Rome, Keith; Stewart, Sarah; Vandal, Alain C; Gow, Peter; McNair, Peter; Dalbeth, Nicola
2013-09-24
There is limited evidence on non-pharmacological interventions for gout. The aim of the study was to determine whether a footwear intervention can reduce foot pain and musculoskeletal disability in people with gout. Thirty-six people with gout participated in a prospective intervention study over 8 weeks. Participants selected one of 4 pairs of shoes and thereafter wore the shoes for 8 weeks. The primary outcome was foot pain using a 100 mm visual analogue scale. Secondary outcomes related to function and disability were also analysed. The Cardio Zip shoe was selected by 58% of participants. Compared with baseline, overall scores for all shoes at 8-weeks demonstrated a decrease in foot pain (p = 0.03), general pain (p = 0.012), Health Assessment Questionnaire (HAQ)-II (p = 0.016) and Leeds Foot Impact Scale (LFIS) impairment subscale (p = 0.03). No significant differences were observed in other patient reported outcomes including patient global assessment, LFIS activity subscale, and Lower Limb Task Questionnaire subscales (all p > 0.10). We observed significant improvements between baseline measurements using the participants' own shoes and the Cardio Zip for foot pain (p = 0.002), general pain (p = 0.001), HAQ-II (p = 0.002) and LFIS impairment subscale (p = 0.004) after 8 weeks. The other three shoes did not improve pain or disability. Footwear with good cushioning, and motion control may reduce foot pain and disability in people with gout.
2013-01-01
Background There is limited evidence on non-pharmacological interventions for gout. The aim of the study was to determine whether a footwear intervention can reduce foot pain and musculoskeletal disability in people with gout. Methods Thirty-six people with gout participated in a prospective intervention study over 8 weeks. Participants selected one of 4 pairs of shoes and thereafter wore the shoes for 8 weeks. The primary outcome was foot pain using a 100 mm visual analogue scale. Secondary outcomes related to function and disability were also analysed. Results The Cardio Zip shoe was selected by 58% of participants. Compared with baseline, overall scores for all shoes at 8-weeks demonstrated a decrease in foot pain (p = 0.03), general pain (p = 0.012), Health Assessment Questionnaire (HAQ)-II (p = 0.016) and Leeds Foot Impact Scale (LFIS) impairment subscale (p = 0.03). No significant differences were observed in other patient reported outcomes including patient global assessment, LFIS activity subscale, and Lower Limb Task Questionnaire subscales (all p > 0.10). We observed significant improvements between baseline measurements using the participants’ own shoes and the Cardio Zip for foot pain (p = 0.002), general pain (p = 0.001), HAQ-II (p = 0.002) and LFIS impairment subscale (p = 0.004) after 8 weeks. The other three shoes did not improve pain or disability. Conclusions Footwear with good cushioning, and motion control may reduce foot pain and disability in people with gout. PMID:24063678
Branthwaite, Helen; Chockalingam, Nachiappan; Pandyan, Anand; Khatri, Gaurav
2013-08-01
Unstable shoes, which have recently become popular, claim to provide additional physiological and biomechanical advantages to people who wear them. Alterations in postural stability have been shown when using the shoe after training. However, the immediate effect on muscle activity when walking in unstable shoes for the first time has not been investigated. To evaluate muscle activity and temporal parameters of gait when wearing Masai Barefoot Technology shoes(®) for the first time compared to the subject's own regular trainer shoes. A pilot repeated-measures quasi control trial. Electromyographic measurements of lower leg muscles (soleus, medial gastrocnemius, lateral gastrocnemius, tibialis anterior, peroneus longus, rectus femoris, biceps femoris and gluteus medius) were measured in 15 healthy participants using Masai Barefoot Technology shoes and trainer shoes over a 10-m walkway. Muscle activity of the third and sixth steps was used to study the difference in behaviour of the muscles under the two shoe conditions. Temporal parameters were captured with footswitches to highlight heel strike, heel lift and toe off. Paired samples t-test was completed to compare mean muscle activity for Masai Barefoot Technology and trainer shoes. Indicated that the use of Masai Barefoot Technology shoes increased the intensity of the magnitude of muscle activity. While this increase in the activity was not significant across the subjects, there were inter-individual differences in muscle activity. This variance between the participants demonstrates that some subjects do alter muscle behaviour while wearing such shoes. A more rigorous and specific assessment is required when advising patients to purchase the Masai Barefoot Technology shoe. Not all subjects respond positively to using unstable shoes, and the point in time when muscle behaviour can change is variable. Use of Masai Barefoot Technology shoe in patient management should be monitored closely as the individual muscle changes and the point in time when changes occur vary between subjects, and evaluation of how a subject responds is not yet clear.
Pressure redistribution by molded inserts in diabetic footwear: a pilot study.
Lord, M; Hosein, R
1994-08-01
A small-scale trial is described to demonstrate and evaluate the redistribution of plantar pressure resulting from the use of custom-molded inserts in the orthopedic shoes of diabetic patients at risk of plantar ulceration. A pressure-measuring insole based on force-sensitive resistor technology enabled the load distribution to be compared using molded inserts and flat inserts fitted into the same shoes. An analysis of the 12 peaks of pressure that could be identified under a discrete metatarsal head of six subjects in the trial showed that the pressure was significantly reduced with the use of molded inserts (flat inserts: 305 +/- 79 kPa; molded inserts: 216 +/- 70 kPa; n = 6 p < 0.005). Technical limitations of the equipment and the difficult choice of match of flat insert to molded for comparison suggest that further studies are required for a definitive result.
Jagos, Harald; Pils, Katharina; Haller, Michael; Wassermann, Claudia; Chhatwal, Christa; Rafolt, Dietmar; Rattay, Frank
2017-07-01
Clinical gait analysis contributes massively to rehabilitation support and improvement of in-patient care. The research project eSHOE aspires to be a useful addition to the rich variety of gait analysis systems. It was designed to fill the gap of affordable, reasonably accurate and highly mobile measurement devices. With the overall goal of enabling individual home-based monitoring and training for people suffering from chronic diseases, affecting the locomotor system. Motion and pressure sensors gather movement data directly on the (users) feet, store them locally and/or transmit them wirelessly to a PC. A combination of pattern recognition and feature extraction algorithms translates the motion data into standard gait parameters. Accuracy of eSHOE were evaluated against the reference system GAITRite in a clinical pilot study. Eleven hip fracture patients (78.4 ± 7.7 years) and twelve healthy subjects (40.8 ± 9.1 years) were included in these trials. All subjects performed three measurements at a comfortable walking speed over 8 m, including the 6-m long GAITRite mat. Six standard gait parameters were extracted from a total of 347 gait cycles. Agreement was analysed via scatterplots, histograms and Bland-Altman plots. In the patient group, the average differences between eSHOE and GAITRite range from -0.046 to 0.045 s and in the healthy group from -0.029 to 0.029 s. Therefore, it can be concluded that eSHOE delivers adequately accurate results. Especially with the prospect as an at home supplement or follow-up to clinical gait analysis and compared to other state of the art wearable motion analysis systems.
Cross-Domain Shoe Retrieval with a Semantic Hierarchy of Attribute Classification Network.
Zhan, Huijing; Shi, Boxin; Kot, Alex C
2017-08-04
Cross-domain shoe image retrieval is a challenging problem, because the query photo from the street domain (daily life scenario) and the reference photo in the online domain (online shop images) have significant visual differences due to the viewpoint and scale variation, self-occlusion, and cluttered background. This paper proposes the Semantic Hierarchy Of attributE Convolutional Neural Network (SHOE-CNN) with a three-level feature representation for discriminative shoe feature expression and efficient retrieval. The SHOE-CNN with its newly designed loss function systematically merges semantic attributes of closer visual appearances to prevent shoe images with the obvious visual differences being confused with each other; the features extracted from image, region, and part levels effectively match the shoe images across different domains. We collect a large-scale shoe dataset composed of 14341 street domain and 12652 corresponding online domain images with fine-grained attributes to train our network and evaluate our system. The top-20 retrieval accuracy improves significantly over the solution with the pre-trained CNN features.
14. UPPER SHOES, FIXED SHOES, ROLLER SHOES, CENTER WEB, AND ...
14. UPPER SHOES, FIXED SHOES, ROLLER SHOES, CENTER WEB, AND ROLLER BED PLATES. (Also includes a sheet index and a schedule of parts). American Bridge Company, Ambridge Plant No. 5, sheet no. 4, dated April 7, 1928, order no. F5073. For U.S. Steel Products Company, Pacific Coast Depot, order no. SF578. For Southern Pacific Company, order no. 8873-P-28746. various scales. - Napa River Railroad Bridge, Spanning Napa River, east of Soscol Avenue, Napa, Napa County, CA
Vieira, Edgar R; Brunt, Denis
2016-02-01
To evaluate if wearing unstable shoes reduces low back pain and disability in nurses. A randomized controlled trial. Hospitals and homecare. A total of 20 matched female registered nurses with low back pain. The mean (standard deviation) age was 31 years (5) for the control and 34 years (6) for the intervention group; height was 161 cm (5) and 165 cm (7), respectively. The intervention group received unstable shoes at Week 2 to wear for at least 36 h/week for a month. The Oswestry Low Back Pain Disability Questionnaire and a visual analogue pain scale. The mean (standard deviation) pain level was 6 (1) at baseline vs. 6 (2) at Week 6 for the control group, and 5 (1) vs. 1 (1) for the intervention group. The mean (standard deviation) disability level was 31% (9) at baseline vs. 28% (7) at Week 6 for the control, and 27% (12) vs. 13% (5) for the intervention group. There were no significant changes over time on pain or disability levels for the control group. The intervention group reported lower levels of pain on Weeks 4 (mean difference ⩾-1.4, p ⩽ 0.009) and 6 (mean difference ⩾-3.1, p < 0.001). Disability levels were also lower on Weeks 4 (mean difference = -4.5%, p NS) and 6 (mean difference = -14.1%, p = 0.020). Wearing unstable shoes reduced low back pain and disability in nurses and might be helpful as part of the back pain rehabilitation process. © The Author(s) 2015.
Fong, Daniel Tik-Pui; Pang, Kai-Yip; Chung, Mandy Man-Ling; Hung, Aaron See-Long; Chan, Kai-Ming
2012-12-01
It is a routine practice to prescribe a combination of rocker shoes and custom-made foot orthoses for patients with plantar fasciitis. Recently, there has been a debate on this practice, and studies have shown that the individual prescription of rocker shoes or custom-made foot orthoses is effective in treating plantar fasciitis. The aim of this study was to evaluate and compare the immediate therapeutic effects of individually prescribed rocker sole shoes and custom-made foot orthoses, and a combined prescription of them on plantar fasciitis. This was a cross-over study. Fifteen patients with unilateral plantar fasciitis were recruited; they were from both genders and aged between 40 and 65. Subjects performed walking trials which consisted of one 'unshod' condition and four 'shod' conditions while wearing baseline shoes, rocker shoes, baseline shoes with foot orthotics, and rocker shoes with foot orthotics. The study outcome measures were the immediate heel pain intensity levels as reflected by visual analog scale pain ratings and the corresponding dynamic plantar pressure redistribution patterns as evaluated by a pressure insole system. The results showed that a combination of rocker shoes and foot orthoses produced a significantly lower visual analog scale pain score (9.7 mm) than rocker shoes (30.9 mm) and foot orthoses (29.5 mm). With regard to baseline shoes, it also significantly reduced the greatest amount of medial heel peak pressure (-33.58%) without overloading other plantar regions when compared to rocker shoes (-7.99%) and foot orthoses (-28.82%). The findings indicate that a combined prescription of rocker sole shoes and custom-made foot orthoses had greater immediate therapeutic effects compared to when each treatment had been individually prescribed. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- STS-114 Pilot James Kelly (left) and Mission Specialist Andrew Thomas (center), along with NASA Systems Engineer Robert Rokobauer (right), look closely at the shoes of one of the tracks used on a Crawler-Transporter. The 10- foot-high track on a crawler contains 278 shoes, weighing 2,200 pounds each. The crawlers are guided by four trucks, one on each corner. The crawlers had recent modifications to the cab and muffler system. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
2004-05-05
KENNEDY SPACE CENTER, FLA. -- STS-114 Pilot James Kelly (left) and Mission Specialist Andrew Thomas (center), along with NASA Systems Engineer Robert Rokobauer (right), look closely at the shoes of one of the tracks used on a Crawler-Transporter. The 10-foot-high track on a crawler contains 278 “shoes,” weighing 2,200 pounds each. The crawlers are guided by four trucks, one on each corner. The crawlers had recent modifications to the cab and muffler system. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
2004-05-05
KENNEDY SPACE CENTER, FLA. -- STS-114 Mission Specialist Andrew Thomas (center) and Pilot James Kelly (right), along with NASA Systems Engineer Robert Rokobauer (left), look closely at the shoes of one of the tracks used on a Crawler-Transporter. The 10-foot-high track on a crawler contains 278 “shoes,” weighing 2,200 pounds each. The crawlers are guided by four trucks, one on each corner. The crawlers had recent modifications to the cab and muffler system. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
A consensus definition and rating scale for minimalist shoes.
