemia-related changes in fMRI activity during cognitive tasks based on visual stimuli and demonstrate that variations in blood glucose levels may modulate BOLD signals in the healthy brain.
fMRI of parents of children with Asperger Syndrome: a pilot study.
Baron-Cohen, Simon; Ring, Howard; Chitnis, Xavier; Wheelwright, Sally; Gregory, Lloyd; Williams, Steve; Brammer, Mick; Bullmore, Ed
2006-06-01
People with autism or Asperger Syndrome (AS) show altered patterns of brain activity during visual search and emotion recognition tasks. Autism and AS are genetic conditions and parents may show the 'broader autism phenotype.' (1) To test if parents of children with AS show atypical brain activity during a visual search and an empathy task; (2) to test for sex differences during these tasks at the neural level; (3) to test if parents of children with autism are hyper-masculinized, as might be predicted by the 'extreme male brain' theory. We used fMRI during a visual search task (the Embedded Figures Test (EFT)) and an emotion recognition test (the 'Reading the Mind in the Eyes' (or Eyes) test). Twelve parents of children with AS, vs. 12 sex-matched controls. Factorial analysis was used to map main effects of sex, group (parents vs. controls), and sexxgroup interaction on brain function. An ordinal ANOVA also tested for regions of brain activity where females>males>fathers=mothers, to test for parental hyper-masculinization. RESULTS ON EFT TASK: Female controls showed more activity in extrastriate cortex than male controls, and both mothers and fathers showed even less activity in this area than sex-matched controls. There were no differences in group activation between mothers and fathers of children with AS. The ordinal ANOVA identified two specific regions in visual cortex (right and left, respectively) that showed the pattern Females>Males>Fathers=Mothers, both in BA 19. RESULTS ON EYES TASK: Male controls showed more activity in the left inferior frontal gyrus than female controls, and both mothers and fathers showed even more activity in this area compared to sex-matched controls. Female controls showed greater bilateral inferior frontal activation than males. This was not seen when comparing mothers to males, or mothers to fathers. The ordinal ANOVA identified two specific regions that showed the pattern Females>Males>Mothers=Fathers: left medial temporal gyrus (BA 21) and left dorsolateral prefrontal cortex (BA 44). Parents of children with AS show atypical brain function during both visual search and emotion recognition, in the direction of hyper-masculinization of the brain. Because of the small sample size, and lack of age-matching between parents and controls, such results constitute a pilot study that needs replicating with larger samples.
Longitudinal Changes of Resting-State Functional Connectivity during Motor Recovery after Stroke
Park, Chang-hyun; Chang, Won Hyuk; Ohn, Suk Hoon; Kim, Sung Tae; Bang, Oh Young; Pascual-Leone, Alvaro; Kim, Yun-Hee
2013-01-01
Background and Purpose Functional magnetic resonance imaging (fMRI) studies could provide crucial information on the neural mechanisms of motor recovery in stroke patients. Resting-state fMRI is applicable to stroke patients who are not capable of proper performance of the motor task. In this study, we explored neural correlates of motor recovery in stroke patients by investigating longitudinal changes in resting-state functional connectivity of the ipsilesional primary motor cortex (M1). Methods A longitudinal observational study using repeated fMRI experiments was conducted in 12 patients with stroke. Resting-state fMRI data were acquired four times over a period of 6 months. Patients participated in the first session of fMRI shortly after onset, and thereafter in subsequent sessions at 1, 3, and 6 months after onset. Resting-state functional connectivity of the ipsilesional M1 was assessed and compared with that of healthy subjects. Results Compared with healthy subjects, patients demonstrated higher functional connectivity with the ipsilesional frontal and parietal cortices, bilateral thalamus, and cerebellum. Instead, functional connectivity with the contralesional M1 and occipital cortex were decreased in stroke patients. Functional connectivity between the ipsilesional and contralesional M1 showed the most asymmetry at 1 month after onset to the ipsilesional side. Functional connectivity of the ipsilesional M1 with the contralesional thalamus, supplementary motor area, and middle frontal gyrus at onset was positively correlated with motor recovery at 6 months after stroke. Conclusions Resting-state fMRI elicited distinctive but comparable results with previous task-based fMRI, presenting complementary and practical values for use in the study of stroke patients. PMID:21441147
Motor Cortex Stimulation Reverses Maladaptive Plasticity Following Spinal Cord Injury
2012-09-01
pp 74–85. Austin: Landes Biosciences. 3. Abstracts o Mechanisms of Pain Relief Following Motor Cortex Stimulation: An fMRI Study. Society for...Neuroscience Meeting. Washington, DC. 2012. o Resting State fMRI in a Rat Model of Spinal Cord Injury Neuropathic Pain: A Longitudinal Study. Society...2601–2610. 16. Stefanacci L, Reber P, Costanza J, Wong E, Buxton R, Zola S, Squire L, Albright T. fMRI of monkey visual cortex. Neuron 1998;20:1051
Dual-TRACER: High resolution fMRI with constrained evolution reconstruction.
Li, Xuesong; Ma, Xiaodong; Li, Lyu; Zhang, Zhe; Zhang, Xue; Tong, Yan; Wang, Lihong; Sen Song; Guo, Hua
2018-01-01
fMRI with high spatial resolution is beneficial for studies in psychology and neuroscience, but is limited by various factors such as prolonged imaging time, low signal to noise ratio and scarcity of advanced facilities. Compressed Sensing (CS) based methods for accelerating fMRI data acquisition are promising. Other advanced algorithms like k-t FOCUSS or PICCS have been developed to improve performance. This study aims to investigate a new method, Dual-TRACER, based on Temporal Resolution Acceleration with Constrained Evolution Reconstruction (TRACER), for accelerating fMRI acquisitions using golden angle variable density spiral. Both numerical simulations and in vivo experiments at 3T were conducted to evaluate and characterize this method. Results show that Dual-TRACER can provide functional images with a high spatial resolution (1×1mm 2 ) under an acceleration factor of 20 while maintaining hemodynamic signals well. Compared with other investigated methods, dual-TRACER provides a better signal recovery, higher fMRI sensitivity and more reliable activation detection. Copyright © 2017 Elsevier Inc. All rights reserved.
Monkey cortex through fMRI glasses
Vanduffel, Wim; Zhu, Qi; Orban, Guy A.
2015-01-01
In 1998 several groups reported the feasibility of functional magnetic resonance imaging (fMRI) experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category and feature selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. PMID:25102559
Monkey cortex through fMRI glasses.
Vanduffel, Wim; Zhu, Qi; Orban, Guy A
2014-08-06
In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. Copyright © 2014 Elsevier Inc. All rights reserved.
Branding and a child's brain: an fMRI study of neural responses to logos.
Bruce, Amanda S; Bruce, Jared M; Black, William R; Lepping, Rebecca J; Henry, Janice M; Cherry, Joseph Bradley C; Martin, Laura E; Papa, Vlad B; Davis, Ann M; Brooks, William M; Savage, Cary R
2014-01-01
Branding and advertising have a powerful effect on both familiarity and preference for products, yet no neuroimaging studies have examined neural response to logos in children. Food advertising is particularly pervasive and effective in manipulating choices in children. The purpose of this study was to examine how healthy children's brains respond to common food and other logos. A pilot validation study was first conducted with 32 children to select the most culturally familiar logos, and to match food and non-food logos on valence and intensity. A new sample of 17 healthy weight children were then scanned using functional magnetic resonance imaging. Food logos compared to baseline were associated with increased activation in orbitofrontal cortex and inferior prefrontal cortex. Compared to non-food logos, food logos elicited increased activation in posterior cingulate cortex. Results confirmed that food logos activate some brain regions in children known to be associated with motivation. This marks the first study in children to examine brain responses to culturally familiar logos. Considering the pervasiveness of advertising, research should further investigate how children respond at the neural level to marketing.
Jang, Hojin; Plis, Sergey M.; Calhoun, Vince D.; Lee, Jong-Hwan
2016-01-01
Feedforward deep neural networks (DNN), artificial neural networks with multiple hidden layers, have recently demonstrated a record-breaking performance in multiple areas of applications in computer vision and speech processing. Following the success, DNNs have been applied to neuroimaging modalities including functional/structural magnetic resonance imaging (MRI) and positron-emission tomography data. However, no study has explicitly applied DNNs to 3D whole-brain fMRI volumes and thereby extracted hidden volumetric representations of fMRI that are discriminative for a task performed as the fMRI volume was acquired. Our study applied fully connected feedforward DNN to fMRI volumes collected in four sensorimotor tasks (i.e., left-hand clenching, right-hand clenching, auditory attention, and visual stimulus) undertaken by 12 healthy participants. Using a leave-one-subject-out cross-validation scheme, a restricted Boltzmann machine-based deep belief network was pretrained and used to initialize weights of the DNN. The pretrained DNN was fine-tuned while systematically controlling weight-sparsity levels across hidden layers. Optimal weight-sparsity levels were determined from a minimum validation error rate of fMRI volume classification. Minimum error rates (mean ± standard deviation; %) of 6.9 (± 3.8) were obtained from the three-layer DNN with the sparsest condition of weights across the three hidden layers. These error rates were even lower than the error rates from the single-layer network (9.4 ± 4.6) and the two-layer network (7.4 ± 4.1). The estimated DNN weights showed spatial patterns that are remarkably task-specific, particularly in the higher layers. The output values of the third hidden layer represented distinct patterns/codes of the 3D whole-brain fMRI volume and encoded the information of the tasks as evaluated from representational similarity analysis. Our reported findings show the ability of the DNN to classify a single fMRI volume based on the extraction of hidden representations of fMRI volumes associated with tasks across multiple hidden layers. Our study may be beneficial to the automatic classification/diagnosis of neuropsychiatric and neurological diseases and prediction of disease severity and recovery in (pre-) clinical settings using fMRI volumes without requiring an estimation of activation patterns or ad hoc statistical evaluation. PMID:27079534
2014-01-01
Background The ability to walk independently is a primary goal for rehabilitation after stroke. Gait analysis provides a great amount of valuable information, while functional magnetic resonance imaging (fMRI) offers a powerful approach to define networks involved in motor control. The present study reports a new methodology based on both fMRI and gait analysis outcomes in order to investigate the ability of fMRI to reflect the phases of motor learning before/after electromyographic biofeedback treatment: the preliminary fMRI results of a post stroke subject’s brain activation, during passive and active ankle dorsal/plantarflexion, before and after biofeedback (BFB) rehabilitation are reported and their correlation with gait analysis data investigated. Methods A control subject and a post-stroke patient with chronic hemiparesis were studied. Functional magnetic resonance images were acquired during a block-design protocol on both subjects while performing passive and active ankle dorsal/plantarflexion. fMRI and gait analysis were assessed on the patient before and after electromyographic biofeedback rehabilitation treatment during gait activities. Lower limb three-dimensional kinematics, kinetics and surface electromyography were evaluated. Correlation between fMRI and gait analysis categorical variables was assessed: agreement/disagreement was assigned to each variable if the value was in/outside the normative range (gait analysis), or for presence of normal/diffuse/no activation of motor area (fMRI). Results Altered fMRI activity was found on the post-stroke patient before biofeedback rehabilitation with respect to the control one. Meanwhile the patient showed a diffuse, but more limited brain activation after treatment (less voxels). The post-stroke gait data showed a trend towards the normal range: speed, stride length, ankle power, and ankle positive work increased. Preliminary correlation analysis revealed that consistent changes were observed both for the fMRI data, and the gait analysis data after treatment (R > 0.89): this could be related to the possible effects BFB might have on the central as well as on the peripheral nervous system. Conclusions Our findings showed that this methodology allows evaluation of the relationship between alterations in gait and brain activation of a post-stroke patient. Such methodology, if applied on a larger sample subjects, could provide information about the specific motor area involved in a rehabilitation treatment. PMID:24716475
Jang, Hojin; Plis, Sergey M; Calhoun, Vince D; Lee, Jong-Hwan
2017-01-15
Feedforward deep neural networks (DNNs), artificial neural networks with multiple hidden layers, have recently demonstrated a record-breaking performance in multiple areas of applications in computer vision and speech processing. Following the success, DNNs have been applied to neuroimaging modalities including functional/structural magnetic resonance imaging (MRI) and positron-emission tomography data. However, no study has explicitly applied DNNs to 3D whole-brain fMRI volumes and thereby extracted hidden volumetric representations of fMRI that are discriminative for a task performed as the fMRI volume was acquired. Our study applied fully connected feedforward DNN to fMRI volumes collected in four sensorimotor tasks (i.e., left-hand clenching, right-hand clenching, auditory attention, and visual stimulus) undertaken by 12 healthy participants. Using a leave-one-subject-out cross-validation scheme, a restricted Boltzmann machine-based deep belief network was pretrained and used to initialize weights of the DNN. The pretrained DNN was fine-tuned while systematically controlling weight-sparsity levels across hidden layers. Optimal weight-sparsity levels were determined from a minimum validation error rate of fMRI volume classification. Minimum error rates (mean±standard deviation; %) of 6.9 (±3.8) were obtained from the three-layer DNN with the sparsest condition of weights across the three hidden layers. These error rates were even lower than the error rates from the single-layer network (9.4±4.6) and the two-layer network (7.4±4.1). The estimated DNN weights showed spatial patterns that are remarkably task-specific, particularly in the higher layers. The output values of the third hidden layer represented distinct patterns/codes of the 3D whole-brain fMRI volume and encoded the information of the tasks as evaluated from representational similarity analysis. Our reported findings show the ability of the DNN to classify a single fMRI volume based on the extraction of hidden representations of fMRI volumes associated with tasks across multiple hidden layers. Our study may be beneficial to the automatic classification/diagnosis of neuropsychiatric and neurological diseases and prediction of disease severity and recovery in (pre-) clinical settings using fMRI volumes without requiring an estimation of activation patterns or ad hoc statistical evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.
Suarez, Ralph O; Taimouri, Vahid; Boyer, Katrina; Vega, Clemente; Rotenberg, Alexander; Madsen, Joseph R; Loddenkemper, Tobias; Duffy, Frank H; Prabhu, Sanjay P; Warfield, Simon K
2014-12-01
In this study we validate passive language fMRI protocols designed for clinical application in pediatric epilepsy surgical planning as they do not require overt participation from patients. We introduced a set of quality checks that assess reliability of noninvasive fMRI mappings utilized for clinical purposes. We initially compared two fMRI language mapping paradigms, one active in nature (requiring participation from the patient) and the other passive in nature (requiring no participation from the patient). Group-level analysis in a healthy control cohort demonstrated similar activation of the putative language centers of the brain in the inferior frontal (IFG) and temporoparietal (TPG) regions. Additionally, we showed that passive language fMRI produced more left-lateralized activation in TPG (LI=+0.45) compared to the active task; with similarly robust left-lateralized IFG (LI=+0.24) activations using the passive task. We validated our recommended fMRI mapping protocols in a cohort of 15 pediatric epilepsy patients by direct comparison against the invasive clinical gold-standards. We found that language-specific TPG activation by fMRI agreed to within 9.2mm to subdural localizations by invasive functional mapping in the same patients, and language dominance by fMRI agreed with Wada test results at 80% congruency in TPG and 73% congruency in IFG. Lastly, we tested the recommended passive language fMRI protocols in a cohort of very young patients and confirmed reliable language-specific activation patterns in that challenging cohort. We concluded that language activation maps can be reliably achieved using the passive language fMRI protocols we proposed even in very young (average 7.5 years old) or sedated pediatric epilepsy patients. Copyright © 2014 Elsevier B.V. All rights reserved.
Kozák, Lajos R; van Graan, Louis André; Chaudhary, Umair J; Szabó, Ádám György; Lemieux, Louis
2017-12-01
Generally, the interpretation of functional MRI (fMRI) activation maps continues to rely on assessing their relationship to anatomical structures, mostly in a qualitative and often subjective way. Recently, the existence of persistent and stable brain networks of functional nature has been revealed; in particular these so-called intrinsic connectivity networks (ICNs) appear to link patterns of resting state and task-related state connectivity. These networks provide an opportunity of functionally-derived description and interpretation of fMRI maps, that may be especially important in cases where the maps are predominantly task-unrelated, such as studies of spontaneous brain activity e.g. in the case of seizure-related fMRI maps in epilepsy patients or sleep states. Here we present a new toolbox (ICN_Atlas) aimed at facilitating the interpretation of fMRI data in the context of ICN. More specifically, the new methodology was designed to describe fMRI maps in function-oriented, objective and quantitative way using a set of 15 metrics conceived to quantify the degree of 'engagement' of ICNs for any given fMRI-derived statistical map of interest. We demonstrate that the proposed framework provides a highly reliable quantification of fMRI activation maps using a publicly available longitudinal (test-retest) resting-state fMRI dataset. The utility of the ICN_Atlas is also illustrated on a parametric task-modulation fMRI dataset, and on a dataset of a patient who had repeated seizures during resting-state fMRI, confirmed on simultaneously recorded EEG. The proposed ICN_Atlas toolbox is freely available for download at http://icnatlas.com and at http://www.nitrc.org for researchers to use in their fMRI investigations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Consistency and similarity of MEG- and fMRI-signal time courses during movie viewing.
Lankinen, Kaisu; Saari, Jukka; Hlushchuk, Yevhen; Tikka, Pia; Parkkonen, Lauri; Hari, Riitta; Koskinen, Miika
2018-06-01
Movie viewing allows human perception and cognition to be studied in complex, real-life-like situations in a brain-imaging laboratory. Previous studies with functional magnetic resonance imaging (fMRI) and with magneto- and electroencephalography (MEG and EEG) have demonstrated consistent temporal dynamics of brain activity across movie viewers. However, little is known about the similarities and differences of fMRI and MEG or EEG dynamics during such naturalistic situations. We thus compared MEG and fMRI responses to the same 15-min black-and-white movie in the same eight subjects who watched the movie twice during both MEG and fMRI recordings. We analyzed intra- and intersubject voxel-wise correlations within each imaging modality as well as the correlation of the MEG envelopes and fMRI signals. The fMRI signals showed voxel-wise within- and between-subjects correlations up to r = 0.66 and r = 0.37, respectively, whereas these correlations were clearly weaker for the envelopes of band-pass filtered (7 frequency bands below 100 Hz) MEG signals (within-subjects correlation r < 0.14 and between-subjects r < 0.05). Direct MEG-fMRI voxel-wise correlations were unreliable. Notably, applying a spatial-filtering approach to the MEG data uncovered consistent canonical variates that showed considerably stronger (up to r = 0.25) between-subjects correlations than the univariate voxel-wise analysis. Furthermore, the envelopes of the time courses of these variates up to about 10 Hz showed association with fMRI signals in a general linear model. Similarities between envelopes of MEG canonical variates and fMRI voxel time-courses were seen mostly in occipital, but also in temporal and frontal brain regions, whereas intra- and intersubject correlations for MEG and fMRI separately were strongest only in the occipital areas. In contrast to the conventional univariate analysis, the spatial-filtering approach was able to uncover associations between the MEG envelopes and fMRI time courses, shedding light on the similarities of hemodynamic and electromagnetic brain activities during movie viewing. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Cetin, Mustafa S.; Houck, Jon M.; Rashid, Barnaly; Agacoglu, Oktay; Stephen, Julia M.; Sui, Jing; Canive, Jose; Mayer, Andy; Aine, Cheryl; Bustillo, Juan R.; Calhoun, Vince D.
2016-01-01
Mental disorders like schizophrenia are currently diagnosed by physicians/psychiatrists through clinical assessment and their evaluation of patient's self-reported experiences as the illness emerges. There is great interest in identifying biological markers of prognosis at the onset of illness, rather than relying on the evolution of symptoms across time. Functional network connectivity, which indicates a subject's overall level of “synchronicity” of activity between brain regions, demonstrates promise in providing individual subject predictive power. Many previous studies reported functional connectivity changes during resting-state using only functional magnetic resonance imaging (fMRI). Nevertheless, exclusive reliance on fMRI to generate such networks may limit the inference of the underlying dysfunctional connectivity, which is hypothesized to be a factor in patient symptoms, as fMRI measures connectivity via hemodynamics. Therefore, combination of connectivity assessments using fMRI and magnetoencephalography (MEG), which more directly measures neuronal activity, may provide improved classification of schizophrenia than either modality alone. Moreover, recent evidence indicates that metrics of dynamic connectivity may also be critical for understanding pathology in schizophrenia. In this work, we propose a new framework for extraction of important disease related features and classification of patients with schizophrenia based on using both fMRI and MEG to investigate functional network components in the resting state. Results of this study show that the integration of fMRI and MEG provides important information that captures fundamental characteristics of functional network connectivity in schizophrenia and is helpful for prediction of schizophrenia patient group membership. Combined fMRI/MEG methods, using static functional network connectivity analyses, improved classification accuracy relative to use of fMRI or MEG methods alone (by 15 and 12.45%, respectively), while combined fMRI/MEG methods using dynamic functional network connectivity analyses improved classification up to 5.12% relative to use of fMRI alone and up to 17.21% relative to use of MEG alone. PMID:27807403
fMRI reliability: influences of task and experimental design.
Bennett, Craig M; Miller, Michael B
2013-12-01
As scientists, it is imperative that we understand not only the power of our research tools to yield results, but also their ability to obtain similar results over time. This study is an investigation into how common decisions made during the design and analysis of a functional magnetic resonance imaging (fMRI) study can influence the reliability of the statistical results. To that end, we gathered back-to-back test-retest fMRI data during an experiment involving multiple cognitive tasks (episodic recognition and two-back working memory) and multiple fMRI experimental designs (block, event-related genetic sequence, and event-related m-sequence). Using these data, we were able to investigate the relative influences of task, design, statistical contrast (task vs. rest, target vs. nontarget), and statistical thresholding (unthresholded, thresholded) on fMRI reliability, as measured by the intraclass correlation (ICC) coefficient. We also utilized data from a second study to investigate test-retest reliability after an extended, six-month interval. We found that all of the factors above were statistically significant, but that they had varying levels of influence on the observed ICC values. We also found that these factors could interact, increasing or decreasing the relative reliability of certain Task × Design combinations. The results suggest that fMRI reliability is a complex construct whose value may be increased or decreased by specific combinations of factors.
Test-Retest Reliability of fMRI Brain Activity during Memory Encoding
Brandt, David J.; Sommer, Jens; Krach, Sören; Bedenbender, Johannes; Kircher, Tilo; Paulus, Frieder M.; Jansen, Andreas
2013-01-01
The mechanisms underlying hemispheric specialization of memory are not completely understood. Functional magnetic resonance imaging (fMRI) can be used to develop and test models of hemispheric specialization. In particular for memory tasks however, the interpretation of fMRI results is often hampered by the low reliability of the data. In the present study we therefore analyzed the test-retest reliability of fMRI brain activation related to an implicit memory encoding task, with a particular focus on brain activity of the medial temporal lobe (MTL). Fifteen healthy subjects were scanned with fMRI on two sessions (average retest interval 35 days) using a commonly applied novelty encoding paradigm contrasting known and unknown stimuli. To assess brain lateralization, we used three different stimuli classes that differed in their verbalizability (words, scenes, fractals). Test-retest reliability of fMRI brain activation was assessed by an intraclass-correlation coefficient (ICC), describing the stability of inter-individual differences in the brain activation magnitude over time. We found as expected a left-lateralized brain activation network for the words paradigm, a bilateral network for the scenes paradigm, and predominantly right-hemispheric brain activation for the fractals paradigm. Although these networks were consistently activated in both sessions on the group level, across-subject reliabilities were only poor to fair (ICCs ≤ 0.45). Overall, the highest ICC values were obtained for the scenes paradigm, but only in strongly activated brain regions. In particular the reliability of brain activity of the MTL was poor for all paradigms. In conclusion, for novelty encoding paradigms the interpretation of fMRI results on a single subject level is hampered by its low reliability. More studies are needed to optimize the retest reliability of fMRI activation for memory tasks. PMID:24367338
Scarapicchia, Vanessa; Brown, Cassandra; Mayo, Chantel; Gawryluk, Jodie R.
2017-01-01
Although blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a widely available, non-invasive technique that offers excellent spatial resolution, it remains limited by practical constraints imposed by the scanner environment. More recently, functional near infrared spectroscopy (fNIRS) has emerged as an alternative hemodynamic-based approach that possesses a number of strengths where fMRI is limited, most notably in portability and higher tolerance for motion. To date, fNIRS has shown promise in its ability to shed light on the functioning of the human brain in populations and contexts previously inaccessible to fMRI. Notable contributions include infant neuroimaging studies and studies examining full-body behaviors, such as exercise. However, much like fMRI, fNIRS has technical constraints that have limited its application to clinical settings, including a lower spatial resolution and limited depth of recording. Thus, by combining fMRI and fNIRS in such a way that the two methods complement each other, a multimodal imaging approach may allow for more complex research paradigms than is feasible with either technique alone. In light of these issues, the purpose of the current review is to: (1) provide an overview of fMRI and fNIRS and their associated strengths and limitations; (2) review existing combined fMRI-fNIRS recording studies; and (3) discuss how their combined use in future research practices may aid in advancing modern investigations of human brain function. PMID:28867998
EEG-Informed fMRI: A Review of Data Analysis Methods
Abreu, Rodolfo; Leal, Alberto; Figueiredo, Patrícia
2018-01-01
The simultaneous acquisition of electroencephalography (EEG) with functional magnetic resonance imaging (fMRI) is a very promising non-invasive technique for the study of human brain function. Despite continuous improvements, it remains a challenging technique, and a standard methodology for data analysis is yet to be established. Here we review the methodologies that are currently available to address the challenges at each step of the data analysis pipeline. We start by surveying methods for pre-processing both EEG and fMRI data. On the EEG side, we focus on the correction for several MR-induced artifacts, particularly the gradient and pulse artifacts, as well as other sources of EEG artifacts. On the fMRI side, we consider image artifacts induced by the presence of EEG hardware inside the MR scanner, and the contamination of the fMRI signal by physiological noise of non-neuronal origin, including a review of several approaches to model and remove it. We then provide an overview of the approaches specifically employed for the integration of EEG and fMRI when using EEG to predict the blood oxygenation level dependent (BOLD) fMRI signal, the so-called EEG-informed fMRI integration strategy, the most commonly used strategy in EEG-fMRI research. Finally, we systematically review methods used for the extraction of EEG features reflecting neuronal phenomena of interest. PMID:29467634
The power of using functional fMRI on small rodents to study brain pharmacology and disease
Jonckers, Elisabeth; Shah, Disha; Hamaide, Julie; Verhoye, Marleen; Van der Linden, Annemie
2015-01-01
Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest. In addition, fMRI techniques allow one to dissect how specific modifications (e.g., treatment, lesion etc.) modulate the functioning of specific brain areas (st-fMRI, phMRI) and how functional connectivity (rsfMRI) between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with several methodological considerations. PMID:26539115
Functional MR imaging assessment of a non-responsive brain injured patient.
Moritz, C H; Rowley, H A; Haughton, V M; Swartz, K R; Jones, J; Badie, B
2001-10-01
Functional magnetic resonance imaging (fMRI) was requested to assist in the evaluation of a comatose 38-year-old woman who had sustained multiple cerebral contusions from a motor vehicle accident. Previous electrophysiologic studies suggested absence of thalamocortical processing in response to median nerve stimulation. Whole-brain fMRI was performed utilizing visual, somatosensory, and auditory stimulation paradigms. Results demonstrated intact task-correlated sensory and cognitive blood oxygen level dependent (BOLD) hemodynamic response to stimuli. Electrodiagnostic studies were repeated and evoked potentials indicated supratentorial recovery in the cerebrum. At 3-months post trauma the patient had recovered many cognitive & sensorimotor functions, accurately reflecting the prognostic fMRI evaluation. These results indicate that fMRI examinations may provide a useful evaluation for brain function in non-responsive brain trauma patients.
FMRI Is a Valid Noninvasive Alternative to Wada Testing
Binder, Jeffrey R.
2010-01-01
Partial removal of the anterior temporal lobe (ATL) is a highly effective surgical treatment for intractable temporal lobe epilepsy, yet roughly half of patients who undergo left ATL resection show decline in language or verbal memory function postoperatively. Two recent studies demonstrate that preoperative fMRI can predict postoperative naming and verbal memory changes in such patients. Most importantly, fMRI significantly improves the accuracy of prediction relative to other noninvasive measures used alone. Addition of language and memory lateralization data from the intracarotid amobarbital (Wada) test did not improve prediction accuracy in these studies. Thus, fMRI provides patients and practitioners with a safe, non-invasive, and well-validated tool for making better-informed decisions regarding elective surgery based on a quantitative assessment of cognitive risk. PMID:20850386
Research with rTMS in the treatment of aphasia
Naeser, Margaret A.; Martin, Paula I; Treglia, Ethan; Ho, Michael; Kaplan, Elina; Bashir, Shahid; Hamilton, Roy; Coslett, H. Branch; Pascual-Leone, Alvaro
2013-01-01
This review of our research with rTMS to treat aphasia contains four parts: Part 1 reviews functional brain imaging studies related to recovery of language in aphasia with emphasis on nonfluent aphasia. Part 2 presents the rationale for using rTMS to treat nonfluent aphasia patients (based on results from functional imaging studies). Part 2 also reviews our current rTMS treatment protocol used with nonfluent aphasia patients, and our functional imaging results from overt naming fMRI scans, obtained pre- and post- a series of rTMS treatments. Part 3 presents results from a pilot study where rTMS treatments were followed immediately by constraint-induced language therapy (CILT). Part 4 reviews our diffusion tensor imaging (DTI) study that examined white matter connections between the horizontal, midportion of the arcuate fasciculus (hAF) to different parts within Broca’s area (pars triangularis, PTr; pars opercularis, POp), and the ventral premotor cortex (vPMC) in the RH and in the LH. Part 4 also addresses some of the possible mechanisms involved with improved naming and speech, following rTMS with nonfluent aphasia patients. PMID:20714075
Functional Magnetic Resonance Imaging for Preoperative Planning in Brain Tumour Surgery.
Lau, Jonathan C; Kosteniuk, Suzanne E; Bihari, Frank; Megyesi, Joseph F
2017-01-01
Functional magnetic resonance imaging (fMRI) is being increasingly used for the preoperative evaluation of patients with brain tumours. The study is a retrospective chart review investigating the use of clinical fMRI from 2002 through 2013 in the preoperative evaluation of brain tumour patients. Baseline demographic and clinical data were collected. The specific fMRI protocols used for each patient were recorded. Sixty patients were identified over the 12-year period. The tumour types most commonly investigated were high-grade glioma (World Health Organization grade III or IV), low-grade glioma (World Health Organization grade II), and meningioma. Most common presenting symptoms were seizures (69.6%), language deficits (23.2%), and headache (19.6%). There was a predominance of left hemispheric lesions investigated with fMRI (76.8% vs 23.2% for right). The most commonly involved lobes were frontal (64.3%), temporal (33.9%), parietal (21.4%), and insular (7.1%). The most common fMRI paradigms were language (83.9%), motor (75.0%), sensory (16.1%), and memory (10.7%). The majority of patients ultimately underwent a craniotomy (75.0%), whereas smaller groups underwent stereotactic biopsy (8.9%) and nonsurgical management (16.1%). Time from request for fMRI to actual fMRI acquisition was 3.1±2.3 weeks. Time from fMRI acquisition to intervention was 4.9±5.5 weeks. We have characterized patient demographics in a retrospective single-surgeon cohort undergoing preoperative clinical fMRI at a Canadian centre. Our experience suggests an acceptable wait time from scan request to scan completion/analysis and from scan to intervention.
Strigel, Roberta M; Moritz, Chad H; Haughton, Victor M; Badie, Behnam; Field, Aaron; Wood, David; Hartman, Michael; Rowley, Howard A
2005-03-01
The purpose of this study was to determine the incidence of susceptibility artifacts on functional MR imaging (fMRI) studies and their effect on fMRI readings. We hypothesized that the availability of the signal intensity maps (SIMs) changes the interpretation of fMRI studies in which susceptibility artifacts affected eloquent brain regions. We reviewed 152 consecutive clinical fMRI studies performed with a SIM. The SIM consisted of the initial echo-planar images (EPI) in each section thresholded to eliminate signal intensity from outside the brain and then overlaid on anatomic images. The cause of the artifact was then determined by examining the images. Cases with a susceptibility artifact in eloquent brain were included in a blinded study read by four readers, first without and then with the SIM. For each reader, the number of times the interpretation changed on viewing the SIM was counted. Of 152 patients, 44% had signal intensity loss involving cerebral cortex and 18% involving an eloquent brain region. Causes of the artifacts were: surgical site artifact, blood products, dental devices, calcium, basal ganglia calcifications, ICP monitors, embolization materials, and air. When provided with the SIM, readers changed interpretations in 8-38% of patient cases, depending on reader experience and size and location of susceptibility artifact. Patients referred for clinical fMRI have a high incidence of susceptibility artifacts, whose presence and size can be determined by inspection of the SIM but not anatomic images. The availability of the SIM may affect interpretation of the fMRI.
Murnane, Kevin Sean; Howell, Leonard Lee
2010-08-15
Functional magnetic resonance imaging (fMRI) is a technique with significant potential to advance our understanding of multiple brain systems. However, when human subjects undergo fMRI studies they are typically conscious whereas pre-clinical fMRI studies typically utilize anesthesia, which complicates comparisons across studies. Therefore, we have developed an apparatus suitable for imaging conscious rhesus monkeys. In order to minimize subject stress and spatial motion, each subject was acclimated to the necessary procedures over several months. The effectiveness of this process was then evaluated, in fully trained subjects, by quantifying objective physiological measures. These physiological metrics were stable both within and across sessions and did not differ from when these same subjects were immobilized using standard primate handling procedures. Subject motion and blood oxygenation level dependent (BOLD) fMRI measurements were then evaluated by scanning subjects under three different conditions: the absence of stimulation, presentation of a visual stimulus, or administration of intravenous (i.v.) cocaine (0.3mg/kg). Spatial motion differed neither by condition nor along the three principal axes. In addition, maximum translational and rotational motion never exceeded one half of the voxel size (0.75 mm) or 1.5 degrees, respectively. Furthermore, the localization of changes in blood oxygenation closely matched those reported in previous studies using similar stimuli. These findings document the feasibility of fMRI data collection in conscious rhesus monkeys using these procedures and allow for the further study of the neural effects of psychoactive drugs. (c) 2010 Elsevier B.V. All rights reserved.
Pak, Rebecca W; Hadjiabadi, Darian H; Senarathna, Janaka; Agarwal, Shruti; Thakor, Nitish V; Pillai, Jay J; Pathak, Arvind P
2017-11-01
Functional magnetic resonance imaging (fMRI) serves as a critical tool for presurgical mapping of eloquent cortex and changes in neurological function in patients diagnosed with brain tumors. However, the blood-oxygen-level-dependent (BOLD) contrast mechanism underlying fMRI assumes that neurovascular coupling remains intact during brain tumor progression, and that measured changes in cerebral blood flow (CBF) are correlated with neuronal function. Recent preclinical and clinical studies have demonstrated that even low-grade brain tumors can exhibit neurovascular uncoupling (NVU), which can confound interpretation of fMRI data. Therefore, to avoid neurosurgical complications, it is crucial to understand the biophysical basis of NVU and its impact on fMRI. Here we review the physiology of the neurovascular unit, how it is remodeled, and functionally altered by brain cancer cells. We first discuss the latest findings about the components of the neurovascular unit. Next, we synthesize results from preclinical and clinical studies to illustrate how brain tumor induced NVU affects fMRI data interpretation. We examine advances in functional imaging methods that permit the clinical evaluation of brain tumors with NVU. Finally, we discuss how the suppression of anomalous tumor blood vessel formation with antiangiogenic therapies can "normalize" the brain tumor vasculature, and potentially restore neurovascular coupling.
Fully automated processing of fMRI data in SPM: from MRI scanner to PACS.
Maldjian, Joseph A; Baer, Aaron H; Kraft, Robert A; Laurienti, Paul J; Burdette, Jonathan H
2009-01-01
Here we describe the Wake Forest University Pipeline, a fully automated method for the processing of fMRI data using SPM. The method includes fully automated data transfer and archiving from the point of acquisition, real-time batch script generation, distributed grid processing, interface to SPM in MATLAB, error recovery and data provenance, DICOM conversion and PACS insertion. It has been used for automated processing of fMRI experiments, as well as for the clinical implementation of fMRI and spin-tag perfusion imaging. The pipeline requires no manual intervention, and can be extended to any studies requiring offline processing.
Complementary aspects of diffusion imaging and fMRI; I: structure and function.
Mulkern, Robert V; Davis, Peter E; Haker, Steven J; Estepar, Raul San Jose; Panych, Lawrence P; Maier, Stephan E; Rivkin, Michael J
2006-05-01
Studying the intersection of brain structure and function is an important aspect of modern neuroscience. The development of magnetic resonance imaging (MRI) over the last 25 years has provided new and powerful tools for the study of brain structure and function. Two tools in particular, diffusion imaging and functional MRI (fMRI), are playing increasingly important roles in elucidating the complementary aspects of brain structure and function. In this work, we review basic technical features of diffusion imaging and fMRI for studying the integrity of white matter structural components and for determining the location and extent of cortical activation in gray matter, respectively. We then review a growing body of literature in which the complementary aspects of diffusion imaging and fMRI, applied as separate examinations but analyzed in tandem, have been exploited to enhance our knowledge of brain structure and function.
McLaren, Donald G.; Sreenivasan, Aishwarya; Diamond, Eli L.; Mitchell, Meghan B.; Van Dijk, Koene R.A.; DeLuca, Amy N.; O’Brien, Jacqueline L.; Rentz, Dorene M.; Sperling, Reisa A.; Atri, Alireza
2012-01-01
Background Previous studies have revealed that functional magnetic resonance imaging (fMRI) blood oxygen level-dependent (BOLD) signal in specific brain regions correlates with cross-sectional performance on standardized clinical trial measures in Alzheimer's disease (AD); however, the relationship between longitudinal change in fMRI-BOLD signal and neuropsychological performance remains unknown. Objective: To identify changes in regional fMRI-BOLD activity that tracks change in neuropsychological performance in mild AD dementia over 6 months. Methods Twenty-four subjects (mean age 71.6) with mild AD dementia (mean Mini Mental State Examination 21.7, Global Clinical Dementia Rating 1.0) on stable donepezil dosing participated in two task-related fMRI sessions consisting of a face-name paired associative encoding memory paradigm 24 weeks apart during a randomized placebo-controlled pharmaco-fMRI drug study. Regression analysis was used to identify regions where the change in fMRI activity for Novel > Repeated stimulus contrast was associated with the change scores on postscan memory tests and the Free and Cued Selective Reminding Test (FCSRT). Results Correlations between changes in postscan memory accuracy and changes in fMRI activity were observed in regions including the angular gyrus, parahippocampal gyrus, inferior frontal gyrus and cerebellum. Correlations between changes in FCSRT-free recall and changes in fMRI were observed in regions including the inferior parietal lobule, precuneus, hippocampus and parahippocampal gyrus. Conclusion Changes in encoding-related fMRI activity in regions implicated in mnemonic networks correlated with changes in psychometric measures of episodic memory retrieval performed outside the scanner. These exploratory results support the potential of fMRI activity to track cognitive change and detect signals of short-term pharmacologic effect in early-phase AD studies. PMID:22456451
McLaren, Donald G; Sreenivasan, Aishwarya; Diamond, Eli L; Mitchell, Meghan B; Van Dijk, Koene R A; Deluca, Amy N; O'Brien, Jacqueline L; Rentz, Dorene M; Sperling, Reisa A; Atri, Alireza
2012-01-01
Previous studies have revealed that functional magnetic resonance imaging (fMRI) blood oxygen level-dependent (BOLD) signal in specific brain regions correlates with cross-sectional performance on standardized clinical trial measures in Alzheimer's disease (AD); however, the relationship between longitudinal change in fMRI-BOLD signal and neuropsychological performance remains unknown. To identify changes in regional fMRI-BOLD activity that tracks change in neuropsychological performance in mild AD dementia over 6 months. Twenty-four subjects (mean age 71.6) with mild AD dementia (mean Mini Mental State Examination 21.7, Global Clinical Dementia Rating 1.0) on stable donepezil dosing participated in two task-related fMRI sessions consisting of a face-name paired associative encoding memory paradigm 24 weeks apart during a randomized placebo-controlled pharmaco-fMRI drug study. Regression analysis was used to identify regions where the change in fMRI activity for Novel > Repeated stimulus contrast was associated with the change scores on postscan memory tests and the Free and Cued Selective Reminding Test (FCSRT). Correlations between changes in postscan memory accuracy and changes in fMRI activity were observed in regions including the angular gyrus, parahippocampal gyrus, inferior frontal gyrus and cerebellum. Correlations between changes in FCSRT-free recall and changes in fMRI were observed in regions including the inferior parietal lobule, precuneus, hippocampus and parahippocampal gyrus. Changes in encoding-related fMRI activity in regions implicated in mnemonic networks correlated with changes in psychometric measures of episodic memory retrieval performed outside the scanner. These exploratory results support the potential of fMRI activity to track cognitive change and detect signals of short-term pharmacologic effect in early-phase AD studies. Copyright © 2012 S. Karger AG, Basel.
Ruggieri, Andrea; Vaudano, Anna Elisabetta; Benuzzi, Francesca; Serafini, Marco; Gessaroli, Giuliana; Farinelli, Valentina; Nichelli, Paolo Frigio; Meletti, Stefano
2015-01-15
During resting-state EEG-fMRI studies in epilepsy, patients' spontaneous head-face movements occur frequently. We tested the usefulness of synchronous video recording to identify and model the fMRI changes associated with non-epileptic movements to improve sensitivity and specificity of fMRI maps related to interictal epileptiform discharges (IED). Categorization of different facial/cranial movements during EEG-fMRI was obtained for 38 patients [with benign epilepsy with centro-temporal spikes (BECTS, n=16); with idiopathic generalized epilepsy (IGE, n=17); focal symptomatic/cryptogenic epilepsy (n=5)]. We compared at single subject- and at group-level the IED-related fMRI maps obtained with and without additional regressors related to spontaneous movements. As secondary aim, we considered facial movements as events of interest to test the usefulness of video information to obtain fMRI maps of the following face movements: swallowing, mouth-tongue movements, and blinking. Video information substantially improved the identification and classification of the artifacts with respect to the EEG observation alone (mean gain of 28 events per exam). Inclusion of physiological activities as additional regressors in the GLM model demonstrated an increased Z-score and number of voxels of the global maxima and/or new BOLD clusters in around three quarters of the patients. Video-related fMRI maps for swallowing, mouth-tongue movements, and blinking were comparable to the ones obtained in previous task-based fMRI studies. Video acquisition during EEG-fMRI is a useful source of information. Modeling physiological movements in EEG-fMRI studies for epilepsy will lead to more informative IED-related fMRI maps in different epileptic conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Biology and therapy of fibromyalgia. Functional magnetic resonance imaging findings in fibromyalgia
Williams, David A; Gracely, Richard H
2006-01-01
Techniques in neuroimaging such as functional magnetic resonance imaging (fMRI) have helped to provide insights into the role of supraspinal mechanisms in pain perception. This review focuses on studies that have applied fMRI in an attempt to gain a better understanding of the mechanisms involved in the processing of pain associated with fibromyalgia. This article provides an overview of the nociceptive system as it functions normally, reviews functional brain imaging methods, and integrates the existing literature utilizing fMRI to study central pain mechanisms in fibromyalgia. PMID:17254318
Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; He, Yong; Zuo, Xi-Nian
2015-03-01
Most of the previous task functional magnetic resonance imaging (fMRI) studies found abnormalities in distributed brain regions in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and few studies investigated the brain network dysfunction from the system level. In this meta-analysis, we aimed to examine brain network dysfunction in MCI and AD. We systematically searched task-based fMRI studies in MCI and AD published between January 1990 and January 2014. Activation likelihood estimation meta-analyses were conducted to compare the significant group differences in brain activation, the significant voxels were overlaid onto seven referenced neuronal cortical networks derived from the resting-state fMRI data of 1,000 healthy participants. Thirty-nine task-based fMRI studies (697 MCI patients and 628 healthy controls) were included in MCI-related meta-analysis while 36 task-based fMRI studies (421 AD patients and 512 healthy controls) were included in AD-related meta-analysis. The meta-analytic results revealed that MCI and AD showed abnormal regional brain activation as well as large-scale brain networks. MCI patients showed hypoactivation in default, frontoparietal, and visual networks relative to healthy controls, whereas AD-related hypoactivation mainly located in visual, default, and ventral attention networks relative to healthy controls. Both MCI-related and AD-related hyperactivation fell in frontoparietal, ventral attention, default, and somatomotor networks relative to healthy controls. MCI and AD presented different pathological while shared similar compensatory large-scale networks in fulfilling the cognitive tasks. These system-level findings are helpful to link the fundamental declines of cognitive tasks to brain networks in MCI and AD. © 2014 Wiley Periodicals, Inc.
Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla.
Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore; Larsson, Henrik B W; Pinborg, Lars H; Kjær, Troels W; Fabricius, Martin; Svarer, Claus; Ozenne, Brice; Thomsen, Carsten; Beniczky, Sándor; Paulson, Olaf B; Posse, Stefan
2017-01-01
Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18-70 years) and 13 patients with epilepsy (8 males, age range 21-67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients). RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG data quality were found between EEG recorded during high-speed fMRI and during conventional EPI (p = 0.78). Residual ballistocardiographic artifacts resulted in 58% of EEG data being rated as poor quality. This study demonstrates that high-density EEG can be safely implemented in conjunction with high-speed fMRI and that high-speed fMRI does not adversely affect EEG data quality. However, the deterioration of the EEG quality due to residual ballistocardiographic artifacts remains a significant constraint for routine clinical applications of concurrent EEG-fMRI.
Maintenance and Representation of Mind Wandering during Resting-State fMRI.
Chou, Ying-Hui; Sundman, Mark; Whitson, Heather E; Gaur, Pooja; Chu, Mei-Lan; Weingarten, Carol P; Madden, David J; Wang, Lihong; Kirste, Imke; Joliot, Marc; Diaz, Michele T; Li, Yi-Ju; Song, Allen W; Chen, Nan-Kuei
2017-01-12
Major advances in resting-state functional magnetic resonance imaging (fMRI) techniques in the last two decades have provided a tool to better understand the functional organization of the brain both in health and illness. Despite such developments, characterizing regulation and cerebral representation of mind wandering, which occurs unavoidably during resting-state fMRI scans and may induce variability of the acquired data, remains a work in progress. Here, we demonstrate that a decrease or decoupling in functional connectivity involving the caudate nucleus, insula, medial prefrontal cortex and other domain-specific regions was associated with more sustained mind wandering in particular thought domains during resting-state fMRI. Importantly, our findings suggest that temporal and between-subject variations in functional connectivity of above-mentioned regions might be linked with the continuity of mind wandering. Our study not only provides a preliminary framework for characterizing the maintenance and cerebral representation of different types of mind wandering, but also highlights the importance of taking mind wandering into consideration when studying brain organization with resting-state fMRI in the future.
Figure-ground representation and its decay in primary visual cortex.
Strother, Lars; Lavell, Cheryl; Vilis, Tutis
2012-04-01
We used fMRI to study figure-ground representation and its decay in primary visual cortex (V1). Human observers viewed a motion-defined figure that gradually became camouflaged by a cluttered background after it stopped moving. V1 showed positive fMRI responses corresponding to the moving figure and negative fMRI responses corresponding to the static background. This positive-negative delineation of V1 "figure" and "background" fMRI responses defined a retinotopically organized figure-ground representation that persisted after the figure stopped moving but eventually decayed. The temporal dynamics of V1 "figure" and "background" fMRI responses differed substantially. Positive "figure" responses continued to increase for several seconds after the figure stopped moving and remained elevated after the figure had disappeared. We propose that the sustained positive V1 "figure" fMRI responses reflected both persistent figure-ground representation and sustained attention to the location of the figure after its disappearance, as did subjects' reports of persistence. The decreasing "background" fMRI responses were relatively shorter-lived and less biased by spatial attention. Our results show that the transition from a vivid figure-ground percept to its disappearance corresponds to the concurrent decay of figure enhancement and background suppression in V1, both of which play a role in form-based perceptual memory.
Chan, Suk-tak; Evans, Karleyton C; Rosen, Bruce R; Song, Tian-yue; Kwong, Kenneth K
2015-01-01
To use breath-hold functional magnetic resonance imaging (fMRI) to localize the brain regions with impaired cerebrovascular reactivity (CVR) in a female patient diagnosed with mild traumatic brain injury (mTBI). The extent of impaired CVR was evaluated 2 months after concussion. Follow-up scan was performed 1 year post-mTBI using the same breath-hold fMRI technique. Case report. fMRI blood oxygenation dependent level (BOLD) signals were measured under breath-hold challenge in a female mTBI patient 2 months after concussion followed by a second fMRI with breath-hold challenge 1 year later. CVR was expressed as the percentage change of BOLD signals per unit time of breath-hold. In comparison with CVR measurement of normal control subjects, statistical maps of CVR revealed substantial neurovascular deficits and hemispheric asymmetry within grey and white matter in the initial breath-hold fMRI scan. Follow-up breath-hold fMRI performed 1 year post-mTBI demonstrated normalization of CVR accompanied with symptomatic recovery. CVR may serve as an imaging biomarker to detect subtle deficits in both grey and white matter for individual diagnosis of mTBI. The findings encourage further investigation of hypercapnic fMRI as a diagnostic tool for mTBI.
Brain Functional Connectivity in MS: An EEG-NIRS Study
2015-10-01
electrical (EEG) and blood volume and blood oxygen-based (NIRS and fMRI ) signals, and to use the results to help optimize blood oxygen level...dependent (BOLD) fMRI analyses of brain activity. Participants will be patients with MS (n=25) and healthy demographically matched controls (n=25) who will...undergo standardized evaluations and imaging using combined EEG-NIRS- fMRI . EEG-NIRS data will be used to construct maps of neurovascular coupling
Neural Markers and Rehabilitation of Executive Functioning in Veterans with TBI and PTSD
2015-10-01
functioning. Functional magnetic resonance imaging ( fMRI ) will be used to evaluate changes in cortical function in frontostriate and frontoparietal circuits...EEG and fMRI will be conducted and then transport Veterans back to our laboratory. We will assure transportation is running efficiently and without...delays before study commencement. Transportation to the EEG and fMRI was arranged through the UNC-Chapel Hill School of Medicine at month 9
Slotnick, Scott D
2017-07-01
Analysis of functional magnetic resonance imaging (fMRI) data typically involves over one hundred thousand independent statistical tests; therefore, it is necessary to correct for multiple comparisons to control familywise error. In a recent paper, Eklund, Nichols, and Knutsson used resting-state fMRI data to evaluate commonly employed methods to correct for multiple comparisons and reported unacceptable rates of familywise error. Eklund et al.'s analysis was based on the assumption that resting-state fMRI data reflect null data; however, their 'null data' actually reflected default network activity that inflated familywise error. As such, Eklund et al.'s results provide no basis to question the validity of the thousands of published fMRI studies that have corrected for multiple comparisons or the commonly employed methods to correct for multiple comparisons.
Large-Scale, High-Resolution Neurophysiological Maps Underlying fMRI of Macaque Temporal Lobe
Papanastassiou, Alex M.; DiCarlo, James J.
