Validity and reliability of a pilot scale for assessment of multiple system atrophy symptoms.
Matsushima, Masaaki; Yabe, Ichiro; Takahashi, Ikuko; Hirotani, Makoto; Kano, Takahiro; Horiuchi, Kazuhiro; Houzen, Hideki; Sasaki, Hidenao
2017-01-01
Multiple system atrophy (MSA) is a rare progressive neurodegenerative disorder for which brief yet sensitive scale is required in order for use in clinical trials and general screening. We previously compared several scales for the assessment of MSA symptoms and devised an eight-item pilot scale with large standardized response mean [handwriting, finger taps, transfers, standing with feet together, turning trunk, turning 360°, gait, body sway]. The aim of the present study is to investigate the validity and reliability of a simple pilot scale for assessment of multiple system atrophy symptoms. Thirty-two patients with MSA (15 male/17 female; 20 cerebellar subtype [MSA-C]/12 parkinsonian subtype [MSA-P]) were prospectively registered between January 1, 2014 and February 28, 2015. Patients were evaluated by two independent raters using the Unified MSA Rating Scale (UMSARS), Scale for Assessment and Rating of Ataxia (SARA), and the pilot scale. Correlations between UMSARS, SARA, pilot scale scores, intraclass correlation coefficients (ICCs), and Cronbach's alpha coefficients were calculated. Pilot scale scores significantly correlated with scores for UMSARS Parts I, II, and IV as well as with SARA scores. Intra-rater and inter-rater ICCs and Cronbach's alpha coefficients remained high (> 0.94) for all measures. The results of the present study indicate the validity and reliability of the eight-item pilot scale, particularly for the assessment of symptoms in patients with early state multiple system atrophy.
Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R
2012-02-01
Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.
Visual/motion cue mismatch in a coordinated roll maneuver
NASA Technical Reports Server (NTRS)
Shirachi, D. K.; Shirley, R. S.
1981-01-01
The effects of bandwidth differences between visual and motion cueing systems on pilot performance for a coordinated roll task were investigated. Visual and motion cue configurations which were acceptable and the effects of reduced motion cue scaling on pilot performance were studied to determine the scale reduction threshold for which pilot performance was significantly different from full scale pilot performance. It is concluded that: (1) the presence or absence of high frequency error information in the visual and/or motion display systems significantly affects pilot performance; and (2) the attenuation of motion scaling while maintaining other display dynamic characteristics constant, affects pilot performance.
A pilot rating scale for evaluating failure transients in electronic flight control systems
NASA Technical Reports Server (NTRS)
Hindson, William S.; Schroeder, Jeffery A.; Eshow, Michelle M.
1990-01-01
A pilot rating scale was developed to describe the effects of transients in helicopter flight-control systems on safety-of-flight and on pilot recovery action. The scale was applied to the evaluation of hardovers that could potentially occur in the digital flight-control system being designed for a variable-stability UH-60A research helicopter. Tests were conducted in a large moving-base simulator and in flight. The results of the investigation were combined with existing airworthiness criteria to determine quantitative reliability design goals for the control system.
Pilot-scale verification of maximum tolerable hydrodynamic stress for mammalian cell culture.
Neunstoecklin, Benjamin; Villiger, Thomas K; Lucas, Eric; Stettler, Matthieu; Broly, Hervé; Morbidelli, Massimo; Soos, Miroslav
2016-04-01
Although several scaling bioreactor models of mammalian cell cultures are suggested and described in the literature, they mostly lack a significant validation at pilot or manufacturing scale. The aim of this study is to validate an oscillating hydrodynamic stress loop system developed earlier by our group for the evaluation of the maximum operating range for stirring, based on a maximum tolerable hydrodynamic stress. A 300-L pilot-scale bioreactor for cultivation of a Sp2/0 cell line was used for this purpose. Prior to cultivations, a stress-sensitive particulate system was applied to determine the stress values generated by stirring and sparging. Pilot-scale data, collected from 7- to 28-Pa maximum stress conditions, were compared with data from classical 3-L cultivations and cultivations from the oscillating stress loop system. Results for the growth behavior, analyzed metabolites, productivity, and product quality showed a dependency on the different environmental stress conditions but not on reactor size. Pilot-scale conditions were very similar to those generated in the oscillating stress loop model confirming its predictive capability, including conditions at the edge of failure.
A pilot scale electrical infrared dry-peeling system for tomatoes: design and performance evaluation
USDA-ARS?s Scientific Manuscript database
A pilot scale infrared dry-peeling system for tomatoes was designed and constructed. The system consisted of three major sections including the IR heating, vacuum, and pinch roller sections. The peeling performance of the system was examined under different operational conditions using tomatoes with...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyler, James R.
2015-12-21
The main objective of the NAABB was to combine science, technology, and engineering expertise from across the nation to break down critical technical barriers to commercialization of algae-based biofuels. As a part of the consortium, Genifuel’s NAABB goals was to fabricate and demonstrate a pilot-scale system to convert algae into fuels. The purpose of this pilot system was to show that processes developed in the laboratory at bench-scale during the program could be successfully scaled up to a pre-commercial level, and thereby provide visibility into the ultimate viability and cost of algae biofuels. The pilot system has now been completedmore » and tested, and this report documents what has been achieved.« less
A Flexible Pilot-Scale Setup for Real-Time Studies in Process Systems Engineering
ERIC Educational Resources Information Center
Panjapornpon, Chanin; Fletcher, Nathan; Soroush, Masoud
2006-01-01
This manuscript describes a flexible, pilot-scale setup that can be used for training students and carrying out research in process systems engineering. The setup allows one to study a variety of process systems engineering concepts such as design feasibility, design flexibility, control configuration selection, parameter estimation, process and…
REBURNING THERMAL AND CHEMICAL PROCESSES IN A TWO-DIMENSIONAL PILOT-SCALE SYSTEM
The paper describes an experimental investigation of the thermal and chemical processes influencing NOx reduction by natural gas reburning in a two-dimensional pilot-scale combustion system. Reburning effectiveness for initial NOx levels of 50-500 ppm and reburn stoichiometric ra...
CHLORINE DECAY AND BIOFILM STUDIES IN A PILOT SCALE DRINKING WATER DISTRIBUTION DEAD END PIPE SYSTEM
Chlorine decay experiments using a pilot-scale water distribution dead end pipe system were conducted to define relationships between chlorine decay and environmental factors. These included flow rate, biomass concentration and biofilm density, and initial chlorine concentrations...
Jia, Qianqian; Xiong, Huilei; Wang, Hui; Shi, Hanchang; Sheng, Xinying; Sun, Run; Chen, Guoqiang
2014-11-01
The generation of polyhydroxyalkanoates (PHA) from excess sludge fermentation liquid (SFL) was studied at lab and pilot scale. A PHA-accumulated bacterial consortium (S-150) was isolated from activated sludge using simulated SFL (S-SFL) contained high concentration volatile fatty acids (VFA) and nitrogen. The maximal PHA content accounted for 59.18% in S-SFL and dropped to 23.47% in actual SFL (L-SFL) of the dry cell weight (DCW) at lab scale. The pilot-scale integrated system comprised an anaerobic fermentation reactor (AFR), a ceramic membrane system (CMS) and a PHA production bio-reactor (PHAR). The PHA content from pilot-scale SFL (P-SFL) finally reached to 59.47% DCW with the maximal PHA yield coefficient (YP/S) of 0.17 g PHA/g COD. The results indicated that VFA-containing SFL was suitable for PHA production. The adverse impact of excess nitrogen and non-VFAs in SFL might be eliminated by pilot-scale domestication, which might resulted in community structure optimization and substrate selective ability improvement of S-150. Copyright © 2014 Elsevier Ltd. All rights reserved.
REMOVAL OF PCBS FROM A CONTAMINATED SOIL USING CF-SYSTEMS SOLVENT EXTRACTION PROCESS
The US EPA's START team in cooperation with EPA's SITE program evaluated a pilot scale solvent extraction process developed by CF-Systems. This process uses liquified propane to extract organic contaminants from soils, sludges, and sediments. A pilot-scale evaluation was conducte...
SHIRCO PILOT-SCALE INFRARED INCINERATION SYSTEM AT THE ROSE TOWNSHIP DEMODE ROAD SUPERFUND SITE
Under the Superfund Innovative Technology Evaluation or SITE Program, an evaluation was made of the Shirco Pilot-Scale Infrared Incineration System during 17 separate test runs under varying operating conditions. The tests were conducted at the Demode Road Superfund site in Ros...
The performance of the Shirco pilot-scale infrared thermal destruction system has been evaluated at the Rose Township, Demode Road Superfund Site and is presented in the report. The waste tested consisted of solvents, organics and heavy metals in an illegal dump site. Volume I gi...
Evaluation of a UV/Ozone Treatment Process for Removal of MTBE in Groundwater Supplies in New Mexico
EPA’s Office of Research and Development is funding pilot-scale studies on MTBE contaminated groundwater using UV/ozone treatment technology (254 nm UV, 5.8 mg/L ozone). The pilot-scale treatment system consists of a GW well pump, a feed tank, a pretreatment system (water soften...
Evaluation of a UV/Ozone Treatment Process for Removal of MTBE in Groundwater Supplies in New Mexico
EPA’s Office of Research and Development is funding pilot-scale studies on MTBE contaminated groundwater using UV/ozone treatment technology (254 nm UV, 5.8 mg/L ozone). The pilot-scale treatment system consists of a GW well pump, a feed tank, a pretreatment system (water softene...
Neural Network Modeling of UH-60A Pilot Vibration
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi
2003-01-01
Full-scale flight-test pilot floor vibration is modeled using neural networks and full-scale wind tunnel test data for low speed level flight conditions. Neural network connections between the wind tunnel test data and the tlxee flight test pilot vibration components (vertical, lateral, and longitudinal) are studied. Two full-scale UH-60A Black Hawk databases are used. The first database is the NASMArmy UH-60A Airloads Program flight test database. The second database is the UH-60A rotor-only wind tunnel database that was acquired in the NASA Ames SO- by 120- Foot Wind Tunnel with the Large Rotor Test Apparatus (LRTA). Using neural networks, the flight-test pilot vibration is modeled using the wind tunnel rotating system hub accelerations, and separately, using the hub loads. The results show that the wind tunnel rotating system hub accelerations and the operating parameters can represent the flight test pilot vibration. The six components of the wind tunnel N/rev balance-system hub loads and the operating parameters can also represent the flight test pilot vibration. The present neural network connections can significandy increase the value of wind tunnel testing.
Su, Jung-Jeng; Huang, Jeng-Fang; Wang, Yi-Lei; Hong, Yu-Ya
2018-06-15
The objective of this study is trying to solve water pollution problems related to duck house wastewater by developing a novel duck house wastewater treatment technology. A pilot-scale sequencing batch reactor (SBR) system using different hydraulic retention times (HRTs) for treating duck house wastewater was developed and applied in this study. Experimental results showed that removal efficiency of chemical oxygen demand in untreated duck house wastewater was 98.4, 98.4, 87.8, and 72.5% for the different HRTs of 5, 3, 1, and 0.5 d, respectively. In addition, removal efficiency of biochemical oxygen demand in untreated duck house wastewater was 99.6, 99.3, 90.4, and 58.0%, respectively. The pilot-scale SBR system was effective and deemed capable to be applied to treat duck house wastewater. It is feasible to apply an automatic SBR system on site based on the previous case study of the farm-scale automatic SBR systems for piggery wastewater treatment.
Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations.
Kundiyana, Dimple K; Huhnke, Raymond L; Wilkins, Mark R
2010-05-01
Fermentation of syngas offers several advantages compared to chemical catalysts such as higher specificity of biocatalysts, lower energy costs, and higher carbon efficiency. Scale-up of syngas fermentation from a bench scale to a pilot scale fermentor is a critical step leading to commercialization. The primary objective of this research was to install and commission a pilot scale fermentor, and subsequently scale-up the Clostridium strain P11 fermentation from a 7.5-L fermentor to a pilot scale 100-L fermentor. Initial preparation and fermentations were conducted in strictly anaerobic conditions. The fermentation system was maintained in a batch mode with continuous syngas supply. The effect of anaerobic fermentation in a pilot scale fermentor was evaluated. In addition, the impact of improving the syngas mass transfer coefficient on the utilization and product formation was studied. Results indicate a six fold improvement in ethanol concentration compared to serum bottle fermentation, and formation of other compounds such as isopropyl alcohol, acetic acid and butanol, which are of commercial importance. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Transformation of Bisphenol A in Water Distribution Systems, A Pilot-scale Study
Halogenations of bisphenol A (BPA) in a pilot-scale water distribution system (WDS) of cement-lined ductile cast iron pipe were investigated under the condition: pH 7.3±0.3, water flow velocity of 1.0 m/s, and 25 °C ± 1 °C in water temperature. The testing water was chlorinated f...
The Shirco Pilot-Scale Infrared Incineration System was evaluated during a series of seventeen test runs under varied operating conditions at the Demode Road Superfund Site located in Rose Township, Michigan. The tests sought to demonstrate the effectiveness of the unit and the t...
Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary M. Blythe
2006-03-01
This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal.more » The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.« less
Establishment and assessment of a novel cleaner production process of corn grain fuel ethanol.
Wang, Ke; Zhang, Jianhua; Tang, Lei; Zhang, Hongjian; Zhang, Guiying; Yang, Xizhao; Liu, Pei; Mao, Zhonggui
2013-11-01
An integrated corn ethanol-methane fermentation system was proposed to solve the problem of stillage handling, where thin stillage was treated by anaerobic digestion and then reused to make mash for the following ethanol fermentation. This system was evaluated at laboratory and pilot scale. Anaerobic digestion of thin stillage ran steadily with total chemical oxygen demand removal efficiency of 98% at laboratory scale and 97% at pilot scale. Ethanol production was not influenced by recycling anaerobic digestion effluent at laboratory and pilot scale. Compared with dried distillers' grains with solubles produced in conventional process, dried distillers' grains in the proposed system exhibited higher quality because of increased protein concentration and decreased salts concentration. Energetic assessment indicated that application of this novel process enhanced the net energy balance ratio from 1.26 (conventional process) to 1.76. In conclusion, the proposed system possessed technical advantage over the conventional process for corn fuel ethanol production. Copyright © 2013 Elsevier Ltd. All rights reserved.
TASK 2: QUENCH ZONE SIMULATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fusselman, Steve
Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. A key feature of the AR gasifier design is the transition from the gasifier outlet into the quench zone, where the raw syngas is cooled to ~ 400°C by injection and vaporization of atomized water. Earlier pilot plant testing revealed a propensity for the original gasifier outlet design to accumulate slag in the outlet, leading to erratic syngas flow from themore » outlet. Subsequent design modifications successfully resolved this issue in the pilot plant gasifier. In order to gain greater insight into the physical phenomena occurring within this zone, AR developed a cold flow simulation apparatus with Coanda Research & Development with a high degree of similitude to hot fire conditions with the pilot scale gasifier design, and capable of accommodating a scaled-down quench zone for a demonstration-scale gasifier. The objective of this task was to validate similitude of the cold flow simulation model by comparison of pilot-scale outlet design performance, and to assess demonstration scale gasifier design feasibility from testing of a scaled-down outlet design. Test results did exhibit a strong correspondence with the two pilot scale outlet designs, indicating credible similitude for the cold flow simulation device. Testing of the scaled-down outlet revealed important considerations in the design and operation of the demonstration scale gasifier, in particular pertaining to the relative momentum between the downcoming raw syngas and the sprayed quench water and associated impacts on flow patterns within the quench zone. This report describes key findings from the test program, including assessment of pilot plant configuration simulations relative to actual results on the pilot plant gasifier and demonstration plant design recommendations, based on cold flow simulation results.« less
Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller.
Soons, Zita I T A; van den IJssel, Jan; van der Pol, Leo A; van Straten, Gerrit; van Boxtel, Anton J B
2009-04-01
This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst others the headspace and tubing to the analyzer. These gas phase dynamics are modelled using knowledge of the system in order to reconstruct oxygen consumption. The second aspect is to evaluate performance of the monitoring and control system with the required modifications of the oxygen consumption calculation on pilot-scale. In pilot-scale fed-batch cultivation good monitoring and control performance is obtained enabling a doubled concentration of bulk vaccine compared to standard batch production.
Pilot-scale demonstration of pervaporation-based removal of volatile organic compounds from a surfactant enhanced aquifer remediation (SEAR) fluid has been conducted at USEPA's Test & Evaluation Facility using hollow fiber membrane modules. The membranes consisted of microporous...
Comparison of corrosion scales in full and partially replaced ...
Preliminary results from scales formed 38 weeks following the LSL replacement simulations revealed differences in scale formations amongst varying water qualities and pipe sequence. Rigs fed with dechlorinated tap water show distinct pH gradients between the galvanic and the background zones. Hydrocerussite and litharge are found both in field and pilot rigs. However, plumbonacrite, massicot, scrutinyite and plattnerite are only present in pipes harvested directly from the field. Laurionite, leadhillite, cerussite and calcite are found in rigs from the pilot. Cerussite is mostly present in the galvanic zones, close to the connection to the Cu pipe. Different types of scales are present in the rigs from the pilot and from the field, suggesting that differences in the formation in the scales and therefore differences in lead release from the pipes. The particulate Pb fraction in water samples is more important in samples from the pilot than from the field, median concentrations are 85X higher in partial LSL and 10X higher in full LSL in the pilot. Lead phosphates are present in the scales from the rigs treated with orthophosphate. Complete results will be obtained by the end of July 2016. The main objective is to compare scales from full and partial LSLs harvested from the field and from a pilot setup fed with water from the same distribution system and subjected to water quality changes.
Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary Blythe; MariJon Owens
2007-12-01
This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulkmore » solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the additives in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power has provided the Texas lignite/PRB co-fired test site for pilot FGD tests and cost sharing. Southern Company has provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation is providing the TMT-15 additive, and the Nalco Company is providing the Nalco 8034 additive. Both companies are also supplying technical support to the test program as in-kind cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests and the full-scale test using high-sulfur coal were completed in 2005 and 2006 and have been previously reported. This topical report presents the results from the Task 5 full-scale additive tests, conducted at Southern Company's Plant Yates Unit 1. Both additives were tested there.« less
Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary Blythe
2007-05-01
This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal.more » The project is conducting pilot- and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB cofired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems to be tested. IPL, an AES company, provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Degussa Corporation is providing the TMT-15 additive and technical support to the test program as cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and have been previously reported. This topical report presents the results from the Task 3 full-scale additive tests, conducted at IPL's Petersburg Station Unit 2. The Task 5 full-scale additive tests will be conducted later in calendar year 2007.« less
DOT National Transportation Integrated Search
2011-03-01
This project addressed sustainable transportation in the Texas Urban Triangle (TUT) by conducting a pilot : project at the county scale. The project tested and developed the multi-attribute Spatial Decision Support : System (SDSS) developed in 2009 u...
A Social-Cognitive Intervention Program for Adolescents with Autism: A Pilot Study
ERIC Educational Resources Information Center
Cheung, Pui Pui Phoebe; Siu, Andrew M. H.; Brown, Ted; Yu, Mong-lin
2018-01-01
This pilot study explored the efficacy of a social-cognitive intervention program for adolescents with Autism Spectrum Disorder (ASD). Seven adolescents with ASD (mean age = 12.57 years) attended a school-based 10-week program. Social Skills Improvement System Rating Scales, Goal Attainment Scaling (GAS), and Theory of Mind Inventory were…
NASA Technical Reports Server (NTRS)
Williams, D. H.; Simpson, C. A.
1976-01-01
Line pilots (fifty captains, first officers, and flight engineers) from 8 different airlines were administered a structured questionnaire relating to future warning system design and solutions to current warning system problems. This was followed by a semantic differential to obtain a factor analysis of 18 different cockpit warning signals on scales such as informative/distracting, annoying/soothing. Half the pilots received a demonstration of the experimental text and voice synthesizer warning systems before answering the questionnaire and the semantic differential. A control group answered the questionnaire and the semantic differential first, thus providing a check for the stability of pilot preferences with and without actual exposure to experimental systems. Generally, the preference data obtained revealed much consistency and strong agreement among line pilots concerning advance cockpit warning system design.
The Pilot Land Data System: Report of the Program Planning Workshops
NASA Technical Reports Server (NTRS)
1984-01-01
An advisory report to be used by NASA in developing a program plan for a Pilot Land Data System (PLDS) was developed. The purpose of the PLDS is to improve the ability of NASA and NASA sponsored researchers to conduct land-related research. The goal of the planning workshops was to provide and coordinate planning and concept development between the land related science and computer science disciplines, to discuss the architecture of the PLDs, requirements for information science technology, and system evaluation. The findings and recommendations of the Working Group are presented. The pilot program establishes a limited scale distributed information system to explore scientific, technical, and management approaches to satisfying the needs of the land science community. The PLDS paves the way for a land data system to improve data access, processing, transfer, and analysis, which land sciences information synthesis occurs on a scale not previously permitted because of limits to data assembly and access.
ERIC Educational Resources Information Center
Shindler, John; Taylor, Clint; Cadenas, Herminia; Jones, Albert
This study was a pilot effort to examine the efficacy of an analytic trait scale school climate assessment instrument and democratic change system in two urban high schools. Pilot study results indicate that the instrument shows promising soundness in that it exhibited high levels of validity and reliability. In addition, the analytic trait format…
USDA-ARS?s Scientific Manuscript database
To evaluate the effect of pilot-plant scale, non-thermal supercritical carbon dioxide (SCCO2) processing on the safety and the quality of orange juice (OJ), SCCO2 processed juice was compared with untreated fresh juice and equivalently thermal processed juice in terms of lethality. SCCO2 processing ...
During the summer of 1996, a pilot-scale demonstration of a surfactant enhanced aquifer remediation (SEAR) process for removal of dense non-aqueous phase liquids (DNAPLs) from soils was conducted at Hill Air Force Base in Layton, Utah. Five thousand gallons of the extracted DNAP...
USDA-ARS?s Scientific Manuscript database
A pilot-scale (1800'kg per batch capacity) autoclave used in this study reduces municipal solid waste to a debris contaminated pulp product that is efficiently separated into its renewable organic content and non-renewable organic content fractions using a rotary trommel screen. The renewable organi...
Långmark, Jonas; Storey, Michael V.; Ashbolt, Nicholas J.; Stenström, Thor-Axel
2005-01-01
The accumulation and fate of model microbial “pathogens” within a drinking-water distribution system was investigated in naturally grown biofilms formed in a novel pilot-scale water distribution system provided with chlorinated and UV-treated water. Biofilms were exposed to 1-μm hydrophilic and hydrophobic microspheres, Salmonella bacteriophages 28B, and Legionella pneumophila bacteria, and their fate was monitored over a 38-day period. The accumulation of model pathogens was generally independent of the biofilm cell density and was shown to be dependent on particle surface properties, where hydrophilic spheres accumulated to a larger extent than hydrophobic ones. A higher accumulation of culturable legionellae was measured in the chlorinated system compared to the UV-treated system with increasing residence time. The fate of spheres and fluorescence in situ hybridization-positive legionellae was similar and independent of the primary disinfectant applied and water residence time. The more rapid loss of culturable legionellae compared to the fluorescence in situ hybridization-positive legionellae was attributed to a loss in culturability rather than physical desorption. Loss of bacteriophage 28B plaque-forming ability together with erosion may have affected their fate within biofilms in the pilot-scale distribution system. The current study has demonstrated that desorption was one of the primary mechanisms affecting the loss of microspheres, legionellae, and bacteriophage from biofilms within a pilot-scale distribution system as well as disinfection and biological grazing. In general, two primary disinfection regimens (chlorination and UV treatment) were not shown to have a measurable impact on the accumulation and fate of model microbial pathogens within a water distribution system. PMID:15691920
Långmark, Jonas; Storey, Michael V; Ashbolt, Nicholas J; Stenström, Thor-Axel
2005-02-01
The accumulation and fate of model microbial "pathogens" within a drinking-water distribution system was investigated in naturally grown biofilms formed in a novel pilot-scale water distribution system provided with chlorinated and UV-treated water. Biofilms were exposed to 1-mum hydrophilic and hydrophobic microspheres, Salmonella bacteriophages 28B, and Legionella pneumophila bacteria, and their fate was monitored over a 38-day period. The accumulation of model pathogens was generally independent of the biofilm cell density and was shown to be dependent on particle surface properties, where hydrophilic spheres accumulated to a larger extent than hydrophobic ones. A higher accumulation of culturable legionellae was measured in the chlorinated system compared to the UV-treated system with increasing residence time. The fate of spheres and fluorescence in situ hybridization-positive legionellae was similar and independent of the primary disinfectant applied and water residence time. The more rapid loss of culturable legionellae compared to the fluorescence in situ hybridization-positive legionellae was attributed to a loss in culturability rather than physical desorption. Loss of bacteriophage 28B plaque-forming ability together with erosion may have affected their fate within biofilms in the pilot-scale distribution system. The current study has demonstrated that desorption was one of the primary mechanisms affecting the loss of microspheres, legionellae, and bacteriophage from biofilms within a pilot-scale distribution system as well as disinfection and biological grazing. In general, two primary disinfection regimens (chlorination and UV treatment) were not shown to have a measurable impact on the accumulation and fate of model microbial pathogens within a water distribution system.
NASA Technical Reports Server (NTRS)
Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III
2006-01-01
Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.
The ATLAS PanDA Pilot in Operation
NASA Astrophysics Data System (ADS)
Nilsson, P.; Caballero, J.; De, K.; Maeno, T.; Stradling, A.; Wenaus, T.; ATLAS Collaboration
2011-12-01
The Production and Distributed Analysis system (PanDA) [1-2] was designed to meet ATLAS [3] requirements for a data-driven workload management system capable of operating at LHC data processing scale. Submitted jobs are executed on worker nodes by pilot jobs sent to the grid sites by pilot factories. This paper provides an overview of the PanDA pilot [4] system and presents major features added in light of recent operational experience, including multi-job processing, advanced job recovery for jobs with output storage failures, gLExec [5-6] based identity switching from the generic pilot to the actual user, and other security measures. The PanDA system serves all ATLAS distributed processing and is the primary system for distributed analysis; it is currently used at over 100 sites worldwide. We analyze the performance of the pilot system in processing real LHC data on the OSG [7], EGI [8] and Nordugrid [9-10] infrastructures used by ATLAS, and describe plans for its evolution.
NASA Astrophysics Data System (ADS)
Aragon, A. R.; Siegel, M.
2004-12-01
The USEPA has established a more stringent drinking water standard for arsenic, reducing the maximum contaminant level (MCL) from 50 μ g/L to 10 μ g/L. This will affect many small communities in the US that lack the appropriate treatment infrastructure and funding to reduce arsenic to such levels. For such communities, adsorption systems are the preferred technology based on ease of operation and relatively lower costs. The performance of adsorption media for the removal of arsenic from drinking water is dependent on site-specific water quality. At certain concentrations, co-occurring solutes will compete effectively with arsenic for sorption sites, potentially reducing the sorption capacity of the media. Due to the site-specific nature of water quality and variations in media properties, pilot scale studies are typically carried out to ensure that a proposed treatment technique is cost effective before installation of a full-scale system. Sandia National Laboratories is currently developing an approach to utilize rapid small-scale columns in lieu of pilot columns to test innovative technologies that could significantly reduce the cost of treatment in small communities. Rapid small-scale column tests (RSSCTs) were developed to predict full-scale treatment of organic contaminants by adsorption onto granular activated carbon (GAC). This process greatly reduced the time and costs required to verify performance of GAC adsorption columns. In this study, the RSSCT methodology is used to predict the removal of inorganic arsenic using mixed metal oxyhydroxide adsorption media. The media are engineered and synthesized from materials that control arsenic behavior in natural and disturbed systems. We describe the underlying theory and application of RSSCTs for the performance evaluation of novel media in several groundwater compositions. Results of small-scale laboratory columns are being used to predict the performance of pilot-scale systems and ultimately to design full-scale systems. RSSCTs will be performed on a suite of water compositions representing the variety of water supplies in the United States that are affected by the new drinking water standard. Ultimately, this approach will be used to carry out inexpensive short-term pilot studies at a large number of sites where large-scale pilots are not economically feasible. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Mental workload in decision and control
NASA Technical Reports Server (NTRS)
Sheridan, T. B.
1979-01-01
This paper briefly reviews the problems of defining and measuring the 'mental workload' of aircraft pilots and other human operators of complex dynamic systems. Of the alternative approaches the author indicates a clear preference for the use of subjective scaling. Some recent experiments from MIT and elsewhere are described which utilize subjective mental workload scales in conjunction with human decision and control tasks in the laboratory. Finally a new three-dimensional mental workload rating scale, under current development for use by IFR aircraft pilots, is presented.
Rivard, C J; Duff, B W; Dickow, J H; Wiles, C C; Nagle, N J; Gaddy, J L; Clausen, E C
1998-01-01
Early evaluations of the bioconversion potential for combined wastes such as tuna sludge and sorted municipal solid waste (MSW) were conducted at laboratory scale and compared conventional low-solids, stirred-tank anaerobic systems with the novel, high-solids anaerobic digester (HSAD) design. Enhanced feedstock conversion rates and yields were determined for the HSAD system. In addition, the HSAD system demonstrated superior resiliency to process failure. Utilizing relatively dry feedstocks, the HSAD system is approximately one-tenth the size of conventional low-solids systems. In addition, the HSAD system is capable of organic loading rates (OLRs) on the order of 20-25 g volatile solids per liter digester volume per d (gVS/L/d), roughly 4-5 times those of conventional systems. Current efforts involve developing a demonstration-scale (pilot-scale) HSAD system. A two-ton/d plant has been constructed in Stanton, CA and is currently in the commissioning/startup phase. The purposes of the project are to verify laboratory- and intermediate-scale process performance; test the performance of large-scale prototype mechanical systems; demonstrate the long-term reliability of the process; and generate the process and economic data required for the design, financing, and construction of full-scale commercial systems. This study presents conformational fermentation data obtained at intermediate-scale and a snapshot of the pilot-scale project.
Specifically Designed Constructed Wetlands: A Novel Treatment Approach for Scrubber Wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
John H. Rodgers Jr; James W. Castle; Chris Arrington: Derek Eggert
2005-09-01
A pilot-scale wetland treatment system was specifically designed and constructed at Clemson University to evaluate removal of mercury, selenium, and other constituents from flue gas desulfurization (FGD) wastewater. Specific objectives of this research were: (1) to measure performance of a pilot-scale constructed wetland treatment system in terms of decreases in targeted constituents (Hg, Se and As) in the FGD wastewater from inflow to outflow; (2) to determine how the observed performance is achieved (both reactions and rates); and (3) to measure performance in terms of decreased bioavailability of these elements (i.e. toxicity of sediments in constructed wetlands and toxicity ofmore » outflow waters from the treatment system). Performance of the pilot-scale constructed wetland treatment systems was assessed using two criteria: anticipated NPDES permit levels and toxicity evaluations using two sentinel toxicity-testing organisms (Ceriodaphnia dubia and Pimephales promelas). These systems performed efficiently with varied inflow simulations of FGD wastewaters removing As, Hg, and Se concentrations below NPDES permit levels and reducing the toxicity of simulated FGD wastewater after treatment with the constructed wetland treatment systems. Sequential extraction procedures indicated that these elements (As, Hg, and Se) were bound to residual phases within sediments of these systems, which should limit their bioavailability to aquatic biota. Sediments collected from constructed wetland treatment systems were tested to observe toxicity to Hyalella azteca or Chironomus tetans. Complete survival (100%) was observed for H. azteca in all cells of the constructed wetland treatment system and C. tentans had an average of 91% survival over the three treatment cells containing sediments. Survival and growth of H. azteca and C. tentans did not differ significantly between sediments from the constructed wetland treatment system and controls. Since the sediments of the constructed wetland treatment system are repositories for As, Hg, and Se and the bioavailability of these elements decreased after deposition, the pilot-scale constructed wetland treatment system contributed significantly to mitigation of risks to aquatic life from these elements.« less
Field Testing of a Wet FGD Additive for Enhanced Mercury Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary Blythe; MariJon Owens
2007-12-31
This document is the final report for DOE-NETL Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project has been to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project was intended to demonstrate whether such additives can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from themore » FGD liquor and bulk solid byproducts for separate disposal. The project involved pilot- and full-scale tests of the additives in wet FGD absorbers. The tests were intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power provided the Texas lignite/PRB co-fired test site for pilot FGD tests and project cost sharing. Southern Company provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested, and project cost sharing. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation provided the TMT-15 additive, and the Nalco Company provided the Nalco 8034 additive. Both companies also supplied technical support to the test program as in-kind cost sharing. The project was conducted in six tasks. Of the six tasks, Task 1 involved project planning and Task 6 involved management and reporting. The other four tasks involved field testing on FGD systems, either at pilot or full scale. These four tasks included: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and the full-scale test using high-sulfur coal was completed in 2006; only the TMT-15 additive was tested in these efforts. The Task 5 full-scale additive tests conducted at Southern Company's Plant Yates Unit 1 were completed in 2007, and both the TMT-15 and Nalco 8034 additives were tested.« less
Design of full-scale adsorption systems typically includes expensive and time-consuming pilot studies to simulate full-scale adsorber performance. Accordingly, the rapid small-scale column test (RSSCT) was developed and evaluated experimentally. The RSSCT can simulate months of f...
Olszewski, John; Winona, Linda; Oshima, Kevin H
2005-04-01
The use of ultrafiltration as a concentration method to recover viruses from environmental waters was investigated. Two ultrafiltration systems (hollow fiber and tangential flow) in a large- (100 L) and small-scale (2 L) configuration were able to recover greater than 50% of multiple viruses (bacteriophage PP7 and T1 and poliovirus type 2) from varying water turbidities (10-157 nephelometric turbidity units (NTU)) simultaneously. Mean recoveries (n = 3) in ground and surface water by the large-scale hollow fiber ultrafiltration system (100 L) were comparable to recoveries observed in the small-scale system (2 L). Recovery of seeded viruses in highly turbid waters from small-scale tangential flow (2 L) (screen and open channel) and hollow fiber ultrafilters (2 L) (small pilot) were greater than 70%. Clogging occurred in the hollow fiber pencil module and when particulate concentrations exceeded 1.6 g/L and 5.5 g/L (dry mass) in the screen and open channel filters, respectively. The small pilot module was able to filter all concentrates without clogging. The small pilot hollow fiber ultrafilter was used to test recovery of seeded viruses from surface waters from different geographical regions in 10-L volumes. Recoveries >70% were observed from all locations.
Upgrading of a small overloaded activated sludge plant using a MBBR system.
Andreottola, G; Foladori, P; Gatti, G; Nardelli, P; Pettena, M; Ragazzi, M
2003-01-01
The aim of this research was the application of a biofilm system for the upgrading of a full-scale overloaded activated sludge MWWTP using the MBBR (Moving Bed Biofilm Reactor) technology. The choice of this fixed biomass system appeared appropriate because it offers several advantages including good potential in nitrification process, easiness of management and above all, the possibility to use the existing tank with very few modifications. MBBR system counts only few full-scale plants in Italy at the moment, thus a pilot-scale experimentation was preliminarily carried out. The acquired parameters were used for the fullscale MWWTP upgrading. The upgrading of the activated sludge reactor in the MBBR system has given (1) a relevant increase in the flowrate treated up to 60%; (2) a good efficiency in organic carbon removal and nitrification, equal to 88% and 90% respectively, with HRTs of 5.5-7 h; (3) the overcoming of the hydraulic overload of the secondary settler, applying a lamellar settler. It was observed a good correlation between the results obtained at pilot-scale and those observed in the full-scale plant.
UTILIZATION OF TREATABILITY AND PILOT TESTS TO PREDICT CAH BIOREMEDIATION
Multiple tools have been suggested to help in the design of enhanced anaerobic bioremediation systems for CAHs:
- Extensive high quality microcosm testing followed by small-scale, thoroughly observed field pilot tests (i.e., RABITT Protocol, Morse 1998)
- More limited ...
Maintenance Decision Support System: Pilot Study and Cost-Benefit Analysis (Phase 2.5)
DOT National Transportation Integrated Search
2014-07-01
This project focused on several tasks: development of in-vehicle hardware that permits implementation of an MDSS, development of software to collect and process road and weather data, a cost-benefit study, and pilot-scale implementation. Two Automati...
Maintenance Decision Support System : Pilot Study and Cost-Benefit Analysis (Phase 2)
DOT National Transportation Integrated Search
2014-07-01
This project focused on several tasks: development of in-vehicle hardware that permits implementation of an MDSS, development of software to collect and process road and weather data, a cost-benefit study, and pilot-scale implementation. Two Automati...
Ikeda-Ohtsubo, Wakako; Miyahara, Morio; Kim, Sang-Wan; Yamada, Takeshi; Matsuoka, Masaki; Watanabe, Akira; Fushinobu, Shinya; Wakagi, Takayoshi; Shoun, Hirofumi; Miyauchi, Keisuke; Endo, Ginro
2013-01-01
In bioaugmentation technology, survival of inoculant in the treatment system is prerequisite but remains to be a crucial hurdle. In this study, we bioaugmented the denitrification tank of a piggery wastewater treatment system with the denitrifying bacterium Pseudomonas stutzeri strain TR2 in two pilot-scale experiments, with the aim of reducing nitrous oxide (N(2)O), a gas of environmental concern. In the laboratory, strain TR2 grew well and survived with high concentrations of nitrite (5-10 mM) at a wide range of temperatures (28-40°C). In the first augmentation of the pilot-scale experiment, strain TR2 inoculated into the denitrification tank with conditions (30°C, ~0.1 mM nitrite) survived only 2-5 days. In contrast, in the second augmentation with conditions determined to be favorable for the growth of the bacterium in the laboratory (40-45°C, 2-5 mM nitrite), strain TR2 survived longer than 32 days. During the time when the presence of strain TR2 was confirmed by quantitative real-time PCR, N(2)O emission was maintained at a low level even under nitrite-accumulating conditions in the denitrification and nitrification tanks, which provided indirect evidence that strain TR2 can reduce N(2)O in the pilot-scale system. Our results documented the effective application of growth conditions favorable for strain TR2 determined in the laboratory to maintain growth and performance of this strain in the pilot-scale reactor system and the decrease of N(2)O emission as the consequence. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iver; Siemon, John
The initial three atomization attempts resulted in “freeze-outs” within the pour tubes in the pilot-scale system and yielded no powder. Re-evaluation of the alloy liquidus temperatures and melting characteristics, in collaboration with Alcoa, showed further superheat to be necessary to allow the liquid metal to flow through the pour tube to the atomization nozzle. A subsequent smaller run on the experimental atomization system verified these parameters and was successful, as were all successive runs on the larger pilot scale system. One alloy composition froze-out part way through the atomization on both pilot scale runs. SEM images showed needle formation andmore » phase segregations within the microstructure. Analysis of the pour tube freeze-out microstructures showed that large needles formed within the pour tube during the atomization experiment, which eventually blocked the melt stream. Alcoa verified the needle formation in this alloy using theoretical modeling of phase solidification. Sufficient powder of this composition was still generated to allow powder characterization and additive manufacturing trials at Alcoa.« less
Performance of a pilot-scale constructed wetland system for treating simulated ash basin water.
Dorman, Lane; Castle, James W; Rodgers, John H
2009-05-01
A pilot-scale constructed wetland treatment system (CWTS) was designed and built to decrease the concentration and toxicity of constituents of concern in ash basin water from coal-burning power plants. The CWTS was designed to promote the following treatment processes for metals and metalloids: precipitation as non-bioavailable sulfides, co-precipitation with iron oxyhydroxides, and adsorption onto iron oxides. Concentrations of Zn, Cr, Hg, As, and Se in simulated ash basin water were reduced by the CWTS to less than USEPA-recommended water quality criteria. The removal efficiency (defined as the percent concentration decrease from influent to effluent) was dependent on the influent concentration of the constituent, while the extent of removal (defined as the concentration of a constituent of concern in the CWTS effluent) was independent of the influent concentration. Results from toxicity experiments illustrated that the CWTS eliminated influent toxicity with regard to survival and reduced influent toxicity with regard to reproduction. Reduction in potential for scale formation and biofouling was achieved through treatment of the simulated ash basin water by the pilot-scale CWTS.
Chien, Shih-Hsiang; Dzombak, David A.; Vidic, Radisav D.
2013-01-01
Abstract Recent studies have shown that treated municipal wastewater can be a reliable cooling water alternative to fresh water. However, elevated nutrient concentration and microbial population in wastewater lead to aggressive biological proliferation in the cooling system. Three chlorine-based biocides were evaluated for the control of biological growth in cooling systems using tertiary treated wastewater as makeup, based on their biocidal efficiency and cost-effectiveness. Optimal chemical regimens for achieving successful biological growth control were elucidated based on batch-, bench-, and pilot-scale experiments. Biocide usage and biological activity in planktonic and sessile phases were carefully monitored to understand biological growth potential and biocidal efficiency of the three disinfectants in this particular environment. Water parameters, such as temperature, cycles of concentration, and ammonia concentration in recirculating water, critically affected the biocide performance in recirculating cooling systems. Bench-scale recirculating tests were shown to adequately predict the biocide residual required for a pilot-scale cooling system. Optimal residuals needed for proper biological growth control were 1, 2–3, and 0.5–1 mg/L as Cl2 for NaOCl, preformed NH2Cl, and ClO2, respectively. Pilot-scale tests also revealed that Legionella pneumophila was absent from these cooling systems when using the disinfectants evaluated in this study. Cost analysis showed that NaOCl is the most cost-effective for controlling biological growth in power plant recirculating cooling systems using tertiary-treated wastewater as makeup. PMID:23781129
Chien, Shih-Hsiang; Dzombak, David A; Vidic, Radisav D
2013-06-01
Recent studies have shown that treated municipal wastewater can be a reliable cooling water alternative to fresh water. However, elevated nutrient concentration and microbial population in wastewater lead to aggressive biological proliferation in the cooling system. Three chlorine-based biocides were evaluated for the control of biological growth in cooling systems using tertiary treated wastewater as makeup, based on their biocidal efficiency and cost-effectiveness. Optimal chemical regimens for achieving successful biological growth control were elucidated based on batch-, bench-, and pilot-scale experiments. Biocide usage and biological activity in planktonic and sessile phases were carefully monitored to understand biological growth potential and biocidal efficiency of the three disinfectants in this particular environment. Water parameters, such as temperature, cycles of concentration, and ammonia concentration in recirculating water, critically affected the biocide performance in recirculating cooling systems. Bench-scale recirculating tests were shown to adequately predict the biocide residual required for a pilot-scale cooling system. Optimal residuals needed for proper biological growth control were 1, 2-3, and 0.5-1 mg/L as Cl 2 for NaOCl, preformed NH 2 Cl, and ClO 2 , respectively. Pilot-scale tests also revealed that Legionella pneumophila was absent from these cooling systems when using the disinfectants evaluated in this study. Cost analysis showed that NaOCl is the most cost-effective for controlling biological growth in power plant recirculating cooling systems using tertiary-treated wastewater as makeup.
Calderón-Vallejo, Luisa Fernanda; Andrade, Cynthia Franco; Manjate, Elias Sete; Madera-Parra, Carlos Arturo; von Sperling, Marcos
2015-01-01
This study investigated the performance of sludge drying reed beds (SDRB) at full- and pilot-scale treating sludge from septic tanks in the city of Belo Horizonte, Brazil. The treatment units, planted with Cynodon spp., were based on an adaptation of the first-stage of the French vertical-flow constructed wetland, originally developed for treating sewage. Two different operational phases were investigated; in the first one, the full-scale unit was used together with six pilot-scale columns in order to test different feeding strategies. For the second phase, only the full-scale unit was used, including a recirculation of the filtered effluent (percolate) to one of the units of the French vertical wetland. Sludge application was done once a week emptying a full truck, during 25 weeks. The sludge was predominantly diluted, leading to low solids loading rates (median values of 18 kgTS m(-2) year(-1)). Chemical oxygen demand removal efficiency in the full-scale unit was reasonable (median of 71%), but the total solids removal was only moderate (median of 44%) in the full-scale unit without recirculation. Recirculation did not bring substantial improvements in the overall performance. The other loading conditions implemented in the pilot columns also did not show statistically different performances.
Cognitive models of pilot categorization and prioritization of flight-deck information
NASA Technical Reports Server (NTRS)
Jonsson, Jon E.; Ricks, Wendell R.
1995-01-01
In the past decade, automated systems on modern commercial flight decks have increased dramatically. Pilots now regularly interact and share tasks with these systems. This interaction has led human factors research to direct more attention to the pilot's cognitive processing and mental model of the information flow occurring on the flight deck. The experiment reported herein investigated how pilots mentally represent and process information typically available during flight. Fifty-two commercial pilots participated in tasks that required them to provide similarity ratings for pairs of flight-deck information and to prioritize this information under two contextual conditions. Pilots processed the information along three cognitive dimensions. These dimensions included the flight function and the flight action that the information supported and how frequently pilots refer to the information. Pilots classified the information as aviation, navigation, communications, or systems administration information. Prioritization results indicated a high degree of consensus among pilots, while scaling results revealed two dimensions along which information is prioritized. Pilot cognitive workload for flight-deck tasks and the potential for using these findings to operationalize cognitive metrics are evaluated. Such measures may be useful additions for flight-deck human performance evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Paul Allen
2017-02-01
The purpose of this report is to identify other disinfection methods to replace the current ozone system and propose a small pilot-scale test. Based on a review of the literature and disinfectants used by other wastewater plants in Tennessee, peracetic acid (PAA) was identified as a leading candidate. This report provides the basis for requesting approval for a pilot-scale study using PAA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Kevin C.
The work summarized in this report is the first step towards a project that will re-train and create jobs for personnel in the coal industry and continue regional economic development to benefit regions impacted by previous downturns. The larger project is aimed at capturing ~300 tons/day (272 metric tonnes/day) CO 2 at a 90% capture rate from existing coal- fired boilers at the Abbott Power Plant on the campus of University of Illinois (UI). It will employ the Linde-BASF novel amine-based advanced CO 2 capture technology, which has already shown the potential to be cost-effective, energy efficient and compact atmore » the 0.5-1.5 MWe pilot scales. The overall objective of the project is to design and install a scaled-up system of nominal 15 MWe size, integrate it with the Abbott Power Plant flue gas, steam and other utility systems, and demonstrate the viability of continuous operation under realistic conditions with high efficiency and capacity. The project will also begin to build a workforce that understands how to operate and maintain the capture plants by including students from regional community colleges and universities in the operation and evaluation of the capture system. This project will also lay the groundwork for follow-on projects that pilot utilization of the captured CO 2 from coal-fired power plants. The net impact will be to demonstrate a replicable means to (1) use a standardized procedure to evaluate power plants for their ability to be retrofitted with a pilot capture unit; (2) design and construct reliable capture systems based on the Linde-BASF technology; (3) operate and maintain these systems; (4) implement training programs with local community colleges and universities to establish a workforce to operate and maintain the systems; and (5) prepare to evaluate at the large pilot scale level various methods to utilize the resulting captured CO 2. Towards the larger project goal, the UI-led team, together with Linde, has completed a preliminary design for the carbon capture pilot plant with basic engineering and cost estimates, established permitting needs, identified approaches to address Environmental, Health, and Safety concerns related to pilot plant installation and operation, developed approaches for long-term use of the captured carbon, and established strategies for workforce development and job creation that will re-train coal operators to operate carbon capture plants. This report describes Phase I accomplishments and demonstrates that the project team is well-prepared for full implementation of Phase 2, to design, build, and operate the carbon capture pilot plant.« less
Intro to NREL's Thermochemical Pilot Plant
Magrini, Kim
2018-02-13
NREL's Thermochemical Pilot Plant converts biomass into higher hydrocarbon fuels and chemicals.NREL is researching biomass pyrolysis. The lab is examining how to upgrade bio-oils via stabilization. Along with this, NREL is developing the engineering system requirements for producing these fuels and chemicals at larger scales.
UTILIZATION OF TREATABILITY AND PILOT TESTS TO PREDICT CAH BIOREMEDIATION (Battelle)
Multiple tools have been suggested to help in the design of enhanced anaerobic bioremediation systems for CAHs:
Extensive high quality microcosm testing followed by small-scale, thoroughly observed, induced flow field pilot tests (i.e. RABITT Protocol, Morse 1998)
More...
A Low Cost Environmentally Benign Waste Lubricants Recycling/Re-refining Technology.
1999-05-01
EXPERIMENTAL 3 2.1 Ceramic Membrane Ultrafiltration Pilot Unit 3 2.2 Polishing/Finishing Pilot Unit 3 2.3 Feed Samples 3 2.4 Sample...development of an additional 2 to 3 sites in the US. 2. EXPERIMENTAL 2.1. Ceramic Membrane Ultrafiltration Pilot Unit A photograph of the pilot...scale ceramic membrane system used in this work is shown in Figure la. Samples of spent turbine oil were charged to the feed tank and heated to 150°C
Ncube, Alexander Tshaka; Sweeney, Sedona; Fleischer, Colette; Mumba, Grace Tembo; Gill, Michelle M.; Strasser, Susan; Peeling, Rosanna W.; Terris-Prestholt, Fern
2015-01-01
Maternal syphilis results in an estimated 500,000 stillbirths and neonatal deaths annually in Sub-Saharan Africa. Despite the existence of national guidelines for antenatal syphilis screening, syphilis testing is often limited by inadequate laboratory and staff services. Recent availability of inexpensive rapid point-of-care syphilis tests (RST) can improve access to antenatal syphilis screening. A 2010 pilot in Zambia explored the feasibility of integrating RST within prevention of mother-to-child-transmission of HIV services. Following successful demonstration, the Zambian Ministry of Health adopted RSTs into national policy in 2011. Cost data from the pilot and 2012 preliminary national rollout were extracted from project records, antenatal registers, clinic staff interviews, and facility observations, with the aim of assessing the cost and quality implications of scaling up a successful pilot into a national rollout. Start-up, capital, and recurrent cost inputs were collected, including costs of extensive supervision and quality monitoring during the pilot. Costs were analysed from a provider’s perspective, incremental to existing antenatal services. Total and unit costs were calculated and a multivariate sensitivity analysis was performed. Our accompanying qualitative study by Ansbro et al. (2015) elucidated quality assurance and supervisory system challenges experienced during rollout, which helped explain key cost drivers. The average unit cost per woman screened during rollout ($11.16) was more than triple the pilot unit cost ($3.19). While quality assurance costs were much lower during rollout, the increased unit costs can be attributed to several factors, including higher RST prices and lower RST coverage during rollout, which reduced economies of scale. Pilot and rollout cost drivers differed due to implementation decisions related to training, supervision, and quality assurance. This study explored the cost of integrating RST into antenatal care in pilot and national rollout settings, and highlighted important differences in costs that may be observed when moving from pilot to scale-up. PMID:25970443
Shelley, Katharine D; Ansbro, Éimhín M; Ncube, Alexander Tshaka; Sweeney, Sedona; Fleischer, Colette; Tembo Mumba, Grace; Gill, Michelle M; Strasser, Susan; Peeling, Rosanna W; Terris-Prestholt, Fern
2015-01-01
Maternal syphilis results in an estimated 500,000 stillbirths and neonatal deaths annually in Sub-Saharan Africa. Despite the existence of national guidelines for antenatal syphilis screening, syphilis testing is often limited by inadequate laboratory and staff services. Recent availability of inexpensive rapid point-of-care syphilis tests (RST) can improve access to antenatal syphilis screening. A 2010 pilot in Zambia explored the feasibility of integrating RST within prevention of mother-to-child-transmission of HIV services. Following successful demonstration, the Zambian Ministry of Health adopted RSTs into national policy in 2011. Cost data from the pilot and 2012 preliminary national rollout were extracted from project records, antenatal registers, clinic staff interviews, and facility observations, with the aim of assessing the cost and quality implications of scaling up a successful pilot into a national rollout. Start-up, capital, and recurrent cost inputs were collected, including costs of extensive supervision and quality monitoring during the pilot. Costs were analysed from a provider's perspective, incremental to existing antenatal services. Total and unit costs were calculated and a multivariate sensitivity analysis was performed. Our accompanying qualitative study by Ansbro et al. (2015) elucidated quality assurance and supervisory system challenges experienced during rollout, which helped explain key cost drivers. The average unit cost per woman screened during rollout ($11.16) was more than triple the pilot unit cost ($3.19). While quality assurance costs were much lower during rollout, the increased unit costs can be attributed to several factors, including higher RST prices and lower RST coverage during rollout, which reduced economies of scale. Pilot and rollout cost drivers differed due to implementation decisions related to training, supervision, and quality assurance. This study explored the cost of integrating RST into antenatal care in pilot and national rollout settings, and highlighted important differences in costs that may be observed when moving from pilot to scale-up.
PILOT PLANT TESTING OF ELEMENTAL MERCURY RE-EMISSION FROM WET SCRUBBERS
A pilot-scale wet lime/limestone flue gas desulfurization scrubber system was designed to conduct mercury emission control research. The first tests focused on investigating the phenomenon of Hgo re-emission from wet scrubbers with a specific objective of developing a Hgo re-emis...
NASA Technical Reports Server (NTRS)
Kimball, G., Jr.
1980-01-01
A simulator comparison of the velocity vector control wheel steering (VCWS) system and a decoupled longitudinal control system is presented. The piloting task was to use the electronic attitude direction indicator (EADI) to capture and maintain a 3 degree glide slope in the presence of wind shear and to complete the landing using the perspective runway included on the EADI. The decoupled control system used constant prefilter and feedback gains to provide steady state decoupling of flight path angle, pitch angle, and forward velocity. The decoupled control system improved the pilots' ability to control airspeed and flight path angle during the final stages of an approach made in severe wind shear. The system also improved their ability to complete safe landings. The pilots preferred the decoupled control system in severe winds and, on a pilot rating scale, rated the approach and landing task with the decoupled control system as much as 3 to 4 increments better than use of the VCWS system.
Full-scale Transport Controlled Impact Demonstration Program
NASA Technical Reports Server (NTRS)
1987-01-01
The Federal Aviation Administration (FAA) and NASA conducted a full-scale air-to-surface impact-survivable impact demonstration with a remotely piloted transport aircraft on 1 December 1984, at Edwards Air Force Base, California. The test article consisted of experiments, special equipment, and supporting systems, such as antimisting kerosene (AMK), crashworthiness structural/restraint, analytical modeling, cabin fire safety, flight data recorders, post-impact investigation, instrumentation/data acquisition systems, remotely piloted vehicle/flight control systems, range and flight safety provisions, etc. This report describes the aircraft, experiments, systems, activities, and events which lead up to the Controlled Impact Demonstration (CID). An overview of the final unmanned remote control flight and sequence of impact events are delineated. Preliminary post CID observations are presented.