Esculier, Jean-Francois; Dubois, Blaise; Dionne, Clermont E; Leblond, Jean; Roy, Jean-Sébastien
2015-01-01
While minimalist running shoes may have an influence on running biomechanics and on the incidence of overuse injuries, the term "minimalist" is currently used without standardisation. The objectives of this study were to reach a consensus on a standard definition of minimalist running shoes, and to develop and validate a rating scale that could be used to determine the degree of minimalism of running shoes, the Minimalist Index (MI). For this modified Delphi study, 42 experts from 11 countries completed four electronic questionnaires on an optimal definition of minimalist shoes and on elements to include within the MI. Once MI was developed following consensus, 85 participants subjectively ranked randomly assigned footwear models from the most to the least minimalist and rated their degree of minimalism using visual analog scales (VAS), before evaluating the same footwear models using MI. A subsample of thirty participants reassessed the same shoes on another occasion. Construct validity and inter- and intra-rater reliability (intraclass correlation coefficients [ICC]; Gwet's AC1) of MI were evaluated. The following definition of minimalist shoes was agreed upon by 95 % of participants: "Footwear providing minimal interference with the natural movement of the foot due to its high flexibility, low heel to toe drop, weight and stack height, and the absence of motion control and stability devices". Characteristics to be included in MI were weight, flexibility, heel to toe drop, stack height and motion control/stability devices, each subscale carrying equal weighing (20 %) on final score. Total MI score was highly correlated with VAS (r = 0.91). A significant rank effect (p < 0.001) confirmed the MI's discriminative validity. Excellent intra- and inter-rater reliability was found for total MI score (ICC = 0.84-0.99) and for weight, stack height, heel to toe drop and flexibility subscales (AC1 = 0.82-0.99), while good inter-rater reliability was found for technologies (AC1 = 0.73). This standardised definition of minimalist shoes developed by an international panel of experts will improve future research on minimalist shoes and clinical recommendations. MI's adequate validity and reliability will allow distinguishing running shoes based on their degree of minimalism, and may help to decrease injuries related to footwear transition.
Influence of contouring and hardness of foot orthoses on ratings of perceived comfort.
Mills, Kathryn; Blanch, Peter; Vicenzino, Bill
2011-08-01
Comfort is a vital component of orthosis therapy. The purpose of this study was to examine what features of orthoses (design or hardness) influence the perception of comfort by using previously established footwear comfort measures: 100-mm visual analog scale (VAS) and ranking scale. Twenty subjects were consecutively allocated to two experiments consisting of five sessions of repeated measures. Comfort measures were taken from four prefabricated orthosis in each session using the VAS (experiment 1) and ranking scale (experiment 2). Subjects in experiment 1 were also asked to rate each orthosis relative to their shoe using a criterion scale. Measures were taken in both walking and jogging. A soft-flat orthosis was found to be significantly more comfortable than all contoured orthoses, including one of the same hardness using both the VAS and ranking scale. Using the VAS, differences between the soft-flat and contoured orthoses were also found to be clinically meaningful for dimensions of overall comfort and arch cushioning (>10.2 mm). Perceived comfort of orthoses significantly differed between walking and jogging on the VAS but was not clinically meaningful. Comparisons between the VAS and criterion scale detected a VAS difference of 11.34 mm between orthoses judged as comfortable as my shoe and slightly more comfortable than my shoe. There was a VAS difference of 17.49 mm between orthoses judged as comfortable as my shoe and slightly less comfortable than my shoe. Healthy subjects prioritize contouring over hardness when judging the comfort of orthoses. Clinically meaningful changes were required to change or enhance the comfort of orthoses standardized in material type and fabrication.
Effects of shoe sole hardness on plantar pressure and comfort in older people with forefoot pain.
Lane, Tamara J; Landorf, Karl B; Bonanno, Daniel R; Raspovic, Anita; Menz, Hylton B
2014-01-01
Plantar forefoot pain is common in older people and is related to increased peak pressures under the foot during gait. Variations in the hardness of the shoe sole may therefore influence both the magnitude of loading under the foot and the perceived comfort of the shoe in this population. The aim of this investigation was to determine the effect of varying shoe sole hardness on plantar pressures and comfort in older people with forefoot pain. In-shoe plantar pressures under the forefoot, midfoot and rearfoot were recorded from 35 older people (mean age 73.2, SD 4.5 years) with current or previous forefoot pain using the pedar-X(®) system. Participants walked at their normal comfortable speed along an 8m walkway in shoes with three different levels of sole hardness: soft (Shore A25), medium (Shore A40) and hard (Shore A58). Shoe comfort was measured on a 100mm visual analogue scale. There were statistically significant differences in peak pressure of between 5% and 23% across the forefoot, midfoot and rearfoot (p<0.01). The hard-soled shoe registered the highest peak pressures and the soft-soled shoe the lowest peak pressures. However, no differences in comfort scores across the three shoe conditions were observed. These findings demonstrate that as shoe sole hardness increases, plantar pressure increases, however this does not appear to have a significant effect on shoe comfort. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Fuller, Joel T; Thewlis, Dominic; Buckley, Jonathan D; Brown, Nicholas A T; Hamill, Joseph; Tsiros, Margarita D
2017-04-01
Minimalist shoes have been popularized as a safe alternative to conventional running shoes. However, a paucity of research is available investigating the longer-term safety of minimalist shoes. To compare running-related pain and injury between minimalist and conventional shoes in trained runners and to investigate interactions between shoe type, body mass, and weekly training distance. Randomized clinical trial; Level of evidence, 2. Sixty-one trained, habitual rearfoot footfall runners (mean ± SD: body mass, 74.6 ± 9.3 kg; weekly training distance, 25 ± 14 km) were randomly allocated to either minimalist or conventional shoes. Runners gradually increased the time spent running in their allocated shoes over 26 weeks. Running-related pain intensity was measured weekly by use of 100-mm visual analog scales. Time to first running-related injury was also assessed. Interactions were found between shoe type and weekly training distance for weekly running-related pain; greater pain was experienced with minimalist shoes ( P < .05), and clinically meaningful increases (>10 mm) were noted when the weekly training distance was more than 35 km/wk. Eleven of 30 runners sustained an injury in conventional shoes compared with 16 of 31 runners in minimalist shoes (hazard ratio, 1.64; 95% confidence interval, 0.63-4.27; P = .31). A shoe × body mass interaction was found for time to first running-related injury ( P = .01). For runners using minimalist shoes, relative to runners using conventional shoes, the risk of sustaining an injury became more likely with increasing body mass above 71.4 kg, and the risk was moderately increased (hazard ratio, 2.00; 95% confidence interval, 1.10-3.66; P = .02) for runners using minimalist shoes who had a body mass of 85.7 kg. Runners should limit weekly training distance in minimalist shoes to avoid running-related pain. Heavier runners are at greater risk of injury when running in minimalist shoes. Registration: Australian New Zealand Clinical Trials Registry (ACTRN12613000642785).
Medical-grade footwear: the impact of fit and comfort.
Hurst, Bessie; Branthwaite, Helen; Greenhalgh, Andrew; Chockalingam, Nachiappan
2017-01-01
Pressure-related skin lesions on the digits are a significant cause of discomfort. Most foot pain related to ill-fitting shoes occurs in the forefoot and digital areas. Pain has been associated with poor shoe fit, reduced toe box volume, as well as contour and shape of the shoe Off-the-shelf medical-grade footwear is designed as an intervention for chronic lesions on the digits. These shoes are designed with a flexible neoprene fabric upper that is thought to reduce pressure on the forefoot and reduce discomfort associated with ill-fitting shoes. The aim of this study was to investigate the effect of an off-the-shelf, medical-grade shoe on dorsal digital pressure and perceived comfort when compared to participant's own preferred shoe. Thirty participants (18 females, 12 males) scored their perceived comfort whilst wearing each footwear style using a visual analog comfort scale. Dorsal digital and interdigital pressures were measured in using the WalkinSense® in-shoe pressure system. Sensors were placed on predetermined anatomical landmarks on the digits. Participants were randomly assigned the test shoe and their own shoe. Once wearing the shoe, the participants walked across a 6 m walkway and pressure data from each sensor was collected and processed to obtain peak pressure, time to peak pressure and contact time. Participants scored the test shoe with higher comfort points than their own footwear. Overall peak pressure, pressure time integral and contact time decreased, whilst the time taken to reach peak pressure increased across all anatomical landmarks whilst wearing the test shoe. Statistically significant changes were observed for all of the measured variables relating to pressure on the medial border of the first metatarsophalangeal joint. The test shoe provided greater comfort and reduced the amount of pressure on the forefoot. The medical-grade footwear therefore, is a viable alternative to custom made prescription footwear and is more suitable than a regular everyday shoe when treating digital lesions associated with pressure.
Cho, Byung-Yun; Yoon, Jung-Gyu
2015-08-01
[Purpose] The purpose of the current research was to identify how gait training with shoe inserts affects the pain and gait of sacroiliac joint dysfunction patients. [Subjects and Methods] Thirty subjects were randomly selected and assigned to be either the experimental group (gait training with shoe insert group) or control group. Each group consisted of 15 patients. Pain was measured by Visual Analogue Scale, and foot pressure in a standing position and during gait was measured with a Gateview AFA-50 system (Alpus, Seoul, Republic of Korea). A paired sample t-test was used to compare the pain and gait of the sacroiliac joint before and after the intervention. Correlation between pain and walking after gait training with shoe inserts was examined by Pearson test. The level of significance was set at α=0.05. [Results] It was found that application of the intervention to the experimental group resulted in a significant decrease in sacroiliac joint pain. It was also found that there was a significant correlation between Visual Analogue Scale score and dynamic asymmetric index (r= 0.796) and that there was a negative correlation between Visual Analogue Scale score and forefoot/rear foot peak pressure ratio (r=-0.728). [Conclusion] The results of our analysis lead us to conclude that the intervention with shoe inserts had a significant influence on the pain and gait of sacroiliac joint patients.