2013-01-01
Maps obtained by functional magnetic resonance imaging (fMRI) are thought to reflect the underlying spatial layout of neural activity. However, previous studies have not been able to directly compare fMRI maps to high-resolution neurophysiological maps, particularly in higher level visual areas. Here, we used a novel stereo microfocal x-ray system to localize thousands of neural recordings across monkey inferior temporal cortex (IT), construct large-scale maps of neuronal object selectivity at subvoxel resolution, and compare those neurophysiology maps with fMRI maps from the same subjects. While neurophysiology maps contained reliable structure at the sub-millimeter scale, fMRI maps of object selectivity contained information at larger scales (>2.5 mm) and were only partly correlated with raw neurophysiology maps collected in the same subjects. However, spatial smoothing of neurophysiology maps more than doubled that correlation, while a variety of alternative transforms led to no significant improvement. Furthermore, raw spiking signals, once spatially smoothed, were as predictive of fMRI maps as local field potential signals. Thus, fMRI of the inferior temporal lobe reflects a spatially low-passed version of neurophysiology signals. These findings strongly validate the widespread use of fMRI for detecting large (>2.5 mm) neuronal domains of object selectivity but show that a complete understanding of even the most pure domains (e.g., faces vs nonface objects) requires investigation at fine scales that can currently only be obtained with invasive neurophysiological methods. PMID:24048850
Estimating neural response functions from fMRI
Kumar, Sukhbinder; Penny, William
2014-01-01
This paper proposes a methodology for estimating Neural Response Functions (NRFs) from fMRI data. These NRFs describe non-linear relationships between experimental stimuli and neuronal population responses. The method is based on a two-stage model comprising an NRF and a Hemodynamic Response Function (HRF) that are simultaneously fitted to fMRI data using a Bayesian optimization algorithm. This algorithm also produces a model evidence score, providing a formal model comparison method for evaluating alternative NRFs. The HRF is characterized using previously established “Balloon” and BOLD signal models. We illustrate the method with two example applications based on fMRI studies of the auditory system. In the first, we estimate the time constants of repetition suppression and facilitation, and in the second we estimate the parameters of population receptive fields in a tonotopic mapping study. PMID:24847246
FIACH: A biophysical model for automatic retrospective noise control in fMRI.
Tierney, Tim M; Weiss-Croft, Louise J; Centeno, Maria; Shamshiri, Elhum A; Perani, Suejen; Baldeweg, Torsten; Clark, Christopher A; Carmichael, David W
2016-01-01
Different noise sources in fMRI acquisition can lead to spurious false positives and reduced sensitivity. We have developed a biophysically-based model (named FIACH: Functional Image Artefact Correction Heuristic) which extends current retrospective noise control methods in fMRI. FIACH can be applied to both General Linear Model (GLM) and resting state functional connectivity MRI (rs-fcMRI) studies. FIACH is a two-step procedure involving the identification and correction of non-physiological large amplitude temporal signal changes and spatial regions of high temporal instability. We have demonstrated its efficacy in a sample of 42 healthy children while performing language tasks that include overt speech with known activations. We demonstrate large improvements in sensitivity when FIACH is compared with current methods of retrospective correction. FIACH reduces the confounding effects of noise and increases the study's power by explaining significant variance that is not contained within the commonly used motion parameters. The method is particularly useful in detecting activations in inferior temporal regions which have proven problematic for fMRI. We have shown greater reproducibility and robustness of fMRI responses using FIACH in the context of task induced motion. In a clinical setting this will translate to increasing the reliability and sensitivity of fMRI used for the identification of language lateralisation and eloquent cortex. FIACH can benefit studies of cognitive development in young children, patient populations and older adults. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamamoto, Toru; Kato, Toshinori
2002-04-01
Signal increases in functional magnetic resonance imaging (fMRI) are believed to be a result of decreased paramagnetic deoxygenated haemoglobin (deoxyHb) content in the neural activation area. However, discrepancies in this canonical blood oxygenation level dependent (BOLD) theory have been pointed out in studies using optical techniques, which directly measure haemoglobin changes. To explain the discrepancies, we developed a new theory bridging magnetic resonance (MR) signal and haemoglobin changes. We focused on capillary influences, which have been neglected in most previous fMRI studies and performed a combined fMRI and near-infrared spectroscopy (NIRS) study using a language task. Paradoxically, both the MR signal and deoxyHb content increased in Broca's area. On the other hand, fMRI activation in the auditory area near large veins correlated with a mirror-image decrease in deoxyHb and increase in oxygenated haemoglobin (oxyHb), in agreement with canonical BOLD theory. All fMRI signal changes correlated consistently with changes in oxyHb, the diamagnetism of which is insensitive to MR. We concluded that the discrepancy with the canonical BOLD theory is caused by the fact that the BOLD theory ignores the effect of the capillaries. Our theory explains the paradoxical phenomena of the oxyHb and deoxyHb contributions to the MR signal and gives a new insight into the precise haemodynamics of activation by analysing fMRI and NIRS data.
A SVM-based quantitative fMRI method for resting-state functional network detection.
Song, Xiaomu; Chen, Nan-kuei
2014-09-01
Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. In this study, a new method is presented for resting-state fMRI data analysis. Specifically, the resting-state network mapping is formulated as an outlier detection process that is implemented using one-class support vector machine (SVM). The results are refined by using a spatial-feature domain prototype selection method and two-class SVM reclassification. The final decision on each voxel is made by comparing its probabilities of functionally connected and unconnected instead of a threshold. Multiple features for resting-state analysis were extracted and examined using an SVM-based feature selection method, and the most representative features were identified. The proposed method was evaluated using synthetic and experimental fMRI data. A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies. Copyright © 2014 Elsevier Inc. All rights reserved.
Combining fMRI and behavioral measures to examine the process of human learning.
Karuza, Elisabeth A; Emberson, Lauren L; Aslin, Richard N
2014-03-01
Prior to the advent of fMRI, the primary means of examining the mechanisms underlying learning were restricted to studying human behavior and non-human neural systems. However, recent advances in neuroimaging technology have enabled the concurrent study of human behavior and neural activity. We propose that the integration of behavioral response with brain activity provides a powerful method of investigating the process through which internal representations are formed or changed. Nevertheless, a review of the literature reveals that many fMRI studies of learning either (1) focus on outcome rather than process or (2) are built on the untested assumption that learning unfolds uniformly over time. We discuss here various challenges faced by the field and highlight studies that have begun to address them. In doing so, we aim to encourage more research that examines the process of learning by considering the interrelation of behavioral measures and fMRI recording during learning. Copyright © 2013 Elsevier Inc. All rights reserved.
Combining fMRI and Behavioral Measures to Examine the Process of Human Learning
Karuza, Elisabeth A.; Emberson, Lauren L.; Aslin, Richard N.
2013-01-01
Prior to the advent of fMRI, the primary means of examining the mechanisms underlying learning were restricted to studying human behavior and non-human neural systems. However, recent advances in neuroimaging technology have enabled the concurrent study of human behavior and neural activity. We propose that the integration of behavioral response with brain activity provides a powerful method of investigating the process through which internal representations are formed or changed. Nevertheless, a review of the literature reveals that many fMRI studies of learning either (1) focus on outcome rather than process or (2) are built on the untested assumption that learning unfolds uniformly over time. We discuss here various challenges faced by the field and highlight studies that have begun to address them. In doing so, we aim to encourage more research that examines the process of learning by considering the interrelation of behavioral measures and fMRI recording during learning. PMID:24076012
Hypercapnic evaluation of vascular reactivity in healthy aging and acute stroke via functional MRI.
Raut, Ryan V; Nair, Veena A; Sattin, Justin A; Prabhakaran, Vivek
2016-01-01
Functional MRI (fMRI) is well-established for the study of brain function in healthy populations, although its clinical application has proven more challenging. Specifically, cerebrovascular reactivity (CVR), which allows the assessment of the vascular response that serves as the basis for fMRI, has been shown to be reduced in healthy aging as well as in a range of diseases, including chronic stroke. However, the timing of when this occurs relative to the stroke event is unclear. We used a breath-hold fMRI task to evaluate CVR across gray matter in a group of acute stroke patients (< 10 days from stroke; N = 22) to address this question. These estimates were compared with those from both age-matched (N = 22) and younger (N = 22) healthy controls. As expected, young controls had the greatest mean CVR, as indicated by magnitude and extent of fMRI activation; however, stroke patients did not differ from age-matched controls. Moreover, the ipsilesional and contralesional hemispheres of stroke patients did not differ with respect to any of these measures. These findings suggest that fMRI remains a valid tool within the first few days of a stroke, particularly for group fMRI studies in which findings are compared with healthy subjects of similar age. However, given the relatively high variability in CVR observed in our stroke sample, caution is warranted when interpreting fMRI data from individual patients or a small cohort. We conclude that a breath-hold task can be a useful addition to functional imaging protocols for stroke patients.
You, Youbo; Bai, Lijun; Dai, Ruwei; Xue, Ting; Zhong, Chongguang; Feng, Yuanyuan; Wang, Hu; Liu, Zhenyu; Tian, Jie
2011-01-01
Acupoint specificity, lying at the core of the Traditional Chinese Medicine, still faces many controversies. As previous neuroimaging studies on acupuncture mainly adopted relatively low time-resolution functional magnetic resonance imaging (fMRI) technology and inappropriate block-designed experimental paradigm due to sustained effect, in the current study, we employed a single block-designed paradigm together with high temporal-resolution magnetoencephalography (MEG) technology. We applied time-frequency analysis based upon Morlet wavelet transforming approach to detect differential oscillatory brain dynamics induced by acupuncture at Stomach Meridian 36 (ST36) using a nearby nonacupoint (NAP) as control condition. We observed that frequency power changes were mainly restricted to delta band for both ST36 group and NAP group. Consistently increased delta band power in contralateral temporal regions and decreased power in the counterparts of ipsilateral hemisphere were detected following stimulation at ST36 on the right leg. Compared with ST36, no significant delta ranges were found in temporal regions in NAP group, illustrating different oscillatory brain patterns. Our results may provide additional evidence to support the specificity of acupuncture modulation effects.
Ngan, Shing-Chung; Hu, Xiaoping; Khong, Pek-Lan
2011-03-01
We propose a method for preprocessing event-related functional magnetic resonance imaging (fMRI) data that can lead to enhancement of template-free activation detection. The method is based on using a figure of merit to guide the wavelet shrinkage of a given fMRI data set. Several previous studies have demonstrated that in the root-mean-square error setting, wavelet shrinkage can improve the signal-to-noise ratio of fMRI time courses. However, preprocessing fMRI data in the root-mean-square error setting does not necessarily lead to enhancement of template-free activation detection. Motivated by this observation, in this paper, we move to the detection setting and investigate the possibility of using wavelet shrinkage to enhance template-free activation detection of fMRI data. The main ingredients of our method are (i) forward wavelet transform of the voxel time courses, (ii) shrinking the resulting wavelet coefficients as directed by an appropriate figure of merit, (iii) inverse wavelet transform of the shrunk data, and (iv) submitting these preprocessed time courses to a given activation detection algorithm. Two figures of merit are developed in the paper, and two other figures of merit adapted from the literature are described. Receiver-operating characteristic analyses with simulated fMRI data showed quantitative evidence that data preprocessing as guided by the figures of merit developed in the paper can yield improved detectability of the template-free measures. We also demonstrate the application of our methodology on an experimental fMRI data set. The proposed method is useful for enhancing template-free activation detection in event-related fMRI data. It is of significant interest to extend the present framework to produce comprehensive, adaptive and fully automated preprocessing of fMRI data optimally suited for subsequent data analysis steps. Copyright © 2010 Elsevier B.V. All rights reserved.
Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal.
Wen, Haiguang; Liu, Zhongming
2016-06-01
Spontaneous activity observed with resting-state fMRI is used widely to uncover the brain's intrinsic functional networks in health and disease. Although many networks appear modular and specific, global and nonspecific fMRI fluctuations also exist and both pose a challenge and present an opportunity for characterizing and understanding brain networks. Here, we used a multimodal approach to investigate the neural correlates to the global fMRI signal in the resting state. Like fMRI, resting-state power fluctuations of broadband and arrhythmic, or scale-free, macaque electrocorticography and human magnetoencephalography activity were correlated globally. The power fluctuations of scale-free human electroencephalography (EEG) were coupled with the global component of simultaneously acquired resting-state fMRI, with the global hemodynamic change lagging the broadband spectral change of EEG by ∼5 s. The levels of global and nonspecific fluctuation and synchronization in scale-free population activity also varied across and depended on arousal states. Together, these results suggest that the neural origin of global resting-state fMRI activity is the broadband power fluctuation in scale-free population activity observable with macroscopic electrical or magnetic recordings. Moreover, the global fluctuation in neurophysiological and hemodynamic activity is likely modulated through diffuse neuromodulation pathways that govern arousal states and vigilance levels. This study provides new insights into the neural origin of resting-state fMRI. Results demonstrate that the broadband power fluctuation of scale-free electrophysiology is globally synchronized and directly coupled with the global component of spontaneous fMRI signals, in contrast to modularly synchronized fluctuations in oscillatory neural activity. These findings lead to a new hypothesis that scale-free and oscillatory neural processes account for global and modular patterns of functional connectivity observed with resting-state fMRI, respectively. Copyright © 2016 the authors 0270-6474/16/366030-11$15.00/0.
Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping
Robinson, Jennifer; Calhoun, Vince
2018-01-01
Purpose To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. Methods A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Results Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. Conclusions The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization. PMID:29351339
Andoh, J; Ferreira, M; Leppert, I R; Matsushita, R; Pike, B; Zatorre, R J
2017-02-15
Resting-state fMRI studies have become very important in cognitive neuroscience because they are able to identify BOLD fluctuations in brain circuits involved in motor, cognitive, or perceptual processes without the use of an explicit task. Such approaches have been fruitful when applied to various disordered populations, or to children or the elderly. However, insufficient attention has been paid to the consequences of the loud acoustic scanner noise associated with conventional fMRI acquisition, which could be an important confounding factor affecting auditory and/or cognitive networks in resting-state fMRI. Several approaches have been developed to mitigate the effects of acoustic noise on fMRI signals, including sparse sampling protocols and interleaved silent steady state (ISSS) acquisition methods, the latter being used only for task-based fMRI. Here, we developed an ISSS protocol for resting-state fMRI (rs-ISSS) consisting of rapid acquisition of a set of echo planar imaging volumes following each silent period, during which the steady state longitudinal magnetization was maintained with a train of relatively silent slice-selective excitation pulses. We evaluated the test-retest reliability of intensity and spatial extent of connectivity networks of fMRI BOLD signal across three different days for rs-ISSS and compared it with a standard resting-state fMRI (rs-STD). We also compared the strength and distribution of connectivity networks between rs-ISSS and rs-STD. We found that both rs-ISSS and rs-STD showed high reproducibility of fMRI signal across days. In addition, rs-ISSS showed a more robust pattern of functional connectivity within the somatosensory and motor networks, as well as an auditory network compared with rs-STD. An increased connectivity between the default mode network and the language network and with the anterior cingulate cortex (ACC) network was also found for rs-ISSS compared with rs-STD. Finally, region of interest analysis showed higher interhemispheric connectivity in Heschl's gyri in rs-ISSS compared with rs-STD, with lower variability across days. The present findings suggest that rs-ISSS may be advantageous for detecting network connectivity in a less noisy environment, and that resting-state studies carried out with standard scanning protocols should consider the potential effects of loud noise on the measured networks. Copyright © 2017 Elsevier Inc. All rights reserved.
A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies
Tang, Li
2014-01-01
Summary An important goal in fMRI studies is to decompose the observed series of brain images to identify and characterize underlying brain functional networks. Independent component analysis (ICA) has been shown to be a powerful computational tool for this purpose. Classic ICA has been successfully applied to single-subject fMRI data. The extension of ICA to group inferences in neuroimaging studies, however, is challenging due to the unavailability of a pre-specified group design matrix. Existing group ICA methods generally concatenate observed fMRI data across subjects on the temporal domain and then decompose multi-subject data in a similar manner to single-subject ICA. The major limitation of existing methods is that they ignore between-subject variability in spatial distributions of brain functional networks in group ICA. In this paper, we propose a new hierarchical probabilistic group ICA method to formally model subject-specific effects in both temporal and spatial domains when decomposing multi-subject fMRI data. The proposed method provides model-based estimation of brain functional networks at both the population and subject level. An important advantage of the hierarchical model is that it provides a formal statistical framework to investigate similarities and differences in brain functional networks across subjects, e.g., subjects with mental disorders or neurodegenerative diseases such as Parkinson’s as compared to normal subjects. We develop an EM algorithm for model estimation where both the E-step and M-step have explicit forms. We compare the performance of the proposed hierarchical model with that of two popular group ICA methods via simulation studies. We illustrate our method with application to an fMRI study of Zen meditation. PMID:24033125
Puzzlingly High Correlations in fMRI Studies of Emotion, Personality, and Social Cognition
ERIC Educational Resources Information Center
Vul, Edward; Harris, Christine; Winkielman, Piotr; Pashler, Harold
2009-01-01
Functional Magnetic Resonance Imaging (fMRI) studies of emotion, personality, and social cognition have drawn much attention in recent years, with high-profile studies frequently reporting extremely high (e.g., > 8) correlations between behavioral and self-report measures of personality or emotion and measures of brain activation. We show…
Using fMRI to Study Conceptual Change: Why and How?
ERIC Educational Resources Information Center
Masson, Steve; Potvin, Patrice; Riopel, Martin; Foisy, Lorie-Marlene Brault; Lafortune, Stephanie
2012-01-01
Although the use of brain imaging techniques, such as functional magnetic resonance imaging (fMRI) is increasingly common in educational research, only a few studies regarding science learning have so far taken advantage of this technology. This paper aims to facilitate the design and implementation of brain imaging studies relating to science…
Cai, Rong-Lin; Shen, Guo-Ming; Wang, Hao; Guan, Yuan-Yuan
2018-01-01
Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. To offer an overview of the different influences of acupuncture on the brain functional connectivity network from studies using resting-state fMRI. The authors performed a systematic search according to PRISMA guidelines. The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity". Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Forty-four resting-state fMRI studies were included in this systematic review according to inclusion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro-acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connectivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupuncture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem, cerebellum, subcortical and hippocampus brain areas. It can be presumed that the functional connectivity network is closely related to the mechanism of acupuncture, and central integration plays a critical role in the acupuncture mechanism. Copyright © 2017 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.
Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI
2016-04-01
but these delays are nearing resolution and we anticipate the initiation of the neuroimaging portion of the study early in Year 3. The fMRI task...resonance imagining ( fMRI ) and diffusion tensor imaging (DTI) to characterize the extent of functional cortical recruitment and white matter injury...respectively. The inclusion of fMRI and DTI will provide an objective basis for cross-validating the EEG and eye tracking system. Both the EEG and eye
2013-03-01
fMRI data (e.g. Kamitami & Tong, 2005). This approach has been remarkably successful in classifying mental workload in complex tasks (Berka, et al...1991). These previous studies relied upon spectral comparison rather than classification. In previous research examining the stability of fMRI ...chose to focus on electrophysiology, as the collection conditions may be more carefully controlled across days than fMRI and it is more amenable to
Hantke, Nathan; Nielson, Kristy A; Woodard, John L; Breting, Leslie M Guidotti; Butts, Alissa; Seidenberg, Michael; Carson Smith, J; Durgerian, Sally; Lancaster, Melissa; Matthews, Monica; Sugarman, Michael A; Rao, Stephen M
2013-01-01
Previous studies suggest that task-activated functional magnetic resonance imaging (fMRI) can predict future cognitive decline among healthy older adults. The present fMRI study examined the relative sensitivity of semantic memory (SM) versus episodic memory (EM) activation tasks for predicting cognitive decline. Seventy-eight cognitively intact elders underwent neuropsychological testing at entry and after an 18-month interval, with participants classified as cognitively "Stable" or "Declining" based on ≥ 1.0 SD decline in performance. Baseline fMRI scanning involved SM (famous name discrimination) and EM (name recognition) tasks. SM and EM fMRI activation, along with Apolipoprotein E (APOE) ε4 status, served as predictors of cognitive outcome using a logistic regression analysis. Twenty-seven (34.6%) participants were classified as Declining and 51 (65.4%) as Stable. APOE ε4 status alone significantly predicted cognitive decline (R(2) = .106; C index = .642). Addition of SM activation significantly improved prediction accuracy (R(2) = .285; C index = .787), whereas the addition of EM did not (R(2) = .212; C index = .711). In combination with APOE status, SM task activation predicts future cognitive decline better than EM activation. These results have implications for use of fMRI in prevention clinical trials involving the identification of persons at-risk for age-associated memory loss and Alzheimer's disease.
Spritzer, Scott D; Hoerth, Matthew T; Zimmerman, Richard S; Shmookler, Aaron; Hoffman-Snyder, Charlene R; Wellik, Kay E; Demaerschalk, Bart M; Wingerchuk, Dean M
2012-09-01
Presurgical evaluation for refractory epilepsy typically includes assessment of cognitive and language functions. The reference standard for determination of hemispheric language dominance has been the intracarotid amobarbital test (IAT) but functional magnetic resonance imaging (fMRI) is increasingly used. To critically assess current evidence regarding the diagnostic properties of fMRI in comparison with the IAT for determination of hemispheric language dominance. The objective was addressed through the development of a structured critically appraised topic. This included a clinical scenario, structured question, literature search strategy, critical appraisal, results, evidence summary, commentary, and bottom-line conclusions. Participants included consultant and resident neurologists, a medical librarian, clinical epidemiologists, and content experts in the fields of epilepsy and neurosurgery. A systematic review and meta-analysis that compared the sensitivity and specificity of fMRI to IAT-determined language lateralization was selected for critical appraisal. The review included data from 23 articles (n=442); study methodology varied widely. fMRI was 83.5% sensitive and 88.1% specific for detection of hemispheric language dominance. There are insufficient data to support routine use of fMRI for the purpose of determining hemispheric language dominance in patients with intractable epilepsy. Larger, well-designed studies of fMRI for language and other cognitive outcomes as part of the presurgical and postsurgical evaluation of epilepsy patients are necessary.
Sparse representation of whole-brain fMRI signals for identification of functional networks.
Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Chen, Hanbo; Zhang, Tuo; Zhang, Shu; Hu, Xintao; Han, Junwei; Huang, Heng; Zhang, Jing; Guo, Lei; Liu, Tianming
2015-02-01
There have been several recent studies that used sparse representation for fMRI signal analysis and activation detection based on the assumption that each voxel's fMRI signal is linearly composed of sparse components. Previous studies have employed sparse coding to model functional networks in various modalities and scales. These prior contributions inspired the exploration of whether/how sparse representation can be used to identify functional networks in a voxel-wise way and on the whole brain scale. This paper presents a novel, alternative methodology of identifying multiple functional networks via sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary learning algorithm. Our extensive experimental results have shown that this novel methodology can uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal and frequency domains based on current brain science knowledge. Importantly, these well-characterized functional network components are quite reproducible in different brains. In general, our methods offer a novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection, de-activation detection, and functional network identification. Copyright © 2014 Elsevier B.V. All rights reserved.
Norrelgen, Fritjof; Lilja, Anders; Ingvar, Martin; Gisselgård, Jens; Fransson, Peter
2012-01-01
Objective The aims of this study were to develop and assess a method to map language networks in children with two auditory fMRI protocols in combination with a dichotic listening task (DL). The method is intended for pediatric patients prior to epilepsy surgery. To evaluate the potential clinical usefulness of the method we first wanted to assess data from a group of healthy children. Methods In a first step language test materials were developed, intended for subsequent implementation in fMRI protocols. An evaluation of this material was done in 30 children with typical development, 10 from the 1st, 4th and the 7th grade, respectively. The language test material was then adapted and implemented in two fMRI protocols intended to target frontal and posterior language networks. In a second step language lateralization was assessed in 17 typical 10–11 year olds with fMRI and DL. To reach a conclusion about language lateralization, firstly, quantitative analyses of the index data from the two fMRI tasks and the index data from the DL task were done separately. In a second step a set of criteria were applied to these results to reach a conclusion about language lateralization. The steps of these analyses are described in detail. Results The behavioral assessment of the language test material showed that it was well suited for typical children. The results of the language lateralization assessments, based on fMRI data and DL data, showed that for 15 of the 17 subjects (88%) a conclusion could be reached about hemispheric language dominance. In 2 cases (12%) DL provided critical data. Conclusions The employment of DL combined with language mapping using fMRI for assessing hemispheric language dominance is novel and it was deemed valuable since it provided additional information compared to the results gained from each method individually. PMID:23284796
Morrison, Melanie A.; Churchill, Nathan W.; Cusimano, Michael D.; Schweizer, Tom A.; Das, Sunit; Graham, Simon J.
2016-01-01
Background Functional magnetic resonance imaging (fMRI) continues to develop as a clinical tool for patients with brain cancer, offering data that may directly influence surgical decisions. Unfortunately, routine integration of preoperative fMRI has been limited by concerns about reliability. Many pertinent studies have been undertaken involving healthy controls, but work involving brain tumor patients has been limited. To develop fMRI fully as a clinical tool, it will be critical to examine these reliability issues among patients with brain tumors. The present work is the first to extensively characterize differences in activation map quality between brain tumor patients and healthy controls, including the effects of tumor grade and the chosen behavioral testing paradigm on reliability outcomes. Method Test-retest data were collected for a group of low-grade (n = 6) and high-grade glioma (n = 6) patients, and for matched healthy controls (n = 12), who performed motor and language tasks during a single fMRI session. Reliability was characterized by the spatial overlap and displacement of brain activity clusters, BOLD signal stability, and the laterality index. Significance testing was performed to assess differences in reliability between the patients and controls, and low-grade and high-grade patients; as well as between different fMRI testing paradigms. Results There were few significant differences in fMRI reliability measures between patients and controls. Reliability was significantly lower when comparing high-grade tumor patients to controls, or to low-grade tumor patients. The motor task produced more reliable activation patterns than the language tasks, as did the rhyming task in comparison to the phonemic fluency task. Conclusion In low-grade glioma patients, fMRI data are as reliable as healthy control subjects. For high-grade glioma patients, further investigation is required to determine the underlying causes of reduced reliability. To maximize reliability outcomes, testing paradigms should be carefully selected to generate robust activation patterns. PMID:26894279
Sreedharan, Ruma Madhu; Menon, Amitha C; James, Jija S; Kesavadas, Chandrasekharan; Thomas, Sanjeev V
2015-03-01
Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms--visual verb generation and word pair task--were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p < 0.02) between fMRI-LI and DTI-LI. Group mean of AFV by DTI was higher on the left side (2659.89 ± 654.75 mm(3)) as compared to the right (1824.11 ± 582.81 mm(3)) (p < 0.01). Like fMRI, DTI also reveals language laterality in children with a high degree of correlation between the two imaging modalities.
Working Memory in 8 Kleine-Levin Syndrome Patients: An fMRI Study
Engstrom, Maria; Vigren, Patrick; Karlsson, Thomas; Landtblom, Anne-Marie
2009-01-01
Study Objectives: The objectives of this study were to investigate possible neuropathology behind the Kleine-Levin Syndrome (KLS), a severe form of hypersomnia with onset during adolescence. Design: Functional magnetic resonance imaging (fMRI) applying a verbal working memory task was used in conjunction with a paper-and-pencil version of the task. Participants: Eight patients with KLS and 12 healthy volunteers participated in the study. Results: The results revealed a pattern of increased thalamic activity and reduced frontal activity (involving the anterior cingulate and adjacent prefrontal cortex) while performing a reading span task. Discussion: This finding may explain the clinical symptoms observed in KLS, in that the thalamus is known to be involved in the control of sleep. Given the increasing access to fMRI, this investigation may aid clinicians in the diagnosis of patients suffering from severe forms of hypersomnia. Citation: Engström M; Vigren P; Karlsson T; Landtblom AM. Working memory in 8 kleine-levin syndrome patients: an fmri study. SLEEP 2009;32(5):681–688. PMID:19480235
Mutschler, Isabella; Wieckhorst, Birgit; Meyer, Andrea H; Schweizer, Tina; Klarhöfer, Markus; Wilhelm, Frank H; Seifritz, Erich; Ball, Tonio
2014-11-07
Experiments using functional magnetic resonance imaging (fMRI) play a fundamental role in affective neuroscience. When placed in an MR scanner, some volunteers feel safe and relaxed in this situation, while others experience uneasiness and fear. Little is known about the basis and consequences of such inter-individually different responses to the general experimental fMRI setting. In this study emotional stimuli were presented during fMRI and subjects' state-anxiety was assessed at the onset and end of the experiment while they were within the scanner. We show that Val/Val but neither Met/Met nor Val/Met carriers of the catechol-O-methyltransferase (COMT) Val(158)Met polymorphism-a prime candidate for anxiety vulnerability-became significantly more anxious during the fMRI experiment (N=97 females: 24 Val/Val, 51 Val/Met, and 22 Met/Met). Met carriers demonstrated brain responses with increased stability over time in the right parietal cortex and significantly better cognitive performances likely mediated by lower levels of anxiety. Val/Val, Val/Met and Met/Met did not significantly differ in state-anxiety at the beginning of the experiment. The exposure of a control group (N=56 females) to the same experiment outside the scanner did not cause a significant increase in state-anxiety, suggesting that the increase we observe in the fMRI experiment may be specific to the fMRI setting. Our findings reveal that genetics may play an important role in shaping inter-individual different emotional, cognitive and neuronal responses during fMRI experiments. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Modeling fMRI signals can provide insights into neural processing in the cerebral cortex
Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo
2015-01-01
Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals. PMID:25972586
Modeling fMRI signals can provide insights into neural processing in the cerebral cortex.
Vanni, Simo; Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo
2015-08-01
Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals. Copyright © 2015 the American Physiological Society.
Studying the neural bases of prism adaptation using fMRI: A technical and design challenge.
Bultitude, Janet H; Farnè, Alessandro; Salemme, Romeo; Ibarrola, Danielle; Urquizar, Christian; O'Shea, Jacinta; Luauté, Jacques
2017-12-01
Prism adaptation induces rapid recalibration of visuomotor coordination. The neural mechanisms of prism adaptation have come under scrutiny since the observations that the technique can alleviate hemispatial neglect following stroke, and can alter spatial cognition in healthy controls. Relative to non-imaging behavioral studies, fMRI investigations of prism adaptation face several challenges arising from the confined physical environment of the scanner and the supine position of the participants. Any researcher who wishes to administer prism adaptation in an fMRI environment must adjust their procedures enough to enable the experiment to be performed, but not so much that the behavioral task departs too much from true prism adaptation. Furthermore, the specific temporal dynamics of behavioral components of prism adaptation present additional challenges for measuring their neural correlates. We developed a system for measuring the key features of prism adaptation behavior within an fMRI environment. To validate our configuration, we present behavioral (pointing) and head movement data from 11 right-hemisphere lesioned patients and 17 older controls who underwent sham and real prism adaptation in an MRI scanner. Most participants could adapt to prismatic displacement with minimal head movements, and the procedure was well tolerated. We propose recommendations for fMRI studies of prism adaptation based on the design-specific constraints and our results.
Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten
2014-01-01
To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the current study is particularly interested in fronto-parietal resting state networks. Resting state fMRI was measured in sixteen women during three different cycle phases (menstrual, follicular, and luteal). Fifteen men underwent three sessions in corresponding time intervals. We used independent component analysis to identify four fronto-parietal networks. The results showed sex differences in two of these networks with women exhibiting higher functional connectivity in general, including the prefrontal cortex. Menstrual cycle effects on resting states were non-existent. It is concluded that sex differences in resting state fMRI might reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hormones on the functional connectivity in the resting brain.
Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten
2014-01-01
To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the current study is particularly interested in fronto-parietal resting state networks. Resting state fMRI was measured in sixteen women during three different cycle phases (menstrual, follicular, and luteal). Fifteen men underwent three sessions in corresponding time intervals. We used independent component analysis to identify four fronto-parietal networks. The results showed sex differences in two of these networks with women exhibiting higher functional connectivity in general, including the prefrontal cortex. Menstrual cycle effects on resting states were non-existent. It is concluded that sex differences in resting state fMRI might reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hormones on the functional connectivity in the resting brain. PMID:25057823
Du, Juan; Yang, Fang; Zhang, Zhiqiang; Hu, Jingze; Xu, Qiang; Hu, Jianping; Zeng, Fanyong; Lu, Guangming; Liu, Xinfeng
2018-05-15
An accurate prediction of long term outcome after stroke is urgently required to provide early individualized neurorehabilitation. This study aimed to examine the added value of early neuroimaging measures and identify the best approaches for predicting motor outcome after stroke. This prospective study involved 34 first-ever ischemic stroke patients (time since stroke: 1-14 days) with upper limb impairment. All patients underwent baseline multimodal assessments that included clinical (age, motor impairment), neurophysiological (motor-evoked potentials, MEP) and neuroimaging (diffusion tensor imaging and motor task-based fMRI) measures, and also underwent reassessment 3 months after stroke. Bivariate analysis and multivariate linear regression models were used to predict the motor scores (Fugl-Meyer assessment, FMA) at 3 months post-stroke. With bivariate analysis, better motor outcome significantly correlated with (1) less initial motor impairment and disability, (2) less corticospinal tract injury, (3) the initial presence of MEPs, (4) stronger baseline motor fMRI activations. In multivariate analysis, incorporating neuroimaging data improved the predictive accuracy relative to only clinical and neurophysiological assessments. Baseline fMRI activation in SMA was an independent predictor of motor outcome after stroke. A multimodal model incorporating fMRI and clinical measures best predicted the motor outcome following stroke. fMRI measures obtained early after stroke provided independent prediction of long-term motor outcome.
Froeliger, B.; McConnell, P.A.; Stankeviciute, N.; McClure, E.A.; Kalivas, P.W.; Gray, K.M.
2015-01-01
BACKGROUND Chronic exposure to drugs of abuse disrupts frontostriatal glutamate transmission, which in turn meditates drug seeking. In animal models, N-acetylcysteine normalizes dysregulated frontostriatal glutamatergic neurotransmission and prevents reinstated drug seeking; however, the effects of N-Acetylcysteine on human frontostriatal circuitry function and maintaining smoking abstinence is unknown. Thus, the current study tested the hypothesis that N-Acetylcysteine would be associated with stronger frontostriatal resting-state functional connectivity (rsFC), attenuated nicotine withdrawal and would help smokers to maintain abstinence over the study period. METHODS The present study examined the effects of N-Acetylcysteine on frontostriatal rsFC, nicotine-withdrawal symptoms and maintaining abstinence. Healthy adult, non-treatment seeking smokers (N=16; mean (SD) age 36.5±11.9; cigs/day 15.8±6.1; yrs/smoking 15.7±8.9) were randomized to a double-blind course of 2400 mg N-Acetylcysteine (1200 mg b.i.d.) or placebo over the course of 3 ½ days of monetary-incentivized smoking abstinence. On each abstinent day, measures of mood and craving were collected digitally and participants attended a lab visit in order to assess smoking (i.e., expired-air carbon monoxide [CO]). On day 4, participants underwent fMRI scanning. RESULTS As compared to placebo (n=8), smokers in the N-Acetylcysteine group (n=8) maintained abstinence, reported less craving and higher positive affect (all p’s <.01), and concomitantly exhibited stronger rsFC between ventral striatal nodes, medial prefrontal cortex and precuneus—key default mode network nodes, and the cerebellum [p<.025; FWE]). CONCLUSIONS Taken together, these findings suggest that N-Acetylcysteine may positively affect potentially dysregulated corticostriatal connectivity, help to restructure reward processing, and help to maintain abstinence immediately following a quit attempt. PMID:26454838
Froeliger, B; McConnell, P A; Stankeviciute, N; McClure, E A; Kalivas, P W; Gray, K M
2015-11-01
Chronic exposure to drugs of abuse disrupts frontostriatal glutamate transmission, which in turn meditates drug seeking. In animal models, N-Acetylcysteine normalizes dysregulated frontostriatal glutamatergic neurotransmission and prevents reinstated drug seeking; however, the effects of N-Acetylcysteine on human frontostriatal circuitry function and maintaining smoking abstinence is unknown. Thus, the current study tested the hypothesis that N-Acetylcysteine would be associated with stronger frontostriatal resting-state functional connectivity (rsFC), attenuated nicotine withdrawal and would help smokers to maintain abstinence over the study period. The present study examined the effects of N-Acetylcysteine on frontostriatal rsFC, nicotine-withdrawal symptoms and maintaining abstinence. Healthy adult, non-treatment seeking smokers (N=16; mean (SD) age 36.5±11.9; cigs/day 15.8±6.1; years/smoking 15.7±8.9) were randomized to a double-blind course of 2400mg N-Acetylcysteine (1200mg b.i.d.) or placebo over the course of 3½ days of monetary-incentivized smoking abstinence. On each abstinent day, measures of mood and craving were collected and participants attended a lab visit in order to assess smoking (i.e., expired-air carbon monoxide [CO]). On day 4, participants underwent fMRI scanning. As compared to placebo (n=8), smokers in the N-Acetylcysteine group (n=8) maintained abstinence, reported less craving and higher positive affect (all p's<.01), and concomitantly exhibited stronger rsFC between ventral striatal nodes, medial prefrontal cortex and precuneus-key default mode network nodes, and the cerebellum [p<.025; FWE]). Taken together, these findings suggest that N-Acetylcysteine may positively affect dysregulated corticostriatal connectivity, help to restructure reward processing, and help to maintain abstinence immediately following a quit attempt. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Functional Neuroimaging of Spike-Wave Seizures
Motelow, Joshua E.; Blumenfeld, Hal
2013-01-01
Generalized spike-wave seizures are typically brief events associated with dynamic changes in brain physiology, metabolism, and behavior. Functional magnetic resonance imaging (fMRI) provides a relatively high spatio-temporal resolution method for imaging cortical-subcortical network activity during spike-wave seizures. Patients with spike-wave seizures often have episodes of staring and unresponsiveness which interfere with normal behavior. Results from human fMRI studies suggest that spike-wave seizures disrupt specific networks in the thalamus and fronto-parietal association cortex which are critical for normal attentive consciousness. However, the neuronal activity underlying imaging changes seen during fMRI is not well understood, particularly in abnormal conditions such as seizures. Animal models have begun to provide important fundamental insights into the neuronal basis for fMRI changes during spike-wave activity. Work from these models including both fMRI and direct neuronal recordings suggest that, like in humans, specific cortical-subcortical networks are involved in spike-wave, while other regions are spared. Regions showing fMRI increases demonstrate correlated increases in neuronal activity in animal models. The mechanisms of fMRI decreases in spike-wave will require further investigation. A better understanding of the specific brain regions involved in generating spike-wave seizures may help guide efforts to develop targeted therapies aimed at preventing or reversing abnormal excitability in these brain regions, ultimately leading to a cure for this disorder. PMID:18839093
Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI
2016-04-01
and we anticipate the initiation of the neuroimaging portion of the study early in Year 3. The fMRI task has been completed and is in beta testing...neurocognitive test battery, and self-report measures of cognitive efficacy. We will also include functional magnetic resonance imagining ( fMRI ) and... fMRI and DTI will provide an objective basis for cross-validating the EEG and eye tracking system. Both the EEG and eye tracking data will be
A longitudinal model for functional connectivity networks using resting-state fMRI.
Hart, Brian; Cribben, Ivor; Fiecas, Mark
2018-06-04
Many neuroimaging studies collect functional magnetic resonance imaging (fMRI) data in a longitudinal manner. However, the current fMRI literature lacks a general framework for analyzing functional connectivity (FC) networks in fMRI data obtained from a longitudinal study. In this work, we build a novel longitudinal FC model using a variance components approach. First, for all subjects' visits, we account for the autocorrelation inherent in the fMRI time series data using a non-parametric technique. Second, we use a generalized least squares approach to estimate 1) the within-subject variance component shared across the population, 2) the baseline FC strength, and 3) the FC's longitudinal trend. Our novel method for longitudinal FC networks seeks to account for the within-subject dependence across multiple visits, the variability due to the subjects being sampled from a population, and the autocorrelation present in fMRI time series data, while restricting the number of parameters in order to make the method computationally feasible and stable. We develop a permutation testing procedure to draw valid inference on group differences in the baseline FC network and change in FC over longitudinal time between a set of patients and a comparable set of controls. To examine performance, we run a series of simulations and apply the model to longitudinal fMRI data collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Overall, we found no difference in the global FC network between Alzheimer's disease patients and healthy controls, but did find differing local aging patterns in the FC between the left hippocampus and the posterior cingulate cortex. Copyright © 2018 Elsevier Inc. All rights reserved.
Glasser, Matthew F; Coalson, Timothy S; Bijsterbosch, Janine D; Harrison, Samuel J; Harms, Michael P; Anticevic, Alan; Van Essen, David C; Smith, Stephen M
2018-06-02
Temporal fluctuations in functional Magnetic Resonance Imaging (fMRI) have been profitably used to study brain activity and connectivity for over two decades. Unfortunately, fMRI data also contain structured temporal "noise" from a variety of sources, including subject motion, subject physiology, and the MRI equipment. Recently, methods have been developed to automatically and selectively remove spatially specific structured noise from fMRI data using spatial Independent Components Analysis (ICA) and machine learning classifiers. Spatial ICA is particularly effective at removing spatially specific structured noise from high temporal and spatial resolution fMRI data of the type acquired by the Human Connectome Project and similar studies. However, spatial ICA is mathematically, by design, unable to separate spatially widespread "global" structured noise from fMRI data (e.g., blood flow modulations from subject respiration). No methods currently exist to selectively and completely remove global structured noise while retaining the global signal from neural activity. This has left the field in a quandary-to do or not to do global signal regression-given that both choices have substantial downsides. Here we show that temporal ICA can selectively segregate and remove global structured noise while retaining global neural signal in both task-based and resting state fMRI data. We compare the results before and after temporal ICA cleanup to those from global signal regression and show that temporal ICA cleanup removes the global positive biases caused by global physiological noise without inducing the network-specific negative biases of global signal regression. We believe that temporal ICA cleanup provides a "best of both worlds" solution to the global signal and global noise dilemma and that temporal ICA itself unlocks interesting neurobiological insights from fMRI data. Copyright © 2018 Elsevier Inc. All rights reserved.
Hou, YanBing; Luo, ChunYan; Yang, Jing; Ou, RuWei; Song, Wei; Wei, QianQian; Cao, Bei; Zhao, Bi; Wu, Ying; Shang, Hui-Fang; Gong, QiYong
2016-07-15
Neuroimaging holds the promise that it may one day aid the clinical assessment. However, the vast majority of studies using resting-state functional magnetic resonance imaging (fMRI) have reported average differences between Parkinson's disease (PD) patients and healthy controls, which do not permit inferences at the level of individuals. This study was to develop a model for the prediction of PD illness severity ratings from individual fMRI brain scan. The resting-state fMRI scans were obtained from 84 patients with PD and the Unified Parkinson's Disease Rating Scale-III (UPDRS-III) scores were obtained before scanning. The RVR method was used to predict clinical scores (UPDRS-III) from fMRI scans. The application of RVR to whole-brain resting-state fMRI data allowed prediction of UPDRS-III scores with statistically significant accuracy (correlation=0.35, P-value=0.001; mean sum of squares=222.17, P-value=0.002). This prediction was informed strongly by negative weight areas including prefrontal lobe and medial occipital lobe, and positive weight areas including medial parietal lobe. It was suggested that fMRI scans contained sufficient information about neurobiological change in patients with PD to permit accurate prediction about illness severity, on an individual subject basis. Our results provided preliminary evidence, as proof-of-concept, to support that fMRI might be possible to be a clinically useful quantitative assessment aid in PD at individual level. This may enable clinicians to target those uncooperative patients and machines to replace human for a more efficient use of health care resources. Copyright © 2016 Elsevier B.V. All rights reserved.
Presurgical functional magnetic resonance imaging in patients with brain tumors.
Ravn, Søren; Holmberg, Mats; Sørensen, Preben; Frokjaer, Jens B; Carl, Jesper
2016-01-01
Clinical functional magnetic resonance imaging (fMRI) is still an upcoming diagnostic tool because it is time-consuming to perform the post-scan calculations and interpretations. A standardized and easily used method for the clinical assessment of fMRI scans could decrease the workload and make fMRI more attractive for clinical use. To evaluate a standardized clinical approach for distance measurement between benign brain tumors and eloquent cortex in terms of the ability to predict pre- and postoperative neurological deficits after intraoperative neuronavigation-assisted surgery. A retrospective study of 34 patients. The fMRI data were reanalyzed using a standardized distance measurement procedure combining data from both fMRI and three-dimensional T1 MRI scans. The pre- and postoperative neurological status of each patient was obtained from hospital records. Data analysis was performed using logistic regression analysis to determine whether the distance measured between the tumor margin and fMRI activity could serve as a predictor for neurological deficits. An odds ratio of 0.89 mm(-1) (P = 0.03) was found between the risk of preoperative neurological motor deficits and the tumor-fMRI distance. An odds ratio of 0.82 mm(-1) (P = 0.04) was found between the risk of additional postoperative neurological motor deficits and the tumor-fMRI distance. The tumor was radically removed in 10 cases; five patients experienced additional postoperative motor deficits (tumor-fMRI distance <18 mm) and five did not (tumor-fMRI distance >18 mm) (P = 0.008). This study indicates that the distance measured between the tumor margin and fMRI activation could serve as a valuable predictor of neurological motor deficits. © The Foundation Acta Radiologica 2014.
Performance of Blind Source Separation Algorithms for FMRI Analysis using a Group ICA Method
Correa, Nicolle; Adali, Tülay; Calhoun, Vince D.
2007-01-01
Independent component analysis (ICA) is a popular blind source separation (BSS) technique that has proven to be promising for the analysis of functional magnetic resonance imaging (fMRI) data. A number of ICA approaches have been used for fMRI data analysis, and even more ICA algorithms exist, however the impact of using different algorithms on the results is largely unexplored. In this paper, we study the performance of four major classes of algorithms for spatial ICA, namely information maximization, maximization of non-gaussianity, joint diagonalization of cross-cumulant matrices, and second-order correlation based methods when they are applied to fMRI data from subjects performing a visuo-motor task. We use a group ICA method to study the variability among different ICA algorithms and propose several analysis techniques to evaluate their performance. We compare how different ICA algorithms estimate activations in expected neuronal areas. The results demonstrate that the ICA algorithms using higher-order statistical information prove to be quite consistent for fMRI data analysis. Infomax, FastICA, and JADE all yield reliable results; each having their strengths in specific areas. EVD, an algorithm using second-order statistics, does not perform reliably for fMRI data. Additionally, for the iterative ICA algorithms, it is important to investigate the variability of the estimates from different runs. We test the consistency of the iterative algorithms, Infomax and FastICA, by running the algorithm a number of times with different initializations and note that they yield consistent results over these multiple runs. Our results greatly improve our confidence in the consistency of ICA for fMRI data analysis. PMID:17540281
Performance of blind source separation algorithms for fMRI analysis using a group ICA method.
Correa, Nicolle; Adali, Tülay; Calhoun, Vince D
2007-06-01
Independent component analysis (ICA) is a popular blind source separation technique that has proven to be promising for the analysis of functional magnetic resonance imaging (fMRI) data. A number of ICA approaches have been used for fMRI data analysis, and even more ICA algorithms exist; however, the impact of using different algorithms on the results is largely unexplored. In this paper, we study the performance of four major classes of algorithms for spatial ICA, namely, information maximization, maximization of non-Gaussianity, joint diagonalization of cross-cumulant matrices and second-order correlation-based methods, when they are applied to fMRI data from subjects performing a visuo-motor task. We use a group ICA method to study variability among different ICA algorithms, and we propose several analysis techniques to evaluate their performance. We compare how different ICA algorithms estimate activations in expected neuronal areas. The results demonstrate that the ICA algorithms using higher-order statistical information prove to be quite consistent for fMRI data analysis. Infomax, FastICA and joint approximate diagonalization of eigenmatrices (JADE) all yield reliable results, with each having its strengths in specific areas. Eigenvalue decomposition (EVD), an algorithm using second-order statistics, does not perform reliably for fMRI data. Additionally, for iterative ICA algorithms, it is important to investigate the variability of estimates from different runs. We test the consistency of the iterative algorithms Infomax and FastICA by running the algorithm a number of times with different initializations, and we note that they yield consistent results over these multiple runs. Our results greatly improve our confidence in the consistency of ICA for fMRI data analysis.
Magnetic susceptibility induced echo time shifts: Is there a bias in age-related fMRI studies?
Ngo, Giang-Chau; Wong, Chelsea N.; Guo, Steve; Paine, Thomas; Kramer, Arthur F.; Sutton, Bradley P.
2016-01-01
Purpose To evaluate the potential for bias in functional MRI (fMRI) aging studies resulting from age-related differences in magnetic field distributions which can impact echo time and functional contrast. Materials and Methods Magnetic field maps were taken on 31 younger adults (age: 22 ± 2.9 years) and 46 older adults (age: 66 ± 4.5 years) on a 3 T scanner. Using the spatial gradients of the magnetic field map for each participant, an echo planar imaging (EPI) trajectory was simulated. The effective echo time, time at which the k-space trajectory is the closest to the center of k-space, was calculated. This was used to examine both within-subject and across-age-group differences in the effective echo time maps. The Blood Oxygenation Level Dependent (BOLD) percent signal change resulting from those echo time shifts was also calculated to determine their impact on fMRI aging studies. Result For a single subject, the effective echo time varied as much as ± 5 ms across the brain. An unpaired t-test between the effective echo time across age group resulted in significant differences in several regions of the brain (p<0.01). The difference in echo time was only approximately 1 ms, however which is not expected to have an important impact on BOLD fMRI percent signal change (< 4%). Conclusion Susceptibility-induced magnetic field gradients induce local echo time shifts in gradient echo fMRI images, which can cause variable BOLD sensitivity across the brain. However, the age-related differences in BOLD signal are expected to be small for an fMRI study at 3 T. PMID:27299727
ERIC Educational Resources Information Center
Gureckis, Todd M.; James, Thomas W.; Nosofsky, Robert M.
2011-01-01
Recent fMRI studies have found that distinct neural systems may mediate perceptual category learning under implicit and explicit learning conditions. In these previous studies, however, different stimulus-encoding processes may have been associated with implicit versus explicit learning. The present design was aimed at decoupling the influence of…
Are Errors Differentiable from Deceptive Responses when Feigning Memory Impairment? An fMRI Study
ERIC Educational Resources Information Center
Lee, Tatia M. C.; Au, Ricky K. C.; Liu, Ho-Ling; Ting, K. H.; Huang, Chih-Mao; Chan, Chetwyn C. H.
2009-01-01
Previous neuroimaging studies have suggested that the neural activity associated with truthful recall, with false memory, and with feigned memory impairment are different from one another. Here, we report a functional magnetic resonance imaging (fMRI) study that addressed an important but yet unanswered question: Is the neural activity associated…
An fMRI Study of Sentence-Embedded Lexical-Semantic Decision in Children and Adults
ERIC Educational Resources Information Center
Moore-Parks, Erin Nicole; Burns, Erin L.; Bazzill, Rebecca; Levy, Sarah; Posada, Valerie; Muller, Ralph-Axel
2010-01-01
Lexical-semantic knowledge is a core language component that undergoes prolonged development throughout childhood and is therefore highly amenable to developmental studies. Most previous lexical-semantic functional MRI (fMRI) studies have been limited to single-word or word-pair tasks, outside a sentence context. Our objective was to investigate…
When encoding yields remembering: insights from event-related neuroimaging.
Wagner, A D; Koutstaal, W; Schacter, D L
1999-01-01
To understand human memory, it is important to determine why some experiences are remembered whereas others are forgotten. Until recently, insights into the neural bases of human memory encoding, the processes by which information is transformed into an enduring memory trace, have primarily been derived from neuropsychological studies of humans with select brain lesions. The advent of functional neuroimaging methods, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), has provided a new opportunity to gain additional understanding of how the brain supports memory formation. Importantly, the recent development of event-related fMRI methods now allows for examination of trial-by-trial differences in neural activity during encoding and of the consequences of these differences for later remembering. In this review, we consider the contributions of PET and fMRI studies to the understanding of memory encoding, placing a particular emphasis on recent event-related fMRI studies of the Dm effect: that is, differences in neural activity during encoding that are related to differences in subsequent memory. We then turn our attention to the rich literature on the Dm effect that has emerged from studies using event-related potentials (ERPs). It is hoped that the integration of findings from ERP studies, which offer higher temporal resolution, with those from event-related fMRI studies, which offer higher spatial resolution, will shed new light on when and why encoding yields subsequent remembering. PMID:10466153
Cerebral correlates of heart rate variations during a spontaneous panic attack in the fMRI scanner.