Pilot-scale gasification of woody biomass
Thomas Elder; Leslie H. Groom
2011-01-01
The gasification of pine and mixed-hardwood chips has been carried out in a pilot-scale system at a range of gas flow rates. Consuming ~17-30 kgh-1 of feedstock, the producer gas was composed of ~200 dm3 m-3 carbon monoxide, 12 dm3 m-3 carbon dioxide, 30 dm3 m-3 methane and 190 dm3 m-3 hydrogen, with an energy content of ~6 MJ m-3 for both feedstocks. It was found that...
PREVENTION OF ELEMENTAL MERCURY REEMISSIONS FROM ILLINOIS COAL WET SCRUBBERS
This research conducted pilot plant tests to investigate techniques for controlling and reducing Hg0 re-emissions. A pilot-scale (0.01MW) wet scrubber was designed to simulate the wet limestone flue gas desulfurization system. Hg0 re-emissions, manifested by...
USDA-ARS?s Scientific Manuscript database
The performance of wood-based denitrifying bioreactors to treat high-nitrate wastewaters from aquaculture systems has not previously been demonstrated. Four pilot-scale woodchip bioreactors (approximately 1:10 scale) were constructed and operated for 268 d to determine the optimal range of design hy...
Just, Sarah; Toschkoff, Gregor; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes; Knop, Klaus; Kleinebudde, Peter
2013-11-30
The objective of this study was to enhance the inter-tablet coating uniformity in an active coating process at lab and pilot scale by statistical design of experiments. The API candesartan cilexetil was applied onto gastrointestinal therapeutic systems containing the API nifedipine to obtain fixed dose combinations of these two drugs with different release profiles. At lab scale, the parameters pan load, pan speed, spray rate and number of spray nozzles were examined. At pilot scale, the parameters pan load, pan speed, spray rate, spray time, and spray pressure were investigated. A low spray rate and a high pan speed improved the coating uniformity at both scales. The number of spray nozzles was identified as the most influential variable at lab scale. With four spray nozzles, the highest CV value was equal to 6.4%, compared to 13.4% obtained with two spray nozzles. The lowest CV of 4.5% obtained with two spray nozzles was further reduced to 2.3% when using four spray nozzles. At pilot scale, CV values between 2.7% and 11.1% were achieved. Since the test of uniformity of dosage units accepts CV values of up to 6.25%, this active coating process is well suited to comply with the pharmacopoeial requirements. Copyright © 2013 Elsevier B.V. All rights reserved.
US Army remotely piloted vehicle supporting technology program
NASA Technical Reports Server (NTRS)
Gossett, T. D.
1981-01-01
Essential technology programs that lead to the full scale engineering development of the Aquila Remotely Piloted Vehicle system for U.S. Army are described. The Aquila system uses a small recoverable and reusable RPV to provide target acquisition, designation, and aerial reconnaissance mission support for artillery and smart munitions. Developments that will provide growth capabilities to the Aquila RPV system, as well as future RPV mission concepts being considered by the U.S. Army are presented.
MacGregor, Hayley; McKenzie, Andrew; Jacobs, Tanya; Ullauri, Angelica
2018-04-25
In 2011, a decision was made to scale up a pilot innovation involving 'adherence clubs' as a form of differentiated care for HIV positive people in the public sector antiretroviral therapy programme in the Western Cape Province of South Africa. In 2016 we were involved in the qualitative aspect of an evaluation of the adherence club model, the overall objective of which was to assess the health outcomes for patients accessing clubs through epidemiological analysis, and to conduct a health systems analysis to evaluate how the model of care performed at scale. In this paper we adopt a complex adaptive systems lens to analyse planned organisational change through intervention in a state health system. We explore the challenges associated with taking to scale a pilot that began as a relatively simple innovation by a non-governmental organisation. Our analysis reveals how a programme initially representing a simple, unitary system in terms of management and clinical governance had evolved into a complex, differentiated care system. An innovation that was assessed as an excellent idea and received political backing, worked well whilst supported on a small scale. However, as scaling up progressed, challenges have emerged at the same time as support has waned. We identified a 'tipping point' at which the system was more likely to fail, as vulnerabilities magnified and the capacity for adaptation was exceeded. Yet the study also revealed the impressive capacity that a health system can have for catalysing novel approaches. We argue that innovation in largescale, complex programmes in health systems is a continuous process that requires ongoing support and attention to new innovation as challenges emerge. Rapid scaling up is also likely to require recourse to further resources, and a culture of iterative learning to address emerging challenges and mitigate complex system errors. These are necessary steps to the future success of adherence clubs as a cornerstone of differentiated care. Further research is needed to assess the equity and quality outcomes of a differentiated care model and to ensure the inclusive distribution of the benefits to all categories of people living with HIV.
Anderson, Erik; Addy, Min; Chen, Paul; Ruan, Roger
2018-02-01
A novel process was developed for the biorefining of floatable wastewater scum and other waste oils from water treatment facilities into biodiesel and other value-added bio-products. To test the scalability and commercial potential of the technology, a 7000 l/year pilot-scale system was designed and built. Scum from a wastewater treatment facility, located in St. Paul, Mn, was collected and converted into methyl esters (biodiesel) according to the process chemistry. All of the incoming and outgoing process streams were sampled, tested, weighed and recorded to calculate both the process efficiency and product quality. Data from the pilot-scale system operation was compared to laboratory results and the theoretically expected values for each individual unit operation. The biodiesel was tested using a third party laboratory and confirmed it met all of the US EPA's test requirements for commercial-grade biodiesel. Copyright © 2017 Elsevier Ltd. All rights reserved.
Interaction of feel system and flight control system dynamics on lateral flying qualities
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Powers, Bruce G.; Shafer, Mary F.
1988-01-01
An investigation of feel system and flight control system dynamics on lateral flying qualities was conducted using the variable stability USAF NT-33 aircraft. Experimental variations in feel system natural frequency, force-deflection gradient, control system command architecture type, flight control system filter frequency, and control system delay were made. The experiment data include pilot ratings using the Cooper-Harper (1969) rating scale, pilot comments, and tracking performance statistic. Three test pilots served as evaluators. The data indicate that as the feel system natural frequency is reduced lateral flying qualities degrade. At the slowest feel system frequency, the closed-loop response becomes nonlinear with a 'bobweight' effect apparent in the feel system. Feel system influences were essentially independent of the control system architecture. The flying qualities influence due to the feel system was different than when the identical dynamic systenm was used as a flight control system element.
NASA Technical Reports Server (NTRS)
Hanson, Curt
2014-01-01
An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority.
HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION PROCESSES
This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the...
Robust telerobotics - an integrated system for waste handling, characterization and sorting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couture, S.A.; Hurd, R.L.; Wilhelmsen, K.C.
The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory was designed to serve as a national testbed to demonstrate integrated technologies for the treatment of low-level organic mixed waste at a pilot-plant scale. Pilot-scale demonstration serves to bridge the gap between mature, bench-scale proven technologies and full-scale treatment facilities by providing the infrastructure needed to evaluate technologies in an integrated, front-end to back-end facility. Consistent with the intent to focus on technologies that are ready for pilot scale deployment, the front-end handling and feed preparation of incoming waste material has been designed to demonstrate the application ofmore » emerging robotic and remotely operated handling systems. The selection of telerobotics for remote handling in MWMF was made based on a number of factors - personnel protection, waste generation, maturity, cost, flexibility and extendibility. Telerobotics, or shared control of a manipulator by an operator and a computer, provides the flexibility needed to vary the amount of automation or operator intervention according to task complexity. As part of the telerobotics design effort, the technical risk of deploying the technology was reduced through focused developments and demonstrations. The work involved integrating key tools (1) to make a robust telerobotic system that operates at speeds and reliability levels acceptable to waste handling operators and, (2) to demonstrate an efficient operator interface that minimizes the amount of special training and skills needed by the operator. This paper describes the design and operation of the prototype telerobotic waste handling and sorting system that was developed for MWMF.« less
Innovative Water Management Technology to Reduce Environmental Impacts of Produced Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castle, James; Rodgers, John; Alley, Bethany
2013-05-15
Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobicmore » biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post-reverse osmosis produced water was designed to promote oxidizing conditions within the first wetland cell for nitrification of ammonia, and the subsequent three cells were designed to promote reducing conditions for denitrification of nitrate. By incorporating multiple wetland cells in a CWTS, the conditions within each cell can be modified for removal of specific COCs. In addition, a CWTS designed with multiple cells allows for convenient sample collection points so that biogeochemical conditions of individual cells can be monitored and performance evaluated. Removal rate coefficients determined from the pilot-scale CWTS experiments and confirmed by the demonstration system can be used to calculate HRTs required to treat COCs in full-scale CWTSs. The calculated HRTs can then be used to determine the surface area or ?footprint? of a full-size CWTS for a given inflow rate of produced water.« less
Innovative Water Management Technology to Reduce Environment Impacts of Produced Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castle, James W.; Rodgers, John H.; Alley, Bethany
2013-08-08
Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobicmore » biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post-reverse osmosis produced water was designed to promote oxidizing conditions within the first wetland cell for nitrification of ammonia, and the subsequent three cells were designed to promote reducing conditions for denitrification of nitrate. By incorporating multiple wetland cells in a CWTS, the conditions within each cell can be modified for removal of specific COCs. In addition, a CWTS designed with multiple cells allows for convenient sample collection points so that biogeochemical conditions of individual cells can be monitored and performance evaluated. Removal rate coefficients determined from the pilot-scale CWTS experiments and confirmed by the demonstration system can be used to calculate HRTs required to treat COCs in full-scale CWTSs. The calculated HRTs can then be used to determine the surface area or footprint of a full-size CWTS for a given inflow rate of produced water.« less
Innovative Water Management Technology to Reduce Environment Impacts of Produced Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castle, James; Rodgers, John; Alley, Bethany
2013-05-15
Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobicmore » biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post-reverse osmosis produced water was designed to promote oxidizing conditions within the first wetland cell for nitrification of ammonia, and the subsequent three cells were designed to promote reducing conditions for denitrification of nitrate. By incorporating multiple wetland cells in a CWTS, the conditions within each cell can be modified for removal of specific COCs. In addition, a CWTS designed with multiple cells allows for convenient sample collection points so that biogeochemical conditions of individual cells can be monitored and performance evaluated. Removal rate coefficients determined from the pilot-scale CWTS experiments and confirmed by the demonstration system can be used to calculate HRTs required to treat COCs in full-scale CWTSs. The calculated HRTs can then be used to determine the surface area or footprint of a full-size CWTS for a given inflow rate of produced water.« less
INCINERATION RESEARCH FACILITY
The Cincinnati-based Risk Reduction Engineering Laboratory, ORD, U.S. EPA operates the Incineration Research Facility *IRF) in Jefferson, Arkansas. This facility's pilot-scale experimental incineration systems include a Rotary Kiln System and a Liquid Injection System. Each syste...
Use of a Modern Polymerization Pilot-Plant for Undergraduate Control Projects.
ERIC Educational Resources Information Center
Mendoza-Bustos, S. A.; And Others
1991-01-01
Described is a project where students gain experience in handling large volumes of hazardous materials, process start up and shut down, equipment failures, operational variations, scaling up, equipment cleaning, and run-time scheduling while working in a modern pilot plant. Included are the system design, experimental procedures, and results. (KR)
The objective of this work is to compare the properties of lead solids formed during bench-scale precipitation experiments to solids found on lead pipe removed from real drinking water distribution systems and metal coupons used in pilot scale corrosion testing. Specifically, so...
NASA Technical Reports Server (NTRS)
Edwards, J. W.; Deets, D. A.
1975-01-01
A cost-effective approach to flight testing advanced control concepts with remotely piloted vehicles is described. The approach utilizes a ground based digital computer coupled to the remotely piloted vehicle's motion sensors and control surface actuators through telemetry links to provide high bandwidth feedback control. The system was applied to the control of an unmanned 3/8-scale model of the F-15 airplane. The model was remotely augmented; that is, the F-15 mechanical and control augmentation flight control systems were simulated by the ground-based computer, rather than being in the vehicle itself. The results of flight tests of the model at high angles of attack are discussed.
Comparison of batch sorption tests, pilot studies, and modeling for estimating GAC bed life.
Scharf, Roger G; Johnston, Robert W; Semmens, Michael J; Hozalski, Raymond M
2010-02-01
Saint Paul Regional Water Services (SPRWS) in Saint Paul, MN experiences annual taste and odor episodes during the warm summer months. These episodes are attributed primarily to geosmin that is produced by cyanobacteria growing in the chain of lakes used to convey and store the source water pumped from the Mississippi River. Batch experiments, pilot-scale experiments, and model simulations were performed to determine the geosmin removal performance and bed life of a granular activated carbon (GAC) filter-sorber. Using batch adsorption isotherm parameters, the estimated bed life for the GAC filter-sorber ranged from 920 to 1241 days when challenged with a constant concentration of 100 ng/L of geosmin. The estimated bed life obtained using the AdDesignS model and the actual pilot-plant loading history was 594 days. Based on the pilot-scale GAC column data, the actual bed life (>714 days) was much longer than the simulated values because bed life was extended by biological degradation of geosmin. The continuous feeding of high concentrations of geosmin (100-400 ng/L) in the pilot-scale experiments enriched for a robust geosmin-degrading culture that was sustained when the geosmin feed was turned off for 40 days. It is unclear, however, whether a geosmin-degrading culture can be established in a full-scale filter that experiences taste and odor episodes for only 1 or 2 months per year. The results of this research indicate that care must be exercised in the design and interpretation of pilot-scale experiments and model simulations for predicting taste and odor removal in full-scale GAC filter-sorbers. Adsorption and the potential for biological degradation must be considered to estimate GAC bed life for the conditions of intermittent geosmin loading typically experienced by full-scale systems. (c) 2009 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hanson, Curt; Schaefer, Jacob; Burken, John J.; Larson, David; Johnson, Marcus
2014-01-01
Flight research has shown the effectiveness of adaptive flight controls for improving aircraft safety and performance in the presence of uncertainties. The National Aeronautics and Space Administration's (NASA)'s Integrated Resilient Aircraft Control (IRAC) project designed and conducted a series of flight experiments to study the impact of variations in adaptive controller design complexity on performance and handling qualities. A novel complexity metric was devised to compare the degrees of simplicity achieved in three variations of a model reference adaptive controller (MRAC) for NASA's F-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Full-Scale Advanced Systems Testbed (Gen-2A) aircraft. The complexity measures of these controllers are also compared to that of an earlier MRAC design for NASA's Intelligent Flight Control System (IFCS) project and flown on a highly modified F-15 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). Pilot comments during the IRAC research flights pointed to the importance of workload on handling qualities ratings for failure and damage scenarios. Modifications to existing pilot aggressiveness and duty cycle metrics are presented and applied to the IRAC controllers. Finally, while adaptive controllers may alleviate the effects of failures or damage on an aircraft's handling qualities, they also have the potential to introduce annoying changes to the flight dynamics or to the operation of aircraft systems. A nuisance rating scale is presented for the categorization of nuisance side-effects of adaptive controllers.
Zhao, Yonggui; Fang, Yang; Jin, Yanling; Huang, Jun; Bao, Shu; He, Zhiming; Wang, Feng; Zhao, Hai
2014-01-01
The effects of water depth, coverage rate and harvest regime on nutrient removal from wastewater and high-protein biomass production were assessed in a duckweed-based (Lemna aequinoctialis) pilot-scale wastewater treatment system (10 basins × 12 m(2)) that is located near Dianchi Lake in China. The results indicated that a water depth of 50 cm, a coverage rate of 150% and a harvest regime of 4 days were preferable conditions, under which excellent records of high-protein duckweed (dry matter production of 6.65 g/m(2)/d with crude protein content of 36.16% and phosphorus content of 1.46%) were obtained at a temperature of 12-21 °C. At the same time, the system achieved a removal efficiency of 66.16, 23.1, 48.3 and 76.52% for NH4(+)-N, TN, TP and turbidity, respectively, with the considerable removal rate of 0.465 g/m(2)/d for TN and 0.134 g/m(2)/d for TP at a hydraulic retention time of 6 days. In additionally, it was found that a lower duckweed density could lead to higher dissolved oxygen in the water and then a higher removal percentage of NH4(+)-N by nitrobacteria. This study obtains the preferable operation conditions for wastewater treatment and high-protein biomass production in a duckweed-based pilot-scale system, supplying an important reference for further large-scale applications of duckweed.
HANDBOOK ON ADVANCED NONPHOTOCHEMICAL OXIDATION PROCESSES
The purpose of this handbook is to summarize commercial-scale system performance and cost data for advanced nonphotochemical oxidation (ANPO) treatment of contaminated water, air, and soil. Similar information from pilot-and bench-scale evaluations of ANPO processes is also inclu...
Chen, Qingcai; Li, Zebing; Hua, Xiaoyu
2018-05-01
The control measures for estrogens in the aquatic environment are topics of growing concern. It is a meaningful issue to finding optimal process parameters for efficient removal of estrogens with the purpose of efficient total nitrogen (TN) or total phosphorus (TP) removal in sewage treatment plants. The present paper is concerned with the relationships between the estrogen removal and TN or TP removal in a pilot-scale three-stage anoxic/oxic (A/O) system treating real municipal wastewater. The total removal efficiency for estrone (E1) and 17β-estradiol (E2) and their sulfate and glucuronide conjugates were on average 87% in the pilot-scale system. The concentrations of the sulfate and glucuronide conjugates of estrogens (E1 and E2) in the system were much lower than the estrogens, which might be caused by the rapid degradation of conjugates in the pilot-scale system. The average removal efficiencies of E1 and E2 and their sulfate and glucuronide conjugates were significantly lower under high TP removal conditions than those under high TN removal conditions that suggested that the ammonia oxidation promotes estrogen degradation. When the system achieved efficient TN removal, the concentrations of both E1 and E2 were generally lower in the aerobic zones than those in the anoxic zones. Instead, when the system achieved efficient TP removal conditions, the estrogen concentrations were higher in the aerobic zones than in the anoxic zones. However, it was thought that the variation of the concentrations of the estrogen conjugates had weak influence on concentrations of the free estrogens. The increase of the free estrogens in the aerobic zones could be attributed to the release of the estrogens adsorbed on the sludge. The variation of estrogens in a three-stage A/O system can be properly estimated and measured by a binary linear regression model with the variables of TP and TON (NO 2 - -N and NO 3 - -N), which is probably the important information for the improvement and optimization of wastewater treatment processes to obtain higher removal efficiency for estrogens.
Liu, Xiaowei; Saydah, Benjamin; Eranki, Pragnya; Colosi, Lisa M; Greg Mitchell, B; Rhodes, James; Clarens, Andres F
2013-11-01
Life cycle assessment (LCA) has been used widely to estimate the environmental implications of deploying algae-to-energy systems even though no full-scale facilities have yet to be built. Here, data from a pilot-scale facility using hydrothermal liquefaction (HTL) is used to estimate the life cycle profiles at full scale. Three scenarios (lab-, pilot-, and full-scale) were defined to understand how development in the industry could impact its life cycle burdens. HTL-derived algae fuels were found to have lower greenhouse gas (GHG) emissions than petroleum fuels. Algae-derived gasoline had significantly lower GHG emissions than corn ethanol. Most algae-based fuels have an energy return on investment between 1 and 3, which is lower than petroleum biofuels. Sensitivity analyses reveal several areas in which improvements by algae bioenergy companies (e.g., biocrude yields, nutrient recycle) and by supporting industries (e.g., CO2 supply chains) could reduce the burdens of the industry. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mamo, Julian; Insa, Sara; Monclús, Hèctor; Rodríguez-Roda, Ignasi; Comas, Joaquim; Barceló, Damià; Farré, Maria José
2016-10-01
The removal of N-nitrosodimethylamine (NDMA) formation potential through a membrane bioreactor (MBR) coupled to a nanofiltration (NF) pilot plant that treats urban wastewater is investigated. The results are compared to the fate of the individual NDMA precursors detected: azithromycin, citalopram, erythromycin, clarithromycin, ranitidine, venlafaxine and its metabolite o-desmethylvenlafaxine. Specifically, the effect of dissolved oxygen in the aerobic chamber of the MBR pilot plant on the removal of NDMA formation potential (FP) and individual precursors is studied. During normal aerobic operation, implying a fully nitrifying system, the MBR was able to reduce NDMA precursors above 94%, however this removal percentage was reduced to values as low as 72% when changing the conditions to minimize nitrification. Removal decreased also for azithromycin (68-59%), citalopram (31-17%), venlafaxine (35-15%) and erythromycin (61-16%) on average during nitrifying versus non-nitrifying conditions. The removal of clarithromycin, o-desmethylvenlafaxine and ranitidine could not be correlated with the nitrification inhibition, as it varied greatly during the experiment time. The MBR pilot plant is coupled to a nanofiltration (NF) system and the results on the rejection of both, NDMA FP and individual precursors, through this system was above 90%. Finally, results obtained for the MBR pilot plant are compared to the percentage of removal by a conventional full scale biological wastewater treatment plant (WWTP) fed with the same influent. During aerobic operation, the removal of NDMA FP by the MBR pilot plant was similar to the full scale WWTP. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Liang; Qian, Guangsheng; Ye, Linlin; Hu, Xiaomin; Yu, Xin; Lyu, Weijian
2018-09-01
In cold areas, nitrogen removal performance of wastewater treatment plants (WWTP) declines greatly in winter. This paper systematically describes the enhancement effect of a periodic reverse electrocoagulation technology on biological nitrogen removal at low temperatures. The study showed that in the lab-scale systems, the electrocoagulation technology improved the biomass amount, enzyme activity and the amount of nitrogen removal bacteria (Nitrosomonas, Nitrobacter, Paracoccus, Thauera and Enterobacter). This enhanced nitrification and denitrification of activated sludge at low temperatures. In the pilot-scale systems, the electrocoagulation technology increased the relative abundance of cold-adapted microorganisms (Luteimonas and Trueperaceae) at low temperatures. In a full-scale industrial WWTP, comparison of data from winter 2015 and winter 2016 showed that effluent chemical oxygen demand (COD), NH 4 + -N, and NO 3 - -N reduced by 10.37, 3.84, and 136.43 t, respectively, throughout the winter, after installation of electrocoagulation devices. These results suggest that the electrocoagulation technology is able to improve the performance of activated sludge under low-temperature conditions. This technology provides a new way for upgrading of the performance of WWTPs in cold areas. Copyright © 2018 Elsevier Ltd. All rights reserved.
Support of Helicopter 'Free Flight' Operations in the 1996 Olympics
NASA Technical Reports Server (NTRS)
Branstetter, James R.; Cooper, Eric G.
1996-01-01
The microcosm of activity surrounding the 1996 Olympic Games provided researchers an opportunity for demonstrating state-of-the art technology in the first large-scale deployment of a prototype digital communication/navigation/surveillance system in a confined environment. At the same time it provided an ideal opportunity for transportation officials to showcase the merits of an integrated transportation system in meeting the operational needs to transport time sensitive goods and provide public safety services under real-world conditions. Five aeronautical CNS functions using a digital datalink system were chosen for operational flight testing onboard 91 aircraft, most of them helicopters, participating in the Atlanta Short-Haul Transportation System. These included: GPS-based Automatic Dependent Surveillance, Cockpit Display of Traffic Information, Controller-Pilot Communications, Graphical Weather Information (uplink), and Automated Electronic Pilot Reporting (downlink). Atlanta provided the first opportunity to demonstrate, in an actual operating environment, key datalink functions which would enhance flight safety and situational awareness for the pilot and supplement conventional air traffic control. The knowledge gained from such a large-scale deployment will help system designers in development of a national infrastructure where aircraft would have the ability to navigate autonomously.
The Effects of Reducing Tracking in Upper Secondary School: Evidence from a Large-Scale Pilot Scheme
ERIC Educational Resources Information Center
Hall, Caroline
2012-01-01
By exploiting an extensive pilot scheme that preceded an educational reform, this paper evaluates the effects of introducing a more comprehensive upper secondary school system in Sweden. The reform reduced the differences between academic and vocational tracks through prolonging and increasing the academic content of the latter. As a result, all…
NASA Astrophysics Data System (ADS)
Iigaya, Kiyohito
A robust, fast and accurate protection system based on pilot protection concept was developed previously and a few alterations in that algorithm were made to make it faster and more reliable and then was applied to smart distribution grids to verify the results for it. The new 10 sample window method was adapted into the pilot protection program and its performance for the test bed system operation was tabulated. Following that the system comparison between the hardware results for the same algorithm and the simulation results were compared. The development of the dual slope percentage differential method, its comparison with the 10 sample average window pilot protection system and the effects of CT saturation on the pilot protection system are also shown in this thesis. The implementation of the 10 sample average window pilot protection system is done to multiple distribution grids like Green Hub v4.3, IEEE 34, LSSS loop and modified LSSS loop. Case studies of these multi-terminal model are presented, and the results are also shown in this thesis. The result obtained shows that the new algorithm for the previously proposed protection system successfully identifies fault on the test bed and the results for both hardware and software simulations match and the response time is approximately less than quarter of a cycle which is fast as compared to the present commercial protection system and satisfies the FREEDM system requirement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haythornthwaite, S.M.; Durham, M.D.; Anderson, G.L.
1997-05-01
Jet engine test cells (JETCs) are used to test-fire new, installed, and reworked jet engines. Because JETCs have been classified as stationary sources of pollutant emissions, they are subject to possible regulation under Title 1 of the Clean Air Act (CAA) as amended in 1990. In Phase 1 of the Small Business Innovation Research (SBIR) program, a novel NOx-control approach utilizing pulsed-corona-induced plasma successfully showed 90% removal of NOx in the laboratory. The objective of Phase 2 was to reproduce the laboratory-scale results in a pilot-scale system. The technology was successfully demonstrated at pilot scale in the field, on amore » slipstream of JETC flue gas at Nellis Air Force Base. Based on the field data, cost projections were made for a system to treat the full JETC exhaust. The technology efficiently converted NO into ONO, and a wet scrubber was required to achieve the treatment goal of 50-percent removal and destruction of NOx. The plasma simultaneously removes hydrocarbons from the flue gas stream. This project demonstrated that pulse-corona-induced plasma technology is scalable to practical industrial dimensions.« less
Yun, Yupan; Zhou, Xiaoqin; Li, Zifu; Uddin, Sayed Mohammad Nazim; Bai, Xiaofeng
2015-01-01
This research mainly focused on the phosphorus removal performance of pilot-scale vertical flow constructed wetlands with steel slag (SS) and modified steel slag (MSS). First, bench-scale experiments were conducted to evaluate the phosphorus adsorption capacity. Results showed that the Langmuir model could better describe the adsorption characteristics of the two materials; the maximum adsorption of MSS reached 12.7 mg/g, increasing by 34% compared to SS (9.5 mg/g). Moreover, pilot-scale constructed wetlands with SS and MSS were set up outdoors. Then, the influence of hydraulic retention time (HRT) and phosphorus concentration in phosphorus removal for two wetlands were investigated. Results revealed that better performance of the two systems could be achieved with an HRT of 2 d and phosphorus concentration in the range of 3-4.5 mg/L; the system with MSS had a better removal efficiency than the one with SS in the same control operation. Finally, the study implied that MSS could be used as a promising substrate for wetlands to treat wastewater with a high phosphorus concentration. However, considering energy consumption, SS could be regarded as a better alternative for substrate when treating sewage with a low phosphorus concentration.
Moreno, Lyman; Predicala, Bernardo; Nemati, Mehdi
2010-04-01
The effects of manure age on emission of H(2)S and required level of nitrite or molybdate to control these emissions were investigated in the present work. Molybdate mediated control of H(2)S emission was also studied in semi-pilot scale open systems, and in specifically designed chambers which simulated swine production rooms. With fresh 1-, 3- and 6-month old manures average H(2)S concentration in the headspace gas of the closed systems were 4856+/-460, 3431+/-208, 1037+/-98 ppm and non-detectable, respectively. Moreover, the level of nitrite or molybdate required to control the emission of H(2)S decreased as manure age increased. In the semi-pilot scale open system and chambers, average H(2)S concentration at the surface of agitated fresh manure were 831+/-26 and 88.4+/-5.7 ppm, respectively. Furthermore, 0.1-0.25 mM molybdate was sufficient to control the emission of H(2)S. A cost study for an average size swine operation showed that the cost of treatment with molybdate was less than 1% of the overall production cost for each market hog. Copyright 2009 Elsevier Ltd. All rights reserved.
Assessing Arsenic Removal by Metal (Hydr)Oxide Adsorptive Media Using Rapid Small Scale Column Tests
The rapid small scale column test (RSSCT) was use to evaluate the the performance of eight commercially available adsorptive media for the removal of arsenic. Side-by-side tests were conducted using RSSCTs and pilot/full-scale systems either in the field or in the laboratory. ...
NASA Technical Reports Server (NTRS)
Hanson, Curt; Miller, Chris; Wall, John H.; Vanzwieten, Tannen S.; Gilligan, Eric; Orr, Jeb S.
2015-01-01
An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority. Two NASA research pilots flew a total of twenty five constant pitch-rate trajectories using a prototype manual steering mode with and without adaptive control.
NASA Astrophysics Data System (ADS)
Panteleev, A. A.; Bobinkin, V. V.; Larionov, S. Yu.; Ryabchikov, B. E.; Smirnov, V. B.; Shapovalov, D. A.
2017-10-01
When designing large-scale water-treatment plants based on reverse-osmosis systems, it is proposed to conduct experimental-industrial or pilot tests for validated simulation of the operation of the equipment. It is shown that such tests allow establishing efficient operating conditions and characteristics of the plant under design. It is proposed to conduct pilot tests of the reverse-osmosis systems on pilot membrane plants (PMPs) and test membrane plants (TMPs). The results of a comparative experimental study of pilot and test membrane plants are exemplified by simulating the operating parameters of the membrane elements of an industrial plant. It is concluded that the reliability of the data obtained on the TMP may not be sufficient to design industrial water-treatment plants, while the PMPs are capable of providing reliable data that can be used for full-scale simulation of the operation of industrial reverse-osmosis systems. The test membrane plants allow simulation of the operating conditions of individual industrial plant systems; therefore, potential areas of their application are shown. A method for numerical calculation and experimental determination of the true selectivity and the salt passage are proposed. An expression has been derived that describes the functional dependence between the observed and true salt passage. The results of the experiments conducted on a test membrane plant to determine the true value of the salt passage of a reverse-osmosis membrane are exemplified by magnesium sulfate solution at different initial operating parameters. It is shown that the initial content of a particular solution component has a significant effect on the change in the true salt passage of the membrane.
Pilot-scale demonstration of phytofiltration for treatment of arsenic in New Mexico drinking water.
Elless, Mark P; Poynton, Charissa Y; Willms, Cari A; Doyle, Mike P; Lopez, Alisa C; Sokkary, Dale A; Ferguson, Bruce W; Blaylock, Michael J
2005-10-01
Arsenic contamination of drinking water poses serious health risks to millions of people worldwide. To reduce such risks, the United States Environmental Protection Agency recently lowered the Maximum Contaminant Level for arsenic in drinking water from 50 to 10 microgL(-1). The majority of water systems requiring compliance are small systems that serve less than 10,000 people. Current technologies used to clean arsenic-contaminated water have significant drawbacks, particularly for small treatment systems. In this pilot-scale demonstration, we investigated the use of arsenic-hyperaccumulating ferns to remove arsenic from drinking water using a continuous flow phytofiltration system. Over the course of a 3-month demonstration period, the system consistently produced water having an arsenic concentration less than the detection limit of 2 microgL(-1), at flow rates as high as 1900 L day(-1) for a total treated water volume of approximately 60,000 L. Our results demonstrate that phytofiltration provides the basis for a solar-powered hydroponic technique to enable small-scale cleanup of arsenic-contaminated drinking water.
A 200kW central receiver CPV system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lasich, John, E-mail: jbl@raygen.com; Thomas, Ian, E-mail: ithomas@raygen.com; Hertaeg, Wolfgang
2015-09-28
Raygen Resources has recently completed a Central Receiver CPV (CSPV) pilot plant in Central Victoria, Australia. The system is under final commissioning and initial operation is expected in late April 2015. The pilot demonstrates a full scale CSPV repeatable unit in a form that is representative of a commercial product and provides a test bed to prove out performance and reliability of the CSPV technology. Extensive testing of the system key components: dense array module, wireless solar powered heliostat and control system has been performed in the laboratory and on sun. Results from this key component testing are presented herein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, M.R., E-mail: mrislam1985@yahoo.com; Joardder, M.U.H.; Hasan, S.M.
2011-09-15
In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants formore » the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.« less
Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toy, Lora; Choi, Young Chul; Hendren, Zachary
In the U.S. manufacturing sector, current industrial water use practices are energy-intensive and utilize and discharge high volumes of waters, rendering them not sustainable especially in light of the growing scarcity of suitable water supplies. To help address this problem, the goal of this project was to develop an advanced, cost-effective, hybrid membrane-based water treatment system that can improve the energy efficiency of industrial wastewater treatment while allowing at least 50% water reuse efficiency. This hybrid process would combine emerging Forward Osmosis (FO) and Membrane Distillation (MD) technology components into an integrated FO-MD system that can beneficially utilize low-grade wastemore » heat (i.e., T < 450 °F) in industrial facilities to produce distilled-quality product water for reuse. In this project, laboratory-, bench-, and pilot-scale experiments on the hybrid FO-MD system were conducted for industrial wastewater treatment. It was demonstrated at laboratory, bench, and pilot scales that FO-MD membrane technology can concentrate brine to very high total dissolved solids (TDS) levels (>200,000 ppm) that are at least 2.5 times higher than the TDS level to which RO can achieve. In laboratory testing, currently available FO and MD membranes were tested to select for high-performing membranes with high salt rejection and high water flux. Multiple FO membrane/draw-salt solution combinations that gave high water flux with higher than 98% salt rejection were also identified. Reverse draw-salt fluxes were observed to be much lower for divalent salts than for monovalent salts. MD membranes were identified that had 99.9+% salt rejection and water flux as high as 50-90 L/(m 2·h) for flat-sheet membranes and >20 L/(m 2·h) for hollow fibers. In bench-scale testing, a single unit of commercially available FO and MD membrane modules were evaluated for continuous, integrated operation. Using the laboratory- and bench-scale test data, numerical modeling was performed on the FO and MD processes to estimate engineering parameters for a larger-scale pilot unit. Based on the experimental studies and modeling results, a pilot-scale, integrated FO-MD prototype unit was designed and built for trailer-mounted operation. This prototype system was fed real industrial wastewater, which could not be further treated by conventional technologies, from an oil production facility and was successfully operated for over 15 weeks without major stoppage. About 90% water recovery was possible, while concentrating the TDS from 12,000 ppm up to 190,500 ppm. The FO-MD prototype rejected most wastewater contaminants while producing water with <300 ppm TDS, even when the feed TDS was higher than 150,000 ppm. No chemical cleaning was necessary during the pilot testing period. Flushing the system with dechlorinated tap water was sufficient to reset the membranes for the next set of test conditions. Pilot performance and membrane autopsy showed that, even though the feed was concentrated more than 10 times, membrane fouling was unnoticeable and no defects were detected on the FO and MD membrane surfaces. This project demonstrated the technical feasibility of the hybrid FO-MD process by taking water already treated to the limit with the highest level of current technologies and further concentrating it 10-fold by using mostly low-cost materials. Because no membranes suitable for full-scale plant applications are available at present, economical feasibility of the hybrid technology is still uncertain, but it is expected that broader industry participation can further reduce FO-MD process costs.« less
Huber, Maximilian; Welker, Antje; Dierschke, Martina; Drewes, Jörg E; Helmreich, Brigitte
2016-09-01
In recent years, there has been a significant increase in the development and application of technical decentralized filter systems for the treatment of runoff from traffic areas. However, there are still many uncertainties regarding the service life and the performance of filter materials that are employed in decentralized treatment systems. These filter media are designed to prevent the transport of pollutants into the environment. A novel pilot-scale test method was developed to determine - within a few days - the service lives and long-term removal efficiencies for dissolved heavy metals in stormwater treatment systems. The proposed method consists of several steps including preloading the filter media in a pilot-scale model with copper and zinc by a load of n-1 years of the estimated service life (n). Subsequently, three representative rain events are simulated to evaluate the long-term performance by dissolved copper and zinc during the last year of application. The presented results, which verified the applicability of this method, were obtained for three filter channel systems and six filter shaft systems. The performance of the evaluated systems varied largely for both tested heavy metals and during all three simulated rain events. A validation of the pilot-scale assessment method with field measurements was also performed for two systems. Findings of this study suggest that this novel method does provide a standardized and accurate estimation of service intervals of decentralized treatment systems employing various filter materials. The method also provides regulatory authorities, designers, and operators with an objective basis for performance assessment and supports stormwater managers to make decisions for the installation of such decentralized treatment systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Lai, Canhai; Marcy, Peter William
2017-05-01
A challenging problem in designing pilot-scale carbon capture systems is to predict, with uncertainty, the adsorber performance and capture efficiency under various operating conditions where no direct experimental data exist. Motivated by this challenge, we previously proposed a hierarchical framework in which relevant parameters of physical models were sequentially calibrated from different laboratory-scale carbon capture unit (C2U) experiments. Specifically, three models of increasing complexity were identified based on the fundamental physical and chemical processes of the sorbent-based carbon capture technology. Results from the corresponding laboratory experiments were used to statistically calibrate the physical model parameters while quantifying some of theirmore » inherent uncertainty. The parameter distributions obtained from laboratory-scale C2U calibration runs are used in this study to facilitate prediction at a larger scale where no corresponding experimental results are available. In this paper, we first describe the multiphase reactive flow model for a sorbent-based 1-MW carbon capture system then analyze results from an ensemble of simulations with the upscaled model. The simulation results are used to quantify uncertainty regarding the design’s predicted efficiency in carbon capture. In particular, we determine the minimum gas flow rate necessary to achieve 90% capture efficiency with 95% confidence.« less
Pilot testing of a membrane system for postcombustion CO 2 capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkel, Tim; Kniep, Jay; Wei, Xiaotong
2015-09-30
This final report summarizes work conducted for the U.S. Department of Energy, National Energy Technology Laboratory (DOE) to scale up an efficient post-combustion CO 2 capture membrane process to the small pilot test stage (award number DE-FE0005795). The primary goal of this research program was to design, fabricate, and operate a membrane CO 2 capture system to treat coal-derived flue gas containing 20 tonnes CO 2/day (20 TPD). Membrane Technology and Research (MTR) conducted this project in collaboration with Babcock and Wilcox (B&W), the Electric Power Research Institute (EPRI), WorleyParsons (WP), the Illinois Sustainable Technology Center (ISTC), Enerkem (EK), andmore » the National Carbon Capture Center (NCCC). In addition to the small pilot design, build and slipstream testing at NCCC, other project efforts included laboratory membrane and module development at MTR, validation field testing on a 1 TPD membrane system at NCCC, boiler modeling and testing at B&W, a techno-economic analysis (TEA) by EPRI/WP, a case study of the membrane technology applied to a ~20 MWe power plant by ISTC, and an industrial CO 2 capture test at an Enerkem waste-to-biofuel facility. The 20 TPD small pilot membrane system built in this project successfully completed over 1,000 hours of operation treating flue gas at NCCC. The Polaris™ membranes used on this system demonstrated stable performance, and when combined with over 10,000 hours of operation at NCCC on a 1 TPD system, the risk associated with uncertainty in the durability of postcombustion capture membranes has been greatly reduced. Moreover, next-generation Polaris membranes with higher performance and lower cost were validation tested on the 1 TPD system. The 20 TPD system also demonstrated successful operation of a new low-pressure-drop sweep module that will reduce parasitic energy losses at full scale by as much as 10 MWe. In modeling and pilot boiler testing, B&W confirmed the viability of CO 2 recycle to the boiler as envisioned in the MTR process design. The impact of this CO 2 recycle on boiler efficiency was quantified and incorporated into a TEA of the membrane capture process applied to a full-scale power plant. As with previous studies, the TEA showed the membrane process to be lower cost than the conventional solvent capture process even at 90% CO 2capture. A sensitivity study indicates that the membrane capture cost decreases significantly if the 90% capture requirement is relaxed. Depending on the process design, a minimum capture cost is achieved at 30-60% capture, values that would meet proposed CO 2 emission regulations for coal-fired power plants. In summary, this project has successfully advanced the MTR membrane capture process through small pilot testing (technology readiness level 6). The technology is ready for future scale-up to the 10 MWe size.« less
Designing for Scale: Reflections on Rolling Out Reading Improvement in Kenya and Liberia.
Gove, Amber; Korda Poole, Medina; Piper, Benjamin
2017-03-01
Since 2008, the Ministries of Education in Liberia and Kenya have undertaken transitions from small-scale pilot programs to improve reading outcomes among primary learners to the large-scale implementation of reading interventions. The effects of the pilots on learning outcomes were significant, but questions remained regarding whether such large gains could be sustained at scale. In this article, the authors dissect the Liberian and Kenyan experiences with implementing large-scale reading programs, documenting the critical components and conditions of the program designs that affected the likelihood of successfully transitioning from pilot to scale. They also review the design, deployment, and effectiveness of each pilot program and the scale, design, duration, enabling conditions, and initial effectiveness results of the scaled programs in each country. The implications of these results for the design of both pilot and large-scale reading programs are discussed in light of the experiences of both the Liberian and Kenyan programs. © 2017 Wiley Periodicals, Inc.
Culvert information management system : demonstration project, final report, August 2009.
DOT National Transportation Integrated Search
2009-08-01
The overall objective of the research was to develop a pilot scale Culvert Information Management System (CIMS) that will : comply with both requirements stipulated by the Governmental Accounting Standards Board (GASB-34) and new federal : storm wate...
NASA Astrophysics Data System (ADS)
Lagerloef, G. S.; Cheney, R.; Mitchum, G. T.
2001-12-01
We are initiating a pilot processing system and data center to provide operational ocean surface velocity fields from satellite altimeter and vector wind data. The team includes the above authors plus M. Bourassa (FSU), V.Kousky (NOAA/NCEP), J.Polovina (NOAA/NMFS/Hawaii CoastWatch), R.Legeckis (NOAA/NESDIS), G. Jacobs (NRL), F. Bonjean (ESR), E.Johnson (ESR) and J.Gunn (ESR). Methods to derive surface currents are the outcome of several years of NASA sponsored research and the pilot project will transition that capability to operational oceanographic applications. The regional focus will be the tropical Pacific. Data applications include large scale climate diagnostics and prediction, fisheries management and recruitment, monitoring debris drift, larvae drift, oil spills, fronts and eddies. Additional uses for search and rescue, naval and maritime operations will be investigated. The pilot study will produce velocity maps to be updated on a weekly basis initially, with a goal for eventual 2-day maximum delay from time of satellite measurement. Grid resolution will be 100 km for the basin scale, and finer resolution in the vicinity of the Pacific Islands. Various illustrations of the velocity maps and their applications will be presented. The project's goal is to leave in place an automated system running at NOAA/NESDIS, with an established user clientele and open Internet data access.
NASA Technical Reports Server (NTRS)
Hanson, Curt; Miller, Chris; Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Orr, Jeb S.
2015-01-01
An Adaptive Augmenting Control (AAC) algorithm for the Space Launch System (SLS) has been developed at the Marshall Space Flight Center (MSFC) as part of the launch vehicle's baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a potential manual steering mode were also investigated by giving the pilot trajectory deviation cues and pitch rate command authority, which is the subject of this paper. Two NASA research pilots flew a total of 25 constant pitch rate trajectories using a prototype manual steering mode with and without adaptive control, evaluating six different nominal and off-nominal test case scenarios. Pilot comments and PIO ratings were given following each trajectory and correlated with aircraft state data and internal controller signals post-flight.
EMERGING TECHNOLOGY SUMMARY: REMOVAL AND RECOVERY OF METAL IONS FROM GROUNDWATER
A series of bench-scale tests and an onsite pilot scale demonstration of Bio-Recovery Systems' AlgaSORB® technology for the removal and recovery of mercury-contaminated groundwaters were conducted under the SITE program. The AlgaSORB® process is based on the natural, very st...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
BIOLOGICAL NITRIFICATION IN A FULL-SCALE AND PILOT-SCALE IRON REMOVAL DRINKING WATER TREATMENT PLANT
Ammonia in source waters can cause water treatment and distribution system problems, many of which are associated with biological nitrification. Therefore, in some cases, the removal of ammonia from water is desirable. Biological oxidation of ammonia to nitrite and nitrate (nitr...
Zheng, Yucong; Wang, Xiaochang C; Dzakpasu, Mawuli; Ge, Yuan; Zhao, Yaqian; Xiong, Jiaqing
2016-01-01
Hybrid constructed wetland (HCW) systems have been used to treat various wastewaters across the world. However, large-scale applications of HCWs are scarce, particularly for on-site improvement of the water quality of highly polluted urban rivers in semi-arid regions. In this study, a large pilot-scale HCW system was constructed to improve the water quality of the Zaohe River in Xi'an, China. With a total area of about 8000 m(2), the pilot HCW system, composed of different configurations of surface and subsurface flow wetlands, was operated for 2 years at an average inflow volume rate of 362 m(3)/day. Local Phragmites australis and Typha orientalis from the riverbank were planted in the HCW system. Findings indicate a higher treatment efficiency for organics and suspended solids than nutrients. The inflow concentrations of 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN), NH3-N, and total phosphorus (TP) were 125.6, 350.9, 334.2, 38.5, 27.2, and 3.9 mg/L, respectively. Average removal efficiencies of 94.4, 74.5, 92.0, 56.3, 57.5, and 69.2%, respectively, were recorded. However, the pollutant removal rates were highly seasonal especially for nitrogen. Higher removals were recorded for all pollutants in the autumn while significantly lower removals were recorded in the winter. Plant uptake and assimilation accounted for circa 19-29 and 16-23% of the TN and TP removal, respectively. Moreover, P. australis demonstrated a higher nutrient uptake ability and competitive potential. Overall, the high efficiency of the pilot HCW for improving the water quality of such a highly polluted urban river provided practical evidence of the applicability of the HCW technology for protecting urban water environments.
Interpreted Cooper-Harper for broader use
NASA Technical Reports Server (NTRS)
Green, David L.; Andrews, Hal; Gallagher, Donald W.
1993-01-01
The current aircraft assessment process typically makes extensive use of operational personnel during simulations and operational evaluations, with increased emphasis on evaluating the many pilot and/or operator/aircraft control loops. The need for a crew assessment in this broader arena has produced a variety of rating scales. The Cooper-Harper Rating Scale is frequently misused and routinely overlooked in the process, for these applications often extend the scale's use beyond its originally intended application. This paper agrees with the broader application of the Cooper-Harper Rating Scale and presents a concept for the development of a 'use unique' Interpreted Cooper-Harper Scale to help achieve this objective. This interpreted scale concept was conceived during efforts to support an FAA evaluation of a night vision enhancement system. It includes descriptive extensions, which are faithful to the intent of the current Cooper-Harper Scale and should provide the kind of detail that has historically been provided by trained test pilots in their explanatory comments.
Peirone, Eliana; Goria, Paolo Filiberto; Anselmino, Arianna
2014-04-01
To evaluate the safety, feasibility and effectiveness of a dual-task home-based rehabilitation programme on balance impairments among adult patients with acquired brain injury. Single-blind, randomized controlled pilot study. Single rehabilitation centre. Sixteen participants between 12 and 18 months post-acquired brain injury with balance impairments and a score <10 seconds on the One-Leg Stance Test (eyes open). All participants received 50-minutes individualised traditional physiotherapy sessions three times a week for seven weeks. In addition, the intervention group (N = 8) performed an individualised dual-task home-based programme six days a week for seven weeks. The primary outcome measure was the Balance Evaluation System Test; secondary measures were the Activities-specific Balance Confidence Scale and Goal Attainment Scaling. At the end of the pilot study, the intervention group showed significantly greater improvement in Balance Evaluation System Test scores (17.87, SD 6.05) vs. the control group (5.5, SD 3.53; P = 0.008, r = 0.63). There was no significant difference in improvement in Activities-specific Balance Confidence Scale scores between the intervention group (25.25, SD 25.51) and the control group (7.00, SD 14.73; P = 0.11, r = 0.63). There was no significant improvement in Goal Attainment Scaling scores in the intervention (19.37, SD 9.03) vs. the control group (16.28, SD 6.58; P = 0.093, r = 0.63). This pilot study shows the safety, feasibility and short-term benefit of a dual-task home-based rehabilitation programme to improve balance control in patients with acquired brain injury. A sample size of 26 participants is required for a definitive study.
Smouldering Remediation (STAR) Technology: Field Pilot Tests and First Full Scale Application
NASA Astrophysics Data System (ADS)
Gerhard, J.; Kinsman, L.; Torero, J. L.
2015-12-01
STAR (Self-sustaining Treatment for Active Remediation) is an innovative remediation technology based on the principles of smoldering combustion where the contaminants are the fuel. The self-sustaining aspect means that a single, local ignition event can result in many days of contaminant destruction in situ. Presented research to date has focused on bench scale experiments, numerical modelling and process understanding. Presented here is the maturation of the in situ technology, including three field pilot tests and a full-scale implementation to treat coal tar-impacted soils. The first pilot determined a Radius of Influence (ROI) for a single ignition of approximately eight feet with an average propagation rate of the reaction of approximately one foot per day. TPH concentrations in soils were reduced from 10,000 milligrams per kilogram to a few hundred milligrams per kilogram. The second pilot was conducted in an area of significant void spaces created through the anthropogenic deposition of clay bricks and tiles. The void spaces led to pre-mature termination of the combustion reaction, limiting ROI and the effectiveness of the technology in this setting. The third case study involved the pilot testing, design, and full-scale implementation of STAR at a 37-acre former chemical manufacturing facility. Three phases of pilot testing were conducted within two hydrogeologic units at the site (i.e., surficial fill and deep alluvial sand units). Pilot testing within the fill demonstrated self-sustained coal tar destruction rates in excess of 800 kg/day supported through air injection at a single well. Deep sand unit testing (twenty-five feet below the water table) resulted in the treatment of a targeted six-foot layer of impacted fine sands to a radial distance of approximately twelve feet. These results (and additional parameters) were used to develop a full-scale STAR design consisting of approximately 1500 surficial fill ignition points and 500 deep sand ignition points and two treatment (air distribution and vapor collection / treatment) systems to remediate an approximately 14-acre footprint of contaminated soils within the project timelines (i.e., by mid-2016). Field activities began in 2014 and progress is currently on-schedule.
Flight control systems development of highly maneuverable aircraft technology /HiMAT/ vehicle
NASA Technical Reports Server (NTRS)
Petersen, K. L.
1979-01-01
The highly maneuverable aircraft technology (HiMAT) program was conceived to demonstrate advanced technology concepts through scaled-aircraft flight tests using a remotely piloted technique. Closed-loop primary flight control is performed from a ground-based cockpit, utilizing a digital computer and up/down telemetry links. A backup flight control system for emergency operation resides in an onboard computer. The onboard systems are designed to provide fail-operational capabilities and utilize two microcomputers, dual uplink receiver/decoders, and redundant hydraulic actuation and power systems. This paper discusses the design and validation of the primary and backup digital flight control systems as well as the unique pilot and specialized systems interfaces.
1995-06-01
include leachate collection systems and some form of aeration. The reactor is set up on an impermeable liner to prevent contaminant migration. Treatment...Bioremediation Microbial Mats Phytoremediation /construc- ted wetlands White Rot Fungus Full scale commercial technology for treatment of hydro...validation Phytoremediation / Constructed Wetlands Some scaled up batch demonstrations. Primarily laboratory scale. White Rot Fungus Pilot scale
Biological Treatment of Wood Preserving SITE Groundwater by Biotrol, Inc. BioTrol's pilot-scale, fixed-film biological treatment system was evaluated for its effectiveness at removing pentachlorophenol from groundwater. The system employs indigenous microorganisms amended wit...
Model-Based Extracted Water Desalination System for Carbon Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dees, Elizabeth M.; Moore, David Roger; Li, Li
Over the last 1.5 years, GE Global Research and Pennsylvania State University defined a model-based, scalable, and multi-stage extracted water desalination system that yields clean water, concentrated brine, and, optionally, salt. The team explored saline brines that ranged across the expected range for extracted water for carbon sequestration reservoirs (40,000 up to 220,000 ppm total dissolved solids, TDS). In addition, the validated the system performance at pilot scale with field-sourced water using GE’s pre-pilot and lab facilities. This project encompassed four principal tasks, in addition to Project Management and Planning: 1) identify a deep saline formation carbon sequestration site andmore » a partner that are suitable for supplying extracted water; 2) conduct a techno-economic assessment and down-selection of pre-treatment and desalination technologies to identify a cost-effective system for extracted water recovery; 3) validate the downselected processes at the lab/pre-pilot scale; and 4) define the scope of the pilot desalination project. Highlights from each task are described below: Deep saline formation characterization The deep saline formations associated with the five DOE NETL 1260 Phase 1 projects were characterized with respect to their mineralogy and formation water composition. Sources of high TDS feed water other than extracted water were explored for high TDS desalination applications, including unconventional oil and gas and seawater reverse osmosis concentrate. Technoeconomic analysis of desalination technologies Techno-economic evaluations of alternate brine concentration technologies, including humidification-dehumidification (HDH), membrane distillation (MD), forward osmosis (FO), turboexpander-freeze, solvent extraction and high pressure reverse osmosis (HPRO), were conducted. These technologies were evaluated against conventional falling film-mechanical vapor recompression (FF-MVR) as a baseline desalination process. Furthermore, a quality function deployment (QFD) method was used to compare alternate high TDS desalination technologies to FF-MVR. High pressure reverse osmosis was found to a be a promising alternative desalination technology. A deep-dive technoeconomic analysis of HPRO was performed, including Capex and Opex estimates, for seawater RO (SWRO). Additionally, two additional cases were explored: 1) a comparison of a SWRO plus HPRO system to the option of doubling the size of a standard seawater RO system to achieve the same total pure water recovery rate; and 2) a flue gas desulfurization wastewater treatment zero-liquid discharge (ZLD) application, where preconcentration with RO (SWRO or SWRO + HPRO) before evaporation and crystallization was compared to FF-MVR and crystallization technologies without RO preconcentration. Pre-pilot process validation Pre-pilot-scale tests were conducted using field production water to validate key process steps for extracted water pretreatment. Approximately 5,000 gallons of field produced water was processed through, microfiltration, ultrafiltration, and steam regenerable sorbent operations. Smaller quantities were processed through microclarification. In addition, analytical methods (purge-and-trap gas chromatography and Hach TOC analytical methods) were validated. Lab-scale HPRO elements were constructed and tested at high pressures, to identify and mitigate technical risks of the technology. Lastly, improvements in RO membrane materials were identified as the necessary next step to achieve further improvement in element performance at high pressure. Scope of Field Pilot A field pilot for extracted water pretreatment was designed.« less
Low-Complexity Polynomial Channel Estimation in Large-Scale MIMO With Arbitrary Statistics
NASA Astrophysics Data System (ADS)
Shariati, Nafiseh; Bjornson, Emil; Bengtsson, Mats; Debbah, Merouane
2014-10-01
This paper considers pilot-based channel estimation in large-scale multiple-input multiple-output (MIMO) communication systems, also known as massive MIMO, where there are hundreds of antennas at one side of the link. Motivated by the fact that computational complexity is one of the main challenges in such systems, a set of low-complexity Bayesian channel estimators, coined Polynomial ExpAnsion CHannel (PEACH) estimators, are introduced for arbitrary channel and interference statistics. While the conventional minimum mean square error (MMSE) estimator has cubic complexity in the dimension of the covariance matrices, due to an inversion operation, our proposed estimators significantly reduce this to square complexity by approximating the inverse by a L-degree matrix polynomial. The coefficients of the polynomial are optimized to minimize the mean square error (MSE) of the estimate. We show numerically that near-optimal MSEs are achieved with low polynomial degrees. We also derive the exact computational complexity of the proposed estimators, in terms of the floating-point operations (FLOPs), by which we prove that the proposed estimators outperform the conventional estimators in large-scale MIMO systems of practical dimensions while providing a reasonable MSEs. Moreover, we show that L needs not scale with the system dimensions to maintain a certain normalized MSE. By analyzing different interference scenarios, we observe that the relative MSE loss of using the low-complexity PEACH estimators is smaller in realistic scenarios with pilot contamination. On the other hand, PEACH estimators are not well suited for noise-limited scenarios with high pilot power; therefore, we also introduce the low-complexity diagonalized estimator that performs well in this regime. Finally, we ...