Cho, Byung-Yun; Yoon, Jung-Gyu
2015-01-01
[Purpose] The purpose of the current research was to identify how gait training with shoe inserts affects the pain and gait of sacroiliac joint dysfunction patients. [Subjects and Methods] Thirty subjects were randomly selected and assigned to be either the experimental group (gait training with shoe insert group) or control group. Each group consisted of 15 patients. Pain was measured by Visual Analogue Scale, and foot pressure in a standing position and during gait was measured with a Gateview AFA-50 system (Alpus, Seoul, Republic of Korea). A paired sample t-test was used to compare the pain and gait of the sacroiliac joint before and after the intervention. Correlation between pain and walking after gait training with shoe inserts was examined by Pearson test. The level of significance was set at α=0.05. [Results] It was found that application of the intervention to the experimental group resulted in a significant decrease in sacroiliac joint pain. It was also found that there was a significant correlation between Visual Analogue Scale score and dynamic asymmetric index (r= 0.796) and that there was a negative correlation between Visual Analogue Scale score and forefoot/rear foot peak pressure ratio (r=-0.728). [Conclusion] The results of our analysis lead us to conclude that the intervention with shoe inserts had a significant influence on the pain and gait of sacroiliac joint patients. PMID:26357428
Leather waste--potential threat to human health, and a new technology of its treatment.
Kolomaznik, K; Adamek, M; Andel, I; Uhlirova, M
2008-12-30
In this paper, the authors deal with the problem of processing various types of waste generated by leather industry, with special emphasis to chrome-tanned waste. The agent that makes this waste potentially hazardous is hexavalent chromium. Its compounds can have negative effects on human health and some CrVI salts are considered carcinogens. The authors present the risks of spontaneous oxidization of CrIII to CrVI in the open-air dumps as well as the possible risks of wearing bad quality shoes, in which the chromium content is not controlled. There are several ways of handling primary leather waste, but no satisfactory technology has been developed for the secondary waste (manipulation waste, e.g. leather scraps and used leather products). In this contribution, a new three-step hybrid technology of processing manipulation waste is presented and tested under laboratory, pilot-scale and industrial conditions. The filtrate can be used as a good quality NPK fertilizer. The solid product, titanium-chromium sludge, can serve as an inorganic pigment in glass and ceramic industry. Further, the authors propose selective collection of used leather products (e.g. old shoes), the hydrolysable parts of which can be also processed by the new hybrid technology.
Branthwaite, Helen; Chockalingam, Nachiappan; Greenhalgh, Andrew; Chatzistergos, Panagiotis
2014-09-01
Uncomfortable shoes have been attributed to poor fit and the cause of foot pathologies. Assessing and evaluating comfort and fit have proven challenging due to the subjective nature. The aim of this paper is to investigate the relationship between footwear characteristics and perceived comfort. Twenty-seven females assessed three different styles of ballet pump shoe for comfort using a comfort scale whilst walking along a 20 m walkway. The physical characteristics of the shoes and the progression of centre of pressure during walking were assessed. There were significant physical differences between each style, square shoe being the shortest, widest and stiffest and round shoe having the least volume at the toe box. Centre of pressure progression angle was centralised to the longitudinal axis of the foot when wearing each of the three shoes compared to barefoot. Length, width and cantilever bending stiffness had no impact on perceived comfort. Wearing snug fitting flexible soled round ballet flat pump is perceived to be the most comfortable of the shoe shapes tested producing a faster more efficient gait. Further investigations are required to assess impact/fit and upper material on perceived comfort to aid consumers with painful feet in purchasing shoes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Munteanu, Shannon E; Landorf, Karl B; McClelland, Jodie A; Roddy, Edward; Cicuttini, Flavia M; Shiell, Alan; Auhl, Maria; Allan, Jamie J; Buldt, Andrew K; Menz, Hylton B
2017-04-27
This article describes the design of a parallel-group, participant- and assessor-blinded randomised controlled trial comparing the effectiveness of shoe-stiffening inserts versus sham shoe insert(s) for reducing pain associated with first metatarsophalangeal joint (MTPJ) osteoarthritis (OA). Ninety participants with first MTPJ OA will be randomised to receive full-length shoe-stiffening insert(s) (Carbon Fibre Spring Plate, Paris Orthotics, Vancouver, BC, Canada) plus rehabilitation therapy or sham shoe insert(s) plus rehabilitation therapy. Outcome measures will be obtained at baseline, 4, 12, 24 and 52 weeks; the primary endpoint for assessing effectiveness being 12 weeks. The primary outcome measure will be the foot pain domain of the Foot Health Status Questionnaire (FHSQ). Secondary outcome measures will include the function domain of the FHSQ, severity of first MTPJ pain (using a 100-mm Visual Analogue Scale), global change in symptoms (using a 15-point Likert scale), health status (using the Short-Form-12® Version 2.0 and EuroQol (EQ-5D-5L™) questionnaires), use of rescue medication and co-interventions, self-reported adverse events and physical activity levels (using the Incidental and Planned Activity Questionnaire). Data will be analysed using the intention-to-treat principle. Economic analysis (cost-effectiveness and cost-utility) will also be performed. In addition, the kinematic effects of the interventions will be examined at 1 week using a three-dimensional motion analysis system and multisegment foot model. This study will determine whether shoe-stiffening inserts are a cost-effective intervention for relieving pain associated with first MTPJ OA. The biomechanical analysis will provide useful insights into the mechanism of action of the shoe-stiffening inserts. Australian New Zealand Clinical Trials Registry, identifier: ACTRN12616000552482 . Registered on 28 April 2016.
Armand, Stéphane; Tavcar, Ziva; Turcot, Katia; Allet, Lara; Hoffmeyer, Pierre; Genevay, Stéphane
2014-12-01
The aim of this study was to evaluate the effectiveness of unstable shoes in reducing low back pain in health professionals. Of a volunteer sample of 144 participants, 40 with nonspecific chronic low back pain were eligible and enrolled in this study. Participants were randomized to an intervention group, who wore unstable shoes (model MBT Fora), or a control group, who wore conventional sports shoes (model Adidas Bigroar). The participants had to wear the study shoes during their work hours, and at least 6 hours per workday, over a period of 6 weeks. The primary outcome was low back pain assessed on a Visual Analog Scale. The secondary outcomes were patient satisfaction, disability evaluated using Roland-Morris questionnaire and quality of life evaluated using EQ-VAS. The intervention group showed a significant decrease in pain scores compared to the control group. The rate of satisfaction was higher in the intervention group (79%) compared to the control group (25%). There was no significant difference for the Roland-Morris disability questionnaire score and the EQ-VAS scale. The results of this clinical trial suggest that wearing unstable shoes for 6 weeks significantly decreases low back pain in patients suffering from chronic low back pain but had no significant effect on quality of life and disability scores. Copyright © 2014 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.
Unloading shoes for osteoarthritis of the knee: protocol for the SHARK randomised controlled trial
2014-01-01
Background Knee osteoarthritis (OA) is a common and disabling condition. Abnormalities in knee loading play an important role in disease pathogenesis, yet there are few non-surgical treatments for knee OA capable of reducing knee load. This two-arm randomised controlled trial is investigating the efficacy of specially-designed unloading shoes for the treatment of symptoms in people with knee OA. Methods/Design 164 people with symptomatic medial tibiofemoral joint OA will be recruited from the community and randomly allocated to receive either unloading shoes or control shoes. Unloading shoes have a specially-designed triple-density midsole where the medial side is softer than normal and the lateral side harder as well as a lateral wedge between the sole and sock-liner. Control shoes are standard athletic shoes and do not contain these features. Participants will be blinded to shoe allocation and will be instructed to wear the shoes as much as possible every day for 6 months, for a minimum of 4 hours per day. The primary outcomes are knee pain (numerical rating scale) and self-reported physical function (Western Ontario and McMaster Universities Osteoarthritis Index) measured at baseline and 6 months. Secondary outcomes include additional measures of knee pain, knee stiffness, participant global ratings of change in symptoms, quality-of-life and physical activity. Conclusions The findings from this study will help determine whether specially-designed unloading shoes are efficacious in the management of knee OA. Trial registration Australian New Zealand Clinical Trials Registry reference: ACTRN12613000851763. PMID:24555418
Gait retraining versus foot orthoses for patellofemoral pain: a pilot randomised clinical trial.
Bonacci, Jason; Hall, Michelle; Saunders, Natalie; Vicenzino, Bill
2018-05-01
To determine the feasibility of a clinical trial that compares a 6-week, physiotherapist-guided gait retraining program with a foot orthoses intervention in runners with patellofemoral pain. Pilot randomised controlled trial. Runners aged 18-40 years with clinically diagnosed patellofemoral pain were randomly allocated to either a 6-week gait retraining intervention of increasing cadence and use of a minimalist shoe or prefabricated foot orthoses. Outcomes at baseline and 12-weeks included recruitment, retention, adherence, adverse events, global improvement, anterior knee pain scale, worst and average pain on a 100mm visual analogue scale. Of the 16 randomised participants, two withdrew prior to commencing treatment due to non-trial related matters (n=1 from each group) and 14 completed the pilot trial. Minor calf muscle soreness was reported by 3 participants in the gait retraining group while no adverse events were reported in the foot orthoses group. There were no deviations from the treatment protocols. There was a large between-group difference favouring gait retraining at 12-weeks in the anterior knee pain scale and the worst pain in the past week, which was reflected in the number needed-to-treat of 2. This study supports the feasibility of a trial comparing gait retraining with foot orthoses and provides point estimates of effect that informs the design and planning of a larger clinical trial. It appears that a 6-week gait retraining program has a clinically meaningful effect on runners with patellofemoral pain when compared to an evidence-based treatment of foot orthoses. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Evaluation of the accuracy of shoe fitting in older people using three-dimensional foot scanning.
Menz, Hylton B; Auhl, Maria; Ristevski, Sonja; Frescos, Nicoletta; Munteanu, Shannon E
2014-01-23
Ill-fitting footwear is a common problem in older people. The objective of this study was to determine the accuracy of shoe fitting in older people by comparing the dimensions of allocated shoes to foot dimensions obtained with a three-dimensional (3D) scanner. The shoe sizes of 56 older people were determined with the Brannock device®, and weightbearing foot scans were obtained with the FotoScan 3D scanner (Precision 3D Ltd, Weston-super-mare, UK). Participants were provided with a pair of shoes (Dr Comfort®, Vista, CA, USA), available in three width fittings (medium, wide and extra wide). The dimensions (length, ball width and ball girth) of the allocated shoes were documented according to the last measurements provided by the manufacturer. Mean differences between last dimensions and foot dimensions obtained with the 3D scanner were calculated to provide an indication of shoe fitting accuracy. Participants were also asked to report their perception of shoe fit and comfort, using 100 mm visual analogue scales (VAS). Shoe size ranged from US size 7 to 14 for men and 5.5 to 11 for women. The allocated shoes were significantly longer than the foot (mean 23.6 mm, 95% confidence interval [CI] 22.1 to 25.2; t55 = 30.3, p < 0.001), however there were no significant differences in relation to ball width (mean 1.4 mm, 95% CI -0.1 to 2.9 mm; t55 = 1.9, p = 0.066) or ball girth (mean -0.7 mm, 95% CI -6.1 to 4.8 mm; t55 = -0.2, p = 0.810). Participants reported favourable perceptions of shoe fit (mean VAS = 90.7 mm, 95% CI 88.4 to 93.1 mm) and comfort (mean VAS = 88.4 mm, 95% CI 85.0 to 91.8 mm). Shoe size selection using the Brannock device® resulted in the allocation of shoes with last dimensions that were well matched to the dimensions of the foot. Participants also considered the shoes to be well fitted and comfortable. Older people with disabling foot pain can therefore be dispensed with appropriately-fitted shoes using this technique, provided that the style and materials used are suitable and extra width fittings are available.