Spiegelhalder, Kai; Hornyak, Magdolna; Kyle, Simon David; Paul, Dominik; Blechert, Jens; Seifritz, Erich; Hennig, Jürgen; Tebartz van Elst, Ludger; Riemann, Dieter; Feige, Bernd
2009-12-01
We report the first published case study of a suddenly occurring panic attack in a patient with no prior history of panic disorder during combined functional magnetic resonance imaging (fMRI, 1.5 Tesla) and electrocardiogram (ECG) recording. The single case was a 46-year-old woman who developed a panic attack near the planned end of the fMRI acquisition session, which therefore had to be aborted. Correlational analysis of heart rate fluctuations and fMRI data revealed a significant negative association in the left middle temporal gyrus. Additionally, regions-of-interest (ROI) analyses indicated significant positive associations in the left amygdala, and trends towards significance in the right amygdala and left insula.
ERIC Educational Resources Information Center
Spaniol, Julia; Davidson, Patrick S. R.; Kim, Alice S. N.; Han, Hua; Moscovitch, Morris; Grady, Cheryl L.
2009-01-01
The recent surge in event-related fMRI studies of episodic memory has generated a wealth of information about the neural correlates of encoding and retrieval processes. However, interpretation of individual studies is hampered by methodological differences, and by the fact that sample sizes are typically small. We submitted results from studies of…
Living With Anxiety Disorders, Worried Sick | NIH MedlinePlus the Magazine
... behaviors. Using an imaging technique called functional MRI (fMRI), scientists are scanning the brain in action as ... Bishop of the University of California, Berkeley, uses fMRI to study people at high risk for anxiety ...
Liu, Ho-Ling; Wu, Chien-Te; Chen, Jian-Chuan; Hsu, Yuan-Yu; Wai, Yau-Yau; Wan, Yung-Liang
2003-01-01
Recently, functional MRI (fMRI) using word generation (WG) tasks has been shown to be effective for mapping the Chinese language-related brain areas. In clinical applications, however, patients' performance cannot be easily monitored during WG tasks. In this study, we evaluated the feasibility of a word choice (WC) paradigm in the clinical setting and compared the results with those from WG tasks. Intrasubject comparisons of fMRI with both WG and WC paradigms were performed on six normal human subjects and two tumor patients. Subject responses in the WC paradigm, based on semantic judgments, were recorded. Activation strength, extent, and laterality were evaluated and compared. Our results showed that fMRI with the WC paradigm evoked weaker neuronal activation than that with the WG paradigm in Chinese language-related brain areas. It was sufficient to reveal language laterality for clinical use, however. In addition, it resulted in less nonlanguage-specific brain activation. Results from the patient data demonstrated strong evidence for the necessity of incorporating response monitoring during fMRI studies, which suggested that fMRI with the WC paradigm is more appropriate to be implemented for the prediction of Chinese language dominance in clinical environments.
Causal mapping of emotion networks in the human brain: Framework and initial findings.
Dubois, Julien; Oya, Hiroyuki; Tyszka, J Michael; Howard, Matthew; Eberhardt, Frederick; Adolphs, Ralph
2017-11-13
Emotions involve many cortical and subcortical regions, prominently including the amygdala. It remains unknown how these multiple network components interact, and it remains unknown how they cause the behavioral, autonomic, and experiential effects of emotions. Here we describe a framework for combining a novel technique, concurrent electrical stimulation with fMRI (es-fMRI), together with a novel analysis, inferring causal structure from fMRI data (causal discovery). We outline a research program for investigating human emotion with these new tools, and provide initial findings from two large resting-state datasets as well as case studies in neurosurgical patients with electrical stimulation of the amygdala. The overarching goal is to use causal discovery methods on fMRI data to infer causal graphical models of how brain regions interact, and then to further constrain these models with direct stimulation of specific brain regions and concurrent fMRI. We conclude by discussing limitations and future extensions. The approach could yield anatomical hypotheses about brain connectivity, motivate rational strategies for treating mood disorders with deep brain stimulation, and could be extended to animal studies that use combined optogenetic fMRI. Copyright © 2017 Elsevier Ltd. All rights reserved.
Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla
Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore; Larsson, Henrik B. W.; Pinborg, Lars H.; Kjær, Troels W.; Fabricius, Martin; Svarer, Claus; Ozenne, Brice; Thomsen, Carsten; Beniczky, Sándor; Posse, Stefan
2017-01-01
Purpose Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. Materials and methods The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18–70 years) and 13 patients with epilepsy (8 males, age range 21–67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients). Results RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG data quality were found between EEG recorded during high-speed fMRI and during conventional EPI (p = 0.78). Residual ballistocardiographic artifacts resulted in 58% of EEG data being rated as poor quality. Conclusion This study demonstrates that high-density EEG can be safely implemented in conjunction with high-speed fMRI and that high-speed fMRI does not adversely affect EEG data quality. However, the deterioration of the EEG quality due to residual ballistocardiographic artifacts remains a significant constraint for routine clinical applications of concurrent EEG-fMRI. PMID:28552957
fMRI for mapping language networks in neurosurgical cases
Gupta, Santosh S
2014-01-01
Evaluating language has been a long-standing application in functional magnetic resonance imaging (fMRI) studies, both in research and clinical circumstances, and still provides challenges. Localization of eloquent areas is important in neurosurgical cases, so that there is least possible damage to these areas during surgery, maintaining their function postoperatively, therefore providing good quality of life to the patient. Preoperative fMRI study is a non-invasive tool to localize the eloquent areas, including language, with other traditional methods generally used being invasive and at times perilous. In this article, we describe methods and various paradigms to study the language areas, in clinical neurosurgical cases, along with illustrations of cases from our institute. PMID:24851003
The influence of FMRI lie detection evidence on juror decision-making.
McCabe, David P; Castel, Alan D; Rhodes, Matthew G
2011-01-01
In the current study, we report on an experiment examining whether functional magnetic resonance imaging (fMRI) lie detection evidence would influence potential jurors' assessment of guilt in a criminal trial. Potential jurors (N = 330) read a vignette summarizing a trial, with some versions of the vignette including lie detection evidence indicating that the defendant was lying about having committed the crime. Lie detector evidence was based on evidence from the polygraph, fMRI (functional brain imaging), or thermal facial imaging. Results showed that fMRI lie detection evidence led to more guilty verdicts than lie detection evidence based on polygraph evidence, thermal facial imaging, or a control condition that did not include lie detection evidence. However, when the validity of the fMRI lie detection evidence was called into question on cross-examination, guilty verdicts were reduced to the level of the control condition. These results provide important information about the influence of lie detection evidence in legal settings. Copyright © 2011 John Wiley & Sons, Ltd.
How challenges in auditory fMRI led to general advancements for the field.
Talavage, Thomas M; Hall, Deborah A
2012-08-15
In the early years of fMRI research, the auditory neuroscience community sought to expand its knowledge of the underlying physiology of hearing, while also seeking to come to grips with the inherent acoustic disadvantages of working in the fMRI environment. Early collaborative efforts between prominent auditory research laboratories and prominent fMRI centers led to development of a number of key technical advances that have subsequently been widely used to elucidate principles of auditory neurophysiology. Perhaps the key imaging advance was the simultaneous and parallel development of strategies to use pulse sequences in which the volume acquisitions were "clustered," providing gaps in which stimuli could be presented without direct masking. Such sequences have become widespread in fMRI studies using auditory stimuli and also in a range of translational research domains. This review presents the parallel stories of the people and the auditory neurophysiology research that led to these sequences. Copyright © 2011 Elsevier Inc. All rights reserved.
A hybrid method for classifying cognitive states from fMRI data.
Parida, S; Dehuri, S; Cho, S-B; Cacha, L A; Poznanski, R R
2015-09-01
Functional magnetic resonance imaging (fMRI) makes it possible to detect brain activities in order to elucidate cognitive-states. The complex nature of fMRI data requires under-standing of the analyses applied to produce possible avenues for developing models of cognitive state classification and improving brain activity prediction. While many models of classification task of fMRI data analysis have been developed, in this paper, we present a novel hybrid technique through combining the best attributes of genetic algorithms (GAs) and ensemble decision tree technique that consistently outperforms all other methods which are being used for cognitive-state classification. Specifically, this paper illustrates the combined effort of decision-trees ensemble and GAs for feature selection through an extensive simulation study and discusses the classification performance with respect to fMRI data. We have shown that our proposed method exhibits significant reduction of the number of features with clear edge classification accuracy over ensemble of decision-trees.
Minati, Ludovico; Visani, Elisa; Dowell, Nick G; Medford, Nick; Critchley, Hugo D
2011-01-01
Brain near-infrared spectroscopy (NIRS) is emerging as a potential alternative to functional MRI (fMRI). To date, no study has explicitly compared the two techniques in terms of measurement variability, a key parameter dictating attainable statistical power. Here, NIRS and fMRI were simultaneously recorded during event-related visual stimulation. Inter-subject coefficients of variation (CVs) for peak response amplitude were considerably larger for NIRS than fMRI, but inter-subject CVs for response latency and intra-subject CVs for response amplitude were overall comparable. Our results may represent an optimistic estimate of the CVs of NIRS measurements, as optode positioning was guided by structural MRI, which is normally unavailable. We conclude that fMRI may be preferable to NIRS for group comparisons, but NIRS is equally powerful when comparing conditions within participants. The discrepancy between inter- and intra-subject CVs is likely related to variability in head anatomy and tissue properties which may be better accounted for by emerging NIRS technology. PMID:21780948
Kühn, Simone; Fernyhough, Charles; Alderson-Day, Benjamin; Hurlburt, Russell T.
2014-01-01
To provide full accounts of human experience and behavior, research in cognitive neuroscience must be linked to inner experience, but introspective reports of inner experience have often been found to be unreliable. The present case study aimed at providing proof of principle that introspection using one method, descriptive experience sampling (DES), can be reliably integrated with fMRI. A participant was trained in the DES method, followed by nine sessions of sampling within an MRI scanner. During moments where the DES interview revealed ongoing inner speaking, fMRI data reliably showed activation in classic speech processing areas including left inferior frontal gyrus. Further, the fMRI data validated the participant’s DES observations of the experiential distinction between inner speaking and innerly hearing her own voice. These results highlight the precision and validity of the DES method as a technique of exploring inner experience and the utility of combining such methods with fMRI. PMID:25538649
2012-01-01
Background There is growing evidence for the idea of fMRI activation in white matter. In the current study, we compared hemodynamic response functions (HRF) in white matter and gray matter using 4 T fMRI. White matter fMRI activation was elicited in the isthmus of the corpus callosum at both the group and individual levels (using an established interhemispheric transfer task). Callosal HRFs were compared to HRFs from cingulate and parietal activation. Results Examination of the raw HRF revealed similar overall response characteristics. Finite impulse response modeling confirmed that the WM HRF characteristics were comparable to those of the GM HRF, but had significantly decreased peak response amplitudes. Conclusions Overall, the results matched a priori expectations of smaller HRF responses in white matter due to the relative drop in cerebral blood flow (CBF) and cerebral blood volume (CBV). Importantly, the findings demonstrate that despite lower CBF and CBV, white matter fMRI activation remained within detectable ranges at 4 T. PMID:22852798
N-back Working Memory Task: Meta-analysis of Normative fMRI Studies With Children.
Yaple, Zachary; Arsalidou, Marie
2018-05-07
The n-back task is likely the most popular measure of working memory for functional magnetic resonance imaging (fMRI) studies. Despite accumulating neuroimaging studies with the n-back task and children, its neural representation is still unclear. fMRI studies that used the n-back were compiled, and data from children up to 15 years (n = 260) were analyzed using activation likelihood estimation. Results show concordance in frontoparietal regions recognized for their role in working memory as well as regions not typically highlighted as part of the working memory network, such as the insula. Findings are discussed in terms of developmental methodology and potential contribution to developmental theories of cognition. © 2018 Society for Research in Child Development.
Attention and Semantic Processing during Speech: An fMRI Study
ERIC Educational Resources Information Center
Rama, Pia; Relander-Syrjanen, Kristiina; Carlson, Synnove; Salonen, Oili; Kujala, Teija
2012-01-01
This fMRI study was conducted to investigate whether language semantics is processed even when attention is not explicitly directed to word meanings. In the "unattended" condition, the subjects performed a visual detection task while hearing semantically related and unrelated word pairs. In the "phoneme" condition, the subjects made phoneme…
Lying about facial recognition: an fMRI study.
Bhatt, S; Mbwana, J; Adeyemo, A; Sawyer, A; Hailu, A; Vanmeter, J
2009-03-01
Novel deception detection techniques have been in creation for centuries. Functional magnetic resonance imaging (fMRI) is a neuroscience technology that non-invasively measures brain activity associated with behavior and cognition. A number of investigators have explored the utilization and efficiency of fMRI in deception detection. In this study, 18 subjects were instructed during an fMRI "line-up" task to either conceal (lie) or reveal (truth) the identities of individuals seen in study sets in order to determine the neural correlates of intentionally misidentifying previously known faces (lying about recognition). A repeated measures ANOVA (lie vs. truth and familiar vs. unfamiliar) and two paired t-tests (familiar vs. unfamiliar and familiar lie vs. familiar truth) revealed areas of activation associated with deception in the right MGF, red nucleus, IFG, SMG, SFG (with ACC), DLPFC, and bilateral precuneus. The areas activated in the present study may be involved in the suppression of truth, working and visuospatial memories, and imagery when providing misleading (deceptive) responses to facial identification prompts in the form of a "line-up".
Topiramate and its effect on fMRI of language in patients with right or left temporal lobe epilepsy.
Szaflarski, Jerzy P; Allendorfer, Jane B
2012-05-01
Topiramate (TPM) is well recognized for its negative effects on cognition, language performance and lateralization results on the intracarotid amobarbital procedure (IAP). But, the effects of TPM on functional MRI (fMRI) of language and the fMRI signals are less clear. Functional MRI is increasingly used for presurgical evaluation of epilepsy patients in place of IAP for language lateralization. Thus, the goal of this study was to assess the effects of TPM on fMRI signals. In this study, we included 8 patients with right temporal lobe epilepsy (RTLE) and 8 with left temporal lobe epilepsy (LTLE) taking TPM (+TPM). Matched to them for age, handedness and side of seizure onset were 8 patients with RTLE and 8 with LTLE not taking TPM (-TPM). Matched for age and handedness to the patients with TLE were 32 healthy controls. The fMRI paradigm involved semantic decision/tone decision task (in-scanner behavioral data were collected). All epilepsy patients received a standard neuropsychological language battery. One sample t-tests were performed within each group to assess task-specific activations. Functional MRI data random-effects analysis was performed to determine significant group activation differences and to assess the effect of TPM dose on task activation. Direct group comparisons of fMRI, language and demographic data between patients with R/L TLE +TPM vs. -TPM and the analysis of the effects of TPM on blood oxygenation level-dependent (BOLD) signal were performed. Groups were matched for age, handedness and, within the R/L TLE groups, for the age of epilepsy onset/duration and the number of AEDs/TPM dose. The in-scanner language performance of patients was worse when compared to healthy controls - all p<0.044. While all groups showed fMRI activation typical for this task, regression analyses comparing L/R TLE +TPM vs. -TPM showed significant fMRI signal differences between groups (increases in left cingulate gyrus and decreases in left superior temporal gyrus in the patients with LTLE +TPM; increases in the right BA 10 and left visual cortex and decreases in the left BA 47 in +TPM RTLE). Further, TPM dose showed positive relationship with activation in the basal ganglia and negative associations with activation in anterior cingulate and posterior visual cortex. Thus, TPM appears to have a different effect on fMRI language distribution in patients with R/L TLE and a dose-dependent effect on fMRI signals. These findings may, in part, explain the negative effects of TPM on cognition and language performance and support the notion that TPM may affect the results of language fMRI lateralization/localization. Copyright © 2012 Elsevier Inc. All rights reserved.
Studying brain organization via spontaneous fMRI signal
Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E
2014-01-01
In recent years, some substantial advances in understanding human (and non-human) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the “resting” brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called “resting state”. This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. PMID:25459408
Moon, Chan Hong; Fukuda, Mitsuhiro; Kim, Seong-Gi
2012-01-01
The neural specificity of hemodynamic-based functional magnetic resonance imaging (fMRI) signals are dependent on both the vascular regulation and the sensitivity of the applied fMRI technique to different types and sizes of blood vessels. In order to examine the specificity of MRI-detectable hemodynamic responses, submillimeter blood oxygenation-level dependent (BOLD) and cerebral blood volume (CBV) fMRI studies were performed in a well-established cat orientation column model at 9.4 Tesla. Neural-nonspecific and -specific signals were separated by comparing the fMRI responses of orthogonal orientation stimuli. The BOLD response was dominantly neural-nonspecific, mostly originating from pial and intracortical emerging veins, and thus was highly correlated with baseline blood volume. Uneven baseline CBV may displace or distort small functional domains in high-resolution BOLD maps. The CBV response in the parenchyma exhibited dual spatiotemporal characteristics, a fast and early neural-nonspecific response (with 4.3-s time constant) and a slightly slower and delayed neural-specific response (with 9.4-s time constant). The nonspecific CBV signal originates from early-responding arteries and arterioles, while the specific CBV response, which is not correlated with baseline blood volume, arises from late-responding microvessels including small pre-capillary arterioles and capillaries. Our data indicate that although the neural specificity of CBV fMRI signals is dependent on stimulation duration, high-resolution functional maps can be obtained from steady-state CBV studies. PMID:22960251
Electrodermal Recording and fMRI to Inform Sensorimotor Recovery in Stroke Patients
MacIntosh, Bradley J.; McIlroy, William E.; Mraz, Richard; Staines, W. Richard; Black, Sandra E.; Graham, Simon J.
2016-01-01
Background Functional magnetic resonance imaging (fMRI) appears to be useful for investigating motor recovery after stroke. Some of the potential confounders of brain activation studies, however, could be mitigated through complementary physiological monitoring. Objective To investigate a sensorimotor fMRI battery that included simultaneous measurement of electrodermal activity in subjects with hemiparetic stroke to provide a measure related to the sense of effort during motor performance. Methods Bilateral hand and ankle tasks were performed by 6 patients with stroke (2 subacute, 4 chronic) during imaging with blood oxygen level-dependent (BOLD) fMRI using an event-related design. BOLD percent changes, peak activation, and laterality index values were calculated in the sensorimotor cortex. Electrodermal recordings were made concurrently and used as a regressor. Results Sensorimotor BOLD time series and percent change values provided evidence of an intact motor network in each of these well-recovered patients. During tasks involving the hemiparetic limb, electrodermal activity changes were variable in amplitude, and electrodermal activity time-series data showed significant correlations with fMRI in 3 of 6 patients. No such correlations were observed for control tasks involving the unaffected lower limb. Conclusions Electrodermal activity activation maps implicated the contralesional over the ipsilesional hemisphere, supporting the notion that stroke patients may require higher order motor processing to perform simple tasks. Electrodermal activity recordings may be useful as a physiological marker of differences in effort required during movements of a subject’s hemiparetic compared with the unaffected limb during fMRI studies. PMID:18784267
Brain atrophy can introduce age-related differences in BOLD response.
Liu, Xueqing; Gerraty, Raphael T; Grinband, Jack; Parker, David; Razlighi, Qolamreza R
2017-04-11
Use of functional magnetic resonance imaging (fMRI) in studies of aging is often hampered by uncertainty about age-related differences in the amplitude and timing of the blood oxygenation level dependent (BOLD) response (i.e., hemodynamic impulse response function (HRF)). Such uncertainty introduces a significant challenge in the interpretation of the fMRI results. Even though this issue has been extensively investigated in the field of neuroimaging, there is currently no consensus about the existence and potential sources of age-related hemodynamic alterations. Using an event-related fMRI experiment with two robust and well-studied stimuli (visual and auditory), we detected a significant age-related difference in the amplitude of response to auditory stimulus. Accounting for brain atrophy by circumventing spatial normalization and processing the data in subjects' native space eliminated these observed differences. In addition, we simulated fMRI data using age differences in brain morphology while controlling HRF shape. Analyzing these simulated fMRI data using standard image processing resulted in differences in HRF amplitude, which were eliminated when the data were analyzed in subjects' native space. Our results indicate that age-related atrophy introduces inaccuracy in co-registration to standard space, which subsequently appears as attenuation in BOLD response amplitude. Our finding could explain some of the existing contradictory reports regarding age-related differences in the fMRI BOLD responses. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Tensorial extensions of independent component analysis for multisubject FMRI analysis.
Beckmann, C F; Smith, S M
2005-03-01
We discuss model-free analysis of multisubject or multisession FMRI data by extending the single-session probabilistic independent component analysis model (PICA; Beckmann and Smith, 2004. IEEE Trans. on Medical Imaging, 23 (2) 137-152) to higher dimensions. This results in a three-way decomposition that represents the different signals and artefacts present in the data in terms of their temporal, spatial, and subject-dependent variations. The technique is derived from and compared with parallel factor analysis (PARAFAC; Harshman and Lundy, 1984. In Research methods for multimode data analysis, chapter 5, pages 122-215. Praeger, New York). Using simulated data as well as data from multisession and multisubject FMRI studies we demonstrate that the tensor PICA approach is able to efficiently and accurately extract signals of interest in the spatial, temporal, and subject/session domain. The final decompositions improve upon PARAFAC results in terms of greater accuracy, reduced interference between the different estimated sources (reduced cross-talk), robustness (against deviations of the data from modeling assumptions and against overfitting), and computational speed. On real FMRI 'activation' data, the tensor PICA approach is able to extract plausible activation maps, time courses, and session/subject modes as well as provide a rich description of additional processes of interest such as image artefacts or secondary activation patterns. The resulting data decomposition gives simple and useful representations of multisubject/multisession FMRI data that can aid the interpretation and optimization of group FMRI studies beyond what can be achieved using model-based analysis techniques.
Branding and a child’s brain: an fMRI study of neural responses to logos
Bruce, Jared M.; Black, William R.; Lepping, Rebecca J.; Henry, Janice M.; Cherry, Joseph Bradley C.; Martin, Laura E.; Papa, Vlad B.; Davis, Ann M.; Brooks, William M.; Savage, Cary R.
2014-01-01
Branding and advertising have a powerful effect on both familiarity and preference for products, yet no neuroimaging studies have examined neural response to logos in children. Food advertising is particularly pervasive and effective in manipulating choices in children. The purpose of this study was to examine how healthy children’s brains respond to common food and other logos. A pilot validation study was first conducted with 32 children to select the most culturally familiar logos, and to match food and non-food logos on valence and intensity. A new sample of 17 healthy weight children were then scanned using functional magnetic resonance imaging. Food logos compared to baseline were associated with increased activation in orbitofrontal cortex and inferior prefrontal cortex. Compared to non-food logos, food logos elicited increased activation in posterior cingulate cortex. Results confirmed that food logos activate some brain regions in children known to be associated with motivation. This marks the first study in children to examine brain responses to culturally familiar logos. Considering the pervasiveness of advertising, research should further investigate how children respond at the neural level to marketing. PMID:22997054
ERIC Educational Resources Information Center
Whalley, Matthew G.; Rugg, Michael D.; Smith, Adam P. R.; Dolan, Raymond J.; Brewin, Chris R.
2009-01-01
In the present study, we used fMRI to assess patients suffering from post-traumatic stress disorder (PTSD) or depression, and trauma-exposed controls, during an episodic memory retrieval task that included non-trauma-related emotional information. In the study phase of the task neutral pictures were presented in emotional or neutral contexts.…
ERIC Educational Resources Information Center
Zhou, Bo; Konstorum, Anna; Duong, Thao; Tieu, Kinh H.; Wells, William M.; Brown, Gregory G.; Stern, Hal S.; Shahbaba, Babak
2013-01-01
We propose a hierarchical Bayesian model for analyzing multi-site experimental fMRI studies. Our method takes the hierarchical structure of the data (subjects are nested within sites, and there are multiple observations per subject) into account and allows for modeling between-site variation. Using posterior predictive model checking and model…
Say It with Flowers! An fMRI Study of Object Mediated Communication
ERIC Educational Resources Information Center
Tylen, Kristian; Wallentin, Mikkel; Roepstorff, Andreas
2009-01-01
Human communicational interaction can be mediated by a host of expressive means from words in a natural language to gestures and material symbols. Given the proper contextual setting even an everyday object can gain a mediating function in a communicational situation. In this study we used event-related fMRI to study the brain activity caused by…
Neural Substrates of the Topology Test to Measure Fluid Reasoning: An fMRI Study
ERIC Educational Resources Information Center
Masunaga, Hiromi; Kawashima, Ryuta; Horn, John L.; Sassa, Yuko; Sekiguchi, Atsushi
2008-01-01
In our prior study the negative correlation between Topology, a behavioral measure of fluid reasoning, and adult age diminished with the increase in the level of expertise in a cognitively-demanding domain of expertise in the game of GO. The present fMRI study was designed to investigate neural substrates of Topology. The modified topology…
Cong, Fengyu; Puoliväli, Tuomas; Alluri, Vinoo; Sipola, Tuomo; Burunat, Iballa; Toiviainen, Petri; Nandi, Asoke K; Brattico, Elvira; Ristaniemi, Tapani
2014-02-15
Independent component analysis (ICA) has been often used to decompose fMRI data mostly for the resting-state, block and event-related designs due to its outstanding advantage. For fMRI data during free-listening experiences, only a few exploratory studies applied ICA. For processing the fMRI data elicited by 512-s modern tango, a FFT based band-pass filter was used to further pre-process the fMRI data to remove sources of no interest and noise. Then, a fast model order selection method was applied to estimate the number of sources. Next, both individual ICA and group ICA were performed. Subsequently, ICA components whose temporal courses were significantly correlated with musical features were selected. Finally, for individual ICA, common components across majority of participants were found by diffusion map and spectral clustering. The extracted spatial maps (by the new ICA approach) common across most participants evidenced slightly right-lateralized activity within and surrounding the auditory cortices. Meanwhile, they were found associated with the musical features. Compared with the conventional ICA approach, more participants were found to have the common spatial maps extracted by the new ICA approach. Conventional model order selection methods underestimated the true number of sources in the conventionally pre-processed fMRI data for the individual ICA. Pre-processing the fMRI data by using a reasonable band-pass digital filter can greatly benefit the following model order selection and ICA with fMRI data by naturalistic paradigms. Diffusion map and spectral clustering are straightforward tools to find common ICA spatial maps. Copyright © 2013 Elsevier B.V. All rights reserved.
A New Paradigm for Individual Subject Language Mapping: Movie-Watching fMRI.
Tie, Yanmei; Rigolo, Laura; Ozdemir Ovalioglu, Aysegul; Olubiyi, Olutayo; Doolin, Kelly L; Mukundan, Srinivasan; Golby, Alexandra J
2015-01-01
Functional MRI (fMRI) based on language tasks has been used in presurgical language mapping in patients with lesions in or near putative language areas. However, if patients have difficulty performing the tasks due to neurological deficits, it leads to unreliable or noninterpretable results. In this study, we investigate the feasibility of using a movie-watching fMRI for language mapping. A 7-minute movie clip with contrasting speech and nonspeech segments was shown to 22 right-handed healthy subjects. Based on all subjects' language functional regions-of-interest, 6 language response areas were defined, within which a language response model (LRM) was derived by extracting the main temporal activation profile. Using a leave-one-out procedure, individuals' language areas were identified as the areas that expressed highly correlated temporal responses with the LRM derived from an independent group of subjects. Compared with an antonym generation task-based fMRI, the movie-watching fMRI generated language maps with more localized activations in the left frontal language area, larger activations in the left temporoparietal language area, and significant activations in their right-hemisphere homologues. Results of 2 brain tumor patients' movie-watching fMRI using the LRM derived from the healthy subjects indicated its ability to map putative language areas; while their task-based fMRI maps were less robust and noisier. These results suggest that it is feasible to use this novel "task-free" paradigm as a complementary tool for fMRI language mapping when patients cannot perform the tasks. Its deployment in more neurosurgical patients and validation against gold-standard techniques need further investigation. Copyright © 2015 by the American Society of Neuroimaging.
Durning, Steven J; Graner, John; Artino, Anthony R; Pangaro, Louis N; Beckman, Thomas; Holmboe, Eric; Oakes, Terrance; Roy, Michael; Riedy, Gerard; Capaldi, Vincent; Walter, Robert; van der Vleuten, Cees; Schuwirth, Lambert
2012-09-01
Clinical reasoning is essential to medical practice, but because it entails internal mental processes, it is difficult to assess. Functional magnetic resonance imaging (fMRI) and think-aloud protocols may improve understanding of clinical reasoning as these methods can more directly assess these processes. The objective of our study was to use a combination of fMRI and think-aloud procedures to examine fMRI correlates of a leading theoretical model in clinical reasoning based on experimental findings to date: analytic (i.e., actively comparing and contrasting diagnostic entities) and nonanalytic (i.e., pattern recognition) reasoning. We hypothesized that there would be functional neuroimaging differences between analytic and nonanalytic reasoning theory. 17 board-certified experts in internal medicine answered and reflected on validated U.S. Medical Licensing Exam and American Board of Internal Medicine multiple-choice questions (easy and difficult) during an fMRI scan. This procedure was followed by completion of a formal think-aloud procedure. fMRI findings provide some support for the presence of analytic and nonanalytic reasoning systems. Statistically significant activation of prefrontal cortex distinguished answering incorrectly versus correctly (p < 0.01), whereas activation of precuneus and midtemporal gyrus distinguished not guessing from guessing (p < 0.01). We found limited fMRI evidence to support analytic and nonanalytic reasoning theory, as our results indicate functional differences with correct vs. incorrect answers and guessing vs. not guessing. However, our findings did not suggest one consistent fMRI activation pattern of internal medicine expertise. This model of employing fMRI correlates offers opportunities to enhance our understanding of theory, as well as improve our teaching and assessment of clinical reasoning, a key outcome of medical education.
Zhang, Chuncheng; Song, Sutao; Wen, Xiaotong; Yao, Li; Long, Zhiying
2015-04-30
Feature selection plays an important role in improving the classification accuracy of multivariate classification techniques in the context of fMRI-based decoding due to the "few samples and large features" nature of functional magnetic resonance imaging (fMRI) data. Recently, several sparse representation methods have been applied to the voxel selection of fMRI data. Despite the low computational efficiency of the sparse representation methods, they still displayed promise for applications that select features from fMRI data. In this study, we proposed the Laplacian smoothed L0 norm (LSL0) approach for feature selection of fMRI data. Based on the fast sparse decomposition using smoothed L0 norm (SL0) (Mohimani, 2007), the LSL0 method used the Laplacian function to approximate the L0 norm of sources. Results of the simulated and real fMRI data demonstrated the feasibility and robustness of LSL0 for the sparse source estimation and feature selection. Simulated results indicated that LSL0 produced more accurate source estimation than SL0 at high noise levels. The classification accuracy using voxels that were selected by LSL0 was higher than that by SL0 in both simulated and real fMRI experiment. Moreover, both LSL0 and SL0 showed higher classification accuracy and required less time than ICA and t-test for the fMRI decoding. LSL0 outperformed SL0 in sparse source estimation at high noise level and in feature selection. Moreover, LSL0 and SL0 showed better performance than ICA and t-test for feature selection. Copyright © 2015 Elsevier B.V. All rights reserved.
A new paradigm for individual subject language mapping: Movie-watching fMRI
Tie, Yanmei; Rigolo, Laura; Ovalioglu, Aysegul Ozdemir; Olubiyi, Olutayo; Doolin, Kelly L.; Mukundan, Srinivasan; Golby, Alexandra J.
2015-01-01
Background Functional MRI (fMRI) based on language tasks has been used in pre-surgical language mapping in patients with lesions in or near putative language areas. However, if the patients have difficulty performing the tasks due to neurological deficits, it leads to unreliable or non-interpretable results. In this study, we investigate the feasibility of using a movie-watching fMRI for language mapping. Methods A 7-min movie clip with contrasting speech and non-speech segments was shown to 22 right-handed healthy subjects. Based on all subjects' language functional regions-of-interest, six language response areas were defined, within which a language response model (LRM) was derived by extracting the main temporal activation profile. Using a leave-one-out procedure, individuals' language areas were identified as the areas that expressed highly correlated temporal responses with the LRM derived from an independent group of subjects. Results Compared with an antonym generation task-based fMRI, the movie-watching fMRI generated language maps with more localized activations in the left frontal language area, larger activations in the left temporoparietal language area, and significant activations in their right-hemisphere homologues. Results of two brain tumor patients' movie-watching fMRI using the LRM derived from the healthy subjects indicated its ability to map putative language areas; while their task-based fMRI maps were less robust and noisier. Conclusions These results suggest that it is feasible to use this novel “task-free” paradigm as a complementary tool for fMRI language mapping when patients cannot perform the tasks. Its deployment in more neurosurgical patients and validation against gold-standard techniques need further investigation. PMID:25962953
Dager, Alecia D; Tice, Madelynn R; Book, Gregory A; Tennen, Howard; Raskin, Sarah A; Austad, Carol S; Wood, Rebecca M; Fallahi, Carolyn R; Hawkins, Keith A; Pearlson, Godfrey D
2018-04-26
Marijuana (MJ) is widely used among college students, with peak use between ages 18-22. Research suggests memory dysfunction in adolescent and young adult MJ users, but the neural correlates are unclear. We examined functional magnetic resonance imaging (fMRI) response during a memory task among college students with varying degrees of MJ involvement. Participants were 64 college students, ages 18-20, who performed a visual encoding and recognition task during fMRI. MJ use was ascertained for 3 months prior to scanning; 27 individuals reported past 3-month MJ use, and 33 individuals did not. fMRI response was modeled during encoding based on whether targets were subsequently recognized (correct encoding), and during recognition based on target identification (hits). fMRI response in left and right inferior frontal gyrus (IFG) and hippocampal regions of interest was examined between MJ users and controls. There were no group differences between MJ users and controls on fMRI response during encoding, although single sample t-tests revealed that MJ users failed to activate the hippocampus. During recognition, MJ users showed less fMRI response than controls in right hippocampus (Cohen's d = 0.55), left hippocampus (Cohen's d = 0.67) and left IFG (Cohen's d = 0.61). Heavier MJ involvement was associated with lower fMRI response in left hippocampus and left IFG. This study provides evidence of MJ-related prefrontal and hippocampal dysfunction during recognition memory in college students. These findings may contribute to our previously identified decrements in academic performance in college MJ users and could have substantial implications for academic and occupational functioning. Copyright © 2018 Elsevier B.V. All rights reserved.
Córdova-Palomera, Aldo; Tornador, Cristian; Falcón, Carles; Bargalló, Nuria; Nenadic, Igor; Deco, Gustavo; Fañanás, Lourdes
2015-10-01
Recent findings indicate that alterations of the amygdalar resting-state fMRI connectivity play an important role in the etiology of depression. While both depression and resting-state brain activity are shaped by genes and environment, the relative contribution of genetic and environmental factors mediating the relationship between amygdalar resting-state connectivity and depression remain largely unexplored. Likewise, novel neuroimaging research indicates that different mathematical representations of resting-state fMRI activity patterns are able to embed distinct information relevant to brain health and disease. The present study analyzed the influence of genes and environment on amygdalar resting-state fMRI connectivity, in relation to depression risk. High-resolution resting-state fMRI scans were analyzed to estimate functional connectivity patterns in a sample of 48 twins (24 monozygotic pairs) informative for depressive psychopathology (6 concordant, 8 discordant and 10 healthy control pairs). A graph-theoretical framework was employed to construct brain networks using two methods: (i) the conventional approach of filtered BOLD fMRI time-series and (ii) analytic components of this fMRI activity. Results using both methods indicate that depression risk is increased by environmental factors altering amygdalar connectivity. When analyzing the analytic components of the BOLD fMRI time-series, genetic factors altering the amygdala neural activity at rest show an important contribution to depression risk. Overall, these findings show that both genes and environment modify different patterns the amygdala resting-state connectivity to increase depression risk. The genetic relationship between amygdalar connectivity and depression may be better elicited by examining analytic components of the brain resting-state BOLD fMRI signals. © 2015 Wiley Periodicals, Inc.
Anterior temporal face patches: a meta-analysis and empirical study
Von Der Heide, Rebecca J.; Skipper, Laura M.; Olson, Ingrid R.
2013-01-01
Evidence suggests the anterior temporal lobe (ATL) plays an important role in person identification and memory. In humans, neuroimaging studies of person memory report consistent activations in the ATL to famous and personally familiar faces and studies of patients report resection or damage of the ATL causes an associative prosopagnosia in which face perception is intact but face memory is compromised. In addition, high-resolution fMRI studies of non-human primates and electrophysiological studies of humans also suggest regions of the ventral ATL are sensitive to novel faces. The current study extends previous findings by investigating whether similar subregions in the dorsal, ventral, lateral, or polar aspects of the ATL are sensitive to personally familiar, famous, and novel faces. We present the results of two studies of person memory: a meta-analysis of existing fMRI studies and an empirical fMRI study using optimized imaging parameters. Both studies showed left-lateralized ATL activations to familiar individuals while novel faces activated the right ATL. Activations to famous faces were quite ventral, similar to what has been reported in previous high-resolution fMRI studies of non-human primates. These findings suggest that face memory-sensitive patches in the human ATL are in the ventral/polar ATL. PMID:23378834
Hattemer, Katja; Plate, Annika; Heverhagen, Johannes T; Haag, Anja; Keil, Boris; Klein, Karl Martin; Hermsen, Anke; Oertel, Wolfgang H; Hamer, Hajo M; Rosenow, Felix; Knake, Susanne
2011-01-01
the aim of this study was to investigate specific activation patterns and potential gender differences during mental rotation and to investigate whether functional magnetic resonance imaging (fMRI) and functional transcranial Doppler sonography (fTCD) lateralize hemispheric dominance concordantly. regional brain activation and hemispheric dominance during mental rotation (cube perspective test) were investigated in 10 female and 10 male healthy subjects using fMRI and fTCD. significant activation was found in the superior parietal lobe, at the parieto-occipital border, in the middle and superior frontal gyrus bilaterally, and the right inferior frontal gyrus using fMRI. Men showed a stronger lateralization to the right hemisphere during fMRI and a tendency toward stronger right-hemispheric activation during fTCD. Furthermore, more activation in frontal and parieto-occipital regions of the right hemisphere was observed using fMRI. Hemispheric dominance for mental rotation determined by the 2 methods correlated well (P= .008), but did not show concordant results in every single subject. the neural basis of mental rotation depends on a widespread bilateral network. Hemispheric dominance for mental rotation determined by fMRI and fTCD, though correlating well, is not always concordant. Hemispheric lateralization of complex cortical functions such as spatial rotation therefore should be investigated using multimodal imaging approaches, especially if used clinically as a tool for the presurgical evaluation of patients undergoing neurosurgery. Copyright © 2009 by the American Society of Neuroimaging.
High-field fMRI unveils orientation columns in humans.
Yacoub, Essa; Harel, Noam; Ugurbil, Kâmil
2008-07-29
Functional (f)MRI has revolutionized the field of human brain research. fMRI can noninvasively map the spatial architecture of brain function via localized increases in blood flow after sensory or cognitive stimulation. Recent advances in fMRI have led to enhanced sensitivity and spatial accuracy of the measured signals, indicating the possibility of detecting small neuronal ensembles that constitute fundamental computational units in the brain, such as cortical columns. Orientation columns in visual cortex are perhaps the best known example of such a functional organization in the brain. They cannot be discerned via anatomical characteristics, as with ocular dominance columns. Instead, the elucidation of their organization requires functional imaging methods. However, because of insufficient sensitivity, spatial accuracy, and image resolution of the available mapping techniques, thus far, they have not been detected in humans. Here, we demonstrate, by using high-field (7-T) fMRI, the existence and spatial features of orientation- selective columns in humans. Striking similarities were found with the known spatial features of these columns in monkeys. In addition, we found that a larger number of orientation columns are devoted to processing orientations around 90 degrees (vertical stimuli with horizontal motion), whereas relatively similar fMRI signal changes were observed across any given active column. With the current proliferation of high-field MRI systems and constant evolution of fMRI techniques, this study heralds the exciting prospect of exploring unmapped and/or unknown columnar level functional organizations in the human brain.
Heinzel, Stephan; Rimpel, Jérôme; Stelzel, Christine; Rapp, Michael A
2017-01-01
Working memory (WM) performance declines with age. However, several studies have shown that WM training may lead to performance increases not only in the trained task, but also in untrained cognitive transfer tasks. It has been suggested that transfer effects occur if training task and transfer task share specific processing components that are supposedly processed in the same brain areas. In the current study, we investigated whether single-task WM training and training-related alterations in neural activity might support performance in a dual-task setting, thus assessing transfer effects to higher-order control processes in the context of dual-task coordination. A sample of older adults (age 60-72) was assigned to either a training or control group. The training group participated in 12 sessions of an adaptive n-back training. At pre and post-measurement, a multimodal dual-task was performed in all participants to assess transfer effects. This task consisted of two simultaneous delayed match to sample WM tasks using two different stimulus modalities (visual and auditory) that were performed either in isolation (single-task) or in conjunction (dual-task). A subgroup also participated in functional magnetic resonance imaging (fMRI) during the performance of the n-back task before and after training. While no transfer to single-task performance was found, dual-task costs in both the visual modality ( p < 0.05) and the auditory modality ( p < 0.05) decreased at post-measurement in the training but not in the control group. In the fMRI subgroup of the training participants, neural activity changes in left dorsolateral prefrontal cortex (DLPFC) during one-back predicted post-training auditory dual-task costs, while neural activity changes in right DLPFC during three-back predicted visual dual-task costs. Results might indicate an improvement in central executive processing that could facilitate both WM and dual-task coordination.
Heinzel, Stephan; Rimpel, Jérôme; Stelzel, Christine; Rapp, Michael A.
2017-01-01
Working memory (WM) performance declines with age. However, several studies have shown that WM training may lead to performance increases not only in the trained task, but also in untrained cognitive transfer tasks. It has been suggested that transfer effects occur if training task and transfer task share specific processing components that are supposedly processed in the same brain areas. In the current study, we investigated whether single-task WM training and training-related alterations in neural activity might support performance in a dual-task setting, thus assessing transfer effects to higher-order control processes in the context of dual-task coordination. A sample of older adults (age 60–72) was assigned to either a training or control group. The training group participated in 12 sessions of an adaptive n-back training. At pre and post-measurement, a multimodal dual-task was performed in all participants to assess transfer effects. This task consisted of two simultaneous delayed match to sample WM tasks using two different stimulus modalities (visual and auditory) that were performed either in isolation (single-task) or in conjunction (dual-task). A subgroup also participated in functional magnetic resonance imaging (fMRI) during the performance of the n-back task before and after training. While no transfer to single-task performance was found, dual-task costs in both the visual modality (p < 0.05) and the auditory modality (p < 0.05) decreased at post-measurement in the training but not in the control group. In the fMRI subgroup of the training participants, neural activity changes in left dorsolateral prefrontal cortex (DLPFC) during one-back predicted post-training auditory dual-task costs, while neural activity changes in right DLPFC during three-back predicted visual dual-task costs. Results might indicate an improvement in central executive processing that could facilitate both WM and dual-task coordination. PMID:28286477
Test-retest reliability of evoked BOLD signals from a cognitive-emotive fMRI test battery.
Plichta, Michael M; Schwarz, Adam J; Grimm, Oliver; Morgen, Katrin; Mier, Daniela; Haddad, Leila; Gerdes, Antje B M; Sauer, Carina; Tost, Heike; Esslinger, Christine; Colman, Peter; Wilson, Frederick; Kirsch, Peter; Meyer-Lindenberg, Andreas
2012-04-15
Even more than in cognitive research applications, moving fMRI to the clinic and the drug development process requires the generation of stable and reliable signal changes. The performance characteristics of the fMRI paradigm constrain experimental power and may require different study designs (e.g., crossover vs. parallel groups), yet fMRI reliability characteristics can be strongly dependent on the nature of the fMRI task. The present study investigated both within-subject and group-level reliability of a combined three-task fMRI battery targeting three systems of wide applicability in clinical and cognitive neuroscience: an emotional (face matching), a motivational (monetary reward anticipation) and a cognitive (n-back working memory) task. A group of 25 young, healthy volunteers were scanned twice on a 3T MRI scanner with a mean test-retest interval of 14.6 days. FMRI reliability was quantified using the intraclass correlation coefficient (ICC) applied at three different levels ranging from a global to a localized and fine spatial scale: (1) reliability of group-level activation maps over the whole brain and within targeted regions of interest (ROIs); (2) within-subject reliability of ROI-mean amplitudes and (3) within-subject reliability of individual voxels in the target ROIs. Results showed robust evoked activation of all three tasks in their respective target regions (emotional task=amygdala; motivational task=ventral striatum; cognitive task=right dorsolateral prefrontal cortex and parietal cortices) with high effect sizes (ES) of ROI-mean summary values (ES=1.11-1.44 for the faces task, 0.96-1.43 for the reward task, 0.83-2.58 for the n-back task). Reliability of group level activation was excellent for all three tasks with ICCs of 0.89-0.98 at the whole brain level and 0.66-0.97 within target ROIs. Within-subject reliability of ROI-mean amplitudes across sessions was fair to good for the reward task (ICCs=0.56-0.62) and, dependent on the particular ROI, also fair-to-good for the n-back task (ICCs=0.44-0.57) but lower for the faces task (ICC=-0.02-0.16). In conclusion, all three tasks are well suited to between-subject designs, including imaging genetics. When specific recommendations are followed, the n-back and reward task are also suited for within-subject designs, including pharmaco-fMRI. The present study provides task-specific fMRI reliability performance measures that will inform the optimal use, powering and design of fMRI studies using comparable tasks. Copyright © 2012 Elsevier Inc. All rights reserved.
Single-trial EEG-informed fMRI analysis of emotional decision problems in hot executive function.
Guo, Qian; Zhou, Tiantong; Li, Wenjie; Dong, Li; Wang, Suhong; Zou, Ling
2017-07-01
Executive function refers to conscious control in psychological process which relates to thinking and action. Emotional decision is a part of hot executive function and contains emotion and logic elements. As a kind of important social adaptation ability, more and more attention has been paid in recent years. Gambling task can be well performed in the study of emotional decision. As fMRI researches focused on gambling task show not completely consistent brain activation regions, this study adopted EEG-fMRI fusion technology to reveal brain neural activity related with feedback stimuli. In this study, an EEG-informed fMRI analysis was applied to process simultaneous EEG-fMRI data. First, relative power-spectrum analysis and K-means clustering method were performed separately to extract EEG-fMRI features. Then, Generalized linear models were structured using fMRI data and using different EEG features as regressors. The results showed that in the win versus loss stimuli, the activated regions almost covered the caudate, the ventral striatum (VS), the orbital frontal cortex (OFC), and the cingulate. Wide activation areas associated with reward and punishment were revealed by the EEG-fMRI integration analysis than the conventional fMRI results, such as the posterior cingulate and the OFC. The VS and the medial prefrontal cortex (mPFC) were found when EEG power features were performed as regressors of GLM compared with results entering the amplitudes of feedback-related negativity (FRN) as regressors. Furthermore, the brain region activation intensity was the strongest when theta-band power was used as a regressor compared with the other two fusion results. The EEG-based fMRI analysis can more accurately depict the whole-brain activation map and analyze emotional decision problems.
De Martin, Elena; Duran, Dunja; Ghielmetti, Francesco; Visani, Elisa; Aquino, Domenico; Marchetti, Marcello; Sebastiano, Davide Rossi; Cusumano, Davide; Bruzzone, Maria Grazia; Panzica, Ferruccio; Fariselli, Laura
2017-12-01
Magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) provide noninvasive localization of eloquent brain areas for presurgical planning. The aim of this study is the integration of MEG and fMRI maps into a CyberKnife (CK) system to optimize dose planning. Four patients with brain metastases in the motor area underwent functional imaging study of the hand motor cortex before radiosurgery. MEG data were acquired during a visually cued hand motor task. Motor activations were identified also using an fMRI block-designed paradigm. MEG and fMRI maps were then integrated into a CK system and contoured as organs at risk for treatment planning optimization. The integration of fMRI data into the CK system was achieved for all patients by means of a standardized protocol. We also implemented an ad hoc pipeline to convert the MEG signal into a DICOM standard, to make sure that it was readable by our CK treatment planning system. Inclusion of the activation areas into the optimization plan allowed the creation of treatment plans that reduced the irradiation of the motor cortex yet not affecting the brain peripheral dose. The availability of advanced neuroimaging techniques is playing an increasingly important role in radiosurgical planning strategy. We successfully imported MEG and fMRI activations into a CK system. This additional information can improve dose sparing of eloquent areas, allowing a more comprehensive investigation of the related dose-volume constraints that in theory could translate into a gain in tumor local control, and a reduction of neurological complications. Copyright © 2017 Elsevier Inc. All rights reserved.
Ihssen, Niklas; Sokunbi, Moses O; Lawrence, Andrew D; Lawrence, Natalia S; Linden, David E J
2017-06-01
FMRI-based neurofeedback transforms functional brain activation in real-time into sensory stimuli that participants can use to self-regulate brain responses, which can aid the modification of mental states and behavior. Emerging evidence supports the clinical utility of neurofeedback-guided up-regulation of hypoactive networks. In contrast, down-regulation of hyperactive neural circuits appears more difficult to achieve. There are conditions though, in which down-regulation would be clinically useful, including dysfunctional motivational states elicited by salient reward cues, such as food or drug craving. In this proof-of-concept study, 10 healthy females (mean age = 21.40 years, mean BMI = 23.53) who had fasted for 4 h underwent a novel 'motivational neurofeedback' training in which they learned to down-regulate brain activation during exposure to appetitive food pictures. FMRI feedback was given from individually determined target areas and through decreases/increases in food picture size, thus providing salient motivational consequences in terms of cue approach/avoidance. Our preliminary findings suggest that motivational neurofeedback is associated with functionally specific activation decreases in diverse cortical/subcortical regions, including key motivational areas. There was also preliminary evidence for a reduction of hunger after neurofeedback and an association between down-regulation success and the degree of hunger reduction. Decreasing neural cue responses by motivational neurofeedback may provide a useful extension of existing behavioral methods that aim to modulate cue reactivity. Our pilot findings indicate that reduction of neural cue reactivity is not achieved by top-down regulation but arises in a bottom-up manner, possibly through implicit operant shaping of target area activity.