NASA Astrophysics Data System (ADS)
Herbert, Roger
2010-05-01
Laboratory column experiments have been conducted to determine nitrate removal rates from mine effluents by denitrification, with the purpose of providing initial data for the construction of a pilot scale reactive barrier system at the Malmberget iron mine, Sweden. Experiments were conducted at several different flow rates at 5C, 10C and room temperature; annual mean temperatures at the Malmberget site lie close to 0C. Columns were filled with an organic substrate consisting of sawdust mixed with sewage sludge, the source of denitrifying bacteria, supported by oven-dried clay pellets. Apparent denitrification rates, calculated from inflow and outflow nitrate concentrations and column hydraulic residence time, ranged from 5 to 13 mg N/L/d, with the lowest rates corresponding to the 5C experiments. These rates are, however, limited to a certain degree by the low flow rate and the supply of electrons acceptors (i.e. nitrate) to denitrifying bacteria. Results from the column experiment have been used to construct a barrier system in Malmberget, Sweden. Trial runs with the pilot-scale barrier will be conducted during 2010, with the purpose of determining the performance of the barrier as mean air temperatures increase from below to above 0C and saturated flow commences in the barrier. The barrier system is constructed as a rectangular container with steel sheet walls (9m length in flow direction, 1.5m deep), and the flow rate will be adjusted to a hydraulic residence time of 1 day. The pilot-scale barrier system currently lies above ground, but a permanent barrier system would be installed below the ground surface so that the system can be maintained at positive temperatures throughout the year.
Farré, Maria José; Maldonado, Manuel Ignacio; Gernjak, Wolfgang; Oller, Isabel; Malato, Sixto; Domènech, Xavier; Peral, José
2008-06-01
A coupled solar photo-Fenton (chemical) and biological treatment has been used to remove biorecalcitrant diuron (42 mg l(-1)) and linuron (75 mg l(-1)) herbicides from water at pilot plant scale. The chemical process has been carried out in a 82 l solar pilot plant made up by four compound parabolic collector units, and it was followed by a biological treatment performed in a 40 l sequencing batch reactor. Two Fe(II) doses (2 and 5 mg l(-1)) and sequential additions of H2O2 (20 mg l(-1)) have been used to chemically degrade the initially polluted effluent. Next, biodegradability at different oxidation states has been assessed by means of BOD/COD ratio. A reagent dose of Fe=5 mg l(-1) and H2O2=100 mg l(-1) has been required to obtain a biodegradable effluent after 100 min of irradiation time. Finally, the organic content of the photo-treated solution has been completely assimilated by a biomass consortium in the sequencing batch reactor using a total suspended solids concentration of 0.2 g l(-1) and a hydraulic retention time of 24h. Comparison between the data obtained at pilot plant scale (specially the one corresponding to the chemical step) and previously published data from a similar system performing at laboratory scale, has been carried out.
Microchannel Reactor System for Catalytic Hydrogenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adeniyi Lawal; Woo Lee; Ron Besser
2010-12-22
We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstratedmore » on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.« less
The integration of constructed wetlands into a treatment system for airport runoff.
Revitt, D M; Worral, P; Brewer, D
2001-01-01
A new surface runoff treatment system has been designed for London Heathrow Airport, which incorporates separate floating constructed wetlands or reedbeds and sub-surface flow constructed wetlands as major pollutant removal systems. The primary requirement of the newly developed treatment system is to control the concentrations of glycols following their use as de-icers and anti-icers within the airport. The ability of reedbeds to contribute to this treatment role was fully tested through pilot scale, on-site experiments over a 2 year period. The average reductions in runoff BOD concentrations achieved by pilot scale surface flow and sub-surface flow reedbeds were 30.9% and 32.9%, respectively. The corresponding average glycol removal efficiencies were 54.2% and 78.3%, following shock dosing inputs. These treatment performances are used to predict the required full scale constructed wetland surface areas needed to attain the desired effluent water quality. The treatment system also incorporates aeration, storage and, combined with reedbed technology, has been designed to reduce a mixed inlet BOD concentration of 240 mg/l to less than 40 mg/l for water temperatures varying between 6 degrees C and 20 degrees C.
A specific pilot-scale membrane hybrid treatment system for municipal wastewater treatment.
Nguyen, Dinh Duc; Ngo, Huu Hao; Kim, Sa Dong; Yoon, Yong Soo
2014-10-01
A specifically designed pilot-scale hybrid wastewater treatment system integrating an innovative equalizing reactor (EQ), rotating hanging media bioreactor (RHMBR) and submerged flat sheet membrane bioreactor (SMBR) was evaluated for its effectiveness in practical, long-term, real-world applications. The pilot system was operated at a constant flux, but with different internal recycle flow rates (Q) over a long-term operating of 475 days. At 4 Q internal recycle flow rate, BOD5, CODCr, NH4(+)-N, T-N, T-P and TSS was highly removed with efficiencies up to 99.88 ± 0.05%, 95.01 ± 1.62%, 100%, 90.42 ± 2.43%, 73.44 ± 6.03%, and 99.93 ± 0.28%, respectively. Furthermore, the effluent quality was also superior in terms of turbidity (<1 NTU), color (<15 TCU) and taste (inoffensive). The results indicated that with providing only chemically cleaned-in-place (CIP) during the entire period of operation, the membrane could continuously maintain a constant permeate flux of 22.77 ± 2.19 L/m(2)h. In addition, the power consumption was also found to be reasonably low (0.92-1.62 k Wh/m(3)). Copyright © 2014 Elsevier Ltd. All rights reserved.
Thermal Destruction Of CB Contaminants Bound On Building ...
Symposium Paper An experimental and theoretical program has been initiated by the U.S. EPA to investigate issues of chemical/biological agent destruction in incineration systems when the agent in question is bound on common porous building interior materials. This program includes 3-dimensional computational fluid dynamics modeling with matrix-bound agent destruction kinetics, bench-scale experiments to determine agent destruction kinetics while bound on various matrices, and pilot-scale experiments to scale-up the bench-scale experiments to a more practical scale. Finally, model predictions are made to predict agent destruction and combustion conditions in two full-scale incineration systems that are typical of modern combustor design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S. L.
1998-08-25
Fluid Catalytic Cracking (FCC) technology is the most important process used by the refinery industry to convert crude oil to valuable lighter products such as gasoline. Process development is generally very time consuming especially when a small pilot unit is being scaled-up to a large commercial unit because of the lack of information to aide in the design of scaled-up units. Such information can now be obtained by analysis based on the pilot scale measurements and computer simulation that includes controlling physics of the FCC system. A Computational fluid dynamic (CFD) code, ICRKFLO, has been developed at Argonne National Laboratorymore » (ANL) and has been successfully applied to the simulation of catalytic petroleum cracking risers. It employs hybrid hydrodynamic-chemical kinetic coupling techniques, enabling the analysis of an FCC unit with complex chemical reaction sets containing tens or hundreds of subspecies. The code has been continuously validated based on pilot-scale experimental data. It is now being used to investigate the effects of scaled-up FCC units. Among FCC operating conditions, the feed injection conditions are found to have a strong impact on the product yields of scaled-up FCC units. The feed injection conditions appear to affect flow and heat transfer patterns and the interaction of hydrodynamics and cracking kinetics causes the product yields to change accordingly.« less
Conceptual design of a lunar oxygen pilot plant Lunar Base Systems Study (LBSS) task 4.2
NASA Technical Reports Server (NTRS)
1988-01-01
The primary objective was to develop conceptual designs of two pilot plants to produce oxygen from lunar materials. A lunar pilot plant will be used to generate engineering data necessary to support an optimum design of a larger scale production plant. Lunar oxygen would be of primary value as spacecraft propellant oxidizer. In addition, lunar oxygen would be useful for servicing nonregenerative fuel cell power systems, providing requirements for life support, and to make up oxygen losses from leakage and airlock cycling. Thirteen different lunar oxygen production methods are described. Hydrogen reduction of ilmenite and extraction of solar-wind hydrogen from bulk lunar soil were selected for conceptual design studies. Trades and sensitivity analyses were performed with these models.
The paper reports on a study to evaluate organic combustion by-product emissions while feeding varying amounts of bromine (Br) and chlorine (Cl) into a pilot-scale incinerator burning surrogate waste materials. (NOTE: Adding brominated organic compounds to a pilot-scale incinerat...
The performance of pilot-scale bioslurry treatment on creosote-contaminated soil was evaluated. Five reactors containing 66 L of slurry (30% soil by weight), were operated in parallel. The soil was a sandy soil with minor gravel content. The pilot-scale phase utilized an inoculum...
Mansikka, Heikki; Virtanen, Kai; Harris, Don
2018-04-30
The sensitivity of NASA-TLX scale, modified Cooper-Harper (MCH) scale and the mean inter-beat interval (IBI) of successive heart beats, as measures of pilot mental workload (MWL), were evaluated in a flight training device (FTD). Operational F/A-18C pilots flew instrument approaches with varying task loads. Pilots' performance, subjective MWL ratings and IBI were measured. Based on the pilots' performance, three performance categories were formed; high-, medium- and low-performance. Values of the subjective rating scales and IBI were compared between categories. It was found that all measures were able to differentiate most task conditions and there was a strong, positive correlation between NASA-TLX and MCH scale. An explicit link between IBI, NASA-TLX, MCH and performance was demonstrated. While NASA-TLX, MCH and IBI have all been previously used to measure MWL, this study is the first one to investigate their association in a modern FTD, using a realistic flying mission and operational pilots.
Predictor Development and Pilot Testing of a Prototype Selection Instrument for Army Flight Training
2007-02-01
called the Automated Pilot Examination System, or "APEX") during the preliminary validation reserach . The current version of the ASTB includes subtests...of objects in three-dimensional space . Aviation & Nautical Information: items assess an examinee’s familiarity with aviation history, nautical...proficiency. Aviation, Space and Environmental Medicine, 46, 309-311. Daryanian, B. (1980). Subjective scaling of mental workload in a multi-task environment
Zhao, Yonggui; Fang, Yang; Jin, Yanling; Huang, Jun; Ma, Xinrong; He, Kaize; He, Zhiming; Wang, Feng; Zhao, Hai
2015-03-01
Carriers were added to a pilot-scale duckweed-based (Lemna japonica 0223) wastewater treatment system to immobilize and enhance microorganisms. This system and another parallel duckweed system without carriers were operated for 1.5 years. The results indicated the addition of the carrier did not significantly affect the growth and composition of duckweed, the recovery of total nitrogen (TN), total phosphorus (TP) and CO2 or the removal of TP. However, it significantly improved the removal efficiency of TN and NH4(+)-N (by 19.97% and 15.02%, respectively). The use of 454 pyrosequencing revealed large differences of the microbial communities between the different components within a system and similarities within the same components between the two systems. The carrier biofilm had the highest bacterial diversity and relative abundance of nitrifying bacteria (3%) and denitrifying bacteria (24% of Rhodocyclaceae), which improved nitrogen removal of the system. An efficient N-removal duckweed system with enhanced microorganisms was established. Copyright © 2014 Elsevier Ltd. All rights reserved.
IRAC Full-Scale Flight Testbed Capabilities
NASA Technical Reports Server (NTRS)
Lee, James A.; Pahle, Joseph; Cogan, Bruce R.; Hanson, Curtis E.; Bosworth, John T.
2009-01-01
Overview: Provide validation of adaptive control law concepts through full scale flight evaluation in a representative avionics architecture. Develop an understanding of aircraft dynamics of current vehicles in damaged and upset conditions Real-world conditions include: a) Turbulence, sensor noise, feedback biases; and b) Coupling between pilot and adaptive system. Simulated damage includes 1) "B" matrix (surface) failures; and 2) "A" matrix failures. Evaluate robustness of control systems to anticipated and unanticipated failures.
RECYCLING NICKEL ELECTROPLATING RINSE WATERS BY LOW TEMPERATURE EVAPORATION AND REVERSE OSMOSIS
Low temperature evaporation and reverse osmosis systems were each evaluated (on a pilot scale) on their respective ability to process rinse water collected from a nickel electroplating operation. Each system offered advantages under specific operating conditions. The low temperat...
EPA SITE DEMONSTRATION OF BIOTROL AQUEOUS TREATMENT SYSTEM.
BioTrol's pilot scale, fixed-film biological system wa evaluated, under the EPA's SITE program, for its effectiveness at removing pentachlorophenol from groundwater. The demonstration wasa performed in the summer of 1989 at a wood preserving site in New Brighton, Minnesota. The ...
A bench-scale evaluation of the reuse of water at highway rest areas.
DOT National Transportation Integrated Search
1975-01-01
A pilot laboratory treatment system was successfully employed to investigate the reuse of wastewater for flushing toilets at highway rest areas. This extended aeration unit used a synthetic waste to determine if the biological system could operate ef...
ERIC Educational Resources Information Center
Enns, Lionel
2012-01-01
This study examined the correlations between two prominent family child care environmental rating scales, the Family Child Care Environment Rating Scale - Revised (FCCERS-R) and the "Combined" Classroom Assessment Scoring System ("Combined" CLASS), both of which were used during the pilot study of Washington State's Quality…
Chen, Chih-Yu; Kuo, Jong-Tar; Chung, Ying-Chien
2013-01-01
The use of matured compost as an inoculation agent to improve the composting of vegetable and fruit wastes in a laboratory-scale composter was evaluated, and the commercial feasibility of this approach in a pilot-scale (1.8 x 10(4) L) composter was subsequently confirmed. The effect of aeration rate on the physico-chemical and biological properties of compost was also studied. Aeration rate affected the fermentation temperature, moisture content, pH, O2 consumption rate, CO2 production rate and the formation of odour. The optimal aeration rate was 2.5 L air/kg dry solid/min. The CO2 production rate approached the theoretical value during composting and was linearly dependent on temperature, indicating that the compost system had good operating characteristics. The inoculation of cellulolytic bacteria and deodorizing bacteria to compost in the pilot-scale composter led to an 18.2% volatile solids loss and a 64.3% volume reduction ratio in 52 h; only 1.5 ppm(v) odour was detected. This is the first study to focus on both operating performance and odour removal in a pilot-scale composter.
Ma, Huaji; Zhang, Shuting; Lu, Xuebin; Xi, Bo; Guo, Xingli; Wang, Han; Duan, Jingxiao
2012-07-01
A pilot-scale lysis-cryptic growth system was built and operated continuously for excess sludge reduction. Combined ultrasonic/alkaline disintegration and hydrolysis/acidogenesis were integrated into its sludge pretreatment system. Continuous operation showed that the observed biomass yield and the sludge reduction efficiency of the lysis-cryptic growth system were 0.27 kg VSS/kg COD consumed and 56.5%, respectively. The water quality of its effluent was satisfactory. The sludge pretreatment system performed well and its TCOD removal efficiency was 7.9% which contributed a sludge reduction efficiency of 2.1%. The SCOD, VFA, TN, NH(4)(+)-N, TP and pH in the supernatant of pretreated sludge were 1790 mg/L, 1530 mg COD/L, 261.1mg/L, 114.0mg/L, 93.1mg/L and 8.69, respectively. The total operation cost of the lysis-cryptic growth system was $ 0.186/m(3) wastewater, which was 11.4% less than that of conventional activated sludge (CAS) system without excess sludge pretreatment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nitrous oxide emissions from one-step partial nitritation/anammox processes.
Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta
2016-12-01
Measurements of nitrous oxide were made at pilot- and full-scale plants to evaluate greenhouse gas emissions from one-step partial nitritation/anammox processes applied in moving bed biofilm reactors treating reject water. It was found that 0.51-1.29% and 0.35-1.33% of the total nitrogen loads in the pilot- and full-scale reactor, respectively, were emitted as nitrous oxide. Between 80 and 90% of nitrous oxide emissions were in gaseous form and the rest amount was found in the reactor effluent; over 90% of nitrous oxide emissions occurred in the aerated period and less than 8% in the non-aerated period in the full-scale study. Nitrous oxide productions/consumptions were closely related to aeration and the nitrogen loads applied in the system.
NASA Astrophysics Data System (ADS)
1980-11-01
The Magma Cooling Tower (MCT) process utilizes a falling film heat exchanger integrated into an induced draft cooling tower to evaporate waste water. A hot water source such as return cooling water provides the energy for evaporation. Water quality control is maintained by removing potential scaling constituents to make concentrations of the waste water possible without scaling heat transfer surfaces. A pilot-scale demonstration test of the MCT process was performed from March 1979 through June 1979 at Nevada Power Company's Sunrise Station in Las Vegas, Nevada. The pilot unit extracted heat from the powerplant cooling system to evaporate cooling tower blowdown. Two water quality control methods were employed: makeup/sidestream softening and fluidized bed crystallization. The 11 week softening mode test was successful.
PILOT-SCALE EVALUATION OF AN INCINERABILITY RANKING SYSTEM FOR HAZARDOUS ORGANIC COMPOUNDS
The subject study was conducted to evaluate an incinerability ranking system developed by teh University of Dayton Research Institute under contract to the EPA Risk Reduction Engineering Laboratory. Fixtures of organic compounds were prepared and combined with a clay-based sorben...
Simulation System Fidelity Assessment at the Vertical Motion Simulator
NASA Technical Reports Server (NTRS)
Beard, Steven D.; Reardon, Scott E.; Tobias, Eric L.; Aponso, Bimal L.
2013-01-01
Fidelity is a word that is often used but rarely understood when talking about groundbased simulation. Assessing the cueing fidelity of a ground based flight simulator requires a comparison to actual flight data either directly or indirectly. Two experiments were conducted at the Vertical Motion Simulator using the GenHel UH-60A Black Hawk helicopter math model that was directly compared to flight data. Prior to the experiment the simulator s motion and visual system frequency responses were measured, the aircraft math model was adjusted to account for the simulator motion system delays, and the motion system gains and washouts were tuned for the individual tasks. The tuned motion system fidelity was then assessed against the modified Sinacori criteria. The first experiments showed similar handling qualities ratings (HQRs) to actual flight for a bob-up and sidestep maneuvers. The second experiment showed equivalent HQRs between flight and simulation for the ADS33 slalom maneuver for the two pilot participants. The ADS33 vertical maneuver HQRs were mixed with one pilot rating the flight and simulation the same while the second pilot rated the simulation worse. In addition to recording HQRs on the second experiment, an experimental Simulation Fidelity Rating (SFR) scale developed by the University of Liverpool was tested for applicability to engineering simulators. A discussion of the SFR scale for use on the Vertical Motion Simulator is included in this paper.
PILOT-SCALE REMOVAL OF FLUORIDE FROM LEGACY PLUTONIUM MATERIALS USING VACUUM SALT DISTILLATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, R. A.; Pak, D. J.
2012-09-11
Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. In 2011, SRNL adapted the technology for the removal of fluoride from fluoride-bearing salts. The method involved an in situ reaction between potassium hydroxide (KOH) and the fluoride salt to yield potassium fluoride (KF) and the corresponding oxide. The KF and excess KOH can be distilled below 1000{deg}C using vacuum salt distillation (VSD). The apparatus for vacuum distillation contains a zone heated by a furnace and a zone actively cooled using eithermore » recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attaned, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile material in the feed boat. Studies discussed in this report were performed involving the use of non-radioactive simulants in small-scale and pilot-scale systems as well as radioactive testing of a small-scale system with plutonium-bearing materials. Aspects of interest include removable liner design considerations, boat materials, in-line moisture absorption, and salt deposition.« less
Awoonor-Williams, John Koku; Schmitt, Margaret L; Tiah, Janet; Ndago, Joyce; Asuru, Rofina; Bawah, Ayaga A; Phillips, James F
2016-01-01
In 2010, the Ghana Health Service launched a program of cooperation with the Tanzania Ministry of Health and Social Welfare that was designed to adapt Tanzania's PLANREP budgeting and reporting tool to Ghana's primary health care program. The product of this collaboration is a system of budgeting, data visualization, and reporting that is known as the District Health Planning and Reporting Tool (DiHPART). This study was conducted to evaluate the design and implementation processes (technical, procedures, feedback, maintenance, and monitoring) of the DiHPART tool in northern Ghana. This paper reports on a qualitative appraisal of user reactions to the DiHPART system and implications of pilot experience for national scale-up. A total of 20 health officials responsible for financial planning operations were drawn from the national, regional, and district levels of the health system and interviewed in open-ended discussions about their reactions to DiHPART and suggestions for systems development. The findings show that technical shortcomings merit correction before scale-up can proceed. The review makes note of features of the software system that could be developed, based on experience gained from the pilot. Changes in the national system of financial reporting and budgeting complicate DiHPART utilization. This attests to the importance of pursuing a software application framework that anticipates the need for automated software generation. Despite challenges encountered in the pilot, the results lend support to the notion that evidence-based budgeting merits development and implementation in Ghana.
NASA Technical Reports Server (NTRS)
Stewart, E. C.; Brown, P. W.; Yenni, K. R.
1986-01-01
A simulation study was conducted to investigate the piloting problems associated with failure of an engine on a generic light twin-engine airplane. A primary piloting problem for a light twin-engine airplane after an engine failure is maintaining precise control of the airplane in the presence of large steady control forces. To address this problem, a simulated automatic trim system which drives the trim tabs as an open-loop function of propeller slipstream measurements was developed. The simulated automatic trim system was found to greatly increase the controllability in asymmetric powered flight without having to resort to complex control laws or an irreversible control system. However, the trim-tab control rates needed to produce the dramatic increase in controllability may require special design consideration for automatic trim system failures. Limited measurements obtained in full-scale flight tests confirmed the fundamental validity of the proposed control law.
Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale.
Oller, I; Gernjak, W; Maldonado, M I; Pérez-Estrada, L A; Sánchez-Pérez, J A; Malato, S
2006-12-01
The technical feasibility and performance of photocatalytic degradation of six water-soluble pesticides (cymoxanil, methomyl, oxamyl, dimethoate, pyrimethanil and telone) have been studied at pilot-plant scale in two well-defined systems which are of special interest because natural solar UV light can be used: heterogeneous photocatalysis with titanium dioxide and homogeneous photocatalysis by photo-Fenton. TiO(2) photocatalysis tests were performed in a 35L solar pilot plant with three Compound Parabolic Collectors (CPCs) under natural illumination and a 75L solar pilot plant with four CPC units was used for homogeneous photocatalysis tests. The initial pesticide concentration studied was 50 mg L(-1) and the catalyst concentrations employed were 200 mg L(-1) of TiO(2) and 20 mg L(-1) of iron. Both toxicity (Vibrio fischeri, Biofix) and biodegradability (Zahn-Wellens test) of the initial pesticide solutions were also measured. Total disappearance of the parent compounds and nearly complete mineralization were attained with all pesticides tested. Treatment time, hydrogen peroxide consumption and release of heteroatoms are discussed.
Regan, John M; Harrington, Gregory W; Noguera, Daniel R
2002-01-01
Nitrification in drinking water distribution systems is a common operational problem for many utilities that use chloramines for secondary disinfection. The diversity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the distribution systems of a pilot-scale chloraminated drinking water treatment system was characterized using terminal restriction fragment length polymorphism (T-RFLP) analysis and 16S rRNA gene (ribosomal DNA [rDNA]) cloning and sequencing. For ammonia oxidizers, 16S rDNA-targeted T-RFLP indicated the presence of Nitrosomonas in each of the distribution systems, with a considerably smaller peak attributable to Nitrosospira-like AOB. Sequences of AOB amplification products aligned within the Nitrosomonas oligotropha cluster and were closely related to N. oligotropha and Nitrosomonas ureae. The nitrite-oxidizing communities were comprised primarily of Nitrospira, although Nitrobacter was detected in some samples. These results suggest a possible selection of AOB related to N. oligotropha and N. ureae in chloraminated systems and demonstrate the presence of NOB, indicating a biological mechanism for nitrite loss that contributes to a reduction in nitrite-associated chloramine decay.
Regan, John M.; Harrington, Gregory W.; Noguera, Daniel R.
2002-01-01
Nitrification in drinking water distribution systems is a common operational problem for many utilities that use chloramines for secondary disinfection. The diversity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the distribution systems of a pilot-scale chloraminated drinking water treatment system was characterized using terminal restriction fragment length polymorphism (T-RFLP) analysis and 16S rRNA gene (ribosomal DNA [rDNA]) cloning and sequencing. For ammonia oxidizers, 16S rDNA-targeted T-RFLP indicated the presence of Nitrosomonas in each of the distribution systems, with a considerably smaller peak attributable to Nitrosospira-like AOB. Sequences of AOB amplification products aligned within the Nitrosomonas oligotropha cluster and were closely related to N. oligotropha and Nitrosomonas ureae. The nitrite-oxidizing communities were comprised primarily of Nitrospira, although Nitrobacter was detected in some samples. These results suggest a possible selection of AOB related to N. oligotropha and N. ureae in chloraminated systems and demonstrate the presence of NOB, indicating a biological mechanism for nitrite loss that contributes to a reduction in nitrite-associated chloramine decay. PMID:11772611
Pilot of a mobile money school fee payment system in rural Benin.
Adida, Claire L; Chabi Bouko, Adam; Verink, Alex; Chockalingam, Ganz; Burney, Jennifer
2018-01-01
We present a rationale for, and results from, the pilot of a direct individual-to-institution remittance system in the context of school fee payment in rural Benin. Data confirm that school fees act as an impediment to educational attainment, and in very rural poor settings such as northern Benin, students often depend on extended family and kinship networks to pay fees. But existing remittance options are costly, in terms of fees, time, and risk. We pilot a new technology bundle in a single public high school in northeastern Benin, and evaluate its effectiveness. Here we describe the technical and institutional implementation of the project, as well as our findings from the first year of operation. We discuss takeaways and implications for scale-up.
Pilot of a mobile money school fee payment system in rural Benin
Chabi Bouko, Adam; Verink, Alex; Chockalingam, Ganz; Burney, Jennifer
2018-01-01
We present a rationale for, and results from, the pilot of a direct individual-to-institution remittance system in the context of school fee payment in rural Benin. Data confirm that school fees act as an impediment to educational attainment, and in very rural poor settings such as northern Benin, students often depend on extended family and kinship networks to pay fees. But existing remittance options are costly, in terms of fees, time, and risk. We pilot a new technology bundle in a single public high school in northeastern Benin, and evaluate its effectiveness. Here we describe the technical and institutional implementation of the project, as well as our findings from the first year of operation. We discuss takeaways and implications for scale-up. PMID:29889839
Flow characteristics of a pilot-scale high temperature, short time pasteurizer.
Tomasula, P M; Kozempel, M F
2004-09-01
In this study, we present a method for determining the fastest moving particle (FMP) and residence time distribution (RTD) in a pilot-scale high temperature, short time (HTST) pasteurizer to ensure that laboratory or pilot-scale HTST apparatus meets the Pasteurized Milk Ordinance standards for pasteurization of milk and can be used for obtaining thermal inactivation data. The overall dimensions of the plate in the pasteurizer were 75 x 115 mm, with a thickness of 0.5 mm and effective diameter of 3.0 mm. The pasteurizer was equipped with nominal 21.5- and 52.2-s hold tubes, and flow capacity was variable from 0 to 20 L/h. Tracer studies were used to determine FMP times and RTD data to establish flow characteristics. Using brine milk as tracer, the FMP time for the short holding section was 18.6 s and for the long holding section was 36 s at 72 degrees C, compared with the nominal times of 21.5 and 52.2 s, respectively. The RTD study indicates that the short hold section was 45% back mixed and 55% plug flow for whole milk at 72 degrees C. The long hold section was 91% plug and 9% back mixed for whole milk at 72 degrees C. This study demonstrates that continuous laboratory and pilot-scale pasteurizers may be used to study inactivation of microorganisms only if the flow conditions in the holding tube are established for comparison with commercial HTST systems.
Miklos, David B; Hartl, Rebecca; Michel, Philipp; Linden, Karl G; Drewes, Jörg E; Hübner, Uwe
2018-06-01
This study investigated the removal of 15 trace organic chemicals (TOrCs) occurring at ambient concentrations from municipal wastewater treatment plant effluent by advanced oxidation using UV/H 2 O 2 at pilot-scale. Pseudo first-order rate constants (k obs ) for photolytic as well as combined oxidative and photolytic degradation observed at pilot-scale were validated with results from a bench-scale collimated beam device. No significant difference was determined between pilot- and lab-scale performance. During continuous pilot-scale operation at constant UV fluence of 800 mJ/cm 2 and H 2 O 2 dosage of 10 mg/L, the removal of various TOrCs was investigated. The average observed removal for photo-susceptible (k UV >10 -3 cm 2 /mJ; like diclofenac, iopromide and sulfamethoxazole), moderately photo-susceptible (10 -4
DOE Office of Scientific and Technical Information (OSTI.GOV)
DWYER,BRIAN P.
2000-01-01
Three reactive materials were evaluated at laboratory scale to identify the optimum treatment reagent for use in a Permeable Reactive Barrier Treatment System at Rocky Flats Environmental Technology Site (RFETS). The contaminants of concern (COCS) are uranium, TCE, PCE, carbon tetrachloride, americium, and vinyl chloride. The three reactive media evaluated included high carbon steel iron filings, an iron-silica alloy in the form of a foam aggregate, and a peculiar humic acid based sorbent (Humasorb from Arctech) mixed with sand. Each material was tested in the laboratory at column scale using simulated site water. All three materials showed promise for themore » 903 Mound Site however, the iron filings were determined to be the least expensive media. In order to validate the laboratory results, the iron filings were further tested at a pilot scale (field columns) using actual site water. Pilot test results were similar to laboratory results; consequently, the iron filings were chosen for the fill-scale demonstration of the reactive barrier technology. Additional design parameters including saturated hydraulic conductivity, treatment residence time, and head loss across the media were also determined and provided to the design team in support of the final design. The final design was completed by the Corps of Engineers in 1997 and the system was constructed in the summer of 1998. The treatment system began fill operation in December, 1998 and despite a few problems has been operational since. Results to date are consistent with the lab and pilot scale findings, i.e., complete removal of the contaminants of concern (COCs) prior to discharge to meet RFETS cleanup requirements. Furthermore, it is fair to say at this point in time that laboratory developed design parameters for the reactive barrier technology are sufficient for fuel scale design; however,the treatment system longevity and the long-term fate of the contaminants are questions that remain unanswered. This project along with others such as the Durango, CO and Monticello, UT reactive barriers will provide the data to determine the long-term effectiveness and return on investment (ROI) for this technology for comparison to the baseline pump and treat.« less
Hopewell Beneficial CO2 Capture for Production of Fuels, Fertilizer and Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
UOP; Honeywell Resins & Chemicals; Honeywell Process Solutions
2010-09-30
For Phase 1 of this project, the Hopewell team developed a detailed design for the Small Scale Pilot-Scale Algal CO2 Sequestration System. This pilot consisted of six (6) x 135 gallon cultivation tanks including systems for CO2 delivery and control, algal cultivation, and algal harvesting. A feed tank supplied Hopewell wastewater to the tanks and a receiver tank collected the effluent from the algal cultivation system. The effect of environmental parameters and nutrient loading on CO2 uptake and sequestration into biomass were determined. Additionally the cost of capturing CO2 from an industrial stack emission at both pilot and full-scale wasmore » determined. The engineering estimate evaluated Amine Guard technology for capture of pure CO2 and direct stack gas capture and compression. The study concluded that Amine Guard technology has lower lifecycle cost at commercial scale, although the cost of direct stack gas capture is lower at the pilot scale. Experiments conducted under high concentrations of dissolved CO2 did not demonstrate enhanced algae growth rate. This result suggests that the dissolved CO2 concentration at neutral pH was already above the limiting value. Even though dissolved CO2 did not show a positive effect on biomass growth, controlling its value at a constant set-point during daylight hours can be beneficial in an algae cultivation stage with high algae biomass concentration to maximize the rate of CO2 uptake. The limited enhancement of algal growth by CO2 addition to Hopewell wastewater was due at least in part to the high endogenous CO2 evolution from bacterial degradation of dissolved organic carbon present at high levels in the wastewater. It was found that the high level of bacterial activity was somewhat inhibitory to algal growth in the Hopewell wastewater. The project demonstrated that the Honeywell automation and control system, in combination with the accuracy of the online pH, dissolved O2, dissolved CO2, turbidity, Chlorophyll A and conductivity sensors is suitable for process control of algae cultivation in an open pond systems. This project concluded that the Hopewell wastewater is very suitable for algal cultivation but the potential for significant CO2 sequestration from the plant stack gas emissions was minimal due to the high endogenous CO2 generation in the wastewater from the organic wastewater content. Algae cultivation was found to be promising, however, for nitrogen remediation in the Hopewell wastewater.« less
Numerical Modeling of STARx for Ex Situ Soil Remediation
NASA Astrophysics Data System (ADS)
Gerhard, J.; Solinger, R. L.; Grant, G.; Scholes, G.
2016-12-01
Growing stockpiles of contaminated soils contaminated with petroleum hydrocarbons are an outstanding problem worldwide. Self-sustaining Treatment for Active Remediation (STAR) is an emerging technology based on smouldering combustion that has been successfully deployed for in situ remediation. STAR has also been developed for ex situ applications (STARx). This work used a two-dimensional numerical model to systematically explore the sensitivity of ex situ remedial performance to key design and operational parameters. First the model was calibrated and validated against pilot scale experiments, providing confidence that the rate and extent of treatment were correctly predicted. Simulations then investigated sensitivity of remedial performance to injected air flux, contaminant saturation, system configuration, heterogeneity of intrinsic permeability, heterogeneity of contaminant saturation, and system scale. Remedial performance was predicted to be most sensitive to the injected air flux, with higher air fluxes achieving higher treatment rates and remediating larger fractions of the initial contaminant mass. The uniformity of the advancing smouldering front was predicted to be highly dependent on effective permeability contrasts between treated and untreated sections of the contaminant pack. As a result, increased heterogeneity (of intrinsic permeability in particular) is predicted to lower remedial performance. Full-scale systems were predicted to achieve treatment rates an order of magnitude higher than the pilot scale for similar contaminant saturation and injected air flux. This work contributed to the large scale STARx treatment system that is being tested at a field site in Fall 2016.
Renewable Energy in China: Xiao Qing Dao Village Power Wind/Diesel Hybrid Pilot Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2006-01-01
In 2000, DOE/NREL and the State Power Corporation of China (SPCC) developed a pilot project to electrify Xiao Qing Dao, a small island located in China's Yellow Sea. The project demonstrates the practicality of renewable energy systems for medium-scale, off-grid applications. It consists of four 10 k-W wind turbines connected to a 30-kW diesel generator, a 40-kW inverter and a battery bank.
1993-12-01
Evaluation of Increased Payloads 6 3.2 Microencapsulation Scale-up of Pilot DNBM 10 4 SURFACE TREATMENT OF MICROCAPSULES 11 4.1 Fumed Silica Additions to... Microencapsulated DNBM b. Fumed-Silica Mixed Microcapsules C. Solvent-Extracted Silanized Microcapsules Fig. 8 SEM Photomicrographs of Pilot-DNBM... Microcapsules 18 NAWCADWAR-94128-60 Section 5 FORMULATION AND TEST OF 100% DNBM AND MICROENCAPSULATED DNBM IN EPOXY-POLYAMIDE PRIMER At the start of the
Huang, Xiangfeng; Mu, Tianshuai; Shen, Changming; Lu, Lijun; Liu, Jia
2016-12-01
Volatile fatty acid (VFA) production stimulated by saponin (SP), an environmentally friendly bio-surfactant, was investigated during sludge alkaline fermentation in laboratory studies and pilot applications. The combined use of SP and pH 9 condition significantly enhanced VFA production to approximately 425 mg COD/g VSS, which was 4.7-fold of raw sludge and 1.5-fold of sole pH 10 adjustment (the optimum pH for alkaline fermentation). Further results indicated that SP & pH 9 condition provided sufficient substrates for acidification and decreased the consumption of VFAs through methanogenesis. Moreover, SP accompanied by moderate alkaline condition (i.e. pH 9) showed weaker inhibitory effects on key enzyme activities and metabolic potential of acidification microorganisms than sole pH 10 adjustment. On this basis, a pilot-scale system involving anaerobic fermentation and anaerobic-anoxic-aerobic step-feed bioreaction tanks was established to study the potential of VFAs as supplementary carbon sources for wastewater treatment. The influent of the pilot system was sanitary wastewater characterized by low C/N ratios from a scenic rural area. After flocculation and nutrient precipitation, the fermentation supernatant was mixed with the influent at a volume ratio of 1:30. With this approach, nitrogen and phosphorus concentrations in effluent fulfilled the first-A wastewater discharge standard in China.
Stokke, Jennifer M; Mazyck, David W
2008-04-01
The release of mercury to the environment is of particular concern because of its volatility, persistence, and tendency to bioaccumulate. The recovery of mercury from end-box exhaust at chlor-alkali facilities is important to prevent release into the environment and reduce emissions as required by NESHAP (National Emission Standards for Hazardous Air Pollutants). A pilot-scale photocatalytic reactor packed with silica-titania composite (STC) pellets was tested at a chloralkali facility over a 3-month period. This pilot reactor treated up to 10 ft3/min (ACFM) of end-box exhaust and achieved 95% removal. The pilot reactor was able to maintain excellent removal efficiency even with large fluctuations in influent mercury concentration (400-1600 microg/ft3). The STC pellets were regenerated ex situ by regeneration with hydrochloric acid and performed similarly to virgin STC pellets when returned to service. On the basis of these promising results, two full-scale reactors with in situ regeneration capabilities were installed and operated. After optimization, these reactors performed similarly to the pilot reactor. A cost analysis was performed comparing the treatment costs (i.e., cost per pound of mercury removed) for sulfur-impregnated activated carbon and the STC system. The STC proved to be both technologically and economically feasible for this installation.
This report provides the in-depth data analysis from the SITE Program's six-week demonstration of BioTrol's Aqueous Treatment System (BATS) at the MacGillis and Gibbs Company wood treatment facility in New Brighton, Minnesota. he pilot scale (5gpm), fixed-film biological system u...
It is well known that model-building of chlorine decay in real water distribution systems is difficult because chlorine decay is influenced by many factors (e.g., bulk water demand, pipe-wall demand, piping material, flow velocity, and residence time). In this paper, experiments ...
Dausman, Alyssa M.; Doherty, John; Langevin, Christian D.
2010-01-01
Pilot points for parameter estimation were creatively used to address heterogeneity at both the well field and regional scales in a variable-density groundwater flow and solute transport model designed to test multiple hypotheses for upward migration of fresh effluent injected into a highly transmissive saline carbonate aquifer. Two sets of pilot points were used within in multiple model layers, with one set of inner pilot points (totaling 158) having high spatial density to represent hydraulic conductivity at the site, while a second set of outer points (totaling 36) of lower spatial density was used to represent hydraulic conductivity further from the site. Use of a lower spatial density outside the site allowed (1) the total number of pilot points to be reduced while maintaining flexibility to accommodate heterogeneity at different scales, and (2) development of a model with greater areal extent in order to simulate proper boundary conditions that have a limited effect on the area of interest. The parameters associated with the inner pilot points were log transformed hydraulic conductivity multipliers of the conductivity field obtained by interpolation from outer pilot points. The use of this dual inner-outer scale parameterization (with inner parameters constituting multipliers for outer parameters) allowed smooth transition of hydraulic conductivity from the site scale, where greater spatial variability of hydraulic properties exists, to the regional scale where less spatial variability was necessary for model calibration. While the model is highly parameterized to accommodate potential aquifer heterogeneity, the total number of pilot points is kept at a minimum to enable reasonable calibration run times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, W.; Joss, C.J.; Martino, L.E.
Approximately 10,000 gal of spilled gasoline and unknown amounts Of trichloroethylene and benzene were discovered at the US Army`s Cameron Station facility. Because the base is to be closed and turned over to the city of Alexandria in 1995, the Army sought the most rapid and cost-effective means of spill remediation. At the request of the Baltimore District of the US Army Corps of Engineers, Argonne conducted a pilot-scale study to determine the feasibility of vapor extraction and bioventing for resolving remediation problems and to critique a private firm`s vapor-extraction design. Argonne staff, working with academic and private-sector participants, designedmore » and implemented a new systems approach to sampling, analysis and risk assessment. The US Geological Survey`s AIRFLOW model was adapted for the study to simulate the performance of possible remediation designs. A commercial vapor-extraction machine was used to remove nearly 500 gal of gasoline from Argonne-installed horizontal wells. By incorporating numerous design comments from the Argonne project team, field personnel improved the system`s performance. Argonne staff also determined that bioventing stimulated indigenous bacteria to bioremediate the gasoline spin. The Corps of Engineers will use Argonne`s pilot-study approach to evaluate remediation systems at field operation sites in several states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaminski, Michael
The Irreversible Wash Aid Additive process has been under development by the U.S. Environmental Protection Agency (EPA) and Argonne National Laboratory (Argonne). This process for radioactive cesium mitigation consists of a solution to wash down contaminated structures, roadways, and vehicles and a sequestering agent to bind the radionuclides from the wash water and render them environmentally immobile. The purpose of this process is to restore functionality to basic services and immediately reduce the consequences of a radiologically-contaminated urban environment. Research and development have resulted in a down-selection of technologies for integration and demonstration at the pilot-scale level as part ofmore » the Wide Area Recovery and Resiliency Program (WARRP) under the Department of Homeland Security and the Denver Urban Area Security Initiative. As part of developing the methods for performing a pilot-scale demonstration at the WARRP conference in Denver in 2012, Argonne conducted small-scale field experiments at Separmatic Systems. The main purpose of these experiments was to refine the wash water collection and separations systems and demonstrate key unit operations to help in planning for the large scale demonstration in Denver. Since the purpose of these tests was to demonstrate the operations of the system, we used no radioactive materials. After a brief set of experiments with the LAKOS unit to familiarize ourselves with its operation, two experiments were completed on two separate dates with the Separmatic systems.« less
NASA Astrophysics Data System (ADS)
Kenney, M. A.; Janetos, A.; Arndt, D. S.; Pouyat, R. V.; Aicher, R.; Lloyd, A.; Malik, O.; Reyes, J. J.; Anderson, S. M.
2014-12-01
The National Climate Indicators System is being developed as part of sustained assessment activities associated with the U.S. National Climate Assessment (NCA). The NCA is conducted under the U.S. Global Change Research Program, which is required to provide a report to Congress every 4 years. The National Climate Indicators System is a set of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information. The Indicators System will address questions important to multiple audiences including (but not limited to) nonscientists (e.g., Congress, U.S. citizens, students), resource managers, and state and municipal planners in a conceptually unified framework. The physical, ecological, and societal indicators will be scalable, to provide information for indicators at national, state, regional, and local scales. The pilot system is a test of the Indicators System for evaluation purposes to assess the readiness of indicators and usability of the system. The National Climate Indicator System has developed a pilot given the recommendations of over 150+ scientists and practitioners and 14 multidisciplinary teams, including, for example, greenhouse gases, forests, grasslands, water, human health, oceans and coasts, and energy. The pilot system of indicators includes approximately 20 indicators that are already developed, scientifically vetted, and implementable immediately. Specifically, the pilot indicators include a small set of global climate context indicators, which provide context for the national or regional indicators, as well as a set of nationally important U.S. natural system and human sector indicators. The purpose of the pilot is to work with stakeholder communities to evaluate the system and the individual indicators using a robust portfolio of evaluation studies, which provides a data driven approach to further develop and improve the National Climate Indicators System.
Pilot Scale Production and Testing of a Recombinant Staphylococcal Enterotoxin (SEB) Triple Mutant
2017-09-01
1 PILOT-SCALE PRODUCTION AND TESTING OF A RECOMBINANT STAPHYLOCOCCAL ENTEROTOXIN (SEB) TRIPLE MUTANT ECBC...Disclaimer The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorizing...TYPE Final 3. DATES COVERED (From - To) Mar 2010 – Dec 2011 4. TITLE AND SUBTITLE Pilot-Scale Production and Testing of a Recombinant
Multiresource inventories incorporating GIS, GPS, and database management systems
Loukas G. Arvanitis; Balaji Ramachandran; Daniel P. Brackett; Hesham Abd-El Rasol; Xuesong Du
2000-01-01
Large-scale natural resource inventories generate enormous data sets. Their effective handling requires a sophisticated database management system. Such a system must be robust enough to efficiently store large amounts of data and flexible enough to allow users to manipulate a wide variety of information. In a pilot project, related to a multiresource inventory of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrath, M.S.; Nieuwland, J.C.; Lith, C. van
Holzindustie Bruchsal (HIB) was required to treat moderate levels of styrene emissions from their plastic dashboard manufacturing process. After evaluating many types of control technologies, HIB decided to install a Bioton biofiltration system from Monsanto Enviro-Chem Systems Inc. (MEC). After the installation of the Bioton biofilter, HIB and MEC learned that large amounts of butylacetate were also present in the off-gas stream. The presence of butylacetate was found to have inhibitory effects on the removal of styrene. Therefore, MEC performed a series of pilot and laboratory studies to determine if a bacteria strain could be identified that would be capablemore » of removing styrene in the presence of butylacetate. It was found that a specific bacteria strain was capable of achieving high levels of styrene removal without inhibition from butylacetate in laboratory and pilot testing. This strain was inoculated into the full scale system. After acclimation, the full scale inoculation produced a consortium of bacteria that biologically removed the styrene from the dashboard manufacturing process in the presence of butylacetate.« less
Chen, Wen-Hua; Tsai, Chia-Chin; Lin, Chih-Feng; Tsai, Pei-Yuan; Hwang, Wen-Song
2013-01-01
A continuous acid-catalyzed steam explosion pretreatment process and system to produce cellulosic ethanol was developed at the pilot-scale. The effects of the following parameters on the pretreatment efficiency of rice straw feedstocks were investigated: the acid concentration, the reaction temperature, the residence time, the feedstock size, the explosion pressure and the screw speed. The optimal presteaming horizontal reactor conditions for the pretreatment process are as follows: 1.7 rpm and 100-110 °C with an acid concentration of 1.3% (w/w). An acid-catalyzed steam explosion is then performed in the vertical reactor at 185 °C for 2 min. Approximately 73% of the total saccharification yield was obtained after the rice straw was pretreated under optimal conditions and subsequent enzymatic hydrolysis at a combined severity factor of 0.4-0.7. Moreover, good long-term stability and durability of the pretreatment system under continuous operation was observed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Barreto, Carlos M; Ochoa, Ivania M; Garcia, Hector A; Hooijmans, Christine M; Livingston, Dennis; Herrera, Aridai; Brdjanovic, Damir
2018-08-01
The performance of a pilot-scale superoxygenation system was evaluated in clean water and mixed liquor. A mass balance was applied over the pilot-scale system to determine the overall oxygen mass transfer rate coefficient (K L a, h -1 ), the standard oxygen transfer rate (SOTR, kg O 2 d -1 ), and the standard oxygen transfer efficiency (SOTE, %). Additionally, the alpha factor (α) was determined at a mixed liquor suspend solids (MLSS) concentration of approximately 5 g L -1 . SOTEs of nearly 100% were obtained in clean water and mixed liquor. The results showed that at higher oxygen flowrates, higher transfer rates could be achieved; this however, at expenses of the transfer efficiency. As expected, lower transfer efficiencies were observed in mixed liquor compared to clean water. Alpha factors varied between 0.6 and 1.0. However, values of approximately 1.0 can be obtained in all cases by fine tuning the oxygen flowrate delivered to the system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Flight Testing the X-36: The Test Pilots Perspective
NASA Technical Reports Server (NTRS)
Walker, Laurence A.
1997-01-01
The X-36 is a 28% scale, remotely piloted research aircraft, designed to demonstrate tailless fighter agility. Powered by a modified Williams International F-112 jet engine, the X-36 uses thrust vectoring and a fly-by-wire control system. Although too small for an onboard pilot, a full-sized remote cockpit was designed to virtually place the test pilot into the aircraft using a variety of innovative techniques. To date, 22 flights have been flown, successfully completing the second phase of testing. Handling qualities have been matching predictions; the test operation is flown similarly to that for full sized manned aircraft. All takeoffs, test maneuvers and landings are flown by the test pilot, affording a greater degree of flexibility and the ability to handle the inevitable unknowns which may occur during highly experimental test programs. The cockpit environment, cues, and display techniques used in this effort have proven to enhance the 'virtual' test pilot's awareness and have helped ensure a successful RPV test program.
A fuzzy-logic-based controller for methane production in anaerobic fixed-film reactors.
Robles, A; Latrille, E; Ruano, M V; Steyer, J P
2017-01-01
The main objective of this work was to develop a controller for biogas production in continuous anaerobic fixed-bed reactors, which used effluent total volatile fatty acids (VFA) concentration as control input in order to prevent process acidification at closed loop. To this aim, a fuzzy-logic-based control system was developed, tuned and validated in an anaerobic fixed-bed reactor at pilot scale that treated industrial winery wastewater. The proposed controller varied the flow rate of wastewater entering the system as a function of the gaseous outflow rate of methane and VFA concentration. Simulation results show that the proposed controller is capable to achieve great process stability even when operating at high VFA concentrations. Pilot results showed the potential of this control approach to maintain the process working properly under similar conditions to the ones expected at full-scale plants.
Design and analysis of a pilot scale biofiltration system for odorous air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Classen, J.J.; Young, J.S.; Bottcher, R.W.
2000-02-01
Three pilot-scale biofilters and necessary peripheral equipment were built to clean odorous air from the pit of a swine gestation building at North Carolina State University. A computer measured temperatures, flow rates, and pressure drops. It also controlled and measured the moisture content of a biofilter medium comprised of a 3:1 mixture of yard waste compost to wood chips mixture (by volume). The system was evaluated to ensure that the biofilters would be useful for performing scientific experiments concerning the reduction of swine odor on future research projects. The capability of the biofilters to remove odor was measured using amore » cotton swatch absorption method and an odor panel. The average odor reductions measured by odor intensity, irritation intensity, and unpleasantness for five tests were 61%, 58%, and 84%, respectively. No significant differences in odor reduction performance were found between the biofilters.« less
Large-scale thermal storage systems. Possibilities of operation and state of the art
NASA Astrophysics Data System (ADS)
Jank, R.
1983-05-01
The state of the art of large scale thermal energy storage concepts is reviewed. With earth pit storage, the materials question has to be concentrated on. The use of container storage in conventional long distance thermal nets has to be stimulated. Aquifer storage should be tested in a pilot plant to obtain experience in natural aquifer use.
Humbert, H; Machinal, C; Labaye, Ivan; Schrotter, J C
2011-01-01
The determination of the virus retention capabilities of UF units during operation is essential for the operators of drinking water treatment facilities in order to guarantee an efficient and stable removal of viruses through time. In previous studies, an effective method (MS2-phage challenge tests) was developed by the Water Research Center of Veolia Environnement for the measurement of the virus retention rates (Log Removal Rate, LRV) of commercially available hollow fiber membranes at lab scale. In the present work, the protocol for monitoring membrane performance was transferred from lab scale to pilot scale. Membrane performances were evaluated during pilot trial and compared to the results obtained at lab scale with fibers taken from the pilot plant modules. PFU culture method was compared to RT-PCR method for the calculation of LRV in both cases. Preliminary tests at lab scale showed that both methods can be used interchangeably. For tests conducted on virgin membrane, a good consistency was observed between lab and pilot scale results with the two analytical methods used. This work intends to show that a reliable determination of the membranes performances based on RT-PCR analytical method can be achieved during the operation of the UF units.
Awoonor-Williams, John Koku; Schmitt, Margaret L.; Tiah, Janet; Ndago, Joyce; Asuru, Rofina; Bawah, Ayaga A.; Phillips, James F.