Nin, Darren Z; Lam, Wing K; Kong, Pui W
2016-01-01
This study investigated the effects of body mass and shoe midsole hardness on kinetic and perceptual variables during the performance of three basketball movements: (1) the first and landing steps of layup, (2) shot-blocking landing and (3) drop landing. Thirty male basketball players, assigned into "heavy" (n = 15, mass 82.7 ± 4.3 kg) or "light" (n = 15, mass 63.1 ± 2.8 kg) groups, performed five trials of each movement in three identical shoes of varying midsole hardness (soft, medium, hard). Vertical ground reaction force (VGRF) during landing was sampled using multiple wooden-top force plates. Perceptual responses on five variables (forefoot cushioning, rearfoot cushioning, forefoot stability, rearfoot stability and overall comfort) were rated after each movement condition using a 150-mm Visual Analogue Scale (VAS). A mixed factorial analysis of variance (ANOVA) (Body Mass × Shoe) was applied to all kinetic and perceptual variables. During the first step of the layup, the loading rate associated with rearfoot contact was 40.7% higher in the "heavy" than "light" groups (P = .014) and 12.4% higher in hard compared with soft shoes (P = .011). Forefoot peak VGRF in a soft shoe was higher (P = .011) than in a hard shoe during shot-block landing. Both "heavy" and "light" groups preferred softer to harder shoes. Overall, body mass had little effect on kinetic or perceptual variables.
ERIC Educational Resources Information Center
Tatlow-Golden, Mimi
2015-01-01
In psychology, it is widely agreed that research methods, although central to the discipline, are particularly challenging to learn and teach, particularly at introductory level. This pilot study explored the potential of embedding a student-conducted research activity in a one-semester undergraduate "Introduction to Psychology" survey…
Shoe Orthotics for the Treatment of Chronic Low Back Pain: A Randomized Controlled Trial.
Cambron, Jerrilyn A; Dexheimer, Jennifer M; Duarte, Manuel; Freels, Sally
2017-09-01
To investigate the efficacy of shoe orthotics with and without chiropractic treatment for chronic low back pain compared with no treatment. Randomized controlled trial. Integrative medicine teaching clinic at a university. Adult subjects (N=225) with symptomatic low back pain of ≥3 months were recruited from a volunteer sample. Subjects were randomized into 1 of 3 treatment groups (shoe orthotic, plus, and waitlist groups). The shoe orthotic group received custom-made shoe orthotics. The plus group received custom-made orthotics plus chiropractic manipulation, hot or cold packs, and manual soft tissue massage. The waitlist group received no care. The primary outcome measures were change in perceived back pain (numerical pain rating scale) and functional health status (Oswestry Disability Index) after 6 weeks of study participation. Outcomes were also assessed after 12 weeks and then after an additional 3, 6, and 12 months. After 6 weeks, all 3 groups demonstrated significant within-group improvement in average back pain, but only the shoe orthotic and plus groups had significant within-group improvement in function. When compared with the waitlist group, the shoe orthotic group demonstrated significantly greater improvements in pain (P<.0001) and function (P=.0068). The addition of chiropractic to orthotics treatment demonstrated significantly greater improvements in function (P=.0278) when compared with orthotics alone, but no significant difference in pain (P=.3431). Group differences at 12 weeks and later were not significant. Six weeks of prescription shoe orthotics significantly improved back pain and dysfunction compared with no treatment. The addition of chiropractic care led to higher improvements in function. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Motor learning and the use of videotape feedback after stroke.
Gilmore, Paula E; Spaulding, Sandi J
2007-01-01
Efforts have been made to apply motor learning theories to the rehabilitation of individuals following stroke. Motor learning poststroke has not been well investigated in the literature. This research attempted to fill the gap regarding motor learning applied to practice. This two-group research study attempted to determine the effectiveness of an experimental therapy combining videotape feedback with occupational therapy compared to only occupational therapy in learning the motor skill of donning socks and shoes after stroke. Ten participants were randomly assigned to one of the two groups and all participants were videotaped during pretest and up to 10 treatment sessions aimed at donning socks and shoes. Only one group viewed their videotape replay. The acquisition of donning socks and shoes was measured using the socks and shoes subtests of the Klein-Bell Activities of Daily Living Scale and their scores on the Canadian Occupational Performance Measure. There was no significant difference between the two groups and both groups improved. However, the group that received videotape feedback thought they performed better and were more satisfied with their ability to don shoes, lending support for the use of videotape feedback poststroke to improve satisfaction with performance.
Relationship between footwear comfort of shoe inserts and anthropometric and sensory factors.
Mündermann, A; Stefanyshyn, D J; Nigg, B M
2001-11-01
The purposes of this study were (a) to determine lower extremity anthropometric and sensory factors that are related to differences in comfort perception of shoe inserts with varying shape and material and (b) to investigate whether shoe inserts that improve comfort decrease injury frequency in a military population. 206 military personnel volunteered for this study. The shoe inserts varied in arch and heel cup shape, hardness, and elasticity in the heel and forefoot regions. A no insert condition was included as the control condition. Measured subject characteristics included foot shape, foot and leg alignment, and tactile and vibration sensitivity of the plantar surface of the foot. Footwear comfort was assessed using a visual analog scale. Injury frequency was evaluated with a questionnaire. The statistical analyses included Student's t-tests for repeated measures, ANOVA (within subjects), MANOVA (within insert combinations), and chi-square tests. The average comfort ratings for all shoe inserts were significantly higher than the average comfort rating for the control condition. The incidence of stress fractures and pain at different locations was reduced by 1.5-13.4% for the insert compared with the control group. Foot arch height, foot and leg alignment, and foot sensitivity were significantly related to differences in comfort ratings for the hard/soft, the viscous/elastic, and the high arch/low arch insert combinations. Shoe inserts of different shape and material that are comfortable are able to decrease injury frequency. The results of this study showed that subject specific characteristics influence comfort perception of shoe inserts.
Hong, Wei-Hsien; Lee, Yung-Hui; Lin, Yen-Hui; Tang, Simon F T; Chen, Hsieh-Ching
2013-02-01
Women wearing high-heeled shoes often complain of foot instability and low-back pain. Previous studies have demonstrated that using total-contact inserts (TCIs) in running shoes reduces impact on leg muscles and alters rearfoot motion. This study investigated how shoe heel height and use of TCIs in high-heeled shoes affect the wearer's rearfoot complex, muscle loading, and subjective comfort. Fifteen inexperienced high heel wearers walked under 6 test conditions formed by the cross-matching of shoe insert (with and without TCI) and heel height (1.0, 5.1, and 7.6 cm) at a speed of 1.3 m/s. The measures of interest were rearfoot kinematics; muscle activities by electromyography (EMG) of the tibialis anterior (TA), medial gastrocnemius (MG), quadriceps (QUA), hamstrings (HAM), and erector spinae (ES); and subjective comfort rating by visual analogue scale for each test condition. The statistical results showed that elevated heel height significantly increased plantar flexion (P < .001) and inversion (P < .01) at heel strike, prolonged TA-MG co-contraction (P < .001) and QUA activation period (P < .001), and increased root mean square (RMS) EMG in all measured muscles (TA, MG, QUA, ES: P < .001; HAM: P < .01). The use of TCIs reduced the rearfoot inversion angle (P < .01) and RMS EMG in both QUA and ES muscles (P < .01) and increased comfort rating (P < .001). These findings suggest that wearing high-heeled shoes adversely affects muscle control and reduces loads in QUA and ES muscles. The use of a TCI may improve comfort rating and foot stability.
One size fits all electronics for insole-based activity monitoring.
Hegde, Nagaraj; Bries, Matthew; Melanson, Edward; Sazonov, Edward
2017-07-01
Footwear based wearable sensors are becoming prominent in many areas of monitoring health and wellness, such as gait and activity monitoring. In our previous research we introduced an insole based wearable system SmartStep, which is completely integrated in a socially acceptable package. From a manufacturing perspective, SmartStep's electronics had to be custom made for each shoe size, greatly complicating the manufacturing process. In this work we explore the possibility of making a universal electronics platform for SmartStep - SmartStep 3.0, which can be used in the most common insole sizes without modifications. A pilot human subject experiments were run to compare the accuracy between the one-size fits all (SmartStep 3.0) and custom size SmartStep 2.0. A total of ~10 hours of data was collected in the pilot study involving three participants performing different activities of daily living while wearing SmartStep 2.0 and SmartStep 3.0. Leave one out cross validation resulted in a 98.5% average accuracy from SmartStep 2.0, while SmartStep 3.0 resulted in 98.3% accuracy, suggesting that the SmartStep 3.0 can be as accurate as SmartStep 2.0, while fitting most common shoe sizes.
COMPARING 3D FOOT SHAPE MODELS BETWEEN TAIWANESE AND JAPANESE FEMALES.
Lee, Yu-Chi; Kouchi, Makiko; Mochimaru, Masaaki; Wang, Mao-Jiun
2015-06-01
This study compares foot shape and foot dimensions between Taiwanese and Japanese females. One hundred Taiwanese and 100 Japanese female 3D foot scanning data were used for comparison. To avoid the allometry effect, data from 23 Taiwanese and 19 Japanese with foot length between 233 to 237 mm were used for shape comparison. Homologous models created for the right feet of the 42 subjects were analyzed by Multidimensional Scaling. The results showed that there were significant differences in the forefoot shape between the two groups, and Taiwanese females had slightly wider feet with straighter big toe than Japanese females. The results of body and foot dimension comparison indicated that Taiwanese females were taller, heavier and had larger feet than Japanese females, while Japanese females had significantly larger toe 1 angle. Since some Taiwanese shoemakers adopt the Japanese shoe sizing system for making shoes, appropriateness of the shoe sizing system was also discussed. The present results provide very useful information for improving shoe last design and footwear fit for Taiwanese females.
Crews, Ryan T; Candela, Joseph
2018-04-17
Patient adherence is a challenge in offloading diabetic foot ulcers (DFUs) with removable cast walkers (RCWs). The size and weight of an RCW, changes to gait, and imposed limb length discrepancies may all discourage adherence. This study sought to determine whether RCW size and provision of a contralateral limb lift affected users' comfort and gait. Twenty-five individuals at risk for DFUs completed several 20-m walking trials under five footwear conditions: bilateral standardized shoes, a knee-high RCW with shoe with or without an external shoe lift contralaterally, and an ankle-high RCW with shoe with or without an external shoe lift contralaterally. Perceived comfort ratings were assessed through the use of visual analog scales. Spatial and temporal parameters of gait were captured by an instrumented walkway, and plantar pressure was measured and recorded using pedobarographic insoles. The bilateral shoes condition was reported to be most comfortable; both RCW conditions without the lift were significantly less comfortable ( P < 0.01). In contrast to the ankle-high RCW, the knee-high RCW resulted in significantly slower walking (5.6%; P < 0.01) but greater offloading in multiple forefoot regions of the offloaded foot (6.8-8.1%; P < 0.01). Use of the contralateral shoe lift resulted in significantly less variability in walking velocity (52.8%; P < 0.01) and reduced stance time for the offloaded foot (2.6%; P = 0.01), but it also reduced offloading in multiple forefoot regions of the offloaded foot (3.7-6.0%; P < 0.01). Improved comfort and gait were associated with the ankle-high RCW and contralateral limb lift. Providing this combination to patients with active DFUs may increase offloading adherence and subsequently improve healing. © 2018 by the American Diabetes Association.
Hong, Wei-Hsien; Lee, Yung-Hui; Chen, Hsieh-Ching; Pei, Yu-Cheng; Wu, Ching-Yi
2005-12-01
The possible negative effects of high-heeled shoes on subjective comfort perception and objective biomechanical assessment have been noted. Although shoe inserts have been widely applied in footwear to increase comfort and to reduce the frequency of movement-related injury, no study has attempted to identify insert effectiveness in high heels. The purpose of this study was to determine the effects of heel height and shoe inserts on comfort and biomechanics as represented by plantar pressure and ground reaction force (GRF). Twenty young female adults performed the test conditions formed by the cross-matching of shoe inserts (shoe without insert and shoe with total contact insert [TCI]) and heel height (a flat, a low heel [3.8 cm] and a high heel [7.6 cm]). Two-way analyses of variance for repeated measures design were used to test condition effects on comfort rating, plantar pressure, and GRF during gait. To determine the biomechanical variables that can predict comfort, a multiple linear regression with stepwise method was done. The results showed that discomfort increased with heel height. In high heels, the plantar pressure in the heel and midfoot shifted to the medial forefoot, and the vertical and anteroposterior GRF increased. Use of the TCI reduced the peak pressure in the medial forefoot. Interestingly, the effectiveness of the TCI was greater in the higher heels than in the lower heels and in flat heels. The peak pressure in the medial forefoot, impact force, and the first peak vertical GRF could explain 75.6% of the variance of comfort in high-heeled gait. These findings suggest that higher heels result in decreased comfort, which can be reflected by both the subjective rating scale and biomechanical variables. Use of a TCI altered the biomechanics and therefore improved the comfort in high-heeled shoes.