Kataoka, Aiko; Kudo, Ayako; Fujino, Fukue; Chen, Yu-Wen; Mitsuyama, Yuki; Nomura, Shinobu; Yoshioka, Tohru
2013-01-01
Pain and itch are closely related sensations, yet qualitatively quite distinct. Despite recent advances in brain imaging techniques, identifying the differences between pain and itch signals in the brain cortex is difficult due to continuous temporal and spatial changes in the signals. The high spatial resolution of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) has substantially advanced research of pain and itch, but these are uncomfortable because of expensiveness, importability and the limited operation in the shielded room. Here, we used near infrared spectroscopy (NIRS), which has more conventional usability. NIRS can be used to visualize dynamic changes in oxygenated hemoglobin and deoxyhemoglobin concentrations in the capillary networks near activated neural circuits in real-time as well as fMRI. We observed distinct activation patterns in the frontal cortex for acute pain and histamine-induced itch. The prefrontal cortex exhibited a pain-related and itch-related activation pattern of blood flow in each subject. Although it looked as though that activation pattern for pain and itching was different in each subject, further cross correlation analysis of NIRS signals between each channels showed an overall agreement with regard to prefrontal area involvement. As a result, pain-related and itch-related blood flow responses (delayed responses in prefrontal area) were found to be clearly different between pain (τ = +18.7 sec) and itch (τ = +0.63 sec) stimulation. This is the first pilot study to demonstrate the temporal and spatial separation of a pain-induced blood flow and an itch-induced blood flow in human cortex during information processing. PMID:24098378
Implicit structured sequence learning: an fMRI study of the structural mere-exposure effect
Folia, Vasiliki; Petersson, Karl Magnus
2014-01-01
In this event-related fMRI study we investigated the effect of 5 days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the fMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference fMRI baseline measurement allowed us to conclude that these fMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs. PMID:24550865
Implicit structured sequence learning: an fMRI study of the structural mere-exposure effect.
Folia, Vasiliki; Petersson, Karl Magnus
2014-01-01
In this event-related fMRI study we investigated the effect of 5 days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the fMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference fMRI baseline measurement allowed us to conclude that these fMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs.
Seeing Chinese Characters in Action: An fMRI Study of the Perception of Writing Sequences
ERIC Educational Resources Information Center
Yu, Hongbo; Gong, Lanyun; Qiu, Yinchen; Zhou, Xiaolin
2011-01-01
The Chinese character is composed of a finite set of strokes whose order in writing follows consensual principles and is learnt through school education. Using functional magnetic resonance imaging (fMRI), this study investigates the neural activity associated with the perception of writing sequences by asking participants to observe…
Decreased Parahippocampal Activity in Associative Priming: Evidence from an Event-Related fMRI Study
ERIC Educational Resources Information Center
Yang, Jiongjiong; Meckingler, Axel; Xu, Mingwei; Zhao, Yanbing; Weng, Xuchu
2008-01-01
In recent years, there has been intense debate on the neural basis of associative priming, particularly on the role of the medial temporal lobe (MTL) in retrieving associative information without awareness. In this study, event-related fMRI was used while healthy subjects performed a perceptual identification task on briefly presented unrelated…
Gender Differences in the Cognitive Control of Emotion: An fMRI Study
ERIC Educational Resources Information Center
Koch, Kathrin; Pauly, Katharina; Kellermann, Thilo; Seiferth, Nina Y.; Reske, Martina; Backes, Volker; Stocker, Tony; Shah, N. Jon; Amunts, Katrin; Kircher, Tilo; Schneider, Frank; Habel, Ute
2007-01-01
The interaction of emotion and cognition has become a topic of major interest. However, the influence of gender on the interplay between the two processes, along with its neural correlates have not been fully analysed so far. In this functional magnetic resonance imaging (fMRI) study we induced negative emotion using negative olfactory stimulation…
Perceiving Age and Gender in Unfamiliar Faces: An fMRI Study on Face Categorization
ERIC Educational Resources Information Center
Wiese, Holger; Kloth, Nadine; Gullmar, Daniel; Reichenbach, Jurgen R.; Schweinberger, Stefan R.
2012-01-01
Efficient processing of unfamiliar faces typically involves their categorization (e.g., into old vs. young or male vs. female). However, age and gender categorization may pose different perceptual demands. In the present study, we employed functional magnetic resonance imaging (fMRI) to compare the activity evoked during age vs. gender…
An fMRI Study of the Social Competition in Healthy Subjects
ERIC Educational Resources Information Center
Polosan, M.; Baciu, M.; Cousin, E.; Perrone, M.; Pichat, C.; Bougerol, T.
2011-01-01
Social interaction requires the ability to infer another person's mental state (Theory of Mind, ToM) and also executive functions. This fMRI study aimed to identify the cerebral correlates activated by ToM during a specific social interaction, the human-human competition. In this framework, we tested a conflict resolution task (Stroop) adapted to…
[Research progress of functional magnetic resonance imaging in mechanism studies of tinnitus].
Ji, B B; Li, M; Zhang, J N
2018-02-07
Tinnitus is a subjective symptom of phantom sound in the ear or brain without sound or electrical stimulation in the environment. The mechanism of tinnitus is complicated and mostly unclear. Recent studies suggested that the abnormal peripheral auditory input lead to neuroplasticity changes in central nervous system followed by tinnitus. More research concerned on the tinnitus central mechanism. A rapid development of functional magnetic resonance imaging (fMRI) technique made it more widely used in tinnitus central mechanism research. fMRI brought new findings but also presented some shortages in technology and cognition in tinnitus study. This article summarized the outcomes of fMRI research on tinnitus in recent years, exploring its existing problems and application prospects.
Functional magnetic resonance imaging of internet addiction in young adults.
Sepede, Gianna; Tavino, Margherita; Santacroce, Rita; Fiori, Federica; Salerno, Rosa Maria; Di Giannantonio, Massimo
2016-02-28
To report the results of functional magnetic resonance imaging (fMRI) studies pertaining internet addiction disorder (IAD) in young adults. We conducted a systematic review on PubMed, focusing our attention on fMRI studies involving adult IAD patients, free from any comorbid psychiatric condition. The following search words were used, both alone and in combination: fMRI, internet addiction, internet dependence, functional neuroimaging. The search was conducted on April 20(th), 2015 and yielded 58 records. Inclusion criteria were the following: Articles written in English, patients' age ≥ 18 years, patients affected by IAD, studies providing fMRI results during resting state or cognitive/emotional paradigms. Structural MRI studies, functional imaging techniques other than fMRI, studies involving adolescents, patients with comorbid psychiatric, neurological or medical conditions were excluded. By reading titles and abstracts, we excluded 30 records. By reading the full texts of the 28 remaining articles, we identified 18 papers meeting our inclusion criteria and therefore included in the qualitative synthesis. We found 18 studies fulfilling our inclusion criteria, 17 of them conducted in Asia, and including a total number of 666 tested subjects. The included studies reported data acquired during resting state or different paradigms, such as cue-reactivity, guessing or cognitive control tasks. The enrolled patients were usually males (95.4%) and very young (21-25 years). The most represented IAD subtype, reported in more than 85% of patients, was the internet gaming disorder, or videogame addiction. In the resting state studies, the more relevant abnormalities were localized in the superior temporal gyrus, limbic, medial frontal and parietal regions. When analyzing the task related fmri studies, we found that less than half of the papers reported behavioral differences between patients and normal controls, but all of them found significant differences in cortical and subcortical brain regions involved in cognitive control and reward processing: Orbitofrontal cortex, insula, anterior and posterior cingulate cortex, temporal and parietal regions, brain stem and caudate nucleus. IAD may seriously affect young adults' brain functions. It needs to be studied more in depth to provide a clear diagnosis and an adequate treatment.
Functional magnetic resonance imaging of internet addiction in young adults
Sepede, Gianna; Tavino, Margherita; Santacroce, Rita; Fiori, Federica; Salerno, Rosa Maria; Di Giannantonio, Massimo
2016-01-01
AIM: To report the results of functional magnetic resonance imaging (fMRI) studies pertaining internet addiction disorder (IAD) in young adults. METHODS: We conducted a systematic review on PubMed, focusing our attention on fMRI studies involving adult IAD patients, free from any comorbid psychiatric condition. The following search words were used, both alone and in combination: fMRI, internet addiction, internet dependence, functional neuroimaging. The search was conducted on April 20th, 2015 and yielded 58 records. Inclusion criteria were the following: Articles written in English, patients’ age ≥ 18 years, patients affected by IAD, studies providing fMRI results during resting state or cognitive/emotional paradigms. Structural MRI studies, functional imaging techniques other than fMRI, studies involving adolescents, patients with comorbid psychiatric, neurological or medical conditions were excluded. By reading titles and abstracts, we excluded 30 records. By reading the full texts of the 28 remaining articles, we identified 18 papers meeting our inclusion criteria and therefore included in the qualitative synthesis. RESULTS: We found 18 studies fulfilling our inclusion criteria, 17 of them conducted in Asia, and including a total number of 666 tested subjects. The included studies reported data acquired during resting state or different paradigms, such as cue-reactivity, guessing or cognitive control tasks. The enrolled patients were usually males (95.4%) and very young (21-25 years). The most represented IAD subtype, reported in more than 85% of patients, was the internet gaming disorder, or videogame addiction. In the resting state studies, the more relevant abnormalities were localized in the superior temporal gyrus, limbic, medial frontal and parietal regions. When analyzing the task related fmri studies, we found that less than half of the papers reported behavioral differences between patients and normal controls, but all of them found significant differences in cortical and subcortical brain regions involved in cognitive control and reward processing: Orbitofrontal cortex, insula, anterior and posterior cingulate cortex, temporal and parietal regions, brain stem and caudate nucleus. CONCLUSION: IAD may seriously affect young adults’ brain functions. It needs to be studied more in depth to provide a clear diagnosis and an adequate treatment. PMID:26981230
Learning Computational Models of Video Memorability from fMRI Brain Imaging.
Han, Junwei; Chen, Changyuan; Shao, Ling; Hu, Xintao; Han, Jungong; Liu, Tianming
2015-08-01
Generally, various visual media are unequally memorable by the human brain. This paper looks into a new direction of modeling the memorability of video clips and automatically predicting how memorable they are by learning from brain functional magnetic resonance imaging (fMRI). We propose a novel computational framework by integrating the power of low-level audiovisual features and brain activity decoding via fMRI. Initially, a user study experiment is performed to create a ground truth database for measuring video memorability and a set of effective low-level audiovisual features is examined in this database. Then, human subjects' brain fMRI data are obtained when they are watching the video clips. The fMRI-derived features that convey the brain activity of memorizing videos are extracted using a universal brain reference system. Finally, due to the fact that fMRI scanning is expensive and time-consuming, a computational model is learned on our benchmark dataset with the objective of maximizing the correlation between the low-level audiovisual features and the fMRI-derived features using joint subspace learning. The learned model can then automatically predict the memorability of videos without fMRI scans. Evaluations on publically available image and video databases demonstrate the effectiveness of the proposed framework.
Memory Performance and fMRI Signal in Presymptomatic Familial Alzheimer’s Disease
Braskie, Meredith N.; Medina, Luis D.; Rodriguez-Agudelo, Yaneth; Geschwind, Daniel H.; Macias-Islas, Miguel Angel; Thompson, Paul M.; Cummings, Jeffrey L.; Bookheimer, Susan Y.; Ringman, John M.
2013-01-01
Rare autosomal dominant mutations result in familial Alzheimer’s disease (FAD) with a relatively consistent age of onset within families. This provides an estimate of years until disease onset (relative age) in mutation carriers. Increased AD risk has been associated with differences in functional magnetic resonance imaging (fMRI) activity during memory tasks, but most of these studies have focused on possession of apolipoprotein E allele 4 (APOE4), a risk factor, but not causative variant, of late-onset AD. Evaluation of fMRI activity in presymptomatic FAD mutation carriers versus noncarriers provides insight into preclinical changes in those who will certainly develop AD in a prescribed period of time. Adults from FAD mutation-carrying families (nine mutation carriers, eight noncarriers) underwent fMRI scanning while performing a memory task. We examined fMRI signal differences between carriers and noncarriers, and how signal related to fMRI task performance within mutation status group, controlling for relative age and education. Mutation noncarriers had greater retrieval period activity than carriers in several AD-relevant regions, including the left hippocampus. Better performing noncarriers showed greater encoding period activity including in the parahippocampal gyrus. Poorer performing carriers showed greater retrieval period signal, including in the frontal and temporal lobes, suggesting underlying pathological processes. PMID:22806961
Feature-space-based FMRI analysis using the optimal linear transformation.
Sun, Fengrong; Morris, Drew; Lee, Wayne; Taylor, Margot J; Mills, Travis; Babyn, Paul S
2010-09-01
The optimal linear transformation (OLT), an image analysis technique of feature space, was first presented in the field of MRI. This paper proposes a method of extending OLT from MRI to functional MRI (fMRI) to improve the activation-detection performance over conventional approaches of fMRI analysis. In this method, first, ideal hemodynamic response time series for different stimuli were generated by convolving the theoretical hemodynamic response model with the stimulus timing. Second, constructing hypothetical signature vectors for different activity patterns of interest by virtue of the ideal hemodynamic responses, OLT was used to extract features of fMRI data. The resultant feature space had particular geometric clustering properties. It was then classified into different groups, each pertaining to an activity pattern of interest; the applied signature vector for each group was obtained by averaging. Third, using the applied signature vectors, OLT was applied again to generate fMRI composite images with high SNRs for the desired activity patterns. Simulations and a blocked fMRI experiment were employed for the method to be verified and compared with the general linear model (GLM)-based analysis. The simulation studies and the experimental results indicated the superiority of the proposed method over the GLM-based analysis in detecting brain activities.
[fMRI study of the dominant hemisphere for language in patients with brain tumor].
Buklina, S B; Podoprigora, A E; Pronin, I N; Shishkina, L V; Boldyreva, G N; Bondarenko, A A; Fadeeva, L M; Kornienko, V N; Zhukov, V Iu
2013-01-01
Paper describes a study of language lateralization of patients with brain tumors, measured by preoperative functional magnetic resonance imaging (fMRI) and comparison results with tumor histology and profile of functional asymmetry. During the study 21 patient underwent fMRI scan. 15 patients had a tumor in the left and 6 in the right hemisphere. Tumors were localized mainly in the frontal, temporal and fronto-temporal regions. Histological diagnosis in 8 cases was malignant Grade IV, in 13 cases--Grade I-III. fMRI study was perfomed on scanner "Signa Exite" with a field strength of 1.5 As speech test reciting the months of the year in reverse order was used. fMRI scan results were compared with the profile of functional asymmetry, which was received with the results of questionnaire Annette and dichotic listening test. Broca's area was found in 7 cases in the left hemisphere, 6 had a tumor Grade I-III. And one patient with glioblastoma had a tumor of the right hemisphere. Broca's area in the right hemisphere was found in 3 patients (2 patients with left sided tumor, and one with right-sided tumor). One patient with left-sided tumor had mild motor aphasia. Bilateral activation in both hemispheres of the brain was observed in 6 patients. All of them had tumor Grade II-III of the left hemisphere. Signs of left-handedness were revealed only in half of these patients. Broca's area was not found in 4 cases. All of them had large malignant tumors Grade IV. One patient couldn't handle program of the research. Results of fMRI scans, questionnaire Annette and dichotic listening test frequently were not the same, which is significant. Bilateral activation in speech-loads may be a reflection of brain plasticity in cases of long-growing tumors. Thus it's important to consider the full range of clinical data in studying the problem of the dominant hemisphere for language.
A general probabilistic model for group independent component analysis and its estimation methods
Guo, Ying
2012-01-01
SUMMARY Independent component analysis (ICA) has become an important tool for analyzing data from functional magnetic resonance imaging (fMRI) studies. ICA has been successfully applied to single-subject fMRI data. The extension of ICA to group inferences in neuroimaging studies, however, is challenging due to the unavailability of a pre-specified group design matrix and the uncertainty in between-subjects variability in fMRI data. We present a general probabilistic ICA (PICA) model that can accommodate varying group structures of multi-subject spatio-temporal processes. An advantage of the proposed model is that it can flexibly model various types of group structures in different underlying neural source signals and under different experimental conditions in fMRI studies. A maximum likelihood method is used for estimating this general group ICA model. We propose two EM algorithms to obtain the ML estimates. The first method is an exact EM algorithm which provides an exact E-step and an explicit noniterative M-step. The second method is an variational approximation EM algorithm which is computationally more efficient than the exact EM. In simulation studies, we first compare the performance of the proposed general group PICA model and the existing probabilistic group ICA approach. We then compare the two proposed EM algorithms and show the variational approximation EM achieves comparable accuracy to the exact EM with significantly less computation time. An fMRI data example is used to illustrate application of the proposed methods. PMID:21517789
Multivariate Strategies in Functional Magnetic Resonance Imaging
ERIC Educational Resources Information Center
Hansen, Lars Kai
2007-01-01
We discuss aspects of multivariate fMRI modeling, including the statistical evaluation of multivariate models and means for dimensional reduction. In a case study we analyze linear and non-linear dimensional reduction tools in the context of a "mind reading" predictive multivariate fMRI model.
The Global Signal in fMRI: Nuisance or Information?
Nalci, Alican; Falahpour, Maryam
2017-01-01
The global signal is widely used as a regressor or normalization factor for removing the effects of global variations in the analysis of functional magnetic resonance imaging (fMRI) studies. However, there is considerable controversy over its use because of the potential bias that can be introduced when it is applied to the analysis of both task-related and resting-state fMRI studies. In this paper we take a closer look at the global signal, examining in detail the various sources that can contribute to the signal. For the most part, the global signal has been treated as a nuisance term, but there is growing evidence that it may also contain valuable information. We also examine the various ways that the global signal has been used in the analysis of fMRI data, including global signal regression, global signal subtraction, and global signal normalization. Furthermore, we describe new ways for understanding the effects of global signal regression and its relation to the other approaches. PMID:28213118
Integration of fMRI, NIROT and ERP for studies of human brain function.
Gore, John C; Horovitz, Silvina G; Cannistraci, Christopher J; Skudlarski, Pavel
2006-05-01
Different methods of assessing human brain function possess specific advantages and disadvantages compared to others, but it is believed that combining different approaches will provide greater information than can be obtained from each alone. For example, functional magnetic resonance imaging (fMRI) has good spatial resolution but poor temporal resolution, whereas the converse is true for electrophysiological recordings (event-related potentials or ERPs). In this review of recent work, we highlight a novel approach to combining these modalities in a manner designed to increase information on the origins and locations of the generators of specific ERPs and the relationship between fMRI and ERP signals. Near infrared imaging techniques have also been studied as alternatives to fMRI and can be readily integrated with simultaneous electrophysiological recordings. Each of these modalities may in principle be also used in so-called steady-state acquisitions in which the correlational structure of signals from the brain may be analyzed to provide new insights into brain function.
BOLDSync: a MATLAB-based toolbox for synchronized stimulus presentation in functional MRI.
Joshi, Jitesh; Saharan, Sumiti; Mandal, Pravat K
2014-02-15
Precise and synchronized presentation of paradigm stimuli in functional magnetic resonance imaging (fMRI) is central to obtaining accurate information about brain regions involved in a specific task. In this manuscript, we present a new MATLAB-based toolbox, BOLDSync, for synchronized stimulus presentation in fMRI. BOLDSync provides a user friendly platform for design and presentation of visual, audio, as well as multimodal audio-visual (AV) stimuli in functional imaging experiments. We present simulation experiments that demonstrate the millisecond synchronization accuracy of BOLDSync, and also illustrate the functionalities of BOLDSync through application to an AV fMRI study. BOLDSync gains an advantage over other available proprietary and open-source toolboxes by offering a user friendly and accessible interface that affords both precision in stimulus presentation and versatility across various types of stimulus designs and system setups. BOLDSync is a reliable, efficient, and versatile solution for synchronized stimulus presentation in fMRI study. Copyright © 2013 Elsevier B.V. All rights reserved.
Stern, C E; Corkin, S; González, R G; Guimaraes, A R; Baker, J R; Jennings, P J; Carr, C A; Sugiura, R M; Vedantham, V; Rosen, B R
1996-01-01
Considerable evidence exists to support the hypothesis that the hippocampus and related medial temporal lobe structures are crucial for the encoding and storage of information in long-term memory. Few human imaging studies, however, have successfully shown signal intensity changes in these areas during encoding or retrieval. Using functional magnetic resonance imaging (fMRI), we studied normal human subjects while they performed a novel picture encoding task. High-speed echo-planar imaging techniques evaluated fMRI signal changes throughout the brain. During the encoding of novel pictures, statistically significant increases in fMRI signal were observed bilaterally in the posterior hippocampal formation and parahippocampal gyrus and in the lingual and fusiform gyri. To our knowledge, this experiment is the first fMRI study to show robust signal changes in the human hippocampal region. It also provides evidence that the encoding of novel, complex pictures depends upon an interaction between ventral cortical regions, specialized for object vision, and the hippocampal formation and parahippocampal gyrus, specialized for long-term memory. Images Fig. 1 Fig. 3 PMID:8710927
Khachaturian, Mark Haig
2010-01-01
Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).
Regional homogeneity changes in prelingually deafened patients: a resting-state fMRI study
NASA Astrophysics Data System (ADS)
Li, Wenjing; He, Huiguang; Xian, Junfang; Lv, Bin; Li, Meng; Li, Yong; Liu, Zhaohui; Wang, Zhenchang
2010-03-01
Resting-state functional magnetic resonance imaging (fMRI) is a technique that measures the intrinsic function of brain and has some advantages over task-induced fMRI. Regional homogeneity (ReHo) assesses the similarity of the time series of a given voxel with its nearest neighbors on a voxel-by-voxel basis, which reflects the temporal homogeneity of the regional BOLD signal. In the present study, we used the resting state fMRI data to investigate the ReHo changes of the whole brain in the prelingually deafened patients relative to normal controls. 18 deaf patients and 22 healthy subjects were scanned. Kendall's coefficient of concordance (KCC) was calculated to measure the degree of regional coherence of fMRI time courses. We found that regional coherence significantly decreased in the left frontal lobe, bilateral temporal lobes and right thalamus, and increased in the postcentral gyrus, cingulate gyrus, left temporal lobe, left thalamus and cerebellum in deaf patients compared with controls. These results show that the prelingually deafened patients have higher degree of regional coherence in the paleocortex, and lower degree in neocortex. Since neocortex plays an important role in the development of auditory, these evidences may suggest that the deaf persons reorganize the paleocortex to offset the loss of auditory.
Khachaturian, Mark Haig
2010-01-01
Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4–8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic). PMID:21243106
Studying brain organization via spontaneous fMRI signal.
Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E
2014-11-19
In recent years, some substantial advances in understanding human (and nonhuman) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the "resting" brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called "resting state." This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting-state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. Copyright © 2014 Elsevier Inc. All rights reserved.
Zanto, Theodore P; Pa, Judy; Gazzaley, Adam
2014-01-01
As the aging population grows, it has become increasingly important to carefully characterize amnestic mild cognitive impairment (aMCI), a preclinical stage of Alzheimer's disease (AD). Functional magnetic resonance imaging (fMRI) is a valuable tool for monitoring disease progression in selectively vulnerable brain regions associated with AD neuropathology. However, the reliability of fMRI data in longitudinal studies of older adults with aMCI is largely unexplored. To address this, aMCI participants completed two visual working tasks, a Delayed-Recognition task and a One-Back task, on three separate scanning sessions over a three-month period. Test-retest reliability of the fMRI blood oxygen level dependent (BOLD) activity was assessed using an intraclass correlation (ICC) analysis approach. Results indicated that brain regions engaged during the task displayed greater reliability across sessions compared to regions that were not utilized by the task. During task-engagement, differential reliability scores were observed across the brain such that the frontal lobe, medial temporal lobe, and subcortical structures exhibited fair to moderate reliability (ICC=0.3-0.6), while temporal, parietal, and occipital regions exhibited moderate to good reliability (ICC=0.4-0.7). Additionally, reliability across brain regions was more stable when three fMRI sessions were used in the ICC calculation relative to two fMRI sessions. In conclusion, the fMRI BOLD signal is reliable across scanning sessions in this population and thus a useful tool for tracking longitudinal change in observational and interventional studies in aMCI. © 2013.
Hallquist, Michael N.; Hwang, Kai; Luna, Beatriz
2013-01-01
Recent resting-state functional connectivity fMRI (RS-fcMRI) research has demonstrated that head motion during fMRI acquisition systematically influences connectivity estimates despite bandpass filtering and nuisance regression, which are intended to reduce such nuisance variability. We provide evidence that the effects of head motion and other nuisance signals are poorly controlled when the fMRI time series are bandpass-filtered but the regressors are unfiltered, resulting in the inadvertent reintroduction of nuisance-related variation into frequencies previously suppressed by the bandpass filter, as well as suboptimal correction for noise signals in the frequencies of interest. This is important because many RS-fcMRI studies, including some focusing on motion-related artifacts, have applied this approach. In two cohorts of individuals (n = 117 and 22) who completed resting-state fMRI scans, we found that the bandpass-regress approach consistently overestimated functional connectivity across the brain, typically on the order of r = .10 – .35, relative to a simultaneous bandpass filtering and nuisance regression approach. Inflated correlations under the bandpass-regress approach were associated with head motion and cardiac artifacts. Furthermore, distance-related differences in the association of head motion and connectivity estimates were much weaker for the simultaneous filtering approach. We recommend that future RS-fcMRI studies ensure that the frequencies of nuisance regressors and fMRI data match prior to nuisance regression, and we advocate a simultaneous bandpass filtering and nuisance regression strategy that better controls nuisance-related variability. PMID:23747457
Simultaneous GCaMP6-based fiber photometry and fMRI in rats.
Liang, Zhifeng; Ma, Yuncong; Watson, Glenn D R; Zhang, Nanyin
2017-09-01
Understanding the relationship between neural and vascular signals is essential for interpretation of functional MRI (fMRI) results with respect to underlying neuronal activity. Simultaneously measuring neural activity using electrophysiology with fMRI has been highly valuable in elucidating the neural basis of the blood oxygenation-level dependent (BOLD) signal. However, this approach is also technically challenging due to the electromagnetic interference that is observed in electrophysiological recordings during MRI scanning. Recording optical correlates of neural activity, such as calcium signals, avoids this issue, and has opened a new avenue to simultaneously acquire neural and BOLD signals. The present study is the first to demonstrate the feasibility of simultaneously and repeatedly acquiring calcium and BOLD signals in animals using a genetically encoded calcium indicator, GCaMP6. This approach was validated with a visual stimulation experiment, during which robust increases of both calcium and BOLD signals in the superior colliculus were observed. In addition, repeated measurement in the same animal demonstrated reproducible calcium and BOLD responses to the same stimuli. Taken together, simultaneous GCaMP6-based fiber photometry and fMRI recording presents a novel, artifact-free approach to simultaneously measuring neural and fMRI signals. Furthermore, given the cell-type specificity of GCaMP6, this approach has the potential to mechanistically dissect the contributions of individual neuron populations to BOLD signal, and ultimately reveal its underlying neural mechanisms. The current study established the method for simultaneous GCaMP6-based fiber photometry and fMRI in rats. Copyright © 2017 Elsevier B.V. All rights reserved.
Schoo, L A; van Zandvoort, M J E; Biessels, G J; Kappelle, L J; Postma, A; de Haan, E H F
2011-03-01
Recent functional magnetic resonance imaging (fMRI) studies addressing healthy subjects point towards posterior parietal cortex (PPC) involvement in episodic memory tasks. This is noteworthy, since neuropsychological studies usually do not connect parietal lesions to episodic memory impairments. Therefore an inventory of the possible factors behind this apparent paradox is warranted. This review compared fMRI studies which demonstrated PPC activity in episodic memory tasks, with findings with studies of patients with PPC lesions. A systematic evaluation of possible explanations for the posterior parietal paradox indicates that PPC activation in fMRI studies does not appear to be attributable to confounding cognitive/psychomotor processes, such as button pressing or stimulus processing. What may be of more importance is the extent to which an episodic memory task loads on three closely related cognitive processes: effort and attention, self-related activity, and scene and image construction. We discuss to what extent these cognitive processes can account for the paradox between lesion and fMRI results. They are strongly intertwined with the episodic memory and may critically determine in how far the PPC plays a role in a given memory task. Future patient studies might profit from specifically taking these cognitive factors into consideration in the task design. ©2010 The British Psychological Society.
Hippocampal Networks Habituate as Novelty Accumulates
ERIC Educational Resources Information Center
Murty, Vishnu P.; Ballard, Ian C.; Macduffie, Katherine E.; Krebs, Ruth M.; Adcock, R. Alison
2013-01-01
Novelty detection, a critical computation within the medial temporal lobe (MTL) memory system, necessarily depends on prior experience. The current study used functional magnetic resonance imaging (fMRI) in humans to investigate dynamic changes in MTL activation and functional connectivity as experience with novelty accumulates. fMRI data were…
Piervincenzi, Claudia; Galli, Manuela; Melgari, Jean Marc; Salomone, Gaetano; Sale, Patrizio; Mallio, Carlo Augusto; Carducci, Filippo; Stocchi, Fabrizio
2015-01-01
Objective The present study shows the results of a double-blind sham-controlled pilot trial to test whether measurable stimulus-specific functional connectivity changes exist after Automatic Mechanical Peripheral Stimulation (AMPS) in patients with idiopathic Parkinson Disease. Methods Eleven patients (6 women and 5 men) with idiopathic Parkinson Disease underwent brain fMRI immediately before and after sham or effective AMPS. Resting state Functional Connectivity (RSFC) was assessed using the seed-ROI based analysis. Seed ROIs were positioned on basal ganglia, on primary sensory-motor cortices, on the supplementary motor areas and on the cerebellum. Individual differences for pre- and post-effective AMPS and pre- and post-sham condition were obtained and first entered in respective one-sample t-test analyses, to evaluate the mean effect of condition. Results Effective AMPS, but not sham stimulation, induced increase of RSFC of the sensory motor cortex, nucleus striatum and cerebellum. Secondly, individual differences for both conditions were entered into paired group t-test analysis to rule out sub-threshold effects of sham stimulation, which showed stronger connectivity of the striatum nucleus with the right lateral occipital cortex and the cuneal cortex (max Z score 3.12) and with the right anterior temporal lobe (max Z score 3.42) and of the cerebellum with the right lateral occipital cortex and the right cerebellar cortex (max Z score 3.79). Conclusions Our results suggest that effective AMPS acutely increases RSFC of brain regions involved in visuo-spatial and sensory-motor integration. Classification of Evidence This study provides Class II evidence that automatic mechanical peripheral stimulation is effective in modulating brain functional connectivity of patients with Parkinson Disease at rest. Trial Registration Clinical Trials.gov NCT01815281 PMID:26469868
Fischer, Adina S; Whitfield-Gabrieli, Susan; Roth, Robert M; Brunette, Mary F; Green, Alan I
2014-09-01
Cannabis use disorder (CUD) occurs in up to 42% of patients with schizophrenia and substantially worsens disease progression. The basis of CUD in schizophrenia is unclear and available treatments are rarely successful at limiting cannabis use. We have proposed that a dysregulated brain reward circuit (BRC) may underpin cannabis use in these patients. In the present pilot study, we used whole-brain seed-to-voxel resting state functional connectivity (rs-fc) to examine the BRC of patients with schizophrenia and CUD, and to explore the effects of smoked cannabis and orally administered delta-9-tetrahydrocannabinol (THC) on the BRC. 12 patients with schizophrenia and CUD and 12 control subjects each completed two fMRI resting scans, with patients administered either a 3.6% THC cannabis cigarette (n=6) or a 15 mg THC capsule (n=6) prior to their second scan. Results revealed significantly reduced connectivity at baseline in patients relative to controls, with most pronounced hypoconnectivity found between the nucleus accumbens and prefrontal cortical BRC regions (i.e., anterior prefrontal cortex, orbitofrontal cortex, and anterior cingulate cortex). Both cannabis and THC administration increased connectivity between these regions, in direct correlation with increases in plasma THC levels. This study is the first to investigate interregional connectivity of the BRC and the effects of cannabis and THC on this circuit in patients with schizophrenia and CUD. The findings from this pilot study support the use of rs-fc as a means of measuring the integrity of the BRC and the effects of pharmacologic agents acting on this circuit in patients with schizophrenia and CUD. Copyright © 2014. Published by Elsevier B.V.
Quattrocchi, Carlo Cosimo; de Pandis, Maria Francesca; Piervincenzi, Claudia; Galli, Manuela; Melgari, Jean Marc; Salomone, Gaetano; Sale, Patrizio; Mallio, Carlo Augusto; Carducci, Filippo; Stocchi, Fabrizio
2015-01-01
The present study shows the results of a double-blind sham-controlled pilot trial to test whether measurable stimulus-specific functional connectivity changes exist after Automatic Mechanical Peripheral Stimulation (AMPS) in patients with idiopathic Parkinson Disease. Eleven patients (6 women and 5 men) with idiopathic Parkinson Disease underwent brain fMRI immediately before and after sham or effective AMPS. Resting state Functional Connectivity (RSFC) was assessed using the seed-ROI based analysis. Seed ROIs were positioned on basal ganglia, on primary sensory-motor cortices, on the supplementary motor areas and on the cerebellum. Individual differences for pre- and post-effective AMPS and pre- and post-sham condition were obtained and first entered in respective one-sample t-test analyses, to evaluate the mean effect of condition. Effective AMPS, but not sham stimulation, induced increase of RSFC of the sensory motor cortex, nucleus striatum and cerebellum. Secondly, individual differences for both conditions were entered into paired group t-test analysis to rule out sub-threshold effects of sham stimulation, which showed stronger connectivity of the striatum nucleus with the right lateral occipital cortex and the cuneal cortex (max Z score 3.12) and with the right anterior temporal lobe (max Z score 3.42) and of the cerebellum with the right lateral occipital cortex and the right cerebellar cortex (max Z score 3.79). Our results suggest that effective AMPS acutely increases RSFC of brain regions involved in visuo-spatial and sensory-motor integration. This study provides Class II evidence that automatic mechanical peripheral stimulation is effective in modulating brain functional connectivity of patients with Parkinson Disease at rest. Clinical Trials.gov NCT01815281.
Fischer, Adina S.; Whitfield-Gabrieli, Susan; Roth, Robert M.; Brunette, Mary F.; Green, Alan I.
2016-01-01
Cannabis use disorder (CUD) occurs in up to 42% of patients with schizophrenia and substantially worsens disease progression. The basis of CUD in schizophrenia is unclear and available treatments are rarely successful at limiting cannabis use. We have proposed that a dysregulated brain reward circuit (BRC) may underpin cannabis use in these patients. In the present pilot study, we used whole-brain seed-to-voxel resting state functional connectivity (rs-fc) to examine the BRC of patients with schizophrenia and CUD, and to explore the effects of smoked cannabis and orally administered delta-9-tetrahydrocannabinol (THC) on the BRC. 12 patients with schizophrenia and CUD and 12 control subjects each completed two fMRI resting scans, with patients administered either a 3.6% THC cannabis cigarette (n=6) or a 15mg THC capsule (n=6) prior to their second scan. Results revealed significantly reduced connectivity at baseline in patients relative to controls, with most pronounced hypoconnectivity found between the nucleus accumbens and prefrontal cortical BRC regions (i.e., anterior prefrontal cortex, orbitofrontal cortex, and anterior cingulate cortex). Both cannabis and THC administration increased connectivity between these regions, in direct correlation with increases in plasma THC levels. This study is the first to investigate interregional connectivity of the BRC and the effects of cannabis and THC on this circuit in patients with schizophrenia and CUD. The findings from this pilot study support the use of rs-fc as a means of measuring the integrity of the BRC and the effects of pharmacologic agents acting on this circuit in patients with schizophrenia and CUD. PMID:25037524
Mental Time Travel into the Past and the Future in Healthy Aged Adults: An fMRI Study
ERIC Educational Resources Information Center
Viard, Armelle; Chetelat, Gael; Lebreton, Karine; Desgranges, Beatrice; Landeau, Brigitte; de La Sayette, Vincent; Eustache, Francis; Piolino, Pascale
2011-01-01
Remembering the past and envisioning the future rely on episodic memory which enables mental time travel. Studies in young adults indicate that past and future thinking share common cognitive and neural underpinnings. No imaging data is yet available in healthy aged subjects. Using fMRI, we scanned older subjects while they remembered personal…
The Effect of 30% Oxygen on Visuospatial Performance and Brain Activation: An Fmri Study
ERIC Educational Resources Information Center
Chung, S.C.; Tack, G.R.; Lee, B.; Eom, G.M.; Lee, S.Y.; Sohn, J.H.
2004-01-01
This study aimed to investigate the hypothesis that administration of the air with 30% oxygen compared with normal air (21% oxygen) enhances cognitive functioning through increased activation in the brain. A visuospatial task was presented while brain images were scanned by a 3 T fMRI system. The results showed that there was an improvement in…
Prospects of functional magnetic resonance imaging as lie detector.
Rusconi, Elena; Mitchener-Nissen, Timothy
2013-09-24
Following the demise of the polygraph, supporters of assisted scientific lie detection tools have enthusiastically appropriated neuroimaging technologies "as the savior of scientifically verifiable lie detection in the courtroom" (Gerard, 2008: 5). These proponents believe the future impact of neuroscience "will be inevitable, dramatic, and will fundamentally alter the way the law does business" (Erickson, 2010: 29); however, such enthusiasm may prove premature. For in nearly every article published by independent researchers in peer reviewed journals, the respective authors acknowledge that fMRI research, processes, and technology are insufficiently developed and understood for gatekeepers to even consider introducing these neuroimaging measures into criminal courts as they stand today for the purpose of determining the veracity of statements made. Regardless of how favorable their analyses of fMRI or its future potential, they all acknowledge the presence of issues yet to be resolved. Even assuming a future where these issues are resolved and an appropriate fMRI lie-detection process is developed, its integration into criminal trials is not assured for the very success of such a future system may necessitate its exclusion from courtrooms on the basis of existing legal and ethical prohibitions. In this piece, aimed for a multidisciplinary readership, we seek to highlight and bring together the multitude of hurdles which would need to be successfully overcome before fMRI can (if ever) be a viable applied lie detection system. We argue that the current status of fMRI studies on lie detection meets neither basic legal nor scientific standards. We identify four general classes of hurdles (scientific, legal and ethical, operational, and social) and provide an overview on the stages and operations involved in fMRI studies, as well as the difficulties of translating these laboratory protocols into a practical criminal justice environment. It is our overall conclusion that fMRI is unlikely to constitute a viable lie detector for criminal courts.
Prospects of functional magnetic resonance imaging as lie detector
Rusconi, Elena; Mitchener-Nissen, Timothy
2013-01-01
Following the demise of the polygraph, supporters of assisted scientific lie detection tools have enthusiastically appropriated neuroimaging technologies “as the savior of scientifically verifiable lie detection in the courtroom” (Gerard, 2008: 5). These proponents believe the future impact of neuroscience “will be inevitable, dramatic, and will fundamentally alter the way the law does business” (Erickson, 2010: 29); however, such enthusiasm may prove premature. For in nearly every article published by independent researchers in peer reviewed journals, the respective authors acknowledge that fMRI research, processes, and technology are insufficiently developed and understood for gatekeepers to even consider introducing these neuroimaging measures into criminal courts as they stand today for the purpose of determining the veracity of statements made. Regardless of how favorable their analyses of fMRI or its future potential, they all acknowledge the presence of issues yet to be resolved. Even assuming a future where these issues are resolved and an appropriate fMRI lie-detection process is developed, its integration into criminal trials is not assured for the very success of such a future system may necessitate its exclusion from courtrooms on the basis of existing legal and ethical prohibitions. In this piece, aimed for a multidisciplinary readership, we seek to highlight and bring together the multitude of hurdles which would need to be successfully overcome before fMRI can (if ever) be a viable applied lie detection system. We argue that the current status of fMRI studies on lie detection meets neither basic legal nor scientific standards. We identify four general classes of hurdles (scientific, legal and ethical, operational, and social) and provide an overview on the stages and operations involved in fMRI studies, as well as the difficulties of translating these laboratory protocols into a practical criminal justice environment. It is our overall conclusion that fMRI is unlikely to constitute a viable lie detector for criminal courts. PMID:24065912
A receptor-based model for dopamine-induced fMRI signal
Mandeville, Joseph. B.; Sander, Christin Y. M.; Jenkins, Bruce G.; Hooker, Jacob M.; Catana, Ciprian; Vanduffel, Wim; Alpert, Nathaniel M.; Rosen, Bruce R.; Normandin, Marc D.
2013-01-01
This report describes a multi-receptor physiological model of the fMRI temporal response and signal magnitude evoked by drugs that elevate synaptic dopamine in basal ganglia. The model is formulated as a summation of dopamine’s effects at D1-like and D2-like receptor families, which produce functional excitation and inhibition, respectively, as measured by molecular indicators like adenylate cyclase or neuroimaging techniques like fMRI. Functional effects within the model are described in terms of relative changes in receptor occupancies scaled by receptor densities and neuro-vascular coupling constants. Using literature parameters, the model reconciles many discrepant observations and interpretations of pre-clinical data. Additionally, we present data showing that amphetamine stimulation produces fMRI inhibition at low doses and a biphasic response at higher doses in the basal ganglia of non-human primates (NHP), in agreement with model predictions based upon the respective levels of evoked dopamine. Because information about dopamine release is required to inform the fMRI model, we simultaneously acquired PET 11C-raclopride data in several studies to evaluate the relationship between raclopride displacement and assumptions about dopamine release. At high levels of dopamine release, results suggest that refinements of the model will be required to consistently describe the PET and fMRI data. Overall, the remarkable success of the model in describing a wide range of preclinical fMRI data indicate that this approach will be useful for guiding the design and analysis of basic science and clinical investigations and for interpreting the functional consequences of dopaminergic stimulation in normal subjects and in populations with dopaminergic neuroadaptations. PMID:23466936
Aggarwal, Priya; Gupta, Anubha
2017-12-01
A number of reconstruction methods have been proposed recently for accelerated functional Magnetic Resonance Imaging (fMRI) data collection. However, existing methods suffer with the challenge of greater artifacts at high acceleration factors. This paper addresses the issue of accelerating fMRI collection via undersampled k-space measurements combined with the proposed method based on l 1 -l 1 norm constraints, wherein we impose first l 1 -norm sparsity on the voxel time series (temporal data) in the transformed domain and the second l 1 -norm sparsity on the successive difference of the same temporal data. Hence, we name the proposed method as Double Temporal Sparsity based Reconstruction (DTSR) method. The robustness of the proposed DTSR method has been thoroughly evaluated both at the subject level and at the group level on real fMRI data. Results are presented at various acceleration factors. Quantitative analysis in terms of Peak Signal-to-Noise Ratio (PSNR) and other metrics, and qualitative analysis in terms of reproducibility of brain Resting State Networks (RSNs) demonstrate that the proposed method is accurate and robust. In addition, the proposed DTSR method preserves brain networks that are important for studying fMRI data. Compared to the existing methods, the DTSR method shows promising potential with an improvement of 10-12 dB in PSNR with acceleration factors upto 3.5 on resting state fMRI data. Simulation results on real data demonstrate that DTSR method can be used to acquire accelerated fMRI with accurate detection of RSNs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G.; Villani, Flavio; Ghielmetti, Francesco
2018-01-01
Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery. PMID:29922216
Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G; Villani, Flavio; Ghielmetti, Francesco
2018-01-01
Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery.
Cognitive dissonance induction in everyday life: An fMRI study.
de Vries, Jan; Byrne, Mark; Kehoe, Elizabeth
2015-01-01
This functional magnetic resonance imaging (fMRI) study explored the neural substrates of cognitive dissonance during dissonance "induction." A novel task was developed based on the results of a separate item selection study (n = 125). Items were designed to generate dissonance by prompting participants to reflect on everyday personal experiences that were inconsistent with values they had expressed support for. One experimental condition (dissonance) and three control conditions (justification, consonance, and non-self-related inconsistency) were used for comparison. Items of all four types were presented to each participant (n = 14) in a randomized design. The fMRI analysis used a whole-brain approach focusing on the moments dissonance was induced. Results showed that in comparison with the control conditions the dissonance experience led to higher levels of activation in several brain regions. Specifically dissonance was associated with increased neural activation in key brain regions including the anterior cingulate cortex (ACC), anterior insula, inferior frontal gyrus, and precuneus. This supports current perspectives that emphasize the role of anterior cingulate and insula in dissonance processing. Less extensive activation in the prefrontal cortex than in some previous studies is consistent with this study's emphasis on dissonance induction, rather than reduction. This article also contains a short review and comparison with other fMRI studies of cognitive dissonance.
The insula is not specifically involved in disgust processing: an fMRI study.
Schienle, A; Stark, R; Walter, B; Blecker, C; Ott, U; Kirsch, P; Sammer, G; Vaitl, D
2002-11-15
fMRI studies have shown that the perception of facial disgust expressions specifically activates the insula. The present fMRI study investigated whether this structure is also involved in the processing of visual stimuli depicting non-mimic disgust elicitors compared to fear-inducing and neutral scenes. Twelve female subjects were scanned while viewing alternating blocks of 40 disgust-inducing, 40 fear-inducing and 40 affectively neutral pictures, shown for 1.5 s each. Afterwards, affective ratings were assessed. The disgust pictures, rated as highly repulsive, induced activation in the insula, the amygdala, the orbitofrontal and occipito-temporal cortex. Since during the fear condition the insula was also involved, our findings do not fit the idea of the insula as a specific disgust processor.
Age-Related Variability in Cortical Activity during Language Processing
ERIC Educational Resources Information Center
Fridriksson, Julius; Morrow, K. Leigh; Moser, Dana; Baylis, Gordon C.
2006-01-01
Purpose: The present study investigated the extent of cortical activity during overt picture naming using functional magnetic resonance imaging (fMRI). Method: Participants comprised 20 healthy, adult participants with ages ranging from 20 to 82 years. While undergoing fMRI, participants completed a picture-naming task consisting of 60…
Autobiographical Memory in Semantic Dementia: A Longitudinal fMRI Study
ERIC Educational Resources Information Center
Maguire, Eleanor A.; Kumaran, Dharshan; Hassabis, Demis; Kopelman, Michael D.
2010-01-01
Whilst patients with semantic dementia (SD) are known to suffer from semantic memory and language impairments, there is less agreement about whether memory for personal everyday experiences, autobiographical memory, is compromised. In healthy individuals, functional MRI (fMRI) has helped to delineate a consistent and distributed brain network…
Item Memory, Context Memory and the Hippocampus: fMRI Evidence
ERIC Educational Resources Information Center
Rugg, Michael D.; Vilberg, Kaia L.; Mattson, Julia T.; Yu, Sarah S.; Johnson, Jeffrey D.; Suzuki, Maki
2012-01-01
Dual-process models of recognition memory distinguish between the retrieval of qualitative information about a prior event (recollection), and judgments of prior occurrence based on an acontextual sense of familiarity. fMRI studies investigating the neural correlates of memory encoding and retrieval conducted within the dual-process framework have…
A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data
Ge, Bao; Li, Xiang; Jiang, Xi; Sun, Yifei; Liu, Tianming
2018-01-01
The exponential growth of fMRI big data offers researchers an unprecedented opportunity to explore functional brain networks. However, this opportunity has not been fully explored yet due to the lack of effective and efficient tools for handling such fMRI big data. One major challenge is that computing capabilities still lag behind the growth of large-scale fMRI databases, e.g., it takes many days to perform dictionary learning and sparse coding of whole-brain fMRI data for an fMRI database of average size. Therefore, how to reduce the data size but without losing important information becomes a more and more pressing issue. To address this problem, we propose a signal sampling approach for significant fMRI data reduction before performing structurally-guided dictionary learning and sparse coding of whole brain's fMRI data. We compared the proposed structurally guided sampling method with no sampling, random sampling and uniform sampling schemes, and experiments on the Human Connectome Project (HCP) task fMRI data demonstrated that the proposed method can achieve more than 15 times speed-up without sacrificing the accuracy in identifying task-evoked functional brain networks. PMID:29706880
A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data.
Ge, Bao; Li, Xiang; Jiang, Xi; Sun, Yifei; Liu, Tianming
2018-01-01
The exponential growth of fMRI big data offers researchers an unprecedented opportunity to explore functional brain networks. However, this opportunity has not been fully explored yet due to the lack of effective and efficient tools for handling such fMRI big data. One major challenge is that computing capabilities still lag behind the growth of large-scale fMRI databases, e.g., it takes many days to perform dictionary learning and sparse coding of whole-brain fMRI data for an fMRI database of average size. Therefore, how to reduce the data size but without losing important information becomes a more and more pressing issue. To address this problem, we propose a signal sampling approach for significant fMRI data reduction before performing structurally-guided dictionary learning and sparse coding of whole brain's fMRI data. We compared the proposed structurally guided sampling method with no sampling, random sampling and uniform sampling schemes, and experiments on the Human Connectome Project (HCP) task fMRI data demonstrated that the proposed method can achieve more than 15 times speed-up without sacrificing the accuracy in identifying task-evoked functional brain networks.
The Stroop Effect in Kana and Kanji Scripts in Native Japanese Speakers: An fMRI Study
Coderre, Emily L.; Filippi, Christopher G.; Newhouse, Paul A.; Dumas, Julie A.
2008-01-01
Prior research has shown that the two writing systems of the Japanese orthography are processed differently: kana (syllabic symbols) are processed like other phonetic languages such as English, while kanji (a logographic writing system) are processed like other logographic languages like Chinese. Previous work done with the Stroop task in Japanese has shown that these differences in processing strategies create differences in Stroop effects. This study investigated the Stroop effect in kanji and kana using functional magnetic resonance imaging (fMRI) to examine the similarities and differences in brain processing between logographic and phonetic languages. Nine native Japanese speakers performed the Stroop task both in kana and kanji scripts during fMRI. Both scripts individually produced significant Stroop effects as measured by the behavioral reaction time data. The imaging data for both scripts showed brain activation in the anterior cingulate gyrus, an area involved in inhibiting automatic processing. Though behavioral data showed no significant differences between the Stroop effects in kana and kanji, there were differential areas of activation in fMRI found for each writing system. In fMRI, the Stroop task activated an area in the left inferior parietal lobule during the kana task and the left inferior frontal gyrus during the kanji task. The results of the present study suggest that the Stroop task in Japanese kana and kanji elicits differential activation in brain regions involved in conflict detection and resolution for syllabic and logographic writing systems. PMID:18325582
Hale, Matthew D; Zaman, Arshad; Morrall, Matthew C H J; Chumas, Paul; Maguire, Melissa J
2018-03-01
Presurgical evaluation for temporal lobe epilepsy routinely assesses speech and memory lateralization and anatomic localization of the motor and visual areas but not baseline musical processing. This is paramount in a musician. Although validated tools exist to assess musical ability, there are no reported functional magnetic resonance imaging (fMRI) paradigms to assess musical processing. We examined the utility of a novel fMRI paradigm in an 18-year-old left-handed pianist who underwent surgery for a left temporal low-grade ganglioglioma. Preoperative evaluation consisted of neuropsychological evaluation, T1-weighted and T2-weighted magnetic resonance imaging, and fMRI. Auditory blood oxygen level-dependent fMRI was performed using a dedicated auditory scanning sequence. Three separate auditory investigations were conducted: listening to, humming, and thinking about a musical piece. All auditory fMRI paradigms activated the primary auditory cortex with varying degrees of auditory lateralization. Thinking about the piece additionally activated the primary visual cortices (bilaterally) and right dorsolateral prefrontal cortex. Humming demonstrated left-sided predominance of auditory cortex activation with activity observed in close proximity to the tumor. This study demonstrated an fMRI paradigm for evaluating musical processing that could form part of preoperative assessment for patients undergoing temporal lobe surgery for epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.
Connectome Signatures of Neurocognitive Abnormalities in Euthymic Bipolar I Disorder
Ajilore, Olusola; Vizueta, Nathalie; Walshaw, Patricia; Zhan, Liang; Leow, Alex; Altshuler, Lori L.