2016-01-01
Background In 2010, the Ghana Health Service launched a program of cooperation with the Tanzania Ministry of Health and Social Welfare that was designed to adapt Tanzania's PLANREP budgeting and reporting tool to Ghana's primary health care program. The product of this collaboration is a system of budgeting, data visualization, and reporting that is known as the District Health Planning and Reporting Tool (DiHPART). Objective This study was conducted to evaluate the design and implementation processes (technical, procedures, feedback, maintenance, and monitoring) of the DiHPART tool in northern Ghana. Design This paper reports on a qualitative appraisal of user reactions to the DiHPART system and implications of pilot experience for national scale-up. A total of 20 health officials responsible for financial planning operations were drawn from the national, regional, and district levels of the health system and interviewed in open-ended discussions about their reactions to DiHPART and suggestions for systems development. Results The findings show that technical shortcomings merit correction before scale-up can proceed. The review makes note of features of the software system that could be developed, based on experience gained from the pilot. Changes in the national system of financial reporting and budgeting complicate DiHPART utilization. This attests to the importance of pursuing a software application framework that anticipates the need for automated software generation. Conclusions Despite challenges encountered in the pilot, the results lend support to the notion that evidence-based budgeting merits development and implementation in Ghana. PMID:27246868
This document presents summary data on the results of various treatability studies (bench and pilot scale), conducted at three different sites where soils were contaminated with dioxins or PCBs. The synopsis is meant to show rough performance levels under a variety of differen...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-01-12
This report describes the work done under Phase II, the verification testing of the Kinetic Extruder. The main objective of the test program was to determine failure modes and wear rates. Only minor auxiliary equipment malfunctions were encountered. Wear rates indicate useful life expectancy of from 1 to 5 years for wear-exposed components. Recommendations are made for adapting the equipment for pilot plant and commercial applications. 3 references, 20 figures, 12 tables.
Fitting Community Based Newborn Care Package into the health systems of Nepal.
Pradhan, Y V; Upreti, S R; Kc, N P; Thapa, K; Shrestha, P R; Shedain, P R; Dhakwa, J R; Aryal, D R; Aryal, S; Paudel, D C; Paudel, D; Khanal, S; Bhandari, A; Kc, A
2011-10-01
Community-based strategies for delivering effective newborn interventions are an essential step to avert newborn death, in settings where the health facilities are unable to effectively deliver the interventions and reach their population. Effective implementation of community-based interventions as a large scale program and within the existing health system depends on the appropriate design and planning, monitoring and support systems. This article provides an overview of implementation design of Community-Based Newborn Care Package (CB-NCP) program, its setup within the health system, and early results of the implementation from one of the pilot districts. The evaluation of CB-NCP in one of the pilot districts shows significant improvement in antenatal, intrapartum and post natal care. The implementation design of the CB-NCP has six different health system management functions: i) district planning and orientation, ii) training/human resource development, iii) monitoring and evaluation, iv) logistics and supply chain management, v) communication strategy, and vi) pay for performance. The CB-NCP program embraced the existing system of monitoring with some additional components for the pilot phase to test implementation feasibility, and aligns with existing safe motherhood and child health programs. Though CB-NCP interventions are proven independently in different local and global contexts, they are piloted in 10 districts as a "package" within the national health system settings of Nepal.
RELATIONSHIPS BETWEEN LABORATORY AND PILOT-SCALE COMBUSTION OF SOME CHLORINATED HYDROCARBONS
Factors governing the occurence of trace amounts of residual organic substance emmissions (ROSEs) in full-scale incierators are not fully understood. Pilot-scale spray combustion expereiments involving some liquid chlorinated hydrocarbons (CHCs) and their dilute mixtures with hy...
The Development, Test, and Evaluation of Three Pilot Performance Reference Scales.
ERIC Educational Resources Information Center
Horner, Walter R.; And Others
A set of pilot performance reference scales was developed based upon airborne Audio-Video Recording (AVR) of student performance in T-37 undergraduate Pilot Training. After selection of the training maneuvers to be studied, video tape recordings of the maneuvers were selected from video tape recordings already available from a previous research…
Ryu, Hee Wook; Cho, Kyung-Suk; Lee, Tae-Ho
2011-04-01
The performance of a pilot-scale anti-clogging biofilter system (ABS) was evaluated over a period of 125days for treating ammonia and volatile organic compounds emitted from a full-scale food waste-composting facility. The pilot-scale ABS was designed to intermittently and automatically remove excess biomass using an agitator. When the pressure drop in the polyurethane filter bed was increased to a set point (50 mm H(2)O m(-1)), due to excess biomass acclimation, the agitator automatically worked by the differential pressure switch, without biofilter shutdown. A high removal efficiency (97-99%) was stably maintained for the 125 days after an acclimation period of 1 week, even thought the inlet gas concentrations fluctuated from 0.16 to 0.55 g m(-3). Due the intermittent automatic agitation of the filter bed, the biomass concentration and pressure drop in the biofilter were maintained within the ranges of 1.1-2.0 g-DCW g PU(-1) and below 50 mm H(2)O m(-1), respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lopez-Alvarez, Blady; Torres-Palma, Ricardo A; Ferraro, Franklin; Peñuela, Gustavo
2012-01-01
The degradation of the pesticide carbofuran (CBF) using solar photo-Fenton treatment, at both the laboratory and the pilot scale, was evaluated. At the laboratory scale, in a suntest reactor, the Fe(2+) concentration and H(2)O(2) concentration were evaluated and optimized using the surface response methodology and the Pareto diagram. Under optimal conditions experiments were performed to evaluate the evolution of the substrate removal, oxidation, subsequent mineralization, toxicity and the formation of chloride ions during the treatment. The analysis and evolution of five CBF by-products as well as several control and reactivity tests at the density functional theory level were used to depict a general scheme of the main degradation pathway of CBF via the photo-Fenton system. Finally, at the pilot scale, a sample of the commercial CBF product Furadan was eliminated after 420 min by the photo-Fenton system using direct sunlight. Under these conditions, after 900 min 89% of toxicity (1/E(50) on Vibrio fischeri bacteria), 97% of chemical oxygen demand, and 90% of dissolved organic carbon were removed.
Pilot interaction with automated airborne decision making systems
NASA Technical Reports Server (NTRS)
Rouse, W. B.; Hammer, J. M.; Morris, N. M.; Brown, E. N.; Yoon, W. C.
1983-01-01
The use of advanced software engineering methods (e.g., from artificial intelligence) to aid aircraft crews in procedure selection and execution is investigated. Human problem solving in dynamic environments as effected by the human's level of knowledge of system operations is examined. Progress on the development of full scale simulation facilities is also discussed.
License Agreement Moves Promising Technology Into the Marketplace
generated every day by sewage treatment plants. The pretreatment process was developed at the U.S commercialize the technology to Peak Treatment Systems, Inc. of Golden, Colo. Conventional disposal methods completely broken down. Peak Treatment Systems is using the equipment at a pilot-scale high solids anaerobic
The U.S. Environmental Protection Agency (EPA) is currently evaluating package plant advanced oxidation process (AOP) systems to treat methyl tertiary butyl ether (MTBE) in drinking water supplies (e.g., surface water, groundwater). MTBE has been identified as a potential carcin...
A Pilot-Scale Heat Recovery System for Computer Process Control Teaching and Research.
ERIC Educational Resources Information Center
Callaghan, P. J.; And Others
1988-01-01
Describes the experimental system and equipment including an interface box for displaying variables. Discusses features which make the circuit suitable for teaching and research in computing. Feedforward, decoupling, and adaptive control, examination of digital filtering, and a cascade loop are teaching experiments utilizing this rig. Diagrams and…
Market assessment of PFBC ash use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bland, A. E.; Brown, T. H., Western Research Institute
1998-01-01
Pressurized fluidized bed combustion (PFBC) of coal is undergoing demonstration in the United States, as well as throughout the world. American Electric Power`s (AEP`s) bubbling PFBC 70 MWe Tidd demonstration program in Ohio and pilot-scale development at Foster Wheeler Energia Oy 10 MWth circulating PFBC at Karhula, Finland, have demonstrated the advantages of PFBC technology. Further technology development in the US is planned with the deployment of the technology at the MacIntosh Clean Coal project in Lakeland, Florida. Development of uses for solid wastes from PFBC coal-fired power systems is being actively pursued as part of the demonstration of PFBCmore » technologies. Ashes collected from Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, operating on (1) low sulfur subbituminous and (2) high sulfur bituminous coal; and ash from the AEP`s high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at Western Research Institute (WRI).« less
Natural Pressure-Driven Passive Bioventing
2000-09-01
8217 300’ PFFA SCALE : 1 "= 300’ LEGEND 0 ABOVE GROUND STORAGE TANK I BUILDING FENCE = = = : DRAINAGE CHANNEL \\731272\\REPORT\\FINAL\\GRA PHICS...preparation for full- scale design of a conventional bioventing system at the PFFA, a bioventing pilot test was conducted in the demonstration area prior...PFFAVW02 @ @ PFFABOS02 PFFAVMP14..6. @ PFFABOS04 • PFFABOS06 CPT-BOSSA @ PFFABOS08 ~ JM11 ~? r 1,o v SCALE IN FEET FIGURE 6 SITE PLAN PFFA
Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland
2015-09-18
The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g(-1) volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g(-1) VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH₄ recovery of 189 L kg(-1) VS was achieved and a biogas composition of 55% CH₄ and 38% CO₂ was recorded.
Modelling of sedimentation and remobilization in in-line storage sewers for stormwater treatment.
Frehmann, T; Flores, C; Luekewille, F; Mietzel, T; Spengler, B; Geiger, W F
2005-01-01
A special arrangement of combined sewer overflow tanks is the in-line storage sewer with downstream discharge (ISS-down). This layout has the advantage that, besides the sewer system, no other structures are required for stormwater treatment. The verification of the efficiency with respect to the processes of sedimentation and remobilization of sediment within the in-line storage sewer with downstream discharge is carried out in a combination of a field and a pilot plant study. The model study was carried out using a pilot plant model scaled 1:13. The following is intended to present some results of the pilot plant study and the mathematical empirical modelling of the sedimentation and remobilization process.
Model-based Extracted Water Desalination System for Carbon Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gettings, Rachel; Dees, Elizabeth
The focus of this research effort centered around water recovery from high Total Dissolved Solids (TDS) extracted waters (180,000 mg/L) using a combination of water recovery (partial desalination) technologies. The research goals of this project were as follows: 1. Define the scope and test location for pilot-scale implementation of the desalination system, 2.Define a scalable, multi-stage extracted water desalination system that yields clean water, concentrated brine, and, salt from saline brines, and 3. Validate overall system performance with field-sourced water using GE pre-pilot lab facilities. Conventional falling film-mechanical vapor recompression (FF-MVR) technology was established as a baseline desalination process. Amore » quality function deployment (QFD) method was used to compare alternate high TDS desalination technologies to the base case FF-MVR technology, including but not limited to: membrane distillation (MD), forward osmosis (FO), and high pressure reverse osmosis (HPRO). Technoeconomic analysis of high pressure reverse osmosis (HPRO) was performed comparing the following two cases: 1. a hybrid seawater RO (SWRO) plus HPRO system and 2. 2x standard seawater RO system, to achieve the same total pure water recovery rate. Pre-pilot-scale tests were conducted using field production water to validate key process steps for extracted water pretreatment. Approximately 5,000 gallons of field produced water was processed through, microfiltration, ultrafiltration, and steam regenerable sorbent operations. Improvements in membrane materials of construction were considered as necessary next steps to achieving further improvement in element performance at high pressure. Several modifications showed promising results in their ability to withstand close to 5,000 PSI without gross failure.« less
Regeneration of Full Scale Adsorptive Media Systems - Update
Presentation provides a short summary of the USEPA arsenic demonstration program followed by some results of lab and pilot tests on the regeneration of a number of exhausted media products collected from several demonstration projects. Following this short introduction, the pres...
PILOT SCALE WATER REUSE SYSTEM
The efficiency of the treatment technologies is expected to vary with the source water quality. By testing the technologies with various source waters, the research will quantify the limits of the technology: testing the flow rate variations with influent water quality, evalu...
Wang, Jianxing; Li, Kun; Wei, Yuansong; Cheng, Yutao; Wei, Dongbin; Li, Mingyue
2015-02-01
A double membrane system comprising a membrane bioreactor (MBR) combined with a nanofiltration (NF) membrane was investigated on a pilot scale for the treatment of antibiotic production wastewater over a three-month period at a pharmaceutical company in Wuxi, China. By recycling the NF concentrate, the combined MBR-NF process was shown to be effective for the treatment of antibiotic production wastewater, resulting in excellent water quality and a high water yield of 92±5.6%. The water quality of the pilot-scale MBR-NF process was excellent; e.g., the concentrations of TOC, NH4(+)-N, TP were stable at 5.52, 0.68, 0.34 mg L(-1), respectively, and the values of turbidity and conductivity of the NF permeate were 0.15 NTU and 2.5 mS cm(-1), respectively; these values meet China's water quality standard requirements for industrial use (GB21903-2008). Not only were the antibiotic removal rates of spiramycin (SPM) and new spiramycin (NSPM) over 95%, the acute toxicity was also drastically reduced by the MBR-NF pilot system. The main organics in the MBR effluent were proteins, polysaccharides, and humic-like substances; they were almost completely retained by the NF membrane and further biodegraded in the MBR because the NF concentrate was recycled. The microbial community of the MBR did not significantly change with the recycling of the NF concentrate. Copyright © 2014 Elsevier Ltd. All rights reserved.
Interaction of feel system and flight control system dynamics on lateral flying qualities
NASA Technical Reports Server (NTRS)
Bailey, R. E.; Knotts, L. H.
1990-01-01
An experimental investigation of the influence of lateral feel system characteristics on fighter aircraft roll flying qualities was conducted using the variable stability USAF NT-33. Forty-two evaluation flights were flown by three engineering test pilots. The investigation utilized the power approach, visual landing task and up-and-away tasks including formation, gun tracking, and computer-generated compensatory attitude tracking tasks displayed on the Head-Up Display. Experimental variations included the feel system frequency, force-deflection gradient, control system command type (force or position input command), aircraft roll mode time constant, control system prefilter frequency, and control system time delay. The primary data were task performance records and evaluation pilot comments and ratings using the Cooper-Harper scale. The data highlight the unique and powerful effect of the feel system of flying qualities. The data show that the feel system is not 'equivalent' in flying qualities influence to analogous control system elements. A lower limit of allowable feel system frequency appears warranted to ensure good lateral flying qualities. Flying qualities criteria should most properly treat the feel system dynamic influence separately from the control system, since the input and output of this dynamic element is apparent to the pilot and thus, does not produce a 'hidden' effect.
2013-01-01
Background Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. Results A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham’s π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. Conclusion The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/− 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale. PMID:24289110
Klöckner, Wolf; Gacem, Riad; Anderlei, Tibor; Raven, Nicole; Schillberg, Stefan; Lattermann, Clemens; Büchs, Jochen
2013-12-02
Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham's π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/- 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.
USDA-ARS?s Scientific Manuscript database
A pilot-scale, recirculating-flow-through, non-steady-state (RFT-NSS) chamber system was designed for quantifying nitrous oxide (N2O) emissions from simulated open-lot beef cattle feedlot pens. The system employed five 1 square meter steel pans. A lid was placed systematically on each pan and heads...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schonewill, Philip P.; Russell, Renee L.; Daniel, Richard C.
The Low Activity Waste Pretreatment System (LAWPS) is being designed to enable the direct feed of waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) facility to be immobilized. Prior to construction of the LAWPS, pilot-scale integrated testing of the key unit operations (crossflow filtration, ion exchange using spherical resorcinol-formaldehyde (sRF) resin) will be conducted by a team led by Washington River Protection Solutions (WRPS) to increase the technology maturation level of the facility’s critical technology elements. As a part of this effort, Pacific Northwest National Laboratory (PNNL) has conducted a series of bench-scalemore » (or engineering-scale) tests to perform two major objectives: (1) support pilot-scale integrated testing of the LAWPS by supplying information or performance data in advance of operating the pilot-scale facility; and (2) collect data needed to establish or confirm assumptions/approaches planned for implementation in the LAWPS safety basis. The first objective was focused in two technical areas: developing simulants that are representative of expected waste feed and can be produced at larger scales, and using these simulants in a bench-scale crossflow filter to establish expected solid-liquid separation performance. The crossflow filter was also used to observe the efficacy (with respect to filter production rate) of selected operational strategies. The second objective also included two technical areas: measuring the effect of sRF resin on hydrogen generation rate under irradiation, and demonstrating that the planned hydrogen management approach is effective and robust. The hydrogen management strategy involves fluidization of the sRF resin bed in the ion exchange columns and recirculating the liquid, a scenario that is planned for testing at full column height. The full height tests at PNNL also supported full-scale IX column testing conducted as part of the technology maturation plan. The experimental approaches used at PNNL in these four technical areas are summarized and selected key preliminary results are provided.« less
Design of a novel automated methanol feed system for pilot-scale fermentation of Pichia pastoris.
Hamaker, Kent H; Johnson, Daniel C; Bellucci, Joseph J; Apgar, Kristie R; Soslow, Sherry; Gercke, John C; Menzo, Darrin J; Ton, Christopher
2011-01-01
Large-scale fermentation of Pichia pastoris requires a large volume of methanol feed during the induction phase. However, a large volume of methanol feed is difficult to use in the processing suite because of the inconvenience of constant monitoring, manual manipulation steps, and fire and explosion hazards. To optimize and improve safety of the methanol feed process, a novel automated methanol feed system has been designed and implemented for industrial fermentation of P. pastoris. Details of the design of the methanol feed system are described. The main goals of the design were to automate the methanol feed process and to minimize the hazardous risks associated with storing and handling large quantities of methanol in the processing area. The methanol feed system is composed of two main components: a bulk feed (BF) system and up to three portable process feed (PF) systems. The BF system automatically delivers methanol from a central location to the portable PF system. The PF system provides precise flow control of linear, step, or exponential feed of methanol to the fermenter. Pilot-scale fermentations with linear and exponential methanol feeds were conducted using two Mut(+) (methanol utilization plus) strains, one expressing a recombinant therapeutic protein and the other a monoclonal antibody. Results show that the methanol feed system is accurate, safe, and efficient. The feed rates for both linear and exponential feed methods were within ± 5% of the set points, and the total amount of methanol fed was within 1% of the targeted volume. Copyright © 2011 American Institute of Chemical Engineers (AIChE).
Esperanza, Mar; Suidan, Makram T; Nishimura, Fumitake; Wang, Zhong-Min; Sorial, George A; Zaffiro, Alan; McCauley, Paul; Brenner, Richard; Sayles, Gregory
2004-06-01
Two analytical methods were developed and refined for the detection and quantitation of two groups of endocrine-disrupting chemicals (EDCs) in the liquid matrixes of two pilot-scale municipal wastewater treatment plants. The targeted compounds are seven sex hormones (estradiol, ethinylestradiol, estrone, estriol, testosterone, progesterone, and androstenedione), a group of nonionic surfactants (nonylphenol polyethoxylates), and their biodegradation byproducts nonylphenol and nonylphenol ethoxylates with one, two, and three ethoxylates. Solid phase extraction using C-18 for steroids and graphitized carbon black for the surfactants were used for extraction. HPLC-DAD and GC/MS were used for quantification. Each of the two 20 L/h pilot-scale plants consists of a primary settling tank followed by a three-stage aeration tank and final clarification. The primary and the waste-activated sludge are digested anaerobically in one plant and aerobically in the other. The pilot plants are fed with a complex synthetic wastewater spiked with the EDCs. Once steady state was reached, liquid samples were collected from four sampling points to obtain the profile for all EDCs along the treatment system. Complete removal from the aqueous phase was obtained for testosterone, androstenedione, and progesterone. Removals for nonylphenol polyethoxylates, estradiol, estrone, and ethinylestradiol from the aqueous phase exceeded 96%, 94%, 52%, and 50%, respectively. Levels of E3 in the liquid phase were low, and no clear conclusions could be drawn concerning its removal.
ERIC Educational Resources Information Center
Ackerman, Debra J.
2008-01-01
Several nonprofit agencies in a large Midwestern city provide assistance to early care and education programs participating in a pilot Quality Rating Scale (QRS) initiative by pairing them with itinerant consultants, who are known as coaches. Despite this assistance, not all programs improve their QRS score. Furthermore, while pilot stakeholders…
PILOT-SCALE INCINERATION TEST BURN OF TCDD-CONTAMINATED TRICHLOROPHENOL PRODUCTION WASTE
A series of three tests directed at evaluating the incinerability of the toluene stillbottoms waste from trichlorophenol production previously generated by the Vertac Chemical Company were performed in the Combustion Research Facility (CRF) rotary kiln incineration system. This w...
GPS-based household interview survey for the Cincinnati, Ohio Region.
DOT National Transportation Integrated Search
2012-02-01
Methods for Conducting a Large-Scale GPS-Only Survey of Households: Past Household Travel Surveys (HTS) in the United States have only piloted small subsamples of Global Positioning Systems (GPS) completes compared with 1-2 day self-reported travel i...
MANUAL: BIOVENTING PRINCIPLES AND PRACTICE VOLUME II. BIOVENTING DESIGN
The results from bioventing research and development efforts and from the pilot-scale bioventing systems have been used to produce this two-volume manual. Although this design manual has been written based on extensive experience with petroleum hydrocarbons (and thus, many exampl...
Biological Oxidation of Ammonia and Arsenic in Pilot-scale Rapid Sand Filters
The removal of ammonia from source water entering a drinking water distribution system is desirable, as excess levels have been correlated with nitrification, chlorine demand, corrosion, and biological re-growth. Several technologies exist to remove ammonia with recent interest...
POLISHING EFFLUENT FROM A PERCHLORATE-REDUCING ANAEROBIC BIOLOGICAL CONTACTOR
The U.S. Environmental Protection Agency undertook at 3 ½ year pilot-scale biological perchlorate treatment study that included two long (311 and 340 days) examinations of anaerobic effluent polishing. The polishing system consisted of hydrogen peroxide addition and aeration, fo...
PILOT SCALE PROCESS EVALUATION OF REBURNING FOR IN-FURNACE NOX REDUCTION
The report gives results of coal and natural gas reburning application tests to a pilot scale 3.0 MWt furnace to provide the scaling information required for commercial application of reburning to pulverized-coal-fired boilers. Initial parametric studies had been conducted in a 2...
The ability of pervaporation to remove methyl t-butyl ether (MTBE) from water was evaluated at bench- and pilot-scales. Process parameters studied included flow rate, temperature, MTBE concentration, membrane module type, and permeate pressure. Pervaporation performance was ass...
Floris, Patrick; Curtin, Sean; Kaisermayer, Christian; Lindeberg, Anna; Bones, Jonathan
2018-07-01
The compatibility of CHO cell culture medium formulations with all stages of the bioprocess must be evaluated through small-scale studies prior to scale-up for commercial manufacturing operations. Here, we describe the development of a bespoke small-scale device for assessing the compatibility of culture media with a widely implemented upstream viral clearance strategy, high-temperature short-time (HTST) treatment. The thermal stability of undefined medium formulations supplemented with soy hydrolysates was evaluated upon variations in critical HTST processing parameters, namely, holding times and temperatures. Prolonged holding times of 43 s at temperatures of 110 °C did not adversely impact medium quality while significant degradation was observed upon treatment at elevated temperatures (200 °C) for shorter time periods (11 s). The performance of the device was benchmarked against a commercially available mini-pilot HTST system upon treatment of identical formulations on both platforms. Processed medium samples were analyzed by untargeted LC-MS/MS for compositional profiling followed by chemometric evaluation, which confirmed the observed degradation effects caused by elevated holding temperatures but revealed comparable performance of our developed device with the commercial mini-pilot setup. The developed device can assist medium optimization activities by reducing volume requirements relative to commercially available mini-pilot instrumentation and by facilitating fast throughput evaluation of heat-induced effects on multiple medium lots.
Ansbro, Éimhín M; Gill, Michelle M; Reynolds, Joanna; Shelley, Katharine D; Strasser, Susan; Sripipatana, Tabitha; Tshaka Ncube, Alexander; Tembo Mumba, Grace; Terris-Prestholt, Fern; Peeling, Rosanna W; Mabey, David
2015-01-01
Syphilis affects 1.4 million pregnant women globally each year. Maternal syphilis causes congenital syphilis in over half of affected pregnancies, leading to early foetal loss, pregnancy complications, stillbirth and neonatal death. Syphilis is under-diagnosed in pregnant women. Point-of-care rapid syphilis tests (RST) allow for same-day treatment and address logistical barriers to testing encountered with standard Rapid Plasma Reagin testing. Recent literature emphasises successful introduction of new health technologies requires healthcare worker (HCW) acceptance, effective training, quality monitoring and robust health systems. Following a successful pilot, the Zambian Ministry of Health (MoH) adopted RST into policy, integrating them into prevention of mother-to-child transmission of HIV clinics in four underserved Zambian districts. We compare HCW experiences, including challenges encountered in scaling up from a highly supported NGO-led pilot to a large-scale MoH-led national programme. Questionnaires were administered through structured interviews of 16 HCWs in two pilot districts and 24 HCWs in two different rollout districts. Supplementary data were gathered via stakeholder interviews, clinic registers and supervisory visits. Using a conceptual framework adapted from health technology literature, we explored RST acceptance and usability. Quantitative data were analysed using descriptive statistics. Key themes in qualitative data were explored using template analysis. Overall, HCWs accepted RST as learnable, suitable, effective tools to improve antenatal services, which were usable in diverse clinical settings. Changes in training, supervision and quality monitoring models between pilot and rollout may have influenced rollout HCW acceptance and compromised testing quality. While quality monitoring was integrated into national policy and training, implementation was limited during rollout despite financial support and mentorship. We illustrate that new health technology pilot research can rapidly translate into policy change and scale-up. However, training, supervision and quality assurance models should be reviewed and strengthened as rollout of the Zambian RST programme continues.
Ansbro, Éimhín M.; Gill, Michelle M.; Reynolds, Joanna; Shelley, Katharine D.; Strasser, Susan; Sripipatana, Tabitha; Ncube, Alexander Tshaka; Tembo Mumba, Grace; Terris-Prestholt, Fern; Peeling, Rosanna W.; Mabey, David
2015-01-01
Syphilis affects 1.4 million pregnant women globally each year. Maternal syphilis causes congenital syphilis in over half of affected pregnancies, leading to early foetal loss, pregnancy complications, stillbirth and neonatal death. Syphilis is under-diagnosed in pregnant women. Point-of-care rapid syphilis tests (RST) allow for same-day treatment and address logistical barriers to testing encountered with standard Rapid Plasma Reagin testing. Recent literature emphasises successful introduction of new health technologies requires healthcare worker (HCW) acceptance, effective training, quality monitoring and robust health systems. Following a successful pilot, the Zambian Ministry of Health (MoH) adopted RST into policy, integrating them into prevention of mother-to-child transmission of HIV clinics in four underserved Zambian districts. We compare HCW experiences, including challenges encountered in scaling up from a highly supported NGO-led pilot to a large-scale MoH-led national programme. Questionnaires were administered through structured interviews of 16 HCWs in two pilot districts and 24 HCWs in two different rollout districts. Supplementary data were gathered via stakeholder interviews, clinic registers and supervisory visits. Using a conceptual framework adapted from health technology literature, we explored RST acceptance and usability. Quantitative data were analysed using descriptive statistics. Key themes in qualitative data were explored using template analysis. Overall, HCWs accepted RST as learnable, suitable, effective tools to improve antenatal services, which were usable in diverse clinical settings. Changes in training, supervision and quality monitoring models between pilot and rollout may have influenced rollout HCW acceptance and compromised testing quality. While quality monitoring was integrated into national policy and training, implementation was limited during rollout despite financial support and mentorship. We illustrate that new health technology pilot research can rapidly translate into policy change and scale-up. However, training, supervision and quality assurance models should be reviewed and strengthened as rollout of the Zambian RST programme continues. PMID:26030741
Virgil Gus Grissom's Visit to LaRC
1963-02-22
Astronaut Virgil "Gus" Grissom at the controls of the Visual Docking Simulator. From A.W. Vogeley, "Piloted Space-Flight Simulation at Langley Research Center," Paper presented at the American Society of Mechanical Engineers 1966 Winter Meeting, New York, NY, November 27-December 1, 1966. "This facility was [later known as the Visual-Optical Simulator.] It presents to the pilot an out-the-window view of his target in correct 6 degrees of freedom motion. The scene is obtained by a television camera pick-up viewing a small-scale gimbaled model of the target." "For docking studies, the docking target picture was projected onto the surface of a 20-foot-diameter sphere and the pilot could, effectively, maneuver into contract. this facility was used in a comparison study with the Rendezvous Docking Simulator - one of the few comparison experiments in which conditions were carefully controlled and a reasonable sample of pilots used. All pilots preferred the more realistic RDS visual scene. The pilots generally liked the RDS angular motion cues although some objected to the false gravity cues that these motions introduced. Training time was shorter on the RDS, but final performance on both simulators was essentially equal. " "For station-keeping studies, since close approach is not required, the target was presented to the pilot through a virtual-image system which projects his view to infinity, providing a more realistic effect. In addition to the target, the system also projects a star and horizon background. "
FINAL REPORT SUMMARY OF DM 1200 OPERATION AT VSL VSL-06R6710-2 REV 0 9/7/06
DOE Office of Scientific and Technical Information (OSTI.GOV)
KRUGER AA; MATLACK KS; DIENER G
2011-12-29
The principal objective of this report was to summarize the testing experience on the DuraMelter 1200 (DMI200), which is the High Level Waste (HLW) Pilot Melter located at the Vitreous State Laboratory (VSL). Further objectives were to provide descriptions of the history of all modifications and maintenance, methods of operation, problems and unit failures, and melter emissions and performance while processing a variety of simulated HL W and low activity waste (LAW) feeds for the Hanford Waste Treatment and Immobilization Plant (WTP) and employing a variety of operating methods. All of these objectives were met. The River Protection Project -more » Hanford Waste Treatment and Immobilization Plant (RPP-WTP) Project has undertaken a 'tiered' approach to vitrification development testing involving computer-based glass formulation, glass property-composition models, crucible melts, and continuous melter tests of increasing, more realistic scales. Melter systems ranging from 0.02 to 1.2 m{sup 2} installed at the Vitreous State Laboratory (VSL) have been used for this purpose, which, in combination with the 3.3 m{sup 2} low activity waste (LAW) Pilot Melter at Duratek, Inc., span more than two orders of magnitude in melt surface area. In this way, less-costly small-scale tests can be used to define the most appropriate tests to be conducted at the larger scales in order to extract maximum benefit from the large-scale tests. For high level waste (HLW) vitrification development, a key component in this approach is the one-third scale DuraMelter 1200 (DM 1200), which is the HLW Pilot Melter that has been installed at VSL with an integrated prototypical off-gas treatment system. That system replaced the DM1000 system that was used for HLW throughput testing during Part B1. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. In particular, the DM1200 provides for testing on a vitrification system with the specific train of unit operations that has been selected for both HLW and LAW RPP-WTP off-gas treatment.« less
Igras, Susan; Sinai, Irit; Mukabatsinda, Marie; Ngabo, Fidele; Jennings, Victoria; Lundgren, Rebecka
2014-05-01
There is no guarantee that a successful pilot program introducing a reproductive health innovation can also be expanded successfully to the national or regional level, because the scaling-up process is complex and multilayered. This article describes how a successful pilot program to integrate the Standard Days Method (SDM) of family planning into existing Ministry of Health services was scaled up nationally in Rwanda. Much of the success of the scale-up effort was due to systematic use of monitoring and evaluation (M&E) data from several sources to make midcourse corrections. Four lessons learned illustrate this crucially important approach. First, ongoing M&E data showed that provider training protocols and client materials that worked in the pilot phase did not work at scale; therefore, we simplified these materials to support integration into the national program. Second, triangulation of ongoing monitoring data with national health facility and population-based surveys revealed serious problems in supply chain mechanisms that affected SDM (and the accompanying CycleBeads client tool) availability and use; new procedures for ordering supplies and monitoring stockouts were instituted at the facility level. Third, supervision reports and special studies revealed that providers were imposing unnecessary medical barriers to SDM use; refresher training and revised supervision protocols improved provider practices. Finally, informal environmental scans, stakeholder interviews, and key events timelines identified shifting political and health policy environments that influenced scale-up outcomes; ongoing advocacy efforts are addressing these issues. The SDM scale-up experience in Rwanda confirms the importance of monitoring and evaluating programmatic efforts continuously, using a variety of data sources, to improve program outcomes.
Igras, Susan; Sinai, Irit; Mukabatsinda, Marie; Ngabo, Fidele; Jennings, Victoria; Lundgren, Rebecka
2014-01-01
There is no guarantee that a successful pilot program introducing a reproductive health innovation can also be expanded successfully to the national or regional level, because the scaling-up process is complex and multilayered. This article describes how a successful pilot program to integrate the Standard Days Method (SDM) of family planning into existing Ministry of Health services was scaled up nationally in Rwanda. Much of the success of the scale-up effort was due to systematic use of monitoring and evaluation (M&E) data from several sources to make midcourse corrections. Four lessons learned illustrate this crucially important approach. First, ongoing M&E data showed that provider training protocols and client materials that worked in the pilot phase did not work at scale; therefore, we simplified these materials to support integration into the national program. Second, triangulation of ongoing monitoring data with national health facility and population-based surveys revealed serious problems in supply chain mechanisms that affected SDM (and the accompanying CycleBeads client tool) availability and use; new procedures for ordering supplies and monitoring stockouts were instituted at the facility level. Third, supervision reports and special studies revealed that providers were imposing unnecessary medical barriers to SDM use; refresher training and revised supervision protocols improved provider practices. Finally, informal environmental scans, stakeholder interviews, and key events timelines identified shifting political and health policy environments that influenced scale-up outcomes; ongoing advocacy efforts are addressing these issues. The SDM scale-up experience in Rwanda confirms the importance of monitoring and evaluating programmatic efforts continuously, using a variety of data sources, to improve program outcomes. PMID:25276581
Methane yield in source-sorted organic fraction of municipal solid waste.
Davidsson, Asa; Gruvberger, Christopher; Christensen, Thomas H; Hansen, Trine Lund; Jansen, Jes la Cour
2007-01-01
Treating the source-separated organic fraction of municipal solid waste (SS-OFMSW) by anaerobic digestion is considered by many municipalities in Europe as an environmentally friendly means of treating organic waste and simultaneously producing methane gas. Methane yield can be used as a parameter for evaluation of the many different systems that exist for sorting and pre-treating waste. Methane yield from the thermophilic pilot scale digestion of 17 types of domestically SS-OFMSW originating from seven full-scale sorting systems was found. The samples were collected during 1 year using worked-out procedures tested statistically to ensure representative samples. Each waste type was identified by its origin and by pre-sorting, collection and pre-treatment methods. In addition to the pilot scale digestion, all samples were examined by chemical analyses and methane potential measurements. A VS-degradation rate of around 80% and a methane yield of 300-400Nm(3) CH(4)/ton VS(in) were achieved with a retention time of 15 days, corresponding to approximately 70% of the methane potential. The different waste samples gave minor variation in chemical composition and thus also in methane yield and methane potential. This indicates that sorting and collection systems in the present study do not significantly affect the amount of methane produced per VS treated.
The use of vestibular models for design and evaluation of flight simulator motion
NASA Technical Reports Server (NTRS)
Bussolari, Steven R.; Young, Laurence R.; Lee, Alfred T.
1989-01-01
Quantitative models for the dynamics of the human vestibular system are applied to the design and evaluation of flight simulator platform motion. An optimal simulator motion control algorithm is generated to minimize the vector difference between perceived spatial orientation estimated in flight and in simulation. The motion controller has been implemented on the Vertical Motion Simulator at NASA Ames Research Center and evaluated experimentally through measurement of pilot performance and subjective rating during VTOL aircraft simulation. In general, pilot performance in a longitudinal tracking task (formation flight) did not appear to be sensitive to variations in platform motion condition as long as motion was present. However, pilot assessment of motion fidelity by means of a rating scale designed for this purpose, were sensitive to motion controller design. Platform motion generated with the optimal motion controller was found to be generally equivalent to that generated by conventional linear crossfeed washout. The vestibular models are used to evaluate the motion fidelity of transport category aircraft (Boeing 727) simulation in a pilot performance and simulator acceptability study at the Man-Vehicle Systems Research Facility at NASA Ames Research Center. Eighteen airline pilots, currently flying B-727, were given a series of flight scenarios in the simulator under various conditions of simulator motion. The scenarios were chosen to reflect the flight maneuvers that these pilots might expect to be given during a routine pilot proficiency check. Pilot performance and subjective rating of simulator fidelity was relatively insensitive to the motion condition, despite large differences in the amplitude of motion provided. This lack of sensitivity may be explained by means of the vestibular models, which predict little difference in the modeled motion sensations of the pilots when different motion conditions are imposed.
Jeong, Hanseob; Park, Yong-Cheol; Seong, Yeong-Je; Lee, Soo Min
2017-12-01
The aim of this study were to efficiently produce fermentable sugars by continuous type supercritical water hydrolysis (SCWH) of Quercus mongolica at the pilot scale with varying acid catalyst loading and to use the obtained sugars for ethanol production. The SCWH of biomass was achieved in under one second (380°C, 230bar) using 0.01-0.1% H 2 SO 4 . With 0.05% H 2 SO 4 , 49.8% of sugars, including glucose (16.5% based on biomass) and xylose monomers (10.8%), were liberated from biomass. The hydrolysates were fermented with S. cerevisiae DXSP and D452-2 to estimate ethanol production. To prepare the fermentation medium, the hydrolysates were detoxified using activated charcoal and then concentrated. The ethanol yield of fermentation with S. cerevisiae DXSP was 14.1% (based on biomass). The proposed system has potential for improvement in yield through process optimization. After further development, it is expected to be a competitive alternative to traditional systems for ethanol production from woody biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
Demonstrating Functional Equivalence of Pilot and Production Scale Freeze-Drying of BCG
ten Have, R.; Reubsaet, K.; van Herpen, P.; Kersten, G.; Amorij, J.-P.
2016-01-01
Process analytical technology (PAT)-tools were used to monitor freeze-drying of Bacille Calmette-Guérin (BCG) at pilot and production scale. Among the evaluated PAT-tools, there is the novel use of the vacuum valve open/close frequency for determining the endpoint of primary drying at production scale. The duration of primary drying, the BCG survival rate, and the residual moisture content (RMC) were evaluated using two different freeze-drying protocols and were found to be independent of the freeze-dryer scale evidencing functional equivalence. The absence of an effect of the freeze-dryer scale on the process underlines the feasibility of the pilot scale freeze-dryer for further BCG freeze-drying process optimization which may be carried out using a medium without BCG. PMID:26981867
Demonstrating Functional Equivalence of Pilot and Production Scale Freeze-Drying of BCG.
Ten Have, R; Reubsaet, K; van Herpen, P; Kersten, G; Amorij, J-P
2016-01-01
Process analytical technology (PAT)-tools were used to monitor freeze-drying of Bacille Calmette-Guérin (BCG) at pilot and production scale. Among the evaluated PAT-tools, there is the novel use of the vacuum valve open/close frequency for determining the endpoint of primary drying at production scale. The duration of primary drying, the BCG survival rate, and the residual moisture content (RMC) were evaluated using two different freeze-drying protocols and were found to be independent of the freeze-dryer scale evidencing functional equivalence. The absence of an effect of the freeze-dryer scale on the process underlines the feasibility of the pilot scale freeze-dryer for further BCG freeze-drying process optimization which may be carried out using a medium without BCG.
On the relation between personality and job performance of airline pilots.
Hormann, H J; Maschke, P
1996-01-01
The validity of a personality questionnaire for the prediction of job success of airline pilots is compared to validities of a simulator checkflight and of flying experience data. During selection, 274 pilots applying for employment with a European charter airline were examined with a multidimensional personality questionnaire (Temperature Structure Scales; TSS). Additionally, the applicants were graded in a simulator checkflight. On the basis of training records, the pilots were classified as performing at standard or below standard after about 3 years of employment in the hiring company. In a multiple-regression model, this dichotomous criterion for job success can be predicted with 73.8% accuracy through the simulator checkflight and flying experience prior to employment. By adding the personality questionnaire to the regression equation, the number of correct classifications increases to 79.3%. On average, successful pilots score substantially higher on interpersonal scales and lower on emotional scales of the TSS.
A pilot-scale in situ chemical oxidation (ISCO) demonstration, involving subsurface injections of sodium permanganate (NaMnO4), was performed at the US Marine Corp Recruit Depot (MCRD), site 45 (Parris Island (PI), SC). The ground water was originally contaminated with perchloroe...
EPA RREL'S MOBILE VOLUME REDUCTION UNIT -- APPLICATIONS ANALYSIS REPORT
The volume reduction unit (VRU) is a pilot-scale, mobile soil washing system designed to remove organic contaminants from the soil through particle size separation and solubilization. The VRU removes contaminants by suspending them in a wash solution and by reducing the volume of...
NASA Astrophysics Data System (ADS)
Kröhnert, M.; Anderson, R.; Bumberger, J.; Dietrich, P.; Harpole, W. S.; Maas, H.-G.
2018-05-01
Grassland ecology experiments in remote locations requiring quantitative analysis of the biomass in defined plots are becoming increasingly widespread, but are still limited by manual sampling methodologies. To provide a cost-effective automated solution for biomass determination, several photogrammetric techniques are examined to generate 3D point cloud representations of plots as a basis, to estimate aboveground biomass on grassland plots, which is a key ecosystem variable used in many experiments. Methods investigated include Structure from Motion (SfM) techniques for camera pose estimation with posterior dense matching as well as the usage of a Time of Flight (TOF) 3D camera, a laser light sheet triangulation system and a coded light projection system. In this context, plants of small scales (herbage) and medium scales are observed. In the first pilot study presented here, the best results are obtained by applying dense matching after SfM, ideal for integration into distributed experiment networks.
Seo, Kyu Won; Choi, Yong-Su; Gu, Man Bock; Kwon, Eilhann E; Tsang, Yiu Fai; Rinklebe, Jörg; Park, Chanhyuk
2017-11-01
A pilot-scale investigation of membrane-based aerobic digestion system dominated by endospore-forming bacteria was evaluated as one of the potential sludge treatment processes (STP). Most of the organic matter in the sludge was removed (90.1%) by the particular bacteria in the STP, which consisted of mixed liquor suspended solid (MLSS) contact reactor (MCR), MLSS oxidation reactor (MOR), and membrane bioreactor (MBR). The sludge was accumulated in the MBR without wasting, and then the effluent in STP was fed into the first step in water resource recovery facility (WRRF). According to the analysis of microbial communities in all reactors, various Bacillus species were present in the STP, mainly due to their intrinsic resistance to the extreme conditions. As the surviving Bacillus species might consume degraded microorganisms for their growth, these endospore-forming bacteria-based STP could be suitable for the sludge reduction when they operated for a long time. Copyright © 2017 Elsevier Ltd. All rights reserved.
Müller, Astrid; Claes, Laurence; Wos, Katharina; Kerling, Arno; Wünsch-Leiteritz, Wally; Cook, Brian; de Zwaan, Martina
2015-01-01
The present pilot study investigated the relationship between temperament and the risk for exercise dependence (EXD). A total of 32 female patients with eating disorders (potentially at risk for secondary EXD) and 29 female elite athletes without eating disturbances (potentially at risk for primary EXD) answered the Eating Disorder Examination-Questionnaire (EDE-Q), the Exercise Dependence Scale-German version (EDS-G), the Behavioral Inhibition System/Behavioral Activation System (BIS/BAS) scales, and the effortful control subscale of the Adult Temperament Questionnaire (ATQ-EC). There were significant positive correlations of the EDS-G with the BIS in women with an eating disorder and with the BAS in elite athletes. No significant association was found between the EDS-G and effortful control. The results indicate that the risk for EXD is associated with avoidance tendencies in women with eating disorders and with approach tendencies in elite athletes. Implications for secondary and primary EXD are discussed. © 2015 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasbir Gill
2010-08-30
Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was amore » multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica/silicate are two common potential cycle-limiting minerals for using impaired waters. For produced waters, barium sulfate and calcium sulfate are two additional potential cycle-limiting minerals. For reclaimed municipal wastewater effluents, calcium phosphate scaling can be an issue, especially in the co-presence of high silica. Computational assessment, using a vast amount of Nalco's field data from coal fired power plants, showed that the limited use and reuse of impaired waters is due to the formation of deposit caused by the presence of iron, high hardness, high silica and high alkalinity in the water. Appropriate and cost-effective inhibitors were identified and developed - LL99B0 for calcite and gypsum inhibition and TX-15060 for silica inhibition. Nalco's existing dispersants HSP-1 and HSP-2 has excellent efficacy for dispersing Fe and Mn. ED and EDI were bench-scale tested by the CRADA partner Argonne National Laboratory for hardness, alkalinity and silica removal from synthetic make-up water and then cycled cooling water. Both systems showed low power consumption and 98-99% salt removal, however, the EDI system required 25-30% less power for silica removal. For Phase 2, the EDI system's performance was optimized and the length of time between clean-in-place (CIP) increased by varying the wafer composition and membrane configuration. The enhanced EDI system could remove 88% of the hardness and 99% of the alkalinity with a processing flux of 19.2 gal/hr/m{sup 2} and a power consumption of 0.54 kWh/100 gal water. Bench tests to screen alternative silica/silicate scale inhibitor chemistries have begun. The silica/silicate control approaches using chemical inhibitors include inhibition of silicic acid polymerization and dispersion of silica/silicate crystals. Tests were conducted with an initial silica concentration of 290-300 mg/L as SiO{sub 2} at pH 7 and room temperature. A proprietary new chemistry was found to be promising, compared with a current commercial product commonly used for silica/silicate control. Additional pilot cooling tower testing confirmed the bench study. We also developed a molecule to inhibit calcium carbonate precipitation and calcium sulfate precipitation at high supersaturations. During Phase 3, a long-term test of the EDI system and scale inhibitors was done at Nalco's cooling tower water testing facility, producing 850 gallons of high purity water (90+% salt removal) at a rate of 220 L/day. The EDI system's performance was stable when the salt concentration in the concentrate compartment (i.e. the EDI waste stream) was controlled and a CIP was done after every 48 hours of operation time. A combination of EDI and scale inhibitors completely eliminated blowdown discharge from the Pilot cooling Tower. The only water-consumption came from evaporation, CIP and EDI concentrate. Silica Inhibitor was evaluated in the field at a western coal fired power plant.« less
Yoza, Yoshiyasu; Ariyoshi, Koya; Honda, Sumihisa; Taniguchi, Hiroyuki; Senjyu, Hideaki
2009-10-01
Patients with COPD often experience restriction in their activities of daily living (ADL) due to dyspnea. This type of restriction is unique to patients with COPD and cannot be adequately evaluated by the generic ADL scales. This study developed an ADL scale (the Activity of Daily Living Dyspnea scale [ADL-D scale]) for patients with COPD and investigated its validity and internal consistency. Patients with stable COPD were recruited and completed a pilot 26-item questionnaire. Patients also performed the Incremental Shuttle Walk Test (ISWT), and completed the St George's Respiratory Questionnaire (SGRQ), and Medical Research Council (MRC) dyspnea grade. There were 83 male participants who completed the pilot questionnaire. Following the pilot, 8 items that were not undertaken by the majority of subjects, and 3 items judged to be of low clinical importance by physical therapists were removed from the pilot questionnaire. The final ADL-D scale contained 15 items. Scores obtained with the ADL-D scale were significantly correlated with the MRC dyspnea grades, distance walked on the ISWT and SGRQ scores. The ADL-D scores were significantly different across the five grades of the MRC dyspnea grade. The ADL-D scale showed high consistency (Chronbach's alpha coefficient of 0.96). The ADL-D scale is a useful scale for assessing impairments in ADL in Japanese male patients with COPD.
Lopes, A G; Keshavarz-Moore, E
2013-01-01
During centrifugation operation, the major challenge in the recovery of extracellular proteins is the removal of the maximum liquid entrapped within the spaces between the settled solids-dewatering level. The ability of the scroll decanter centrifuge (SDC) to process continuously large amounts of feed material with high concentration of solids without the need for resuspension of feeds, and also to achieve relatively high dewatering, could be of great benefit for future use in the biopharmaceutical industry. However, for reliable prediction of dewatering in such a centrifuge, tests using the same kind of equipment at pilot-scale are required, which are time consuming and costly. To alleviate the need of pilot-scale trials, a novel USD device, with reduced amounts of feed (2 mL) and to be used in the laboratory, was developed to predict the dewatering levels of a SDC. To verify USD device, dewatering levels achieved were plotted against equivalent compression (Gtcomp ) and decanting (Gtdec ) times, obtained from scroll rates and feed flow rates operated at pilot-scale, respectively. The USD device was able to successfully match dewatering trends of the pilot-scale as a function of both Gtcomp and Gtdec , particularly for high cell density feeds, hence accounting for all key variables that influenced dewatering in a SDC. In addition, it accurately mimicked the maximum dewatering performance of the pilot-scale equipment. Therefore the USD device has the potential to be a useful tool at early stages of process development to gather performance data in the laboratory thus minimizing lengthy and costly runs with pilot-scale SDC. © 2013 American Institute of Chemical Engineers.
Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland
2015-01-01
The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded. PMID:26393620
Cueva, Juan F; Calvo, Marcos; Anido, Urbano; León, Luis; Gallardo, Elena; Areses, Carmen; Bernárdez, Beatriz; Gayoso, Lucía; García, Jorge; Jesús Lamas, María; Curiel, Teresa; Vázquez, Francisca; Candamio, Sonia; Vidal, Yolanda; Javier Barón, Francisco; López, Rafael
2012-04-01
The objectives of this pilot study were to evaluate the safety and efficacy of the central nervous system stimulant methylphenidate in the management of asthenia in breast cancer patients treated with docetaxel. Patients with early breast cancer who presented asthenia >3 on the Visual Analogue Scale (VAS) after the first cycle of docetaxel-based chemotherapy were included. Patients received two additional cycles of chemotherapy, one with methylphenidate (10 mg bid) and the other without methylphenidate. Asthenia was evaluated using VAS and the Functional Assessment of Cancer Therapy-Fatigue (FACT-F) scale. Distress was assessed using the Hospital Anxiety and Depression Scale (HADS), and quality of life using FACT-F. Ten patients were included and evaluated for efficacy and safety. Overall, cycles with methylphenidate were better tolerated than those without methylphenidate in terms of asthenia (VAS, p = 0.004; FACT-F, p = 0.027) and quality of life (FACT-F, p = 0.047). No significant differences were observed in terms of distress (HADS, p = 0.297). Six (60%) patients continued with methylphenidate after study end. Main adverse events during study were palpitations and insomnia (30% of patients each). This pilot study suggests that methylphenidate may reduce asthenia and improve quality of life in breast cancer patients treated with docetaxel.
Conduct and Results of YF-16 RPRV Stall/Spin Drop Model Tests
1977-04-01
Bomb Recovery System Tests Iron Bird Recovery System Tests Captive Flights Typical Flight Operations Flight Planning and Pilot Training...helicopter tow qualification test, one model tow qualification test, three Iron Bird parachute recovery system verification tests, three captive tests...Corresponding Full-Scale YF-16 Altitude -Reference 1: Woodcock , Robert J., Some Notes on Free-Flight Model Seal- ing, AFFDL-TM-73-123-FCC, Air Force Flight
Dominic, Christopher Cyril Sandeep; Szakasits, Megan; Dean, Lisa O; Ducoste, Joel J
2013-01-01
Sanitary sewer overflows are caused by the accumulation of insoluble calcium salts of fatty acids, which are formed by the reaction between fats, oils and grease (FOG) and calcium found in wastewaters. Different sewer structural configurations (i.e., manholes, pipes, wet wells), which vary spatially, along with other obstructions (roots intrusion) and pipe deformations (pipe sags), may influence the detrimental buildup of FOG deposits. The purpose of this study was to quantify the spatial variation in FOG deposit formation and accumulation in a pilot-scale sewer collection system. The pilot system contained straight pipes, manholes, roots intrusion, and a pipe sag. Calcium and oil were injected into the system and operated at alkaline (pH = 10) and neutral (pH = 7) pH conditions. Results showed that solid accumulations were slightly higher at neutral pH. Fourier transform infrared (FTIR) analysis on the solids samples confirmed that the solids were indeed calcium-based fatty acid salts. However, the fatty acid profiles of the solids deviated from the profile found from FOG deposits in sewer systems, which were primarily saturated fatty acids. These results confirm the work done previously by researchers and suggest an alternative fate of unsaturated fatty acids that does not lead to their incorporation in FOG deposits in full-scale sewer systems.
Camp, Bayliss J
2013-12-01
In 2007, the California Department of Motor Vehicles (DMV) undertook a pilot study of the 3-Tier Assessment System, the purpose of which was to examine, in a large-scale real-time public agency setting, the effectiveness of this method for both reducing the crash risk of individual drivers and for extending the safe driving years of Californian drivers of all ages. The 3-Tier Assessment System consisted of tiered series of screening tools incorporated into the in-office driver's license renewal process. These screening tools identified drivers with various kinds of functional limitations (physical, visual, and cognitive/perceptual), that might impact safe driving. Paired with the screening tools were educational materials designed to improve drivers' knowledge of their own limitations, including compensating techniques. The present study is a population-based evaluation of the effects of the pilot on subsequent crash risk and mobility outcomes (including delicensure) of participating drivers age 70 and older. Pilot participants were compared with two control groups processed according to standard California DMV license renewal procedures. Because the 3-Tier Assessment System was designed to identify limitations normally associated with aging, the present analyses focus on drivers age 70 and older. However, it should be emphasized that during the 3-Tier pilot the screening tools were applied to drivers of all ages. There were two main findings. First, there were no consistent, statistically significant differences between the pilot and control groups in crash risk in the two years following screening. Second, pilot participants experienced statistically significant effects on mobility. These effects included delays in time to complete their license renewal, an increase in the number of assigned license restrictions, and an increase in the number of customers failing to renew their driving privilege. Based on these findings, suggestions for further research are made. None. © 2013.
Remmas, Nikolaos; Ntougias, Spyridon; Chatzopoulou, Marianna; Melidis, Paraschos
2018-03-29
Despite the fact that biological nitrogen removal (BNR) process has been studied in detail in laboratory- and pilot-scale sequencing batch reactor (SBR) systems treating landfill leachate, a limited number of research works have been performed in full-scale SBR plants regarding nitrification and denitrification. In the current study, a full-scale twin SBR system in series of 700 m 3 (350 m 3 each) treating medium-age landfill leachate was evaluated in terms of its carbon and nitrogen removal efficiency in the absence and presence of external carbon source, i.e., glycerol from biodiesel production. Both biodegradable organic carbon and ammonia were highly oxidized [biochemical oxygen demand (BOD 5 ) and total Kjehldahl nitrogen (TKN) removal efficiencies above 90%], whereas chemical oxygen demand (COD) removal efficiency was slightly above 40%, which is within the range reported in the literature for pilot-scale SBRs. As the consequence of the high recalcitrant organic fraction of the landfill leachate, dissimilatory nitrate reduction was restricted in the absence of crude glycerol, although denitrification was improved by electron donor addition, resulting in TN removal efficiencies above 70%. Experimental data revealed that the second SBR negligibly contributed to BNR process, since carbon and ammonia oxidation completion was achieved in the first SBR. On the other hand, the low VSS/SS ratio, due to the lack of primary sedimentation, highly improved sludge settleability, resulting in sludge volume indices (SVI) below 30 mL g -1 .