Statistical fluctuations of an ocean surface inferred from shoes and ships
NASA Astrophysics Data System (ADS)
Lerche, Ian; Maubeuge, Frédéric
1995-12-01
This paper shows that it is possible to roughly estimate some ocean properties using simple time-dependent statistical models of ocean fluctuations. Based on a real incident, the loss by a vessel of a Nike shoes container in the North Pacific Ocean, a statistical model was tested on data sets consisting of the Nike shoes found by beachcombers a few months later. This statistical treatment of the shoes' motion allows one to infer velocity trends of the Pacific Ocean, together with their fluctuation strengths. The idea is to suppose that there is a mean bulk flow speed that can depend on location on the ocean surface and time. The fluctuations of the surface flow speed are then treated as statistically random. The distribution of shoes is described in space and time using Markov probability processes related to the mean and fluctuating ocean properties. The aim of the exercise is to provide some of the properties of the Pacific Ocean that are otherwise calculated using a sophisticated numerical model, OSCURS, where numerous data are needed. Relevant quantities are sharply estimated, which can be useful to (1) constrain output results from OSCURS computations, and (2) elucidate the behavior patterns of ocean flow characteristics on long time scales.
Vicenzino, Bill; McPoil, Thomas G; Stephenson, Aoife; Paul, Sanjoy K
2015-01-01
To investigate efficacy of a contoured sandal being marketed for plantar heel pain with comparison to a flat flip-flop and contoured in-shoe insert/orthosis. 150 volunteers aged 50 (SD: 12) years with plantar heel pain (>4 weeks) were enrolled after responding to advertisements and eligibility determined by telephone and at first visit. Participants were randomly allocated to receive commercially available contoured sandals (n = 49), flat flip-flops (n = 50) or over the counter, pre-fabricated full-length foot orthotics (n = 51). Primary outcomes were a 15-point Global Rating of Change scale (GROC: 1 = a very great deal worse, 15 = a very great deal better), 13 to 15 representing an improvement and the 20-item Lower Extremity Function Scale (LEFS) on which participants rate 20 common weight bearing activities and activities of daily living on a 5-point scale (0 = extreme difficulty, 4 = no difficulty). Secondary outcomes were worst level of heel pain in the preceding week, and the foot and ankle ability measure. Outcomes were collected blind to allocation. Analyses were done on an intention to treat basis with 12 weeks being the primary outcome time of interest. The contoured sandal was 68% more likely to report improvement in terms of GROC compared to flat flip-flop. On the LEFS the contoured sandal was 61% more likely than flat flip-flop to report improvement. The secondary outcomes in the main reflected the primary outcomes, and there were no differences between contoured sandal and shoe insert. Physicians can have confidence in supporting a patient's decision to wear contoured sandals or in-shoe orthoses as one of the first and simple strategies to manage their heel pain. The Australian New Zealand Clinical Trials Registry ACTRN12612000463875.
Examining injury risk and pain perception in runners using minimalist footwear.
Ryan, Michael; Elashi, Maha; Newsham-West, Richard; Taunton, Jack
2014-08-01
This study examines the effect of progressive increases in footwear minimalism on injury incidence and pain perception in recreational runners. One hundred and three runners with neutral or mild pronation were randomly assigned a neutral (Nike Pegasus 28), partial minimalist (Nike Free 3.0 V2) or full minimalist shoe (Vibram 5-Finger Bikila). Runners underwent baseline testing to record training and injury history, as well as selected anthropometric measurements, before starting a 12-week training programme in preparation for a 10 km event. Outcome measures included number of injury events, Foot and Ankle Disability (FADI) scores and visual analogue scale pain rating scales for regional and overall pain with running. 99 runners were included in final analysis with 23 injuries reported; the neutral shoe reporting the fewest injuries (4) and the partial minimalist shoe (12) the most. The partial minimalist shoe reported a significantly higher rate of injury incidence throughout the 12-week period. Runners in the full minimalist group reported greater shin and calf pain. Running in minimalist footwear appears to increase the likelihood of experiencing an injury, with full minimalist designs specifically increasing pain at the shin and calf. Clinicians should exercise caution when recommending minimalist footwear to runners otherwise new to this footwear category who are preparing for a 10 km event. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Wrobel, James S; Edgar, Sarah; Cozzetto, Dana; Maskill, James; Peterson, Paul; Najafi, Bijan
2010-01-01
This pilot study examined the effect of custom and prefabricated foot orthoses on self-selected walking speed, walking speed variability, and dynamic balance in the mediolateral direction. The gait of four healthy participants was analyzed with a body-worn sensor system across a distance of at least 30 m outside of the gait laboratory. Participants walked at their habitual speed in four conditions: barefoot, regular shoes, prefabricated foot orthoses, and custom foot orthoses. In the custom foot orthoses condition, gait speed was improved on average 13.5% over the barefoot condition and 9.8% over the regular shoe condition. The mediolateral range of motion of center of mass was reduced 55% and 56% compared with the shoes alone and prefabricated foot orthoses conditions, respectively. This may suggest better gait efficiency and lower energy cost with custom foot orthoses. This tendency remained after normalizing center of mass by gait speed, suggesting that irrespective of gait speed, custom foot orthoses improve center of mass motion in the mediolateral direction compared with other footwear conditions. Gait intercycle variability, measured by intercycle coefficient of variation of gait speed, was decreased on average by 25% and 19% compared with the barefoot and shoes-alone conditions, respectively. The decrease in gait unsteadiness after wearing custom foot orthoses may suggest improved proprioception from the increased contact area of custom foot orthoses versus the barefoot condition. These findings may open new avenues for objective assessment of the impact of prescribed footwear on dynamic balance and spatiotemporal parameters of gait and assess gait adaptation after use of custom foot orthoses.
Najafi, Bijan; Miller, Daniel; Jarrett, Beth D; Wrobel, James S
2010-05-01
Many studies have attempted to better elucidate the effect of foot orthoses on gait dynamics. To our knowledge, most previous studies exclude the first few steps of gait and begin analysis at steady state walking. These unanalyzed steps of gait may contain important information about the dynamic and complex processes required to achieve equilibrium for a given gait velocity. The purpose of this study was to quantify gait initiation and determine how many steps were required to reach steady state walking under three footwear conditions: barefoot, habitual shoes, and habitual shoes with a prefabricated foot orthoses. Fifteen healthy subjects walked 50m at habitual speed in each condition. Wearing habitual shoes with the prefabricated orthoses enabled subjects to reach steady state walking in fewer steps (3.5 steps+/-2.0) compared to the barefoot condition (5.2 steps+/-3.0; p=0.02) as well as compared to the habitual shoes condition (4.7 steps+/-1.6; p=0.05). Interestingly, the subjects' dynamic medial-lateral balance was significantly improved (22%, p<0.05) by using foot orthoses compared to other footwear conditions. These findings suggest that foot orthoses may help individuals reach steady state more quickly and with a better dynamic balance in the medial-lateral direction, independent of foot type. The findings of this pilot study may open new avenues for objectively assessing the impact of prescription footwear on dynamic balance and spatio-temporal parameters of gait. Further work to better assess the impact of foot orthoses on gait initiation in patients suffering from gait and instability pathologies may be warranted. Copyright 2010 Elsevier B.V. All rights reserved.
Tay, Cheryl Sihui; Sterzing, Thorsten; Lim, Chen Yen; Ding, Rui; Kong, Pui Wah
2017-05-01
This study examined (a) the strength of four individual footwear perception factors to influence the overall preference of running shoes and (b) whether these perception factors satisfied the nonmulticollinear assumption in a regression model. Running footwear must fulfill multiple functional criteria to satisfy its potential users. Footwear perception factors, such as fit and cushioning, are commonly used to guide shoe design and development, but it is unclear whether running-footwear users are able to differentiate one factor from another. One hundred casual runners assessed four running shoes on a 15-cm visual analogue scale for four footwear perception factors (fit, cushioning, arch support, and stability) as well as for overall preference during a treadmill running protocol. Diagnostic tests showed an absence of multicollinearity between factors, where values for tolerance ranged from .36 to .72, corresponding to variance inflation factors of 2.8 to 1.4. The multiple regression model of these four footwear perception variables accounted for 77.7% to 81.6% of variance in overall preference, with each factor explaining a unique part of the total variance. Casual runners were able to rate each footwear perception factor separately, thus assigning each factor a true potential to improve overall preference for the users. The results also support the use of a multiple regression model of footwear perception factors to predict overall running shoe preference. Regression modeling is a useful tool for running-shoe manufacturers to more precisely evaluate how individual factors contribute to the subjective assessment of running footwear.
Automated visual inspection of brake shoe wear
NASA Astrophysics Data System (ADS)
Lu, Shengfang; Liu, Zhen; Nan, Guo; Zhang, Guangjun
2015-10-01
With the rapid development of high-speed railway, the automated fault inspection is necessary to ensure train's operation safety. Visual technology is paid more attention in trouble detection and maintenance. For a linear CCD camera, Image alignment is the first step in fault detection. To increase the speed of image processing, an improved scale invariant feature transform (SIFT) method is presented. The image is divided into multiple levels of different resolution. Then, we do not stop to extract the feature from the lowest resolution to the highest level until we get sufficient SIFT key points. At that level, the image is registered and aligned quickly. In the stage of inspection, we devote our efforts to finding the trouble of brake shoe, which is one of the key components in brake system on electrical multiple units train (EMU). Its pre-warning on wear limitation is very important in fault detection. In this paper, we propose an automatic inspection approach to detect the fault of brake shoe. Firstly, we use multi-resolution pyramid template matching technology to fast locate the brake shoe. Then, we employ Hough transform to detect the circles of bolts in brake region. Due to the rigid characteristic of structure, we can identify whether the brake shoe has a fault. The experiments demonstrate that the way we propose has a good performance, and can meet the need of practical applications.
Design and Pilot Study of a Gait Enhancing Mobile Shoe.
Handzic, Ismet; Barno, Eileen M; Vasudevan, Erin V; Reed, Kyle B
2011-12-01
Hemiparesis is a frequent and disabling consequence of stroke and can lead to asymmetric and inefficient walking patterns. Training on a split-belt treadmill, which has two separate treads driving each leg at a different speed, can correct such asymmetries post-stroke. However, the effects of split-belt treadmill training only partially transfer to everyday walking over ground and extended training sessions are required to achieve long-lasting effects. Our aim is to develop an alternative device, the Gait Enhancing Mobile Shoe (GEMS), that mimics the actions of the split-belt treadmill, but can be used during overground walking and in one's own home, thus enabling long-term training. The GEMS does not require any external power and is completely passive; all necessary forces are redirected from the natural forces present during walking. Three healthy subjects walked on the shoes for twenty minutes during which one GEMS generated a backward motion and the other GEMS generated a forward motion. Our preliminary experiments suggest that wearing the GEMS did cause subjects to modify coordination between the legs and these changes persisted when subjects returned to normal over-ground walking. The largest effects were observed in measures of temporal coordination (e.g., duration of double-support). These results suggest that the GEMS is capable of altering overground walking coordination in healthy controls and could potentially be used to correct gait asymmetries post-stroke.