2015-01-01
Objectives Connectomics have allowed researchers to study integrative patterns of neural connectivity in humans. Yet, it is unclear how connectomics may elucidate structure-function relationships in bipolar I disorder (BPI). Expanding on our previous structural connectome study, here we used an overlapping sample with additional psychometric and fMRI data to relate structural connectome properties to both fMRI signals and cognitive performance. Methods 42 subjects completed a neuropsychological (NP) battery covering domains of processing speed, verbal memory, working memory, and cognitive flexibility. 32 subjects also had fMRI data performing a Go/NoGo task. Results Bipolar participants had lower NP performance across all domains, but only working memory reached statistical significance. In BPI participants, processing speed was significantly associated with both white matter integrity (WMI) in the corpus callosum and interhemispheric network integration. Mediation models further revealed that the relationship between interhemispheric integration and processing speed was mediated by WMI, and processing speed mediated the relationship between WMI and working memory. Bipolar subjects had significantly decreased BA47 activation during NoGo vs. Go. Significant predictors of BA47 fMRI activations during the Go/NoGo task were its nodal path length (left hemisphere) and its nodal clustering coefficient (right hemisphere). Conclusions This study suggests that structural connectome changes underlie abnormalities in fMRI activation and cognitive performance in euthymic BPI subjects. Results support that BA47 structural connectome changes may be a trait marker for BPI. Future studies are needed to determine if these “connectome signatures” may also confer a biological risk and/or serve as predictors of relapse. PMID:26228398
STABILITY OF FMRI STRIATAL RESPONSE TO ALCOHOL CUES: A HIERARCHICAL LINEAR MODELING APPROACH
Schacht, Joseph P.; Anton, Raymond F.; Randall, Patrick K.; Li, Xingbao; Henderson, Scott; Myrick, Hugh
2011-01-01
In functional magnetic resonance imaging (fMRI) studies of alcohol-dependent individuals, alcohol cues elicit activation of the ventral and dorsal aspects of the striatum (VS and DS), which are believed to underlie aspects of reward learning critical to the initiation and maintenance of alcohol dependence. Cue-elicited striatal activation may represent a biological substrate through which treatment efficacy may be measured. However, to be useful for this purpose, VS or DS activation must first demonstrate stability across time. Using hierarchical linear modeling (HLM), this study tested the stability of cue-elicited activation in anatomically and functionally defined regions of interest in bilateral VS and DS. Nine non-treatment-seeking alcohol-dependent participants twice completed an alcohol cue reactivity task during two fMRI scans separated by 14 days. HLM analyses demonstrated that, across all participants, alcohol cues elicited significant activation in each of the regions of interest. At the group level, these activations attenuated slightly between scans, but session-wise differences were not significant. Within-participants stability was best in the anatomically defined right VS and DS and in a functionally defined region that encompassed right caudate and putamen (intraclass correlation coefficients of .75, .81, and .76, respectively). Thus, within this small sample, alcohol cue-elicited fMRI activation had good reliability in the right striatum, though a larger sample is necessary to ensure generalizability and further evaluate stability. This study also demonstrates the utility of HLM analytic techniques for serial fMRI studies, in which separating within-participants variance (individual changes in activation) from between-participants factors (time or treatment) is critical. PMID:21316465
Neural substrates of smoking cue reactivity: A meta-analysis of fMRI studies
Engelmann, Jeffrey M.; Versace, Francesco; Robinson, Jason D.; Minnix, Jennifer A.; Lam, Cho Y.; Cui, Yong; Brown, Victoria L.; Cinciripini, Paul M.
2012-01-01
Reactivity to smoking-related cues may be an important factor that precipitates relapse in smokers who are trying to quit. The neurobiology of smoking cue reactivity has been investigated in several fMRI studies. We combined the results of these studies using activation likelihood estimation, a meta-analytic technique for fMRI data. Results of the meta-analysis indicated that smoking cues reliably evoke larger fMRI responses than neutral cues in the extended visual system, precuneus, posterior cingulate gyrus, anterior cingulate gyrus, dorsal and medial prefrontal cortex, insula, and dorsal striatum. Subtraction meta-analyses revealed that parts of the extended visual system and dorsal prefrontal cortex are more reliably responsive to smoking cues in deprived smokers than in non-deprived smokers, and that short-duration cues presented in event-related designs produce larger responses in the extended visual system than long-duration cues presented in blocked designs. The areas that were found to be responsive to smoking cues agree with theories of the neurobiology of cue reactivity, with two exceptions. First, there was a reliable cue reactivity effect in the precuneus, which is not typically considered a brain region important to addiction. Second, we found no significant effect in the nucleus accumbens, an area that plays a critical role in addiction, but this effect may have been due to technical difficulties associated with measuring fMRI data in that region. The results of this meta-analysis suggest that the extended visual system should receive more attention in future studies of smoking cue reactivity. PMID:22206965
fMRI amygdala activation during a spontaneous panic attack in a patient with panic disorder.
Pfleiderer, Bettina; Zinkirciran, Sariye; Arolt, Volker; Heindel, Walter; Deckert, Juergen; Domschke, Katharina
2007-01-01
Previous studies on neuronal activation correlates of panic attacks were mostly based on challenge tests, sensory-related stimulation or fear conditioning in healthy subjects. In the present study, we report on a female patient with panic disorder experiencing a spontaneous panic attack under an auditory habituation paradigm in the last stimulation block with sine tones captured with fMRI at 3T. The panic attack was associated with a significantly increased activity in the right amygdala. This is the first report on neuronal activation correlates of a spontaneous panic attack in a patient with panic disorder as measured by fMRI, which lends further support to a pivotal role of the amygdala in the pathogenesis of the disease.
Visual feature extraction from voxel-weighted averaging of stimulus images in 2 fMRI studies.
Hart, Corey B; Rose, William J
2013-11-01
Multiple studies have provided evidence for distributed object representation in the brain, with several recent experiments leveraging basis function estimates for partial image reconstruction from fMRI data. Using a novel combination of statistical decomposition, generalized linear models, and stimulus averaging on previously examined image sets and Bayesian regression of recorded fMRI activity during presentation of these data sets, we identify a subset of relevant voxels that appear to code for covarying object features. Using a technique we term "voxel-weighted averaging," we isolate image filters that these voxels appear to implement. The results, though very cursory, appear to have significant implications for hierarchical and deep-learning-type approaches toward the understanding of neural coding and representation.
ERIC Educational Resources Information Center
Szucs, Denes; Soltesz, Fruzsina; Bryce, Donna; Whitebread, David
2009-01-01
The ability to select an appropriate motor response by resolving competition among alternative responses plays a major role in cognitive performance. fMRI studies suggest that the development of this skill is related to the maturation of the frontal cortex that underlies the improvement of motor inhibition abilities. However, fMRI cannot…
ERIC Educational Resources Information Center
Dinomais, Mickael; Lignon, Gregoire; Chinier, Eva; Richard, Isabelle; Minassian, Aram Ter; The Tich, Sylvie N'Guyen
2013-01-01
The aim of this functional magnetic resonance imaging (fMRI) study was to examine and compare brain activation in patients with unilateral cerebral palsy (CP) during observation of simple hand movement performed by the paretic and nonparetic hand. Nineteen patients with clinical unilateral CP (14 male, mean age 14 years, 7-21 years) participated…
Differential fMRI Activation Patterns to Noxious Heat and Tactile Stimuli in the Primate Spinal Cord
Yang, Pai-Feng; Wang, Feng
2015-01-01
Mesoscale local functional organizations of the primate spinal cord are largely unknown. Using high-resolution fMRI at 9.4 T, we identified distinct interhorn and intersegment fMRI activation patterns to tactile versus nociceptive heat stimulation of digits in lightly anesthetized monkeys. Within a spinal segment, 8 Hz vibrotactile stimuli elicited predominantly fMRI activations in the middle part of ipsilateral dorsal horn (iDH), along with significantly weaker activations in ipsilateral (iVH) and contralateral (cVH) ventral horns. In contrast, nociceptive heat stimuli evoked widespread strong activations in the superficial part of iDH, as well as in iVH and contralateral dorsal (cDH) horns. As controls, only weak signal fluctuations were detected in the white matter. The iDH responded most strongly to both tactile and heat stimuli, whereas the cVH and cDH responded selectively to tactile versus nociceptive heat, respectively. Across spinal segments, iDH activations were detected in three consecutive segments in both tactile and heat conditions. Heat responses, however, were more extensive along the cord, with strong activations in iVH and cDH in two consecutive segments. Subsequent subunit B of cholera toxin tracer histology confirmed that the spinal segments showing fMRI activations indeed received afferent inputs from the stimulated digits. Comparisons of the fMRI signal time courses in early somatosensory area 3b and iDH revealed very similar hemodynamic stimulus–response functions. In summary, we identified with fMRI distinct segmental networks for the processing of tactile and nociceptive heat stimuli in the cervical spinal cord of nonhuman primates. SIGNIFICANCE STATEMENT This is the first fMRI demonstration of distinct intrasegmental and intersegmental nociceptive heat and touch processing circuits in the spinal cord of nonhuman primates. This study provides novel insights into the local functional organizations of the primate spinal cord for pain and touch, information that will be valuable for designing and optimizing therapeutic interventions for chronic pain management. PMID:26203144
Liu, Peiying; Hebrank, Andrew C.; Rodrigue, Karen M.; Kennedy, Kristen M.; Section, Jarren; Park, Denise C.; Lu, Hanzhang
2013-01-01
BOLD fMRI has provided a wealth of information about the aging brain. A common finding is that posterior regions of the brain manifest an age-related decrease in activation while the anterior regions show an age-related increase. Several neurocognitive models have been proposed to interpret these findings. However, one issue that has not been sufficiently considered to date is that the BOLD signal is based on vascular responses secondary to neural activity. Thus the above findings could be in part due to a vascular change, especially in view of the expected decline of vascular health with age. In the present study, we aim to examine age-related differences in memory-encoding fMRI response in the context of vascular aging. One hundred and thirty healthy subjects ranging from 20 to 89 years old underwent a scene-viewing fMRI task and, in the same session, cerebrovascular reactivity (CVR) was measured in each subject using a CO2-inhalation task. Without accounting for the influence of vascular changes, the task-activated fMRI signal showed the typical age-related decrease in visual cortex and medial temporal lobe (MTL), but manifested an increase in the right inferior frontal gyrus (IFG). In the same individuals, an age-related CVR reduction was observed in all of these regions. We then used a previously proposed normalization approach to calculate a CVR-corrected fMRI signal, which was defined as the uncorrected signal divided by CVR. Based on the CVR-corrected fMRI signal, an age-related increase is now seen in both the left and right side of IFG; and no brain regions showed a signal decrease with age. We additionally used a model-based approach to examine the fMRI data in the context of CVR, which again suggested an age-related change in the two frontal regions, but not in the visual and MTL regions. PMID:23624491
PCA leverage: outlier detection for high-dimensional functional magnetic resonance imaging data.
Mejia, Amanda F; Nebel, Mary Beth; Eloyan, Ani; Caffo, Brian; Lindquist, Martin A
2017-07-01
Outlier detection for high-dimensional (HD) data is a popular topic in modern statistical research. However, one source of HD data that has received relatively little attention is functional magnetic resonance images (fMRI), which consists of hundreds of thousands of measurements sampled at hundreds of time points. At a time when the availability of fMRI data is rapidly growing-primarily through large, publicly available grassroots datasets-automated quality control and outlier detection methods are greatly needed. We propose principal components analysis (PCA) leverage and demonstrate how it can be used to identify outlying time points in an fMRI run. Furthermore, PCA leverage is a measure of the influence of each observation on the estimation of principal components, which are often of interest in fMRI data. We also propose an alternative measure, PCA robust distance, which is less sensitive to outliers and has controllable statistical properties. The proposed methods are validated through simulation studies and are shown to be highly accurate. We also conduct a reliability study using resting-state fMRI data from the Autism Brain Imaging Data Exchange and find that removal of outliers using the proposed methods results in more reliable estimation of subject-level resting-state networks using independent components analysis. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Guinchard, A-C; Ghazaleh, Naghmeh; Saenz, M; Fornari, E; Prior, J O; Maeder, P; Adib, S; Maire, R
2016-11-01
We studied possible brain changes with functional MRI (fMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) in a patient with a rare, high-intensity "objective tinnitus" (high-level SOAEs) in the left ear of 10 years duration, with no associated hearing loss. This is the first case of objective cochlear tinnitus to be investigated with functional neuroimaging. The objective cochlear tinnitus was measured by Spontaneous Otoacoustic Emissions (SOAE) equipment (frequency 9689 Hz, intensity 57 dB SPL) and is clearly audible to anyone standing near the patient. Functional modifications in primary auditory areas and other brain regions were evaluated using 3T and 7T fMRI and FDG-PET. In the fMRI evaluations, a saturation of the auditory cortex at the tinnitus frequency was observed, but the global cortical tonotopic organization remained intact when compared to the results of fMRI of healthy subjects. The FDG-PET showed no evidence of an increase or decrease of activity in the auditory cortices or in the limbic system as compared to normal subjects. In this patient with high-intensity objective cochlear tinnitus, fMRI and FDG-PET showed no significant brain reorganization in auditory areas and/or in the limbic system, as reported in the literature in patients with chronic subjective tinnitus. Copyright © 2016 Elsevier B.V. All rights reserved.
Yourganov, Grigori; Schmah, Tanya; Churchill, Nathan W; Berman, Marc G; Grady, Cheryl L; Strother, Stephen C
2014-08-01
The field of fMRI data analysis is rapidly growing in sophistication, particularly in the domain of multivariate pattern classification. However, the interaction between the properties of the analytical model and the parameters of the BOLD signal (e.g. signal magnitude, temporal variance and functional connectivity) is still an open problem. We addressed this problem by evaluating a set of pattern classification algorithms on simulated and experimental block-design fMRI data. The set of classifiers consisted of linear and quadratic discriminants, linear support vector machine, and linear and nonlinear Gaussian naive Bayes classifiers. For linear discriminant, we used two methods of regularization: principal component analysis, and ridge regularization. The classifiers were used (1) to classify the volumes according to the behavioral task that was performed by the subject, and (2) to construct spatial maps that indicated the relative contribution of each voxel to classification. Our evaluation metrics were: (1) accuracy of out-of-sample classification and (2) reproducibility of spatial maps. In simulated data sets, we performed an additional evaluation of spatial maps with ROC analysis. We varied the magnitude, temporal variance and connectivity of simulated fMRI signal and identified the optimal classifier for each simulated environment. Overall, the best performers were linear and quadratic discriminants (operating on principal components of the data matrix) and, in some rare situations, a nonlinear Gaussian naïve Bayes classifier. The results from the simulated data were supported by within-subject analysis of experimental fMRI data, collected in a study of aging. This is the first study that systematically characterizes interactions between analysis model and signal parameters (such as magnitude, variance and correlation) on the performance of pattern classifiers for fMRI. Copyright © 2014 Elsevier Inc. All rights reserved.
Mazerolle, Erin L; D'Arcy, Ryan CN; Beyea, Steven D
2008-01-01
Background It is generally believed that activation in functional magnetic resonance imaging (fMRI) is restricted to gray matter. Despite this, a number of studies have reported white matter activation, particularly when the corpus callosum is targeted using interhemispheric transfer tasks. These findings suggest that fMRI signals may not be neatly confined to gray matter tissue. In the current experiment, 4 T fMRI was employed to evaluate whether it is possible to detect white matter activation. We used an interhemispheric transfer task modelled after neurological studies of callosal disconnection. It was hypothesized that white matter activation could be detected using fMRI. Results Both group and individual data were considered. At liberal statistical thresholds (p < 0.005, uncorrected), group level activation was detected in the isthmus of the corpus callosum. This region connects the superior parietal cortices, which have been implicated previously in interhemispheric transfer. At the individual level, five of the 24 subjects (21%) had activation clusters that were located primarily within the corpus callosum. Consistent with the group results, the clusters of all five subjects were located in posterior callosal regions. The signal time courses for these clusters were comparable to those observed for task related gray matter activation. Conclusion The findings support the idea that, despite the inherent challenges, fMRI activation can be detected in the corpus callosum at the individual level. Future work is needed to determine whether the detection of this activation can be improved by utilizing higher spatial resolution, optimizing acquisition parameters, and analyzing the data with tissue specific models of the hemodynamic response. The ability to detect white matter fMRI activation expands the scope of basic and clinical brain mapping research, and provides a new approach for understanding brain connectivity. PMID:18789154
Korgaonkar, Mayuresh S; Ram, Kaushik; Williams, Leanne M; Gatt, Justine M; Grieve, Stuart M
2014-08-01
The resting state default mode network (DMN) has been shown to characterize a number of neurological and psychiatric disorders. Evidence suggests an underlying genetic basis for this network and hence could serve as potential endophenotype for these disorders. Heritability is a defining criterion for endophenotypes. The DMN is measured either using a resting-state functional magnetic resonance imaging (fMRI) scan or by extracting resting state activity from task-based fMRI. The current study is the first to evaluate heritability of this task-derived resting activity. 250 healthy adult twins (79 monozygotic and 46 dizygotic same sex twin pairs) completed five cognitive and emotion processing fMRI tasks. Resting state DMN functional connectivity was derived from these five fMRI tasks. We validated this approach by comparing connectivity estimates from task-derived resting activity for all five fMRI tasks, with those obtained using a dedicated task-free resting state scan in an independent cohort of 27 healthy individuals. Structural equation modeling using the classic twin design was used to estimate the genetic and environmental contributions to variance for the resting-state DMN functional connectivity. About 9-41% of the variance in functional connectivity between the DMN nodes was attributed to genetic contribution with the greatest heritability found for functional connectivity between the posterior cingulate and right inferior parietal nodes (P<0.001). Our data provide new evidence that functional connectivity measures from the intrinsic DMN derived from task-based fMRI datasets are under genetic control and have the potential to serve as endophenotypes for genetically predisposed psychiatric and neurological disorders. Copyright © 2014 Wiley Periodicals, Inc.
Charboneau, Evonne J.; Dietrich, Mary S.; Park, Sohee; Cao, Aize; Watkins, Tristan J; Blackford, Jennifer U; Benningfield, Margaret M.; Martin, Peter R.; Buchowski, Maciej S.; Cowan, Ronald L.
2013-01-01
Craving is a major motivator underlying drug use and relapse but the neural correlates of cannabis craving are not well understood. This study sought to determine whether visual cannabis cues increase cannabis craving and whether cue-induced craving is associated with regional brain activation in cannabis-dependent individuals. Cannabis craving was assessed in 16 cannabis-dependent adult volunteers while they viewed cannabis cues during a functional MRI (fMRI) scan. The Marijuana Craving Questionnaire was administered immediately before and after each of three cannabis cue-exposure fMRI runs. FMRI blood-oxygenation-level-dependent (BOLD) signal intensity was determined in regions activated by cannabis cues to examine the relationship of regional brain activation to cannabis craving. Craving scores increased significantly following exposure to visual cannabis cues. Visual cues activated multiple brain regions, including inferior orbital frontal cortex, posterior cingulate gyrus, parahippocampal gyrus, hippocampus, amygdala, superior temporal pole, and occipital cortex. Craving scores at baseline and at the end of all three runs were significantly correlated with brain activation during the first fMRI run only, in the limbic system (including amygdala and hippocampus) and paralimbic system (superior temporal pole), and visual regions (occipital cortex). Cannabis cues increased craving in cannabis-dependent individuals and this increase was associated with activation in the limbic, paralimbic, and visual systems during the first fMRI run, but not subsequent fMRI runs. These results suggest that these regions may mediate visually cued aspects of drug craving. This study provides preliminary evidence for the neural basis of cue-induced cannabis craving and suggests possible neural targets for interventions targeted at treating cannabis dependence. PMID:24035535
fMRI during natural sleep as a method to study brain function during early childhood.
Redcay, Elizabeth; Kennedy, Daniel P; Courchesne, Eric
2007-12-01
Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.
NASA Astrophysics Data System (ADS)
Yang, Lei; Tian, Jie; Wang, Xiaoxiang; Hu, Jin
2005-04-01
The comprehensive understanding of human emotion processing needs consideration both in the spatial distribution and the temporal sequencing of neural activity. The aim of our work is to identify brain regions involved in emotional recognition as well as to follow the time sequence in the millisecond-range resolution. The effect of activation upon visual stimuli in different gender by International Affective Picture System (IAPS) has been examined. Hemodynamic and electrophysiological responses were measured in the same subjects. Both fMRI and ERP study were employed in an event-related study. fMRI have been obtained with 3.0 T Siemens Magnetom whole-body MRI scanner. 128-channel ERP data were recorded using an EGI system. ERP is sensitive to millisecond changes in mental activity, but the source localization and timing is limited by the ill-posed 'inversed' problem. We try to investigate the ERP source reconstruction problem in this study using fMRI constraint. We chose ICA as a pre-processing step of ERP source reconstruction to exclude the artifacts and provide a prior estimate of the number of dipoles. The results indicate that male and female show differences in neural mechanism during emotion visual stimuli.
An fMRI compatible wrist robotic interface to study brain development in neonates.
Allievi, A G; Melendez-Calderon, A; Arichi, T; Edwards, A D; Burdet, E
2013-06-01
A comprehensive understanding of the mechanisms that underlie brain development in premature infants and newborns is crucial for the identification of interventional therapies and rehabilitative strategies. fMRI has the potential to identify such mechanisms, but standard techniques used in adults cannot be implemented in infant studies in a straightforward manner. We have developed an MR safe wrist stimulating robot to systematically investigate the functional brain activity related to both spontaneous and induced wrist movements in premature babies using fMRI. We present the technical aspects of this development and the results of validation experiments. Using the device, the cortical activity associated with both active and passive finger movements were reliably identified in a healthy adult subject. In two preterm infants, passive wrist movements induced a well localized positive BOLD response in the contralateral somatosensory cortex. Furthermore, in a single preterm infant, spontaneous wrist movements were found to be associated with an adjacent cluster of activity, at the level of the infant's primary motor cortex. The described device will allow detailed and objective fMRI studies of somatosensory and motor system development during early human life and following neonatal brain injury.
Filippi, Massimo; Agosta, Federica
2011-01-01
Patients with Alzheimer’s disease (AD) experience a brain network breakdown, reflecting disconnection at both the structural and functional system level. Resting-state (RS) functional MRI (fMRI) studies demonstrated that the regional coherence of the fMRI signal is significantly altered in patients with AD and amnestic mild cognitive impairment. Diffusion tensor (DT) MRI has made it possible to track fiber bundle projections across the brain, revealing a substantially abnormal interplay of “critical” white matter tracts in these conditions. The observed agreement between the results of RS fMRI and DT MRI tractography studies in healthy individuals is encouraging and offers interesting hypotheses to be tested in patients with AD, a MCI, and other dementias in order to improve our understanding of their pathobiology in vivo. In this review,we describe the major findings obtained in AD using RS fMRI and DT MRI tractography, and discuss how the relationship between structure and function of the brain networks in AD may be better understood through the application of MR-based technology. This research endeavor holds a great promise in clarifying the mechanisms of cognitive decline in complex chronic neurodegenerative disorders.
Caffo, Brian S.; Crainiceanu, Ciprian M.; Verduzco, Guillermo; Joel, Suresh; Mostofsky, Stewart H.; Bassett, Susan Spear; Pekar, James J.
2010-01-01
Functional connectivity is the study of correlations in measured neurophysiological signals. Altered functional connectivity has been shown to be associated with a variety of cognitive and memory impairments and dysfunction, including Alzheimer’s disease. In this manuscript we use a two-stage application of the singular value decomposition to obtain data driven population-level measures of functional connectivity in functional magnetic resonance imaging (fMRI). The method is computationally simple and amenable to high dimensional fMRI data with large numbers of subjects. Simulation studies suggest the ability of the decomposition methods to recover population brain networks and their associated loadings. We further demonstrate the utility of these decompositions in a functional logistic regression model. The method is applied to a novel fMRI study of Alzheimer’s disease risk under a verbal paired associates task. We found a indication of alternative connectivity in clinically asymptomatic at-risk subjects when compared to controls, that was not significant in the light of multiple comparisons adjustment. The relevant brain network loads primarily on the temporal lobe and overlaps significantly with the olfactory areas and temporal poles. PMID:20227508
Caffo, Brian S; Crainiceanu, Ciprian M; Verduzco, Guillermo; Joel, Suresh; Mostofsky, Stewart H; Bassett, Susan Spear; Pekar, James J
2010-07-01
Functional connectivity is the study of correlations in measured neurophysiological signals. Altered functional connectivity has been shown to be associated with a variety of cognitive and memory impairments and dysfunction, including Alzheimer's disease. In this manuscript we use a two-stage application of the singular value decomposition to obtain data driven population-level measures of functional connectivity in functional magnetic resonance imaging (fMRI). The method is computationally simple and amenable to high dimensional fMRI data with large numbers of subjects. Simulation studies suggest the ability of the decomposition methods to recover population brain networks and their associated loadings. We further demonstrate the utility of these decompositions in a functional logistic regression model. The method is applied to a novel fMRI study of Alzheimer's disease risk under a verbal paired associates task. We found an indication of alternative connectivity in clinically asymptomatic at-risk subjects when compared to controls, which was not significant in the light of multiple comparisons adjustment. The relevant brain network loads primarily on the temporal lobe and overlaps significantly with the olfactory areas and temporal poles. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.
Kim, Seong-Gi; Ogawa, Seiji
2012-07-01
After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O(2) utilization (CMRO(2)), (5) dynamic responses of BOLD, CBF, CMRO(2), and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.
Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals
Kim, Seong-Gi; Ogawa, Seiji
2012-01-01
After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O2 utilization (CMRO2), (5) dynamic responses of BOLD, CBF, CMRO2, and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means. PMID:22395207
fMRI and MEG in the study of typical and atypical cognitive development.
Taylor, M J; Donner, E J; Pang, E W
2012-01-01
The tremendous changes in brain structure over childhood are critical to the development of cognitive functions. Neuroimaging provides a means of linking these brain-behaviour relations, as task protocols can be adapted for use with young children to assess the development of cognitive functions in both typical and atypical populations. This paper reviews some of our research using magnetoencephalography (MEG) and functional MRI (fMRI) in the study of cognitive development, with a focus on frontal lobe functions. Working memory for complex abstract patterns showed clear development in terms of the recruitment of frontal regions, seen with fMRI, with indications of strategy differences across the age range, from 6 to 35 years of age. Right hippocampal involvement was also evident in these n-back tasks, demonstrating its involvement in recognition in simple working memory protocols. Children born very preterm (7 to 9 years of age) showed reduced fMRI activation particularly in the precuneus and right hippocampal regions relative to control children. In a large normative n-back study (n=90) with upright and inverted faces, MEG data also showed right hippocampal activation that was present across the age range; frontal sources were evident only from 10 years of age. Other studies have investigated the development of set shifting, an executive function that is often deficit in atypical populations. fMRI showed recruitment of frontal areas, including the insula, that have significantly different patterns in children (7 to 14 years of age) with autism spectrum disorder compared to typically developing children, indicating that successful performance implicated differing strategies in these two groups of children. These types of studies will help our understanding of both normal brain-behaviour development and cognitive dysfunction in atypically developing populations. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Typical and Atypical Neurodevelopment for Face Specialization: An fMRI Study
ERIC Educational Resources Information Center
Joseph, Jane E.; Zhu, Xun; Gundran, Andrew; Davies, Faraday; Clark, Jonathan D.; Ruble, Lisa; Glaser, Paul; Bhatt, Ramesh S.
2015-01-01
Individuals with autism spectrum disorder (ASD) and their relatives process faces differently from typically developed (TD) individuals. In an fMRI face-viewing task, TD and undiagnosed sibling (SIB) children (5-18 years) showed face specialization in the right amygdala and ventromedial prefrontal cortex, with left fusiform and right amygdala face…
The Effect of Strategy on Problem Solving: An FMRI Study
ERIC Educational Resources Information Center
Newman, Sharlene D.; Pruce, Benjamin; Rusia, Akash; Burns, Thomas, Jr.
2010-01-01
fMRI was used to examine the differential effect of two problem-solving strategies. Participants were trained to use both a pictorial/spatial and a symbolic/algebraic strategy to solve word problems. While these two strategies activated similar cortical regions, a number of differences were noted in the level of activation. These differences…
What Has fMRI Told Us about the Development of Cognitive Control through Adolescence?
ERIC Educational Resources Information Center
Luna, Beatriz; Padmanabhan, Aarthi; O'Hearn, Kirsten
2010-01-01
Cognitive control, the ability to voluntarily guide our behavior, continues to improve throughout adolescence. Below we review the literature on age-related changes in brain function related to response inhibition and working memory, which support cognitive control. Findings from studies using functional magnetic resonance imaging (fMRI) indicate…
How Verbal and Spatial Manipulation Networks Contribute to Calculation: An fMRI Study
ERIC Educational Resources Information Center
Zago, Laure; Petit, Laurent; Turbelin, Marie-Renee; Andersson, Frederic; Vigneau, Mathieu; Tzourio-Mazoyer, Nathalie
2008-01-01
The manipulation of numbers required during calculation is known to rely on working memory (WM) resources. Here, we investigated the respective contributions of verbal and/or spatial WM manipulation brain networks during the addition of four numbers performed by adults, using functional magnetic resonance imaging (fMRI). Both manipulation and…
Dual-Tasking Alleviated Sleep Deprivation Disruption in Visuomotor Tracking: An fMRI Study
ERIC Educational Resources Information Center
Gazes, Yunglin; Rakitin, Brian C.; Steffener, Jason; Habeck, Christian; Butterfield, Brady; Basner, Robert C.; Ghez, Claude; Stern, Yaakov
2012-01-01
Effects of dual-responding on tracking performance after 49-h of sleep deprivation (SD) were evaluated behaviorally and with functional magnetic resonance imaging (fMRI). Continuous visuomotor tracking was performed simultaneously with an intermittent color-matching visual detection task in which a pair of color-matched stimuli constituted a…
Neural Changes after Phonological Treatment for Anomia: An fMRI Study
ERIC Educational Resources Information Center
Rochon, Elizabeth; Leonard, Carol; Burianova, Hana; Laird, Laura; Soros, Peter; Graham, Simon; Grady, Cheryl
2010-01-01
Functional magnetic resonance imaging (fMRI) was used to investigate the neural processing characteristics associated with word retrieval abilities after a phonologically-based treatment for anomia in two stroke patients with aphasia. Neural activity associated with a phonological and a semantic task was compared before and after treatment with…
The Effect of fMRI (Noise) on Cognitive Control
ERIC Educational Resources Information Center
Hommel, Bernhard; Fischer, Rico; Colzato, Lorenza S.; van den Wildenberg, Wery P. M.; Cellini, Cristiano
2012-01-01
Stressful situations, the aversiveness of events, or increases in task difficulty (e.g., conflict) have repeatedly been shown to be capable of triggering attentional control adjustments. In the present study we tested whether the particularity of an fMRI testing environment (i.e., EPI noise) might result in such increases of the cognitive control…
Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Sathian, K
2018-02-01
In a recent study, Eklund et al. employed resting-state functional magnetic resonance imaging data as a surrogate for null functional magnetic resonance imaging (fMRI) datasets and posited that cluster-wise family-wise error (FWE) rate-corrected inferences made by using parametric statistical methods in fMRI studies over the past two decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; this was principally because the spatial autocorrelation functions (sACF) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggested otherwise. Here, we show that accounting for non-Gaussian signal components such as those arising from resting-state neural activity as well as physiological responses and motion artifacts in the null fMRI datasets yields first- and second-level general linear model analysis residuals with nearly uniform and Gaussian sACF. Further comparison with nonparametric permutation tests indicates that cluster-based FWE corrected inferences made with Gaussian spatial noise approximations are valid.
Mapping white-matter functional organization at rest and during naturalistic visual perception.
Marussich, Lauren; Lu, Kun-Han; Wen, Haiguang; Liu, Zhongming
2017-02-01
Despite the wide applications of functional magnetic resonance imaging (fMRI) to mapping brain activation and connectivity in cortical gray matter, it has rarely been utilized to study white-matter functions. In this study, we investigated the spatiotemporal characteristics of fMRI data within the white matter acquired from humans both in the resting state and while watching a naturalistic movie. By using independent component analysis and hierarchical clustering, resting-state fMRI data in the white matter were de-noised and decomposed into spatially independent components, which were further assembled into hierarchically organized axonal fiber bundles. Interestingly, such components were partly reorganized during natural vision. Relative to resting state, the visual task specifically induced a stronger degree of temporal coherence within the optic radiations, as well as significant correlations between the optic radiations and multiple cortical visual networks. Therefore, fMRI contains rich functional information about the activity and connectivity within white matter at rest and during tasks, challenging the conventional practice of taking white-matter signals as noise or artifacts. Copyright © 2016 Elsevier Inc. All rights reserved.
Exploring connectivity with large-scale Granger causality on resting-state functional MRI.
DSouza, Adora M; Abidin, Anas Z; Leistritz, Lutz; Wismüller, Axel
2017-08-01
Large-scale Granger causality (lsGC) is a recently developed, resting-state functional MRI (fMRI) connectivity analysis approach that estimates multivariate voxel-resolution connectivity. Unlike most commonly used multivariate approaches, which establish coarse-resolution connectivity by aggregating voxel time-series avoiding an underdetermined problem, lsGC estimates voxel-resolution, fine-grained connectivity by incorporating an embedded dimension reduction. We investigate application of lsGC on realistic fMRI simulations, modeling smoothing of neuronal activity by the hemodynamic response function and repetition time (TR), and empirical resting-state fMRI data. Subsequently, functional subnetworks are extracted from lsGC connectivity measures for both datasets and validated quantitatively. We also provide guidelines to select lsGC free parameters. Results indicate that lsGC reliably recovers underlying network structure with area under receiver operator characteristic curve (AUC) of 0.93 at TR=1.5s for a 10-min session of fMRI simulations. Furthermore, subnetworks of closely interacting modules are recovered from the aforementioned lsGC networks. Results on empirical resting-state fMRI data demonstrate recovery of visual and motor cortex in close agreement with spatial maps obtained from (i) visuo-motor fMRI stimulation task-sequence (Accuracy=0.76) and (ii) independent component analysis (ICA) of resting-state fMRI (Accuracy=0.86). Compared with conventional Granger causality approach (AUC=0.75), lsGC produces better network recovery on fMRI simulations. Furthermore, it cannot recover functional subnetworks from empirical fMRI data, since quantifying voxel-resolution connectivity is not possible as consequence of encountering an underdetermined problem. Functional network recovery from fMRI data suggests that lsGC gives useful insight into connectivity patterns from resting-state fMRI at a multivariate voxel-resolution. Copyright © 2017 Elsevier B.V. All rights reserved.
Fellner, C; Doenitz, C; Finkenzeller, T; Jung, E M; Rennert, J; Schlaier, J
2009-01-01
Geometric distortions and low spatial resolution are current limitations in functional magnetic resonance imaging (fMRI). The aim of this study was to evaluate if application of parallel imaging or significant reduction of voxel size in combination with a new 32-channel head array coil can reduce those drawbacks at 1.5 T for a simple hand motor task. Therefore, maximum t-values (tmax) in different regions of activation, time-dependent signal-to-noise ratios (SNR(t)) as well as distortions within the precentral gyrus were evaluated. Comparing fMRI with and without parallel imaging in 17 healthy subjects revealed significantly reduced geometric distortions in anterior-posterior direction. Using parallel imaging, tmax only showed a mild reduction (7-11%) although SNR(t) was significantly diminished (25%). In 7 healthy subjects high-resolution (2 x 2 x 2 mm3) fMRI was compared with standard fMRI (3 x 3 x 3 mm3) in a 32-channel coil and with high-resolution fMRI in a 12-channel coil. The new coil yielded a clear improvement for tmax (21-32%) and SNR(t) (51%) in comparison with the 12-channel coil. Geometric distortions were smaller due to the smaller voxel size. Therefore, the reduction in tmax (8-16%) and SNR(t) (52%) in the high-resolution experiment seems to be tolerable with this coil. In conclusion, parallel imaging is an alternative to reduce geometric distortions in fMRI at 1.5 T. Using a 32-channel coil, reduction of the voxel size might be the preferable way to improve spatial accuracy.
Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
Ge, Ruiyang; Wang, Yubao; Zhang, Jipeng; Yao, Li; Zhang, Hang; Long, Zhiying
2016-04-01
As a blind source separation technique, independent component analysis (ICA) has many applications in functional magnetic resonance imaging (fMRI). Although either temporal or spatial prior information has been introduced into the constrained ICA and semi-blind ICA methods to improve the performance of ICA in fMRI data analysis, certain types of additional prior information, such as the sparsity, has seldom been added to the ICA algorithms as constraints. In this study, we proposed a SparseFastICA method by adding the source sparsity as a constraint to the FastICA algorithm to improve the performance of the widely used FastICA. The source sparsity is estimated through a smoothed ℓ0 norm method. We performed experimental tests on both simulated data and real fMRI data to investigate the feasibility and robustness of SparseFastICA and made a performance comparison between SparseFastICA, FastICA and Infomax ICA. Results of the simulated and real fMRI data demonstrated the feasibility and robustness of SparseFastICA for the source separation in fMRI data. Both the simulated and real fMRI experimental results showed that SparseFastICA has better robustness to noise and better spatial detection power than FastICA. Although the spatial detection power of SparseFastICA and Infomax did not show significant difference, SparseFastICA had faster computation speed than Infomax. SparseFastICA was comparable to the Infomax algorithm with a faster computation speed. More importantly, SparseFastICA outperformed FastICA in robustness and spatial detection power and can be used to identify more accurate brain networks than FastICA algorithm. Copyright © 2016 Elsevier B.V. All rights reserved.
McDonald, Carrie R; Thesen, Thomas; Carlson, Chad; Blumberg, Mark; Girard, Holly M; Trongnetrpunya, Amy; Sherfey, Jason S; Devinsky, Orrin; Kuzniecky, Rubin; Dolye, Werner K; Cash, Sydney S; Leonard, Matthew K; Hagler, Donald J; Dale, Anders M; Halgren, Eric
2010-11-01
Repetition priming is a core feature of memory processing whose anatomical correlates remain poorly understood. In this study, we use advanced multimodal imaging (functional magnetic resonance imaging (fMRI) and magnetoencephalography; MEG) to investigate the spatiotemporal profile of repetition priming. We use intracranial electroencephalography (iEEG) to validate our fMRI/MEG measurements. Twelve controls completed a semantic judgment task with fMRI and MEG that included words presented once (new, 'N') and words that repeated (old, 'O'). Six patients with epilepsy completed the same task during iEEG recordings. Blood-oxygen level dependent (BOLD) responses for N vs. O words were examined across the cortical surface and within regions of interest. MEG waveforms for N vs. O words were estimated using a noise-normalized minimum norm solution, and used to interpret the timecourse of fMRI. Spatial concordance was observed between fMRI and MEG repetition effects from 350 to 450 ms within bilateral occipitotemporal and medial temporal, left prefrontal, and left posterior temporal cortex. Additionally, MEG revealed widespread sources within left temporoparietal regions, whereas fMRI revealed bilateral reductions in occipitotemporal and left superior frontal, and increases in inferior parietal, precuneus, and dorsolateral prefrontal activity. BOLD suppression in left posterior temporal, left inferior prefrontal, and right occipitotemporal cortex correlated with MEG repetition-related reductions. IEEG responses from all three regions supported the timecourse of MEG and localization of fMRI. Furthermore, iEEG decreases to repeated words were associated with decreased gamma power in several regions, providing evidence that gamma oscillations are tightly coupled to cognitive phenomena and reflect regional activations seen in the BOLD signal. Copyright 2010 Elsevier Inc. All rights reserved.
McDonald, Carrie R.; Thesen, Thomas; Carlson, Chad; Blumberg, Mark; Girard, Holly M.; Trongnetrpunya, Amy; Sherfey, Jason S.; Devinsky, Orrin; Kuzniecky, Rubin; Dolye, Werner K.; Cash, Sydney S.; Leonard, Matt K.; Hagler, Donald J.; Dale, Anders M.; Halgren, Eric
2010-01-01
Repetition priming is a core feature of memory processing whose anatomical correlates remain poorly understood. In this study, we use advanced multimodal imaging (functional magnetic resonance imaging (fMRI) and magnetoencephalography; MEG) to investigate the spatiotemporal profile of repetition priming. We use intracranial electroencephalography (iEEG) to validate our fMRI/MEG measurements. Twelve controls completed a semantic judgment task with fMRI and MEG that included words presented once (new, ‘N’) and words that repeated (old, ‘O’). Six patients with epilepsy completed the same task during iEEG recordings. Blood-oxygen level dependent (BOLD) responses for N vs O words were examined across the cortical surface and within regions of interest. MEG waveforms for N vs O words were estimated using a noise-normalized minimum norm solution, and used to interpret the timecourse of fMRI. Spatial concordance was observed between fMRI and MEG repetition effects from 350–450ms within bilateral occipitotemporal and medial temporal, left prefrontal, and left posterior temporal cortex. Additionally, MEG revealed widespread sources within left temporoparietal regions, whereas fMRI revealed bilateral reductions in occipitotemporal and left superior frontal, and increases in inferior parietal, precuneus, and dorsolateral prefrontal activity. BOLD suppression in left posterior temporal, left inferior prefrontal, and right occipitotemporal cortex correlated with MEG repetition-related reductions. IEEG responses from all three regions supported the timecourse of MEG and localization of fMRI. Furthermore, iEEG decreases to repeated words were associated with decreased gamma power in several regions, providing evidence that gamma oscillations are tightly coupled to cognitive phenomena and reflect regional activations seen in the BOLD signal. PMID:20620212
Power, Jonathan D; Plitt, Mark; Gotts, Stephen J; Kundu, Prantik; Voon, Valerie; Bandettini, Peter A; Martin, Alex
2018-02-27
"Functional connectivity" techniques are commonplace tools for studying brain organization. A critical element of these analyses is to distinguish variance due to neurobiological signals from variance due to nonneurobiological signals. Multiecho fMRI techniques are a promising means for making such distinctions based on signal decay properties. Here, we report that multiecho fMRI techniques enable excellent removal of certain kinds of artifactual variance, namely, spatially focal artifacts due to motion. By removing these artifacts, multiecho techniques reveal frequent, large-amplitude blood oxygen level-dependent (BOLD) signal changes present across all gray matter that are also linked to motion. These whole-brain BOLD signals could reflect widespread neural processes or other processes, such as alterations in blood partial pressure of carbon dioxide (pCO 2 ) due to ventilation changes. By acquiring multiecho data while monitoring breathing, we demonstrate that whole-brain BOLD signals in the resting state are often caused by changes in breathing that co-occur with head motion. These widespread respiratory fMRI signals cannot be isolated from neurobiological signals by multiecho techniques because they occur via the same BOLD mechanism. Respiratory signals must therefore be removed by some other technique to isolate neurobiological covariance in fMRI time series. Several methods for removing global artifacts are demonstrated and compared, and were found to yield fMRI time series essentially free of motion-related influences. These results identify two kinds of motion-associated fMRI variance, with different physical mechanisms and spatial profiles, each of which strongly and differentially influences functional connectivity patterns. Distance-dependent patterns in covariance are nearly entirely attributable to non-BOLD artifacts.
Ille, Sebastian; Sollmann, Nico; Hauck, Theresa; Maurer, Stefanie; Tanigawa, Noriko; Obermueller, Thomas; Negwer, Chiara; Droese, Doris; Boeckh-Behrens, Tobias; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M
2015-08-01
Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is increasingly used and has already replaced functional MRI (fMRI) in some institutions for preoperative mapping of neurosurgical patients. Yet some factors affect the concordance of both methods with direct cortical stimulation (DCS), most likely by lesions affecting cortical oxygenation levels. Therefore, the impairment of the accuracy of rTMS and fMRI was analyzed and compared with DCS during awake surgery in patients with intraparenchymal lesions. Language mapping was performed by DCS, rTMS, and fMRI using an object-naming task in 27 patients with left-sided perisylvian lesions, and the induced language errors of each method were assigned to the cortical parcellation system. Subsequently, the receiver operating characteristics were calculated for rTMS and fMRI and compared with DCS as ground truth for regions with (w/) and without (w/o) the lesion in the mapped regions. The w/ subgroup revealed a sensitivity of 100% (w/o 100%), a specificity of 8% (w/o 5%), a positive predictive value of 34% (w/o: 53%), and a negative predictive value (NPV) of 100% (w/o: 100%) for the comparison of rTMS versus DCS. Findings for the comparison of fMRI versus DCS within the w/ subgroup revealed a sensitivity of 32% (w/o: 62%), a specificity of 88% (w/o: 60%), a positive predictive value of 56% (w/o: 62%), and a NPV of 73% (w/o: 60%). Although strengths and weaknesses exist for both rTMS and fMRI, the results show that rTMS is less affected by a brain lesion than fMRI, especially when performing mapping of language-negative cortical regions based on sensitivity and NPV.
Ishikawa, Tatsuya; Muragaki, Yoshihiro; Maruyama, Takashi; Abe, Kayoko; Kawamata, Takakazu
2017-01-15
This study examined the accuracy of functional magnetic resonance imaging (fMRI) in identifying the language-dominant hemisphere and the situations in which the Wada test can be skipped among patients with gliomas located near speech areas. We examined 74 patients [48 men (64.9%); mean ± standard deviation age of 42.7 ± 13.6 years (range: 13 to 70 years); 71 right-handed, 2 left-handed, and 1 ambidextrous] with gliomas located near speech areas. All patients underwent the Wada test and fMRI, and 34 patients underwent awake surgery. The "last-and-first" task was administered during fMRI. The Wada test was successful in determining the language-dominant hemisphere in 73 patients (98.6%): left hemisphere in 68 patients (91.9%), right hemisphere in 4 patients (5.4%), and bilateral in 1 patient (1.4%). The dominant hemisphere for right-handed patients (n = 71) was the left hemisphere in 67 patients (94.3%), right hemisphere in 3 patients (4.2%), and undetectable in 1 patient (1.4%). The fMRI was successful in determining the language-dominant hemisphere in 53 patients (71.6%). The results of the Wada test and fMRI were inconsistent in 5 patients (8.6%), of which 3 (5.2%) exhibited dominance in opposite hemispheres. Furthermore, 2 of these 3 cases (2.7%) were contralateral false positive cases, whereby fMRI identified the right-hemisphere as language dominant for right-handed individuals with tumors in the left hemisphere. Based on these findings, we concluded that the Wada test can be skipped if language dominancy can be detected by fMRI.
Presurgical language fMRI: Mapping of six critical regions
Walshaw, Patricia D.; Hale, Kayleigh; Gaillard, William D.; Baxter, Leslie C.; Berl, Madison M.; Polczynska, Monika; Noble, Stephanie; Alkawadri, Rafeed; Hirsch, Lawrence J.; Constable, R. Todd; Bookheimer, Susan Y.
2017-01-01
Abstract Language mapping is a key goal in neurosurgical planning. fMRI mapping typically proceeds with a focus on Broca's and Wernicke's areas, although multiple other language‐critical areas are now well‐known. We evaluated whether clinicians could use a novel approach, including clinician‐driven individualized thresholding, to reliably identify six language regions, including Broca's Area, Wernicke's Area (inferior, superior), Exner's Area, Supplementary Speech Area, Angular Gyrus, and Basal Temporal Language Area. We studied 22 epilepsy and tumor patients who received Wada and fMRI (age 36.4[12.5]; Wada language left/right/mixed in 18/3/1). fMRI tasks (two × three tasks) were analyzed by two clinical neuropsychologists who flexibly thresholded and combined these to identify the six regions. The resulting maps were compared to fixed threshold maps. Clinicians generated maps that overlapped significantly, and were highly consistent, when at least one task came from the same set. Cases diverged when clinicians prioritized different language regions or addressed noise differently. Language laterality closely mirrored Wada data (85% accuracy). Activation consistent with all six language regions was consistently identified. In blind review, three external, independent clinicians rated the individualized fMRI language maps as superior to fixed threshold maps; identified the majority of regions significantly more frequently; and judged language laterality to mirror Wada lateralization more often. These data provide initial validation of a novel, clinician‐based approach to localizing language cortex. They also demonstrate clinical fMRI is superior when analyzed by an experienced clinician and that when fMRI data is of low quality judgments of laterality are unreliable and should be withheld. Hum Brain Mapp 38:4239–4255, 2017. © 2017 Wiley Periodicals, Inc. PMID:28544168
High-Speed Real-Time Resting-State fMRI Using Multi-Slab Echo-Volumar Imaging
Posse, Stefan; Ackley, Elena; Mutihac, Radu; Zhang, Tongsheng; Hummatov, Ruslan; Akhtari, Massoud; Chohan, Muhammad; Fisch, Bruce; Yonas, Howard
2013-01-01
We recently demonstrated that ultra-high-speed real-time fMRI using multi-slab echo-volumar imaging (MEVI) significantly increases sensitivity for mapping task-related activation and resting-state networks (RSNs) compared to echo-planar imaging (Posse et al., 2012). In the present study we characterize the sensitivity of MEVI for mapping RSN connectivity dynamics, comparing independent component analysis (ICA) and a novel seed-based connectivity analysis (SBCA) that combines sliding-window correlation analysis with meta-statistics. This SBCA approach is shown to minimize the effects of confounds, such as movement, and CSF and white matter signal changes, and enables real-time monitoring of RSN dynamics at time scales of tens of seconds. We demonstrate highly sensitive mapping of eloquent cortex in the vicinity of brain tumors and arterio-venous malformations, and detection of abnormal resting-state connectivity in epilepsy. In patients with motor impairment, resting-state fMRI provided focal localization of sensorimotor cortex compared with more diffuse activation in task-based fMRI. The fast acquisition speed of MEVI enabled segregation of cardiac-related signal pulsation using ICA, which revealed distinct regional differences in pulsation amplitude and waveform, elevated signal pulsation in patients with arterio-venous malformations and a trend toward reduced pulsatility in gray matter of patients compared with healthy controls. Mapping cardiac pulsation in cortical gray matter may carry important functional information that distinguishes healthy from diseased tissue vasculature. This novel fMRI methodology is particularly promising for mapping eloquent cortex in patients with neurological disease, having variable degree of cooperation in task-based fMRI. In conclusion, ultra-high-real-time speed fMRI enhances the sensitivity of mapping the dynamics of resting-state connectivity and cerebro-vascular pulsatility for clinical and neuroscience research applications. PMID:23986677
Utility of functional MRI in pediatric neurology.
Freilich, Emily R; Gaillard, William D
2010-01-01
Functional MRI (fMRI), a tool increasingly used to study cognitive function, is also an important tool for understanding not only normal development in healthy children, but also abnormal development, as seen in children with epilepsy, attention-deficit/hyperactivity disorder, and autism. Since its inception almost 15 years ago, fMRI has seen an explosion in its use and applications in the adult literature. However, only recently has it found a home in pediatric neurology. New adaptations in study design and technologic advances, especially the study of resting state functional connectivity as well as the use of passive task design in sedated children, have increased the utility of functional imaging in pediatrics to help us gain understanding into the developing brain at work. This article reviews the background of fMRI in pediatrics and highlights the most recent literature and clinical applications.
Habermeyer, Benedikt; Händel, Nadja; Lemoine, Patrick; Klarhöfer, Markus; Seifritz, Erich; Dittmann, Volker; Graf, Marc
2012-01-01
Pedophilia is characterized by a persistent sexual attraction to prepubescent children. Treatment with anti-androgen agents, such as luteinizing hormone-releasing hormone (LH-RH) agonists, reduces testosterone levels and thereby sexual drive and arousal. We used functional magnetic resonance imaging (fMRI) to compare visual erotic stimulation pre- and on-treatment with the LH-RH agonist leuprolide acetate in the case of homosexual pedophilia. The pre-treatment contrasts of the erotic pictures against the respective neutral pictures showed an activation of the right amygdala and adjacent parahippocampal gyrus that decreased significantly under treatment with leuprolide acetate. Our single case fMRI study supports the notion that anti-androgens may modify amygdala response to visual erotic stimulation, a hypothesis that should be further examined in larger studies.