Martínez-Soria, Vicente; Gabaldón, Carmen; Penya-Roja, Josep M; Palau, Jordi; Alvarez-Hornos, F Javier; Sempere, Feliu; Soriano, Carlos
2009-08-01
A 0.75-m3 pilot-scale biotrickling filter was run for over 1 yr in a Spanish furniture company to evaluate its performance in the removal of volatile organic compounds (VOCs) contained in the emission of two different paint spray booths. The first one was an open front booth used to manually paint furniture, and the second focus was an automatically operated closed booth operated to paint pieces of furniture. In both cases, the VOC emissions were very irregular, with rapid and extreme fluctuations. The pilot plant was operated at an empty bed residence time (EBRT) ranging from 10 to 40 sec, and good removal efficiencies of VOCs were usually obtained. When a buffering activated carbon prefilter was installed, the system performance was improved considerably, so a much better compliance with legal constraints was reached. After different shutdowns in the factory, the period to recover the previous performance of the biotrickling reactor was minimal. A weekend dehydration strategy was developed and implemented to control the pressure drop associated with excessive biomass accumulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radisav Vidic; David Dzombak; Ming-Kai Hsieh
2009-06-30
This study evaluated the feasibility of using three impaired waters - secondary treated municipal wastewater, passively treated abandoned mine drainage (AMD), and effluent from ash sedimentation ponds at power plants - for use as makeup water in recirculating cooling water systems at thermoelectric power plants. The evaluation included assessment of water availability based on proximity and relevant regulations as well as feasibility of managing cooling water quality with traditional chemical management schemes. Options for chemical treatment to prevent corrosion, scaling, and biofouling were identified through review of current practices, and were tested at bench and pilot-scale. Secondary treated wastewater ismore » the most widely available impaired water that can serve as a reliable source of cooling water makeup. There are no federal regulations specifically related to impaired water reuse but a number of states have introduced regulations with primary focus on water aerosol 'drift' emitted from cooling towers, which has the potential to contain elevated concentrations of chemicals and microorganisms and may pose health risk to the public. It was determined that corrosion, scaling, and biofouling can be controlled adequately in cooling systems using secondary treated municipal wastewater at 4-6 cycles of concentration. The high concentration of dissolved solids in treated AMD rendered difficulties in scaling inhibition and requires more comprehensive pretreatment and scaling controls. Addition of appropriate chemicals can adequately control corrosion, scaling and biological growth in ash transport water, which typically has the best water quality among the three waters evaluated in this study. The high TDS in the blowdown from pilot-scale testing units with both passively treated mine drainage and secondary treated municipal wastewater and the high sulfate concentration in the mine drainage blowdown water were identified as the main challenges for blowdown disposal. Membrane treatment (nanofiltration or reverse osmosis) can be employed to reduce TDS and sulfate concentrations to acceptable levels for reuse of the blowdown in the cooling systems as makeup water.« less
CSC Tip Sheets: Conducting and Evaluating Pilot Projects
Learn how to conduct and evaluate pilot projects, which are opportunities to “test the waters” for your project on a small scale, provide insight and data on what works, and adjust your strategy for full-scale implementation.
ORGANIC EMISSIONS FROM PILOT-SCALE INCINERATION OF CFCS
The paper gives results of the characterization of organic emissions resulting from the pilot-scale incineration of trichlorofluoromethane (CFC-11) and dichlorodifluoromethane (CFC-12) under varied feed concentrations. (NOTE: As a result of the Montreal Protocol, an international...
Durán, A; Monteagudo, J M; San Martín, I
2012-05-15
The aim of this work was to study the operation costs of treating a real effluent from an integrated gasification combined cycle (IGCC) power station located in Spain. The study compares different homogeneous photocatalytic processes on a pilot plant scale using different types of radiation (artificial UV or solar UV with a compound parabolic collector). The efficiency of the processes was evaluated by an analysis of the total organic carbon (TOC) removed. The following processes were considered in the study: (i) a photo-Fenton process at an artificial UV pilot plant (with the initial addition of H(2)O(2)), (ii) a modified photo-Fenton process with continuous addition of H(2)O(2) and O(2) to the system and (iii) a ferrioxalate-assisted solar photo-Fenton process at a compound parabolic collector (CPC) pilot plant. The efficiency of these processes in degrading pollutants has been studied previously, and the results obtained in each of those studies have been published elsewhere. The operational costs due to the consumption of electrical energy, reagents and catalysts were calculated from the optimal conditions of each process. The results showed that the solar photo-Fenton system was economically feasible, being able to achieve up to 75% mineralization with a total cost of 6 €/m(3), which can be reduced to 3.6 €/m(3) by subtracting the electrical costs because the IGCC plant is self-sufficient in terms of energy. Copyright © 2011 Elsevier Ltd. All rights reserved.
SITE - EMERGING TECHNOLOGY: REMOVAL AND RECOVERY OF METAL IONS FROM GROUNDWATER - APPENDICES
A series of laboratory tests and an on-site pilot scale demonstration of Bio-Recovery Systems' AlgaSORB technology for the removal and recovery of mercury-contaminated groundwater were conducted under the SITE program. ptimum conditions were determined for mercury binding to Alga...
VOC REMOVAL FROM WATER AND SURFACTANT SOLUTIONS BY PERVAPORATION: A PILOT STUDY
The removal of VOCs from aqueous solutions via pervaporation is an established technology that has been successfully demonstrated at the full scale. The purpose of this research was to measure the effect of DOWFAX 8390 surfactant addition on pervaporation system performance and ...
The report gives results of pilot-scale incineration testing to develop a comprehensive list of products of incomplete combustion (PICs) from hazardous waste combustion (HWC) systems. Project goals were to: (1) identify the total mass of organic compounds sufficiently to estimate...
A COMPLETE DISPOSAL-RECYCLE SCHEME FOR AGRICULTURAL SOLID WASTES
This investigation applied the anaerobic process to the production of methane gas and a stabilized sludge from cow manure and farm clippings in laboratory pilot plants as well as a full-scale (2,000 gal.) digester system. The quantity and quality of gas produced, the biochemical ...
SODIUM DITHIONITE INJECTIONS USED FOR CHROMIUM REDUCTION
A field-scale pilot study was conducted in 1999 at the U.S. Coast Guard Support Center in Elizabeth City, NC, to evaluate the effectiveness of injecting sodium dithionite into the upper aquifer and lower vadose zone to create a permeable reactive barrier (PRB) system utilizing na...
Modified Light Duty AM2 Capability Assessment
The Modified Light -Duty AM2 matting was designed specifically for lightweight, remote-piloted aircraft (RPA) applications. An in- depth study was... Ratio (CBR) of 6. To understand the full potential of the Modified Light -Duty AM2, a full- scale evaluation was performed with contingency C-17 and...stir welding for use in fabrication of the lightweight RPA matting in conjunction with a full- scale test on the Modified Light -Duty AM2 matting system
Chien, Shih-Hsiang; Chowdhury, Indranil; Hsieh, Ming-Kai; Li, Heng; Dzombak, David A; Vidic, Radisav D
2012-12-01
Secondary-treated municipal wastewater, an abundant and widely distributed impaired water source, is a promising alternative water source for thermoelectric power plant cooling. However, excessive biological growth is a major challenge associated with wastewater reuse in cooling systems as it can interfere with normal system operation as well as enhance corrosion and scaling problems. Furthermore, possible emission of biological aerosols (e.g., Legionella pneumophila) with the cooling tower drift can lead to public health concerns within the zone of aerosol deposition. In this study, the effectiveness of pre-formed and in-situ-formed monochloramine was evaluated for its ability to control biological growth in recirculating cooling systems using secondary-treated municipal wastewater as the only makeup water source. Bench-scale studies were compared with pilot-scale studies for their ability to predict system behavior under realistic process conditions. Effectiveness of the continuous addition of pre-formed monochloramine and monochloramine formed in-situ through the reaction of free chlorine with ammonia in the incoming water was evaluated in terms of biocide residual and its ability to control both planktonic and sessile microbial populations. Results revealed that monochloramine can effectively control biofouling in cooling systems employing secondary-treated municipal wastewater and has advantages relative to use of free chlorine, but that bench-scale studies seriously underestimate biocide dose and residual requirements for proper control of biological growth in full-scale systems. Pre-formed monochloramine offered longer residence time and more reliable performance than in-situ-formed monochloramine due to highly variable ammonia concentration in the recirculating water caused by ammonia stripping in the cooling tower. Pilot-scale tests revealed that much lower dosing rate was required to maintain similar total chlorine residual when pre-formed monochloramine was used as compared to in-situ-formed monochloramine. Adjustment of biocide dose to maintain monochloramine residual above 3mg/L is needed to achieve successful biological growth control in recirculating cooling systems using secondary-treated municipal effluent as the only source of makeup water. Copyright © 2012 Elsevier Ltd. All rights reserved.
Patent foramen ovale and asymptomatic brain lesions in military fighter pilots.
Kang, Kyung Wook; Kim, Joon-Tae; Choi, Won-Ho; Park, Won-Ju; Shin, Young Ho; Choi, Kang-Ho
2014-10-01
Previous studies have reported higher incidence of white matter lesions (WMLs) in military pilots. The anti-gravity straining maneuver, which fighter military pilots perform numerously during a flight is identical to the valsalva maneuver. We sought to investigate the prevalence of right-to-left shunt (RLS) associated with WMLs in military pilots. A prospective study was performed involving military pilots who visited the Airomedical Center. The pilots underwent brain magnetic resonance imaging (MRI) scan and transcranial Doppler (TCD) with intravenous injection of agitated saline solution for the detection of RLS. Periventricular WMLs (PVWMLs) on MRI were graded using Fazeka's scale, and deep WMLs (DWMLs) were graded using Scheltens's scale. This study included 81 military pilots. RLS on TCD was observed less frequently in non-fighter pilots than in fighter pilots (35.5% vs. 64.5%, p=0.011). Fighter pilot was an independently associated factor with RLS on the TCD. DWMLs were independently associated with RLSs through a patent foramen ovale (PFO) (OR 3.507, 95% CI 1.223-10.055, p=0.02). The results suggest that DWMLs in military pilots may significantly be associated with RLS via PFO. Additional investigations are warranted. Copyright © 2014 Elsevier B.V. All rights reserved.
A Novel Electronic Data Collection System for Large-Scale Surveys of Neglected Tropical Diseases
King, Jonathan D.; Buolamwini, Joy; Cromwell, Elizabeth A.; Panfel, Andrew; Teferi, Tesfaye; Zerihun, Mulat; Melak, Berhanu; Watson, Jessica; Tadesse, Zerihun; Vienneau, Danielle; Ngondi, Jeremiah; Utzinger, Jürg; Odermatt, Peter; Emerson, Paul M.
2013-01-01
Background Large cross-sectional household surveys are common for measuring indicators of neglected tropical disease control programs. As an alternative to standard paper-based data collection, we utilized novel paperless technology to collect data electronically from over 12,000 households in Ethiopia. Methodology We conducted a needs assessment to design an Android-based electronic data collection and management system. We then evaluated the system by reporting results of a pilot trial and from comparisons of two, large-scale surveys; one with traditional paper questionnaires and the other with tablet computers, including accuracy, person-time days, and costs incurred. Principle Findings The electronic data collection system met core functions in household surveys and overcame constraints identified in the needs assessment. Pilot data recorders took 264 (standard deviation (SD) 152 sec) and 260 sec (SD 122 sec) per person registered to complete household surveys using paper and tablets, respectively (P = 0.77). Data recorders felt a lack of connection with the interviewee during the first days using electronic devices, but preferred to collect data electronically in future surveys. Electronic data collection saved time by giving results immediately, obviating the need for double data entry and cross-correcting. The proportion of identified data entry errors in disease classification did not differ between the two data collection methods. Geographic coordinates collected using the tablets were more accurate than coordinates transcribed on a paper form. Costs of the equipment required for electronic data collection was approximately the same cost incurred for data entry of questionnaires, whereas repeated use of the electronic equipment may increase cost savings. Conclusions/Significance Conducting a needs assessment and pilot testing allowed the design to specifically match the functionality required for surveys. Electronic data collection using an Android-based technology was suitable for a large-scale health survey, saved time, provided more accurate geo-coordinates, and was preferred by recorders over standard paper-based questionnaires. PMID:24066147
PILOT-SCALE STUDIES ON THE INCINERATION OF ELECTRONICS INDUSTRY WASTE
The paper describes experiments performed on a pilot-scale rotary kiln incinerator to investigate the emissions and operational behavior during the incineration of consumer electronics waste. These experiments were targeted at destroying the organic components of printed circuit ...
Proteus DSA control room in Mojave, CA
2003-04-03
Proteus DSA control room in Mojave, CA (L to R) Jean-Pierre Soucy; Amphitech International Software engineer Craig Bomben; NASA Dryden Test Pilot Pete Siebold; (with headset, at computer controls) Scaled Composites pilot Bob Roehm; New Mexico State University (NMSU) UAV Technical Analysis Application Center (TAAC) Chuck Coleman; Scaled Composites Pilot Kari Sortland; NMSU TAAC Russell Wolfe; Modern Technology Solutions, Inc. Scaled Composites' unique tandem-wing Proteus was the testbed for a series of UAV collision-avoidance flight demonstrations. An Amphitech 35GHz radar unit installed below Proteus' nose was the primary sensor for the Detect, See and Avoid tests.
2013-01-01
The use of new adjuvants in vaccine formulations is a subject of current research. Only few parenteral adjuvants have been licensed. We have developed a mucosal and parenteral adjuvant known as AFCo1 (Adjuvant Finlay Cochleate 1, derived from proteoliposomes of N. meningitidis B) using a dialysis procedure to produce them on lab scale. The immunogenicity of the AFCo1 produced by dialysis has been already evaluated, but it was necessary to demonstrate the feasibility of a larger-scale manufacturing process. Therefore, we used a crossflow diafiltration system (CFS) that allows easy scale up to obtain large batches in an aseptic environment. The aim of this work was to produce AFCo1 on pilot scale, while conserving the adjuvant properties. The proteoliposomes (raw material) were resuspended in a buffer containing sodium deoxycholate and were transformed into AFCo1 under the action of a calcium forming buffer. The detergent was removed from the protein solution by diafiltration to a constant volume. In this CFS, we used a hollow fiber cartridge from Amicon (polysulfona cartridge of 10 kDa porosity, 1mm channel diameter of fiber and 0.45 m2 area of filtration), allowing production of a batch of up to 20 L. AFCo1 were successfully produced by tangential filtration to pilot scale. The batch passed preliminary stability tests. Nasal immunization of BALB/c mice, induced specific saliva IgA and serum IgG. The induction of Th1 responses were demonstrated by the induction of IgG2a, IFNγ and not IL-5. The adjuvant action over Neisseria (self) antigens and with co-administered (heterologous) antigens such as ovalbumin and a synthetic peptide from haemolytic Streptococcus B was also demonstrated. PMID:23458578
PILOT PEAT-BED TREATMENT SYSTEM FOR NPDES OUTFALL H-12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halverson, N; Ralph Nichols, R; Topher Berry, T
2007-10-22
A National Pollutant Discharge Elimination System (NPDES) Permit was issued to the Savannah River Site (SRS) by the South Carolina Department of Health and Environmental Control (SCDHEC) and became effective on December 1, 2003. The new permit contained revised limits for copper and zinc derived by adjusting the South Carolina aquatic life water quality standards in accordance with dissolved metals criteria. The new copper and zinc limits are very low and may not be met consistently at Outfall H-12. The outfall has periodically exceeded the new 6 {micro}g/l (0.006 mg/L) monthly average limit and the 8 {micro}g/l (0.008 mg/L) maximummore » limit for copper and recently has begun exceeding the 100 {micro}g/l (0.100 mg/L) limit for zinc. The compliance date for Outfall H-12 is November 1, 2008. A study was conducted on this outfall and other outfalls to evaluate possible alternatives for meeting the new permit limits (Shipman and Bugher 2004). The study team recommended construction of a peat bed for treatment of the Outfall H-12 effluent. This recommendation was repeated by a second alternatives study team in 2007 (WSRC 2007). A bench-scale laboratory study demonstrated the feasibility of peat-bed treatment for Outfall H-12 effluent, with the peat demonstrating excellent removal of copper (Nelson and Specht 2005). An additional study was performed in 2006 and early 2007 using vertical-flow peat columns to investigate the influence of water retention time (contact time) on the removal of copper and zinc from the water (Nelson 2007c). Analytical results indicated that copper removal was very high at each of the three retention times tested, ranging from 99.6% removal at five and three hours to 98.8% removal at one hour. Effluent copper levels from these studies were much lower than the new compliance limit for the outfall. Most divalent metals, including zinc, were removed to below their normal reporting detection limit. The H-Area Material Disposition organization requested a larger-scale study to investigate key design and operation parameters/issues, such as the possibility of rapid plugging of the piping or clogging of the peat bed, the effectiveness of the treatment, hydraulic conductivity, etc. The resulting pilot-scale facility was constructed adjacent to Outfall H-12 with SCDHEC approval (Mullinax 2007). The pilot-scale study was performed by the Savannah River National Laboratory's (SRNL) Environmental Science and Biotechnology Directorate personnel. Since the construction and operation of the pilot-scale peat bed facility, however, a new strategy for achieving compliance of Outfall H-12 effluent with the new permit limits has been selected. This new strategy incorporates a variety of efforts including source reduction, recalculation of limits using an aquatic species that is indigenous to the area instead of a standard species, and dissolved organic carbon addition to reduce copper toxicity. This report documents the construction and operation of the pilot-scale treatment system, the results obtained, and recommendations on the usefulness of this technology for Outfall H-12 or other outfalls at SRS.« less
Instrumentation and control system for an F-15 stall/spin
NASA Technical Reports Server (NTRS)
Pitts, F. L.; Holmes, D. C. E.; Zaepfel, K. P.
1974-01-01
An instrumentation and control system is described that was used for radio-controlled F-15 airplane model stall/spin research at the NASA-Langley Research Center. This stall/spin research technique, using scale model aircraft, provides information on the post-stall and spin-entry characteristics of full-scale aircraft. The instrumentation described provides measurements of flight parameters such as angle of attack and sideslip, airspeed, control-surface position, and three-axis rotation rates; these data are recorded on an onboard magnetic tape recorder. The proportional radio control system, which utilizes analog potentiometric signals generated from ground-based pilot inputs, and the ground-based system used in the flight operation are also described.
AirSTAR: A UAV Platform for Flight Dynamics and Control System Testing
NASA Technical Reports Server (NTRS)
Jordan, Thomas L.; Foster, John V.; Bailey, Roger M.; Belcastro, Christine M.
2006-01-01
As part of the NASA Aviation Safety Program at Langley Research Center, a dynamically scaled unmanned aerial vehicle (UAV) and associated ground based control system are being developed to investigate dynamics modeling and control of large transport vehicles in upset conditions. The UAV is a 5.5% (seven foot wingspan), twin turbine, generic transport aircraft with a sophisticated instrumentation and telemetry package. A ground based, real-time control system is located inside an operations vehicle for the research pilot and associated support personnel. The telemetry system supports over 70 channels of data plus video for the downlink and 30 channels for the control uplink. Data rates are in excess of 200 Hz. Dynamic scaling of the UAV, which includes dimensional, weight, inertial, actuation, and control system scaling, is required so that the sub-scale vehicle will realistically simulate the flight characteristics of the full-scale aircraft. This testbed will be utilized to validate modeling methods, flight dynamics characteristics, and control system designs for large transport aircraft, with the end goal being the development of technologies to reduce the fatal accident rate due to loss-of-control.
Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed.
Yu, Yong-Ho; Chung, Jinwook
2015-01-01
This study characterizes the combustion of paper and sewage sludge in a pilot-scale fluidized bed. The highest temperature during combustion within the system was found at the surface of the fluidized bed. Paper sludge containing roughly 59.8% water was burned without auxiliary fuel, but auxiliary fuel was required to incinerate the sewage sludge, which contained about 79.3% water. The stability of operation was monitored based on the average pressure and the standard deviation of pressure fluctuations. The average pressure at the surface of the fluidized bed decreased as the sludge feed rate increased. However, the standard deviation of pressure fluctuations increased as the sludge feed rate increased. Finally, carbon monoxide (CO) emissions decreased as oxygen content increased in the flue gas, and nitrogen oxide (NOx) emissions were also tied with oxygen content.
Lopez-Alvarez, Blady; Torres-Palma, Ricardo A; Peñuela, Gustavo
2011-07-15
In this work the TiO(2) solar-photocatalytical degradation of the pesticide carbofuran (CBF) in water, at lab and pilot scale, was studied. At lab scale the evaluation of CBF concentration (14-282 μmol L(-1)) showed that the system followed a Langmuir-Hinshelwood kinetics type. TiO(2) concentration (0.05-2 g L(-1)) and initial pH (3-9) were also evaluated and optimized using the surface response methodology and the Pareto diagram. In the range of variables studied, initial pH 7.60 and 1.43 g L(-1) of TiO(2) favoured the efficiency of the process. Under optimal conditions the evolution of substrate, chemical oxygen demand, dissolved organic carbon, toxicity and organics by-products were evaluated. In the pilot scale tests, using direct sunlight, 55 mg L(-1) of CBF in a commercial formulation was eliminated after 420 min; while after 900 min of treatment 80% of toxicity (1/E(50) on Vibrium Fischeri), 80% of chemical oxygen demand and 60% of dissolved organic carbon were removed. The analysis and evolution of five CBF by-products, as well the evaluation of the treatment in the presence of isopropanol or using acetonitrile as a solvent suggest that the degradation is mainly carried out by OH radical attack. Finally, a schema depicting the main degradation pathway is proposed. Copyright © 2011 Elsevier B.V. All rights reserved.
BioTrol, Inc., developed a two-stage, methanotrophic, bioreactor system for remediation of water contaminated with trichloroethylene (TCE) and other chlorinated, volatile, aliphatic hydrocarbons. The first stage was a suspended-growth culture vessel with a bubbleless methane tran...
We produced a scientifically defensible methodology to assess whether a regional system is on a sustainable path. The approach required readily available data, metrics applicable to the relevant scale, and results useful to decision makers. We initiated a pilot project to test ...
OPERATIONS AND RESEARCH AT THE U.S. EPA INCINERATION RESEARCH FACILITY: ANNUAL REPORT FOR FY94
The U.S. Environmental Protection Agency’s Incineration Research Facility (IRF) in Jefferson, Arkansas, is an experimental facifity that houses a pilot-scale rotary kiln incineration system (RKS) and the associated waste handling, emission control, process control, and safety equ...
Characterizing The Microbial Community In A TCE DNAPL Site: SABRE Column And Field Studies
The SABRE (Source Area BioREmediation) project is evaluating accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. In support of a field scale pilot test, column studies were conducted to design the system and ob...
WET OXIDATION OF MUNICIPAL SLUDGE BY THE VERTICAL TUBE REACTOR
A study was undertaken to assess the feasibility of carrying out oxidation of dilute sewage sludge by means of the vertical tube reactor (VTR) system. A pilot scale facility along with a laboratory reactor were used for this study. Dilute sewage sludge was oxidized in the laborat...
DEMONSTRATION BULLETIN: MOBILE VOLUME REDUCTION UNIT - U.S. ENVIRONMENTAL PROTECTION AGENCY
The Volume Reduction Unit (VRU), which was developed by EPA, is a mobile, pilot-scale soil washing system for stand-alone field use in cleaning soil contaminated with hazardous substances. Removal efficiencies depend on the contaminant as well as the type of soil. Soil washing...
Effects of fly ash loading; ash-borne, extractable organics; sulfur dioxide (SO2) and hydrogen chloride concentration; and combustion quality on the formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) were evaluated in pilot scale tests simu...
The report describes the use of a pilot-scale catalytic incineration unit/solvent generation system to investigate the effectiveness of catalytic incineration as a way to destroy volatile organic compounds (VOCs) and hazardous/toxic air pollutants (HAPs). Objectives of the study ...
The development of the MELiSSA Pilot Plant Facility
NASA Astrophysics Data System (ADS)
Godia, Francesc; Dussap, Claude-Gilles; Dixon, Mike; Peiro, Enrique; Fossen, Arnaud; Lamaze, Brigitte; Brunet, Jean; Demey, Dries; Mas-Albaigès, Joan L.
MELiSSA (Micro-Ecological Life Support System Alternative) is a closed artificial ecosystem intended as a tool for the development of a bio-regenerative life support system for longterm manned missions. The MELiSSA loop is formed by five interconnected compartments, organized in three different loops (solid, liquid and gas). This compartments are microbial bioreactors and higher plant chambers. The MELiSSA Pilot Plant facility has been designed to achieve the preliminary terrestrial demonstration of the MELiSSA concept at pilot scale, using animals as a model for the crew compartent. The experience gained in the operation of such a facility will be highly relevant for planning future life support systems in Space. In this communication, the latests developments in the MELiSSA Pilot Plant will be reported. Particularly, the completion of the design phase and instalation of all the different compartments will be discussed in detail. Each of the compartments had to be designed and constructed according to very specific characteristics, associated to the biological systems to be cultured, as part of the complete MELiSSA loop (anerobic, oxygenic, thermophilic, heterotrophic, autotrophic, axenic, photosynthetic, etc.). Additionally, the sizing of each reactor (ranging from 8 to 100 Liters, depending of each particular compartment) should compile with the global integration scenario proposed, and with the final goal of connection of all compartments to provide a demonstration of the MELiSSA concept, and generate data for the design and operation of future biological life support systems.
EVALUATING CAPACITIES OF GAC PRELOADED WITH NATURAL WATER
Adsorption studies are conducted to determine how preloading a natural groundwater onto GAC affects the adsorption of cis-1,2-dichloroexthene in small-scale and pilot-scale columns. Capacities are determined from batch-isotherm tests, microcolumns, and pilot columns, which are p...
JPL Activated Carbon Treatment System (ACTS) for sewage
NASA Technical Reports Server (NTRS)
1976-01-01
An Activated Carbon Treatment System (ACTS) was developed for sewage treatment and is being applied to a one-million gallon per day sewage treatment pilot plant in Orange County California. Activities reported include pyrolysis and activation of carbon-sewage sludge, and activated carbon treatment of sewage to meet ocean discharge standards. The ACTS Sewage treatment operations include carbon-sewage treatment, primary and secondary clarifiers, gravity (multi-media) filter, filter press dewatering, flash drying of carbon-sewage filter cake, and sludge pyrolysis and activation. Tests were conducted on a laboratory scale, 10,000 gallon per day demonstration plant and pilot test equipment. Preliminary economic studies are favorable to the ACTS process relative to activated sludge treatment for a 175,000,000 gallon per day sewage treatment plant.
Expanding AirSTAR Capability for Flight Research in an Existing Avionics Design
NASA Technical Reports Server (NTRS)
Laughter, Sean A.
2012-01-01
The NASA Airborne Subscale Transport Aircraft Research (AirSTAR) project is an Unmanned Aerial Systems (UAS) test bed for experimental flight control laws and vehicle dynamics research. During its development, the test bed has gone through a number of system permutations, each meant to add functionality to the concept of operations of the system. This enabled the build-up of not only the system itself, but also the support infrastructure and processes necessary to support flight operations. These permutations were grouped into project phases and the move from Phase-III to Phase-IV was marked by a significant increase in research capability and necessary safety systems due to the integration of an Internal Pilot into the control system chain already established for the External Pilot. The major system changes in Phase-IV operations necessitated a new safety and failsafe system to properly integrate both the Internal and External Pilots and to meet acceptable project safety margins. This work involved retrofitting an existing data system into the evolved concept of operations. Moving from the first Phase-IV aircraft to the dynamically scaled aircraft further involved restructuring the system to better guard against electromagnetic interference (EMI), and the entire avionics wiring harness was redesigned in order to facilitate better maintenance and access to onboard electronics. This retrofit and harness re-design will be explored and how it integrates with the evolved Phase-IV operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Paul Allen
The purpose of this report is to present the results of a small pilot-scale test using PAA to disinfect a side stream of the effluent from the ORNL STP. These results provide the basis for requesting approval for full-scale use of PAA at the ORNL STP.
Jones, Brandon W; Venditti, Richard; Park, Sunkyu; Jameel, Hasan
2014-09-01
Mechanical refining has been shown to improve biomass enzymatic digestibility. In this study industrial high-yield sodium carbonate hardwood pulp was subjected to lab, pilot and industrial refining to determine if the mechanical refining improves the enzymatic hydrolysis sugar conversion efficiency differently at different refining scales. Lab, pilot and industrial refining increased the biomass digestibility for lignocellulosic biomass relative to the unrefined material. The sugar conversion was increased from 36% to 65% at 5 FPU/g of biomass with industrial refining at 67.0 kWh/t, which was more energy efficient than lab and pilot scale refining. There is a maximum in the sugar conversion with respect to the amount of refining energy. Water retention value is a good predictor of improvements in sugar conversion for a given fiber source and composition. Improvements in biomass digestibility with refining due to lab, pilot plant and industrial refining were similar with respect to water retention value. Published by Elsevier Ltd.
USDA-ARS?s Scientific Manuscript database
This study evaluated the effectiveness of a supercritical carbon dioxide (SCCO2) system, with a gas-liquid CO2 contactor, for reducing Escherichia coli K12 in diluted buffered peptone water. 0.1% (w/v) buffered peptone water inoculated with E. coli K12 was processed using the SCCO2 system at CO2 con...
The effects of workload on respiratory variables in simulated flight: a preliminary study.
Karavidas, Maria Katsamanis; Lehrer, Paul M; Lu, Shou-En; Vaschillo, Evgeny; Vaschillo, Bronya; Cheng, Andrew
2010-04-01
In this pilot study, we investigated respiratory activity and end-tidal carbon dioxide (P(et)CO(2)) during exposure to varying levels of work load in a simulated flight environment. Seven pilots (age: 34-60) participated in a one-session test on the Boeing 737-800 simulator. Physiological data were collected while pilots wore an ambulatory multi-channel recording device. Respiratory variables, including inductance plethysmography (respiratory pattern) and pressure of end-tidal carbon dioxide (P(et)CO(2)), were collected demonstrating change in CO(2) levels proportional to changes in flight task workload. Pilots performed a set of simulation flight tasks. Pilot performance was rated for each task by a test pilot; and self-report of workload was taken using the NASA-TLX scale. Mixed model analysis revealed that respiration rate and minute ventilation are significantly associated with workload levels and evaluator scores controlling for "vanilla baseline" condition. Hypocapnia exclusively occurred in tasks where pilots performed more poorly. This study was designed as a preliminary investigation in order to develop a psychophysiological assessment methodology, rather than to offer conclusive findings. The results show that the respiratory system is very reactive to high workload conditions in aviation and suggest that hypocapnia may pose a flight safety risk under some circumstances. Copyright © 2010 Elsevier B.V. All rights reserved.
Ion beams in radiotherapy - from tracks to treatment planning
NASA Astrophysics Data System (ADS)
Krämer, M.; Scifoni, E.; Wälzlein, C.; Durante, M.
2012-07-01
Several dozen clinical sites around the world apply beams of fast light ions for radiotherapeutical purposes. Thus there is a vested interest in the various physical and radiobiological processes governing the interaction of ion beams with matter, specifically living systems. We discuss the various modelling steps which lead from basic interactions to the application in actual patient treatment planning. The nano- and microscopic scale is covered by sample calculations with our TRAX code. On the macroscopic scale we feature the TRiP98 treatment planning system, which was clinically used in GSI's radiotherapy pilot project.
Effect of lift-to-drag ratio in pilot rating of the HL-20 landing task
NASA Technical Reports Server (NTRS)
Jackson, E. B.; Rivers, Robert A.; Bailey, Melvin L.
1993-01-01
A man-in-the-loop simulation study of the handling qualities of the HL-20 lifting-body vehicle was made in a fixed-base simulation cockpit at NASA Langley Research Center. The purpose of the study was to identify and substantiate opportunities for improving the original design of the vehicle from a handling qualities and landing performance perspective. Using preliminary wind-tunnel data, a subsonic aerodynamic model of the HL-20 was developed. This model was adequate to simulate the last 75-90 s of the approach and landing. A simple flight-control system was designed and implemented. Using this aerodynamic model as a baseline, visual approaches and landings were made at several vehicle lift-to-drag ratios. Pilots rated the handling characteristics of each configuration using a conventional numerical pilot-rating scale. Results from the study showed a high degree of correlation between the lift-to-drag ratio and pilot rating. Level 1 pilot ratings were obtained when the L/D ratio was approximately 3.8 or higher.
Effect of lift-to-drag ratio in pilot rating of the HL-20 landing task
NASA Astrophysics Data System (ADS)
Jackson, E. B.; Rivers, Robert A.; Bailey, Melvin L.
1993-10-01
A man-in-the-loop simulation study of the handling qualities of the HL-20 lifting-body vehicle was made in a fixed-base simulation cockpit at NASA Langley Research Center. The purpose of the study was to identify and substantiate opportunities for improving the original design of the vehicle from a handling qualities and landing performance perspective. Using preliminary wind-tunnel data, a subsonic aerodynamic model of the HL-20 was developed. This model was adequate to simulate the last 75-90 s of the approach and landing. A simple flight-control system was designed and implemented. Using this aerodynamic model as a baseline, visual approaches and landings were made at several vehicle lift-to-drag ratios. Pilots rated the handling characteristics of each configuration using a conventional numerical pilot-rating scale. Results from the study showed a high degree of correlation between the lift-to-drag ratio and pilot rating. Level 1 pilot ratings were obtained when the L/D ratio was approximately 3.8 or higher.
Malato, S; Caceres, J; Agüera, A; Mezcua, M; Hernando, D; Vial, J; Fernández-Alba, A R
2001-11-01
The technical feasibility, mechanisms, and performance of degradation of aqueous imidacloprid have been studied at pilot scale in two well-defined photocatalytic systems of special interest because natural UV light can be used: heterogeneous photocatalysis with titanium dioxide and homogeneous photocatalysis by photo-Fenton. Equivalent pilot-scale and field conditions used for both allowed adequate comparison of the degree of mineralization and toxicity achieved as well as the transformation products generated in route to mineralization by both systems. Ninety-five percent of mineralization (<2.0 mg/L) was reached after 250 min of photocatalytic treatment with Fenton and 450 min with TiO2, meaning that TOC disappears 2.4 times faster with photo-Fenton photocatalytic treatment than with TiO2. The Daphnia Magna test for final residual TOC does not reveal anytoxic behavior. Transformation products evaluated by GC-MS/AED after two SPE procedures and LC-IC were the same in both cases. The main differences between the two processes are in the amount of transformation products (TPs) generated, not in the TPs detected which were always the same. At the end of both processes low concentration (<0.1 mg/L) of 2 pyrrolidinone (transformation product) remains in the dissolution and around 1 mg/L of formate in the case of photo-Fenton.
Thermochemical Users Facility | Bioenergy | NREL
collaborate on research and development efforts or to use our equipment to test their materials and processes NREL's thermochemical process integration, scale-up, and piloting research. Schematic diagram of NRELs about NREL's thermochemical process integration, scale-up, and piloting research. Thermochemical
Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium-and titatnium-based composite honeycomb catalyst and enh...
Removal of adenovirus, calicivirus, and bacteriophages by conventional drinking water treatment.
Abbaszadegan, Morteza; Monteiro, Patricia; Nwachuku, Nena; Alum, Absar; Ryu, Hodon
2008-02-01
This study was conducted to evaluate the removal of adenovirus, feline calicivirus (FCV), and bacteriophages MS-2, fr, PRD-1, and Phi X-174 during conventional drinking water treatment using ferric chloride as a coagulant. Adenovirus and FCV were removed to a greater extent than PRD-1 and Phi X-174, indicating that these bacteriophages may be appropriate surrogates for both adenovirus and FCV. Of the four bacteriophages studied in the pilot plant, MS-2 was removed to the greatest extent (5.1 log), followed by fr (4.9 log), PRD-1 (3.5 log), and Phi X-174 (1.3 log). The virus removal trend in the pilot-scale testing was similar to the bench-scale testing; however, the bench-scale testing seemed to provide a conservative estimate of the pilot plant performance. In the pilot-scale testing, MS-2 and fr were removed with the greatest efficiency during filtration, whereas PRD-1 and Phi X-174 showed the greatest removal during sedimentation.
2008-08-01
Administration NDBA N-nitrosodi-n-butylamine NDEA N-nitrosodiethylamine NDMA N-nitrosodimethylamine NDPA N-nitrosodi-n-propylamine v ACRONYMS...spectrometry (IC-MS/MS). Nitrosamines were analyzed using EPA Method 521. N-nitrosodimethylamine ( NDMA ) was 2.6 parts per trillion (ppt) with a detection...and metals (Ca, Cu, Fe, Mg, Mn, K, Na , and Zn). Specific methods are listed in Table 5. ** N-nitrosodimethylamine ( NDMA ), N-nitrosodiethylamine
Integrated System Health Management: Pilot Operational Implementation in a Rocket Engine Test Stand
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Schmalzel, John L.; Morris, Jonathan A.; Turowski, Mark P.; Franzl, Richard
2010-01-01
This paper describes a credible implementation of integrated system health management (ISHM) capability, as a pilot operational system. Important core elements that make possible fielding and evolution of ISHM capability have been validated in a rocket engine test stand, encompassing all phases of operation: stand-by, pre-test, test, and post-test. The core elements include an architecture (hardware/software) for ISHM, gateways for streaming real-time data from the data acquisition system into the ISHM system, automated configuration management employing transducer electronic data sheets (TEDS?s) adhering to the IEEE 1451.4 Standard for Smart Sensors and Actuators, broadcasting and capture of sensor measurements and health information adhering to the IEEE 1451.1 Standard for Smart Sensors and Actuators, user interfaces for management of redlines/bluelines, and establishment of a health assessment database system (HADS) and browser for extensive post-test analysis. The ISHM system was installed in the Test Control Room, where test operators were exposed to the capability. All functionalities of the pilot implementation were validated during testing and in post-test data streaming through the ISHM system. The implementation enabled significant improvements in awareness about the status of the test stand, and events and their causes/consequences. The architecture and software elements embody a systems engineering, knowledge-based approach; in conjunction with object-oriented environments. These qualities are permitting systematic augmentation of the capability and scaling to encompass other subsystems.
Moon, Ji-Won; Phelps, Tommy J; Fitzgerald, Curtis L; Lind, Randall F; Elkins, James G; Jang, Gyoung Gug; Joshi, Pooran C; Kidder, Michelle; Armstrong, Beth L; Watkins, Thomas R; Ivanov, Ilia N; Graham, David E
2016-09-01
The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale (≤ 24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of pilot-plant scale experiments were performed using 100-L and 900-L reactors. Pasteurization and N2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2-nm average crystallite size (ACS) and yields of ~0.5 g L(-1), similar to the small-scale batches. The 900-L pilot plant reactor produced ~320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width × 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic, and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98 % of the buffer chemical costs. The final NP products were characterized using XRD, ICP-OES, TEM, FTIR, PL, DLS, HPLC, and C/N analyses, which confirmed that the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.
ClearFuels-Rentech Integrated Biorefinery Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearson, Joshua
The project Final Report describes the validation of the performance of the integration of two technologies that were proven individually on a pilot scale and were demonstrated as a pilot scale integrated biorefinery. The integrated technologies were a larger scale ClearFuels’ (CF) advanced flexible biomass to syngas thermochemical high efficiency hydrothermal reformer (HEHTR) technology with Rentech’s (RTK) existing synthetic gas to liquids (GTL) technology.
PILOT-SCALE EVALUATION OF NEW RESIN APPLICATION EQUIPMENT FOR FIBER- REINFORCED PLASTICS
The article gives results of a pilot-scale evaluation of new resin application equipment for fiber- reinforced plastics. The study, an evaluation and comparison of styrene emissions, utilized Magnum's FIT(TM) nozzle with conventional spray guns and flow coaters (operated at both ...
The fate of seven sex hormones (estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), testosterone, androstenedione, and progesterone) was determined in two pilot-scale wastewater treatment plants operated under conventional loading conditions. The levels of hormon...
Enhanced reduction of excess sludge and nutrient removal in a pilot-scale A2O-MBR-TAD system.
Ventura, J S; Seo, S; Chung, I; Yeom, I; Kim, H; Oh, Y; Jahng, D
2011-01-01
In this study, a pilot scale anaerobic-anoxic-oxic (A2O) process with submerged membrane (MBR) in the oxic tank was coupled with thermophilic aerobic digestion (TAD) reactor and was operated for longer than 600 days to treat real domestic wastewater. Regardless of the varying conditions of the system, the A2O-MBR-TAD process removed MLSS, TCOD, BOD, TN, TP, and E. coli about 99%, 96%, 96%, 70%, 83%, and 99%, respectively. The additional TP removal of the system was due to the precipitating agent directly added in the oxic reactor, without which TP removal was about 56%. In the TAD reactor, receiving MLSS from the oxic tank (MBR), about 25% of TSS and VSS were solubilized during 2 days of retention. The effluent of the TAD reactor was recycled into the anoxic tank of A2O-MBR to provide organic carbon for denitrification and cryptic growth. By controlling the flowrate of wasting stream from the MBR, sludge production decreased to almost zero. From these results, it was concluded that the A2O-MBR-TAD process could be a reliable option for excellent effluent quality and near zero-sludge production.
Hu, Wenyong; Zhou, Yu; Min, Xiaobo; Liu, Jingyi; Li, Xinyu; Luo, Lin; Zhang, Jiachao; Mao, Qiming; Chai, Liyuan; Zhou, YaoYu
2017-06-29
In this study, a combined aerobic-Fenton-anoxic/aerobic system was designed for the remediation of raw landfill leachate in a pilot-scale experiment. This system included (i) a granular sludge biological oxidation procedure that achieves the accumulation of nitrite nitrogen ([Formula: see text]) under aerobic conditions; (ii) a Fenton process that improves the biodegradability of the biotreated leachate and (iii) an activated sludge biological oxidation component under anoxic and aerobic conditions. Additionally, a shortcut nitrification and denitrification pathway was achieved. The effects of free ammonia, temperature and pH on nitrite accumulation were discussed. The change in the biochemical oxygen demand/chemical oxygen demand ratio of the effluent after shortcut nitrification was also analysed. The microbial community in the reactor were also investigated. The problem of the lack of carbon source in the denitrification process can be solved by the Fenton reagent method. Moreover, it was beneficial to achieving nitrogen removal as well as the more extensive removal of organic matter. The treatment strategy employed in this study exhibited good results and provided the potential practical application for treating landfill leachate.
Morrison, Jean M.; Goldhaber, Martin B.; Holloway, JoAnn M.; Smith, David B.
2008-01-01
In 2004, the U.S. Geological Survey (USGS), the Geological Survey of Canada (GSC), and the Mexican Geological Survey (Servicio Geologico Mexicano, or SGM) initiated pilot studies in preparation for a soil geochemical survey of North America called the Geochemical Landscapes Project. The purpose of this project is to provide a better understanding of the variability in chemical composition of soils in North America. The data produced by this survey will be used to construct baseline geochemical maps for regions within the continent. Two initial pilot studies were conducted: (1) a continental-scale study involving a north-south and east-west transect across North America and (2) a regional-scale study. The pilot studies were intended to test and refine sample design, sampling protocols, and field logistics for the full continental soils geochemical survey. Smith and others (2005) reported the results from the continental-scale pilot study. The regional-scale California study was designed to represent more detailed, higher resolution geochemical investigations in a region of particular interest that was identified from the low-sample-density continental-scale survey. A 20,000-km2 area of northern California (fig. 1), representing a wide variety of topography, climate, and ecoregions, was chosen for the regional-scale pilot study. This study area also contains diverse geology and soil types and supports a wide range of land uses including agriculture in the Sacramento Valley, forested areas in portions of the Sierra Nevada, and urban/suburban centers such as Sacramento, Davis, and Stockton. Also of interest are potential effects on soil geochemistry from historical hard rock and placer gold mining in the foothills of the Sierra Nevada, historical mercury mining in the Coast Range, and mining of base-metal sulfide deposits in the Klamath Mountains to the north. This report presents the major- and trace-element concentrations from the regional-scale soil geochemical survey in northern California.
van Eeghen, Constance O; Littenberg, Benjamin; Kessler, Rodger
2018-05-23
Patients with chronic conditions frequently experience behavioral comorbidities to which primary care cannot easily respond. This study observed a Vermont family medicine practice with integrated medical and behavioral health services that use a structured approach to implement a chronic care management system with Lean. The practice chose to pilot a population-based approach to improve outcomes for patients with poorly controlled Type 2 diabetes using a stepped-care model with an interprofessional team including a community health nurse. This case study observed the team's use of Lean, with which it designed and piloted a clinical algorithm composed of patient self-assessment, endorsement of behavioral goals, shared documentation of goals and plans, and follow-up. The team redesigned workflows and measured reach (patients who engaged to the end of the pilot), outcomes (HbA1c results), and process (days between HbA1c tests). The researchers evaluated practice member self-reports about the use of Lean and facilitators and barriers to move from pilot to larger scale applications. Of 20 eligible patients recruited over 3 months, 10 agreed to participate and 9 engaged fully (45%); 106 patients were controls. Relative to controls, outcomes and process measures improved but lacked significance. Practice members identified barriers that prevented implementation of all changes needed but were in agreement that the pilot produced useful outcomes. A systematized, population-based, chronic care management service is feasible in a busy primary care practice. To test at scale, practice leadership will need to allocate staffing, invest in shared documentation, and standardize workflows to streamline office practice responsibilities.
Aljurf, Tareq M; Olaish, Awad H; BaHammam, Ahmed S
2018-05-01
No studies have assessed the prevalence of fatigue, depression, sleepiness, and the risk of obstructive sleep apnea (OSA) among commercial airlines pilots in the Gulf Cooperation Council (GCC). This was a quantitative cross-sectional study conducted among pilots who were on active duty and had flown during the past 6 months for one of three commercial airline companies. We included participants with age between 20 and 65 years. Data were collected using a predesigned electronic questionnaire composed of questions related to demographic information in addition to the Fatigue Severity Scale (FSS), the Berlin Questionnaire, the Epworth Sleepiness Scale (ESS), and the Hospital Anxiety and Depression Scale (HADS). The study included 328 pilots with a mean age ± standard deviation of 41.4 ± 9.7 years. Overall, 224 (68.3%) pilots had an FSS score ≥ 36 indicating severe fatigue and 221 (67.4%) reported making mistakes in the cockpit because of fatigue. One hundred and twelve (34.1%) pilots had an ESS score ≥ 10 indicating excessive daytime sleepiness and 148 (45.1%) reported falling asleep at the controls at least once without previously agreeing with their colleagues. One hundred and thirteen (34.5%) pilots had an abnormal HADS depression score (≥ 8), and 96 (29.3%) pilots were at high risk for OSA requiring further assessment. Fatigue, sleepiness, risk of OSA, and depression are prevalent among GCC commercial airline pilots. Regular assessment by aviation authorities is needed to detect and treat these medical problems.
USDA-ARS?s Scientific Manuscript database
Synthetic gasoline and diesel fuels were prepared via catalytic and noncatalytic pyrolysis of waste polyethylene and polypropylene plastics followed by distillation of plastic crude oils. Reaction conditions optimized using a 2 L batch reactor were applied to pilot-scale production of plastic crude ...
The addition of brominated organic compounds to the feed of a pilot-scale incinerator burning chlorinated waste has been found previously, under some circumstances, to enhance emissions of volatile and semivolatile organic chlorinated products of incomplete combustion (PiCs) incl...
Pilot-scale fractionation of whey proteins with supercritical CO2
USDA-ARS?s Scientific Manuscript database
A new pilot-scale process is being developed and optimized for the separation of whey proteins into two enriched, highly functional fractions that are free of contaminants. The fractionation of whey protein isolate (WPI), which contains approximately 32% alpha-lactalbumin (alpha-LA) and 61% beta-lac...
June 3, 2011 work plan for a pilot-scale treatability evaluation with a commercial wastewater treatment facility, Water Recovery Inc. (WRI) located in Jacksonville, Florida. Region ID: 04 DocID: 10749927, DocDate: 06-03-2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-09-01
This is the the final verification run data package for pilot scale thermal treatment of lower East Fork Poplar Creek floodplain soils. Included are data on volatiles, semivolatiles, and TCLP volatiles.
In support of the U.S. Environmental Protection Agency’s (EPA) Superfund Innovative Technology Evaluation (SITE) Program, a pilot-scale demonstration of a slurry-phase bioremediation process was performed May 1991 at the EPA’s Test & Evaluation Facility in Cincinnati, OH. In this...
Two analytical methods were developed and refined for the detection and quantitation of two groups of endocrine-disrupting chemicals (EDCs) in the liquid matrixes of two pilot-scale municipal wastewater treatment plants. The targeted compounds are seven sex hormones (estradiol, ...
Min, Min; Hu, Bing; Mohr, Michael J; Shi, Aimin; Ding, Jinfeng; Sun, Yong; Jiang, Yongcheng; Fu, Zongqiang; Griffith, Richard; Hussain, Fida; Mu, Dongyan; Nie, Yong; Chen, Paul; Zhou, Wenguang; Ruan, Roger
2014-02-01
Integration of wastewater treatment with algae cultivation is one of the promising ways to achieve an economically viable and environmentally sustainable algal biofuel production on a commercial scale. This study focused on pilot-scale algal biomass production system development, cultivation process optimization, and integration with swine manure wastewater treatment. The areal algal biomass productivity for the cultivation system that we developed ranged from 8.08 to 14.59 and 19.15-23.19 g/m(2) × day, based on ash-free dry weight and total suspended solid (TSS), respectively, which were higher than or comparable with those in literature. The harvested algal biomass had lipid content about 1.77-3.55%, which was relatively low, but could be converted to bio-oil via fast microwave-assisted pyrolysis system developed in our lab. The lipids in the harvested algal biomass had a significantly higher percentage of total unsaturated fatty acids than those grown in lab conditions, which may be attributed to the observed temperature and light fluctuations. The nutrient removal rate was highly correlated to the biomass productivity. The NH₃-N, TN, COD, and PO₄-P reduction rates for the north-located photo-bioreactor (PBR-N) in July were 2.65, 3.19, 7.21, and 0.067 g/m(2) × day, respectively, which were higher than those in other studies. The cultivation system had advantages of high mixotrophic growth rate, low operating cost, as well as reduced land footprint due to the stacked-tray bioreactor design used in the study.
Assessment of a Point-of-Use Ultrafiltration System for Turbidity and Microbial Pathogen Removal
U.S. EPA’s Office of Research and Development has been evaluating the performance of point-of-use (POU) devices designed for use in homes and small businesses for many years. In collaboration with the University of Cincinnati, a series of pilot-scale tests were conducted on a Mat...
Mining-influenced water (MIW) is acidic, metal rich water formed when sulfide minerals react with oxygen and water. There are various options for the treatment of MIW; however, passive biological systems such as biochemical reactors (BCRs) have shown promise because of their low...
Mining-influenced water (MIW) is acidic, metal rich water formed when sulfide minerals react with oxygen and water. There are various options for the treatment of MIW; however, passive biological systems such as biochemical reactors (BCRs) have shown promise because of their low...
A pilot-scale test to evaluate the performance of a vertical recirculation well equipped with an in-well air stripper was conducted at Hill AFB, Utah, in an aquifer contaminated with petroleum and chlorinated solvents. During the two months of operation, the air stripping system ...
An Ice Protection and Detection Systems Manufacturer's Perspective
NASA Technical Reports Server (NTRS)
Sweet, Dave
2009-01-01
Accomplishments include: World Class Aircraft Icing Research Center and Facility. Primary Sponsor/Partner - Aircraft Icing Consortia/Meetings. Icing Research Tunnel. Icing Test Aircraft. Icing Codes - LEWICE/Scaling, et al. Development of New Technologies (SBIR, STTR, et al). Example: Look Ahead Ice Detection. Pilot Training Materials. Full Cooperation with Academia, Government and Industry.
Applications of selective catalytic reduction (SCR) systems and wet flue gas desulfurization (FGD) scrubbers on coal-fired boilers have led to substantial reductions in emissions of nitrogen oxides (NOX) and sulfur dioxide (SO2). However, observations of pilot- and full-scale tes...
Mediated Cross-Cultural Learning through Exchange in Higher Agricultural Education
ERIC Educational Resources Information Center
Wals, Arjen E. J.; Sriskandarajah, Nadarajah
2010-01-01
This article reports on the long-term impact of an intensive European Union-Australia student exchange programme that took place in 2004 and 2005. The programme, Learning through Exchange about Agriculture, Food Systems and Environment (LEAFSE), was designed to facilitate exchange of post-graduate students on a pilot scale between four…
USDA-ARS?s Scientific Manuscript database
In this study, we used a commercial pilot-scale pyrolysis reactor system to produce combustible gas and biochar at 620 degrees Celsium from three sources (chicken litter, swine solids, mixture of swine solids with rye grass). Pyrolysis of swine solids produced gas with the greatest higher heating va...
How Information Affects Intrinsic Motivation: Two Exploratory Pilot Studies.
ERIC Educational Resources Information Center
Small, Ruth V.; Samijo
Research on the motivational aspects of multimedia games may provide ways to design more engaging user information systems which increase users' exploratory and information-seeking behaviors. Two small-scale exploratory studies examined the effects of introducing information on the intrinsic motivation of users of a CD-ROM game. Results of the…
The safety and security of water supplies has come under reassessment in the past year. Issues ranging from public safety and health, ecological, and national security are under consideration. The terrorist attacks on the United States on September 11, 2001 and the subsequent del...
Ceramic filtration has recently been identified as a promising technology for drinking water treatment in households and small communities. This paper summarizes the results of a pilot-scale study conducted at the U.S. Environmental Protection Agency’s (EPA’s) Test & Evaluation ...
Assessment of a Point-of-Use Ultrafiltration System for Turbidity and Microbial Pathogen Removal
U.S. EPA’s Office of Research and Development has been evaluating the performance of point-of-use (POU) devices designed for use in homes and small businesses for many years. In collaboration with the University of Cincinnati, a series of pilot-scale tests were conducted on a Ma...