Liebenberg, Jacobus; Woo, Jeonghyun; Park, Sang-Kyoon; Yoon, Suk-Hoon; Cheung, Roy Tsz-Hei; Ryu, Jiseon
2018-01-01
Background Tibial stress fracture (TSF) is a common injury in basketball players. This condition has been associated with high tibial shock and impact loading, which can be affected by running speed, footwear condition, and footstrike pattern. However, these relationships were established in runners but not in basketball players, with very little research done on impact loading and speed. Hence, this study compared tibial shock, impact loading, and foot strike pattern in basketball players running at different speeds with different shoe cushioning properties/performances. Methods Eighteen male collegiate basketball players performed straight running trials with different shoe cushioning (regular-, better-, and best-cushioning) and running speed conditions (3.0 m/s vs. 6.0 m/s) on a flat instrumented runway. Tri-axial accelerometer, force plate and motion capture system were used to determine tibial accelerations, vertical ground reaction forces and footstrike patterns in each condition, respectively. Comfort perception was indicated on a 150 mm Visual Analogue Scale. A 2 (speed) × 3 (footwear) repeated measures ANOVA was used to examine the main effects of shoe cushioning and running speeds. Results Greater tibial shock (P < 0.001; η2 = 0.80) and impact loading (P < 0.001; η2 = 0.73–0.87) were experienced at faster running speeds. Interestingly, shoes with regular-cushioning or best-cushioning resulted in greater tibial shock (P = 0.03; η2 = 0.39) and impact loading (P = 0.03; η2 = 0.38–0.68) than shoes with better-cushioning. Basketball players continued using a rearfoot strike during running, regardless of running speed and footwear cushioning conditions (P > 0.14; η2 = 0.13). Discussion There may be an optimal band of shoe cushioning for better protection against TSF. These findings may provide insights to formulate rehabilitation protocols for basketball players who are recovering from TSF. PMID:29770274
Ryan, Michael; Fraser, Scott; McDonald, Kymberly; Taunton, Jack
2009-12-01
Plantar fasciitis is a common injury to the plantar aponeurosis, manifesting as pain surrounding its proximal insertion at the medial calcaneal tubercle. Pain is typically worse in the morning when getting out of bed, and may subside after the tissue is sufficiently warmed up. For running-based athletes and individuals who spend prolonged periods of time on their feet at work, plantar fasciitis may become recalcitrant to conservative treatments such as ice, rest, and anti-inflammatory medication. Exercise-based therapies have received only limited attention in the literature for this common problem, yet they are becoming increasingly validated for pain relief and positive tissue remodeling at other sites of similar soft-tissue overuse injury. This study reports on pain outcomes in individuals experiencing chronic plantar fasciitis while wearing a shoe with an ultraflexible midsole (Nike Free 5.0) (FREE) versus a conventional training (CON) shoe in a 12-week multielement exercise regimen, and after a 6-month follow-up. Adults with >or= 6-month history of painful heel pain were recruited and randomly assigned to wear 1 of the 2 shoes. All subjects completed the same exercise protocol. A visual analogue scale item tracked peak pain in the preceding 24 hours taken at baseline, 6- and 12-week points, and at the 6-month follow-up. Twenty-one subjects completed the program (9 FREE; 12 CON). Both groups reported significant improvements in pain by the 6-month follow-up, and the FREE group reported an overall reduced level of pain throughout the study as a result of lower mean pain scores at the midpoint and post-test compared with the CON group. The exercise regimen employed in this study appears to reduce pain associated with chronic plantar fasciitis, and in doing so, the Nike 5.0 shoe may result in reductions in pain earlier than conventional running shoes.
Salzler, Matthew J; Kirwan, Hollie J; Scarborough, Donna M; Walker, James T; Guarino, Anthony J; Berkson, Eric M
2016-11-01
Minimalist running is increasing in popularity based upon a concept that it can reduce impact forces and decrease injury rates. The purpose of this investigation is to identify the rate and severity of injuries in runners transitioning from traditional to minimalist footwear. The secondary aims were to identify factors correlated with injuries. Fourteen habitually shod (traditional running shoes) participants were enrolled for this prospective study investigating injury prevalence during transition from traditional running shoes to 5-toed minimalist shoes. Participants were uninjured, aged between 22-41 years, and ran at least twenty kilometers per week in traditional running shoes. Participants were given industry recommended guidelines for transition to minimalist footwear and fit with a 5-toed minimalist running shoe. They completed weekly logs for identification of injury, pain using Visual Analogue Scale (VAS), injury location, and severity. Foot strike pattern and impact forces were collected using 3D motion analysis at baseline, 4 weeks, and 12 weeks. Injuries were scored according to a modified Running Injury Severity Score (RISS). Fourteen runners completed weekly training and injury logs over an average of 30 weeks. Twelve of 14 (86%) runners sustained injuries. Average injury onset was 6 weeks (range 1-27 weeks). Average weekly mileage of 23.9 miles/week prior to transition declined to 18.3 miles/week after the transition. The magnitude of the baseline impact transient peak in traditional shoes and in minimalist shoes negatively correlated with RISS scores (r = -0.45, p = 0.055 and r = -0.53, p = 0.026, respectively). High injury rates occurred during the transition from traditional to minimalist footwear. Non-compliance to transition guidelines and high injury rates suggest the need for improved education. High impact transient forces unexpectedly predicted lower modified RISS scores in this population.
Rocker shoe, minimalist shoe, and standard running shoe: a comparison of running economy.
Sobhani, Sobhan; Bredeweg, Steef; Dekker, Rienk; Kluitenberg, Bas; van den Heuvel, Edwin; Hijmans, Juha; Postema, Klaas
2014-05-01
Running with rocker shoes is believed to prevent lower limb injuries. However, it is not clear how running in these shoes affects the energy expenditure. The purpose of this study was, therefore, to assess the effects of rocker shoes on running economy in comparison with standard and minimalist running shoes. Cross-over design. Eighteen endurance female runners (age=23.6 ± 3 years), who were inexperienced in running with rocker shoes and with minimalist/barefoot running, participated in this study. Oxygen consumption, carbon dioxide production, heart rate and rate of perceived exertion were measured while participants completed a 6-min sub-maximal treadmill running test for each footwear condition. The data of the last 2 min of each shoe condition were averaged for analysis. A linear mixed model was used to compare differences among three footwear conditions. Oxygen consumption during running with rocker shoes was on average 4.5% higher than with the standard shoes (p<0.001) and 5.6% higher than with the minimalist shoe (p<0.001). No significant differences were found in heart rate and rate of perceived exertion across three shoe conditions. Female runners, who are not experienced in running with the rocker shoes and minimalist shoes, show more energy expenditure during running with the rocker shoes compared with the standard and minimalist shoes. As the studied shoes were of different masses, part of the effect of increased energy expenditure with the rocker shoe is likely to be due to its larger mass as compared with standard running shoes and minimalist shoes. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Minimalist shoe injuries: three case reports.
Cauthon, David J; Langer, Paul; Coniglione, Thomas C
2013-01-01
Running in minimalist shoes continues to increase in popularity and multiple mainstream shoe companies now offer minimalist shoes. While there is no evidence that traditional running shoes prevent injuries, there are concerns that the designs of minimalist shoes may increase injury risk. However, reports of injuries in runners wearing minimalist shoes are rare. We present three injuries occurring in runners that were wearing minimalist shoes at the time of injury. All three of the runners switched immediately to the minimalist shoes with no transition period. We recommend that any transition to minimalist shoe gear be performed gradually. It is our contention that these injuries are quite common and will continue to become more prevalent as more runners change to these shoes. Copyright © 2013. Published by Elsevier Ltd.
Kinetic Assessment of Golf Shoe Outer Sole Design Features
Smith, Neal A.; Dyson, Rosemary J.
2009-01-01
This study assessed human kinetics in relation to golf shoe outer sole design features during the golf swing using a driver club by measuring both within the shoe, and beneath the shoe at the natural grass interface. Three different shoes were assessed: metal 7- spike shoe, alternative 7-spike shoe, and a flat soled shoe. In-shoe plantar pressure data were recorded using Footscan RS International pressure insoles and sampling at 500 Hz. Simultaneously ground reaction force at the shoe outer sole was measured using 2 natural grass covered Kistler force platforms and 1000 Hz data acquisition. Video recording of the 18 right-handed golfers at 200 Hz was undertaken while the golfer performed 5 golf shots with his own driver in each type of shoe. Front foot (nearest to shot direction) maximum vertical force and torque were greater than at the back foot, and there was no significant difference related to the shoe type. Wearing the metal spike shoe when using a driver was associated with more torque generation at the back foot (p < 0. 05) than when the flat soled shoe was worn. Within shoe regional pressures differed significantly with golf shoe outer sole design features (p < 0.05). Comparison of the metal spike and alternative spike shoe results provided indications of the quality of regional traction on the outer sole. Potential golf shoe outer sole design features and traction were presented in relation to phases of the golf swing movement. Application of two kinetic measurement methods identified that moderated (adapted) muscular control of foot and body movement may be induced by golf shoe outer sole design features. Ground reaction force measures inform comparisons of overall shoe functional performance, and insole pressure measurements inform comparisons of the underfoot conditions induced by specific regions of the golf shoe outer sole. Key points Assessments of within golf shoe pressures and beneath shoe forces at the natural grass interface were conducted during golf shots with a driver. Application of two kinetic measurement methods simultaneously identified that moderated (adapted) muscular control of the foot and body movement may be induced by golf shoe outer sole localised design features. Ground force measures inform overall shoe kinetic functional performance. Insole pressure measurement informs of underfoot conditions induced by localised specific regions of the golf outer sole. Significant differences in ground-shoe torque generation and insole regional pressures were identified when different golf shoes were worn. PMID:24149603
Vicenzino, Bill; McPoil, Thomas G.; Stephenson, Aoife; Paul, Sanjoy K.