De Angelis, Vittoria; De Martino, Federico; Moerel, Michelle; Santoro, Roberta; Hausfeld, Lars; Formisano, Elia
2017-11-13
Pitch is a perceptual attribute related to the fundamental frequency (or periodicity) of a sound. So far, the cortical processing of pitch has been investigated mostly using synthetic sounds. However, the complex harmonic structure of natural sounds may require different mechanisms for the extraction and analysis of pitch. This study investigated the neural representation of pitch in human auditory cortex using model-based encoding and decoding analyses of high field (7 T) functional magnetic resonance imaging (fMRI) data collected while participants listened to a wide range of real-life sounds. Specifically, we modeled the fMRI responses as a function of the sounds' perceived pitch height and salience (related to the fundamental frequency and the harmonic structure respectively), which we estimated with a computational algorithm of pitch extraction (de Cheveigné and Kawahara, 2002). First, using single-voxel fMRI encoding, we identified a pitch-coding region in the antero-lateral Heschl's gyrus (HG) and adjacent superior temporal gyrus (STG). In these regions, the pitch representation model combining height and salience predicted the fMRI responses comparatively better than other models of acoustic processing and, in the right hemisphere, better than pitch representations based on height/salience alone. Second, we assessed with model-based decoding that multi-voxel response patterns of the identified regions are more informative of perceived pitch than the remainder of the auditory cortex. Further multivariate analyses showed that complementing a multi-resolution spectro-temporal sound representation with pitch produces a small but significant improvement to the decoding of complex sounds from fMRI response patterns. In sum, this work extends model-based fMRI encoding and decoding methods - previously employed to examine the representation and processing of acoustic sound features in the human auditory system - to the representation and processing of a relevant perceptual attribute such as pitch. Taken together, the results of our model-based encoding and decoding analyses indicated that the pitch of complex real life sounds is extracted and processed in lateral HG/STG regions, at locations consistent with those indicated in several previous fMRI studies using synthetic sounds. Within these regions, pitch-related sound representations reflect the modulatory combination of height and the salience of the pitch percept. Copyright © 2017 Elsevier Inc. All rights reserved.
Signal Sampling for Efficient Sparse Representation of Resting State FMRI Data
Ge, Bao; Makkie, Milad; Wang, Jin; Zhao, Shijie; Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhang, Shu; Zhang, Wei; Han, Junwei; Guo, Lei; Liu, Tianming
2015-01-01
As the size of brain imaging data such as fMRI grows explosively, it provides us with unprecedented and abundant information about the brain. How to reduce the size of fMRI data but not lose much information becomes a more and more pressing issue. Recent literature studies tried to deal with it by dictionary learning and sparse representation methods, however, their computation complexities are still high, which hampers the wider application of sparse representation method to large scale fMRI datasets. To effectively address this problem, this work proposes to represent resting state fMRI (rs-fMRI) signals of a whole brain via a statistical sampling based sparse representation. First we sampled the whole brain’s signals via different sampling methods, then the sampled signals were aggregate into an input data matrix to learn a dictionary, finally this dictionary was used to sparsely represent the whole brain’s signals and identify the resting state networks. Comparative experiments demonstrate that the proposed signal sampling framework can speed-up by ten times in reconstructing concurrent brain networks without losing much information. The experiments on the 1000 Functional Connectomes Project further demonstrate its effectiveness and superiority. PMID:26646924
Resting-state fMRI and social cognition: An opportunity to connect.
Doruyter, Alex; Groenewold, Nynke A; Dupont, Patrick; Stein, Dan J; Warwick, James M
2017-09-01
Many psychiatric disorders are characterized by altered social cognition. The importance of social cognition has previously been recognized by the National Institute of Mental Health Research Domain Criteria project, in which it features as a core domain. Social task-based functional magnetic resonance imaging (fMRI) currently offers the most direct insight into how the brain processes social information; however, resting-state fMRI may be just as important in understanding the biology and network nature of social processing. Resting-state fMRI allows researchers to investigate the functional relationships between brain regions in a neutral state: so-called resting functional connectivity (RFC). There is evidence that RFC is predictive of how the brain processes information during social tasks. This is important because it shifts the focus from possibly context-dependent aberrations to context-independent aberrations in functional network architecture. Rather than being analysed in isolation, the study of resting-state brain networks shows promise in linking results of task-based fMRI results, structural connectivity, molecular imaging findings, and performance measures of social cognition-which may prove crucial in furthering our understanding of the social brain. Copyright © 2017 John Wiley & Sons, Ltd.
Improvement in cerebral function with treatment of posttraumatic stress disorder.
Roy, Michael J; Francis, Jennifer; Friedlander, Joshua; Banks-Williams, Lisa; Lande, Raymond G; Taylor, Patricia; Blair, James; McLellan, Jennifer; Law, Wendy; Tarpley, Vanita; Patt, Ivy; Yu, Henry; Mallinger, Alan; Difede, Joann; Rizzo, Albert; Rothbaum, Barbara
2010-10-01
Posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) are signature illnesses of the Iraq and Afghanistan wars, but current diagnostic and therapeutic measures for these conditions are suboptimal. In our study, functional magnetic resonance imaging (fMRI) is used to try to differentiate military service members with: PTSD and mTBI, PTSD alone, mTBI alone, and neither PTSD nor mTBI. Those with PTSD are then randomized to virtual reality exposure therapy or imaginal exposure. fMRI is repeated after treatment and along with the Clinician-Administered PTSD Scale (CAPS) and Clinical Global Impression (CGI) scores to compare with baseline. Twenty subjects have completed baseline fMRI scans, including four controls and one mTBI only; of 15 treated for PTSD, eight completed posttreatment scans. Most subjects have been male (93%) and Caucasian (83%), with a mean age of 34. Significant improvements are evident on fMRI scans, and corroborated by CGI scores, but CAPS scores improvements are modest. In conclusion, CGI scores and fMRI scans indicate significant improvement in PTSD in both treatment arms, though CAPS score improvements are less robust. © 2010 Association for Research in Nervous and Mental Disease.
Ojemann, George A; Ojemann, Jeffrey; Ramsey, Nick F
2013-01-01
The relation between changes in the blood oxygen dependent metabolic changes imaged by functional magnetic resonance imaging (fMRI) and neural events directly recorded from human cortex from single neurons, local field potentials (LFPs) and electrocorticogram (ECoG) is critically reviewed, based on the published literature including findings from the authors' laboratories. All these data are from special populations, usually patients with medically refractory epilepsy, as this provides the major opportunity for direct cortical neuronal recording in humans. For LFP and ECoG changes are often sought in different frequency bands, for single neurons in frequency of action potentials. Most fMRI studies address issues of functional localization. The relation of those findings to localized changes in neuronal recordings in humans has been established in several ways. Only a few studies have directly compared changes in activity from the same sites in the same individual, using the same behavioral measure. More often the comparison has been between fMRI and electrophysiologic changes in populations recorded from the same functional anatomic system as defined by lesion effects; in a few studies those systems have been defined by fMRI changes such as the "default" network. The fMRI-electrophysiologic relationships have been evaluated empirically by colocalization of significant changes, and by quantitative analyses, often multiple linear regression. There is some evidence that the fMRI-electrophysiology relationships differ in different cortical areas, particularly primary motor and sensory cortices compared to association cortex, but also within areas of association cortex. Although crucial for interpretation of fMRI changes as reflecting neural activity in human cortex, controversy remains as to these relationships. Supported by: Dutch Technology Foundation and University of Utrecht Grant UGT7685, ERC-Advanced grant 320708 (NR) and NIH grant NS065186 (JO).
ERIC Educational Resources Information Center
Van de Winckel, Ann; Klingels, Katrijn; Bruyninckx, Frans; Wenderoth, Nici; Peeters, Ron; Sunaert, Stefan; Van Hecke, Wim; De Cock, Paul; Eyssen, Maria; De Weerdt, Willy; Feys, Hilde
2013-01-01
The aim of the functional magnetic resonance imaging (fMRI) study was to investigate brain activation associated with active and passive movements, and tactile stimulation in 17 children with right-sided unilateral cerebral palsy (CP), compared to 19 typically developing children (TD). The active movements consisted of repetitive opening and…
Lack of sex effect on brain activity during a visuomotor response task: functional MR imaging study.
Mikhelashvili-Browner, Nina; Yousem, David M; Wu, Colin; Kraut, Michael A; Vaughan, Christina L; Oguz, Kader Karli; Calhoun, Vince D
2003-03-01
As more individuals are enrolled in clinical functional MR imaging (fMRI) studies, an understanding of how sex may influence fMRI-measured brain activation is critical. We used fixed- and random-effects models to study the influence of sex on fMRI patterns of brain activation during a simple visuomotor reaction time task in the group of 26 age-matched men and women. We evaluated the right visual, left visual, left primary motor, left supplementary motor, and left anterior cingulate areas. Volumes of activations did not significantly differ between the groups in any defined regions. Analysis of variance failed to show any significant correlations between sex and volumes of brain activation in any location studied. Mean percentage signal-intensity changes for all locations were similar between men and women. A two-way t test of brain activation in men and women, performed as a part of random-effects modeling, showed no significant difference at any site. Our results suggest that sex seems to have little influence on fMRI brain activation when we compared performance on the simple reaction-time task. The need to control for sex effects is not critical in the analysis of this task with fMRI.
Kurland, Jacquie; Naeser, Margaret A.; Baker, Errol H.; Doron, Karl; Martin, Paula I.; Seekins, Heidi E.; Bogdan, Andrew; Renshaw, Perry; Yurgelun-Todd, Deborah
2005-01-01
Cortical reorganization in poststroke aphasia is not well understood. Few studies have investigated neural mechanisms underlying language recovery in severe aphasia patients, who are typically viewed as having a poor prognosis for language recovery. Although test-retest reliability is routinely demonstrated during collection of language data in single-subject aphasia research, this is rarely examined in fMRI studies investigating the underlying neural mechanisms in aphasia recovery. The purpose of this study was to acquire fMRI test-retest data examining semantic decisions both within and between two aphasia patients. Functional MRI was utilized to image individuals with chronic, moderate-severe nonfluent aphasia during nonverbal, yes/no button-box semantic judgments of iconic sentences presented in the Computer-assisted Visual Communication (C-ViC) program. We investigated the critical issue of intra-subject reliability by exploring similarities and differences in regions of activation during participants’ performance of identical tasks twice on the same day. Each participant demonstrated high intra-subject reliability, with response decrements typical of task familiarity. Differences between participants included greater left hemisphere perilesional activation in the individual with better response to C-ViC training. This study provides fMRI reliability in chronic nonfluent aphasia, and adds to evidence supporting differences in individual cortical reorganization in aphasia recovery. PMID:15706052
Lindquist, Martin A.; Xu, Yuting; Nebel, Mary Beth; Caffo, Brain S.
2014-01-01
To date, most functional Magnetic Resonance Imaging (fMRI) studies have assumed that the functional connectivity (FC) between time series from distinct brain regions is constant across time. However, recently, there has been increased interest in quantifying possible dynamic changes in FC during fMRI experiments, as it is thought this may provide insight into the fundamental workings of brain networks. In this work we focus on the specific problem of estimating the dynamic behavior of pair-wise correlations between time courses extracted from two different regions of the brain. We critique the commonly used sliding-windows technique, and discuss some alternative methods used to model volatility in the finance literature that could also prove useful in the neuroimaging setting. In particular, we focus on the Dynamic Conditional Correlation (DCC) model, which provides a model-based approach towards estimating dynamic correlations. We investigate the properties of several techniques in a series of simulation studies and find that DCC achieves the best overall balance between sensitivity and specificity in detecting dynamic changes in correlations. We also investigate its scalability beyond the bivariate case to demonstrate its utility for studying dynamic correlations between more than two brain regions. Finally, we illustrate its performance in an application to test-retest resting state fMRI data. PMID:24993894
Tsvetanov, Kamen A; Henson, Richard N A; Tyler, Lorraine K; Davis, Simon W; Shafto, Meredith A; Taylor, Jason R; Williams, Nitin; Cam-Can; Rowe, James B
2015-06-01
In functional magnetic resonance imaging (fMRI) research one is typically interested in neural activity. However, the blood-oxygenation level-dependent (BOLD) signal is a composite of both neural and vascular activity. As factors such as age or medication may alter vascular function, it is essential to account for changes in neurovascular coupling when investigating neurocognitive functioning with fMRI. The resting-state fluctuation amplitude (RSFA) in the fMRI signal (rsfMRI) has been proposed as an index of vascular reactivity. The RSFA compares favourably with other techniques such as breath-hold and hypercapnia, but the latter are more difficult to perform in some populations, such as older adults. The RSFA is therefore a candidate for use in adjusting for age-related changes in vascular reactivity in fMRI studies. The use of RSFA is predicated on its sensitivity to vascular rather than neural factors; however, the extent to which each of these factors contributes to RSFA remains to be characterized. The present work addressed these issues by comparing RSFA (i.e., rsfMRI variability) to proxy measures of (i) cardiovascular function in terms of heart rate (HR) and heart rate variability (HRV) and (ii) neural activity in terms of resting state magnetoencephalography (rsMEG). We derived summary scores of RSFA, a sensorimotor task BOLD activation, cardiovascular function and rsMEG variability for 335 healthy older adults in the population-based Cambridge Centre for Ageing and Neuroscience cohort (Cam-CAN; www.cam-can.com). Mediation analysis revealed that the effects of ageing on RSFA were significantly mediated by vascular factors, but importantly not by the variability in neuronal activity. Furthermore, the converse effects of ageing on the rsMEG variability were not mediated by vascular factors. We then examined the effect of RSFA scaling of task-based BOLD in the sensorimotor task. The scaling analysis revealed that much of the effects of age on task-based activation studies with fMRI do not survive correction for changes in vascular reactivity, and are likely to have been overestimated in previous fMRI studies of ageing. The results from the mediation analysis demonstrate that RSFA is modulated by measures of vascular function and is not driven solely by changes in the variance of neural activity. Based on these findings we propose that the RSFA scaling method is articularly useful in large scale and longitudinal neuroimaging studies of ageing, or with frail participants, where alternative measures of vascular reactivity are impractical. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Henson, Richard N. A.; Tyler, Lorraine K.; Davis, Simon W.; Shafto, Meredith A.; Taylor, Jason R.; Williams, Nitin; Cam‐CAN; Rowe, James B.
2015-01-01
Abstract In functional magnetic resonance imaging (fMRI) research one is typically interested in neural activity. However, the blood‐oxygenation level‐dependent (BOLD) signal is a composite of both neural and vascular activity. As factors such as age or medication may alter vascular function, it is essential to account for changes in neurovascular coupling when investigating neurocognitive functioning with fMRI. The resting‐state fluctuation amplitude (RSFA) in the fMRI signal (rsfMRI) has been proposed as an index of vascular reactivity. The RSFA compares favourably with other techniques such as breath‐hold and hypercapnia, but the latter are more difficult to perform in some populations, such as older adults. The RSFA is therefore a candidate for use in adjusting for age‐related changes in vascular reactivity in fMRI studies. The use of RSFA is predicated on its sensitivity to vascular rather than neural factors; however, the extent to which each of these factors contributes to RSFA remains to be characterized. The present work addressed these issues by comparing RSFA (i.e., rsfMRI variability) to proxy measures of (i) cardiovascular function in terms of heart rate (HR) and heart rate variability (HRV) and (ii) neural activity in terms of resting state magnetoencephalography (rsMEG). We derived summary scores of RSFA, a sensorimotor task BOLD activation, cardiovascular function and rsMEG variability for 335 healthy older adults in the population‐based Cambridge Centre for Ageing and Neuroscience cohort (Cam‐CAN; www.cam-can.com). Mediation analysis revealed that the effects of ageing on RSFA were significantly mediated by vascular factors, but importantly not by the variability in neuronal activity. Furthermore, the converse effects of ageing on the rsMEG variability were not mediated by vascular factors. We then examined the effect of RSFA scaling of task‐based BOLD in the sensorimotor task. The scaling analysis revealed that much of the effects of age on task‐based activation studies with fMRI do not survive correction for changes in vascular reactivity, and are likely to have been overestimated in previous fMRI studies of ageing. The results from the mediation analysis demonstrate that RSFA is modulated by measures of vascular function and is not driven solely by changes in the variance of neural activity. Based on these findings we propose that the RSFA scaling method is articularly useful in large scale and longitudinal neuroimaging studies of ageing, or with frail participants, where alternative measures of vascular reactivity are impractical. Hum Brain Mapp 36:2248–2269, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:25727740
Multivariate pattern analysis of fMRI: the early beginnings.
Haxby, James V
2012-08-15
In 2001, we published a paper on the representation of faces and objects in ventral temporal cortex that introduced a new method for fMRI analysis, which subsequently came to be called multivariate pattern analysis (MVPA). MVPA now refers to a diverse set of methods that analyze neural responses as patterns of activity that reflect the varying brain states that a cortical field or system can produce. This paper recounts the circumstances and events that led to the original study and later developments and innovations that have greatly expanded this approach to fMRI data analysis, leading to its widespread application. Copyright © 2012 Elsevier Inc. All rights reserved.
Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study.
Wang, Kun; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Jiang, Tianzi
2007-10-01
Previous studies have led to the proposal that patients with Alzheimer's disease (AD) may have disturbed functional connectivity between different brain regions. Furthermore, recent resting-state functional magnetic resonance imaging (fMRI) studies have also shown that low-frequency (<0.08 Hz) fluctuations (LFF) of the blood oxygenation level-dependent signals were abnormal in several brain areas of AD patients. However, few studies have investigated disturbed LFF connectivity in AD patients. By using resting-state fMRI, this study sought to investigate the abnormal functional connectivities throughout the entire brain of early AD patients, and analyze the global distribution of these abnormalities. For this purpose, the authors divided the whole brain into 116 regions and identified abnormal connectivities by comparing the correlation coefficients of each pair. Compared with healthy controls, AD patients had decreased positive correlations between the prefrontal and parietal lobes, but increased positive correlations within the prefrontal lobe, parietal lobe, and occipital lobe. The AD patients also had decreased negative correlations (closer to zero) between two intrinsically anti-correlated networks that had previously been found in the resting brain. By using resting-state fMRI, our results supported previous studies that have reported an anterior-posterior disconnection phenomenon and increased within-lobe functional connectivity in AD patients. In addition, the results also suggest that AD may disturb the correlation/anti-correlation effect in the two intrinsically anti-correlated networks. Wiley-Liss, Inc.
Whitfield-Gabrieli, Susan; Fischer, Adina S; Henricks, Angela M; Khokhar, Jibran Y; Roth, Robert M; Brunette, Mary F; Green, Alan I
2018-04-01
Nearly half of patients with schizophrenia (SCZ) have co-occurring cannabis use disorder (CUD), which has been associated with decreased treatment efficacy, increased risk of psychotic relapse, and poor global functioning. While reports on the effects of cannabis on cognitive performance in patients with SCZ have been mixed, study of brain networks related to executive function may clarify the relationship between cannabis use and cognition in these dual-diagnosis patients. In the present pilot study, patients with SCZ and CUD (n=12) and healthy controls (n=12) completed two functional magnetic resonance imaging (fMRI) resting scans. Prior to the second scan, patients smoked a 3.6% tetrahydrocannabinol (THC) cannabis cigarette or ingested a 15mg delta-9-tetrahydrocannabinol (THC) pill. We used resting-state functional connectivity to examine the default mode network (DMN) during both scans, as connectivity/activity within this network is negatively correlated with connectivity of the network involved in executive control and shows reduced activity during task performance in normal individuals. At baseline, relative to controls, patients exhibited DMN hyperconnectivity that correlated with positive symptom severity, and reduced anticorrelation between the DMN and the executive control network (ECN). Cannabinoid administration reduced DMN hyperconnectivity and increased DMN-ECN anticorrelation. Moreover, the magnitude of anticorrelation in the controls, and in the patients after cannabinoid administration, positively correlated with WM performance. The finding that DMN brain connectivity is plastic may have implications for future pharmacotherapeutic development, as treatment efficacy could be assessed through the ability of therapies to normalize underlying circuit-level dysfunction. Copyright © 2017. Published by Elsevier B.V.
Gender effects in alcohol dependence: an fMRI pilot study examining affective processing.
Padula, Claudia B; Anthenelli, Robert M; Eliassen, James C; Nelson, Erik; Lisdahl, Krista M
2015-02-01
Alcohol dependence (AD) has global effects on brain structure and function, including frontolimbic regions regulating affective processing. Preliminary evidence suggests alcohol blunts limbic response to negative affective stimuli and increases activation to positive affective stimuli. Subtle gender differences are also evident during affective processing. Fourteen abstinent AD individuals (8 F, 6 M) and 14 healthy controls (9 F, 5 M), ages 23 to 60, were included in this facial affective processing functional magnetic resonance imaging pilot study. Whole-brain linear regression analyses were performed, and follow-up analyses examined whether AD status significantly predicted depressive symptoms and/or coping. Fearful Condition-The AD group demonstrated reduced activation in the right medial frontal gyrus, compared with controls. Gender moderated the effects of AD in bilateral inferior frontal gyri. Happy Condition-AD individuals had increased activation in the right thalamus. Gender moderated the effects of AD in the left caudate, right middle frontal gyrus, left paracentral lobule, and right lingual gyrus. Interactive AD and gender effects for fearful and happy faces were such that AD men activated more than control men, but AD women activated less than control women. Enhanced coping was associated with greater activation in right medial frontal gyrus during fearful condition in AD individuals. Abnormal affective processing in AD may be a marker of alcoholism risk or a consequence of chronic alcoholism. Subtle gender differences were observed, and gender moderated the effects of AD on neural substrates of affective processing. AD individuals with enhanced coping had brain activation patterns more similar to controls. Results help elucidate the effects of alcohol, gender, and their interaction on affective processing. Copyright © 2015 by the Research Society on Alcoholism.
Gender Effects in Alcohol Dependence: An fMRI Pilot Study Examining Affective Processing
Padula, Claudia B.; Anthenelli, Robert M.; Eliassen, James C.; Nelson, Erik; Lisdahl, Krista M.
2017-01-01
Background Alcohol dependence (AD) has global effects on brain structure and function, including frontolimbic regions regulating affective processing. Preliminary evidence suggests alcohol blunts limbic response to negative affective stimuli and increases activation to positive affective stimuli. Subtle gender differences are also evident during affective processing. Methods Fourteen abstinent AD individuals (8 F, 6 M) and 14 healthy controls (9 F, 5 M), ages 23 to 60, were included in this facial affective processing functional magnetic resonance imaging pilot study. Whole-brain linear regression analyses were performed, and follow-up analyses examined whether AD status significantly predicted depressive symptoms and/or coping. Results Fearful Condition—The AD group demonstrated reduced activation in the right medial frontal gyrus, compared with controls. Gender moderated the effects of AD in bilateral inferior frontal gyri. Happy Condition—AD individuals had increased activation in the right thalamus. Gender moderated the effects of AD in the left caudate, right middle frontal gyrus, left paracentral lobule, and right lingual gyrus. Interactive AD and gender effects for fearful and happy faces were such that AD men activated more than control men, but AD women activated less than control women. Enhanced coping was associated with greater activation in right medial frontal gyrus during fearful condition in AD individuals. Conclusions Abnormal affective processing in AD may be a marker of alcoholism risk or a consequence of chronic alcoholism. Subtle gender differences were observed, and gender moderated the effects of AD on neural substrates of affective processing. AD individuals with enhanced coping had brain activation patterns more similar to controls. Results help elucidate the effects of alcohol, gender, and their interaction on affective processing. PMID:25684049
NASA Astrophysics Data System (ADS)
Smietanowski, Maciej; Achimowicz, Jerzy; Lorenc, Kamil; Nowicki, Grzegorz; Zalewska, Ewa; Truszczynski, Olaf
The experimental data related to Valsalva manouvers and short term voluntary apnea, available in the literature, suggest that the cerebral blood flow increase and reduction of the peripheral one may be expected if the specific AFTE based respiratory training is performed. The authors had verified this hypothesis by studying the relations between EEG measured subject relaxation combined with voluntary apnea by multimodal brain imaging technique (EEG mapping, Neuroscan and fMRI) in a group of healthy volunteers. The SPM analysis of respiratory related changes in cortical and subcortical BOLD signal has partially confirmed the hypothesis. The mechanism of this effect is probably based on the simultaneous blood pressure increase and total peripheral resistance increase. However the question is still open for further experimental verification if AFTE can be treated as the tool which can increase pilot/astronaut situation awareness in the extreme environment typical for aerospace operations where highly variable accelerations due to liftoff, rapid maneuvers, and vibrations can be expected in the critical phases of the mission.
Preliminary fMRI findings on the effects of event rate in adults with ADHD.
Kooistra, Libbe; van der Meere, Jaap J; Edwards, Jodi D; Kaplan, Bonnie J; Crawford, Susan; Goodyear, Bradley G
2010-05-01
Inhibition problems in attention deficit hyperactivity disorder (ADHD) are sensitive to stimulus event rate. This pilot study explores the neural basis of this increased susceptibility to event rate in ADHD. Event-related functional magnetic resonance imaging was used in conjunction with the administration of a fast (1.5 s) and a slow (7 s) Go/No-Go task. Brain activity patterns and reaction times of ten young male adults with ADHD (two of whom were in partial remission) and ten healthy male controls were compared. The ADHD group responded slower than controls with greater variability but with similar number of errors. Accurate response inhibition in the ADHD group in the slow condition was associated with widespread fronto-striatal activation, including the thalamus. For correct Go trials only, the ADHD group compared with controls showed substantial under-activation in the slow condition. The observed abnormal brain activation in the slow condition in adults with ADHD supports a fronto-striatal etiology, and underlines a presumed activation regulation deficit. Larger sample sizes to further validate these preliminary findings are needed.
OdorMapComparer: an application for quantitative analyses and comparisons of fMRI brain odor maps.
Liu, Nian; Xu, Fuqiang; Miller, Perry L; Shepherd, Gordon M
2007-01-01
Brain odor maps are reconstructed flat images that describe the spatial activity patterns in the glomerular layer of the olfactory bulbs in animals exposed to different odor stimuli. We have developed a software application, OdorMapComparer, to carry out quantitative analyses and comparisons of the fMRI odor maps. This application is an open-source window program that first loads two odor map images being compared. It allows image transformations including scaling, flipping, rotating, and warping so that the two images can be appropriately aligned to each other. It performs simple subtraction, addition, and average of signals in the two images. It also provides comparative statistics including the normalized correlation (NC) and spatial correlation coefficient. Experimental studies showed that the rodent fMRI odor maps for aliphatic aldehydes displayed spatial activity patterns that are similar in gross outlines but somewhat different in specific subregions. Analyses with OdorMapComparer indicate that the similarity between odor maps decreases with increasing difference in the length of carbon chains. For example, the map of butanal is more closely related to that of pentanal (with a NC = 0.617) than to that of octanal (NC = 0.082), which is consistent with animal behavioral studies. The study also indicates that fMRI odor maps are statistically odor-specific and repeatable across both the intra- and intersubject trials. OdorMapComparer thus provides a tool for quantitative, statistical analyses and comparisons of fMRI odor maps in a fashion that is integrated with the overall odor mapping techniques.
Stevens, Courtney
2015-01-01
This article presents a modular activity on the neurobiology of sign language that engages undergraduate students in reading and analyzing the primary functional magnetic resonance imaging (fMRI) literature. Drawing on a seed empirical article and subsequently published critique and rebuttal, students are introduced to a scientific debate concerning the functional significance of right-hemisphere recruitment observed in some fMRI studies of sign language processing. The activity requires minimal background knowledge and is not designed to provide students with a specific conclusion regarding the debate. Instead, the activity and set of articles allow students to consider key issues in experimental design and analysis of the primary literature, including critical thinking regarding the cognitive subtractions used in blocked-design fMRI studies, as well as possible confounds in comparing results across different experimental tasks. By presenting articles representing different perspectives, each cogently argued by leading scientists, the readings and activity also model the type of debate and dialogue critical to science, but often invisible to undergraduate science students. Student self-report data indicate that undergraduates find the readings interesting and that the activity enhances their ability to read and interpret primary fMRI articles, including evaluating research design and considering alternate explanations of study results. As a stand-alone activity completed primarily in one 60-minute class block, the activity can be easily incorporated into existing courses, providing students with an introduction both to the analysis of empirical fMRI articles and to the role of debate and critique in the field of neuroscience.
Suzuki, Hideaki; Sumiyoshi, Akira; Kawashima, Ryuta; Shimokawa, Hiroaki
2013-01-01
Myocardial ischemia in the anterior wall of the left ventricule (LV) and in the inferior wall and/or right ventricle (RV) shows different manifestations that can be explained by the different innervations of cardiac afferent nerves. However, it remains unclear whether information from different areas of the heart, such as the LV and RV, are differently processed in the brain. In this study, we investigated the brain regions that process information from the LV or RV using cardiac electrical stimulation and functional magnetic resonance imaging (fMRI) in anesthetized rats because the combination of these two approaches cannot be used in humans. An electrical stimulation catheter was inserted into the LV or RV (n = 12 each). Brain fMRI scans were recorded during LV or RV stimulation (9 Hz and 0.3 ms width) over 10 blocks consisting of alternating periods of 2 mA for 30 sec followed by 0.2 mA for 60 sec. The validity of fMRI signals was confirmed by first and second-level analyses and temporal profiles. Increases in fMRI signals were observed in the anterior cingulate cortex and the right somatosensory cortex under LV stimulation. In contrast, RV stimulation activated the right somatosensory cortex, which was identified more anteriorly compared with LV stimulation but did not activate the anterior cingulate cortex. This study provides the first evidence for differences in brain activation under LV and RV stimulation. These different brain processes may be associated with different clinical manifestations between anterior wall and inferoposterior wall and/or RV myocardial ischemia.
Feasibility of using fMRI to study mothers responding to infant cries.
Lorberbaum, J P; Newman, J D; Dubno, J R; Horwitz, A R; Nahas, Z; Teneback, C C; Bloomer, C W; Bohning, D E; Vincent, D; Johnson, M R; Emmanuel, N; Brawman-Mintzer, O; Book, S W; Lydiard, R B; Ballenger, J C; George, M S
1999-01-01
While parenting is a universal human behavior, its neuroanatomic basis is currently unknown. Animal data suggest that the cingulate may play an important function in mammalian parenting behavior. For example, in rodents cingulate lesions impair maternal behavior. Here, in an attempt to understand the brain basis of human maternal behavior, we had mothers listen to recorded infant cries and white noise control sounds while they underwent functional MRI (fMRI) of the brain. We hypothesized that mothers would show significantly greater cingulate activity during the cries compared to the control sounds. Of 7 subjects scanned, 4 had fMRI data suitable for analysis. When fMRI data were averaged for these 4 subjects, the anterior cingulate and right medial prefrontal cortex were the only brain regions showing statistically increased activity with the cries compared to white noise control sounds (cluster analysis with one-tailed z-map threshold of P < 0.001 and spatial extent threshold of P < 0.05). These results demonstrate the feasibility of using fMRI to study brain activity in mothers listening to infant cries and that the anterior cingulate may be involved in mothers listening to crying babies. We are currently replicating this study in a larger group of mothers. Future work in this area may help (1) unravel the functional neuroanatomy of the parent-infant bond and (2) examine whether markers of this bond, such as maternal brain response to infant crying, can predict maternal style (i.e., child neglect), offspring temperament, or offspring depression or anxiety.
Spatially Regularized Machine Learning for Task and Resting-state fMRI
Song, Xiaomu; Panych, Lawrence P.; Chen, Nan-kuei
2015-01-01
Background Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades. New Method A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space. Results The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level. Comparison with Existing Methods A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level. Conclusions The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies. PMID:26470627
Stevens, Courtney
2015-01-01
This article presents a modular activity on the neurobiology of sign language that engages undergraduate students in reading and analyzing the primary functional magnetic resonance imaging (fMRI) literature. Drawing on a seed empirical article and subsequently published critique and rebuttal, students are introduced to a scientific debate concerning the functional significance of right-hemisphere recruitment observed in some fMRI studies of sign language processing. The activity requires minimal background knowledge and is not designed to provide students with a specific conclusion regarding the debate. Instead, the activity and set of articles allow students to consider key issues in experimental design and analysis of the primary literature, including critical thinking regarding the cognitive subtractions used in blocked-design fMRI studies, as well as possible confounds in comparing results across different experimental tasks. By presenting articles representing different perspectives, each cogently argued by leading scientists, the readings and activity also model the type of debate and dialogue critical to science, but often invisible to undergraduate science students. Student self-report data indicate that undergraduates find the readings interesting and that the activity enhances their ability to read and interpret primary fMRI articles, including evaluating research design and considering alternate explanations of study results. As a stand-alone activity completed primarily in one 60-minute class block, the activity can be easily incorporated into existing courses, providing students with an introduction both to the analysis of empirical fMRI articles and to the role of debate and critique in the field of neuroscience. PMID:26557797
Nakamura, Yuko; Goto, Tazuko K; Tokumori, Kenji; Yoshiura, Takashi; Kobayashi, Koji; Nakamura, Yasuhiko; Honda, Hiroshi; Ninomiya, Yuzo; Yoshiura, Kazunori
2012-04-18
It remains unclear how the cerebral cortex of humans perceives taste temporally, and whether or not such objective data about the brain show a correlation with the current widely used conventional methods of taste-intensity sensory evaluation. The aim of this study was to investigate the difference in the time-intensity profile between salty and sweet tastes in the human brain. The time-intensity profiles of functional MRI (fMRI) data of the human taste cortex were analyzed using finite impulse response analysis for a direct interpretation in terms of the peristimulus time signal. Also, time-intensity sensory evaluations for tastes were performed under the same condition as fMRI to confirm the reliability of the temporal profile in the fMRI data. The time-intensity profile for the brain activations due to a salty taste changed more rapidly than those due to a sweet taste in the human brain cortex and was also similar to the time-intensity sensory evaluation, confirming the reliability of the temporal profile of the fMRI data. In conclusion, the time-intensity profile using finite impulse response analysis for fMRI data showed that there was a temporal difference in the neural responses between salty and sweet tastes over a given period of time. This indicates that there might be taste-specific temporal profiles of activations in the human brain.
The physics of functional magnetic resonance imaging (fMRI)
NASA Astrophysics Data System (ADS)
Buxton, Richard B.
2013-09-01
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.
The physics of functional magnetic resonance imaging (fMRI)
Buxton, Richard B
2015-01-01
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology. PMID:24006360
The physics of functional magnetic resonance imaging (fMRI).
Buxton, Richard B
2013-09-01
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm(3) spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.
Wu, Nan; Xie, Bing; Wu, Guo-Cai; Lan, Chuan; Wang, Jian; Feng, Hua
2010-01-01
Language area-related lesion is a serious issue in neurosurgery. Removing the lesion in the language area and at the same time preserving language functions is a great challenge. In this study, we aimed to screen functional magnetic resonance imaging (fMRI) based task types suitable for activation of Broca and Wernicke areas in Chinese population, characterize lesion properties of functional area of Chinese language in brain, and assess the potential of fMRI-guided neuronavigation in clinical applications. Blood oxygen level-dependent fMRI has been used to localize language area prior to operation. We carried out extensive fMRI analyses and conducted operation on patients with lesions in speech area. fMRI tests revealed that the reciting task in Chinese can steadily activate the Broca area, and paragraph comprehension task in Chinese can effectively activate the Wernicke area. Cortical stimulation of patients when being awake during operation validated the sensitivity and accuracy of fMRI. The safe distance between language activation area and removal of the lesion in language area was determined to be about 10 mm. Further investigation suggested that navigation of fMRI combined with diffuse tensor imaging can decrease the incidence of postoperative dysfunction and increase the success rate for complete removal of lesion. Taken together, these findings may be helpful to clinical therapy for language area-related lesions.
Sequential Dictionary Learning From Correlated Data: Application to fMRI Data Analysis.
Seghouane, Abd-Krim; Iqbal, Asif
2017-03-22
Sequential dictionary learning via the K-SVD algorithm has been revealed as a successful alternative to conventional data driven methods such as independent component analysis (ICA) for functional magnetic resonance imaging (fMRI) data analysis. fMRI datasets are however structured data matrices with notions of spatio-temporal correlation and temporal smoothness. This prior information has not been included in the K-SVD algorithm when applied to fMRI data analysis. In this paper we propose three variants of the K-SVD algorithm dedicated to fMRI data analysis by accounting for this prior information. The proposed algorithms differ from the K-SVD in their sparse coding and dictionary update stages. The first two algorithms account for the known correlation structure in the fMRI data by using the squared Q, R-norm instead of the Frobenius norm for matrix approximation. The third and last algorithm account for both the known correlation structure in the fMRI data and the temporal smoothness. The temporal smoothness is incorporated in the dictionary update stage via regularization of the dictionary atoms obtained with penalization. The performance of the proposed dictionary learning algorithms are illustrated through simulations and applications on real fMRI data.
Bohbot, Véronique D; Allen, John J B; Dagher, Alain; Dumoulin, Serge O; Evans, Alan C; Petrides, Michael; Kalina, Miroslav; Stepankova, Katerina; Nadel, Lynn
2015-01-01
The parahippocampal cortex and hippocampus are brain structures known to be involved in memory. However, the unique contribution of the parahippocampal cortex remains unclear. The current study investigates memory for object identity and memory of the configuration of objects in patients with small thermo-coagulation lesions to the hippocampus or the parahippocampal cortex. Results showed that in contrast to control participants and patients with damage to the hippocampus leaving the parahippocampal cortex intact, patients with lesions that included the right parahippocampal cortex (RPH) were severely impaired on a task that required learning the spatial configuration of objects on a computer screen; these patients, however, were not impaired at learning the identity of objects. Conversely, we found that patients with lesions to the right hippocampus (RH) or left hippocampus (LH), sparing the parahippocampal cortex, performed just as well as the control participants. Furthermore, they were not impaired on the object identity task. In the functional Magnetic Resonance Imaging (fMRI) experiment, healthy young adults performed the same tasks. Consistent with the findings of the lesion study, the fMRI results showed significant activity in the RPH in the memory for the spatial configuration condition, but not memory for object identity. Furthermore, the pattern of fMRI activity measured in the baseline control conditions decreased specifically in the parahippocampal cortex as a result of the experimental task, providing evidence for task specific repetition suppression. In summary, while our previous studies demonstrated that the hippocampus is critical to the construction of a cognitive map, both the lesion and fMRI studies have shown an involvement of the RPH for learning spatial configurations of objects but not object identity, and that this takes place independent of the hippocampus.
Buckner, R L; Koutstaal, W; Schacter, D L; Wagner, A D; Rosen, B R
1998-04-01
A number of recent functional imaging studies have identified brain areas activated during tasks involving episodic memory retrieval. The identification of such areas provides a foundation for targeted hypotheses regarding the more specific contributions that these areas make to episodic retrieval. As a beginning effort toward such an endeavor, whole-brain functional magnetic resonance imaging (fMRI) was used to examine 14 subjects during episodic word recognition in a block-designed fMRI experiment. Study conditions were manipulated by presenting either shallow or deep encoding tasks. This manipulation yielded two recognition conditions that differed with regard to retrieval effort and retrieval success: shallow encoding yielded low levels of recognition success with high levels of retrieval effort, and deep encoding yielded high levels of recognition success with low levels of effort. Many brain areas were activated in common by these two recognition conditions compared to a low-level fixation condition, including left and right prefrontal regions often detected during PET episodic retrieval paradigms (e.g., R. L. Buckner et al., 1996, J. Neurosci. 16, 6219-6235) thereby generalizing these findings to fMRI. Characterization of the activated regions in relation to the separate recognition conditions showed (1) bilateral anterior insular regions and a left dorsal prefrontal region were more active after shallow encoding, when retrieval demanded greatest effort, and (2) right anterior prefrontal cortex, which has been implicated in episodic retrieval, was most active during successful retrieval after deep encoding. We discuss these findings in relation to component processes involved in episodic retrieval and in the context of a companion study using event-related fMRI.
Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory.
Khazaee, Ali; Ebrahimzadeh, Ata; Babajani-Feremi, Abbas
2015-11-01
Study of brain network on the basis of resting-state functional magnetic resonance imaging (fMRI) has provided promising results to investigate changes in connectivity among different brain regions because of diseases. Graph theory can efficiently characterize different aspects of the brain network by calculating measures of integration and segregation. In this study, we combine graph theoretical approaches with advanced machine learning methods to study functional brain network alteration in patients with Alzheimer's disease (AD). Support vector machine (SVM) was used to explore the ability of graph measures in diagnosis of AD. We applied our method on the resting-state fMRI data of twenty patients with AD and twenty age and gender matched healthy subjects. The data were preprocessed and each subject's graph was constructed by parcellation of the whole brain into 90 distinct regions using the automated anatomical labeling (AAL) atlas. The graph measures were then calculated and used as the discriminating features. Extracted network-based features were fed to different feature selection algorithms to choose most significant features. In addition to the machine learning approach, statistical analysis was performed on connectivity matrices to find altered connectivity patterns in patients with AD. Using the selected features, we were able to accurately classify patients with AD from healthy subjects with accuracy of 100%. Results of this study show that pattern recognition and graph of brain network, on the basis of the resting state fMRI data, can efficiently assist in the diagnosis of AD. Classification based on the resting-state fMRI can be used as a non-invasive and automatic tool to diagnosis of Alzheimer's disease. Copyright © 2015 International Federation of Clinical Neurophysiology. All rights reserved.
A Forced-Attention Dichotic Listening fMRI Study on 113 Subjects
ERIC Educational Resources Information Center
Kompus, Kristiina; Specht, Karsten; Ersland, Lars; Juvodden, Hilde T.; van Wageningen, Heidi; Hugdahl, Kenneth; Westerhausen, Rene
2012-01-01
We report fMRI and behavioral data from 113 subjects on attention and cognitive control using a variant of the classic dichotic listening paradigm with pairwise presentations of consonant-vowel syllables. The syllable stimuli were presented in a block-design while subjects were in the MR scanner. The subjects were instructed to pay attention to…
Optimization of Blocked Designs in fMRI Studies
ERIC Educational Resources Information Center
Maus, Barbel; van Breukelen, Gerard J. P.; Goebel, Rainer; Berger, Martijn P. F.
2010-01-01
Blocked designs in functional magnetic resonance imaging (fMRI) are useful to localize functional brain areas. A blocked design consists of different blocks of trials of the same stimulus type and is characterized by three factors: the length of blocks, i.e., number of trials per blocks, the ordering of task and rest blocks, and the time between…
ERIC Educational Resources Information Center
Tivarus, Madalina E.; Hillier, Ashleigh; Schmalbrock, Petra; Beversdorf, David Q.
2008-01-01
We describe an fMRI experiment examining the functional connectivity (FC) between regions of the brain associated with semantic and phonological processing. We wished to explore whether L-Dopa administration affects the interaction between language network components in semantic and phonological categorization tasks, as revealed by FC. We…
Developmental Meta-Analysis of the Functional Neural Correlates of Autism Spectrum Disorders
ERIC Educational Resources Information Center
Dickstein, Daniel P.; Pescosolido, Matthew F.; Reidy, Brooke L.; Galvan, Thania; Kim, Kerri L.; Seymour, Karen E.; Laird, Angela R.; Di Martino, Adriana; Barrett, Rowland P.
2013-01-01
Objective: There is a pressing need to elucidate the brain-behavior interactions underlying autism spectrum disorders (ASD) given the marked rise in ASD diagnosis over the past decade. Functional magnetic resonance imaging (fMRI) has begun to address this need, but few fMRI studies have evaluated age-related changes in ASD. Therefore, we conducted…
Yuan, Weihong; Dudley, Jonathan; Barber Foss, Kim D; Ellis, Jonathan D; Thomas, Staci; Galloway, Ryan T; DiCesare, Christopher A; Leach, James L; Adams, Janet; Maloney, Thomas; Gadd, Brooke; Smith, David; Epstein, Jeff N; Grooms, Dustin R; Logan, Kelsey; Howell, David R; Altaye, Mekibib; Myer, Gregory D
2018-06-01
Recent neuroimaging studies have suggested that repetitive subconcussive head impacts, even after only one sport season, may lead to pre- to post-season structural and functional alterations in male high school football athletes. However, data on female athletes are limited. In the current investigation, we aimed to (1) assess the longitudinal pre- to post-season changes in functional MRI (fMRI) of working memory and working memory performance, (2) quantify the association between the pre- to post-season change in fMRI of working memory and the exposure to head impact and working memory performance, and (3) assess whether wearing a neck collar designed to reduce intracranial slosh via mild compression of the jugular veins can ameliorate the changes in fMRI brain activation observed in the female high school athletes who did not wear collars after a full soccer season. A total of 48 female high school soccer athletes (age range: 14.00-17.97 years) were included in the study. These athletes were assigned to the non-collar group (n = 21) or to the collar group (n = 27). All athletes undewent MRI at both pre-season and post-season. In each session, a fMRI verbal N-Back task was used to engage working memory. A significant pre- to post-season increase in fMRI blood oxygen level dependent (BOLD) signal was demonstrated when performing the N-back working memory task in the non-collar group but not in the collar group, despite the comparable exposure to head impacts during the season between the two groups. The collar group demonstrated significantly smaller pre- to post-season change in fMRI BOLD signal than the non-collar group, suggesting a potential protective effect from the collar device. Significant correlations were also found between the pre- to post-season increase in fMRI brain activation and the decrease in task accuracy in the non-collar group, indicating an association between the compensatory mechanism in underlying neurophysiology and the alteration in the behavioral outcomes.
Mandelkow, Hendrik; de Zwart, Jacco A.; Duyn, Jeff H.
2016-01-01
Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI). However, conventional fMRI analysis based on statistical parametric mapping (SPM) and the general linear model (GLM) is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA), have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past, this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbor (NN), Gaussian Naïve Bayes (GNB), and (regularized) Linear Discriminant Analysis (LDA) in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie. Results show that LDA regularized by principal component analysis (PCA) achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2 s apart during a 300 s movie (chance level 0.7% = 2 s/300 s). The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these results, the combination of naturalistic movie stimuli and classification analysis in fMRI experiments may prove to be a sensitive tool for the assessment of changes in natural cognitive processes under experimental manipulation. PMID:27065832
Sarasso, S; Santhanam, P; Määtta, S; Poryazova, R; Ferrarelli, F; Tononi, G; Small, S L
2010-09-01
Stroke is associated with long-term functional deficits. Behavioral interventions are often effective in promoting functional recovery and plastic changes. Recent studies in normal subjects have shown that sleep, and particularly slow wave activity (SWA), is tied to local brain plasticity and may be used as a sensitive marker of local cortical reorganization after stroke. In a pilot study, we assessed the local changes induced by a single exposure to a therapeutic session of IMITATE (Intensive Mouth Imitation and Talking for Aphasia Therapeutic Effects), a behavioral therapy used for recovery in patients with post-stroke aphasia. In addition, we measured brain activity changes with functional magnetic resonance imaging (fMRI) in a language observation task before, during and after the full IMITATE rehabilitative program. Speech production improved both after a single exposure and the full therapy program as measured by the Western Aphasia Battery (WAB) Repetition subscale. We found that IMITATE induced reorganization in functionally-connected, speech-relevant areas in the left hemisphere. These preliminary results suggest that sleep hd-EEGs, and the topographical analysis of SWA parameters, are well suited to investigate brain plastic changes underpinning functional recovery in neurological disorders.
Assessing the memorization of TV commercials with the use of high resolution EEG: a pilot study.
Astolfi, L; Soranzo, R; Cincotti, F; Mattia, D; Scarano, G; Gaudiano, I; Marciani, M G; Salinari, S; De Vico Fallani, F; Babiloni, F
2008-01-01
The present work intends to evaluate the functional characteristics of the cerebral network during the successful memory encoding of TV commercials. We estimated the functional networks in the frequency domain from a set of high-resolution EEG data. High resolution EEG recordings were performed in a group of healthy subjects and the cortical activity during the observation of TV commercials was evaluated in several regions of interest coincident with the Brodmann areas (BAs). Summarizing the main results of the present study, a sign of the memorization of a particular set of TV commercials have been found in a group of investigated subjects with the aid of advanced modern tools for the acquisition and the processing of EEG data. The cerebral processes involved during the observation of TV commercials that were remembered successively by the population examined (RMB dataset) are generated by the posterior parietal cortices and the prefrontal areas, rather bilaterally and are irrespective of the frequency bands analyzed. Such results are compatible with previously results obtained from EEG recordings with superficial electrodes as well as with the brain activations observed with the use of MEG and fMRI devices.
Martin, Laura E; Pollack, Lauren; McCune, Ashley; Schulte, Erica; Savage, Cary R; Lundgren, Jennifer D
2015-10-30
This study aimed to determine if obese adults with poor versus good sleep quality demonstrate reduced self-regulatory capacity and different patterns of neural activation when making impulsive monetary choices. Six obese, good quality sleepers (M age=44.7 years, M BMI=38.1 kg/m(2)) were compared to 13 obese, poor quality sleepers (M age=42.6, M BMI=39.2 kg/m(2)) on sleep and eating behavior and brain activation in prefrontal and insular regions while engaging in a delay discounting task during functional magnetic resonance imaging (fMRI). Poor quality sleepers demonstrated significantly lower brain activation in the right inferior frontal gyrus, right middle frontal gyrus, and bilateral insula when making immediate and smaller (impulsive) monetary choices compared to the baseline condition. Behaviorally, poor compared to good quality sleepers reported higher scores in the night eating questionnaire. Obese adults with poor sleep quality demonstrate decreased brain activation in multiple regions that regulate cognitive control and interceptive awareness, possibly reducing self-regulatory capacity when making immediately gratifying decisions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Poplawsky, Alexander John; Fukuda, Mitsuhiro; Kang, Bok-Man; Kim, Jae Hwan; Suh, Minah; Kim, Seong-Gi
2017-08-16
Contrast-enhanced cerebral blood volume-weighted (CBVw) fMRI response peaks are specific to the layer of evoked synaptic activity (Poplawsky et al., 2015), but the spatial resolution limit of CBVw fMRI is unknown. In this study, we measured the laminar spread of the CBVw fMRI evoked response in the external plexiform layer (EPL, 265 ± 65 μm anatomical thickness, mean ± SD, n = 30 locations from 5 rats) of the rat olfactory bulb during electrical stimulation of the lateral olfactory tract and examined its potential vascular source. First, we obtained the evoked CBVw fMRI responses with a 55 × 55 μm 2 in-plane resolution and a 500-μm thickness at 9.4 T, and found that the fMRI signal peaked predominantly in the inner half of EPL (136 ± 54 μm anatomical thickness). The mean full-width at half-maximum of these fMRI peaks was 347 ± 102 μm and the functional spread was approximately 100 or 200 μm when the effects of the laminar thicknesses of EPL or inner EPL were removed, respectively. Second, we visualized the vascular architecture of EPL from a different rat using a Clear Lipid-exchanged Anatomically Rigid Imaging/immunostaining-compatible Tissue hYdrogel (CLARITY)-based tissue preparation method and confocal microscopy. Microvascular segments with an outer diameter of <11 μm accounted for 64.3% of the total vascular volume within EPL and had a mean segment length of 55 ± 40 μm (n = 472). Additionally, vessels that crossed the EPL border had a mean segment length outside of EPL equal to 73 ± 61 μm (n = 28), which is comparable to half of the functional spread (50-100 μm). Therefore, we conclude that dilation of these microvessels, including capillaries, likely dominate the CBVw fMRI response and that the biological limit of the fMRI spatial resolution is approximately the average length of 1-2 microvessel segments, which may be sufficient for examining sublaminar circuits. Copyright © 2017 Elsevier Inc. All rights reserved.