Benn, D K; Minden, N J; Pettigrew, J C; Shim, M
1994-08-01
President Clinton's Health Security Act proposes the formation of large scale health plans with improved quality assurance. Dental radiography consumes 4% ($1.2 billion in 1990) of total dental expenditure yet regular systematic office quality assurance is not performed. A pilot automated method is described for assessing density of exposed film and fogging of unexposed processed film. A workstation and camera were used to input intraoral radiographs. Test images were produced from a phantom jaw with increasing exposure times. Two radiologists subjectively classified the images as too light, acceptable, or too dark. A computer program automatically classified global grey level histograms from the test images as too light, acceptable, or too dark. The program correctly classified 95% of 88 clinical films. Optical density of unexposed film in the range 0.15 to 0.52 measured by computer was reliable to better than 0.01. Further work is needed to see if comprehensive centralized automated radiographic quality assurance systems with feedback to dentists are feasible, are able to improve quality, and are significantly cheaper than conventional clerical methods.
Trzcinski, Antoine Prandota; Ganda, Lily; Kunacheva, Chinagarn; Zhang, Dong Qing; Lin, Li Leonard; Tao, Guihe; Lee, Yingjie; Ng, Wun Jern
2016-10-01
In light of global warming mitigation efforts, increasing sludge disposal costs, and need for reduction in the carbon footprint of wastewater treatment plants, innovation in treatment technology has been tailored towards energy self-sufficiency. The AB process is a promising technology for achieving maximal energy recovery from wastewaters with minimum energy expenditure and therefore inherently reducing excess sludge production. Characterization of this novel sludge and its comparison with the more conventional B-stage sludge are necessary for a deeper understanding of AB treatment process design. This paper presents a case study of a pilot-scale AB system treating municipal wastewaters as well as a bio- (biochemical methane potential and adenosine tri-phosphate analysis) and physico-chemical properties (chemical oxygen demand, sludge volume index, dewaterability, calorific value, zeta potential and particle size distribution) comparison of the organic-rich A-stage against the B-stage activated sludge. Compared to the B-sludge, the A-sludge yielded 1.4 to 4.9 times more methane throughout the 62-week operation.
A fluidized bed desorption system for recycling mercury from contaminated soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harriss, C.; Baum, D.L. Jr.; Read, W.L.
1995-12-31
The land disposal restrictions effective for wastes containing mercury have created a need for technologies that can meet the best demonstrated available technologies (BDAT) treatment standards. In the past, technologies for mercury were in short supply. In addition to the already existing short supply, the natural gas industry has begun to remediate the numerous metering sites that have been contaminated with mercury from manometers installed along their pipelines. To meet the need for a mercury technology, Philip Environmental Services Corporation (Philip) evaluated and tested two different technologies capable of recovering mercury from contaminated soil. Philip initially performed some tests usingmore » gravitational methods followed by pilot-scale testing using a fluidized bed desorber. As a result of the testing, Philip constructed a full-scale fluidized bed system which can recover mercury from contaminated soil and debris. The name of Philip`s technology is the Solvating Vapor Pressure Process (SVPP). The main purpose of this paper is to discuss the results of the SVPP pilot testing and describe the process.« less
Tang, Jialing; Wang, Xiaochang C; Hu, Yisong; Ngo, Huu Hao; Li, Yuyou; Zhang, Yongmei
2017-07-01
Fermentation liquid of food waste (FLFW) was applied as an external carbon source in a pilot-scale anoxic/oxic-membrane bioreactor (A/O-MBR) system to enhance nitrogen removal for treating low COD/TN ratio domestic wastewater. Results showed that, with the FLFW addition, total nitrogen removal increased from lower than 20% to 44-67% during the 150days of operation. The bacterial metabolic activities were obviously enhanced, and the significant change in microbial community structure promoted pollutants removal and favored membrane fouling mitigation. By monitoring transmembrane pressure and characterizing typical membrane foulants, such as extracellular polymeric substances (EPS), dissolved organic matter (DOM), and inorganics and biopolymers in the cake layer, it was confirmed that FLFW addition did not bring about any additional accumulation of membrane foulants, acceleration of fouling rate, or obvious irreversible membrane fouling in the whole operation period. Therefore, FLFW is a promising alternative carbon source to enhance nitrogen removal for the A/O-MBR system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Advanced data management for optimising the operation of a full-scale WWTP.
Beltrán, Sergio; Maiza, Mikel; de la Sota, Alejandro; Villanueva, José María; Ayesa, Eduardo
2012-01-01
The lack of appropriate data management tools is presently a limiting factor for a broader implementation and a more efficient use of sensors and analysers, monitoring systems and process controllers in wastewater treatment plants (WWTPs). This paper presents a technical solution for advanced data management of a full-scale WWTP. The solution is based on an efficient and intelligent use of the plant data by a standard centralisation of the heterogeneous data acquired from different sources, effective data processing to extract adequate information, and a straightforward connection to other emerging tools focused on the operational optimisation of the plant such as advanced monitoring and control or dynamic simulators. A pilot study of the advanced data manager tool was designed and implemented in the Galindo-Bilbao WWTP. The results of the pilot study showed its potential for agile and intelligent plant data management by generating new enriched information combining data from different plant sources, facilitating the connection of operational support systems, and developing automatic plots and trends of simulated results and actual data for plant performance and diagnosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berglin, Eric J.; Enderlin, Carl W.; Schmidt, Andrew J.
2012-11-01
The National Advanced Biofuels Consortium is working to develop improved methods for producing high-value hydrocarbon fuels. The development of one such method, the hydrothermal liquefaction (HTL) process, is being led by the Pacific Northwest National Laboratory (PNNL). The HTL process uses a wet biomass slurry at elevated temperatures (i.e., 300 to 360°C [570 to 680°F]) and pressures above the vapor pressure of water (i.e., 15 to 20 MPa [2200 to 3000 psi] at these temperatures) to facilitate a condensed-phase reaction medium. The process has been successfully tested at bench-scale and development and testing at a larger scale is required tomore » prove the viability of the process at production levels. Near-term development plans include a pilot-scale system on the order of 0.5 to 40 gpm, followed by a larger production-scale system on the order of 2000 dry metric tons per day (DMTPD). A significant challenge to the scale-up of the HTL process is feeding a highly viscous fibrous biomass wood/corn stover feedstock into a pump system that provides the required 3000 psi of pressure for downstream processing. In October 2011, PNNL began investigating commercial feed and pumping options that would meet these HTL process requirements. Initial efforts focused on generating a HTL feed and pump specification and then providing the specification to prospective vendors to determine the suitability of their pumps for the pilot-scale and production-scale plants. Six vendors were identified that could provide viable equipment to meet HTL feed and/or pump needs. Those six vendors provided options consisting three types of positive displacement pumps (i.e., diaphragm, piston, and lobe pumps). Vendors provided capabilities and equipment related to HTL application. This information was collected, assessed, and summarized and is provided as appendices to this report.« less
Bokhari, Awais; Yusup, Suzana; Chuah, Lai Fatt; Klemeš, Jiří Jaromír; Asif, Saira; Ali, Basit; Akbar, Majid Majeed; Kamil, Ruzaimah Nik M
2017-10-01
Chemical interesterification of rubber seed oil has been investigated for four different designed orifice devices in a pilot scale hydrodynamic cavitation (HC) system. Upstream pressure within 1-3.5bar induced cavities to intensify the process. An optimal orifice plate geometry was considered as plate with 1mm dia hole having 21 holes at 3bar inlet pressure. The optimisation results of interesterification were revealed by response surface methodology; methyl acetate to oil molar ratio of 14:1, catalyst amount of 0.75wt.% and reaction time of 20min at 50°C. HC is compared to mechanical stirring (MS) at optimised values. The reaction rate constant and the frequency factor of HC were 3.4-fold shorter and 3.2-fold higher than MS. The interesterified product was characterised by following EN 14214 and ASTM D 6751 international standards. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Holleman, E. C.
1976-01-01
An unpowered, large, dynamically scaled airplane model was test flown by remote pilot to investigate the stability and controllability of the configuration at high angles of attack. The configuration proved to be departure/spin resistant; however, spins were obtained by using techniques developed on a flight support simulator. Spin modes at high and medium high angles of attack were identified, and recovery techniques were investigated. A flight support simulation of the airplane model mechanized with low speed wind tunnel data over an angle of attack range of + or - 90 deg. and an angle of sideslip range of + or - 40 deg. provided insight into the effects of altitude, stability, aerodynamic damping, and the operation of the augmented flight control system on spins. Aerodynamic derivatives determined from flight maneuvers were used to correlate model controllability with two proposed departure/spin design criteria.
Erkelens, Mason; Ball, Andrew S; Lewis, David M
2014-04-01
The use of recycled media has been shown to be a necessary step within the lifecycle of microalgal biofuels for economic sustainability and reducing the water footprint. However the impact of the harvesting of microalgae on the bacterial load of the recycled water has yet to be investigated. Within this study PCR-DGGE and real-time PCR was used to evaluate the bacterial community dynamics within the recycled water following harvest and concentration steps for a pilot scale open pond system (120,000L), which was developed for the production of green crude oil from Tetraselmis sp. in hyper saline water. Two stages were used in the harvesting; Stage 1 electroflocculation, and Stage 2 centrifugation. Electroflocculation was shown to have little effect on the bacterial cell concentration. In contrast bacterial diversity and cell concentration within the centrifugation step was greatly reduced. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system.
Peng, Yongzhen; Hou, Hongxun; Wang, Shuying; Cui, Youwei; Zhiguo, Yuan
2008-01-01
To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobic-anoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (r(SND)) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and r(SND) dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NO(x) to NH4+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.
Transformation of bisphenol A in water distribution systems: a pilot-scale study.
Li, Cong; Wang, Zilong; Yang, Y Jeffrey; Liu, Jingqing; Mao, Xinwei; Zhang, Yan
2015-04-01
Halogenations of bisphenol A (BPA) in a pilot-scale water distribution system (WDS) of a cement-lined ductile cast iron pipe were investigated. The water in the pilot-scale WDS was chlorinated with a free chlorine concentration of 0.7 mg L(-1) using sodium hypochlorite, and with an initial BPA concentration of 100 μg L(-1) was spiked in the WDS. Halogenated compounds in the BPA experiments were identified using EI/GC/MS and GC. Several BPA congeners, including 2-chlorobisphenol A (MCBPA), dichlorobisphenol A (D2-CBPA), 2,2',6-trichlorobisphenol A (T3CBPA), 2,2',6,6'-tetrachlorobisphenol A (T4CBPA), 2-bromobisphenol A (MBBPA), and bromochlorobisphenol A (MBMCBPA) were found. Moreover, further halogenation yielded other reaction intermediates, including 2,4,6-trichlorophenol (T3CP), dichlorobisphenol A, bromodichlorophenol, and dibromochlorophenol. After halogenation for 120min, most of the abovementioned reaction intermediates disappeared and were replaced by trihalomethanes (THMs). Based on these experimental findings, the halogenation process of BPA oxidation in a WDS includes three stages: (1) halogenation on the aromatic ring; (2) chlorine or bromine substitution followed by cleavage of the α-C bond on the isopropyl moiety with a positive partial charge and a β'-C bond on the benzene moiety with a negative partial charge; and (3) THMs and a minor HAA formation from phenolic intermediates through the benzene ring opening with a chlorine and bromine substitution of the hydrogen on the carbon atoms. The oxidation mechanisms of the entire transformation from BPA to THM/HAA in the WDS were proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prudich, M.E.; Appell, K.W.; McKenna, J.D.
ETS, Inc., a pollution consulting firm with headquarters in Roanoke, Virginia, has developed a dry, limestone-based flue gas desulfurization (FGD) system. This SO{sub 2} removal system, called Limestone Emission Control (LEC), can be designed for installation on either new or existing coal-fired boilers. In the LEC process, the SO{sub 2} in the flue gas reacts with wetted granular limestone that is contained in a moving bed. A surface layer of principally calcium sulfate (CaSO{sub 4}) is formed on the limestone. Periodic removal of this surface layer by mechanical agitation allows high utilization of the limestone granules. A nominal 5,000 acfmmore » LEC pilot plant has been designed, fabricated and installed on the slipstream of a 70,000 pph stoker boiler providing steam to Ohio University`s Athens, Ohio campus. A total of over 90 experimental trials have been performed using the pilot-scale moving-bed LEC dry scrubber as a part of this research project with run times ranging up to a high of 125 hours. SO{sub 2} removal efficiencies as high as 99.9% were achievable for all experimental conditions studied during which sufficient humidification was added to the LEC bed. The LEC process and conventional limestone scrubbing have been compared on an equatable basis using flue gas conditions that would be expected at the outlet of the electrostatic precipitator (ESP) of a 500 MW coal-fired power plant. The LEC was found to have a definite economic advantage in both direct capital costs and operating costs. Based on the success and findings of the present project, the next step in LEC process development will be a full-scale commercial demonstration unit.« less
Blondeel, Evelyne; Depuydt, Veerle; Cornelis, Jasper; Chys, Michael; Verliefde, Arne; Van Hulle, Stijin Wim Henk
2015-01-01
Pilot-scale optimisation of different possible physical-chemical water treatment techniques was performed on the wastewater originating from three different recovery and recycling companies in order to select a (combination of) technique(s) for further full-scale implementation. This implementation is necessary to reduce the concentration of both common pollutants (such as COD, nutrients and suspended solids) and potentially toxic metals, polyaromatic hydrocarbons and poly-chlorinated biphenyls frequently below the discharge limits. The pilot-scale tests (at 250 L h(-1) scale) demonstrate that sand anthracite filtration or coagulation/flocculation are interesting as first treatment techniques with removal efficiencies of about 19% to 66% (sand anthracite filtration), respectively 18% to 60% (coagulation/flocculation) for the above mentioned pollutants (metals, polyaromatic hydrocarbons and poly chlorinated biphenyls). If a second treatment step is required, the implementation of an activated carbon filter is recommended (about 46% to 86% additional removal is obtained).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menon, R.; Grames, L.M.
Pilot Carrousel testing was conducted for about three months on wastewaters generated at a major potato processing facility in 1993. The testing focused toward removal of BOD, NH{sub 3} and NO{sub 3}, and Total-P. After five-six weeks that it took for the system to reach steady state operation, the pilot plant was able to treat the wastewaters quite well. Effluent BOD{sub 5} and TKN values were less than 8 and 4 mg/L, respectively, during the second half of testing. Total-P in the effluent was less than 10 mg/L, although this step was not optimized. Based on the pilot testing, amore » full-scale Carrousel activated sludge plant was designed and commissioned in 1994. This plant is currently treating all the wastewaters from the facility and performing contaminant removals at a very high level.« less
Measuring Pilot Knowledge in Training: The Pathfinder Network Scaling Technique
2007-01-01
Network Scaling Technique Leah J. Rowe Roger W. Schvaneveldt L -3 Communications Arizona State University Mesa, AZ Mesa, AZ leah.rowe...7293 Page 2 of 8 Measuring Pilot Knowledge in Training: The Pathfinder Network Scaling Technique Leah J. Rowe Roger W. Schvaneveldt L -3...training. ABOUT THE AUTHORS Leah J. Rowe is a Training Research Specialist with L -3 Communications at the Air Force Research Laboratory
Yan, Shoubao; Chen, Xiangsong; Wu, Jingyong; Wang, Pingchao
2013-07-01
The aim of this study was to develop a bioprocess to produce ethanol from food waste at laboratory, semipilot and pilot scales. Laboratory tests demonstrated that ethanol fermentation with reducing sugar concentration of 200 g/L, inoculum size of 2 % (Initial cell number was 2 × 10⁶ CFU/mL) and addition of YEP (3 g/L of yeast extract and 5 g/L of peptone) was the best choice. The maximum ethanol concentration in laboratory scale (93.86 ± 1.15 g/L) was in satisfactory with semipilot scale (93.79 ± 1.11 g/L), but lower than that (96.46 ± 1.12 g/L) of pilot-scale. Similar ethanol yield and volumetric ethanol productivity of 0.47 ± 0.02 g/g, 1.56 ± 0.03 g/L/h and 0.47 ± 0.03 g/g, 1.56 ± 0.03 g/L/h after 60 h of fermentation in laboratory and semipilot fermentors, respectively, however, both were lower than that (0.48 ± 0.02 g/g, 1.79 ± 0.03 g/L/h) of pilot reactor. In addition, simple models were developed to predict the fermentation kinetics during the scale-up process and they were successfully applied to simulate experimental results.
Whalley, C; Pak, L N; Heaven, S
2007-01-01
The research investigated some factors influencing the rate of stabilisation of wastewater in the spring period in continental climate waste stabilisation ponds, and in particular the potential for bringing forward the discharge date by optimising storage capacity and dilution. Experiments using pilot and modelscale ponds were set up in Almaty, Kazakhstan. These simulated operating regimes for a facultative and storage/maturation pond system subject to ice cover from late November until late March. Two pilot-scale facultative ponds were operated at hydraulic retention times (HRT) of 20 and 30 days, with surface loading rates of 100 and 67 kg BOD ha(-1) day(-1). Effluent from the 20-day HRT facultative pond was then fed to two pilot-scale storage/maturation ponds which had been partially emptied and allowed to refill over the winter period with no removal of effluent. The paper discusses the results of the experiments with respect to selection of an operating regime to make treated wastewater available early in the spring. Preliminary results indicate that there may be potential for alternative operating protocols designed to maximise their performance and economic potential.
Loganathan, Kavithaa; Chelme-Ayala, Pamela; El-Din, Mohamed Gamal
2015-03-15
Membrane filtration is an effective treatment method for oil sands tailings pond recycle water (RCW); however, membrane fouling and rapid decrease in permeate flux caused by colloids, organic matter, and bitumen residues present in the RCW hinder its successful application. This pilot-scale study investigated the impact of different pretreatment steps on the performance of a ceramic ultrafiltration (CUF) membrane used for the treatment of RCW. Two treatment trains were examined: treatment train 1 consisted of coagulant followed by a CUF system, while treatment train 2 included softening (Multiflo™ system) and coagulant addition, followed by a CUF system. The results indicated that minimum pretreatment (train 1) was required for almost complete solids removal. The addition of a softening step (train 2) provided an additional barrier to membrane fouling by reducing hardness-causing ions to negligible levels. More than 99% removal of turbidity and less than 20% removal of total organic carbon were achieved regardless of the treatment train used. Permeate fluxes normalized at 20 °C of 127-130 L/m(2) h and 111-118 L/m(2) h, with permeate recoveries of 90-93% and 90-94% were observed for the treatment trains 1 and 2, respectively. It was also found that materials deposited onto the membrane surface had an impact on trans-membrane pressure and influenced the required frequencies of chemically enhanced backwashes (CEBs) and clean-in-place (CIP) procedures. The CIP performed was successful in removing fouling and scaling materials such that the CUF performance was restored to baseline levels. The results also demonstrated that due to their low turbidity and silt density index values, permeates produced in this pilot study were suitable for further treatment by high pressure membrane processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Scaling up microbial fuel cells and other bioelectrochemical systems.
Logan, Bruce E
2010-02-01
Scientific research has advanced on different microbial fuel cell (MFC) technologies in the laboratory at an amazing pace, with power densities having reached over 1 kW/m(3) (reactor volume) and to 6.9 W/m(2) (anode area) under optimal conditions. The main challenge is to bring these technologies out of the laboratory and engineer practical systems for bioenergy production at larger scales. Recent advances in new types of electrodes, a better understanding of the impact of membranes and separators on performance of these systems, and results from several new pilot-scale tests are all good indicators that commercialization of the technology could be possible within a few years. Some of the newest advances and future challenges are reviewed here with respect to practical applications of these MFCs for renewable energy production and other applications.
The Characterization of Grade PCEA Recycle Graphite Pilot Scale Billets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burchell, Timothy D; Pappano, Peter J
2010-10-01
Here we report the physical properties of a series specimens machined from pilot scale (~ 152 mm diameter x ~305 mm length) grade PCEA recycle billets manufactured by GrafTech. The pilot scale billets were processed with increasing amounts of (unirradiated) graphite (from 20% to 100%) introduced to the formulation with the goal of determining if large fractions of recycle graphite have a deleterious effect on properties. The properties determined include Bulk Density, Electrical Resistivity, Elastic (Young s) Modulus, and Coefficient of Thermal Expansion. Although property variations were observed to be correlated with the recycle fraction, the magnitude of the variationsmore » was noted to be small.« less
Zhang, Liang; Zhao, Hai; Gan, Mingzhe; Jin, Yanlin; Gao, Xiaofeng; Chen, Qian; Guan, Jiafa; Wang, Zhongyan
2011-03-01
The aim of this work was to research a bioprocess for bioethanol production from raw sweet potato by Saccharomyces cerevisiae at laboratory, pilot and industrial scales. The fermentation mode, inoculum size and pressure from different gases were determined in laboratory. The maximum ethanol concentration, average ethanol productivity rate and yield of ethanol after fermentation in laboratory scale (128.51 g/L, 4.76 g/L/h and 91.4%) were satisfactory with small decrease at pilot scale (109.06 g/L, 4.89 g/L/h and 91.24%) and industrial scale (97.94 g/L, 4.19 g/L/h and 91.27%). When scaled up, the viscosity caused resistance to fermentation parameters, 1.56 AUG/g (sweet potato mash) of xylanase decreased the viscosity from approximately 30000 to 500 cp. Overall, sweet potato is a attractive feedstock for be bioethanol production from both the economic standpoints and environmentally friendly. Copyright © 2011 Elsevier Ltd. All rights reserved.
Subsurface Monitoring of CO2 Sequestration - A Review and Look Forward
NASA Astrophysics Data System (ADS)
Daley, T. M.
2012-12-01
The injection of CO2 into subsurface formations is at least 50 years old with large-scale utilization of CO2 for enhanced oil recovery (CO2-EOR) beginning in the 1970s. Early monitoring efforts had limited measurements in available boreholes. With growing interest in CO2 sequestration beginning in the 1990's, along with growth in geophysical reservoir monitoring, small to mid-size sequestration monitoring projects began to appear. The overall goals of a subsurface monitoring plan are to provide measurement of CO2 induced changes in subsurface properties at a range of spatial and temporal scales. The range of spatial scales allows tracking of the location and saturation of the plume with varying detail, while finer temporal sampling (up to continuous) allows better understanding of dynamic processes (e.g. multi-phase flow) and constraining of reservoir models. Early monitoring of small scale pilots associated with CO2-EOR (e.g., the McElroy field and the Lost Hills field), developed many of the methodologies including tomographic imaging and multi-physics measurements. Large (reservoir) scale sequestration monitoring began with the Sleipner and Weyburn projects. Typically, large scale monitoring, such as 4D surface seismic, has limited temporal sampling due to costs. Smaller scale pilots can allow more frequent measurements as either individual time-lapse 'snapshots' or as continuous monitoring. Pilot monitoring examples include the Frio, Nagaoka and Otway pilots using repeated well logging, crosswell imaging, vertical seismic profiles and CASSM (continuous active-source seismic monitoring). For saline reservoir sequestration projects, there is typically integration of characterization and monitoring, since the sites are not pre-characterized resource developments (oil or gas), which reinforces the need for multi-scale measurements. As we move beyond pilot sites, we need to quantify CO2 plume and reservoir properties (e.g. pressure) over large scales, while still obtaining high resolution. Typically the high-resolution (spatial and temporal) tools are deployed in permanent or semi-permanent borehole installations, where special well design may be necessary, such as non-conductive casing for electrical surveys. Effective utilization of monitoring wells requires an approach of modular borehole monitoring (MBM) were multiple measurements can be made. An example is recent work at the Citronelle pilot injection site where an MBM package with seismic, fluid sampling and distributed fiber sensing was deployed. For future large scale sequestration monitoring, an adaptive borehole-monitoring program is proposed.
Psychometric properties of the Transitions from Foster Care Key Leader Survey.
Salazar, Amy M; Brown, Eric C; Monahan, Kathryn C; Catalano, Richard F
2016-04-01
This study summarizes the development and piloting of the Transitions from Foster Care Key Leader Survey (TFC-KLS), an instrument designed to measure change in systems serving young people transitioning from foster care to adulthood. The Jim Casey Youth Opportunity Initiative's logic model was used as a basis for instrument development. The instrument was piloted with 119 key leaders in six communities. Seven of eight latent scales performed well in psychometric testing. The relationships among the 24 measures of system change were explored. A CFA testing overall model fit was satisfactory following slight modifications. Finally, a test of inter-rater reliability between two raters did not find reliable reporting of service availability in a supplemental portion of the survey. The findings were generally positive and supported the validity and utility of the instrument for measuring system change, following some adaptations. Implications for the field are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Technical Analysis Feasibility Study on Smart Microgrid System in Sekolah Tinggi Teknik PLN
NASA Astrophysics Data System (ADS)
Suyanto, Heri
2018-02-01
Nowadays application of new and renewable energy as main resource of power plant has greatly increased. High penetration of renewable energy into the grid will influence the quality and reliability of the electricity system, due to the intermittent characteristic of new and renewable energy resources. Smart grid or microgrid technology has the ability to deal with this intermittent characteristic especially if these renewable energy resources integrated to grid in large scale, so it can improve the reliability and efficiency of the grid. We plan to implement smart microgrid system at Sekolah Tinggi Teknik PLN as a pilot project. Before the pilot project start, the feasibility study must be conducted. In this feasibility study, the renewable energy resources and load characteristic at the site will be measured. Then the technical aspect of this feasibility study will be analyzed. This paper explains that analysis of ths feasibility study.
Air pollution control system research: An iterative approach to developing affordable systems
NASA Technical Reports Server (NTRS)
Watt, Lewis C.; Cannon, Fred S.; Heinsohn, Robert J.; Spaeder, Timothy A.
1995-01-01
This paper describes a Strategic Environmental Research and Development Program (SERDP) funded project led jointly by the Marine Corps Multi-Commodity Maintenance Centers, and the Air and Energy Engineering Research Laboratory (AEERL) of the USEPA. The research focuses on paint booth exhaust minimization using recirculation, and on volatile organic compound (VOC) oxidation by the modules of a hybrid air pollution control system. The research team is applying bench, pilot and full scale systems to accomplish the goals of reduced cost and improved effectiveness of air treatment systems for paint booth exhaust.
In the VOC regulations both Granular Activated Carbon (GAC) and Packed Tower Aeration (PTA) have been designated as Best Available Treatment. DWRD has performed a great deal of research both at the bench, pilot and field scale on the use of GAC and pilot and field scale research ...
The ADR model developed in Part I of this study was successfully validated with experimenta data obtained for the inactivation of C. parvum and C. muris oocysts with a pilot-scale ozone-bubble diffuser contactor operated with treated Ohio River water. Kinetic parameters, required...
REVIEW OF BENCH-, PILOT-, AND FULL-SCALE ORIMULSION (R) COMBUSTION TESTS
The paper gives results of a review of bench-, pilot-, and full-scale Orimulsion combustion tests. A fossil fuel marketed by its producer, Petroleos de Venezuela, S.A. (PdVSA), since the late 1980s as an alternative to coal and heavy fuel oil, Orimulsion is a bitumen-in-water em...
The paper gives results of experiments in a pilot-scale rotary kiln incinerator simulator where a mixture of chlorinated and brominated surrogate waste was burned in the presence of injected fly-ash from a coal-fired utility boiler. Measurements were made of semivolatile products...
A PILOT-SCALE STUDY ON THE COMBUSTION OF WASTE ...
Symposium Paper Post-consumer carpet is a potential substitute fuel for high temperature thermal processes such as cement kilns and boilers.This paper reports on results examining emissions of PCDDs/Fs from a series of pilot-scale experiments performed on the EPA's rotary kiln incinerator simulator facility in Research triangle Park, NC.
The effectiveness of a zirconium dioxide (ZrO2) membrane filter was evaluated for recycling a nonionic aqueous metal cleaning bath under real-world conditions. The pilot-scale study consisted of four 7- to 16-day filtration runs, each processed a portion of the cleaning bath duri...
Haifeng Zhou; Junyong Zhu; Roland Gleisner; Xueqing Qiu; Eric Horn; Jose Negron
2016-01-01
The process sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) has been the focus of this study. Pilot-scale (50 kg) pretreatment of wood chips of lodgepole pine (Pinus contorta Douglas ex Loudon) killed by mountain pine beetle (Dendroctonus ponderosae Hopkins) were conducted at 165°C...
USDA-ARS?s Scientific Manuscript database
Peanut meal (PM) is the high protein by-product remaining after commercial extraction of peanut oil. PM applications are limited because of typical high concentrations of aflatoxin. For the first time, pilot-scale extraction of protein and sequestration of aflatoxin from PM were evaluated. Aqueous...
Final Pilot Performance Rating Scales.
ERIC Educational Resources Information Center
Horner, Walter R.; And Others
These rating scales are intended for evaluation of student pilot performance. Each student is evaluated individually on the basis of video recordings of the student in flight. Ten point rating lines are used for the ten criterion performance elements of each of three maneuvers, (1) Final Turn to Landing, (2) Lazy Eight, and (3) Vertical S "A".…
[Yield of starch extraction from plantain (Musa paradisiaca). Pilot plant study].
Flores-Gorosquera, Emigdia; García-Suárez, Francisco J; Flores-Huicochea, Emmanuel; Núñez-Santiago, María C; González-Soto, Rosalia A; Bello-Pérez, Luis A
2004-01-01
In México, the banana (Musa paradisiaca) is cooked (boiling or deep frying) before being eaten, but the consumption is not very popular and a big quantity of the product is lost after harvesting. The unripe plantain has a high level of starch and due to this the use of banana can be diversified as raw material for starch isolation. The objective of this work was to study the starch yield at pilot plant scale. Experiments at laboratory scale were carried out using the pulp with citric acid to 0,3 % (antioxidant), in order to evaluate the different unitary operations of the process. The starch yield, based on starch presence in the pulp that can be isolated, were between 76 and 86 %, and the values at pilot plant scale were between 63 and 71 %, in different lots of banana fruit. Starch yield values were similar among the diverse lots, showing that the process is reproducible. The lower values of starch recovery at pilot plant scale are due to the loss during sieving operations; however, the amount of starch recovery is good.
Tilmans, Sebastien; Russel, Kory; Sklar, Rachel; Page, Leah; Kramer, Sasha
2015-01-01
Container-based sanitation (CBS) – in which wastes are captured in sealable containers that are then transported to treatment facilities – is an alternative sanitation option in urban areas where on-site sanitation and sewerage are infeasible. This paper presents the results of a pilot household CBS service in Cap Haitien, Haiti. We quantify the excreta generated weekly in a dense urban slum,(1) the proportion safely removed via container-based public and household toilets, and the costs associated with these systems. The CBS service yielded an approximately 3.5-fold decrease in the unmanaged share of faeces produced, and nearly eliminated the reported use of open defecation and “flying toilets” among service recipients. The costs of this pilot small-scale service were higher than those of large-scale waterborne sewerage, but economies of scale have the potential to reduce CBS costs over time. The paper concludes with a discussion of planning and policy implications of incorporating CBS into the menu of sanitation options for rapidly growing cities. PMID:26097288
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Canhai; Xu, Zhijie; Li, Tingwen
In virtual design and scale up of pilot-scale carbon capture systems, the coupled reactive multiphase flow problem must be solved to predict the adsorber’s performance and capture efficiency under various operation conditions. This paper focuses on the detailed computational fluid dynamics (CFD) modeling of a pilot-scale fluidized bed adsorber equipped with vertical cooling tubes. Multiphase Flow with Interphase eXchanges (MFiX), an open-source multiphase flow CFD solver, is used for the simulations with custom code to simulate the chemical reactions and filtered models to capture the effect of the unresolved details in the coarser mesh for simulations with reasonable simulations andmore » manageable computational effort. Previously developed two filtered models for horizontal cylinder drag, heat transfer, and reaction kinetics have been modified to derive the 2D filtered models representing vertical cylinders in the coarse-grid CFD simulations. The effects of the heat exchanger configurations (i.e., horizontal or vertical) on the adsorber’s hydrodynamics and CO2 capture performance are then examined. The simulation result subsequently is compared and contrasted with another predicted by a one-dimensional three-region process model.« less
Sanders, G D; Nease, R F; Owens, D K
2000-01-01
Local tailoring of clinical practice guidelines (CPGs) requires experts in medicine and evidence synthesis unavailable in many practice settings. The authors' computer-based system enables developers and users to create, disseminate, and tailor CPGs, using normative decision models (DMs). ALCHEMIST, a web-based system, analyzes a DM, creates a CPG in the form of an annotated algorithm, and displays for the guideline user the optimal strategy. ALCHEMIST'S interface enables remote users to tailor the guideline by changing underlying input variables and observing the new annotated algorithm that is developed automatically. In a pilot evaluation of the system, a DM was used to evaluate strategies for staging non-small-cell lung cancer. Subjects (n = 15) compared the automatically created CPG with published guidelines for this staging and critiqued both using a previously developed instrument to rate the CPGs' usability, accountability, and accuracy on a scale of 0 (worst) to 2 (best), with higher scores reflecting higher quality. The mean overall score for the ALCHEMIST CPG was 1.502, compared with the published-CPG score of 0.987 (p = 0.002). The ALCHEMIST CPG scores for usability, accountability, and accuracy were 1.683, 1.393, and 1.430, respectively; the published CPG scores were 1.192, 0.941, and 0.830 (each comparison p < 0.05). On a scale of 1 (worst) to 5 (best), users' mean ratings of ALCHEMIST'S ease of use, usefulness of content, and presentation format were 4.76, 3.98, and 4.64, respectively. The results demonstrate the feasibility of a web-based system that automatically analyzes a DM and creates a CPG as an annotated algorithm, enabling remote users to develop site-specific CPGs. In the pilot evaluation, the ALCHEMIST guidelines met established criteria for quality and compared favorably with national CPGs. The high usability and usefulness ratings suggest that such systems can be a good tool for guideline development.
Organic semiconductor wastewater treatment using a four-stage Bardenpho with membrane system.
Chung, Jinwook; Fleege, Daniel; Ong, Say Kee; Lee, Yong-Woo
2014-01-01
Electronic wastewater from a semiconductor plant was treated with a pilot-scale four-stage Bardenpho process with membrane system. The system was operated over a 14-month period with an overall hydraulic retention time (HRT) ranging from 9.5 to 30 h. With a few exceptions, the pilot plant consistently treated the electronic wastewater with an average removal efficiency of chemical oxygen demand (COD) and total nitrogen of 97% and 93%, respectively, and achieving effluent quality of COD<15 mg/L, turbidity<1, and silt density index<1. Based on removal efficiencies of the pilot plant, it is possible to lower the HRT to less than 9.5 h to achieve comparable removal efficiencies. An energy-saving configuration where an internal recycle line was omitted and the biomass recycle was rerouted to the pre-anoxic tank, can reduce energy consumption by 8.6% and gave removal efficiencies that were similar to the Bardenpho process. The system achieved pre-anoxic and post-anoxic specific denitrification rate values with a 95% confidence interval of 0.091 ± 0.011 g NO₃-N/g MLVSS d and 0.087 ± 0.016 g NO₃-N/g MLVSS d, respectively. The effluent from the four-stage Bardenpho with membrane system can be paired with a reverse osmosis system to provide further treatment for reuse purposes.
Huong, Kai-Hee; Azuraini, Mat Junoh; Aziz, Nursolehah Abdul; Amirul, Al-Ashraf Abdullah
2017-07-01
Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [(P(3HB-co-4HB)] copolymer receives attention as next generation biomaterial in medical application. However, the exploitation of the copolymer is still constrained since such copolymer has not yet successfully been performed in industrial scale production. In this work, we intended to establish pilot production system of the copolymer retaining the copolymer quality which has recently discovered to have novel characteristic from lab scale fermentation. An increase of agitation speed has significantly improved the copolymer accumulation efficiency by minimizing the utilization of substrates towards cell growth components. This is evidenced by a drastic increase of PHA content from 28 wt% to 63 wt% and PHA concentration from 3.1 g/L to 6.5 g/L but accompanied by the reduction of residual biomass from 8.0 g/L to 3.8 g/L. Besides, fermentations at lower agitation and aeration have resulted in reduced molecular weight and mechanical strength of the copolymer, suggesting the role of sufficient oxygen supply efficiency in improving the properties of the resulting copolymers. The K L a-based scale-up fermentation was performed successfully in maintaining the yield and the quality of the copolymers produced without a drastic fluctuation. This suggests that the scale-up based on the K L a values supported the fermentation system of P(3HB-co-4HB) copolymer production in single-stage using mixed-substrate cultivation strategy. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
Volume IV contains the following attachments for Module IV: VOC monitoring plan for bin-room tests (Appendix D12); bin emission control and VOC monitoring system drawings; bin scale test room ventilation drawings; WIPP supplementary roof support system, underground storage area, room 1, panel 1, DOE/WIPP 91-057; and WIPP supplementary roof support system, room 1, panel 1, geotechnical field data analysis bi-annual report, DOE/WIPP 92-024.
Space Shuttle Orbital Drag Parachute Design
NASA Technical Reports Server (NTRS)
Meyerson, Robert E.
2001-01-01
The drag parachute system was added to the Space Shuttle Orbiter's landing deceleration subsystem beginning with flight STS-49 in May 1992. The addition of this subsystem to an existing space vehicle required a detailed set of ground tests and analyses. The aerodynamic design and performance testing of the system consisted of wind tunnel tests, numerical simulations, pilot-in-the-loop simulations, and full-scale testing. This analysis and design resulted in a fully qualified system that is deployed on every flight of the Space Shuttle.
[The prevalence of snoring in male pilots].
Wang, Wan-er; Zhu, Guang-qing; Zhang, Ji-dong; Li, Rong; Wang, Yan-yan; Zhang, Yu-zhen; Liu, Ju-qin; He, Quan-ying
2008-09-01
To investigate and analysis the prevalence and risk factors of snoring and excessive daytime sleepiness among male pilots. 1108 subjects were derived from a random sample of pilots. They were asked to answer the questions from a questionnaire concerning their snoring and daytime sleepiness, etc. 1054 questionnaire were available for evaluation. The overall prevalence of snoring among male pilots was 51.04% (538/1054), while moderate and severe snorers accounted for 26.28% (227/1054). The prevalence of snoring among male pilots aged over 30 yr was 63.68% (426/669). The prevalence and severity of snoring increase with age and BMI. Age, overweight and obesity, alcohol ingestion and family history of snoring were associated with the prevalence and severity of snoring. There was significant difference in Epworth sleepiness scale scores among without snoring group and various severity of snoring groups (chi2 = 16.948, P < 0.05). The prevalence of snoring is high in male pilots. The Epworth sleepiness scale score increase with increasing degree of snoring. Doctors should pay more attention to snoring in male pilot.
Biomass district heating methodology and pilot installations for public buildings groups
NASA Astrophysics Data System (ADS)
Chatzistougianni, N.; Giagozoglou, E.; Sentzas, K.; Karastergios, E.; Tsiamitros, D.; Stimoniaris, D.; Stomoniaris, A.; Maropoulos, S.
2016-11-01
The objective of the paper is to show how locally available biomass can support a small-scale district heating system of public buildings, especially when taking into account energy audit in-situ measurements and energy efficiency improvement measures. The step-by-step methodology is presented, including the research for local biomass availability, the thermal needs study and the study for the biomass district heating system, with and without energy efficiency improvement measures.
NASA Technical Reports Server (NTRS)
Goodyer, M. J.; Britcher, C. P.
1983-01-01
The results of experimental demonstrations of a superconducting solenoid model core in the Southampton University Magnetic Suspension and Balance System are detailed. Technology and techniques relevant to large-scale wind tunnel MSBSs comprise the long term goals. The magnetic moment of solenoids, difficulties peculiar to superconducting solenoid cores, lift force and pitching moment, dynamic lift calibration, and helium boil-off measurements are discussed.
Fall 2014 Data-Intensive Systems
2014-10-29
Oct 2014 © 2014 Carnegie Mellon University Big Data Systems NoSQL and horizontal scaling are changing architecture principles by creating...University Status LEAP4BD • Ready to pilot QuABase • Prototype is complete – covers 8 NoSQL /NewSQL implementations • Completing validation testing Big...machine learning to automate population of knowledge base • Initial focus on NoSQL /NewSQL technology domain • Extend to create knowledge bases in other
This document is a project plan for a pilot study at the United Chrome NPL site, Corvallis, Oregon and includes the health and safety and quality assurance/quality control plans. The plan reports results of a bench-scale study of the treatment process as iieasured by the ...
Alternative energy efficient membrane bioreactor using reciprocating submerged membrane.
Ho, J; Smith, S; Roh, H K
2014-01-01
A novel membrane bioreactor (MBR) pilot system, using membrane reciprocation instead of air scouring, was operated at constant high flux and daily fluctuating flux to demonstrate its application under peak and diurnal flow conditions. Low and stable transmembrane pressure was achieved at 40 l/m(2)/h (LMH) by use of repetitive membrane reciprocation. The results reveal that the inertial forces acting on the membrane fibers effectively propel foulants from the membrane surface. Reciprocation of the hollow fiber membrane is beneficial for the constant removal of solids that may build up on the membrane surface and inside the membrane bundle. The membrane reciprocation in the reciprocating MBR pilot consumed less energy than coarse air scouring used in conventional MBR systems. Specific energy consumption for the membrane reciprocation was 0.072 kWh/m(3) permeate produced at 40 LMH flux, which is 75% less than for a conventional air scouring system as reported in literature without consideration of energy consumption for biological aeration (0.29 kWh/m(3)). The daily fluctuating flux test confirmed that the membrane reciprocation is effective to handle fluctuating flux up to 50 LMH. The pilot-scale reciprocating MBR system successfully demonstrated that fouling can be controlled via 0.43 Hz membrane reciprocation with 44 mm or higher amplitude.
Pilot plant test of the advanced flash stripper for CO2 capture.
Lin, Yu-Jeng; Chen, Eric; Rochelle, Gary T
2016-10-20
Alternative stripping processes have been proposed to reduce energy use for CO 2 capture, but only a few have been applied to pilot-scale experiments. This paper presents the first pilot plant test results of one of the most promising stripper configurations, the advanced flash stripper with cold and warm rich solvent bypass. The campaign using aqueous piperazine was carried out at UT Austin in 2015. The advanced flash stripper improves the heat duty by over 25% compared to previous campaigns using the two-stage flash, achieving 2.1 GJ per tonne CO 2 of heat duty and 32 kJ mol -1 CO 2 of total equivalent work. The bypass control strategy proposed minimized the heat duty. The test successfully demonstrated the remarkable energy performance and the operability of this advanced system. An Aspen Plus® model was validated using the pilot plant data and used to explore optimum operating and design conditions. The irreversibility analysis showed that the pilot plant performance has attained 50% thermodynamic efficiency and further energy improvement should focus on the absorber and the cross exchanger by increasing absorption rate and solvent capacity.
U.S. EPA’s Office of Research and Development has been evaluating the performance of point-of-use (POU) devices designed for use in homes and small businesses for many years. In collaboration with the University of Cincinnati, a series of pilot-scale tests were conducted on a Ma...
A systematic experimental study was conducted using a pilot-scale drinking water distribution system simulator to quantify the effect of hydrodynamics, total organic carbon (TOC), initial disinfectant levels, and pipe materials on chlorine decay and disinfection by-product (DBP) ...
A systematic experimental study was conducted using a pilot-scale drinking water distribution system simulator to quantify the effect of hydrodynamics, total organic carbon (TOC), initial disinfectant levels, and pipe materials on chlorine decay and disinfection by-product (DBP) ...
USDA-ARS?s Scientific Manuscript database
In this study, we used a commercial pilot-scale, skid-mounted pyrolysis reactor system to produce combustible gas and biochar at 620ºC from three sources (chicken litter, swine solids, mixture of swine solids with rye grass). Pyrolysis of swine solids produced gas with the greatest higher heating va...
Many regions in the United States have excessive levels of ammonia in their drinking water sources (e.g., ground and surface waters) as a result of naturally occurring processes, agricultural and urban runoff, concentrated animal feeding operations, municipal wastewater treatment...
2011-05-01
Sustainability Development to Integration NAVSTA Naval Station NT not tested O&M operation and maintenance OSHA Occupational Safety and Health ...Safety and Health Administration The results presented here and data from previous pilot scale and prototype (Hawaii) demonstrations of oily sludge...designed to treat. While additional degradation may have occurred if the system was supplemented with micronutrients and operated in series, it is
Variation in polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD and PCDF) homologue profiles from a pilot scale (0.6 MWt, 2x106 Btu/hr), co-fired-fuel [densified refuse derived fuel (dRDF) and high-sulfur Illinois coal] combustion system was used to provide i...
The use of biologically active filtration to oxidize ammonia as a full-scale drinking water treatment process has not been thoroughly considered in the United States. A number of concerns with biological water treatment exist including the potential release of excessive numbers o...
1999-09-28
Phytoremediation is generally economically favorable and environmentally acceptable relative to other more intrusive remediation technologies, but... leachate is 0.13 mg/L for 2,4- DNT, but no standard is available for 2,6-DNT and TNT. It should be pointed out that the observed residual concentrations
Jing, Liang; Chen, Bing; Wen, Diya; Zheng, Jisi; Zhang, Baiyu
2017-12-01
This study shed light on removing atrazine from pesticide production wastewater using a pilot-scale UV/O 3 /ultrasound flow-through system. A significant quadratic polynomial prediction model with an adjusted R 2 of 0.90 was obtained from central composite design with response surface methodology. The optimal atrazine removal rate (97.68%) was obtained at the conditions of 75 W UV power, 10.75 g h -1 O 3 flow rate and 142.5 W ultrasound power. A Monte Carlo simulation aided artificial neural networks model was further developed to quantify the importance of O 3 flow rate (40%), UV power (30%) and ultrasound power (30%). Their individual and interaction effects were also discussed in terms of reaction kinetics. UV and ultrasound could both enhance the decomposition of O 3 and promote hydroxyl radical (OH·) formation. Nonetheless, the dose of O 3 was the dominant factor and must be optimized because excess O 3 can react with OH·, thereby reducing the rate of atrazine degradation. The presence of other organic compounds in the background matrix appreciably inhibited the degradation of atrazine, while the effects of Cl - , CO 3 2- and HCO 3 - were comparatively negligible. It was concluded that the optimization of system performance using response surface methodology and neural networks would be beneficial for scaling up the treatment by UV/O 3 /ultrasound at industrial level. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yoshino, Hiroyuki; Hara, Yuko; Dohi, Masafumi; Yamashita, Kazunari; Hakomori, Tadashi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru
2018-04-01
Scale-up approaches for film coating process have been established for each type of film coating equipment from thermodynamic and mechanical analyses for several decades. The objective of the present study was to establish a versatile scale-up approach for film coating process applicable to commercial production that is based on critical quality attribute (CQA) using the Quality by Design (QbD) approach and is independent of the equipment used. Experiments on a pilot scale using the Design of Experiment (DoE) approach were performed to find a suitable CQA from surface roughness, contact angle, color difference, and coating film properties by terahertz spectroscopy. Surface roughness was determined to be a suitable CQA from a quantitative appearance evaluation. When surface roughness was fixed as the CQA, the water content of the film-coated tablets was determined to be the critical material attribute (CMA), a parameter that does not depend on scale or equipment. Finally, to verify the scale-up approach determined from the pilot scale, experiments on a commercial scale were performed. The good correlation between the surface roughness (CQA) and the water content (CMA) identified at the pilot scale was also retained at the commercial scale, indicating that our proposed method should be useful as a scale-up approach for film coating process.
Assessing pretreatment reactor scaling through empirical analysis
Lischeske, James J.; Crawford, Nathan C.; Kuhn, Erik; ...
2016-10-10
Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/d continuous reactor. The reactor systems examined were an Automated Solvent Extractor (ASE), Steam Explosion Reactor (SER), ZipperClave(R) reactor (ZCR), and Large Continuous Horizontal-Screw Reactor (LHR). To our knowledge, thismore » is the first such study performed on pretreatment reactors across a range of reaction conditions (time and temperature) and at different reactor scales. The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest-scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. A reaction severity factor modeling approach was shown to inadequately describe the optimal conditions in the ASE, incorrectly identifying a large set of sub-optimal conditions (as defined by the RSM) as optimal. The maximum total sugar yields for the ASE and LHR were 95%, while 89% was the optimum observed in the ZipperClave. The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was within the near-optimal space for total sugar yield for the LHR. This indicates that the ASE is a good tool for cost effectively finding near-optimal conditions for operating pilot-scale systems, which may be used as starting points for further optimization. Additionally, using a severity-factor approach to optimization was found to be inadequate compared to a multivariate optimization method. As a result, the ASE and the LHR were able to enable significantly higher total sugar yields after enzymatic hydrolysis relative to the ZCR, despite having similar optimal conditions and total xylose yields. This underscores the importance of incorporating mechanical disruption into pretreatment reactor designs to achieve high enzymatic digestibilities.« less
Assessing pretreatment reactor scaling through empirical analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lischeske, James J.; Crawford, Nathan C.; Kuhn, Erik
Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/d continuous reactor. The reactor systems examined were an Automated Solvent Extractor (ASE), Steam Explosion Reactor (SER), ZipperClave(R) reactor (ZCR), and Large Continuous Horizontal-Screw Reactor (LHR). To our knowledge, thismore » is the first such study performed on pretreatment reactors across a range of reaction conditions (time and temperature) and at different reactor scales. The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest-scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. A reaction severity factor modeling approach was shown to inadequately describe the optimal conditions in the ASE, incorrectly identifying a large set of sub-optimal conditions (as defined by the RSM) as optimal. The maximum total sugar yields for the ASE and LHR were 95%, while 89% was the optimum observed in the ZipperClave. The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was within the near-optimal space for total sugar yield for the LHR. This indicates that the ASE is a good tool for cost effectively finding near-optimal conditions for operating pilot-scale systems, which may be used as starting points for further optimization. Additionally, using a severity-factor approach to optimization was found to be inadequate compared to a multivariate optimization method. As a result, the ASE and the LHR were able to enable significantly higher total sugar yields after enzymatic hydrolysis relative to the ZCR, despite having similar optimal conditions and total xylose yields. This underscores the importance of incorporating mechanical disruption into pretreatment reactor designs to achieve high enzymatic digestibilities.« less
Amyris, Inc. Integrated Biorefinery Project Summary Final Report - Public Version
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, David; Sato, Suzanne; Garcia, Fernando
The Amyris pilot-scale Integrated Biorefinery (IBR) leveraged Amyris synthetic biology and process technology experience to upgrade Amyris’s existing Emeryville, California pilot plant and fermentation labs to enable development of US-based production capabilities for renewable diesel fuel and alternative chemical products. These products were derived semi-synthetically from high-impact biomass feedstocks via microbial fermentation to the 15-carbon intermediate farnesene, with subsequent chemical finishing to farnesane. The Amyris IBR team tested and provided methods for production of diesel and alternative chemical products from sweet sorghum, and other high-impact lignocellulosic feedstocks, at pilot scale. This enabled robust techno-economic analysis (TEA), regulatory approvals, and amore » basis for full-scale manufacturing processes and facility design.« less
Assessment of Crew Workload for the RAH-66 Comanche Force Development Experiment 1
2001-10-01
Scale and a cockpit controls and displays usability questionnaire . Results of the assessment indicate that (a) workload was tolerable for the pilots...Workload Levels Between Front Seat and Back Seat 13 3.4 Pilot Responses to Controls and Displays Usability Questionnaire 13 3.5 HMD Symbology 13 4... questionnaire . The data were analyzed to determine if the pilot flying the aircraft (pilot on controls) and the pilot operating the mission equipment
Ben-shalom, Miriam; Shandalov, Semion; Brenner, Asher; Oron, Gideon
2014-01-01
Three pilot-scale duckweed pond (DP) wastewater treatment systems were designed and operated to examine the effect of aeration and effluent recycling on treatment efficiency. Each system consisted of two DPs in series fed by pre-settled domestic sewage. The first system (duckweed+ conventional treatment) was 'natural' and included only duckweed plants. The second system (duckweed aeration) included aeration in the second pond. The third system (duckweed+ aeration+ circulation) included aeration in the second pond and effluent recycling from the second to the first pond. All three systems demonstrated similarly efficient removal of organic matter and nutrients. Supplemental aeration had no effect on either dissolved oxygen levels or on pollutant removal efficiencies. Although recycling had almost no influence on nutrient removal efficiencies, it had a positive impact on chemical oxygen demand and total suspended solids removals due to equalization of load and pH, which suppressed algae growth. Recycling also improved the appearance and growth rate of the duckweed plants, especially during heavy wastewater loads.
Pilot-scale tests of HEME and HEPA dissolution process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qureshi, Z.H.; Strege, D.K.
A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME`s) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsedmore » with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump.« less
Constructed wetlands for wastewater and activated sludge treatment in north Greece: a review.
Tsihrintzis, V A; Gikas, G D
2010-01-01
Constructed wetlands used for the treatment of urban, industrial and agricultural wastewater have become very popular treatment systems all over the world. In Greece, these systems are not very common, although the climate is favourable for their use. During recent years, there have been several attempts for the implementation of these systems in Greece, which include, among others, pilot-scale systems used for research, and full-scale systems designed and/or constructed to serve settlements or families. The purpose of this paper is the presentation of systems operating in Northern Greece, which have been studied by the Laboratory of Ecological Engineering and Technology of Democritus University of Thrace and others. A comparison is made of different system types, and the effect of various design and operational parameters is presented. Current research shows the good and continuous performance of these systems.
Zhu, Nengwu
2006-10-01
Pilot composting experiments of swine manure with corncob were conducted to evaluate the performance of the aerated static bin composting system. Effects of temperature control (60 and 70 degrees C) and moisture content (70% and 80%) were monitored on the composting by measuring physical and chemical indexes. The results showed that (1) the composting system could destroy pathogens, converted nitrogen from unstable ammonia to stable organic forms, and reduced the volume of waste; (2) significant difference of NH(4)(+)-N (P(12) = 0.074), and (NO(3)(-) + NO(2)(-))-N (P(12) = 0.085) was found between the temperature control treatments; (3) anaerobic reaction in the treatment with 80% moisture content resulted in significant difference of pH (P(23) = 0.006), total organic matter (P(23) = 0.003), and germination index (P(23) = 0.040) between 70% and 80%. Therefore, the optimum initial moisture content was less than 80% with the composting of swine manure and corncob by using the composting system.