2015-01-01
Objective To investigate efficacy of a contoured sandal being marketed for plantar heel pain with comparison to a flat flip-flop and contoured in-shoe insert/orthosis. Method 150 volunteers aged 50 (SD: 12) years with plantar heel pain (>4 weeks) were enrolled after responding to advertisements and eligibility determined by telephone and at first visit. Participants were randomly allocated to receive commercially available contoured sandals (n = 49), flat flip-flops (n = 50) or over the counter, pre-fabricated full-length foot orthotics (n = 51). Primary outcomes were a 15-point Global Rating of Change scale (GROC: 1 = a very great deal worse, 15 = a very great deal better), 13 to 15 representing an improvement and the 20-item Lower Extremity Function Scale (LEFS) on which participants rate 20 common weight bearing activities and activities of daily living on a 5-point scale (0 = extreme difficulty, 4 = no difficulty). Secondary outcomes were worst level of heel pain in the preceding week, and the foot and ankle ability measure. Outcomes were collected blind to allocation. Analyses were done on an intention to treat basis with 12 weeks being the primary outcome time of interest. Results The contoured sandal was 68% more likely to report improvement in terms of GROC compared to flat flip-flop. On the LEFS the contoured sandal was 61% more likely than flat flip-flop to report improvement. The secondary outcomes in the main reflected the primary outcomes, and there were no differences between contoured sandal and shoe insert. Conclusions and Relevance Physicians can have confidence in supporting a patient's decision to wear contoured sandals or in-shoe orthoses as one of the first and simple strategies to manage their heel pain. Trial Registration The Australian New Zealand Clinical Trials Registry ACTRN12612000463875 PMID:26669302
Ochsmann, Elke; Noll, Ulrike; Ellegast, Rolf; Hermanns, Ingo; Kraus, Thomas
2016-01-01
Objective: Working conditions, such as walking and standing on hard surfaces, can increase the development of musculoskeletal complaints. At the interface between flooring and musculoskeletal system, safety shoes may play an important role in the well-being of employees. The aim of this study was to evaluate the effects of different safety shoes on gait and plantar pressure distributions on industrial flooring. Methods: Twenty automotive workers were individually fitted out with three different pairs of safety shoes ( "normal" shoes, cushioned shoes, and midfoot bearing shoes). They walked at a given speed of 1.5 m/s. The CUELA measuring system and shoe insoles were used for gait analysis and plantar pressure measurements, respectively. Statistical analysis was conducted by ANOVA analysis for repeated measures. Results: Walking with cushioned safety shoes or a midfoot bearing safety shoe led to a significant decrease of the average trunk inclination (p<0.005). Furthermore, the average hip flexion angle decreased for cushioned shoes as well as midfoot bearing shoes (p<0.002). The range of motion of the knee joint increased for cushioned shoes. As expected, plantar pressure distributions varied significantly between cushioned or midfoot bearing shoes and shoes without ergonomic components. Conclusion: The overall function of safety shoes is the avoidance of injury in case of an industrial accident, but in addition, safety shoes could be a long-term preventive instrument for maintaining health of the employees' musculoskeletal system, as they are able to affect gait parameters. Further research needs to focus on safety shoes in working situations. PMID:27488038
Ochsmann, Elke; Noll, Ulrike; Ellegast, Rolf; Hermanns, Ingo; Kraus, Thomas
2016-09-30
Working conditions, such as walking and standing on hard surfaces, can increase the development of musculoskeletal complaints. At the interface between flooring and musculoskeletal system, safety shoes may play an important role in the well-being of employees. The aim of this study was to evaluate the effects of different safety shoes on gait and plantar pressure distributions on industrial flooring. Twenty automotive workers were individually fitted out with three different pairs of safety shoes ( "normal" shoes, cushioned shoes, and midfoot bearing shoes). They walked at a given speed of 1.5 m/s. The CUELA measuring system and shoe insoles were used for gait analysis and plantar pressure measurements, respectively. Statistical analysis was conducted by ANOVA analysis for repeated measures. Walking with cushioned safety shoes or a midfoot bearing safety shoe led to a significant decrease of the average trunk inclination (p<0.005). Furthermore, the average hip flexion angle decreased for cushioned shoes as well as midfoot bearing shoes (p<0.002). The range of motion of the knee joint increased for cushioned shoes. As expected, plantar pressure distributions varied significantly between cushioned or midfoot bearing shoes and shoes without ergonomic components. The overall function of safety shoes is the avoidance of injury in case of an industrial accident, but in addition, safety shoes could be a long-term preventive instrument for maintaining health of the employees' musculoskeletal system, as they are able to affect gait parameters. Further research needs to focus on safety shoes in working situations.
Collins, Natalie J; Hinman, Rana S; Menz, Hylton B; Crossley, Kay M
2017-01-01
The purpose of the study was to determine whether prefabricated foot orthoses immediately reduce pain during functional tasks in people with patellofemoral osteoarthritis, compared to flat insoles and shoes alone. Eighteen people with predominant lateral patellofemoral osteoarthritis (nine women; mean [SD] age 59 [10]years; body mass index 27.9 [3.2]kg/m 2 ) performed functional tasks wearing running sandals, and then wearing foot orthoses and flat insoles (random order). Participants rated knee pain during each task (11-point numerical rating scales), ease of performance and knee stability (five-point Likert scales), and comfort (100mm visual analogue scales). Compared to shoes alone, foot orthoses (p=0.002; median difference 1.5 [IQR 3]) and flat insoles (p<0.001; 2 [3]) significantly reduced pain during step-downs; foot orthoses reduced pain during walking (p=0.008; 1 [1.25]); and flat insoles reduced pain during stair ambulation (p=0.001; 1 [1.75]). No significant differences between foot orthoses and flat insoles were observed for pain severity, ease of performance or knee stability. Foot orthoses were less comfortable than flat insoles and shoes alone (p<0.05). In people with patellofemoral osteoarthritis, immediate pain-relieving effects of prefabricated, contoured foot orthoses are equivalent to flat insoles. Further studies should investigate whether similar outcomes occur with longer-term wear or different orthosis designs. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanics of jazz shoes and their effect on pointing in child dancers.
Fong Yan, Alycia; Smith, Richard; Vanwanseele, Benedicte; Hiller, Claire
2012-07-01
There has been little scientific investigation of the impact of dance shoes on foot motion or dance injuries. The pointed (plantar-flexed) foot is a fundamental component of both the technical requirements and the traditional aesthetic of ballet and jazz dancing. The aims of this study were to quantify the externally observed angle of plantar flexion in various jazz shoes compared with barefoot and to compare the sagittal plane bending stiffness of the various jazz shoes. Sixteen female recreational child dancers were recruited for 3D motion analysis of active plantar flexion. The jazz shoes tested were a split-sole jazz shoe, full-sole jazz shoe, and jazz sneaker. A shoe dynamometer measured the stiffness of the jazz shoes. The shoes had a significant effect on ankle plantar flexion. All jazz shoes significantly restricted the midfoot plantar flexion angle compared with the barefoot condition. The split-sole jazz shoe demonstrated the least restriction, whereas the full-sole jazz shoe the most midfoot restriction. A small restriction in metartarsophalangeal plantar flexion and a greater restriction at the midfoot joint were demonstrated when wearing stiff jazz shoes. These restrictions will decrease the aesthetic of the pointed foot, may encourage incorrect muscle activation, and have an impact on dance performance.
2004-05-05
KENNEDY SPACE CENTER, FLA. -- With NASA Systems Engineer Robert Rokobauer (left), STS-114 Pilot James Kelly (center) and Mission Specialist Andrew Thomas (right) look at one of the tracks on a Crawler-Transporter. The 10-foot-high track, one of two, contains 278 “shoes,” weighing 2,200 pounds each. The crawlers are guided by four trucks, one on each corner. The crawlers had recent modifications to the cab and muffler system. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
[Forefoot relief with shoe inserts : Effects of different construction strategies].
Baur, H; Merz, N; Muster, A; Flückiger, G; Hirschmüller, A
2018-04-01
Shoe inserts and shoe modifications are used to reduce plantar peak pressure. The effects of different shoe inserts and shoe construction strategies for relief of the forefoot have not yet been sufficiently evaluated. The aim of this study was to analyze the effects of shoe inserts and shoe construction strategies (e.g. metatarsal pad, forefoot cushioning and control) and shoe modifications (e.g. flexible or stiff) on the peak plantar pressure in the forefoot region. In this study 15 healthy subjects were recruited. Plantar pressure distribution was measured using an in-shoe system during walking (3.5km∙h -1 ) on a treadmill and the average plantar peak pressure (kPa) in the forefoot was calculated. The statistics for testing the hypothesis were carried out using 2‑factorial ANOVA with repeat measurements (factors: shoe, insert; α = 0.05). The metatarsal pad and forefoot cushioning led to a reduction of peak pressure, which was statistically significant compared to the control condition (p = 0.009). No differences were observed between both shoe inserts (p > 0.05). A comparison between stiff and flexible shoes revealed a statistically significant pressure reduction in favor of stiff shoes (p = 0.0001). The metatarsal pad led to a peak pressure increase in the midfoot of 12% and by 21% compared to control and forefoot cushioning, respectively. A peak pressure reduction in the forefoot can be achieved with a metatarsal pad or with cushioning; however, the metatarsal pad resulted in a subsequent increase in midfoot pressure. Moreover, shoe construction is crucial because a stiff shoe contributes to a better peak pressure reduction compared to a flexible shoe. Prospective clinical studies should be carried out to prove whether this results in beneficial effects for patients with metatarsalgia.
Impact attenuation properties of jazz shoes alter lower limb joint stiffness during jump landings.
Fong Yan, Alycia; Smith, Richard M; Hiller, Claire E; Sinclair, Peter J
2017-05-01
To quantify the impact attenuation properties of the jazz shoes, and to investigate the in-vivo effect of four jazz shoe designs on lower limb joint stiffness during a dance-specific jump. Repeated measures. A custom-built mechanical shoe tester similar to that used by athletic shoe companies was used to vertically impact the forefoot and heel region of four different jazz shoe designs. Additionally, dancers performed eight sautés in second position in bare feet and the shoe conditions. Force platforms and 3D-motion capture were used to analyse the joint stiffness of the midfoot, ankle, knee and hip during the jump landings. Mechanical testing of the jazz shoes revealed significant differences in impact attenuation characteristics among each of the jazz shoe designs. Gross knee and midfoot joint stiffness were significantly affected by the jazz shoe designs in the dancers' jump landings. The tested jazz shoe designs altered the impact attenuating capacity of jump landing technique in dancers. The cushioned jazz shoes are recommended particularly for injured dancers to reduce impact on the lower limb. Jazz shoe design should consider the impact attenuation properties of the forefoot region, due to the toe-strike landing technique in dance movement. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Effect of rocker shoe radius on oxygen consumption rate in young able-bodied persons.
Hansen, Andrew H; Wang, Charles C
2011-04-07
We studied oxygen consumption rate of eleven young able-bodied persons walking at self-selected speed with five different pairs of shoes: one regular pair without rocker soles (REG) and four pairs with uniform hardness (35-40 shore A durometer) rocker soles of different radii (25% of leg length (LL) (R25), 40% LL (R40), 55% LL (R55), and infinite radius (FLAT)). Rocker soled shoes in the study were developed to provide similar vertical lift (three inches higher than the REG shoes condition). Oxygen consumption rate was significantly affected by the use of the different shoes (p<0.001) and pairwise comparisons indicated that persons consumed significantly less oxygen (per minute per kilogram of body mass) when walking on the R40 shoes when compared with both the FLAT (p<0.001) and REG (p=0.021) shoe conditions. Oxygen consumption was also significantly less for the R25 shoes compared with the FLAT shoes (p=0.005) and for the R55 shoes compared with FLAT shoes (p=0.027). The three-inch lift on the FLAT shoe did not cause a significant change in oxygen consumption compared to the shoe without the lift (REG). Published by Elsevier Ltd.
Measurement of pressure walking in footwear used in leprosy.
Birke, J A; Foto, J G; Deepak, S; Watson, J
1994-09-01
Pressure measurements were made on 10 leprosy patients while walking barefoot and while using 6 sample shoes. The sample shoes, which represented footwear currently used worldwide in leprosy programmes, included: 1, a USA extradepth shoe without insole; 2, a USA extradepth shoe with insole; 3, a Chinese tennis shoe; 4, a Mozambique sandal; 5, a Bombay sandal; 6, a Bombay sandal with rigid sole; and 7, the patients' prescribed footwear. Peak pressure was significantly lower while walking in all footwear, except with the extradepth shoe without an insole, when compared to barefoot walking. Peak pressure was significantly lower walking in the Bombay sandals, the Chinese tennis shoe, the extradepth shoe with an insert and the patients' prescribed shoe when compared to the extradepth shoe without an insert. Regression analysis showed a significant inverse relationship between pressure and insole thickness (P < 0.001, R2 = 0.17).