González-García, C; Tudela, P; Ruz, M
2014-04-01
The use of functional magnetic resonance imaging (fMRI) has represented an important step forward for the neurosciences. Nevertheless, it has also been subject to rather a lot of criticism. To study the most widespread criticism against fMRI, so that researchers who are starting to use it may know the different elements that must be taken into account to be able to take a suitable approach to this technique. The fact that fMRI allows brain activity to be observed makes it a very attractive and useful tool, and its use has grown exponentially since the last decade of the 20th century. At the same time, criticism against its use has become especially fierce. Most of this scepticism can be classified into aspects related with the technique and physiology, the analysis of data and their theoretical interpretation. In this study we will review the main arguments defended in each of these three areas, as well as looking at whether they are well-founded or not. Additionally, this work is also intended as a reference for novel researchers when it comes to identifying elements that must be taken into account as they approach fMRI. Despite the fact that fMRI is one of the most interesting options for observing the brain available today, its correct utilisation requires a great deal of control and knowledge. Even so, today most of the criticism it receives no longer has any solid foundation on which to stand.
The association between cortisol and the BOLD response in male adolescents undergoing fMRI.
Keulers, Esther H H; Stiers, Peter; Nicolson, Nancy A; Jolles, Jelle
2015-02-19
MRI participation has been shown to induce subjective and neuroendocrine stress reactions. A recent aging study showed that cortisol levels during fMRI have an age-dependent effect on cognitive performance and brain functioning. The present study examined whether this age-specific influence of cortisol on behavioral and brain activation levels also applies to adolescence. Salivary cortisol as well as subjective experienced anxiety were assessed during the practice session, at home, and before, during and after the fMRI session in young versus old male adolescents. Cortisol levels were enhanced pre-imaging relative to during and post-imaging in both age groups, suggesting anticipatory stress and anxiety. Overall, a negative correlation was found between cortisol output during the fMRI experiment and brain activation magnitude during performance of a gambling task. In young but not in old adolescents, higher cortisol output was related to stronger deactivation of clusters in the anterior and posterior cingulate cortex. In old but not in young adolescents, a negative correlation was found between cortisol and activation in the inferior parietal and in the superior frontal cortex. In sum, cortisol increased the deactivation of several brain areas, although the location of the affected areas in the brain was age-dependent. The present findings suggest that cortisol output during fMRI should be considered as confounder and integrated in analyzing developmental changes in brain activation during adolescence. Copyright © 2014 Elsevier B.V. All rights reserved.
Functional MRI in the Investigation of Blast-Related Traumatic Brain Injury
Graner, John; Oakes, Terrence R.; French, Louis M.; Riedy, Gerard
2012-01-01
This review focuses on the application of functional magnetic resonance imaging (fMRI) to the investigation of blast-related traumatic brain injury (bTBI). Relatively little is known about the exact mechanisms of neurophysiological injury and pathological and functional sequelae of bTBI. Furthermore, in mild bTBI, standard anatomical imaging techniques (MRI and computed tomography) generally fail to show focal lesions and most of the symptoms present as subjective clinical functional deficits. Therefore, an objective test of brain functionality has great potential to aid in patient diagnosis and provide a sensitive measurement to monitor disease progression and treatment. The goal of this review is to highlight the relevant body of blast-related TBI literature and present suggestions and considerations in the development of fMRI studies for the investigation of bTBI. The review begins with a summary of recent bTBI publications followed by discussions of various elements of blast-related injury. Brief reviews of some fMRI techniques that focus on mental processes commonly disrupted by bTBI, including working memory, selective attention, and emotional processing, are presented in addition to a short review of resting state fMRI. Potential strengths and weaknesses of these approaches as regards bTBI are discussed. Finally, this review presents considerations that must be made when designing fMRI studies for bTBI populations, given the heterogeneous nature of bTBI and its high rate of comorbidity with other physical and psychological injuries. PMID:23460082
Li, Geng; Jack, Clifford R; Yang, Edward S
2006-11-01
To assess differences in brain responses between stroke patients and controls to tactile and electrical acupuncture stimulation using functional MRI (fMRI). A total of 12 male, clinically stable stroke patients with left side somatosensory deficits, and 12 age-matched male control subjects were studied. fMRI was performed with two different paradigms; namely, tactile stimuli and electrical stimulation at acupuncture points LI4 and LI11 on the affected side of the body. fMRI data were analyzed using SPM99. Tactile stimulation in both patients and controls produced significant activation in primary and secondary sensory and motor cortical areas and cerebellum. Greater activation was present in patients than controls in the somatosensory cortex with both the tactile task and the acupuncture point (acupoint) stimulation. Activation was greater during the tactile task than the acupuncture stimulation in patients and normal controls. Differences observed between patients and controls on both tasks may indicate compensatory over recruitment of neocortical areas involved in somatosensory perception in the stroke patients. The observed differences between patients and controls on the acupoint stimulation task may also indicate that stimulation of acupoints used therapeutically to enhance recovery from stroke, selectively activates areas thought to be involved in mediating recovery from stroke via functional plasticity. fMRI of acupoint stimulation may illustrate the functional substrate of the therapeutically beneficial effect of acupuncture in stroke rehabilitation. Copyright (c) 2006 Wiley-Liss, Inc.
Task-related fMRI in hemiplegic cerebral palsy-A systematic review.
Gaberova, Katerina; Pacheva, Iliyana; Ivanov, Ivan
2018-04-27
Functional magnetic resonance imaging (fMRI) is used widely to study reorganization after early brain injuries. Unilateral cerebral palsy (UCP) is an appealing model for studying brain plasticity by fMRI. To summarize the results of task-related fMRI studies in UCP in order to get better understanding of the mechanism of neuroplasticity of the developing brain and its reorganization potential and better translation of this knowledge to clinical practice. A systematic search was conducted on the PubMed database by keywords: "cerebral palsy", "congenital hemiparesis", "unilateral", "Magnetic resonance imaging" , "fMRI", "reorganization", and "plasticity" The exclusion criteria were as follows: case reports; reviews; studies exploring non-UCP patients; and studies with results of rehabilitation. We found 7 articles investigated sensory tasks; 9 studies-motor tasks; 12 studies-speech tasks. Ipsilesional reorganization is dominant in sensory tasks (in 74/77 patients), contralesional-in only 3/77. In motor tasks, bilateral activation is found in 64/83, only contralesional-in 11/83, and only ipsilesional-8/83. Speech perception is bilateral in 35/51, only or dominantly ipsilesional (left-sided) in 8/51, and dominantly contralesional (right-sided) in 8/51. Speech production is only or dominantly contralesional (right-sided) in 88/130, bilateral-26/130, and only or dominantly ipsilesional (left-sided)-in 16/130. The sensory system is the most "rigid" to reorganization probably due to absence of ipsilateral (contralesional) primary somatosensory representation. The motor system is more "flexible" due to ipsilateral (contralesional) motor pathways. The speech perception and production show greater flexibility resulting in more bilateral or contralateral activation. The models of reorganization are variable, depending on the development and function of each neural system and the extent and timing of the damage. The plasticity patterns may guide therapeutic intervention and prognostics, thus proving the fruitiness of the translational approach in neurosciences. © 2018 John Wiley & Sons, Ltd.
Webb, Alastair J S; Rothwell, Peter M
2016-06-01
Cerebral arterial pulsatility is associated with leukoaraiosis and depends on central arterial pulsatility and arterial stiffness. The effect of antihypertensive drugs on transmission of central arterial pulsatility to the cerebral circulation is unknown, partly because of limited methods of assessment. In a technique-development pilot study, 10 healthy volunteers were randomized to crossover treatment with amlodipine and propranolol. At baseline and on each drug, we assessed aortic (Sphygmocor) and middle cerebral artery pulsatility (TCDtranscranial ultrasound). We also performed whole-brain, 3-tesla multiband blood-oxygen level dependent magnetic resonance imaging (multiband factor 6, repetition time=0.43s), concurrent with a novel method of continuous noninvasive blood pressure monitoring. Drug effects on relationships between cardiac cycle variation in blood pressure and blood-oxygen level dependent imaging were determined (fMRI Expert Analysis Tool, fMRIB Software Library [FEAT-FSL]). Aortic pulsatility was similar on amlodipine (27.3 mm Hg) and propranolol (27.9 mm Hg, P diff=0.33), while MCA pulsatility increased nonsignificantly more from baseline on propranolol (+6%; P=0.09) than amlodipine (+1.5%; P=0.58). On magnetic resonance imaging, cardiac frequency blood pressure variations were found to be significantly more strongly associated with blood-oxygen level dependent imaging on propranolol than amlodipine. We piloted a novel method of assessment of arterial pulsatility with concurrent high-frequency blood-oxygen level dependent magnetic resonance imaging and noninvasive blood pressure monitoring. This method was able to identify greater transmission of aortic pulsation on propranolol than amlodipine, which warrants further investigation. © 2016 American Heart Association, Inc.
Emotional Intelligence: Advocating for the Softer Side of Leadership
2013-03-01
handles social rejection and physical pain.30 In one study , patients in fMRI machines were told they were playing a game with two other players — a...operated more freely.”43 Yet these results do not indicate the cognitive system can be allowed to take a backseat. In another study , fMRI showed that...The roots of empathy can be found at an early age, which implies empathy is hardwired into the primitive limbic system. One study observed a toddler
Erberich, Stephan G; Bhandekar, Manasee; Chervenak, Ann; Kesselman, Carl; Nelson, Marvin D
2007-01-01
Functional MRI is successfully being used in clinical and research applications including preoperative planning, language mapping, and outcome monitoring. However, clinical use of fMRI is less widespread due to its complexity of imaging, image workflow, post-processing, and lack of algorithmic standards hindering result comparability. As a consequence, wide-spread adoption of fMRI as clinical tool is low contributing to the uncertainty of community physicians how to integrate fMRI into practice. In addition, training of physicians with fMRI is in its infancy and requires clinical and technical understanding. Therefore, many institutions which perform fMRI have a team of basic researchers and physicians to perform fMRI as a routine imaging tool. In order to provide fMRI as an advanced diagnostic tool to the benefit of a larger patient population, image acquisition and image post-processing must be streamlined, standardized, and available at any institution which does not have these resources available. Here we describe a software architecture, the functional imaging laboratory (funcLAB/G), which addresses (i) standardized image processing using Statistical Parametric Mapping and (ii) its extension to secure sharing and availability for the community using standards-based Grid technology (Globus Toolkit). funcLAB/G carries the potential to overcome the limitations of fMRI in clinical use and thus makes standardized fMRI available to the broader healthcare enterprise utilizing the Internet and HealthGrid Web Services technology.
Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash
2016-01-01
Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00±29.04) showed less scores for sadness compared to healthy controls (128.70±22.26) (p<0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics. PMID:25963262
Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash
2015-06-01
Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural highresolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00+-29.04) showed less scores for sadness compared to healthy controls (128.70+-22.26) (p less than 0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics.
Sutterer, Matthew J; Tranel, Daniel
2017-11-01
We highlight the past 25 years of cognitive neuroscience and neuropsychology, focusing on the impact to the field of the introduction in 1992 of functional MRI (fMRI). We reviewed the past 25 years of literature in cognitive neuroscience and neuropsychology, focusing on the relation and interplay of fMRI studies and studies utilizing the "lesion method" in human participants with focal brain damage. Our review highlights the state of localist/connectionist research debates in cognitive neuroscience and neuropsychology circa 1992, and details how the introduction of fMRI into the field at that time catalyzed a new wave of efforts to map complex human behavior to specific brain regions. This, in turn, eventually evolved into many studies that focused on networks and connections between brain areas, culminating in recent years with large-scale investigations such as the Human Connectome Project. We argue that throughout the past 25 years, neuropsychology-and more precisely, the "lesion method" in humans-has continued to play a critical role in arbitrating conclusions and theories derived from inferred patterns of local brain activity or wide-spread connectivity from functional imaging approaches. We conclude by highlighting the future for neuropsychology in the context of an increasingly complex methodological armamentarium. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
fMRI responses to Jung's Word Association Test: implications for theory, treatment and research.
Petchkovsky, Leon; Petchkovsky, Michael; Morris, Philip; Dickson, Paul; Montgomery, Danielle; Dwyer, Jonathan; Burnett, Patrick
2013-06-01
Jung's Word Association Test was performed under fMRI conditions by 12 normal subjects. Pooled complexed responses were contrasted against pooled neutral ones. The fMRI activation pattern of this generic 'complexed response' was very strong (corrected Z scores ranging from 4.90 to 5.69). The activation pattern in each hemisphere includes mirror neurone areas that track 'otherness' (perspectival empathy), anterior insula (both self-awareness and emotional empathy), and cingulated gyrus (self-awareness and conflict-monitoring). These are the sites described by Siegel and colleagues as the 'resonance circuitry' in the brain which is central to mindfulness (awareness of self) and empathy (sense of the other), negotiations between self awareness and the 'internal other'. But there is also an interhemispheric dialogue. Within 3 seconds, the left hemisphere over-rides the right (at least in our normal subjects). Mindfulness and empathy are central to good psychotherapy, and complexes can be windows of opportunity if left-brain hegemony is resisted. This study sets foundations for further research: (i) QEEG studies (with their finer temporal resolution) of complexed responses in normal subjects (ii) QEEG and fMRI studies of complexed responses in other conditions, like schizophrenia, PTSD, disorders of self organization. © 2013, The Society of Analytical Psychology.
Knuttinen, M-G; Parrish, T B; Weiss, C; LaBar, K S; Gitelman, D R; Power, J M; Mesulam, M-M; Disterhoft, J F
2002-10-01
This study was designed to develop a suitable method of recording eyeblink responses while conducting functional magnetic resonance imaging (fMRI). Given the complexity of this behavioral setup outside of the magnet, this study sought to adapt and further optimize an approach to eyeblink conditioning that would be suitable for conducting event-related fMRI experiments. This method involved the acquisition of electromyographic (EMG) signals from the orbicularis oculi of the right eye, which were subsequently amplified and converted into an optical signal outside of the head coil. This optical signal was converted back into an electrical signal once outside the magnet room. Electromyography (EMG)-detected eyeblinks were used to measure responses in a delay eyeblink conditioning paradigm. Our results indicate that: (1) electromyography is a sensitive method for the detection of eyeblinks during fMRI; (2) minimal interactions or artifacts of the EMG signal were created from the magnetic resonance pulse sequence; and (3) no electromyography-related artifacts were detected in the magnetic resonance images. Furthermore, an analysis of the functional data showed areas of activation that have previously been shown in positron emission tomography studies of human eyeblink conditioning. Our results support the strength of this behavioral setup as a suitable method to be used in association with fMRI.
Lin, Ai-Ling; Fox, Peter T; Yang, Yihong; Lu, Hanzhang; Tan, Li-Hai; Gao, Jia-Hong
2009-01-01
The aim of this study was to investigate the relationship between relative cerebral blood flow (delta CBF) and relative cerebral metabolic rate of oxygen (delta CMRO(2)) during continuous visual stimulation (21 min at 8 Hz) with fMRI biophysical models by simultaneously measuring of BOLD, CBF and CBV fMRI signals. The delta CMRO(2) was determined by both a newly calibrated single-compartment model (SCM) and a multi-compartment model (MCM) and was in agreement between these two models (P>0.5). The duration-varying delta CBF and delta CMRO(2) showed a negative correlation with time (r=-0.97, P<0.001); i.e., delta CBF declines while delta CMRO(2) increases during continuous stimulation. This study also illustrated that without properly calibrating the critical parameters employed in the SCM, an incorrect and even an opposite appearance of the flow-metabolism relationship during prolonged visual stimulation (positively linear coupling) can result. The time-dependent negative correlation between flow and metabolism demonstrated in this fMRI study is consistent with a previous PET observation and further supports the view that the increase in CBF is driven by factors other than oxygen demand and the energy demands will eventually require increased aerobic metabolism as stimulation continues.
Subject order-independent group ICA (SOI-GICA) for functional MRI data analysis.
Zhang, Han; Zuo, Xi-Nian; Ma, Shuang-Ye; Zang, Yu-Feng; Milham, Michael P; Zhu, Chao-Zhe
2010-07-15
Independent component analysis (ICA) is a data-driven approach to study functional magnetic resonance imaging (fMRI) data. Particularly, for group analysis on multiple subjects, temporally concatenation group ICA (TC-GICA) is intensively used. However, due to the usually limited computational capability, data reduction with principal component analysis (PCA: a standard preprocessing step of ICA decomposition) is difficult to achieve for a large dataset. To overcome this, TC-GICA employs multiple-stage PCA data reduction. Such multiple-stage PCA data reduction, however, leads to variable outputs due to different subject concatenation orders. Consequently, the ICA algorithm uses the variable multiple-stage PCA outputs and generates variable decompositions. In this study, a rigorous theoretical analysis was conducted to prove the existence of such variability. Simulated and real fMRI experiments were used to demonstrate the subject-order-induced variability of TC-GICA results using multiple PCA data reductions. To solve this problem, we propose a new subject order-independent group ICA (SOI-GICA). Both simulated and real fMRI data experiments demonstrated the high robustness and accuracy of the SOI-GICA results compared to those of traditional TC-GICA. Accordingly, we recommend SOI-GICA for group ICA-based fMRI studies, especially those with large data sets. Copyright 2010 Elsevier Inc. All rights reserved.
Gossett, Ethan W; Wheelock, Muriah D; Goodman, Adam M; Orem, Tyler R; Harnett, Nathaniel G; Wood, Kimberly H; Mrug, Sylvie; Granger, Douglas A; Knight, David C
2018-03-01
Stress tasks performed during functional magnetic resonance imaging (fMRI) elicit a relatively small cortisol response compared to stress tasks completed in a traditional behavioral laboratory, which may be due to apprehension of fMRI that elicits an anticipatory stress response. The present study investigated whether anticipatory stress is greater prior to research completed in an MRI environment than in a traditional behavioral laboratory. Anticipatory stress (indexed by cortisol) was greater prior to testing in the MRI environment than traditional behavioral laboratory. Furthermore, anticipation of fMRI elicited a cortisol response commensurate with the response to the stress task in the behavioral laboratory. However, in the MRI environment, post-stress cortisol was significantly lower than baseline cortisol. Taken together, these findings suggest the stress elicited by anticipation of fMRI may lead to acute elevations in cortisol prior to scanning, which may in turn disrupt the cortisol response to stress tasks performed during scanning. Copyright © 2018 Elsevier B.V. All rights reserved.
Inferring multi-scale neural mechanisms with brain network modelling
Schirner, Michael; McIntosh, Anthony Randal; Jirsa, Viktor; Deco, Gustavo
2018-01-01
The neurophysiological processes underlying non-invasive brain activity measurements are incompletely understood. Here, we developed a connectome-based brain network model that integrates individual structural and functional data with neural population dynamics to support multi-scale neurophysiological inference. Simulated populations were linked by structural connectivity and, as a novelty, driven by electroencephalography (EEG) source activity. Simulations not only predicted subjects' individual resting-state functional magnetic resonance imaging (fMRI) time series and spatial network topologies over 20 minutes of activity, but more importantly, they also revealed precise neurophysiological mechanisms that underlie and link six empirical observations from different scales and modalities: (1) resting-state fMRI oscillations, (2) functional connectivity networks, (3) excitation-inhibition balance, (4, 5) inverse relationships between α-rhythms, spike-firing and fMRI on short and long time scales, and (6) fMRI power-law scaling. These findings underscore the potential of this new modelling framework for general inference and integration of neurophysiological knowledge to complement empirical studies. PMID:29308767
Negative BOLD with Large Increases in Neuronal Activity
Khubchandani, Manjula; Motelow, Joshua E.; Sanganahalli, Basavaraju G.; Hyder, Fahmeed
2008-01-01
Blood oxygen level–dependent (BOLD) functional magnetic resonance imaging (fMRI) is widely used in neuroscience to study brain activity. However, BOLD fMRI does not measure neuronal activity directly but depends on cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of oxygen (CMRO2) consumption. Using fMRI, CBV, CBF, neuronal recordings, and CMRO2 modeling, we investigated how the signals are related during seizures in rats. We found that increases in hemodynamic, neuronal, and metabolic activity were associated with positive BOLD signals in the cortex, but with negative BOLD signals in hippocampus. Our data show that negative BOLD signals do not necessarily imply decreased neuronal activity or CBF, but can result from increased neuronal activity, depending on the interplay between hemodynamics and metabolism. Caution should be used in interpreting fMRI signals because the relationship between neuronal activity and BOLD signals may depend on brain region and state and can be different during normal and pathological conditions. PMID:18063563
Influence of neurobehavioral incentive valence and magnitude on alcohol drinking behavior
Joseph, Jane E.; Zhu, Xun; Corbly, Christine R.; DeSantis, Stacia; Lee, Dustin C.; Baik, Grace; Kiser, Seth; Jiang, Yang; Lynam, Donald R.; Kelly, Thomas H.
2014-01-01
The monetary incentive delay (MID) task is a widely used probe for isolating neural circuitry in the human brain associated with incentive motivation. In the present functional magnetic resonance imaging (fMRI) study, 82 young adults, characterized along dimensions of impulsive sensation seeking, completed a MID task. fMRI and behavioral incentive functions were decomposed into incentive valence and magnitude parameters, which were used as predictors in linear regression to determine whether mesolimbic response is associated with problem drinking and recent alcohol use. Alcohol use was best explained by higher fMRI response to anticipation of losses and feedback on high gains in the thalamus. In contrast, problem drinking was best explained by reduced sensitivity to large incentive values in meso-limbic regions in the anticipation phase and increased sensitivity to small incentive values in the dorsal caudate nucleus in the feedback phase. Altered fMRI responses to monetary incentives in mesolimbic circuitry, particularly those alterations associated with problem drinking, may serve as potential early indicators of substance abuse trajectories. PMID:25261001
Alahmadi, Hanin H; Shen, Yuan; Fouad, Shereen; Luft, Caroline Di B; Bentham, Peter; Kourtzi, Zoe; Tino, Peter
2016-01-01
Early diagnosis of dementia is critical for assessing disease progression and potential treatment. State-or-the-art machine learning techniques have been increasingly employed to take on this diagnostic task. In this study, we employed Generalized Matrix Learning Vector Quantization (GMLVQ) classifiers to discriminate patients with Mild Cognitive Impairment (MCI) from healthy controls based on their cognitive skills. Further, we adopted a "Learning with privileged information" approach to combine cognitive and fMRI data for the classification task. The resulting classifier operates solely on the cognitive data while it incorporates the fMRI data as privileged information (PI) during training. This novel classifier is of practical use as the collection of brain imaging data is not always possible with patients and older participants. MCI patients and healthy age-matched controls were trained to extract structure from temporal sequences. We ask whether machine learning classifiers can be used to discriminate patients from controls and whether differences between these groups relate to individual cognitive profiles. To this end, we tested participants in four cognitive tasks: working memory, cognitive inhibition, divided attention, and selective attention. We also collected fMRI data before and after training on a probabilistic sequence learning task and extracted fMRI responses and connectivity as features for machine learning classifiers. Our results show that the PI guided GMLVQ classifiers outperform the baseline classifier that only used the cognitive data. In addition, we found that for the baseline classifier, divided attention is the only relevant cognitive feature. When PI was incorporated, divided attention remained the most relevant feature while cognitive inhibition became also relevant for the task. Interestingly, this analysis for the fMRI GMLVQ classifier suggests that (1) when overall fMRI signal is used as inputs to the classifier, the post-training session is most relevant; and (2) when the graph feature reflecting underlying spatiotemporal fMRI pattern is used, the pre-training session is most relevant. Taken together these results suggest that brain connectivity before training and overall fMRI signal after training are both diagnostic of cognitive skills in MCI.
Classification of fMRI resting-state maps using machine learning techniques: A comparative study
NASA Astrophysics Data System (ADS)
Gallos, Ioannis; Siettos, Constantinos
2017-11-01
We compare the efficiency of Principal Component Analysis (PCA) and nonlinear learning manifold algorithms (ISOMAP and Diffusion maps) for classifying brain maps between groups of schizophrenia patients and healthy from fMRI scans during a resting-state experiment. After a standard pre-processing pipeline, we applied spatial Independent component analysis (ICA) to reduce (a) noise and (b) spatial-temporal dimensionality of fMRI maps. On the cross-correlation matrix of the ICA components, we applied PCA, ISOMAP and Diffusion Maps to find an embedded low-dimensional space. Finally, support-vector-machines (SVM) and k-NN algorithms were used to evaluate the performance of the algorithms in classifying between the two groups.
McNamee, R L; Eddy, W F
2001-12-01
Analysis of variance (ANOVA) is widely used for the study of experimental data. Here, the reach of this tool is extended to cover the preprocessing of functional magnetic resonance imaging (fMRI) data. This technique, termed visual ANOVA (VANOVA), provides both numerical and pictorial information to aid the user in understanding the effects of various parts of the data analysis. Unlike a formal ANOVA, this method does not depend on the mathematics of orthogonal projections or strictly additive decompositions. An illustrative example is presented and the application of the method to a large number of fMRI experiments is discussed. Copyright 2001 Wiley-Liss, Inc.
ERIC Educational Resources Information Center
Buchweitz, Augusto; Mason, Robert A.; Hasegawa, Mihoko; Just, Marcel A.
2009-01-01
Functional magnetic resonance imaging (fMRI) was used to compare brain activation from native Japanese (L1) readers reading hiragana (syllabic) and kanji (logographic) sentences, and English as a second language (L2). Kanji showed more activation than hiragana in right-hemisphere occipito-temporal lobe areas associated with visuospatial…
ERIC Educational Resources Information Center
Rahko, Jukka S.; Paakki, Jyri-Johan; Starck, Tuomo H.; Nikkinen, Juha; Pauls, David L.; Katsyri, Jari V.; Jansson-Verkasalo, Eira M.; Carter, Alice S.; Hurtig, Tuula M.; Mattila, Marja-Leena; Jussila, Katja K.; Remes, Jukka J.; Kuusikko-Gauffin, Sanna A.; Sams, Mikko E.; Bolte, Sven; Ebeling, Hanna E.; Moilanen, Irma K.; Tervonen, Osmo; Kiviniemi, Vesa
2012-01-01
FMRI was performed with the dynamic facial expressions fear and happiness. This was done to detect differences in valence processing between 25 subjects with autism spectrum disorders (ASDs) and 27 typically developing controls. Valence scaling was abnormal in ASDs. Positive valence induces lower deactivation and abnormally strong activity in ASD…
Is Broca's Area Involved in the Processing of Passive Sentences? An Event-Related fMRI Study
ERIC Educational Resources Information Center
Yokoyama, Satoru; Watanabe, Jobu; Iwata, Kazuki; Ikuta, Naho; Haji, Tomoki; Usui, Nobuo; Taira, Masato; Miyamoto, Tadao; Nakamura, Wataru; Sato, Shigeru; Horie, Kaoru; Kawashima, Ryuta
2007-01-01
We used functional magnetic resonance imaging (fMRI) to investigate whether activation in Broca's area is greater during the processing of passive versus active sentences in the brains of healthy subjects. Twenty Japanese native speakers performed a visual sentence comprehension task in which they were asked to read a visually presented sentence…
Effect of Unpleasant Loud Noise on Hippocampal Activities during Picture Encoding: An fMRI Study
ERIC Educational Resources Information Center
Hirano, Yoshiyuki; Fujita, Masafumi; Watanabe, Kazuko; Niwa, Masami; Takahashi, Toru; Kanematsu, Masayuki; Ido, Yasushi; Tomida, Mihoko; Onozuka, Minoru
2006-01-01
The functional link between the amygdala and hippocampus in humans has not been well documented. We examined the effect of unpleasant loud noise on hippocampal and amygdaloid activities during picture encoding by means of fMRI, and on the correct response in humans. The noise reduced activity in the hippocampus during picture encoding, decreased…
ERIC Educational Resources Information Center
Segaert, Katrien; Kempen, Gerard; Petersson, Karl Magnus; Hagoort, Peter
2013-01-01
Behavioral syntactic priming effects during sentence comprehension are typically observed only if both the syntactic structure and lexical head are repeated. In contrast, during production syntactic priming occurs with structure repetition alone, but the effect is boosted by repetition of the lexical head. We used fMRI to investigate the neuronal…
ERIC Educational Resources Information Center
Hirshhorn, Marnie; Grady, Cheryl; Rosenbaum, R. Shayna; Winocur, Gordon; Moscovitch, Morris
2012-01-01
Functional magnetic resonance imaging (fMRI) was used to compare brain activity during the retrieval of coarse- and fine-grained spatial details and episodic details associated with a familiar environment. Long-time Toronto residents compared pairs of landmarks based on their absolute geographic locations (requiring either coarse or fine…
Brief Report: Brain Activation to Social Words in a Sedated Child with Autism
ERIC Educational Resources Information Center
Carmody, Dennis P.; Moreno, Rosanne; Mars, Audrey E.; Seshadri, Kapila; Lambert, George H.; Lewis, Michael
2007-01-01
A functional magnetic resonance imaging (fMRI) study was performed on a 4-year-old girl with autism. While sedated, she listened to three utterances (numbers, hello, her own first name) played through headphones. Based on analyses of the fMRI data, the amount of total brain activation varied with the content of the utterance. The greatest volume…
ERIC Educational Resources Information Center
Devauchelle, Anne-Dominique; Oppenheim, Catherine; Rizzi, Luigi; Dehaene, Stanislas; Pallier, Christophe
2009-01-01
Priming effects have been well documented in behavioral psycholinguistics experiments: The processing of a word or a sentence is typically facilitated when it shares lexico-semantic or syntactic features with a previously encountered stimulus. Here, we used fMRI priming to investigate which brain areas show adaptation to the repetition of a…
ERIC Educational Resources Information Center
Mashal, N.; Faust, M.; Hendler, T.; Jung-Beeman, M.
2007-01-01
The neural networks associated with processing related pairs of words forming literal, novel, and conventional metaphorical expressions and unrelated pairs of words were studied in a group of 15 normal adults using fMRI. Subjects read the four types of linguistic expressions and decided which relation exists between the two words (metaphoric,…
When We like What We Know--A Parametric fMRI Analysis of Beauty and Familiarity
ERIC Educational Resources Information Center
Bohrn, Isabel C.; Altmann, Ulrike; Lubrich, Oliver; Menninghaus, Winfried; Jacobs, Arthur M.
2013-01-01
This paper presents a neuroscientific study of aesthetic judgments on written texts. In an fMRI experiment participants read a number of proverbs without explicitly evaluating them. In a post-scan rating they rated each item for familiarity and beauty. These individual ratings were correlated with the functional data to investigate the neural…
Functional magnetic resonance imaging.
Buchbinder, Bradley R
2016-01-01
Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks. © 2016 Elsevier B.V. All rights reserved.
Han, Hyemin; Park, Joonsuk
2018-01-01
Recent debates about the conventional traditional threshold used in the fields of neuroscience and psychology, namely P < 0.05, have spurred researchers to consider alternative ways to analyze fMRI data. A group of methodologists and statisticians have considered Bayesian inference as a candidate methodology. However, few previous studies have attempted to provide end users of fMRI analysis tools, such as SPM 12, with practical guidelines about how to conduct Bayesian inference. In the present study, we aim to demonstrate how to utilize Bayesian inference, Bayesian second-level inference in particular, implemented in SPM 12 by analyzing fMRI data available to public via NeuroVault. In addition, to help end users understand how Bayesian inference actually works in SPM 12, we examine outcomes from Bayesian second-level inference implemented in SPM 12 by comparing them with those from classical second-level inference. Finally, we provide practical guidelines about how to set the parameters for Bayesian inference and how to interpret the results, such as Bayes factors, from the inference. We also discuss the practical and philosophical benefits of Bayesian inference and directions for future research. PMID:29456498
Mulkern, Robert V; Haker, Steven J; Maier, Stephan E
2007-07-01
Tissue water molecules reside in different biophysical compartments. For example, water molecules in the vasculature reside for variable periods of time within arteries, arterioles, capillaries, venuoles and veins, and may be within blood cells or blood plasma. Water molecules outside of the vasculature, in the extravascular space, reside, for a time, either within cells or within the interstitial space between cells. Within these different compartments, different types of microscopic motion that water molecules may experience have been identified and discussed. These range from Brownian diffusion to more coherent flow over the time scales relevant to functional magnetic resonance imaging (fMRI) experiments, on the order of several 10s of milliseconds. How these different types of motion are reflected in magnetic resonance imaging (MRI) methods developed for "diffusion" imaging studies has been an ongoing and active area of research. Here we briefly review the ideas that have developed regarding these motions within the context of modern "diffusion" imaging techniques and, in particular, how they have been accessed in attempts to further our understanding of the various contributions to the fMRI signal changes sought in studies of human brain activation.
Modality Specific Cerebro-Cerebellar Activations in Verbal Working Memory: An fMRI Study
Kirschen, Matthew P.; Chen, S. H. Annabel; Desmond, John E.
2010-01-01
Verbal working memory (VWM) engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters) and modality (auditory and visual) dependent cerebro-cerebellar VWM activation using a Sternberg task. FMRI revealed modality-independent activations in left frontal (BA 6/9/44), insular, cingulate (BA 32), and bilateral inferior parietal/supramarginal (BA 40) regions, as well as in bilateral superior (HVI) and right inferior (HVIII) cerebellar regions. Visual presentation evoked prominent activations in right superior (HVI/CrusI) cerebellum, bilateral occipital (BA19) and left parietal (BA7/40) cortex while auditory presentation showed robust activations predominately in bilateral temporal regions (BA21/22). In the cerebellum, we noted a visual to auditory emphasis of function progressing from superior to inferior and from lateral to medial regions. These results extend our previous findings of fMRI activation in cerebro-cerebellar networks during VWM, and demonstrate both modality dependent commonalities and differences in activations with increasing memory load. PMID:20714061
Modality specific cerebro-cerebellar activations in verbal working memory: an fMRI study.
Kirschen, Matthew P; Chen, S H Annabel; Desmond, John E
2010-01-01
Verbal working memory (VWM) engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters) and modality (auditory and visual) dependent cerebro-cerebellar VWM activation using a Sternberg task. FMRI revealed modality-independent activations in left frontal (BA 6/9/44), insular, cingulate (BA 32), and bilateral inferior parietal/supramarginal (BA 40) regions, as well as in bilateral superior (HVI) and right inferior (HVIII) cerebellar regions. Visual presentation evoked prominent activations in right superior (HVI/CrusI) cerebellum, bilateral occipital (BA19) and left parietal (BA7/40) cortex while auditory presentation showed robust activations predominantly in bilateral temporal regions (BA21/22). In the cerebellum, we noted a visual to auditory emphasis of function progressing from superior to inferior and from lateral to medial regions. These results extend our previous findings of fMRI activation in cerebro-cerebellar networks during VWM, and demonstrate both modality dependent commonalities and differences in activations with increasing memory load.
The representation of order information in auditory-verbal short-term memory.
Kalm, Kristjan; Norris, Dennis
2014-05-14
Here we investigate how order information is represented in auditory-verbal short-term memory (STM). We used fMRI and a serial recall task to dissociate neural activity patterns representing the phonological properties of the items stored in STM from the patterns representing their order. For this purpose, we analyzed fMRI activity patterns elicited by different item sets and different orderings of those items. These fMRI activity patterns were compared with the predictions made by positional and chaining models of serial order. The positional models encode associations between items and their positions in a sequence, whereas the chaining models encode associations between successive items and retain no position information. We show that a set of brain areas in the postero-dorsal stream of auditory processing store associations between items and order as predicted by a positional model. The chaining model of order representation generates a different pattern similarity prediction, which was shown to be inconsistent with the fMRI data. Our results thus favor a neural model of order representation that stores item codes, position codes, and the mapping between them. This study provides the first fMRI evidence for a specific model of order representation in the human brain. Copyright © 2014 the authors 0270-6474/14/346879-08$15.00/0.
FMRI 3D registration based on Fourier space subsets using neural networks.
Freire, Luis C; Gouveia, Ana R; Godinho, Fernando M
2010-01-01
In this work, we present a neural network (NN) based method designed for 3D rigid-body registration of FMRI time series, which relies on a limited number of Fourier coefficients of the images to be aligned. These coefficients, which are comprised in a small cubic neighborhood located at the first octant of a 3D Fourier space (including the DC component), are then fed into six NN during the learning stage. Each NN yields the estimates of a registration parameter. The proposed method was assessed for 3D rigid-body transformations, using DC neighborhoods of different sizes. The mean absolute registration errors are of approximately 0.030 mm in translations and 0.030 deg in rotations, for the typical motion amplitudes encountered in FMRI studies. The construction of the training set and the learning stage are fast requiring, respectively, 90 s and 1 to 12 s, depending on the number of input and hidden units of the NN. We believe that NN-based approaches to the problem of FMRI registration can be of great interest in the future. For instance, NN relying on limited K-space data (possibly in navigation echoes) can be a valid solution to the problem of prospective (in frame) FMRI registration.
2015-10-01
with fMRI , and CEST acquisitions. Analysis hurdles were noted in the qMT, which we discuss here. Recruitment continues in the MS cohort (all healthy...Saturation Transfer (CEST) • Magnetization Transfer (MT) • Brain • Cortical Gray Matter (cGM) • Multiple Sclerosis (MS) • Functional MRI ( fMRI ) • Pool Size...MPRAGE Anatomical – 2:12 • fMRI Resting State – 8:34 • fMRI N-Back task – 8:30 • fMRI Trailmaking task – 4:14 The current scan time for all scans is
Joint fMRI analysis and subject clustering using sparse dictionary learning
NASA Astrophysics Data System (ADS)
Kim, Seung-Jun; Dontaraju, Krishna K.
2017-08-01
Multi-subject fMRI data analysis methods based on sparse dictionary learning are proposed. In addition to identifying the component spatial maps by exploiting the sparsity of the maps, clusters of the subjects are learned by postulating that the fMRI volumes admit a subspace clustering structure. Furthermore, in order to tune the associated hyper-parameters systematically, a cross-validation strategy is developed based on entry-wise sampling of the fMRI dataset. Efficient algorithms for solving the proposed constrained dictionary learning formulations are developed. Numerical tests performed on synthetic fMRI data show promising results and provides insights into the proposed technique.
Buklina, S B; Batalov, A I; Smirnov, A S; Poddubskaya, A A; Pitskhelauri, D I; Kobyakov, G L; Zhukov, V Yu; Goryaynov, S A; Kulikov, A S; Ogurtsova, A A; Golanov, A V; Varyukhina, M D; Pronin, I N
There are no studies on application of functional MRI (fMRI) for long-term monitoring of the condition of patients after resection of frontal and temporal lobe tumors. The study purpose was to correlate, using fMRI, reorganization of the speech system and dynamics of speech disorders in patients with left hemisphere gliomas before surgery and in the early and late postoperative periods. A total of 20 patients with left hemisphere gliomas were dynamically monitored using fMRI and comprehensive neuropsychological testing. The tumor was located in the frontal lobe in 12 patients and in the temporal lobe in 8 patients. Fifteen patients underwent primary surgery; 5 patients had repeated surgery. Sixteen patients had WHO Grade II and Grade III gliomas; the others had WHO Grade IV gliomas. Nineteen patients were examined preoperatively; 20 patients were examined at different times after surgery. Speech functions were assessed by a Luria's test; the dominant hand was determined using the Annette questionnaire; a family history of left-handedness was investigated. Functional MRI was performed on an HDtx 3.0 T scanner using BrainWavePA 2.0, Z software for fMRI data processing program for all calculations >7, p<0.001. In patients with extensive tumors and recurrent tumors, activation of right-sided homologues of the speech areas cold be detected even before surgery; but in most patients, the activation was detected 3 months or more after surgery. Therefore, reorganization of the speech system took time. Activation of right-sided homologues of the speech areas remained in all patients for up to a year. Simultaneous activation of right-sided homologues of both speech areas, the Broca's and Wernicke's areas, was detected more often in patients with frontal lobe tumors than in those with temporal lobe tumors. No additional activation foci in the left hemisphere were found at the thresholds used to process fMRI data. Recovery of the speech function, to a certain degree, occurred in all patients, but no clear correlation with fMRI data was found. Complex fMRI and neuropsychological studies in 20 patients after resection of frontal and temporal lobe tumors revealed individual features of speech system reorganization within one year follow-up. Probably, activation of right-sided homologues of the speech areas in the presence of left hemisphere tumors depends not only on the severity of speech disorder but also reflects individual involvement of the right hemisphere in enabling speech function. This is confirmed by right-sided activation, according to the fMRI data, in right-sided patients without aphasia and, conversely, the lack of activation of right-sided homologues of the speech areas in several patients with severe postoperative speech disorders during the entire follow-up period.
Synchronized delta oscillations correlate with the resting-state functional MRI signal
Lu, Hanbing; Zuo, Yantao; Gu, Hong; Waltz, James A.; Zhan, Wang; Scholl, Clara A.; Rea, William; Yang, Yihong; Stein, Elliot A.
2007-01-01
Synchronized low-frequency spontaneous fluctuations of the functional MRI (fMRI) signal have recently been applied to investigate large-scale neuronal networks of the brain in the absence of specific task instructions. However, the underlying neural mechanisms of these fluctuations remain largely unknown. To this end, electrophysiological recordings and resting-state fMRI measurements were conducted in α-chloralose-anesthetized rats. Using a seed-voxel analysis strategy, region-specific, anesthetic dose-dependent fMRI resting-state functional connectivity was detected in bilateral primary somatosensory cortex (S1FL) of the resting brain. Cortical electroencephalographic signals were also recorded from bilateral S1FL; a visual cortex locus served as a control site. Results demonstrate that, unlike the evoked fMRI response that correlates with power changes in the γ bands, the resting-state fMRI signal correlates with the power coherence in low-frequency bands, particularly the δ band. These data indicate that hemodynamic fMRI signal differentially registers specific electrical oscillatory frequency band activity, suggesting that fMRI may be able to distinguish the ongoing from the evoked activity of the brain. PMID:17991778
Raut, Savita V; Yadav, Dinkar M
2018-03-28
This paper presents an fMRI signal analysis methodology using geometric mean curve decomposition (GMCD) and mutual information-based voxel selection framework. Previously, the fMRI signal analysis has been conducted using empirical mean curve decomposition (EMCD) model and voxel selection on raw fMRI signal. The erstwhile methodology loses frequency component, while the latter methodology suffers from signal redundancy. Both challenges are addressed by our methodology in which the frequency component is considered by decomposing the raw fMRI signal using geometric mean rather than arithmetic mean and the voxels are selected from EMCD signal using GMCD components, rather than raw fMRI signal. The proposed methodologies are adopted for predicting the neural response. Experimentations are conducted in the openly available fMRI data of six subjects, and comparisons are made with existing decomposition models and voxel selection frameworks. Subsequently, the effect of degree of selected voxels and the selection constraints are analyzed. The comparative results and the analysis demonstrate the superiority and the reliability of the proposed methodology.
Iidaka, Tetsuya; Matsumoto, Atsushi; Nogawa, Junpei; Yamamoto, Yukiko; Sadato, Norihiro
2006-09-01
The neural basis for successful recognition of previously studied items, referred to as "retrieval success," has been investigated using either neuroimaging or brain potentials; however, few studies have used both modalities. Our study combined event-related functional magnetic resonance imaging (fMRI) and event-related potential (ERP) in separate groups of subjects. The neural responses were measured while the subjects performed an old/new recognition task with pictures that had been previously studied in either a deep- or shallow-encoding condition. The fMRI experiment showed that among the frontoparietal regions involved in retrieval success, the inferior frontal gyrus and intraparietal sulcus were crucial to conscious recollection because the activity of these regions was influenced by the depth of memory at encoding. The activity of the right parietal region in response to a repeated item was modulated by the repetition lag, indicating that this area would be critical to familiarity-based judgment. The results of structural equation modeling revealed that the functional connectivity among the regions in the left hemisphere was more significant than that in the right hemisphere. The results of the ERP experiment and independent component analysis paralleled those of the fMRI experiment and demonstrated that the repeated item produced an earlier peak than the hit item by approximately 50 ms.
Monfort, Jordi; Pujol, Jesús; Contreras-Rodríguez, Oren; Llorente-Onaindia, Jone; López-Solà, Marina; Blanco-Hinojo, Laura; Vergés, Josep; Herrero, Marta; Sánchez, Laura; Ortiz, Hector; Montañés, Francisco; Deus, Joan; Benito, Pere
2017-06-21
Knee osteoarthritis is causing pain and functional disability. One of the inherent problems with efficacy assessment of pain medication was the lack of objective pain measurements, but functional magnetic resonance imaging (fMRI) has emerged as a useful means to objectify brain response to painful stimulation. We have investigated the effect of chondroitin sulfate (CS) on brain response to knee painful stimulation in patients with knee osteoarthritis using fMRI. Twenty-two patients received CS (800mg/day) and 27 patients placebo, and were assessed at baseline and after 4 months of treatment. Two fMRI tests were conducted in each session by applying painful pressure on the knee interline and on the patella surface. The outcome measurement was attenuation of the response evoked by knee painful stimulation in the brain. fMRI of patella pain showed significantly greater activation reduction under CS compared with placebo in the region of the mesencephalic periaquecductal gray. The CS group, additionally showed pre/post-treatment activation reduction in the cortical representation of the leg. No effects of CS were detected using the interline pressure test. fMRI was sensitive to objectify CS effects on brain response to painful pressure on patellofemoral cartilage, which is consistent with the known CS action on chondrocyte regeneration. The current work yields further support to the utility of fMRI to objectify treatment effects on osteoarthritis pain. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Correa, Nicolle M; Li, Yi-Ou; Adalı, Tülay; Calhoun, Vince D
2008-12-01
Typically data acquired through imaging techniques such as functional magnetic resonance imaging (fMRI), structural MRI (sMRI), and electroencephalography (EEG) are analyzed separately. However, fusing information from such complementary modalities promises to provide additional insight into connectivity across brain networks and changes due to disease. We propose a data fusion scheme at the feature level using canonical correlation analysis (CCA) to determine inter-subject covariations across modalities. As we show both with simulation results and application to real data, multimodal CCA (mCCA) proves to be a flexible and powerful method for discovering associations among various data types. We demonstrate the versatility of the method with application to two datasets, an fMRI and EEG, and an fMRI and sMRI dataset, both collected from patients diagnosed with schizophrenia and healthy controls. CCA results for fMRI and EEG data collected for an auditory oddball task reveal associations of the temporal and motor areas with the N2 and P3 peaks. For the application to fMRI and sMRI data collected for an auditory sensorimotor task, CCA results show an interesting joint relationship between fMRI and gray matter, with patients with schizophrenia showing more functional activity in motor areas and less activity in temporal areas associated with less gray matter as compared to healthy controls. Additionally, we compare our scheme with an independent component analysis based fusion method, joint-ICA that has proven useful for such a study and note that the two methods provide complementary perspectives on data fusion.
An evaluation of independent component analyses with an application to resting-state fMRI
Matteson, David S.; Ruppert, David; Eloyan, Ani; Caffo, Brian S.
2013-01-01
Summary We examine differences between independent component analyses (ICAs) arising from different as-sumptions, measures of dependence, and starting points of the algorithms. ICA is a popular method with diverse applications including artifact removal in electrophysiology data, feature extraction in microarray data, and identifying brain networks in functional magnetic resonance imaging (fMRI). ICA can be viewed as a generalization of principal component analysis (PCA) that takes into account higher-order cross-correlations. Whereas the PCA solution is unique, there are many ICA methods–whose solutions may differ. Infomax, FastICA, and JADE are commonly applied to fMRI studies, with FastICA being arguably the most popular. Hastie and Tibshirani (2003) demonstrated that ProDenICA outperformed FastICA in simulations with two components. We introduce the application of ProDenICA to simulations with more components and to fMRI data. ProDenICA was more accurate in simulations, and we identified differences between biologically meaningful ICs from ProDenICA versus other methods in the fMRI analysis. ICA methods require nonconvex optimization, yet current practices do not recognize the importance of, nor adequately address sensitivity to, initial values. We found that local optima led to dramatically different estimates in both simulations and group ICA of fMRI, and we provide evidence that the global optimum from ProDenICA is the best estimate. We applied a modification of the Hungarian (Kuhn-Munkres) algorithm to match ICs from multiple estimates, thereby gaining novel insights into how brain networks vary in their sensitivity to initial values and ICA method. PMID:24350655
Interplay between Functional Connectivity and Scale-Free Dynamics in Intrinsic fMRI Networks
Ciuciu, Philippe; Abry, Patrice; He, Biyu J.
2014-01-01
Studies employing functional connectivity-type analyses have established that spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals are organized within large-scale brain networks. Meanwhile, fMRI signals have been shown to exhibit 1/f-type power spectra – a hallmark of scale-free dynamics. We studied the interplay between functional connectivity and scale-free dynamics in fMRI signals, utilizing the fractal connectivity framework – a multivariate extension of the univariate fractional Gaussian noise model, which relies on a wavelet formulation for robust parameter estimation. We applied this framework to fMRI data acquired from healthy young adults at rest and performing a visual detection task. First, we found that scale-invariance existed beyond univariate dynamics, being present also in bivariate cross-temporal dynamics. Second, we observed that frequencies within the scale-free range do not contribute evenly to inter-regional connectivity, with a systematically stronger contribution of the lowest frequencies, both at rest and during task. Third, in addition to a decrease of the Hurst exponent and inter-regional correlations, task performance modified cross-temporal dynamics, inducing a larger contribution of the highest frequencies within the scale-free range to global correlation. Lastly, we found that across individuals, a weaker task modulation of the frequency contribution to inter-regional connectivity was associated with better task performance manifesting as shorter and less variable reaction times. These findings bring together two related fields that have hitherto been studied separately – resting-state networks and scale-free dynamics, and show that scale-free dynamics of human brain activity manifest in cross-regional interactions as well. PMID:24675649
Wörsching, Jana; Padberg, Frank; Goerigk, Stephan; Heinz, Irmgard; Bauer, Christine; Plewnia, Christian; Hasan, Alkomiet; Ertl-Wagner, Birgit; Keeser, Daniel
2018-05-04
Transcranial direct current stimulation (tDCS) of the prefrontal cortex (PFC) has been widely applied in cognitive neurosciences and advocated as a therapeutic intervention, e.g. in major depressive disorder. Although several targets and protocols have been suggested, comparative studies of tDCS parameters, particularly electrode montages and their cortical targets, are still lacking. This study investigated a priori hypotheses on specific effects of prefrontal-tDCS montages by using multimodal functional magnetic resonance imaging (fMRI) in healthy participants. 28 healthy male participants underwent three common active-tDCS montages and sham tDCS in a pseudo-randomized order, comprising a total of 112 tDCS-fMRI sessions. Active tDCS was applied at 2 mA for 20 min. Before and after tDCS, a resting-state fMRI (RS fMRI) was recorded, followed by a task fMRI with a delayed-response working-memory (DWM) task for assessing cognitive control over emotionally negative or neutral distractors. After tDCS with a cathode-F3/anode-F4 montage, RS-fMRI connectivity decreased in a medial part of the left PFC. Also, after the same stimulation condition, regional brain activity during DWM retrieval decreased more in this area after negative than after neutral distraction, and responses to the DWM task were faster, independent of distractor type. The current study does not confirm our a priori hypotheses on direction and localization of polarity-dependent tDCS effects using common bipolar electrode montages over PFC regions, but it provides evidence for montage-specific effects on multimodal neurophysiological and behavioral outcome measures. Systematic research on the actual targets and the respective dose-response relationships of prefrontal tDCS is warranted. Copyright © 2018 Elsevier Inc. All rights reserved.