Feng, Chuanping; Shimada, Sadoru; Zhang, Zhenya; Maekawa, Takaaki
2008-01-01
A pilot plant bioenergy recovery system from swine waste and garbage was constructed. A series of experiments was performed using swine feces (SF); a mixture of swine feces and urine (MSFU); a mixture of swine feces, urine and garbage (MSFUG); garbage and a mixture of urine and garbage (AUG). The system performed well for treating the source materials at a high organic loading rate (OLR) and short hydraulic retention time (HRT). In particular, the biogas production for the MSFUG was the highest, accounting for approximately 865-930 L kg(-1)-VS added at the OLR of 5.0-5.3 kg-VS m(-3) day(-1) and the HRT of 9 days. The removal of VS was 67-75%, and that of COD was 73-74%. Therefore, co-digestion is a promising method for the recovery of bioenergy from swine waste and garbage. Furthermore, the results obtained from this study provide fundamental information for scaling up a high-performance anaerobic system in the future.
Odour in composting processes at pilot scale: monitoring and biofiltration.
Gutiérrez, M C; Serrano, A; Martín, M A; Chica, A F
2014-08-01
Although odour emissions associated with the composting process, especially during the hydrolytic stage, are widely known, their impact on surrounding areas is not easily quantifiable, For this reason, odour emissions during the first stage ofcomposting were evaluated by dynamic olfactometry at pilot scale in order to obtain results which can be extrapolated to industrial facilities. The composting was carried out in a commercial dynamic respirometer equipped with two biofilters at pilot scale filled with prunings (Populus) and mature compost obtained from the organic fraction of municipal solid waste. Given that the highest odour emissions occur in the first stage of the composting process, this stage was carried out in a closed system to better control the odour emissions, whose maximum value was estimated to be 2.78 ouF S-1 during the experiments. Odour concentration, the dynamic respiration index and temperature showed the same evolution during composting, thus indicating that odour could be a key variable in the monitoring process. Other variables such as total organic carbon (CTOC) and pH were also found to be significant in this study due to their influence over odour emissions. The efficiency of the biofilters (empty bed residence time of 86 s) was determined by quantifying the odour emissions at the inlet and outlet of both biofilters. The moisture content in the biofilters was found to be an important variable for improving odour removal efficiency, while the minimum moisture percentage to obtain successful results was found to be 55% (odour removal efficiency of 95%).
NASA Astrophysics Data System (ADS)
Grundstrom, Erika
2013-01-01
To help students love science more and to help them understand the vast distances that pervade astronomy, we use kinesthetic modeling of the Earth-Moon system using PlayDoh. When coupled with discussion, we found (in a pilot study) that students of all ages (children up through adults) acquired a more accurate mental representation of the Earth-Moon system. During early September 2012, we devised and implemented a curriculum unit that focused on the Earth-Moon system and how that relates to eclipses for six middle-Tennessee 6th grade public school classrooms. For this unit, we used PlayDoh as the kinesthetic modeling tool. First, we evaluated what the students knew about the size and scale prior to this intervention using paper and model pre-tests. Second, we used the PlayDoh to model the Earth-Moon system and when possible, conducted an immediate post-test. The students then engaged with the PlayDoh model to help them understand eclipses. Third, we conducted a one-month-later delayed post-test. One thing to note is that about half of the students had experienced the PlayDoh modeling part of a 5th grade pilot lesson during May 2012 therefore the pre-test acted as a four-month-later delayed post-test for these students. We find, among other things, that students retain relative size information more readily than relative distance information. We also find differences in how consistent students are when trying to translate the size/scale they have in their heads to the different modes of assessment utilized.
Field-Scale Evaluation of Monitored Natural Attenuation for Dissolved Chlorinated Solvent Plumes
2009-04-01
biological in-situ treatment, an air sparging pilot study, and a phytoremediation study. The innovative technology studies were conducted within the source... phytoremediation (June to September 1997), reductive anaerobic biological in-situ treatment technology (RABITT; 1998), and groundwater recirculation wells...u g / L ) Measured Concentrations in 1381MWS09 Air Sparge Pilot Test (1996/1997) Phytoremediation Pilot Test (1997) RABITT Pilot Test (1998
[Pilot-scale purification of lipopeptide from marine-derived Bacillus marinus].
Gu, Kangbo; Guan, Cheng; Xu, Jiahui; Li, Shulan; Luo, Yuanchan; Shen, Guomin; Zhang, Daojing; Li, Yuanguang
2016-11-25
This research was aimed at establishing the pilot-scale purification technology of lipopeptide from marine-derived Bacillus marinus. We studied lipopeptide surfactivity interferences on scale-up unit technologies including acid precipitation, methanol extraction, solvent precipitation, salting out, extraction, silica gel column chromatography and HZ806 macroporous absorption resin column chromatography. Then, the unit technologies were combined in a certain order, to remove the impurities gradually, and to gain purified lipopeptide finally, with high recovery rate throughout the whole process. The novel pilot-scale purification technology could effectively isolate and purify lipopeptide with 87.51% to 100% purity in hectograms from 1 ton of Bacillus marinus B-9987 fermentation broth with more than 81.73% recovery rate. The first practical hectogram production of highly purified lipopeptide derived from Bacillus marinus was achieved. With this new purification method, using complex media became possible in fermentation process to reduce the fermentation cost and scale-up the purification for lipopeptide production. For practicability and economy, foaming problem resulting from massive water evaporation was avoided in this technology.
Isazadeh, Siavash; Feng, Min; Urbina Rivas, Luis Enrique; Frigon, Dominic
2014-04-15
Two pilot-scale activated sludge reactors were operated for 98 days to provide the necessary data to develop and validate a new mathematical model predicting the reduction of biosolids production by ozonation of the return activated sludge (RAS). Three ozone doses were tested during the study. In addition to the pilot-scale study, laboratory-scale experiments were conducted with mixed liquor suspended solids and with pure cultures to parameterize the biomass inactivation process during exposure to ozone. The experiments revealed that biomass inactivation occurred even at the lowest doses, but that it was not associated with extensive COD solubilization. For validation, the model was used to simulate the temporal dynamics of the pilot-scale operational data. Increasing the description accuracy of the inactivation process improved the precision of the model in predicting the operational data. Copyright © 2014 Elsevier B.V. All rights reserved.
Modular Hydropower Engineering and Pilot Scale Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesser, Phillip C.
Emrgy has developed, prototyped and tested a modular hydropower system for renewable energy generation. ORNL worked with Emrgy to demonstrate the use of additive manufacturing in the production of the hydrofoils and spokes for the hydrokinetic system. Specifically, during Phase 1 of this effort, ORNL printed and finished machined patterns for both the hydrofoils and spokes that were subsequently used in a sand casting manufacturing process. Emrgy utilized the sand castings for a pilot installation in Denver, CO, where the parts represented an 80% cost savings from the previous prototype build that was manufactured using subtractive manufacturing. In addition, themore » castings were completed with ORNL’s newly developed AlCeMg alloy that will be tested for performance improvements including higher corrosion resistance in a water application than the 6160 alloy used previously« less
Pilot-Scale Selenium Bioremediation of San Joaquin Drainage Water with Thauera selenatis
Cantafio, A. W.; Hagen, K. D.; Lewis, G. E.; Bledsoe, T. L.; Nunan, K. M.; Macy, J. M.
1996-01-01
This report describes a simple method for the bioremediation of selenium from agricultural drainage water. A medium-packed pilot-scale biological reactor system, inoculated with the selenate-respiring bacterium Thauera selenatis, was constructed at the Panoche Water District, San Joaquin Valley, Calif. The reactor was used to treat drainage water (7.6 liters/min) containing both selenium and nitrate. Acetate (5 mM) was the carbon source-electron donor reactor feed. Selenium oxyanion concentrations (selenate plus selenite) in the drainage water were reduced by 98%, to an average of 12 (plusmn) 9 (mu)g/liter. Frequently (47% of the sampling days), reactor effluent concentrations of less than 5 (mu)g/liter were achieved. Denitrification was also observed in this system; nitrate and nitrite concentrations in the drainage water were reduced to 0.1 and 0.01 mM, respectively (98% reduction). Analysis of the reactor effluent showed that 91 to 96% of the total selenium recovered was elemental selenium; 97.9% of this elemental selenium could be removed with Nalmet 8072, a new, commercially available precipitant-coagulant. Widespread use of this system (in the Grasslands Water District) could reduce the amount of selenium deposited in the San Joaquin River from 7,000 to 140 lb (ca. 3,000 to 60 kg)/year. PMID:16535401
Application of ozone to eliminate tertiary treatment of wastewater used for industrial cooling
NASA Astrophysics Data System (ADS)
Merrill, D. T.; Parker, D. S.
1982-02-01
The beneficial performance of ozone (biofouling, corrosion, and chemical scaling control), when used as the sole source of cooling water treatment for air conditioning systems, could be obtained at higher cooling water temperatures typical of industrial cooling with secondary municipal effluent (SME) used as the cooling medium was investigated. A pilot cooling system was constructed and a 6 month experimental study initiated to determine process limits, mechanisms of scaling inhibition by ozone, and to evaluate factors influencing technical/economic feasibility. It was found that, while ozone use adequately controlled corrosion and biofouling, chemical scaling could not be prevented at conditions necessary for significant economic justification. Calculations indicate that the makeup waters (SME) used will become saturated with respect to calcium phosphate at less than 2 cycles of concentration, hence, a scaling potential exists at conditions less stringent than those used in the present study.
Peiris, R H; Jaklewicz, M; Budman, H; Legge, R L; Moresoli, C
2013-06-15
Fluorescence excitation-emission matrix (EEM) approach together with principal component analysis (PCA) was used for assessing hydraulically irreversible fouling of three pilot-scale ultrafiltration (UF) systems containing full-scale and bench-scale hollow fiber membrane modules in drinking water treatment. These systems were operated for at least three months with extensive cycles of permeation, combination of back-pulsing and scouring and chemical cleaning. The principal component (PC) scores generated from the PCA of the fluorescence EEMs were found to be related to humic substances (HS), protein-like and colloidal/particulate matter content. PC scores of HS- and protein-like matter of the UF feed water, when considered separately, showed reasonably good correlations with the rate of hydraulically irreversible fouling for long-term UF operations. In contrast, comparatively weaker correlations for PC scores of colloidal/particulate matter and the rate of hydraulically irreversible fouling were obtained for all UF systems. Since, individual correlations could not fully explain the evolution of the rate of irreversible fouling, multi-linear regression models were developed to relate the combined effect of HS-like, protein-like and colloidal/particulate matter PC scores to the rate of hydraulically irreversible fouling for each specific UF system. These multi-linear regression models revealed significant individual and combined contribution of HS- and protein-like matter to the rate of hydraulically irreversible fouling, with protein-like matter generally showing the greatest contribution. The contribution of colloidal/particulate matter to the rate of hydraulically irreversible fouling was not as significant. The addition of polyaluminum chloride, as coagulant, to UF feed appeared to have a positive impact in reducing hydraulically irreversible fouling by these constituents. The proposed approach has applications in quantifying the individual and synergistic contribution of major natural water constituents to the rate of hydraulically irreversible membrane fouling and shows potential for controlling UF irreversible fouling in the production of drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.
Field Testing of Cryogenic Carbon Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayre, Aaron; Frankman, Dave; Baxter, Andrew
Sustainable Energy Solutions has been developing Cryogenic Carbon Capture™ (CCC) since 2008. In that time two processes have been developed, the External Cooling Loop and Compressed Flue Gas Cryogenic Carbon Capture processes (CCC ECL™ and CCC CFG™ respectively). The CCC ECL™ process has been scaled up to a 1TPD CO2 system. In this process the flue gas is cooled by an external refrigerant loop. SES has tested CCC ECL™ on real flue gas slip streams from subbituminous coal, bituminous coal, biomass, natural gas, shredded tires, and municipal waste fuels at field sites that include utility power stations, heating plants, cementmore » kilns, and pilot-scale research reactors. The CO2 concentrations from these tests ranged from 5 to 22% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at a modest rate. The CCC CFG™ process has been scaled up to a .25 ton per day system. This system has been tested on real flue gas streams including subbituminous coal, bituminous coal and natural gas at field sites that include utility power stations, heating plants, and pilot-scale research reactors. CO2 concentrations for these tests ranged from 5 to 15% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at 90+%. Hg capture was also verified and the resulting effluent from CCC CFG™ was below a 1ppt concentration. This paper will focus on discussion of the capabilities of CCC, the results of field testing and the future steps surrounding the development of this technology.« less
Comparison of bacteriophage and enteric virus removal in pilot scale activated sludge plants.
Arraj, A; Bohatier, J; Laveran, H; Traore, O
2005-01-01
The aim of this experimental study was to determine comparatively the removal of two types of bacteriophages, a somatic coliphage and an F-specific RNA phage and of three types of enteric viruses, hepatitis A virus (HAV), poliovirus and rotavirus during sewage treatment by activated sludge using laboratory pilot plants. The cultivable simian rotavirus SA11, the HAV HM 175/18f cytopathic strain and poliovirus were quantified by cell culture. The bacteriophages were quantified by plaque formation on the host bacterium in agar medium. In each experiment, two pilots simulating full-scale activated sludge plants were inoculated with viruses at known concentrations, and mixed liquor and effluent samples were analysed regularly. In the mixed liquor, liquid and solid fractions were analysed separately. The viral behaviour in both the liquid and solid phases was similar between pilots of each experiment. Viral concentrations decreased rapidly following viral injection in the pilots. Ten minutes after the injections, viral concentrations in the liquid phase had decreased from 1.0 +/- 0.4 log to 2.2 +/- 0.3 log. Poliovirus and HAV were predominantly adsorbed on the solid matters of the mixed liquor while rotavirus was not detectable in the solid phase. In our model, the estimated mean log viral reductions after 3-day experiment were 9.2 +/- 0.4 for rotavirus, 6.6 +/- 2.4 for poliovirus, 5.9 +/- 3.5 for HAV, 3.2 +/- 1.2 for MS2 and 2.3 +/- 0.5 for PhiX174. This study demonstrates that the pilots are useful models to assess the removal of infectious enteric viruses and bacteriophages by activated sludge treatment. Our results show the efficacy of the activated sludge treatment on the five viruses and suggest that coliphages could be an acceptable indicator of viral removal in this treatment system.
Umeh, Rich; Oguche, Stephen; Oguonu, Tagbo; Pitmang, Simon; Shu, Elvis; Onyia, Jude-Tony; Daniyam, Comfort A; Shwe, David; Ahmad, Abdullahi; Jongert, Erik; Catteau, Grégory; Lievens, Marc; Ofori-Anyinam, Opokua; Leach, Amanda
2014-11-12
For regulatory approval, consistency in manufacturing of vaccine lots is expected to be demonstrated in confirmatory immunogenicity studies using two-sided equivalence trials. This randomized, double-blind study (NCT01323972) assessed consistency of three RTS,S/AS01 malaria vaccine batches formulated from commercial-scale purified antigen bulk lots in terms of anti-CS-responses induced. Healthy children aged 5-17 months were randomized (1:1:1:1) to receive RTS,S/AS01 at 0-1-2 months from one of three commercial-scale purified antigen bulk lots (1600 litres-fermentation scale; commercial-scale lots), or a comparator vaccine batch made from pilot-scale purified antigen bulk lot (20 litres-fermentation scale; pilot-scale lot). The co-primary objectives were to first demonstrate consistency of antibody responses against circumsporozoite (CS) protein at one month post-dose 3 for the three commercial-scale lots and second demonstrate non-inferiority of anti-CS antibody responses at one month post-dose 3 for the commercial-scale lots compared to the pilot-scale lot. Safety and reactogenicity were evaluated as secondary endpoints. One month post-dose-3, anti-CS antibody geometric mean titres (GMT) for the 3 commercial scale lots were 319.6 EU/ml (95% confidence interval (CI): 268.9-379.8), 241.4 EU/ml (207.6-280.7), and 302.3 EU/ml (259.4-352.3). Consistency for the RTS,S/AS01 commercial-scale lots was demonstrated as the two-sided 95% CI of the anti-CS antibody GMT ratio between each pair of lots was within the range of 0.5-2.0. GMT of the pooled commercial-scale lots (285.8 EU/ml (260.7-313.3)) was non-inferior to the pilot-scale lot (271.7 EU/ml (228.5-323.1)). Each RTS,S/AS01 lot had an acceptable tolerability profile, with infrequent reports of grade 3 solicited symptoms. No safety signals were identified and no serious adverse events were considered related to vaccination. RTS,S/AS01 lots formulated from commercial-scale purified antigen bulk batches induced a consistent anti-CS antibody response, and the anti-CS GMT of pooled commercial-scale lots was non-inferior to that of a lot formulated from a pilot-scale antigen bulk batch. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Loganathan, Kavithaa; Bromley, David; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed
2015-09-15
Through sustainable water management, oil sands companies are working to reduce their reliance on fresh water by minimizing the amount of water required for their operations and by recycling water from tailings ponds. This study was the first pilot-scale testing of a hybrid technology consisting of froth flotation combined with filtration through precoated submerged stainless steel membranes used to treat recycle water from an oil sands facility. The results indicated that the most important factor affecting the performance of the hybrid system was the influent water quality. Any rise in the levels of suspended solids or total organic carbon of the feed water resulted in changes of chemical consumption rates, flux rates, and operating cycle durations. The selections of chemical type and dosing rates were critical in achieving optimal performance. In particular, the froth application rate heavily affected the overall recovery of the hybrid system as well as the performance of the flotation process. Optimum surfactant usage to generate froth (per liter of treated water) was 0.25 mL/L at approximately 2000 NTU of influent turbidity and 0.015 mL/L at approximately 200 NTU of influent turbidity. At the tested conditions, the optimal coagulant dose was 80 mg/L (as Al) at approximately 2000 NTU of influent turbidity and <40 mg/L (as Al) at approximately 200 NTU of influent turbidity. Precoat loading per unit membrane surface area tested during the pilot study was approximately 30 g/m(2). The results of this study indicated that this hybrid technology can potentially be considered as a pre-treatment step for reverse osmosis treatment of recycle water. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CORBETT JE; TEDESCH AR; WILSON RA
2011-02-14
A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal.more » This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.« less
Papoutsakis, Stefanos; Miralles-Cuevas, Sara; Gondrexon, Nicolas; Baup, Stéphane; Malato, Sixto; Pulgarin, César
2015-01-01
This study aims to evaluate the performance of a novel pilot-scale coupled system consisting of a high frequency ultrasonic reactor (400kHz) and a compound parabolic collector (CPC). The benefits of the concurrent application of ultrasound and the photo-Fenton process were studied in regard to the degradation behavior of a series of organic pollutants. Three compounds (phenol, bisphenol A and diuron) with different physicochemical properties have been chosen in order to identify possible synergistic effects and to obtain a better estimate of the general feasibility of such a system at field scale (10L). Bisphenol A and diuron were specifically chosen due to their high hydrophobicity, and thus their assumed higher affinity towards the cavitation bubble. Experiments were conducted under ultrasonic, photo-Fenton and combined treatments. Enhanced degradation kinetics were observed during the coupled treatment and synergy factors clearly in excess of 1 have been calculated for phenol as well as for saturated solutions of bisphenol A and diuron. Although the relatively high cost of ultrasound compared to photo-Fenton still presents a significant challenge towards mainstream industrial application, the observed behavior suggests that its prudent use has the potential to significantly benefit the photo-Fenton process, via the decrease of both treatment time and H2O2 consumption. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-09-01
This final report from VFL Technologies for the pilot-scale thermal treatment of lower East Fork Poplar Creek floodplain soils dated September 1994 contains LEFPC Appendices, Volume 5, Appendix V - D. This appendix includes the final verification run data package (PAH, TCLP herbicides, TCLP pesticides).
Commissioning Source and Personality Differences in U.S. Air Force Pilot Training
2012-09-24
Narcissistic Personality Disorder and Histrionic Personality Disorder. The two tests generally converged, showing student pilots as socially outgoing...Histrionic, Narcissistic , and Antisocial scales of the MCMI. Cluster two students scored high on the Achievement, Affiliation, Endurance, and Social...Desirability scales but low on Dependence. In addition, they had moderate Narcissistic and Histrionic scores and high Compulsive Personality Disorder
USDA-ARS?s Scientific Manuscript database
Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3), and greenhouse gas (GHG) emissions associated with swine production is a critical need. A pilot-scale experiment was conducted to evaluate the topical application of soybean peroxidase (SBP) and calcium peroxide (CaO2) as a manu...
Tang, Liyang
2013-04-04
The main aim of China's Health Care System Reform was to help the decision maker find the optimal solution to China's institutional problem of health care provider selection. A pilot health care provider research system was recently organized in China's health care system, and it could efficiently collect the data for determining the optimal solution to China's institutional problem of health care provider selection from various experts, then the purpose of this study was to apply the optimal implementation methodology to help the decision maker effectively promote various experts' views into various optimal solutions to this problem under the support of this pilot system. After the general framework of China's institutional problem of health care provider selection was established, this study collaborated with the National Bureau of Statistics of China to commission a large-scale 2009 to 2010 national expert survey (n = 3,914) through the organization of a pilot health care provider research system for the first time in China, and the analytic network process (ANP) implementation methodology was adopted to analyze the dataset from this survey. The market-oriented health care provider approach was the optimal solution to China's institutional problem of health care provider selection from the doctors' point of view; the traditional government's regulation-oriented health care provider approach was the optimal solution to China's institutional problem of health care provider selection from the pharmacists' point of view, the hospital administrators' point of view, and the point of view of health officials in health administration departments; the public private partnership (PPP) approach was the optimal solution to China's institutional problem of health care provider selection from the nurses' point of view, the point of view of officials in medical insurance agencies, and the health care researchers' point of view. The data collected through a pilot health care provider research system in the 2009 to 2010 national expert survey could help the decision maker effectively promote various experts' views into various optimal solutions to China's institutional problem of health care provider selection.
Cell culture experiments planned for the space bioreactor
NASA Technical Reports Server (NTRS)
Morrison, Dennis R.; Cross, John H.
1987-01-01
Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.
High subsonic flow tests of a parallel pipe followed by a large area ratio diffuser
NASA Technical Reports Server (NTRS)
Barna, P. S.
1975-01-01
Experiments were performed on a pilot model duct system in order to explore its aerodynamic characteristics. The model was scaled from a design projected for the high speed operation mode of the Aircraft Noise Reduction Laboratory. The test results show that the model performed satisfactorily and therefore the projected design will most likely meet the specifications.
Disinfection of bacterial biofilms in pilot-scale cooling tower systems
Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P.; Packman, Aaron I.
2015-01-01
The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day−1. Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state. PMID:21547755
Literature review: Assessment of DWPF melter and melter off-gas system lifetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reigel, M. M.
2015-07-30
A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax ® K-3 refractory and Inconel ® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing andmore » reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe 2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.« less
Literature review: Assessment of DWPF melter and melter off-gas system lifetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reigel, M.
2015-07-30
A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets;more » however, DWPF has primarily processed a reducing flowsheet (i.e., Fe 2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.« less
Wang, Dexin; Han, Yuxing; Han, Hongjun; Li, Kun; Xu, Chunyan
2017-08-01
The coupling of micro-electrolysis cell (MEC) with an up-flow anaerobic sludge blanket (UASB) system in pilot scale was established for enhanced treatment of Fischer-Tropsch (F-T) wastewater. The lowest influent pH (4.99±0.10) and reduced alkali addition were accomplished under the assistance of anaerobic effluent recycling of 200% (stage 5). Simultaneously, the optimum COD removal efficiency (93.5±1.6%) and methane production (2.01±0.13m 3 /m 3 ·d) at the lower hydraulic retention time (HRT) were achieved in this stage. In addition, the dissolved iron from MEC could significantly increase the protein content of tightly bound extracellular polymeric substances (TB-EPS), which was beneficial to formation of stable granules. Furthermore, the high-throughput 16S rRNA gene pyrosequencing in this study further confirmed that Geobacter species could utilize iron oxides particles as electron conduit to perform the direct interspecies electron transfer (DIET) with Methanothrix, finally facilitating the syntrophic degradation of propionic acid and butyric acid and contributing completely methane production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Disinfection of bacterial biofilms in pilot-scale cooling tower systems.
Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron I
2011-04-01
The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day(-1). Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state.
NASA Astrophysics Data System (ADS)
Wang, Jing; Asbach, Christof; Fissan, Heinz; Hülser, Tim; Kaminski, Heinz; Kuhlbusch, Thomas A. J.; Pui, David Y. H.
2012-03-01
Emission into the workplace was measured for the production process of silicon nanoparticles in a pilot-scale facility at the Institute of Energy and Environmental Technology e.V. (IUTA). The silicon nanoparticles were produced in a hot-wall reactor and consisted of primary particles around 60 nm in diameter. We employed real-time aerosol instruments to measure particle number and lung-deposited surface area concentrations and size distribution; airborne particles were also collected for off-line electron microscopic analysis. Emission of silicon nanoparticles was not detected during the processes of synthesis, collection, and bagging. This was attributed to the completely closed production system and other safety measures against particle release which will be discussed briefly. Emission of silicon nanoparticles significantly above the detection limit was only observed during the cleaning process when the production system was open and manually cleaned. The majority of the detected particles was in the size range of 100-400 nm and were silicon nanoparticle agglomerates first deposited in the tubing then re-suspended during the cleaning process. Appropriate personal protection equipment is recommended for safety protection of the workers during cleaning.
Bacterial carbon utilization in vertical subsurface flow constructed wetlands.
Tietz, Alexandra; Langergraber, Günter; Watzinger, Andrea; Haberl, Raimund; Kirschner, Alexander K T
2008-03-01
Subsurface vertical flow constructed wetlands with intermittent loading are considered as state of the art and can comply with stringent effluent requirements. It is usually assumed that microbial activity in the filter body of constructed wetlands, responsible for the removal of carbon and nitrogen, relies mainly on bacterially mediated transformations. However, little quantitative information is available on the distribution of bacterial biomass and production in the "black-box" constructed wetland. The spatial distribution of bacterial carbon utilization, based on bacterial (14)C-leucine incorporation measurements, was investigated for the filter body of planted and unplanted indoor pilot-scale constructed wetlands, as well as for a planted outdoor constructed wetland. A simple mass-balance approach was applied to explain the bacterially catalysed organic matter degradation in this system by comparing estimated bacterial carbon utilization rates with simultaneously measured carbon reduction values. The pilot-scale constructed wetlands proved to be a suitable model system for investigating microbial carbon utilization in constructed wetlands. Under an ideal operating mode, the bulk of bacterial productivity occurred within the first 10cm of the filter body. Plants seemed to have no significant influence on productivity and biomass of bacteria, as well as on wastewater total organic carbon removal.
Bian, Xiao; Wang, Kaijun
2018-01-01
Low-energy cost wastewater treatment is required to change its current energy-intensive status. Although promising, the direct anaerobic digestion of municipal wastewater treatment faces challenges such as low organic content and low temperature, which require further development. The hydrolysis-aerobic system investigated in this study utilized the two well-proven processes of hydrolysis and aerobic oxidation. These have the advantages of efficient COD removal and biodegradability improvement with limited energy cost due to their avoidance of aeration. A pilot-scale hydrolysis-aerobic system was built for performance evaluation with actual municipal wastewater as feed. Results indicated that as high as 39–47% COD removal was achieved with a maximum COD load of 1.10 kg/m3·d. The dominant bacteria phyla included Proteobacteria (36.0%), Planctomycetes (15.4%), Chloroflexi (9.7%), Bacteroidetes (7.7%), Firmicutes (4.4%), Acidobacteria (2.5%), Actinobacteria (1.8%) and Synergistetes (1.3%), while the dominant genera included Thauera (3.42%) and Dechloromonas (3.04%). The absence of methanogens indicates that the microbial community was perfectly retained in the hydrolysis stage instead of in the methane-producing stage. PMID:29522450
NASA Astrophysics Data System (ADS)
Aziz, Mohammad Abdul; Al-khulaidi, Rami Ali; Rashid, MM; Islam, M. R.; Rashid, MAN
2017-03-01
In this research, a development and performance test of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolysis oil production was successfully completed. The characteristics of the pyrolysis oil were compared to other experimental results. A solid horizontal condenser, a burner for furnace heating and a reactor shield were designed. Due to the pilot scale pyrolytic oil production encountered numerous problems during the plant’s operation. This fixed-bed batch type pyrolysis reactor method will demonstrate the energy saving concept of solid waste tire by creating energy stability. From this experiment, product yields (wt. %) for liquid or pyrolytic oil were 49%, char 38.3 % and pyrolytic gas 12.7% with an operation running time of 185 minutes.
Pilot-scale ISCO treatment of a MtBE contaminated site using a Fenton-like process.
Innocenti, Ivan; Verginelli, Iason; Massetti, Felicia; Piscitelli, Daniela; Gavasci, Renato; Baciocchi, Renato
2014-07-01
This paper reports about a pilot-scale feasibility study of In-Situ Chemical Oxidation (ISCO) application based on the use of stabilized hydrogen peroxide catalyzed by naturally occurring iron minerals (Fenton-like process) to a site formerly used for fuel storage and contaminated by MtBE. The stratigraphy of the site consists of a 2-3 meter backfill layer followed by a 3-4 meter low permeability layer, that confines the main aquifer, affected by a widespread MtBE groundwater contamination with concentrations up to 4000 μg/L, also with the presence of petroleum hydrocarbons. The design of the pilot-scale treatment was based on the integration of the results obtained from experimental and numerical modeling accounting for the technological and regulatory constraints existing in the site to be remediated. In particular, lab-scale batch tests allowed the selection of the most suitable operating conditions. Then, this information was implemented in a numerical software that allowed to define the injection and monitoring layout and to predict the propagation of hydrogen peroxide in groundwater. The pilot-scale field results confirmed the effective propagation of hydrogen peroxide in nearly all the target area (around 75 m(2) using 3 injection wells). As far as the MtBE removal is concerned, the ISCO application allowed us to meet the clean-up goals in an area of 60 m(2). Besides, the concentration of TBA, i.e. a potential by-product of MtBE oxidation, was actually reduced after the ISCO treatment. The results of the pilot-scale test suggest that ISCO may be a suitable option for the remediation of the groundwater plume contaminated by MtBE, providing the background data for the design and cost-estimate of the full-scale treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Giaconia, Alberto; Montagnino, Fabio; Paredes, Filippo; Donato, Filippo; Caputo, Giampaolo; Mazzei, Domenico
2017-06-01
CSP technologies can be applied for distributed energy production, on small-medium plants (on the 1 MW scale), to satisfy the needs of local communities, buildings and districts. In this perspective, reliable, low-cost, and flexible small/medium multi-generative CSP plants should be developed. Four pilot plants have been built in four Mediterranean countries (Cyprus, Egypt, Jordan, and Italy) to demonstrate the approach. In this paper, the plant built in Italy is presented, with specific innovations applied in the linear Fresnel collector design and the Thermal Energy Storage (TES) system, based on a single the use of molten salts but specifically tailored for small scale plants.
Effect of recirculation on organic matter removal in a hybrid constructed wetland system.
Ayaz, S C; Findik, N; Akça, L; Erdoğan, N; Kinaci, C
2011-01-01
This research project aimed to determine the technologically feasible and applicable wastewater treatment systems which will be constructed to solve environmental problems caused by small communities in Turkey. Pilot-scale treatment of a small community's wastewater was performed over a period of more than 2 years in order to show applicability of these systems. The present study involves removal of organic matter and suspended solids in serially operated horizontal (HFCW) and vertical (VFCW) sub-surface flow constructed wetlands. The pilot-scale wetland was constructed downstream of anaerobic reactors at the campus of TUBITAK-MRC. Anaerobically pretreated wastewater was introduced into this hybrid two-stage sub-surface flow wetland system (TSCW). Wastewater was first introduced into the horizontal sub-surface flow system and then the vertical flow system before being discharged. Recirculation of the effluent was tested in the system. When the recirculation ratio was 100%, average removal efficiencies for TSCW were 91 +/- 4% for COD, 83 +/- 10% for BOD and 96 +/- 3% for suspended solids with average effluent concentrations of 9 +/- 5 mg/L COD, 6 +/- 3 mg/L BOD and 1 mg/L for suspended solids. Comparing non-recirculation and recirculation periods, the lowest effluent concentrations were obtained with a 100% recirculation ratio. The effluent concentrations met the Turkish regulations for discharge limits of COD, BOD and TSS in each case. The study showed that a hybrid constructed wetland system with recirculation is a very effective method of obtaining very low effluent organic matter and suspended solids concentrations downstream of anaerobic pretreatment of domestic wastewaters in small communities.
Huang, Guolong; Yao, Jiachao; Pan, Weilong; Wang, Jiade
2016-09-01
Effluents after biochemical treatment contain pollutants that are mostly non-degradable. Based upon previous pilot-scale test results, an industrial-scale electro-oxidation device was built to decompose these refractory materials in the effluent from a park wastewater treatment plant. The electro-oxidation device comprised a ditch-shaped plunger flow electrolysis cell, with mesh-plate Ti/PbO2 electrodes as the anode and the same size mesh-plate Ti as the cathode. Wastewater flowed vertically through electrodes; the effective volume of the cell was 2.8 m(3), and the surface-to-volume ratio was 17.14 m(2) m(-3). The optimal current density was 100 A m(-2), and a suitable flow velocity was 14.0 m h(-1). The removal efficiencies for chemical oxygen demand and color in the effluent were over 60.0 and 84.0 %, respectively. In addition, the electro-oxidation system offered a good disinfection capability. The specific energy consumption for this industrial-scale device was 43.5 kWh kg COD(-1), with a current efficiency of 32.8 %, which was superior to the pilot-scale one. To meet the requirements for emission or reuse, the operation cost was $0.44 per ton of effluent at an average price for electricity of $0.11 kWh(-1).
Evaluation of empirical process design relationships for ozone disinfection of water and wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finch, G.R.; Smith, D.W.
A research program was undertaken to examine the dose-response of Escherichia coli ATCC 11775 in ozone demand-free phosphate buffer solution and in a high quality secondary wastewater effluent with a total organic carbon content of 8 mg/L and a chemical oxygen demand of 26 mg/L. The studies were conducted in bench-scale batch reactors for both water types. In addition, studies using secondary effluent also were conducted in a pilot-scale, semi-batch reactor to evaluate scale-up effects. It was found that the ozone dose was the most important design parameter in both types of water. Contact time was of some importance inmore » the ozone demand-free water and had no detectable effect in the secondary effluent. Pilot-scale data confirmed the results obtained at bench-scale for the secondary effluent. Regression analysis of the logarithm of the E. coli response on the logarithm of the utilized ozone dose revealed that there was lack-of-fit using the model form which has been used frequently for the design of wastewater disinfection systems. This occurred as a result of a marked tailing effect of the log-log plot as the ozone dose increased and the kill increased. It was postulated that this was caused by some unknown physiological differences within the E. coli population due to age or another factor.« less
NASA Technical Reports Server (NTRS)
Iliff, K. W.; Maine, R. E.; Shafer, M. F.
1976-01-01
In response to the interest in airplane configuration characteristics at high angles of attack, an unpowered remotely piloted 3/8-scale F-15 airplane model was flight tested. The subsonic stability and control characteristics of this airplane model over an angle of attack range of -20 to 53 deg are documented. The remotely piloted technique for obtaining flight test data was found to provide adequate stability and control derivatives. The remotely piloted technique provided an opportunity to test the aircraft mathematical model in an angle of attack regime not previously examined in flight test. The variation of most of the derivative estimates with angle of attack was found to be consistent, particularly when the data were supplemented by uncertainty levels.
Assessing the elimination of user fees for delivery services in Laos.
Boudreaux, Chantelle; Chanthala, Phetdara; Lindelow, Magnus
2014-01-01
A pilot eliminating user fees associated with delivery at the point of services was introduced in two districts of Laos in March 2009. Following two years of implementation, an evaluation was conducted to assess the pilot impact, as well as to document the pilot design and implementation challenges. Study results show that, even in the presence of the substantial access and cultural barriers, user fees associated with delivery at health facilities act as a serious deterrent to care seeking behavior. We find a tripling of facility-based delivery rates in the intervention areas, compared to a 40% increase in the control areas. While findings from the control region suggest that facility-based delivery rates may be on the rise across the country, the substantially higher increase in the pilot areas highlight the impact of financial burden associated with facility-based delivery fees. These fees can play an important role in rapidly increasing the uptake of facility delivery to reach the national targets and, ultimately, to improve maternal and child health outcomes. The pilot achieved important gains while relying heavily on capacity and systems already in place. However, the high cost associated with monitoring and evaluation suggest broad-scale expansion of the pilot activities is likely to necessitate targeted capacity building initiatives, especially in areas with limited district level capacity to manage funds and deliver detailed and timely reports.
Jones, Joseph L.; Fulford, Janice M.; Voss, Frank D.
2002-01-01
A system of numerical hydraulic modeling, geographic information system processing, and Internet map serving, supported by new data sources and application automation, was developed that generates inundation maps for forecast floods in near real time and makes them available through the Internet. Forecasts for flooding are generated by the National Weather Service (NWS) River Forecast Center (RFC); these forecasts are retrieved automatically by the system and prepared for input to a hydraulic model. The model, TrimR2D, is a new, robust, two-dimensional model capable of simulating wide varieties of discharge hydrographs and relatively long stream reaches. TrimR2D was calibrated for a 28-kilometer reach of the Snoqualmie River in Washington State, and is used to estimate flood extent, depth, arrival time, and peak time for the RFC forecast. The results of the model are processed automatically by a Geographic Information System (GIS) into maps of flood extent, depth, and arrival and peak times. These maps subsequently are processed into formats acceptable by an Internet map server (IMS). The IMS application is a user-friendly interface to access the maps over the Internet; it allows users to select what information they wish to see presented and allows the authors to define scale-dependent availability of map layers and their symbology (appearance of map features). For example, the IMS presents a background of a digital USGS 1:100,000-scale quadrangle at smaller scales, and automatically switches to an ortho-rectified aerial photograph (a digital photograph that has camera angle and tilt distortions removed) at larger scales so viewers can see ground features that help them identify their area of interest more effectively. For the user, the option exists to select either background at any scale. Similar options are provided for both the map creator and the viewer for the various flood maps. This combination of a robust model, emerging IMS software, and application interface programming should allow the technology developed in the pilot study to be applied to other river systems where NWS forecasts are provided routinely.
Treatment of the Cerro Prieto I brines for use in reinjection. 2. Results of the pilot plant tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtado J, R.; Mercado G, S.; Rocha C, E.
Silica removal experiments have been carried out both in the laboratory and in pilot scale tests. The results obtained to date are presented, with special emphasis on the pilot tests with or without the use of flocculants. Previous studies on brine treatment are described briefly.
Development and testing of the Multidimensional Trust in Health Care Systems Scale.
Egede, Leonard E; Ellis, Charles
2008-06-01
To describe the development and psychometric testing of the Multidimensional Trust in Health Care Systems Scale (MTHCSS). Scale development occurred in 2 phases. In phase 1, a pilot instrument with 70 items was generated from the review of the trust literature, focus groups, and expert opinion. The 70 items were pilot tested in a sample of 256 students. Exploratory factor analysis was used to derive an orthogonal set of correlated factors. In phase 2, the final scale was administered to 301 primary care patients to assess reliability and validity. Phase 2 participants also completed validated measures of patient-centered care, health locus of control, medication nonadherence, social support, and patient satisfaction. In phase 1, a 17-item scale (MTHCSS) was developed with 10 items measuring trust in health care providers, 4 items measuring trust in health care payers, and 3 items measuring trust in health care institutions. In phase 2, the 17-item MTHCSS had a mean score of 63.0 (SD 8.8); the provider subscale had a mean of 40.0 (SD 6.2); the payers subscale had a mean of 12.8 (SD 3.0); and the institutions subscale had a mean of 10.3 (SD 2.1). Cronbach's alpha for the MTHCSS was 0.89 and 0.92, 0.74, and 0.64 for the 3 subscales. The MTHCSS was significantly correlated with patient-centered care (r = .22 to .62), locus of control-chance (r = .42), medication nonadherence (r = -.22), social support (r = .25), and patient satisfaction (r = .67). The MTHCSS is a valid and reliable instrument for measuring the 3 objects of trust in health care and is correlated with patient-level health outcomes.
NASA Astrophysics Data System (ADS)
González, Susana; Petrovic, Mira; Barceló, Damiá
2008-07-01
SummaryThe removal of selected surfactants, linear alkylbenzene sulfonates (LAS), coconut diethanol amides (CDEA) and alkylphenol ethoxylates and their degradation products were investigated using a two membrane bioreactor (MBR) with hollow fiber and plate and frame membranes. The two pilot plants MBR run in parallel to a full-scale conventional activated sludge (CAS) treatment. A total of eight influent samples with the corresponding effluent samples were analysed by solid phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS-MS). The results indicate that both MBR have a better effluent quality in terms of chemical and biological oxygen demand (COD and BOD), NH4+ , concentration and total suspended solids (TSS). MBR showed a better similar performance in the overall elimination of the total nonylphenolic compounds, achieving a 75% of elimination or a 65% (the same elimination reached by CAS). LAS and CDEA showed similar elimination in the three systems investigated and no significant differences were observed.
Removal of Giardia and Cryptosporidium in drinking water treatment: a pilot-scale study.
Hsu, Bing Mu; Yeh, Hsuan Hsien
2003-03-01
Giardia and Cryptosporidium have emerged as waterborne pathogens of concern for public health. The aim of this study is to examine both parasites in the water samples taken from three pilot-scale plant processes located in southern Taiwan, to upgrade the current facilities. Three processes include: conventional process without prechlorination (Process 1), conventional process plus ozonation and pellet softening (Process 2), and integrated membrane process (MF plus NF) followed conventional process (Process 3). The detection methods of both parasites are modified from USEPA Methods 1622 and 1623. Results indicated that coagulation, sedimentation and filtration removed the most percentage of both protozoan parasites. The pre-ozonation step can destruct both parasites, especially for Giardia cysts. The microfiltration systems can intercept Giardia cysts and Cryptosporidium oocysts completely. A significant correlation between water turbidity and Cryptosporidium oocysts was found in this study. The similar results were also found between three kinds of particles (phi=3-5,5-8 and 8-10 microm) and Cryptosporidium oocysts.
Hu, Kang; Fiedler, Thorsten; Blanco, Laura; Geissen, Sven-Uwe; Zander, Simon; Prieto, David; Blanco, Angeles; Negro, Carlos; Swinnen, Nathalie
2017-11-10
A pilot-scale reverse osmosis (RO) followed behind a membrane bioreactor (MBR) was developed for the desalination to reuse wastewater in a PVC production site. The solution-diffusion-film model (SDFM) based on the solution-diffusion model (SDM) and the film theory was proposed to describe rejections of electrolyte mixtures in the MBR effluent which consists of dominant ions (Na + and Cl - ) and several trace ions (Ca 2+ , Mg 2+ , K + and SO 4 2- ). The universal global optimisation method was used to estimate the ion permeability coefficients (B) and mass transfer coefficients (K) in SDFM. Then, the membrane performance was evaluated based on the estimated parameters which demonstrated that the theoretical simulations were in line with the experimental results for the dominant ions. Moreover, an energy analysis model with the consideration of limitation imposed by the thermodynamic restriction was proposed to analyse the specific energy consumption of the pilot-scale RO system in various scenarios.
Zulkeflee, Zufarzaana; Sánchez, Antoni
2014-01-01
An innovative approach using soybean residues for the production of bioflocculants through solid-state fermentation was carried out in 4.5 L near-to-adiabatic bioreactors at pilot-scale level. An added inoculum of the strain Bacillus subtilis UPMB13 was tested in comparison with control reactors without any inoculation after the thermophilic phase of the fermentation. The flocculating performances of the extracted bioflocculants were tested on kaolin suspensions, and crude bioflocculants were obtained from 20 g of fermented substrate through ethanol precipitation. The production of bioflocculants was observed to be higher during the death phase of microbial growth. The bioflocculants were observed to be granular in nature and consisted of hydroxyl, carboxyl and methoxyl groups that aid in their flocculating performance. The results show the vast potential of the idea of using wastes to produce bioactive materials that can replace the current dependence on chemicals, for future prospect in water treatment applications.
Zhang, Le; Zhang, Jingxin; Loh, Kai-Chee
2018-05-01
Effects of activated carbon (AC) supplementation on anaerobic digestion (AD) of food waste were elucidated in lab- and pilot-scales. Lab-scale AD was performed in 1 L and 8 L digesters, while pilot-scale AD was conducted in a 1000 L digester. Based on the optimal dose of 15 g AC per working volume derived from the 1 L digester, for the same AC dosage in the 8 L digester, an improved operation stability coupled with a higher methane yield was achieved even when digesters without AC supplementation failed after 59 days due to accumulation of substantial organic intermediates. At the same time, color removal from the liquid phase of the digestate was dramatically enhanced and the particle size of the digestate solids was increased by 53% through AC supplementation after running for 59 days. Pyrosequencing of 16S rRNA gene showed the abundance of predominant phyla Firmicutes, Elusimicrobia and Proteobacteria selectively enhanced by 1.7-fold, 2.9-fold and 2.1-fold, respectively. Pilot-scale digester without AC gave an average methane yield of 0.466 L⋅(gVS) -1 ⋅d -1 at a composition of 53-61% v/v methane. With AC augmentation, an increase of 41% in methane yield was achieved in the 1000 L digester under optimal organic loading rate (1.6 g VS FW ·L -1 ·d -1 ). Copyright © 2018 Elsevier Ltd. All rights reserved.
Moon, Ji-Won; Phelps, Tommy J.; Fitzgerald Jr, Curtis L.; ...
2016-04-27
The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale ( ≤24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of meso-scale experiments were performed using 100-l and 900-l reactors. Pasteurization and N 2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot-plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2 nm average crystallite size (ACS) and yields of ~0.5g L -1, similar to small-scale batches.more » The 900-L pilot plant reactor produced ~ 320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98% of the buffer chemical costs. In conclusion, the final NP products were characterized using XRD, ICP-OES, FTIR, DLS, and C/N analyses, which confirmed the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.« less
System design from mission definition to flight validation
NASA Technical Reports Server (NTRS)
Batill, S. M.
1992-01-01
Considerations related to the engineering systems design process and an approach taken to introduce undergraduate students to that process are presented. The paper includes details on a particular capstone design course. This course is a team oriented aircraft design project which requires the students to participate in many phases of the system design process, from mission definition to validation of their design through flight testing. To accomplish this in a single course requires special types of flight vehicles. Relatively small-scale, remotely piloted vehicles have provided the class of aircraft considered in this course.
Rodriguez-Valero, N; Carbayo, M J Ledesma; Sanchez, D Cuadrado; Vladimirov, A; Espriu, M; Vera, I; Roldan, M; de Alba, T; Sanz, S; Moreno, J L Gonzalez; Oroz, M Luengo; Muñoz, J
2018-01-01
Trip Doctor®, a Smartphone-based app monitoring system, was developed to detect infections among travelers in real-time. For testing, 106 participants were recruited (62.2% male, mean age 36 years (SD = 11)). Majority of trips were for tourism and main destinations were in South East Asia. Mean travel duration was 14 days (SD = 10). Diarrhea was the most frequently reported symptom (15.5%). The system demonstrated adequate usability and is ready to be used on a larger scale.
Two-D results on human operator perception
NASA Technical Reports Server (NTRS)
Siapkara, A. A.; Sheridan, T. B.
1981-01-01
The application of multidimensional scaling methodology in human factors engineering is presented. The nonorthogonality of internally perceived task variables is exhibited for first and second order plants with both dependent and independent task variables. Directions of operator preference are shown for actual performance, pilot opinion rating, and subjective measures of fatigue, adaptability, and system recognition. Improvement of performance in second order systems is exhibited by the use of bang-bang feedback information. Dissimilarity measures for system comparison are suggested in order to account for human operator rotations and subjective sense of time.
Tracey S. Frescino; Gretchen G. Moisen
2009-01-01
The Interior-West, Forest Inventory and Analysis (FIA), Nevada Photo-Based Inventory Pilot (NPIP), launched in 2004, involved acquisition, processing, and interpretation of large scale aerial photographs on a subset of FIA plots (both forest and nonforest) throughout the state of Nevada. Two objectives of the pilot were to use the interpreted photo data to enhance...
ERIC Educational Resources Information Center
Ochando-Pulido, J. M.
2017-01-01
The Chemical Engineering Department at the University of Granada have endeavored to make a number of high quality experiments to familiarize our students with our latest research and also scale-up of processes. A pilot-scale wastewater treatment plant was set-up to give students a close practical view of the treatments of effluents by-produced in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoginder P. Chugh
2002-10-01
The overall goal of this program was to develop a pilot scale facility, and design, fabricate, and market CCBs-based lightweight blocks for mine ventilation control devices, and engineered crib elements and posts for use as artificial supports in underground mines to replace similar wooden elements. This specific project was undertaken to (1) design a pilot scale facility to develop and demonstrate commercial production techniques, and (2) provide technical and marketing support to Fly Lite, Inc to operate the pilot scale facility. Fly Lite, Inc is a joint venture company of the three industrial cooperators who were involved in research intomore » the development of CCBs-based structural materials. The Fly-Lite pilot scale facility is located in McLeansboro, Illinois. Lightweight blocks for use in ventilation stoppings in underground mines have been successfully produced and marketed by the pilot-scale facility. To date, over 16,000 lightweight blocks (30-40 pcf) have been sold to the mining industry. Additionally, a smaller width (6-inch) full-density block was developed in August-September 2002 at the request of a mining company. An application has been submitted to Mine Safety and Health Administration for the developed block approval for use in mines. Commercialization of cribs and posts has also been accomplished. Two generations of cribs have been developed and demonstrated in the field. MSHA designated them suitable for use in mines. To date, over 2,000 crib elements have been sold to mines in Illinois. Two generations of posts were also demonstrated in the field and designated as suitable for use in mines by MSHA. Negotiations are currently underway with a mine in Illinois to market about 1,000 posts per year based on a field demonstration in their mine. It is estimated that 4-5 million tons CCBs (F-fly ash or FBC fly ash) may be utilized if the developed products can be commercially implemented in U.S. coal and non-coal mines.« less
Yi, Qizhen; Zhang, Yu; Gao, Yingxin; Tian, Zhe; Yang, Min
2017-03-01
The presence of high concentration antibiotics in wastewater can disturb the stability of biological wastewater treatment systems and promote generation of antibiotic resistance genes (ARGs) during the treatment. To solve this problem, a pilot system consisting of enhanced hydrolysis pretreatment and an up-flow anaerobic sludge bed (UASB) reactor in succession was constructed for treating oxytetracycline production wastewater, and the performance was evaluated in a pharmaceutical factory in comparison with a full-scale anaerobic system operated in parallel. After enhanced hydrolysis under conditions of pH 7 and 85 °C for 6 h, oxytetracycline production wastewater with an influent chemical oxygen demand (COD) of 11,086 ± 602 mg L -1 was directly introduced into the pilot UASB reactor. With the effective removal of oxytetracycline and its antibacterial potency (from 874 mg L -1 to less than 0.61 mg L -1 and from 900 mg L -1 to less than 0.84 mg L -1 , respectively) by the enhanced hydrolysis pretreatment, an average COD removal rate of 83.2%, 78.5% and 68.9% was achieved at an organic loading rate of 3.3, 4.8 and 5.9 kg COD m -3 d -1 , respectively. At the same time, the relative abundances of the total tetracycline (tet) genes and a mobile element (Class 1 integron (intI1)) in anaerobic sludge on day 96 were one order of magnitude lower than those in inoculated sludge on day 0 (P < 0.01). The reduction of ARGs was further demonstrated by metagenomic sequencing. By comparison, the full-scale anaerobic system treating oxytetracycline production wastewater with an influent COD of 3720 ± 128 mg L -1 after dilution exhibited a COD removal of 51 ± 4% at an organic loading rate (OLR) 1.2 ± 0.2 kg m -3 d -1 , and a total tet gene abundance in sludge was five times higher than the pilot-scale system (P < 0.01). The above result demonstrated that enhanced hydrolysis as a pretreatment method could enable efficient anaerobic treatment of oxytetracycline production wastewater containing high concentrations of oxytetracycline with significantly lower generation of ARGs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Renewable energy recovery through selected industrial wastes
NASA Astrophysics Data System (ADS)
Zhang, Pengchong
Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.
Judging the urgency of non-verbal auditory alarms: a case study.
Arrabito, G Robert; Mondor, Todd; Kent, Kimberley
2004-06-22
When designed correctly, non-verbal auditory alarms can convey different levels of urgency to the aircrew, and thereby permit the operator to establish the appropriate level of priority to address the alarmed condition. The conveyed level of urgency of five non-verbal auditory alarms presently used in the Canadian Forces CH-146 Griffon helicopter was investigated. Pilots of the CH-146 Griffon helicopter and non-pilots rated the perceived urgency of the signals using a rating scale. The pilots also ranked the urgency of the alarms in a post-experiment questionnaire to reflect their assessment of the actual situation that triggers the alarms. The results of this investigation revealed that participants' ratings of perceived urgency appear to be based on the acoustic properties of the alarms which are known to affect the listener's perceived level of urgency. Although for 28% of the pilots the mapping of perceived urgency to the urgency of their perception of the triggering situation was statistically significant for three of the five alarms, the overall data suggest that the triggering situations are not adequately conveyed by the acoustic parameters inherent in the alarms. The pilots' judgement of the triggering situation was intended as a means of evaluating the reliability of the alerting system. These data will subsequently be discussed with respect to proposed enhancements in alerting systems as it relates to addressing the problem of phase of flight. These results call for more serious consideration of incorporating situational awareness in the design and assignment of auditory alarms in aircraft.
Cerda, Alejandra; Mejías, Laura; Gea, Teresa; Sánchez, Antoni
2017-11-01
Solid state fermentation is a promising technology however rising concerns related to scale up and reproducibility in a productive process. Coffee husk and a specialized inoculum were used in a 4.5L and then in 50L reactors to assess the reproducibility of a cellulase and hemicellulase production system. Fermentations were consistent in terms of cellulase production and microbial communities. The higher temperatures achieved when operating at 50L generated a shift on the microbial communities and a reduction of nearly 50% on cellulase production at pilot scale. In spite, an overall enzymatic production of 3.1±0.5FPUg -1 DM and 48±4Ug -1 DM for FPase and Xyl activities was obtained, respectively, with low deviation coefficients of 16 and 19% for FPase and Xyl production. Gaseous emissions assessment revealed an emission factor of 2.6·10 -3 kg volatile organic compounds per Mg of coffee husk and negligible NH 3 , CH 4 and N 2 O emissions. Copyright © 2017 Elsevier Ltd. All rights reserved.
2018-01-01
Electrolysis of toilet wastewater with TiO2-coated semiconductor anodes and stainless steel cathodes is a potentially viable onsite sanitation solution in parts of the world without infrastructure for centralized wastewater treatment. In addition to treating toilet wastewater, pilot-scale and bench-scale experiments demonstrated that electrolysis can remove phosphate by cathodic precipitation as hydroxyapatite at no additional energy cost. Phosphate removal could be predicted based on initial phosphate and calcium concentrations, and up to 80% total phosphate removal was achieved. While calcium was critical for phosphate removal, magnesium and bicarbonate had only minor impacts on phosphate removal rates at concentrations typical of toilet wastewater. Optimal conditions for phosphate removal were 3 to 4 h treatment at about 5 mA cm–2 (∼3.4 V), with greater than 20 m2 m–3 electrode surface area to reactor volume ratios. Pilot-scale systems are currently operated under similar conditions, suggesting that phosphate removal can be viewed as an ancillary benefit of electrochemical wastewater treatment, adding utility to the process without requiring additional energy inputs. Further value may be provided by designing reactors to recover precipitated hydroxyapatite for use as a low solubility phosphorus-rich fertilizer. PMID:29607266
Cid, Clément A; Jasper, Justin T; Hoffmann, Michael R
2018-03-05
Electrolysis of toilet wastewater with TiO 2 -coated semiconductor anodes and stainless steel cathodes is a potentially viable onsite sanitation solution in parts of the world without infrastructure for centralized wastewater treatment. In addition to treating toilet wastewater, pilot-scale and bench-scale experiments demonstrated that electrolysis can remove phosphate by cathodic precipitation as hydroxyapatite at no additional energy cost. Phosphate removal could be predicted based on initial phosphate and calcium concentrations, and up to 80% total phosphate removal was achieved. While calcium was critical for phosphate removal, magnesium and bicarbonate had only minor impacts on phosphate removal rates at concentrations typical of toilet wastewater. Optimal conditions for phosphate removal were 3 to 4 h treatment at about 5 mA cm -2 (∼3.4 V), with greater than 20 m 2 m -3 electrode surface area to reactor volume ratios. Pilot-scale systems are currently operated under similar conditions, suggesting that phosphate removal can be viewed as an ancillary benefit of electrochemical wastewater treatment, adding utility to the process without requiring additional energy inputs. Further value may be provided by designing reactors to recover precipitated hydroxyapatite for use as a low solubility phosphorus-rich fertilizer.
Why do entrepreneurial mHealth ventures in the developing world fail to scale?
Sundin, Phillip; Callan, Jonathan; Mehta, Khanjan
Telemedicine is an increasingly common approach to improve healthcare access in developing countries with fledgling healthcare systems. Despite the strong financial, logistical and clinical support from non-governmental organisations (NGOs), government ministries and private actors alike, the majority of telemedicine projects do not survive beyond the initial pilot phase and achieve their full potential. Based on a review of 35 entrepreneurial telemedicine and mHealth ventures, and 17 reports that analyse their operations and challenges, this article provides a narrative review of recurring failure modes, i.e. factors that lead to failure of such venture pilots. Real-world examples of successful and failed ventures are examined for key take-away messages and practical strategies for creating commercial viable telemedicine operations. A better understanding of these failure modes can inform the design of sustainable and scalable telemedicine systems that effectively address the growing healthcare disparities in developing countries.
A candidate concept for display of forward-looking wind shear information
NASA Technical Reports Server (NTRS)
Hinton, David A.
1989-01-01
A concept is proposed which integrates forward-look wind shear information with airplane performance capabilities to predict future airplane energy state as a function of range. The information could be displayed to a crew either in terms of energy height or airspeed deviations. The anticipated benefits of the proposed display information concept are: (1) a wind shear hazard product that scales directly to the performance impact on the airplane and that has intuitive meaning to flight crews; (2) a reduction in flight crew workload by automatic processing of relevant hazard parameters; and (3) a continuous display of predicted airplane energy state if the approach is continued. Such a display may be used to improve pilot situational awareness or improve pilot confidence in wind shear alerts generated by other systems. The display is described and the algorithms necessary for implementation in a simulation system are provided.
US/Brazil joint pilot project objectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-01
This paper describes a joint US/Brazil pilot project for rural electrification, whose major goals are: to establish technical, institutional, and economic confidence in using renewable energy (PV and wind) to meet the needs of the citizens of rural Brazil; to establish on-going institutional, individual and business relationships necessary to implement sustainable programs and commitments; to lay the groundwork for larger scale rural electrification through the use of distributed renewable technologies. The projects have supported low power home lighting systems, lighting and refrigeration for schools and medical centers, and water pumping systems. This is viewed as a long term project, wheremore » much of the equipment will come from the US, but Brazil will be responsible for program management, and sharing data gained from the program. The paper describes in detail the Brazilian program which was instituted to support this phased project.« less
Evaluation of low-cost commercial-off-the-shelf autopilot systems for SUAS operations
NASA Astrophysics Data System (ADS)
Brown, Calvin Thomas
With this increase in unmanned aircraft system (UAS) operations, there is a need for a structured process to evaluate different commercially available systems, particularly autopilots. The Remotely Operated Aircraft Management, Interpretation, and Navigation from Ground or ROAMING scale was developed to meet this need. This scale is a modification of the widely accepted Handling Qualities Rating scale developed by George Cooper and Robert Harper Jr. The Cooper-Harper scale allows pilots to rate a vehicle's performance in completing some task. Similarly, the ROAMING scale allows UAS operators to evaluate the management and observability of UAS in completing some task. The standardized evaluative process consists of cost, size, weight, and power (SWAP) analysis, ease of implementation through procedural description of setup, ROAMING scale rating, a slightly modified NASA TLX rating, and comparison of manual operation to autonomous operation of the task. This standard for evaluation of autopilots and their software will lead to better understanding of the workload placed on UAS operators and indicate where improvements to design and operational procedures can be made. An assortment of low-cost commercial-off-the-shelf (COTS) autopilots were selected for use in the development of the evaluation and results of these tests demonstrate the commonalities and differences in these systems.
NASA Technical Reports Server (NTRS)
Sadoff, Melvin
1958-01-01
The results of a fixed-base simulator study of the effects of variable longitudinal control-system dynamics on pilot opinion are presented and compared with flight-test data. The control-system variables considered in this investigation included stick force per g, time constant, and dead-band, or stabilizer breakout force. In general, the fairly good correlation between flight and simulator results for two pilots demonstrates the validity of fixed-base simulator studies which are designed to complement and supplement flight studies and serve as a guide in control-system preliminary design. However, in the investigation of certain problem areas (e.g., sensitive control-system configurations associated with pilot- induced oscillations in flight), fixed-base simulator results did not predict the occurrence of an instability, although the pilots noted the system was extremely sensitive and unsatisfactory. If it is desired to predict pilot-induced-oscillation tendencies, tests in moving-base simulators may be required. It was found possible to represent the human pilot by a linear pilot analog for the tracking task assumed in the present study. The criterion used to adjust the pilot analog was the root-mean-square tracking error of one of the human pilots on the fixed-base simulator. Matching the tracking error of the pilot analog to that of the human pilot gave an approximation to the variation of human-pilot behavior over a range of control-system dynamics. Results of the pilot-analog study indicated that both for optimized control-system dynamics (for poor airplane dynamics) and for a region of good airplane dynamics, the pilot response characteristics are approximately the same.
Connolly Gibbons, Mary Beth; Thompson, Sarah M.; Scott, Kelli; Schauble, Lindsay A.; Mooney, Tessa; Thompson, Donald; Green, Patricia; MacArthur, Mary Jo; Crits-Christoph, Paul
2013-01-01
The goal of the current article is to present the results of a randomized pilot investigation of a brief dynamic psychotherapy compared with treatment-as-usual (TAU) in the treatment of moderate-to-severe depression in the community mental health system. Forty patients seeking services for moderate-to-severe depression in the community mental health system were randomized to 12 weeks of psychotherapy, with either a community therapist trained in brief dynamic psychotherapy or a TAU therapist. Results indicated that blind judges could discriminate the dynamic sessions from the TAU sessions on adherence to dynamic interventions. The results indicate moderate-to-large effect sizes in favor of the dynamic psychotherapy over the TAU therapy in the treatment of depression. The Behavior and Symptom Identification Scale-24 showed that 50% of patients treated with dynamic therapy moved into a normative range compared with only 29% of patients treated with TAU. PMID:22962971
Conducting pilot and feasibility studies.
Cope, Diane G
2015-03-01
Planning a well-designed research study can be tedious and laborious work. However, this process is critical and ultimately can produce valid, reliable study findings. Designing a large-scale randomized, controlled trial (RCT)-the gold standard in quantitative research-can be even more challenging. Even the most well-planned study potentially can result in issues with research procedures and design, such as recruitment, retention, or methodology. One strategy that may facilitate sound study design is the completion of a pilot or feasibility study prior to the initiation of a larger-scale trial. This article will discuss pilot and feasibility studies, their advantages and disadvantages, and implications for oncology nursing research. .
Nyoka, Raymond; Foote, Andrew D.; Woods, Emily; Lokey, Hana; O’Reilly, Ciara E.; Magumba, Fred; Okello, Patrick; Mintz, Eric D.; Marano, Nina
2017-01-01
Globally, an estimated 2.5 billion people lack access to improved sanitation. Unimproved sanitation increases the risk of morbidity and mortality, especially in protracted refugee situations where sanitation is based on pit latrine use. Once the pit is full, waste remains in the pit, necessitating the construction of a new latrine, straining available land and funding resources. A viable, sustainable solution is needed. This study used qualitative and quantitative methods to design, implement, and pilot a novel sanitation system in Kakuma refugee camp, Kenya. An initial round of 12 pre-implementation focus group discussions (FGDs) were conducted with Dinka and Somali residents to understand sanitation practices, perceptions, and needs. FGDs and a supplementary pre-implementation survey informed the development of an innovative sanitation management system that incorporated the provision of urine and liquid-diverting toilets, which separate urine and fecal waste, and a service-based sanitation system that included weekly waste collection. The new system was implemented on a pilot scale for 6 weeks. During the implementation, bi-weekly surveys were administered in each study household to monitor user perceptions and challenges. At the end of the pilot, the sanitation system was assessed using a second round of four post-implementation FGDs. Those who piloted the new sanitation system reported high levels of user satisfaction. Reported benefits included odor reduction, insect/pest reduction, the sitting design, the appropriateness for special populations, and waste collection. However, urine and liquid diversion presented a challenge for users who perform anal washing and for women who had experienced female genital mutilation. Refugee populations are often culturally and ethnically diverse. Using residents’ input to inform the development of sanitation solutions can increase user acceptability and provide opportunities to improve sanitation system designs based on specific needs. PMID:28704504
Ndao, Adama; Sellamuthu, Balasubramanian; Gnepe, Jean R; Tyagi, Rajeshwar D; Valero, Jose R
2017-09-02
Pilot-scale Bacillus thuringiensis based biopesticide production (2000 L bioreactor) was conducted using starch industry wastewater (SIW) as a raw material using optimized operational parameters obtained in 15 L and 150 L fermenters. In pilot scale fermentation process the oxygen transfer rate is a major limiting factor for high product yield. Thus, the volumetric mass transfer coefficient (K L a) remains a tool to determine the oxygen transfer capacity [oxygen utilization rate (OUR) and oxygen transfer rate (OTR)] to obtain better bacterial growth rate and entomotoxicity in new bioreactor process optimization and scale-up. This study results demonstrated that the oxygen transfer rate in 2000 L bioreactor was better than 15 L and 150 L fermenters. The better oxygen transfer in 2000 L bioreactor augmented the bacterial growth [total cell (TC) and viable spore count (SC)] and delta-endotoxin yield. Prepared a stable biopesticide formulation for field use and its entomotoxicity was also evaluated. This study result corroborates the feasibility of industrial scale operation of biopesticide production using starch industry wastewater as raw material.
Iosa, Marco; Morone, Giovanni; Fusco, Augusto; Castagnoli, Marcello; Fusco, Francesca Romana; Pratesi, Luca; Paolucci, Stefano
2015-08-01
The leap motion controller (LMC) is a new optoelectronic system for capturing motion of both hands and controlling a virtual environment. Differently from previous devices, it optoelectronically tracks the fine movements of fingers neither using glows nor markers. This pilot study explored the feasibility of adapting the LMC, developed for videogames, to neurorehabilitation of elderly with subacute stroke. Four elderly patients (71.50 ± 4.51 years old) affected by stroke in subacute phase were enrolled and tested in a cross-over pilot trial in which six sessions of 30 minutes of LMC videogame-based therapy were added on conventional therapy. Measurements involved participation to the sessions, evaluated by means of the Pittsburgh Rehabilitation Participation Scale, hand ability and grasp force evaluated respectively by means of the Abilhand Scale and by means of the dynamometer. Neither adverse effects nor spasticity increments were observed during LMC training. Participation to the sessions was excellent in three patients and very good in one patient during the LMC trial. In this period, patients showed a significantly higher improvement in hand abilities (P = 0.028) and grasp force (P = 0.006). This feasibility pilot study was the first one using leap motion controller for conducting a videogame-based therapy. This study provided a proof of concept that LMC can be a suitable tool even for elderly patients with subacute stroke. LMC training was in fact performed with a high level of active participation, without adverse effects, and contributed to increase the recovery of hand abilities.
ERIC Educational Resources Information Center
Billet, Anne-Marie; Camy, Severine; Coufort-Saudejaud, Carole
2010-01-01
This paper presents an original approach for Chemical Engineering laboratory teaching that is currently applied at INP-ENSIACET (France). This approach, referred to as "pilot-unit leading group" is based on a partial management of the laboratories by the students themselves who become temporarily in charge of one specific laboratory. In…
PILOT: optical performance and end-to-end characterisation
NASA Astrophysics Data System (ADS)
Longval, Y.; Misawa, R.; Ade, P.; André, Y.; de Bernardis, P.; Bousquet, F.; Bouzit, M.; Buttice, V.; Charra, M.; Crane, B.; Dubois, J. P.; Engel, C.; Griffin, M.; Hargrave, P.; Leriche, B.; Maestre, S.; Marty, C.; Marty, W.; Masi, S.; Mot, B.; Narbonne, J.; Pajot, F.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Simonella, O.; Salatino, M.; Savini, G.; Tucker, C.; Bernard, J.-P.
2017-11-01
PILOT (Polarized Instrument for the Long-wavelength Observations of the Tenuous ISM), is a balloon-borne astronomy experiment dedicated to study the polarization of dust emission from the diffuse ISM in our Galaxy [1]. The observations of PILOT have two major scientific objectives. Firstly, they will allow us to constrain the large-scale geometry of the magnetic field in our Galaxy and to study in details the alignment properties of dust grains with respect to the magnetic field. In this domain, the measurements of PILOT will complement those of the Planck satellite at longer wavelengths. In particular, they will bring information at a better angular resolution, which is critical in crowded regions such as the Galactic plane. They will allow us to better understand how the magnetic field is shaping the ISM material on large scale in molecular clouds, and the role it plays in the gravitational collapse leading to star formation. Secondly, the PILOT observations will allow us to measure for the first time the polarized dust emission towards the most diffuse regions of the sky, where the measurements are the most easily interpreted in terms of the physics of dust. In this particular domain, PILOT will play a role for future CMB missions similar to that played by the Archeops experiment for Planck. The results of PILOT will allow us to gain knowledge about the magnetic properties of dust grains and about the structure of the magnetic field in the diffuse ISM that is necessary to a precise foreground subtraction in future polarized CMB measurements. The PILOT measurements, combined with those of Planck at longer wavelengths, will therefore allow us to further constrain the dust models. The outcome of such studies will likely impact the instrumental and technical choices for the future space missions dedicated to CMB polarization. The PILOT instrument will allow observations in two photometric channels at wavelengths 240 μm and 550 μm, with an angular resolution of a few arcminutes. We will make use of large format bolometer arrays, developed for the PACS instrument on board the Herschel satellite. With 1024 detectors per photometric channel and photometric band optimized for the measurement of dust emission, PILOT is likely to become the most sensitive experiment for this type of measurements. The PILOT experiment will take advantage of the large gain in sensitivity allowed by the use of large format, filled bolometer arrays at frequencies more favorable to the detection of dust emission. This paper presents the optical design, optical characterization and its performance. We begin with a presentation of the instrument and the optical system and then we summarise the main optical tests performed. In section III, we present preliminary end-to-end test results.
González-Bueno, Javier; Calvo-Cidoncha, Elena; Sevilla-Sánchez, Daniel; Espaulella-Panicot, Joan; Codina-Jané, Carles; Santos-Ramos, Bernardo
2017-10-01
Translate the ARMS scale into Spanish ensuring cross-cultural equivalence for measuring medication adherence in polypathological patients. Translation, cross-cultural adaptation and pilot testing. Secondary hospital. (i)Forward and blind-back translations followed by cross-cultural adaptation through qualitative methodology to ensure conceptual, semantic and content equivalence between the original scale and the Spanish version. (ii)Pilot testing in non-institutionalized polypathological patients to assess the instrument for clarity. The Spanish version of the ARMS scale has been obtained. Overall scores from translators involved in forward and blind-back translations were consistent with a low difficulty for assuring conceptual equivalence between both languages. Pilot testing (cognitive debriefing) in a sample of 40 non-institutionalized polypathological patients admitted to an internal medicine department of a secondary hospital showed an excellent clarity. The ARMS-e scale is a Spanish-adapted version of the ARMS scale, suitable for measuring adherence in polypathological patients. Its structure enables a multidimensional approach of the lack of adherence allowing the implementation of individualized interventions guided by the barriers detected in every patient. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Dereli, R K; Urban, D R; Heffernan, B; Jordan, J A; Ewing, J; Rosenberger, G T; Dunaev, T I
2012-01-01
The ethanol industry has grown rapidly during the past ten years, mainly due to increasing oil prices. However, efficient and cost-effective solutions for treating thin stillage wastewater have still to be developed. The anaerobic membrane bioreactor (AnMBR) technology combines classical anaerobic treatment in a completely-stirred tank reactor (CSTR) with membrane separation. The combination of these two technologies can achieve a superior effluent quality and also increase biogas production compared to conventional anaerobic solutions. A pilot-scale AnMBR treating thin stillage achieved very high treatment efficiencies in terms of chemical oxygen demand (COD) and total suspended solids (TSS) removal (>98%). An average permeate flux of 4.3 L/m2 x h was achieved at relatively low transmembrane pressure (TMP) values (0.1-0.2 bars) with flat-sheet membranes. Experience gained during the pilot-scale studies provides valuable information for scaling up of AnMBRs treating complex and high-strength wastewaters.
ERIC Educational Resources Information Center
Zaharevitz, Walter
This booklet, one in a series on aviation careers, outlines the variety of careers in aviation available in federal, state, and local governmental agencies. The first part of the booklet provides general information about civil aviation careers with the federal government, including pay scales, job classifications, and working conditions.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Xiao, E-mail: liuxiao07@mails.tsinghua.edu.cn; Wang Wei; Shi Yunchun
2012-11-15
Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practicalmore » approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.« less
NASA Astrophysics Data System (ADS)
Jokisch, A.; Urban, W.
2012-04-01
Water is the main limiting factor for economic and agricultural development in central-northern Namibia, where approximately 50% of the Namibian population lives on less than 10% of the country's surface area. The climate in the region can be characterized as semi-arid, with distinctive rainy and dry seasons and an average precipitation of 470 mm/a. Central-northern Namibia can furthermore be characterized by a system of so-called Oshanas, very shallow ephemeral river streams which drain the whole region from north to south towards the Etosha-Saltpan. Water quality within these ephemeral river streams rapidly decreases towards the end of the dry season due to high rates of evaporation (2,700 mm/a) which makes the water unsuitable for human consumption and in certain times of the year also for irrigation purposes. Other local water resources are scarce or of low quality. Therefore, the local water supply is mainly secured via a pipeline scheme which is fed by the Namibian-Angolan border river Kunene. Within the research project CuveWaters - Integrated Water Resources Management in central-northern Namibia different small scale water supply and sanitation technologies are implemented and tested as part of the projects multi-resource mix. The aim is to decentralize the regional water supply and make it more sustainable especially in the face of climate change. To gain understanding and to create ownership within the local population for the technologies implemented, stakeholder participation and capacity development are integral parts of the project. As part of the implementation process of rainwater harvesting and water harvesting from ephemeral river streams, pilot plants for the storage of water were constructed with the help of local stakeholders who will also be the beneficiaries of the pilot plants. The pilot plants consist of covered storage tanks and infrastructure for small scale horticultural use of the water stored. These small scale horticultural activities enable the users of the pilot plants to improve their standard of living by producing vegetables for self-consumption or for selling them on local markets. Irrigation for small-scale horticulture was virtually unknown in the region prior to the project which makes intense training for the local users necessary. This paper summarizes the participative process of finding a pilot village and a suitable location along the ephemeral river stream as well as the process of selecting people from the local community for construction and for the operation of the pilot plant. According to the demand-responsive approach of the CuveWaters project, local stakeholders were involved in all these processes. Tools for participation used are workshops and interviews with local stakeholders and the integration of the users in all decision-making processes as well as in construction, maintenance, operation and monitoring.
The use of carbon adsorbents for the removal of perfluoroalkyl acids from potable reuse systems.
Inyang, Mandu; Dickenson, Eric R V
2017-10-01
Bench- and pilot-scale sorption tests were used to probe the performance of several biochars at removing perfluoroalkyl acids (PFAA) from field waters, compared to granular activated carbon (GAC). Screening tests using organic matter-free water resulted in hardwood (HWC) (K d = 41 L g -1 ) and pinewood (PWC) (K d = 49 L g -1 ) biochars having the highest perfluorooctanoic acid (PFOA) removal performance that was comparable to bituminous coal GAC (K d = 41 L g -1 ). PWC and HWC had a stronger affinity for PFOA sorbed in Lake Mead surface water (K F = 11 mg (1-n) L n g -1 ) containing a lower (2 mg L -1 ) dissolved organic carbon (DOC) concentration than in a tertiary-filtered wastewater (K F = 8 mg (1-n) L n g -1 ) with DOC of 4.9 mg L -1 . A pilot-scale study was performed using three parallel adsorbers (GAC, anthracite, and HWC biochar) treating the same tertiary-filtered wastewater. Compared to HWC, and anthracite, GAC was the most effective in mitigating perfluoropentanoic acid (PFPnA), perfluorohexanoic acid (PHxA), PFOA, perfluorooctane sulfonic acid (PFOS), and DOC (45-67% removed at 4354 bed volumes) followed by HWC, and then anthracite. Based on bench- and pilot-scale results, shorter-chain PFAA [perfluorobutanoic acid (PFBA), PFPnA, or PFHxA] were more difficult to remove with both biochar and GAC than the longer-chain, PFOS and PFOA. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Corn stover (CS) adjusted to 50%, 66% and 70% moisture was pretreated by the low moisture anhydrous ammonia (LMAA) process in a pilot-scale ammoniation reactor. After ammoniation, the 70% moisture CS was treated at 90 degree C and 100 degree C whereas the others were treated at 90 degree C only. The...
2002-03-13
Scaled Composites' Doug Shane examines the screen of his ground control station during tests in New Mexico. Shane used this configuration as the ground control station to remotely pilot the Proteus aircraft during a NASA sponsored series of tests.
Initial test of large panels of structural flakeboard from southern hardwoods
Eddie W. Price
1975-01-01
A strong structural exterior flakeboard from mixed southern hardwoods has been developed on a laboratory scale; the problem is transfer of the technique to pilot-plant scale in the manufacture of 4- by 8-ft panels. From the pilot-plant trial here reported, it is concluded that a specific platen pressure of at least 575 psi and a hot press closing time of about 45...
J.Y. Zhu; M. Subhosh Chandra; Feng Gu; Roland Gleisner; J.Y. Zhu; John Sessions; Gevan Marrs; Johnway Gao; Dwight Anderson
2015-01-01
This study demonstrated at the pilot-scale (50 kg) use of Douglas-fir forest harvest residue, an underutilized forest biomass, for the production of high titer and high yield bioethanol using sulfite chemistry without solidâliquor separation and detoxification. Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL) was directly applied to the...
Flight Simulator Visual-Display Delay Compensation
NASA Technical Reports Server (NTRS)
Crane, D. Francis
1981-01-01
A piloted aircraft can be viewed as a closed-loop man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability. The changes in pilot dynamic response and performance bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. The study reported here evaluated an approach to visual-display delay compensation. The objective of the compensation was to minimize delay-induced change in pilot performance and workload, The compensation was effective. Because the compensation design approach is based on well-established control-system design principles, prospects are favorable for successful application of the approach in other simulations.
Huber, R; Borders, K W; Badrak, K; Netting, F E; Nelson, H W
2001-04-01
We propose national standards previously recommended for the Long-Term Care Ombudsman Program by an Institute of Medicine program evaluation committee, and introduce a tool to measure the compliance of local ombudsman programs to those standards: the Huber Badrak Borders Scales. The best practices for ombudsman programs detailed in the committee's report were adapted to 43 Likert-type scales that were then averaged into 10 infrastructure component scales: (a) program structure, (b) qualifications of local ombudsmen, (c) legal authority, (d) financial resources, (e) management information systems, (f) legal resources, (g) human resources, (h) resident advocacy services, (i) systemic advocacy, and (j) educational services. The scales were pilot-tested in 1996 and 1999 with Kentucky ombudsmen. The means of 9 of these 10 scales were higher in 1999 than in 1996, suggesting that local ombudsman programs were more in compliance with the proposed standards in 1999 than three years earlier. The development process consisted of 10 adopt-test-revise-retest steps that can be replicated by other types of programs to develop program compliance tools.
Nuclear electric propulsion options for piloted Mars missions
NASA Technical Reports Server (NTRS)
George, Jeffrey A.
1993-01-01
Three nuclear electric propulsion (NEP) systems are discussed. The three systems are as follows: a system based on current SP-100 technology; a potassium Rankine-cycle based power conversion system, and an argon ion thruster system. The system will be researched for implementation in several possible vehicle configurations. The following are among the possible Mars vehicle configurations: a piloted 15 MWe multi-reactor vehicle; a piloted 10 MWe vehicle with ECCV; a piloted 10 MWe modular vehicle; piloted 10 and 15 MWe vehicles with ECCV and MEV; a piloted 5 MWe vehicle with ECCV; a 5 MWe cargo vehicle with 2 MEV's; and a 2.5 MWe vehicle with MEV.
Consumer Perceptions About Pilot Training: An Emotional Response
NASA Astrophysics Data System (ADS)
Rosser, Timothy G.
Civilian pilot training has followed a traditional path for several decades. With a potential pilot shortage approaching, ICAO proposed a new paradigm in pilot training methodology called the Multi-Crew Pilot License. This new methodology puts a pilot in the cockpit of an airliner with significantly less flight time experience than the traditional methodology. The purpose of this study was to determine to what extent gender, country of origin and pilot training methodology effect an aviation consumer's willingness to fly. Additionally, this study attempted to determine what emotions mediate a consumer's decision. This study surveyed participants from India and the United States to measure their willingness to fly using the Willingness to Fly Scale shown to be valid and reliable by Rice et al. (2015). The scale uses a five point Likert-type scale. In order to determine the mediating emotions, Ekman and Friesen's (1979) universal emotions, which are happiness, surprise, fear, disgust, anger, and sadness were used. Data were analyzed using SPSS. Descriptive statistics are provided for respondent's age and willingness to fly values. An ANOVA was conducted to test the first four hypotheses and Hayes (2004, 2008) bootstrapping process was used for the mediation analysis. Results indicated a significant main effect for training, F(1,972) = 227.76, p . .001, etap 2 = 0.190, country of origin, F(1, 972) = 28.86, p < .001, .p 2 = 0.029, and a two-way interaction was indicated between training and country of origin, F(7, 972) = 46.71, p < .001, etap 2 = 0.252. Mediation analysis indicated the emotions anger, fear, happiness, and surprise mediated the relationship between training and country of origin, and training. The findings of this study are important to designers of MPL training programs and airline marketers.
Opto-acoustic image fusion technology for diagnostic breast imaging in a feasibility study
NASA Astrophysics Data System (ADS)
Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Ulissey, Michael; Stavros, A. T.; Oraevsky, Alexander; Lavin, Philip; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela
2015-03-01
Functional opto-acoustic (OA) imaging was fused with gray-scale ultrasound acquired using a specialized duplex handheld probe. Feasibility Study findings indicated the potential to more accurately characterize breast masses for cancer than conventional diagnostic ultrasound (CDU). The Feasibility Study included OA imagery of 74 breast masses that were collected using the investigational Imagio® breast imaging system. Superior specificity and equal sensitivity to CDU was demonstrated, suggesting that OA fusion imaging may potentially obviate the need for negative biopsies without missing cancers in a certain percentage of breast masses. Preliminary results from a 100 subject Pilot Study are also discussed. A larger Pivotal Study (n=2,097 subjects) is underway to confirm the Feasibility Study and Pilot Study findings.
Compensation for time delay in flight simulator visual-display systems
NASA Technical Reports Server (NTRS)
Crane, D. F.
1983-01-01
A piloted aircraft can be viewed as a closed-loop, man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability, and these changes bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. Delay compensation, designed to restore pilot-aircraft system stability, was evaluated in several studies which are reported here. The studies range from single-axis, tracking-task experiments (with sufficient subjects and trials to establish statistical significance of the results) to a brief evaluation of compensation of a computer-generated-imagery (CGI) visual display system in a full six-degree-of-freedom simulation. The compensation was effective - improvements in pilot performance and workload or aircraft handling-qualities rating (HQR) were observed. Results from recent aircraft handling-qualities research literature which support the compensation design approach are also reviewed.
Yuen, H K; Holthaus, K; Kamen, D L; Sword, D O; Breland, H L
2011-10-01
Fatigue and physical deconditioning are common, difficult to treat conditions among patients with systemic lupus erythematosus (SLE). The aim of this pilot study was to evaluate the effectiveness of a home-based exercise program using the Wii Fit system in patients with SLE. Fifteen sedentary African American women with SLE experiencing moderate to severe fatigue participated in a home exercise program using the Wii Fit 3 days a week for 30 minutes each for 10 weeks. A one-group pretest-post test design was used to evaluate the effectiveness of this program. Primary outcome measure was severity of fatigue. Secondary outcome measures were body weight, waist circumference, fatigue-related symptoms of distress, activity level, and physical fitness. At the completion of the 10-week Wii Fit exercise program, participants perceived fatigue severity as measured by the Fatigue Severity Scale to be significantly decreased (p = 0.002), and body weight and waist circumference were significantly reduced (p = 0.01). In addition, anxiety level, as measured by Hospital Anxiety and Depression Scale, and overall intensity of total pain experience, as measured by Short-form of the McGill Pain Questionnaire, were also significantly reduced (p < 0.05). Findings provide preliminary evidence that the Wii Fit motivates this population to exercise, which leads to alleviation of fatigue and reduced body weight, waist circumference, anxiety level, and overall intensity of total pain experience.
Yuen, Hon K.; Holthaus, Katy; Kamen, Diane L.; Sword, David; Breland, Hazel L.
2012-01-01
Fatigue and physical deconditioning are common, difficult to treat conditions among patients with systemic lupus erythematosus (SLE). The aim of this pilot study is to evaluate the effectiveness of a home-based exercise program using the Wii Fit system in patients with SLE. Fifteen sedentary African American women with SLE experiencing moderate to severe fatigue participated in a home exercise program using the Wii Fit 3 days a week for 30 minutes each for 10 weeks. A one-group pretest-posttest design was used to evaluate the effectiveness of this program. Primary outcome measure was severity of fatigue. Secondary outcome measures were body weight, waist circumference, fatigue-related symptoms of distress, activity level and physical fitness. At the completion of the 10-week Wii Fit exercise program, participants perceived fatigue severity as measured by the Fatigue Severity Scale to be significantly decreased (P=0.002), body weight and waist circumference were significantly reduced (Ps=0.01). In addition, anxiety level as measured by Hospital Anxiety and Depression Scale, and overall intensity of total pain experience as measured by Short-form of the McGill Pain Questionnaire were also significantly reduced (Ps<0.05). Findings provide preliminary support that the Wii Fit motivates this population to exercise which leads to alleviation of fatigue and reduced body weight, waist circumference, anxiety level, and overall intensity of total pain experience. PMID:21700656
Schmid, A; Kollmer, A; Mathys, R G; Witholt, B
1998-08-01
Many pseudomonads and other bacteria can grow on aliphatic and aromatic hydrocarbons that occur in the environment. We are examining the potential of such organisms as biocatalysts for the oxidation of a variety of substituted aliphatic and aromatic compounds. To attain a high production rate of oxidation products via such biotransformations, we have focused on two-liquid phase culture systems. In these systems, cells are grown in liquid media consisting of an aqueous phase containing water-soluble growth substrates and droplets of a water-immicible organic solvent containing bioconversion substrates and products. For industrial applications of such two-liquid phase processes, several questions remain. What are the maximum rates at which apolar compounds can be transferred from the apolar phase to cells growing in the aqueous phase, i.e., what are the maximum space-time yields attainable in two-liquid phase fermentations under practical conditions? What does an efficient downstream processing of two-liquid phase medium involve? What safety regimes should be considered in working with flammable organic solvents? Can elevated pressure be used to increase oxygen transfer? Based on answers to these questions, we have recently developed a high-pressure, explosion-proof bioreactor system with Bioengineering AG (Wald, Switzerland), which will be installed in our pilot plant and used to explore two-liquid phase bioconversions at a pilot scale.
Wang, Zhiwei; Zheng, Junjian; Tang, Jixu; Wang, Xinhua; Wu, Zhichao
2016-01-01
Recovery of nutrients and energy from municipal wastewater has attracted much attention in recent years; however, its efficiency is significantly limited by the low-strength properties of municipal wastewater. Herein, we report a pilot-scale forward osmosis (FO) system using a spiral-wound membrane module to concentrate real municipal wastewater. Under active layer facing feed solution mode, the critical concentration factor (CCF) of this FO system was determined to be 8 with 0.5 M NaCl as draw solution. During long-term operation at a concentration factor of 5, (99.8 ± 0.6)% of chemical oxygen demand and (99.7 ± 0.5)% of total phosphorus rejection rates could be achieved at a flux of 6 L/(m2 h) on average. In comparison, only (48.1 ± 10.5)% and (67.8 ± 7.3)% rejection of ammonium and total nitrogen were observed. Cake enhanced concentration polarization is a major contributor to the decrease of water fluxes. The fouling also led to the occurrence of a cake reduced concentration polarization effect, improving ammonium rejection rate with the increase of operation time in each cycle. This work demonstrates the applicability of using FO process for wastewater concentrating and also limitations in ammonium recovery that need further improvement in future. PMID:26898640
Cingolani, Diego; Eusebi, Anna Laura; Battistoni, Paolo
2017-12-01
The industrial processes require large quantities of water. The presence of discharges results not only in significant environmental impact but implies wastage of water resources. This problem could be solved treating and reusing the produced wastewaters and applying the new zero liquid discharge approach. This paper discusses the design and the performances of reverse osmosis membranes for the upgrading of full scale platform for industrial liquid wastes. The final effluent from the ultrafiltration unit of the full scale plant was monitored to design the reverse osmosis unit. Previous modelling phase was used to evaluate the specific ordinary and maintenance costs and the final effluent quality (2.7 €/m 3 ). The system was designed in triple stages at different operative pressures. The economic feasibility and the payback period of the technology at different percentages of produced permeate were determined. The recovery of 90% was identified as profitable for the reverse osmosis application. One experimental pilot plant applying the reverse osmosis was used to test the final effluent. Moreover, the same flow was treated with second pilot system based on the forward osmosis process. The final efficiencies were compared. Removals higher than 95% using the reverse system were obtained for the main macropollutants and ions. No sustainable applicability of the forward osmosis was determined. Copyright © 2016 Elsevier Ltd. All rights reserved.
Techniques for Improving Pilot Recovery from System Failures
NASA Technical Reports Server (NTRS)
Pritchett, Amy R.
2001-01-01
This project examined the application of intelligent cockpit systems to aid air transport pilots at the tasks of reacting to in-flight system failures and of planning and then following a safe four dimensional trajectory to the runway threshold during emergencies. Two studies were conducted. The first examined pilot performance with a prototype awareness/alerting system in reacting to on-board system failures. In a full-motion, high-fidelity simulator, Army helicopter pilots were asked to fly a mission during which, without warning or briefing, 14 different failures were triggered at random times. Results suggest that the amount of information pilots require from such diagnostic systems is strongly dependent on their training; for failures they are commonly trained to react to with a procedural response, they needed only an indication of which failure to follow, while for 'un-trained' failures, they benefited from more intelligent and informative systems. Pilots were also found to over-rely on the system in conditions were it provided false or mis-leading information. In the second study, a proof-of-concept system was designed suitable for helping pilots replan their flights in emergency situations for quick, safe trajectory generation. This system is described in this report, including: the use of embedded fast-time simulation to predict the trajectory defined by a series of discrete actions; the models of aircraft and pilot dynamics required by the system; and the pilot interface. Then, results of a flight simulator evaluation with airline pilots are detailed. In 6 of 72 simulator runs, pilots were not able to establish a stable flight path on localizer and glideslope, suggesting a need for cockpit aids. However, results also suggest that, to be operationally feasible, such an aid must be capable of suggesting safe trajectories to the pilot; an aid that only verified plans entered by the pilot was found to have significantly detrimental effects on performance and pilot workload. Results also highlight that the trajectories suggested by the aid must capture the context of the emergency; for example, in some emergencies pilots were willing to violate flight envelope limits to reduce time in flight - in other emergencies the opposite was found.
Design and installation of a next generation pilot scale fermentation system.
Junker, B; Brix, T; Lester, M; Kardos, P; Adamca, J; Lynch, J; Schmitt, J; Salmon, P
2003-01-01
Four new fermenters were designed and constructed for use in secondary metabolite cultivations, bioconversions, and enzyme production. A new PC/PLC-based control system also was implemented using GE Fanuc PLCs, Genius I/O blocks, and Fix Dynamics SCADA software. These systems were incorporated into an industrial research fermentation pilot plant, designed and constructed in the early 1980s. Details of the design of these new fermenters and the new control system are described and compared with the existing installation for expected effectiveness. In addition, the reasoning behind selection of some of these features has been included. Key to the design was the goal of preserving similarity between the new and previously existing and successfully utilized fermenter hardware and software installations where feasible but implementing improvements where warranted and beneficial. Examples of enhancements include strategic use of Inconel as a material of construction to reduce corrosion, piping layout design for simplified hazardous energy isolation, on-line calculation and control of nutrient feed rates, and the use of field I/O modules located near the vessel to permit low-cost addition of new instrumentation.
Understanding and Controlling Sialylation in a CHO Fc-Fusion Process
Lewis, Amanda M.; Croughan, William D.; Aranibar, Nelly; Lee, Alison G.; Warrack, Bethanne; Abu-Absi, Nicholas R.; Patel, Rutva; Drew, Barry; Borys, Michael C.; Reily, Michael D.; Li, Zheng Jian
2016-01-01
A Chinese hamster ovary (CHO) bioprocess, where the product is a sialylated Fc-fusion protein, was operated at pilot and manufacturing scale and significant variation of sialylation level was observed. In order to more tightly control glycosylation profiles, we sought to identify the cause of variability. Untargeted metabolomics and transcriptomics methods were applied to select samples from the large scale runs. Lower sialylation was correlated with elevated mannose levels, a shift in glucose metabolism, and increased oxidative stress response. Using a 5-L scale model operated with a reduced dissolved oxygen set point, we were able to reproduce the phenotypic profiles observed at manufacturing scale including lower sialylation, higher lactate and lower ammonia levels. Targeted transcriptomics and metabolomics confirmed that reduced oxygen levels resulted in increased mannose levels, a shift towards glycolysis, and increased oxidative stress response similar to the manufacturing scale. Finally, we propose a biological mechanism linking large scale operation and sialylation variation. Oxidative stress results from gas transfer limitations at large scale and the presence of oxygen dead-zones inducing upregulation of glycolysis and mannose biosynthesis, and downregulation of hexosamine biosynthesis and acetyl-CoA formation. The lower flux through the hexosamine pathway and reduced intracellular pools of acetyl-CoA led to reduced formation of N-acetylglucosamine and N-acetylneuraminic acid, both key building blocks of N-glycan structures. This study reports for the first time a link between oxidative stress and mammalian protein sialyation. In this study, process, analytical, metabolomic, and transcriptomic data at manufacturing, pilot, and laboratory scales were taken together to develop a systems level understanding of the process and identify oxygen limitation as the root cause of glycosylation variability. PMID:27310468
Global positioning system supported pilot's display
NASA Technical Reports Server (NTRS)
Scott, Marshall M., Jr.; Erdogan, Temel; Schwalb, Andrew P.; Curley, Charles H.
1991-01-01
The hardware, software, and operation of the Microwave Scanning Beam Landing System (MSBLS) Flight Inspection System Pilot's Display is discussed. The Pilot's Display is used in conjunction with flight inspection tests that certify the Microwave Scanning Beam Landing System used at Space Shuttle landing facilities throughout the world. The Pilot's Display was developed for the pilot of test aircraft to set up and fly a given test flight path determined by the flight inspection test engineers. This display also aids the aircraft pilot when hazy or cloud cover conditions exist that limit the pilot's visibility of the Shuttle runway during the flight inspection. The aircraft position is calculated using the Global Positioning System and displayed in the cockpit on a graphical display.
Wozney, Lori; Bagnell, Alexa; Fitzpatrick, Eleanor; Curtis, Sarah; Jabbour, Mona; Johnson, David; Rosychuk, Rhonda J; Young, Michael; Ohinmaa, Arto; Joyce, Anthony; McGrath, Patrick
2016-01-01
Background There is a demand to make first-line treatments, including cognitive behavioural therapy (CBT) for adolescent anxiety disorders, more widely available. Internet-based CBT is proposed to circumvent access and availability barriers and reduce health care system costs. Recent reviews suggest more evidence is needed to establish the treatment effects of Internet-based CBT in children and adolescents and to determine related economic impacts. Objective This pilot trial aims to collect the necessary data to inform the planning of a full-scale RCT to test the effectiveness of the Internet-based CBT program Breathe (Being Real, Easing Anxiety: Tools Helping Electronically). Methods We are conducting a 27-month, 2-arm parallel-group, pilot randomized controlled trial (RCT). Outcomes will inform the planning of a full-scale RCT aimed to test the effectiveness of Internet-based CBT with a population of adolescents with moderate to mild anxiety problems. In the pilot RCT we will: (1) define a minimal clinically important difference (MCID) for the primary outcome measure (total anxiety score using the Multidimensional Anxiety Scale for Children); (2) determine a sample size for the full-scale RCT; (3) estimate recruitment and retention rates; (4) measure intervention acceptability to inform critical intervention changes; (5) determine the use of co-interventions; and (6) conduct a cost-consequence analysis to inform a cost-effectiveness analysis in the full-scale RCT. Adolescents aged 13-17 years seeking care for an anxiety complaint from a participating emergency department, mobile or school-based crisis team, or primary care clinic are being screened for interest and eligibility. Enrolled adolescents are being randomly allocated to either 8 weeks of Internet-based CBT with limited telephone and e-mail support, or a control group with access to a static webpage listing anxiety resources. Adolescents are randomly assigned using a computer generated allocation sequence. Data are being collected at baseline, treatment completion, and at a 3-month follow-up. Results Currently, adolescents are being enrolled in the study. Enrolment is taking place between March 2014 and February 2016; data collection will conclude May 2016. We expect that analysis and results will be available by August 2016. Conclusions In many communities, the resources available for front-line anxiety treatment are outweighed by the need for care. This pilot RCT is an essential step to designing a robust RCT to evaluate the effectiveness of an Internet-based CBT program for adolescents with moderate to mild anxiety problems. Trial Registration Clinicaltrials.gov NCT02059226; http://clinicaltrials.gov/ct2/show/NCT02059226 (Archived by WebCite at http://www.webcitation.org/6epF8v7k4) PMID:26825111
NASA Technical Reports Server (NTRS)
Crabill, Norman L.; Dash, Ernie R.
1991-01-01
The weather information requirements for pilots and the deficiencies of the current aviation weather support system in meeting these requirements are defined. As the amount of data available to pilots increases significantly in the near future, expert system technology will be needed to assist pilots in assimilating that information. Some other desirable characteristics of an automation-assisted system for weather data acquisition, dissemination, and assimilation are also described.
Malato, Sixto; Blanco, Julián; Maldonado, Manuel I; Oller, Isabel; Gernjak, Wolfgang; Pérez-Estrada, Leonidas
2007-07-31
This paper reports on the combined solar photo-Fenton/biological treatment of an industrial effluent (initial total organic carbon, TOC, around 500mgL(-1)) containing a non-biodegradable organic substance (alpha-methylphenylglycine at 500mgL(-1)), focusing on pilot plant tests performed for design of an industrial plant, the design itself and the plant layout. Pilot plant tests have demonstrated that biodegradability enhancement is closely related to disappearance of the parent compound, for which a certain illumination time and hydrogen peroxide consumption are required, working at pH 2.8 and adding Fe(2+)=20mgL(-1). Based on pilot plant results, an industrial plant with 100m(2) of CPC collectors for a 250L/h treatment capacity has been designed. The solar system discharges the wastewater (WW) pre-treated by photo-Fenton into a biotreatment based on an immobilized biomass reactor. First, results of the industrial plant are also presented, demonstrating that it is able to treat up to 500Lh(-1) at an average solar ultraviolet radiation of 22.9Wm(-2), under the same conditions (pH, hydrogen peroxide consumption) tested in the pilot plant.
Investigations into Improving Dewaterability at a Bio-P/Anaerobic Digestion Plant.
Alm, Rebecca; Sealock, Adam W; Nollet, Yabing; Sprouse, George
2016-11-01
Metropolitan Council Environmental Services has observed poorer than expected dewatering performance at its Empire Plant. This plant has both anaerobic digestion and enhanced biological phosphorus removal in its treatment train. A research program using pilot-scale anaerobic digesters investigated potential solutions to the plant's poor dewaterability. The dewaterability goal was to increase the cake solids from 12% total solids (TS) to 16% TS or higher. This research investigated 20 different reactor conditions including chemical, feed sludge, and digested sludge treatments. At the pilot scale, unaerated storage of waste activated sludge prior to thickening and addition of ferric chloride to digestion was found to achieve dewatered cake solids of nearly 17% TS with the added benefit of reducing polymer demand. Issues including the amount of chemical required and the resulting volatile solids destruction influence the viability of the process change, so a full-scale pilot and financial analysis is recommended before making permanent process changes.
Lakghomi, B; Lawryshyn, Y; Hofmann, R
2015-01-01
Computational fluid dynamics (CFD) models of dissolved air flotation (DAF) have shown formation of stratified flow (back and forth horizontal flow layers at the top of the separation zone) and its impact on improved DAF efficiency. However, there has been a lack of experimental validation of CFD predictions, especially in the presence of solid particles. In this work, for the first time, both two-phase (air-water) and three-phase (air-water-solid particles) CFD models were evaluated at pilot scale using measurements of residence time distribution, bubble layer position and bubble-particle contact efficiency. The pilot-scale results confirmed the accuracy of the CFD model for both two-phase and three-phase flows, but showed that the accuracy of the three-phase CFD model would partly depend on the estimation of bubble-particle attachment efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hancu, Dan
GE Global Research has developed, over the last 8 years, a platform of cost effective CO2 capture technologies based on a non-aqueous aminosilicone solvent (GAP-1m). As demonstrated in previous funded DOE projects (DE-FE0007502 and DEFE0013755), the GAP-1m solvent has increased CO2 working capacity, lower volatility and corrosivity than the benchmark aqueous amine technology. Performance of the GAP-1m solvent was recently demonstrated in a 0.5 MWe pilot at National Carbon Capture Center, AL with real flue gas for over 500 hours of operation using a Steam Stripper Column (SSC). The pilot-scale PSTU engineering data were used to (i) update the techno-economicmore » analysis, and EH&S assessment, (ii) perform technology gap analysis, and (iii) conduct the solvent manufacturability and scale-up study.« less
The reliability and validity of flight task workload ratings
NASA Technical Reports Server (NTRS)
Childress, M. E.; Hart, S. G.; Bortolussi, M. R.
1982-01-01
Twelve instrument-rated general aviation pilots each flew two scenarios in a motion-base simulator. During each flight, the pilots verbally estimated their workload every three minutes. Following each flight, they again estimated workload for each flight segment and also rated their overall workload, perceived performance, and 13 specific factors on a bipolar scale. The results indicate that time (a priori, inflight, or postflight) of eliciting ratings, period to be covered by the ratings (a specific moment in time or a longer period), type of rating scale, and rating method (verbal, written, or other) may be important variables. Overall workload ratings appear to be predicted by different specific scales depending upon the situation, with activity level the best predictor. Perceived performance seems to bear little relationship to observer-rated performance when pilots rate their overall performance and an observer rates specific behaviors. Perceived workload and performance also seem unrelated.
How Much Higher Can HTCondor Fly?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fajardo, E. M.; Dost, J. M.; Holzman, B.
The HTCondor high throughput computing system is heavily used in the high energy physics (HEP) community as the batch system for several Worldwide LHC Computing Grid (WLCG) resources. Moreover, it is the backbone of GlidelnWMS, the pilot system used by the computing organization of the Compact Muon Solenoid (CMS) experiment. To prepare for LHC Run 2, we probed the scalability limits of new versions and configurations of HTCondor with a goal of reaching 200,000 simultaneous running jobs in a single internationally distributed dynamic pool.In this paper, we first describe how we created an opportunistic distributed testbed capable of exercising runsmore » with 200,000 simultaneous jobs without impacting production. This testbed methodology is appropriate not only for scale testing HTCondor, but potentially for many other services. In addition to the test conditions and the testbed topology, we include the suggested configuration options used to obtain the scaling results, and describe some of the changes to HTCondor inspired by our testing that enabled sustained operations at scales well beyond previous limits.« less
Removal of Multiple Contaminants: Biological Treatment
This presentation contains (1) background material on nitrate, perchlorate and ammonia contamination in the continental US; (2) scientific background on biological drinking water treatment; (3) results of bench-scale anaerobic and aerobic treatment studies; (4) results of pilot-s...
RESEARCH IN FILTRATION FOR CRYPTOSPORIDIUM REMOVAL
The USEPA has conducted pilot plant studies for the removal of Cryptosporidium oocysts from drinking water. Fourteen pilot-scale tests were performed to assess the ability of conventional treatment to control Cryptosporidium oocysts and three surrogates; turbidity, total particle...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demuth, Scott Francis; Sprinkle, James K.
As preparation to the year-end deliverable (Provide SSBD Best Practices for Generic Dry-Storage Pilot Scale Plant) for the Work Package (FT-15LA040501–Safeguards and Security by Design for Extended Dry Storage), the initial step was to select a generic dry-storage pilot plant design for SSBD. To be consistent with other DOE-NE Fuel Cycle Research and Development (FCR&D) activities, the Used Fuel Campaign was engaged for the selection of a design for this deliverable. For the work Package FT-15LA040501–“Safeguards and Security by Design for Extended Dry Storage”, SSBD will be initiated for the Generic Dry-Storage Pilot Scale Plant described by the layout ofmore » Reference 2. SSBD will consider aspects of the design that are impacted by domestic material control and accounting (MC&A), domestic security, and international safeguards.« less
Energy Evaluation of a New Construction Pilot Community: Fresno, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdick, A.; Poerschke, A.; Rapport, A.
2014-06-01
A new construction pilot community was constructed by builder-partner Wathen-Castanos Hybrid Homes (WCHH) based on a single occupied test house that was designed to achieve greater than 30% energy savings with respect to the House Simulation Protocols (Hendron, Robert; Engebrecht, Cheryn (2010). Building America House Simulation Protocols. Golden, CO: National Renewable Energy Laboratory). Builders face several key problems when implementing a whole-house systems integrated measures package (SIMP) from a single test house into multiple houses. Although a technical solution already may have been evaluated and validated in an individual test house, the potential exists for constructability failures at the communitymore » scale. This report addresses factors of implementation and scalability at the community scale and proposes methodologies by which community-scale energy evaluations can be performed based on results at the occupied test house level. Research focused on the builder and trade implementation of a SIMP and the actual utility usage in the houses at the community scale of production. Five occupants participated in this community-scale research by providing utility bills and information on occupancy and miscellaneous gas and electric appliance use for their houses. IBACOS used these utility data and background information to analyze the actual energy performance of the houses. Verification with measured data is an important component in predictive energy modeling. The actual utility bill readings were compared to projected energy consumption using BEopt with actual weather and thermostat set points for normalization.« less
Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Cassells, Benny; Sin, Gürkan; Gernaey, Krist V
2017-07-01
A novel model-based control strategy has been developed for filamentous fungal fed-batch fermentation processes. The system of interest is a pilot scale (550 L) filamentous fungus process operating at Novozymes A/S. In such processes, it is desirable to maximize the total product achieved in a batch in a defined process time. In order to achieve this goal, it is important to maximize both the product concentration, and also the total final mass in the fed-batch system. To this end, we describe the development of a control strategy which aims to achieve maximum tank fill, while avoiding oxygen limited conditions. This requires a two stage approach: (i) calculation of the tank start fill; and (ii) on-line control in order to maximize fill subject to oxygen transfer limitations. First, a mechanistic model was applied off-line in order to determine the appropriate start fill for processes with four different sets of process operating conditions for the stirrer speed, headspace pressure, and aeration rate. The start fills were tested with eight pilot scale experiments using a reference process operation. An on-line control strategy was then developed, utilizing the mechanistic model which is recursively updated using on-line measurements. The model was applied in order to predict the current system states, including the biomass concentration, and to simulate the expected future trajectory of the system until a specified end time. In this way, the desired feed rate is updated along the progress of the batch taking into account the oxygen mass transfer conditions and the expected future trajectory of the mass. The final results show that the target fill was achieved to within 5% under the maximum fill when tested using eight pilot scale batches, and over filling was avoided. The results were reproducible, unlike the reference experiments which show over 10% variation in the final tank fill, and this also includes over filling. The variance of the final tank fill is reduced by over 74%, meaning that it is possible to target the final maximum fill reproducibly. The product concentration achieved at a given set of process conditions was unaffected by the control strategy. Biotechnol. Bioeng. 2017;114: 1459-1468. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
30 CFR 77.902-2 - Approved ground check systems not employing pilot check wires.
Code of Federal Regulations, 2010 CFR
2010-07-01
... pilot check wires. 77.902-2 Section 77.902-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Approved ground check systems not employing pilot check wires. Ground check systems not employing pilot check wires shall be approved by the Secretary only after it has been determined that the system...