Milner, Rafał; Rusiniak, Mateusz; Lewandowska, Monika; Wolak, Tomasz; Ganc, Małgorzata; Piątkowska-Janko, Ewa; Bogorodzki, Piotr; Skarżyński, Henryk
2014-01-01
Background The neural underpinnings of auditory information processing have often been investigated using the odd-ball paradigm, in which infrequent sounds (deviants) are presented within a regular train of frequent stimuli (standards). Traditionally, this paradigm has been applied using either high temporal resolution (EEG) or high spatial resolution (fMRI, PET). However, used separately, these techniques cannot provide information on both the location and time course of particular neural processes. The goal of this study was to investigate the neural correlates of auditory processes with a fine spatio-temporal resolution. A simultaneous auditory evoked potentials (AEP) and functional magnetic resonance imaging (fMRI) technique (AEP-fMRI), together with an odd-ball paradigm, were used. Material/Methods Six healthy volunteers, aged 20–35 years, participated in an odd-ball simultaneous AEP-fMRI experiment. AEP in response to acoustic stimuli were used to model bioelectric intracerebral generators, and electrophysiological results were integrated with fMRI data. Results fMRI activation evoked by standard stimuli was found to occur mainly in the primary auditory cortex. Activity in these regions overlapped with intracerebral bioelectric sources (dipoles) of the N1 component. Dipoles of the N1/P2 complex in response to standard stimuli were also found in the auditory pathway between the thalamus and the auditory cortex. Deviant stimuli induced fMRI activity in the anterior cingulate gyrus, insula, and parietal lobes. Conclusions The present study showed that neural processes evoked by standard stimuli occur predominantly in subcortical and cortical structures of the auditory pathway. Deviants activate areas non-specific for auditory information processing. PMID:24413019
Giménez, Mónica; Ortiz, Hector; Soriano-Mas, Carles; López-Solà, Marina; Farré, Magí; Deus, Joan; Martín-Santos, Rocio; Fernandes, Sofia; Fina, Paolo; Bani, Massimo; Zancan, Stefano; Pujol, Jesús; Merlo-Pich, Emilio
2014-01-01
Recent studies suggest that pharmacologic effects of anxiolytic agents can be mapped as functional changes in the fear, stress and anxiety brain circuit. In this work we investigated the effects of a standard treatment, paroxetine (20mg/day), in subjects with Social Anxiety Disorder (SAD) versus placebo using different fMRI paradigms. The fMRI sessions, performed before and after the treatment, consisted of a public exposition of recorded performance task (PERPT), an emotional face processing task (EFPT) and a 6-min resting state followed by an off-scanner public speaking test. Paroxetine significantly improved the clinical conditions of SAD patients (n=17) vs. placebo (n=16) as measured with Clinical Global Inventory - Improvement (CGI-I) while no change was seen when using Liebowitz Social Anxiety Scale, as expected given the small size of the study population. Paroxetine reduced the activation of insula, thalamus and subgenual/anterior cingulate cortex (ACC) in PERPT. Resting-state fMRI assessment using Independent Component Analysis indicated that paroxetine reduced functional connectivity in insula, thalamus and ACC when compared with placebo. Both paradigms showed significant correlation with CGI-I in rostral prefrontal cortex. Conversely, paroxetine compared to placebo produced activation of right amygdala and bilateral insula and no effects in ACC when tested with EFPT. No treatment effects on distress scores were observed in the off-scanner Public Speaking Test. Overall this study supports the use of fMRI as sensitive approach to explore the neurobiological substrate of the effects of pharmacologic treatments and, in particular, of resting state fMRI given its simplicity and task independence. © 2013 Elsevier B.V. and ECNP. All rights reserved.
Sequential inhibitory control processes assessed through simultaneous EEG-fMRI.
Baumeister, Sarah; Hohmann, Sarah; Wolf, Isabella; Plichta, Michael M; Rechtsteiner, Stefanie; Zangl, Maria; Ruf, Matthias; Holz, Nathalie; Boecker, Regina; Meyer-Lindenberg, Andreas; Holtmann, Martin; Laucht, Manfred; Banaschewski, Tobias; Brandeis, Daniel
2014-07-01
Inhibitory response control has been extensively investigated in both electrophysiological (ERP) and hemodynamic (fMRI) studies. However, very few multimodal results address the coupling of these inhibition markers. In fMRI, response inhibition has been most consistently linked to activation of the anterior insula and inferior frontal cortex (IFC), often also the anterior cingulate cortex (ACC). ERP work has established increased N2 and P3 amplitudes during NoGo compared to Go conditions in most studies. Previous simultaneous EEG-fMRI imaging reported association of the N2/P3 complex with activation of areas like the anterior midcingulate cortex (aMCC) and anterior insula. In this study we investigated inhibitory control in 23 healthy young adults (mean age=24.7, n=17 for EEG during fMRI) using a combined Flanker/NoGo task during simultaneous EEG and fMRI recording. Separate fMRI and ERP analysis yielded higher activation in the anterior insula, IFG and ACC as well as increased N2 and P3 amplitudes during NoGo trials in accordance with the literature. Combined analysis modelling sequential N2 and P3 effects through joint parametric modulation revealed correlation of higher N2 amplitude with deactivation in parts of the default mode network (DMN) and the cingulate motor area (CMA) as well as correlation of higher central P3 amplitude with activation of the left anterior insula, IFG and posterior cingulate. The EEG-fMRI results resolve the localizations of these sequential activations. They suggest a general role for allocation of attentional resources and motor inhibition for N2 and link memory recollection and internal reflection to P3 amplitude, in addition to previously described response inhibition as reflected by the anterior insula. Copyright © 2014 Elsevier Inc. All rights reserved.
Giménez, Mónica; Pujol, Jesús; Ali, Zahid; López-Solà, Marina; Contreras-Rodríguez, Oren; Deus, Joan; Ortiz, Héctor; Soriano-Mas, Carles; Llorente-Onaindia, Jone; Monfort, Jordi
2014-11-01
The aim of our study was to investigate the effects of naproxen, an antiinflammatory analgesic drug, on brain response to painful stimulation on the affected knee in chronic osteoarthritis (OA) using functional magnetic resonance imaging (fMRI) in a double-blind, placebo-controlled study. A sample of 25 patients with knee OA received naproxen (500 mg), placebo, or no treatment in 3 separate sessions in a randomized manner. Pressure stimulation was applied to the medial articular interline of the knee during the fMRI pain sequence. We evaluated subjective pain ratings at every session and their association with brain responses to pain. An fMRI control paradigm was included to discard global brain vascular effects of naproxen. We found brain activation reductions under naproxen compared to no treatment in different cortical and subcortical core pain processing regions (p≤0.001). Compared to placebo, naproxen triggered an attenuation of amygdala activation (p=0.001). Placebo extended its attenuation effects beyond the classical pain processing network (p≤0.001). Subjective pain scores during the fMRI painful task differed between naproxen and no treatment (p=0.037). Activation attenuation under naproxen in different regions (i.e., ventral brain, cingulate gyrus) was accompanied by an improvement in the subjective pain complaints (p≤0.002). Naproxen effectively reduces pain-related brain responses involving different regions and the attenuation is related to subjective pain changes. Our current work yields further support to the utility of fMRI to objectify the acute analgesic effects of a single naproxen dose in patients affected by knee OA. The trial was registered at the EuropeanClinicalTrials Database, "EudraCT Number 2008-004501-33".
What the success of brain imaging implies about the neural code.
Guest, Olivia; Love, Bradley C
2017-01-19
The success of fMRI places constraints on the nature of the neural code. The fact that researchers can infer similarities between neural representations, despite fMRI's limitations, implies that certain neural coding schemes are more likely than others. For fMRI to succeed given its low temporal and spatial resolution, the neural code must be smooth at the voxel and functional level such that similar stimuli engender similar internal representations. Through proof and simulation, we determine which coding schemes are plausible given both fMRI's successes and its limitations in measuring neural activity. Deep neural network approaches, which have been forwarded as computational accounts of the ventral stream, are consistent with the success of fMRI, though functional smoothness breaks down in the later network layers. These results have implications for the nature of the neural code and ventral stream, as well as what can be successfully investigated with fMRI.
Functional feature embedded space mapping of fMRI data.
Hu, Jin; Tian, Jie; Yang, Lei
2006-01-01
We have proposed a new method for fMRI data analysis which is called Functional Feature Embedded Space Mapping (FFESM). Our work mainly focuses on the experimental design with periodic stimuli which can be described by a number of Fourier coefficients in the frequency domain. A nonlinear dimension reduction technique Isomap is applied to the high dimensional features obtained from frequency domain of the fMRI data for the first time. Finally, the presence of activated time series is identified by the clustering method in which the information theoretic criterion of minimum description length (MDL) is used to estimate the number of clusters. The feasibility of our algorithm is demonstrated by real human experiments. Although we focus on analyzing periodic fMRI data, the approach can be extended to analyze non-periodic fMRI data (event-related fMRI) by replacing the Fourier analysis with a wavelet analysis.
Laminar fMRI and computational theories of brain function.
Stephan, K E; Petzschner, F H; Kasper, L; Bayer, J; Wellstein, K V; Stefanics, G; Pruessmann, K P; Heinzle, J
2017-11-02
Recently developed methods for functional MRI at the resolution of cortical layers (laminar fMRI) offer a novel window into neurophysiological mechanisms of cortical activity. Beyond physiology, laminar fMRI also offers an unprecedented opportunity to test influential theories of brain function. Specifically, hierarchical Bayesian theories of brain function, such as predictive coding, assign specific computational roles to different cortical layers. Combined with computational models, laminar fMRI offers a unique opportunity to test these proposals noninvasively in humans. This review provides a brief overview of predictive coding and related hierarchical Bayesian theories, summarises their predictions with regard to layered cortical computations, examines how these predictions could be tested by laminar fMRI, and considers methodological challenges. We conclude by discussing the potential of laminar fMRI for clinically useful computational assays of layer-specific information processing. Copyright © 2017 Elsevier Inc. All rights reserved.
Regional Homogeneity Predicts Creative Insight: A Resting-State fMRI Study.
Lin, Jiabao; Cui, Xuan; Dai, Xiaoying; Mo, Lei
2018-01-01
Creative insight plays an important role in our daily life. Previous studies have investigated the neural correlates of creative insight by functional magnetic resonance imaging (fMRI), however, the intrinsic resting-state brain activity associated with creative insight is still unclear. In the present study, we used regional homogeneity (ReHo) as an index in resting-state fMRI (rs-fMRI) to identify brain regions involved in individual differences in creative insight, which was compued by the response time (RT) of creative Chinese character chunk decomposition. The findings indicated that ReHo in the anterior cingulate cortex (ACC)/caudate nucleus (CN) and angular gyrus (AG)/superior temporal gyrus (STG)/inferior parietal lobe (IPL) negatively predicted creative insight. Furthermore, these findings suggested that spontaneous brain activity in multiple regions related to breaking and establishing mental sets, goal-directed solutions exploring, shifting attention, forming new associations and emotion experience contributes to creative insight. In conclusion, the present study provides new evidence to further understand the cognitive processing and neural correlates of creative insight.
Pediatric functional magnetic resonance neuroimaging: tactics for encouraging task compliance.
Schlund, Michael W; Cataldo, Michael F; Siegle, Greg J; Ladouceur, Cecile D; Silk, Jennifer S; Forbes, Erika E; McFarland, Ashley; Iyengar, Satish; Dahl, Ronald E; Ryan, Neal D
2011-05-06
Neuroimaging technology has afforded advances in our understanding of normal and pathological brain function and development in children and adolescents. However, noncompliance involving the inability to remain in the magnetic resonance imaging (MRI) scanner to complete tasks is one common and significant problem. Task noncompliance is an especially significant problem in pediatric functional magnetic resonance imaging (fMRI) research because increases in noncompliance produces a greater risk that a study sample will not be representative of the study population. In this preliminary investigation, we describe the development and application of an approach for increasing the number of fMRI tasks children complete during neuroimaging. Twenty-eight healthy children ages 9-13 years participated. Generalization of the approach was examined in additional fMRI and event-related potential investigations with children at risk for depression, children with anxiety and children with depression (N=120). Essential features of the approach include a preference assessment for identifying multiple individualized rewards, increasing reinforcement rates during imaging by pairing tasks with chosen rewards and presenting a visual 'road map' listing tasks, rewards and current progress. Our results showing a higher percentage of fMRI task completion by healthy children provides proof of concept data for the recommended tactics. Additional support was provided by results showing our approach generalized to several additional fMRI and event-related potential investigations and clinical populations. We proposed that some forms of task noncompliance may emerge from less than optimal reward protocols. While our findings may not directly support the effectiveness of the multiple reward compliance protocol, increased attention to how rewards are selected and delivered may aid cooperation with completing fMRI tasks. The proposed approach contributes to the pediatric neuroimaging literature by providing a useful way to conceptualize and measure task noncompliance and by providing simple cost effective tactics for improving the effectiveness of common reward-based protocols.
Du, Yuhui; Pearlson, Godfrey D; Liu, Jingyu; Sui, Jing; Yu, Qingbao; He, Hao; Castro, Eduardo; Calhoun, Vince D.
2015-01-01
Schizophrenia (SZ), bipolar disorder (BP) and schizoaffective disorder (SAD) share some common symptoms, and there is a debate about whether SAD is an independent category. To the best of our knowledge, no study has been done to differentiate these three disorders or to investigate the distinction of SAD as an independent category using fMRI data. The present study is aimed to explore biomarkers from resting-state fMRI networks for differentiating these disorders and investigate the relationship among these disorders based on fMRI networks with an emphasis on SAD. Firstly, a novel group ICA method, group information guided independent component analysis (GIG-ICA), was applied to extract subject-specific brain networks from fMRI data of 20 healthy controls (HC), 20 SZ patients, 20 BP patients, 20 patients suffering SAD with manic episodes (SADM), and 13 patients suffering SAD with depressive episodes exclusively (SADD). Then, five-level one-way analysis of covariance and multiclass support vector machine recursive feature elimination were employed to identify discriminative regions from the networks. Subsequently, the t-distributed stochastic neighbor embedding (t-SNE) projection and the hierarchical clustering methods were implemented to investigate the relationship among those groups. Finally, to evaluate the generalization ability, 16 new subjects were classified based on the found regions and the trained model using original 93 subjects. Results show that the discriminative regions mainly include frontal, parietal, precuneus, cingulate, supplementary motor, cerebellar, insula and supramarginal cortices, which performed well in distinguishing different groups. SADM and SADD were the most similar to each other, although SADD had greater similarity to SZ compared to other groups, which indicates SAD may be an independent category. BP was closer to HC compared with other psychotic disorders. In summary, resting-state fMRI brain networks extracted via GIG-ICA provide a promising potential to differentiate SZ, BP, and SAD. PMID:26216278
Peck, Kyung K; Bradbury, Michelle; Petrovich, Nicole; Hou, Bob L; Ishill, Nicole; Brennan, Cameron; Tabar, Viviane; Holodny, Andrei I
2009-04-01
Functional magnetic resonance imaging (fMRI) is used to assess language laterality in preoperative brain tumor patients. In postsurgical patients, susceptibility artifacts can potentially alter ipsilateral fMRI activation volumes and the assessment of language laterality. The purpose of this study was to investigate the ability of fMRI to correctly measure language dominance in brain tumor patients with previous surgery because this patient cohort is vulnerable to type II statistical errors and subsequent misjudgment of laterality. Twenty-six right-handed patients with left-hemisphere gliomas (16 with and 10 without previous surgery) underwent preoperative language fMRI. Language laterality was measured using hemispheric and Broca's area regions of interest (ROIs). Hemisphere dominance, as established by laterality measurements, was compared with that determined by intraoperative electrocorticography and behavioral assessments. Localization of primary language cortices was achieved in 24 of 26 patients studied. The hemisphere dominance evaluated by fMRI was verified by intraoperative corticography in only 14 patients (10 with and 4 without previous surgery), and only 12 of them had complete neuropsychological testing. Complete concordance of the laterality with intraoperative electrocorticography and behavioral assessments was found in patients without previous surgery. In patients with previous surgery, concordance was 75% using Broca's area ROI and 88% using hemispheric ROI, notwithstanding susceptibility artifacts. Differences in laterality between pre- and postsurgical patients, based on either hemispheric (P = 0.81) or Broca's area (P = 0.19) ROI measurements were not statistically significant. However, hemispheric ROI analyses were found to be less affected by postsurgical artifacts and may be more suitable for establishing hemisphere dominance. fMRI mapping of eloquent language cortices in brain tumor patients after surgery is feasible and can serve as a useful baseline evaluation for preoperative neurosurgical planning. However, findings should be interpreted with caution in the presence of postsurgical artifacts.
Baller, Erica B.; Wei, Shau-Ming; Kohn, Philip D.; Rubinow, David R.; Alarcón, Gabriela; Schmidt, Peter J.; Berman, Karen F.
2014-01-01
Objective To investigate the neural substrate of premenstrual dysphoric disorder (PMDD), the authors used [15O]H2O positron emission tomography (PET) regional cerebral blood flow (rCBF) and blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) signal measurements during working memory in conjunction with a 6-month hormone manipulation protocol. Method PET and fMRI scans were obtained from women with prospectively confirmed PMDD and asymptomatic comparison subjects while they completed the n-back task during three hormone conditions: ovarian suppression induced by the gonadotropin-releasing hormone agonist leuprolide acetate, leuprolide plus estradiol, and leuprolide plus progesterone. Fifteen patients and 15 matched comparison subjects underwent PET imaging. Fourteen patients and 14 comparison subjects underwent fMRI. For each hormone condition, rCBF was measured with [15O]H2O PET, and BOLD signal was measured with fMRI, both during an n-back working memory paradigm. Global Assessment of Functioning Scale (GAF) scores and clinical characteristics were obtained for each patient before hormone manipulation, and symptoms were measured before and during the protocol. Results In both the PET and fMRI studies, a main effect of diagnosis was observed, with PMDD patients showing greater prefrontal activation than comparison subjects. In the patient group, the degree to which dorsolateral prefrontal cortex activation was abnormally increased correlated with several dimensions of disease: disability as indicated by GAF scores, age at symptom onset, duration of PMDD, and differences in pre- and postmenses PMDD symptoms. Conclusions Abnormal working memory activation in PMDD, specifically in the dorsolateral prefrontal cortex, is related to PMDD severity, symptoms, age at onset, and disease burden. These results support the clinical relevance of the findings and the proposal that dorsolateral prefrontal cortex dysfunction represents a substrate of risk for PMDD. The concordance of the fMRI and PET data attests to the neurobiological validity of the results. PMID:23361612
Baller, Erica B; Wei, Shau-Ming; Kohn, Philip D; Rubinow, David R; Alarcón, Gabriela; Schmidt, Peter J; Berman, Karen F
2013-03-01
To investigate the neural substrate of premenstrual dysphoric disorder (PMDD), the authors used [15O]H2O positron emission tomography (PET) regional cerebral blood flow (rCBF) and blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) signal measurements during working memory in conjunction with a 6-month hormone manipulation protocol. PET and fMRI scans were obtained from women with prospectively confirmed PMDD and asymptomatic comparison subjects while they completed the n-back task during three hormone conditions: ovarian suppression induced by the gonadotropin-releasing hormone agonist leuprolide acetate, leuprolide plus estradiol, and leuprolide plus progesterone. Fifteen patients and 15 matched comparison subjects underwent PET imaging. Fourteen patients and 14 comparison subjects underwent fMRI. For each hormone condition, rCBF was measured with [15O]H2O PET, and BOLD signal was measured with fMRI, both during an n-back working memory paradigm. Global Assessment of Functioning Scale (GAF) scores and clinical characteristics were obtained for each patient before hormone manipulation, and symptoms were measured before and during the protocol. In both the PET and fMRI studies, a main effect of diagnosis was observed, with PMDD patients showing greater prefrontal activation than comparison subjects. In the patient group, the degree to which dorsolateral prefrontal cortex activation was abnormally increased correlated with several dimensions of disease: disability as indicated by GAF scores, age at symptom onset, duration of PMDD, and differences in pre- and postmenses PMDD symptoms. Abnormal working memory activation in PMDD, specifically in the dorsolateral prefrontal cortex, is related to PMDD severity, symptoms, age at onset, and disease burden. These results support the clinical relevance of the findings and the proposal that dorsolateral prefrontal cortex dysfunction represents a substrate of risk for PMDD. The concordance of the fMRI and PET data attests to the neurobiological validity of the results.
Pediatric functional magnetic resonance neuroimaging: tactics for encouraging task compliance
2011-01-01
Background Neuroimaging technology has afforded advances in our understanding of normal and pathological brain function and development in children and adolescents. However, noncompliance involving the inability to remain in the magnetic resonance imaging (MRI) scanner to complete tasks is one common and significant problem. Task noncompliance is an especially significant problem in pediatric functional magnetic resonance imaging (fMRI) research because increases in noncompliance produces a greater risk that a study sample will not be representative of the study population. Method In this preliminary investigation, we describe the development and application of an approach for increasing the number of fMRI tasks children complete during neuroimaging. Twenty-eight healthy children ages 9-13 years participated. Generalization of the approach was examined in additional fMRI and event-related potential investigations with children at risk for depression, children with anxiety and children with depression (N = 120). Essential features of the approach include a preference assessment for identifying multiple individualized rewards, increasing reinforcement rates during imaging by pairing tasks with chosen rewards and presenting a visual 'road map' listing tasks, rewards and current progress. Results Our results showing a higher percentage of fMRI task completion by healthy children provides proof of concept data for the recommended tactics. Additional support was provided by results showing our approach generalized to several additional fMRI and event-related potential investigations and clinical populations. Discussion We proposed that some forms of task noncompliance may emerge from less than optimal reward protocols. While our findings may not directly support the effectiveness of the multiple reward compliance protocol, increased attention to how rewards are selected and delivered may aid cooperation with completing fMRI tasks Conclusion The proposed approach contributes to the pediatric neuroimaging literature by providing a useful way to conceptualize and measure task noncompliance and by providing simple cost effective tactics for improving the effectiveness of common reward-based protocols. PMID:21548928
Hegarty, John P; Weber, Dylan J; Cirstea, Carmen M; Beversdorf, David Q
2018-05-23
Atypical functional connectivity (FC) and an imbalance of excitation-to-inhibition (E/I) have been previously reported in cerebro-cerebellar circuits in autism spectrum disorder (ASD). The current investigation used resting state fMRI and proton magnetic resonance spectroscopy ( 1 H-MRS) to examine the relationships between E/I (glutamate + glutamine/GABA) and FC of the dorsolateral prefrontal cortex and posterolateral cerebellar hemisphere from 14 adolescents/adults with ASD and 12 age/sex/IQ-matched controls. In this pilot sample, cerebro-cerebellar FC was positively associated with cerebellar E/I and listening comprehension abilities in individuals with ASD but not controls. Additionally, a subgroup of individuals with ASD and low FC (n = 5) exhibited reduced E/I and impaired listening comprehension. Thus, altered functional coherence of cerebro-cerebellar circuits in ASD may be related with a cerebellar E/I imbalance.
Soddu, Andrea; Gómez, Francisco; Heine, Lizette; Di Perri, Carol; Bahri, Mohamed Ali; Voss, Henning U; Bruno, Marie-Aurélie; Vanhaudenhuyse, Audrey; Phillips, Christophe; Demertzi, Athena; Chatelle, Camille; Schrouff, Jessica; Thibaut, Aurore; Charland-Verville, Vanessa; Noirhomme, Quentin; Salmon, Eric; Tshibanda, Jean-Flory Luaba; Schiff, Nicholas D; Laureys, Steven
2016-01-01
The mildly invasive 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established imaging technique to measure 'resting state' cerebral metabolism. This technique made it possible to assess changes in metabolic activity in clinical applications, such as the study of severe brain injury and disorders of consciousness. We assessed the possibility of creating functional MRI activity maps, which could estimate the relative levels of activity in FDG-PET cerebral metabolic maps. If no metabolic absolute measures can be extracted, our approach may still be of clinical use in centers without access to FDG-PET. It also overcomes the problem of recognizing individual networks of independent component selection in functional magnetic resonance imaging (fMRI) resting state analysis. We extracted resting state fMRI functional connectivity maps using independent component analysis and combined only components of neuronal origin. To assess neuronality of components a classification based on support vector machine (SVM) was used. We compared the generated maps with the FDG-PET maps in 16 healthy controls, 11 vegetative state/unresponsive wakefulness syndrome patients and four locked-in patients. The results show a significant similarity with ρ = 0.75 ± 0.05 for healthy controls and ρ = 0.58 ± 0.09 for vegetative state/unresponsive wakefulness syndrome patients between the FDG-PET and the fMRI based maps. FDG-PET, fMRI neuronal maps, and the conjunction analysis show decreases in frontoparietal and medial regions in vegetative patients with respect to controls. Subsequent analysis in locked-in syndrome patients produced also consistent maps with healthy controls. The constructed resting state fMRI functional connectivity map points toward the possibility for fMRI resting state to estimate relative levels of activity in a metabolic map.
Distortion products in auditory fMRI research: Measurements and solutions.
Norman-Haignere, Sam; McDermott, Josh H
2016-04-01
Nonlinearities in the cochlea can introduce audio frequencies that are not present in the sound signal entering the ear. Known as distortion products (DPs), these added frequencies complicate the interpretation of auditory experiments. Sound production systems also introduce distortion via nonlinearities, a particular concern for fMRI research because the Sensimetrics earphones widely used for sound presentation are less linear than most high-end audio devices (due to design constraints). Here we describe the acoustic and neural effects of cochlear and earphone distortion in the context of fMRI studies of pitch perception, and discuss how their effects can be minimized with appropriate stimuli and masking noise. The amplitude of cochlear and Sensimetrics earphone DPs were measured for a large collection of harmonic stimuli to assess effects of level, frequency, and waveform amplitude. Cochlear DP amplitudes were highly sensitive to the absolute frequency of the DP, and were most prominent at frequencies below 300 Hz. Cochlear DPs could thus be effectively masked by low-frequency noise, as expected. Earphone DP amplitudes, in contrast, were highly sensitive to both stimulus and DP frequency (due to prominent resonances in the earphone's transfer function), and their levels grew more rapidly with increasing stimulus level than did cochlear DP amplitudes. As a result, earphone DP amplitudes often exceeded those of cochlear DPs. Using fMRI, we found that earphone DPs had a substantial effect on the response of pitch-sensitive cortical regions. In contrast, cochlear DPs had a small effect on cortical fMRI responses that did not reach statistical significance, consistent with their lower amplitudes. Based on these findings, we designed a set of pitch stimuli optimized for identifying pitch-responsive brain regions using fMRI. These stimuli robustly drive pitch-responsive brain regions while producing minimal cochlear and earphone distortion, and will hopefully aid fMRI researchers in avoiding distortion confounds. Copyright © 2016 Elsevier Inc. All rights reserved.
Distortion Products in Auditory fMRI Research: Measurements and Solutions
Norman-Haignere, Sam; McDermott, Josh H.
2016-01-01
Nonlinearities in the cochlea can introduce audio frequencies that are not present in the sound signal entering the ear. Known as distortion products (DPs), these added frequencies complicate the interpretation of auditory experiments. Sound production systems also introduce distortion via nonlinearities, a particular concern for fMRI research because the Sensimetrics earphones widely used for sound presentation are less linear than most high-end audio devices (due to design constraints). Here we describe the acoustic and neural effects of cochlear and earphone distortion in the context of fMRI studies of pitch perception, and discuss how their effects can be minimized with appropriate stimuli and masking noise. The amplitude of cochlear and Sensimetrics earphone DPs were measured for a large collection of harmonic stimuli to assess effects of level, frequency, and waveform amplitude. Cochlear DP amplitudes were highly sensitive to the absolute frequency of the DP, and were most prominent at frequencies below 300 Hz. Cochlear DPs could thus be effectively masked by low-frequency noise, as expected. Earphone DP amplitudes, in contrast, were highly sensitive to both stimulus and DP frequency (due to prominent resonances in the earphone’s transfer function), and their levels grew more rapidly with increasing stimulus level than did cochlear DP amplitudes. As a result, earphone DP amplitudes often exceeded those of cochlear DPs. Using fMRI, we found that earphone DPs had a substantial effect on the response of pitch-sensitive cortical regions. In contrast, cochlear DPs had a small effect on cortical fMRI responses that did not reach statistical significance, consistent with their lower amplitudes. Based on these findings, we designed a set of pitch stimuli optimized for identifying pitch-responsive brain regions using fMRI. These stimuli robustly drive pitch-responsive brain regions while producing minimal cochlear and earphone distortion, and will hopefully aid fMRI researchers in avoiding distortion confounds. PMID:26827809
Adaptation of a haptic robot in a 3T fMRI.
Snider, Joseph; Plank, Markus; May, Larry; Liu, Thomas T; Poizner, Howard
2011-10-04
Functional magnetic resonance imaging (fMRI) provides excellent functional brain imaging via the BOLD signal with advantages including non-ionizing radiation, millimeter spatial accuracy of anatomical and functional data, and nearly real-time analyses. Haptic robots provide precise measurement and control of position and force of a cursor in a reasonably confined space. Here we combine these two technologies to allow precision experiments involving motor control with haptic/tactile environment interaction such as reaching or grasping. The basic idea is to attach an 8 foot end effecter supported in the center to the robot allowing the subject to use the robot, but shielding it and keeping it out of the most extreme part of the magnetic field from the fMRI machine (Figure 1). The Phantom Premium 3.0, 6DoF, high-force robot (SensAble Technologies, Inc.) is an excellent choice for providing force-feedback in virtual reality experiments, but it is inherently non-MR safe, introduces significant noise to the sensitive fMRI equipment, and its electric motors may be affected by the fMRI's strongly varying magnetic field. We have constructed a table and shielding system that allows the robot to be safely introduced into the fMRI environment and limits both the degradation of the fMRI signal by the electrically noisy motors and the degradation of the electric motor performance by the strongly varying magnetic field of the fMRI. With the shield, the signal to noise ratio (SNR: mean signal/noise standard deviation) of the fMRI goes from a baseline of ~380 to ~330, and ~250 without the shielding. The remaining noise appears to be uncorrelated and does not add artifacts to the fMRI of a test sphere (Figure 2). The long, stiff handle allows placement of the robot out of range of the most strongly varying parts of the magnetic field so there is no significant effect of the fMRI on the robot. The effect of the handle on the robot's kinematics is minimal since it is lightweight (~2.6 lbs) but extremely stiff 3/4" graphite and well balanced on the 3DoF joint in the middle. The end result is an fMRI compatible, haptic system with about 1 cubic foot of working space, and, when combined with virtual reality, it allows for a new set of experiments to be performed in the fMRI environment including naturalistic reaching, passive displacement of the limb and haptic perception, adaptation learning in varying force fields, or texture identification.
Mechanism of impaired consciousness in absence seizures: a cross-sectional study
Guo, Jennifer N.; Kim, Robert; Chen, Yu; Negishi, Michiro; Jhun, Stephen; Weiss, Sarah; Ryu, Jun Hwan; Bai, Xiaoxiao; Xiao, Wendy; Feeney, Erin; Rodriguez-Fernandez, Jorge; Mistry, Hetal; Crunelli, Vincenzo; Crowley, Michael J.; Mayes, Linda C.; Todd Constable, R.; Blumenfeld, Hal
2017-01-01
Background Absence seizures are brief episodes of impaired consciousness characterized by staring and behavioral arrest. The neural underpinnings of impaired consciousness and of the variable severity of behavioral impairment observed from one absence seizure to the next are not well understood. We therefore compared fMRI and EEG changes in absence seizures with impaired task performance to seizures in which performance was spared. Methods Patients were recruited from 59 pediatric neurology practices including hospitals and neurology outpatient offices throughout the United States. We performed simultaneous electroencephalography (EEG), fMRI, and behavioral testing in children and adolescents aged 6 to 19 years with typical absence epilepsy. fMRI and EEG were analyzed using data-driven approaches without prior assumptions about signal time courses or spatial distributions. The main outcomes were fMRI and EEG amplitudes in seizures with impaired versus spared behavioral responses analysed by t-test. We also examined the timing of fMRI and EEG changes in seizures with impaired behavioral responses compared to seizures with spared responses. Findings 93 patients were enrolled between September 1, 2005 and January 1, 2013, and we captured a total of 1032 seizures in 39 patients. fMRI changes during seizures occurred sequentially in three functional brain networks previously well-validated in studies of normal subjects. Seizures associated with more impaired behavior showed higher fMRI amplitude in all three networks compared to seizures with spared performance. In the default-mode network fMRI, amplitude was 0·57 ± 0·26% for seizures with impaired and 0·40 ± 0·16% for seizures with spared behavioral responses (mean difference 017%; 95% CI: 0·11 to 0·23%; p < 0.0001). In the task-positive network, fMRI amplitude was 0·53 ± 0·29% for impaired and 0·39 ± 0·15% for spared seizures (mean difference 0·14%; 95% CI: 008 to 0·21%; p < 0.0001). In the sensorimotor-thalamic network, fMRI amplitude was 0·41 ± 0·25% for impaired and 0·34 ± 014% for spared seizures (mean difference 0 07%; 95% CI: 001 to 0·13%; p = 0.02). Seizures with impaired behavior also showed greater EEG power in widespread brain regions compared to seizures with spared behavior. Mean fractional EEG power in the frontal leads was 50·4 ± 15·2 for seizures with impaired and 24·8 ± 6·5 for seizures with spared behavior (mean difference 25·6; 95% CI: 210 to 30·3); middle leads 35·4 ± 6·5 for impaired, 13 3 ± 34 for spared seizures (mean difference 22·1; 95% CI: 20.0 to 24·1); posterior leads 41·6 ± 5·3 for impaired, 24·6 ± 86 for spared seizures (mean difference 170; 95% CI: 14·4 to 19·7); p < 00001 for all comparisons. Average seizure duration was longer for seizures with impaired behavior at 79 ± 66 s, compared to 3·8 ± 3.0 s for seizures with spared behavior (mean difference 4.1 s; 95% CI 3.0 to 5.3 s, p < 00001). However, larger amplitude fMRI and EEG signals occurred at the outset or even preceding seizures with impairment. Interpretation Impaired consciousness in absence seizures is related to the intensity of physiological changes in established networks affecting widespread regions of the brain. Increased EEG and fMRI amplitude occurs at the onset of seizures associated with behavioral impairment. These findings suggest that a vulnerable state may exist at the initiation of some seizures leading to greater physiological changes and altered consciousness. PMID:27839650
Practice guideline summary: Use of fMRI in the presurgical evaluation of patients with epilepsy
Szaflarski, Jerzy P.; Gloss, David; Binder, Jeffrey R.; Gaillard, William D.; Golby, Alexandra J.; Holland, Scott K.; Ojemann, Jeffrey; Spencer, David C.; Swanson, Sara J.; French, Jacqueline A.; Theodore, William H.
2017-01-01
Objective: To assess the diagnostic accuracy and prognostic value of functional MRI (fMRI) in determining lateralization and predicting postsurgical language and memory outcomes. Methods: An 11-member panel evaluated and rated available evidence according to the 2004 American Academy of Neurology process. At least 2 panelists reviewed the full text of 172 articles and selected 37 for data extraction. Case reports, reports with <15 cases, meta-analyses, and editorials were excluded. Results and recommendations: The use of fMRI may be considered an option for lateralizing language functions in place of intracarotid amobarbital procedure (IAP) in patients with medial temporal lobe epilepsy (MTLE; Level C), temporal epilepsy in general (Level C), or extratemporal epilepsy (Level C). For patients with temporal neocortical epilepsy or temporal tumors, the evidence is insufficient (Level U). fMRI may be considered to predict postsurgical language deficits after anterior temporal lobe resection (Level C). The use of fMRI may be considered for lateralizing memory functions in place of IAP in patients with MTLE (Level C) but is of unclear utility in other epilepsy types (Level U). fMRI of verbal memory or language encoding should be considered for predicting verbal memory outcome (Level B). fMRI using nonverbal memory encoding may be considered for predicting visuospatial memory outcomes (Level C). Presurgical fMRI could be an adequate alternative to IAP memory testing for predicting verbal memory outcome (Level C). Clinicians should carefully advise patients of the risks and benefits of fMRI vs IAP during discussions concerning choice of specific modality in each case. PMID:28077494
Pedersen, Mangor; Omidvarnia, Amir; Zalesky, Andrew; Jackson, Graeme D
2018-06-08
Correlation-based sliding window analysis (CSWA) is the most commonly used method to estimate time-resolved functional MRI (fMRI) connectivity. However, instantaneous phase synchrony analysis (IPSA) is gaining popularity mainly because it offers single time-point resolution of time-resolved fMRI connectivity. We aim to provide a systematic comparison between these two approaches, on both temporal and topological levels. For this purpose, we used resting-state fMRI data from two separate cohorts with different temporal resolutions (45 healthy subjects from Human Connectome Project fMRI data with repetition time of 0.72 s and 25 healthy subjects from a separate validation fMRI dataset with a repetition time of 3 s). For time-resolved functional connectivity analysis, we calculated tapered CSWA over a wide range of different window lengths that were temporally and topologically compared to IPSA. We found a strong association in connectivity dynamics between IPSA and CSWA when considering the absolute values of CSWA. The association between CSWA and IPSA was stronger for a window length of ∼20 s (shorter than filtered fMRI wavelength) than ∼100 s (longer than filtered fMRI wavelength), irrespective of the sampling rate of the underlying fMRI data. Narrow-band filtering of fMRI data (0.03-0.07 Hz) yielded a stronger relationship between IPSA and CSWA than wider-band (0.01-0.1 Hz). On a topological level, time-averaged IPSA and CSWA nodes were non-linearly correlated for both short (∼20 s) and long (∼100 s) windows, mainly because nodes with strong negative correlations (CSWA) displayed high phase synchrony (IPSA). IPSA and CSWA were anatomically similar in the default mode network, sensory cortex, insula and cerebellum. Our results suggest that IPSA and CSWA provide comparable characterizations of time-resolved fMRI connectivity for appropriately chosen window lengths. Although IPSA requires narrow-band fMRI filtering, we recommend the use of IPSA given that it does not mandate a (semi-)arbitrary choice of window length and window overlap. A code for calculating IPSA is provided. Copyright © 2018. Published by Elsevier Inc.
The secret lives of experiments: methods reporting in the fMRI literature.
Carp, Joshua
2012-10-15
Replication of research findings is critical to the progress of scientific understanding. Accordingly, most scientific journals require authors to report experimental procedures in sufficient detail for independent researchers to replicate their work. To what extent do research reports in the functional neuroimaging literature live up to this standard? The present study evaluated methods reporting and methodological choices across 241 recent fMRI articles. Many studies did not report critical methodological details with regard to experimental design, data acquisition, and analysis. Further, many studies were underpowered to detect any but the largest statistical effects. Finally, data collection and analysis methods were highly flexible across studies, with nearly as many unique analysis pipelines as there were studies in the sample. Because the rate of false positive results is thought to increase with the flexibility of experimental designs, the field of functional neuroimaging may be particularly vulnerable to false positives. In sum, the present study documented significant gaps in methods reporting among fMRI studies. Improved methodological descriptions in research reports would yield significant benefits for the field. Copyright © 2012 Elsevier Inc. All rights reserved.
Farrar, Danielle; Budson, Andrew E
2017-04-01
While the relationship between diffusion tensor imaging (DTI) measurements and training effects is explored by Voelker et al. (this issue), a cursory discussion of functional magnetic resonance imaging (fMRI) measurements categorizes increased activation with findings of greater white matter integrity. Evidence of the relationship between fMRI activation and white matter integrity is conflicting, as is the relationship between fMRI activation and training effects. An examination of the changes in fMRI activation in response to training is helpful, but the relationship between DTI and fMRI activation, particularly in the context of white matter changes, must be examined further before general conclusions can be drawn.
The role of fMRI in cognitive neuroscience: where do we stand?
Poldrack, Russell A
2008-04-01
Functional magnetic resonance imaging (fMRI) has quickly become the most prominent tool in cognitive neuroscience. In this article, I outline some of the limits on the kinds of inferences that can be supported by fMRI, focusing particularly on reverse inference, in which the engagement of specific mental processes is inferred from patterns of brain activation. Although this form of inference is weak, newly developed methods from the field of machine learning offer the potential to formalize and strengthen reverse inferences. I conclude by discussing the increasing presence of fMRI results in the popular media and the ethical implications of the increasing predictive power of fMRI.
ERIC Educational Resources Information Center
Henderson, John M.; Larson, Christine L.; Zhu, David C.
2008-01-01
We used fMRI to directly compare activation in two cortical regions previously identified as relevant to real-world scene processing: retrosplenial cortex and a region of posterior parahippocampal cortex functionally defined as the parahippocampal place area (PPA). We compared activation in these regions to full views of scenes from a global…
ERIC Educational Resources Information Center
Hugdahl, Kenneth; Gundersen, Hilde; Brekke, Cecilie; Thomsen, Tormod; Rimol, Lars Morten; Ersland, Lars; Niemi, Jussi
2004-01-01
The aim of the present study was to investigate differences in brain activation in a family with SLI as compared to intact individuals with normally developed language during processing of language stimuli. Functional magnetic resonance imaging (fMRI) was used to monitor changes in neuronal activation in temporal and frontal lobe areas in 5…
ERIC Educational Resources Information Center
Waiter, Gordon D.; Deary, Ian J.; Staff, Roger T.; Murray, Alison D.; Fox, Helen C.; Starr, John M.; Whalley, Lawrence J.
2009-01-01
To explore the possible neural foundations of individual differences in intelligence test scores, we examined the associations between Raven's Matrices scores and two tasks that were administered in a functional magnetic resonance imaging (fMRI) setting. The two tasks were an n-back working memory (N = 37) task and inspection time (N = 47). The…
ERIC Educational Resources Information Center
Ramponi, Cristina; Barnard, Philip J.; Kherif, Ferath; Henson, Richard N.
2011-01-01
Although functional neuroimaging studies have supported the distinction between explicit and implicit forms of memory, few have matched explicit and implicit tests closely, and most of these tested perceptual rather than conceptual implicit memory. We compared event-related fMRI responses during an intentional test, in which a group of…
Neural Substrates for Verbal Working Memory in Deaf Signers: fMRI Study and Lesion Case Report
ERIC Educational Resources Information Center
Buchsbaum, Bradley; Pickell, Bert; Love, Tracy; Hatrak, Marla; Bellugi, Ursula; Hickok, Gregory
2005-01-01
The nature of the representations maintained in verbal working memory is a topic of debate. Some authors argue for a modality-dependent code, tied to particular sensory or motor systems. Others argue for a modality-neutral code. Sign language affords a unique perspective because it factors out the effects of modality. In an fMRI experiment, deaf…
ERIC Educational Resources Information Center
Kurland, Jacquie; Pulvermuller, Friedemann; Silva, Nicole; Burke, Katherine; Andrianopoulos, Mary
2012-01-01
Purpose: This Phase I study investigated behavioral and functional MRI (fMRI) outcomes of 2 intensive treatment programs to improve naming in 2 participants with chronic moderate-to-severe aphasia with comorbid apraxia of speech (AOS). Constraint-induced aphasia therapy (CIAT; Pulvermuller et al., 2001) has demonstrated positive outcomes in some…
Studies in nonlinear optics and functional magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Dai, Tehui
There are two parts in this thesis. The first part will involve a study in the anomalous dispersion phase matched second-harmonic generation, and the second part will be a study in functional magnetic resonance imaging (fMRI) and a biophysical model of the human muscle. In part I, we report on a series of tricyanovinylaniline chromophores for use as dopants in poled poly(methyl methacrylate) waveguides for anomalous-dispersion phase- matched second-harmonic generation. Second-harmonic generation measurements as a function of mode index confirmed anomalous dispersion phase-matching efficiencies as large as 245%/Wcm2 over a propagation length of ~35 μm. The waveguide coupling technique limited the interaction length. The photostability of the chromophores was measured directly and found to agree qualitatively with second-harmonic measurements over time and was found to be improved over previously reported materials. In part II, we designed a system that could record joint force and surface electromyography (EMG) simultaneously with fMRI data. I-Egh quality force and EMG data were obtained at the same time that excellent fMRI brain images were achieved. Using this system we determined the relationship between the fMRI-measured brain activation and the handgrip force, and between the fMRI-measured brain activation and the EMG of finger flexor muscles. We found that in the whole brain and in the majority of motor function-related cortical fields, the degree of muscle activation is directly proportional to the amplitude of the brain signal determined by the fMRI measurement. The similarity in the relationship between muscle output and fMRI signal in a number of brain areas suggests that multiple cortical fields are involved in controlling muscle force. The factors that may contribute to the fMRI signals are discussed. A biophysical twitch force model was developed to predict force response under electrical stimulation. Comparison between experimental and modeled force profiles, peak forces, and force duration shows excellent agreement between the model and the experimental data. It is concluded that the present model allows us to reproduce the main features of muscle activation under stimulation.
Distinct neural representations of placebo and nocebo effect
Freeman, Sonya; Yu, Rongjun; Egorova, Natalia; Chen, Xiaoyan; Kirsch, Irving; Claggett, Brian; Kaptchuk, Ted J.; Gollub, Randy L.; Kong, Jian
2015-01-01
Expectations shape the way we experience the world. In this study, we used fMRI to investigate how positive and negative expectation can changes pain experiences in the same cohort of subjects. We first manipulated subjects’ treatment expectation of the effectiveness of three inert creams, with one cream labeled “Lidocaine” (positive expectancy), one labeled “Capsaicin” (negative expectancy) and one labeled “Neutral” by surreptitiously decreasing, increasing, or not changing respectively, the intensity of the noxious stimuli administered following cream application. We then used fMRI to investigate the signal changes associated with administration of identical pain stimuli before and after the treatment and control creams. Twenty-four healthy adults completed the study. Results showed expectancy significantly modulated subjective pain ratings. After controlling for changes in the neutral condition, the subjective pain rating changes evoked by positive and negative expectancy were significantly associated. fMRI results showed that the expectation of an increase in pain induced significant fMRI signal changes in the insula, orbitofrontal cortex, and periaqueductal gray, whereas the expectation of pain relief evoked significant fMRI signal changes in the striatum. No brain regions were identified as common to both “Capsaicin” and “Lidocaine” conditioning. There was also no significant association between the brain response to identical noxious stimuli in the pain matrix evoked by positive and negative expectancy. Our findings suggest that positive and negative expectancy engage different brain networks to modulate our pain experiences, but, overall, these distinct patterns of neural activation result in a correlated placebo and nocebo behavioral response. PMID:25776211
Integrated SSFP for functional brain mapping at 7 T with reduced susceptibility artifact
NASA Astrophysics Data System (ADS)
Sun, Kaibao; Xue, Rong; Zhang, Peng; Zuo, Zhentao; Chen, Zhongwei; Wang, Bo; Martin, Thomas; Wang, Yi; Chen, Lin; He, Sheng; Wang, Danny J. J.
2017-03-01
Balanced steady-state free precession (bSSFP) offers an alternative and potentially important tool to the standard gradient-echo echo-planar imaging (GE-EPI) for functional MRI (fMRI). Both passband and transition band based bSSFP have been proposed for fMRI. The applications of these methods, however, are limited by banding artifacts due to the sensitivity of bSSFP signal to off-resonance effects. In this article, a unique case of the SSFP-FID sequence, termed integrated-SSFP or iSSFP, was proposed to overcome the obstacle by compressing the SSFP profile into the width of a single voxel. The magnitude of the iSSFP signal was kept constant irrespective of frequency shift. Visual stimulation studies were performed to demonstrate the feasibility of fMRI using iSSFP at 7 T with flip angles of 4° and 25°, compared to standard bSSFP and gradient echo (GRE) imaging. The signal changes for the complex iSSFP signal in activated voxels were 2.48 ± 0.53 (%) and 2.96 ± 0.87 (%) for flip angles (FA) of 4° and 25° respectively at the TR of 9.88 ms. Simultaneous multi-slice acquisition (SMS) with the CAIPIRIHNA technique was carried out with iSSFP scanning to detect the anterior temporal lobe activation using a semantic processing task fMRI, compared with standard 2D GE-EPI. This study demonstrates the feasibility of iSSFP for fMRI with reduced susceptibility artifacts, while maintaining robust functional contrast at 7 T.
Grande, Marion; Meffert, Elisabeth; Schoenberger, Eva; Jung, Stefanie; Frauenrath, Tobias; Huber, Walter; Hussmann, Katja; Moormann, Mareike; Heim, Stefan
2012-07-02
Spontaneous language has rarely been subjected to neuroimaging studies. This study therefore introduces a newly developed method for the analysis of linguistic phenomena observed in continuous language production during fMRI. Most neuroimaging studies investigating language have so far focussed on single word or - to a smaller extent - sentence processing, mostly due to methodological considerations. Natural language production, however, is far more than the mere combination of words to larger units. Therefore, the present study aimed at relating brain activation to linguistic phenomena like word-finding difficulties or syntactic completeness in a continuous language fMRI paradigm. A picture description task with special constraints was used to provoke hesitation phenomena and speech errors. The transcribed speech sample was segmented into events of one second and each event was assigned to one category of a complex schema especially developed for this purpose. The main results were: conceptual planning engages bilateral activation of the precuneus. Successful lexical retrieval is accompanied - particularly in comparison to unsolved word-finding difficulties - by the left middle and superior temporal gyrus. Syntactic completeness is reflected in activation of the left inferior frontal gyrus (IFG) (area 44). In sum, the method has proven to be useful for investigating the neural correlates of lexical and syntactic phenomena in an overt picture description task. This opens up new prospects for the analysis of spontaneous language production during fMRI. Copyright © 2012 Elsevier Inc. All rights reserved.
Food-related odor probes of brain reward circuits during hunger: a pilot FMRI study.
Bragulat, Veronique; Dzemidzic, Mario; Bruno, Carolina; Cox, Cari A; Talavage, Thomas; Considine, Robert V; Kareken, David A
2010-08-01
Food aromas can be powerful appetitive cues in the natural environment. Although several studies have examined the cerebral responses to food images, none have used naturalistic food aromas to study obesity. Ten individuals (five normal-weight and five obese) were recruited to undergo 24 h of food deprivation. Subjects were then imaged on a 3T Siemens Trio-Tim scanner (Siemens, Erlangen, Germany) while smelling four food-related odors (FRO; two sweet odors and two fat-related) and four "nonappetitive odors" (NApO; e.g., Douglas fir). Before the imaging session, subjects rated their desire to eat each type of food to determine their most preferred (P-FRO). Across all 10 subjects, P-FRO elicited a greater blood oxygenation level dependent (BOLD) response than the NApO in limbic and reward-related areas, including the bilateral insula and opercular (gustatory) cortex, the anterior and posterior cingulate, and ventral striatum. Obese subjects showed greater activation in the bilateral hippocampus/parahippocampal gyrus, but lean controls showed more activation in the posterior insula. Brain areas activated by food odors are similar to those elicited by cues of addictive substances, such as alcohol. Food odors are highly naturalistic stimuli, and may be effective probes of reward-related networks in the context of hunger and obesity.
Coutinho, Joana; Goncalves, Oscar Filipe; Soares, José Miguel; Marques, Paulo; Sampaio, Adriana
2016-10-30
Obsessive-compulsive personality (OCPD) disorder is characterized by a pattern of excessive self-control, perfectionism and behavioral and cognitive rigidity. Despite the fact that OCPD is the most common personality disorder in the general population, published studies looking at the brain correlates of this disorder are practically nonexistent. The main goal of this study was to analyze the presence of brain alterations in OCPD when compared to healthy controls, specifically at the level of the Default Mode Network (DMN). The DMN is a well-established resting state network which was found to be associated with psychological processes that may play a key role in OCPD (e.g., self-awareness, episodic future thinking and mental simulation). Ten individuals diagnosed with OCPD and ten healthy controls underwent a clinical assessment interview and a resting-state functional magnetic resonance imaging (fMRI) acquisition. The results show that OCPD patients presented an increased functional connectivity in the precuneus (i.e., a posterior node of the DMN), known to be involved in the retrieval manipulation of past events in order to solve current problems and develop plans for the future. These results suggest that this key node of the DMN may play an important role in the pathophysiology of OCPD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.