Hanselman, Andrew E; Tidwell, John E; Santrock, Robert D
2015-02-01
Treatment options for plantar fasciitis have resulted in varied patient outcomes. The aim of this study was to compare a novel treatment, cryopreserved human amniotic membrane (c-hAM), to a traditional treatment, corticosteroid. Our hypothesis was that c-hAM would be safe and comparable to corticosteroids for plantar fasciitis in regard to patient outcomes. A randomized, controlled, double-blind, single-center pilot study was completed. Patients were randomized into one of 2 treatment groups: c-hAM or corticosteroid. Patients received an injection at their initial baseline visit with an option for a second injection at their first 6-week follow-up. Total follow-up was obtained for 12 weeks after the most recent injection. The primary outcome measurement was the Foot Health Status Questionnaire (FHSQ). The secondary outcome measurements were the Visual Analog Scale (VAS) and verbally reported percentage improvement. Data were analyzed between groups for the 2 different cohorts (1 injection versus 2 injections). Twenty-three patients had complete follow-up. Fourteen were randomized to receive corticosteroid and 9 were randomized to receive c-hAM. Three patients in each group received second injections. With the numbers available, the majority of outcome measurements showed no statistical difference between groups. The corticosteroid did, however, have greater FHSQ shoe fit improvement (P = .0244) at 6 weeks, FHSQ general health improvement (P = .0132) at 6 weeks, and verbally reported improvement (P = .041) at 12 weeks in the one-injection cohort. Cryopreserved hAM had greater FHSQ foot pain improvement (P = .0113) at 18 weeks in the 2-injection cohort. Cryopreserved hAM injection may be safe and comparable to corticosteroid injection for treatment of plantar fasciitis. This is a pilot study and requires further investigation. Level I, prospective randomized trial. © The Author(s) 2014.
NASA Technical Reports Server (NTRS)
Sherriff, Abigail
2015-01-01
The Field Test study is currently in full swing, preceded by the successful completion of the Pilot Field Test study that paved the way for collecting data on the astronauts in the medical tent in Kazakhstan. Abigail Sherriff worked alongside Logan Dobbe on one Field Test aspect to determine foot clearance over obstacles (5cm, 10cm, and 15cm) using APDM Inc. Internal Measurement Units (IMU) worn by the astronauts. They created a program to accurately calculate foot clearance using the accelerometer, magnetometer, and gyroscope data with the IMUs attached to the top of the shoes. To validate the functionality of their program, they completed a successful study on test subjects performing various tasks in an optical motion studio, considered a gold standard in biomechanics research. Future work will include further validation and expanding the program to include other analyses.
A Comparison of the Energetic Cost of Running in Marathon Racing Shoes.
Hoogkamer, Wouter; Kipp, Shalaya; Frank, Jesse H; Farina, Emily M; Luo, Geng; Kram, Rodger
2018-04-01
Reducing the energetic cost of running seems the most feasible path to a sub-2-hour marathon. Footwear mass, cushioning, and bending stiffness each affect the energetic cost of running. Recently, prototype running shoes were developed that combine a new highly compliant and resilient midsole material with a stiff embedded plate. The aim of this study was to determine if, and to what extent, these newly developed running shoes reduce the energetic cost of running compared with established marathon racing shoes. 18 high-caliber athletes ran six 5-min trials (three shoes × two replicates) in prototype shoes (NP), and two established marathon shoes (NS and AB) during three separate sessions: 14, 16, and 18 km/h. We measured submaximal oxygen uptake and carbon dioxide production during minutes 3-5 and averaged energetic cost (W/kg) for the two trials in each shoe model. Compared with the established racing shoes, the new shoes reduced the energetic cost of running in all 18 subjects tested. Averaged across all three velocities, the energetic cost for running in the NP shoes (16.45 ± 0.89 W/kg; mean ± SD) was 4.16 and 4.01% lower than in the NS and AB shoes, when shoe mass was matched (17.16 ± 0.92 and 17.14 ± 0.97 W/kg, respectively, both p < 0.001). The observed percent changes were independent of running velocity (14-18 km/h). The prototype shoes lowered the energetic cost of running by 4% on average. We predict that with these shoes, top athletes could run substantially faster and achieve the first sub-2-hour marathon.
Factors associated with use of slip-resistant shoes in US limited-service restaurant workers.
Verma, Santosh K; Courtney, Theodore K; Corns, Helen L; Huang, Yueng-Hsiang; Lombardi, David A; Chang, Wen-Ruey; Brennan, Melanye J; Perry, Melissa J
2012-06-01
Slips and falls are a leading cause of injury at work. Several studies have indicated that slip-resistant shoes can reduce the risk of occupational slips and falls. Few studies, however, have examined the determinants of slip-resistant shoe use. This study examined the individual and workplace factors associated with slip-resistant shoe use. 475 workers from 36 limited-service restaurants in the USA participated in a study of workplace slipping. Demographic and job characteristic information about each participant was collected. Restaurant managers provided information on whether slip-resistant shoes were provided and paid for by the employer and whether any guidance was given regarding slip-resistant shoe use when they were not provided. Kitchen floor coefficient of friction was measured. Slip-resistant status of the shoes was determined by noting the presence of a 'slip-resistant' marking on the sole. Poisson regression with robust SE was used to calculate prevalence ratios. 320 participants wore slip-resistant shoes (67%). In the multivariate analysis, the prevalence of slip-resistant shoe use was lowest in 15-19-year age group. Women were more likely to wear slip-resistant shoes (prevalence ratio 1.18, 95% CI 1.07 to 1.31). The prevalence of slip-resistant shoe use was lower when no guidance regarding slip-resistant shoes was given as compared to when they were provided by the employer (prevalence ratio 0.66, 95% CI 0.55 to 0.79). Education level, job tenure and the mean coefficient of friction had no significant effects on the use of slip-resistant shoes. Provision of slip-resistant shoes was the strongest predictor of their use. Given their effectiveness and low cost, employers should consider providing slip-resistant shoes at work.
Lightweight, Economical Device Alleviates Drop Foot
NASA Technical Reports Server (NTRS)
Deis, B. C.
1983-01-01
Corrective apparatus alleviates difficulties in walking for victims of drop foot. Elastic line attached to legband provides flexible support to toe of shoe. Device used with flat (heelless) shoes, sneakers, crepe-soled shoes, canvas shoes, and many other types of shoes not usable with short leg brace.
Patel, Shelain; Garg, Parag; Fazal, M Ali; Shahid, Muhammad S; Park, Derek H; Ray, Pinak S
2018-06-01
The reverse camber shoe is commonly used after hallux valgus corrective surgery to offload the forefoot but is associated with back pain and poor compliance. Recent designs of postoperative shoes may obviate the need for a reverse camber. The purpose of this study was to compare the effects of a reverse camber shoe and a noncambered shoe with transitional rigidity after hallux valgus correction. A cohort of 80 feet was prospectively studied undergoing surgery at a single NHS trust. The first 40 feet received the reverse cambered Jura Medical Off-loader Heel shoe and the subsequent 40 feet received the noncambered DonJoy Podalux shoe. No demographic differences existed between the groups and data were collected at 2 weeks, 6 weeks, and 6 months. The Manchester-Oxford Foot Questionnaire (MOXFQ), a 5-question survey and dichotomous question about back pain was used to assess clinical outcome and radiographs were reviewed by 2 orthopaedic surgeons to monitor for loss of correction. Both groups experienced comparable improvements in MOXFQ and shoe satisfaction from 2 weeks compared with 6 weeks. Six patients experienced back pain in the reverse cambered shoe group and none in the noncambered shoe group. Five patients stopped using the reverse cambered shoe during the first 6 weeks after surgery and none stopped using their prescribed noncambered shoe. No loss of corrections were observed in either group. Both shoe designs gave equal foot specific functional and radiological outcomes, but the noncambered shoe with transitional rigidity was associated with less back pain and better compliance. Level II: Prospective comparative study.
Shultz, Rebecca; Jenkyn, Thomas
2012-01-01
Measuring individual foot joint motions requires a multi-segment foot model, even when the subject is wearing a shoe. Each foot segment must be tracked with at least three skin-mounted markers, but for these markers to be visible to an optical motion capture system holes or 'windows' must be cut into the structure of the shoe. The holes must be sufficiently large avoiding interfering with the markers, but small enough that they do not compromise the shoe's structural integrity. The objective of this study was to determine the maximum size of hole that could be cut into a running shoe upper without significantly compromising its structural integrity or changing the kinematics of the foot within the shoe. Three shoe designs were tested: (1) neutral cushioning, (2) motion control and (3) stability shoes. Holes were cut progressively larger, with four sizes tested in all. Foot joint motions were measured: (1) hindfoot with respect to midfoot in the frontal plane, (2) forefoot twist with respect to midfoot in the frontal plane, (3) the height-to-length ratio of the medial longitudinal arch and (4) the hallux angle with respect to first metatarsal in the sagittal plane. A single subject performed level walking at her preferred pace in each of the three shoes with ten repetitions for each hole size. The largest hole that did not disrupt shoe integrity was an oval of 1.7cm×2.5cm. The smallest shoe deformations were seen with the motion control shoe. The least change in foot joint motion was forefoot twist in both the neutral shoe and stability shoe for any size hole. This study demonstrates that for a hole smaller than this size, optical motion capture with a cluster-based multi-segment foot model is feasible for measure foot in shoe kinematics in vivo. Copyright © 2011. Published by Elsevier Ltd.
Bus, Sicco A; Maas, Josina C; Otterman, Nicoline M
2017-12-01
A forefoot-offloading shoes has a negative-heel rocker outsole and is used to treat diabetic plantar forefoot ulcers, but its mechanisms of action and their association with offloading and gait stability are not sufficiently clear. Ten neuropathic diabetic patients were tested in a forefoot-offloading shoe and subsequently in a control shoe with no specific offloading construction, both worn on the right foot (control shoe on left), while walking at 1.2m/s. 3D-instrumented gait analysis and simultaneous in-shoe plantar pressure measurements were used to explain the shoe's offloading efficacy and to define centre-of-pressure profiles and left-to-right symmetry in ankle joint dynamics (0-1, 1:maximum symmetry), as indicators for gait stability. Compared to the control shoe, peak forefoot pressures, vertical ground reaction force, plantar flexion angle, and ankle joint moment, all in terminal stance, and the proximal-to-distal centre-of-pressure trajectory were significantly reduced in the forefoot-offloading shoe (P<0.01). Peak ankle joint power was 51% lower in the forefoot-offloading shoe compared to the control shoe: 1.61 (0.35) versus 3.30 (0.84) W/kg (mean (SD), P<0.001), and was significantly associated with forefoot peak pressure (R 2 =0.72, P<0.001). Left-to-right symmetry in the forefoot-offloading shoe was 0.39 for peak ankle joint power. By virtue to their negative-heel rocker-outsole design, forefoot-offloading shoes significantly alter a neuropathic diabetic patient's gait towards a reduced push-off power that explains the shoe's offloading efficacy. However, gait symmetry and stability are compromised, and may be factors in the low perceived walking discomfort and limited use of these shoes in clinical practice. Shoe modifications (e.g. less negative heel, a more cushioning insole) may resolve this trade-off between efficacy and usability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kinematic and kinetic comparison of running in standard and minimalist shoes.
Willy, Richard W; Davis, Irene S
2014-02-01
The purpose of this study was to determine whether running in a minimalist shoe results in a reduction in ground reaction forces and alters kinematics over standard shoe running. The secondary purpose of this study was to determine whether within-session accommodation to a novel minimalist shoe occurs. Subjects were 14 male, rearfoot striking runners who had never run in a minimalist shoe. Subjects were tested while running 3.35 m·s(-1) for 10 min on an instrumented treadmill in a minimalist and a standard shoe as three-dimensional lower extremity kinematics and kinetics were evaluated. Data were collected at minute 1 and then again after 10 min of running in both shoe conditions to evaluate accommodation to the shoe conditions. Shoe-time interactions were not found for any of the variables of interest. Minimalist shoe running resulted in no changes in step length (P = 0.967) or in step rate (P = 0.230). At footstrike, greater knee flexion (P = 0.001) and greater dorsiflexion angle (P = 0.025) were noted in the minimalist shoe. Vertical impact peak (P = 0.017) and average vertical loading rate (P < 0.000) were greater during minimalist shoe running. There were main effects of time as dorsiflexion angle decreased (P = 0.035), foot inclination at footstrike decreased (P = 0.048), and knee flexion at footstrike increased (P = 0.002), yet the vertical impact peak (P = 0.002) and average vertical loading rate (P < 0.000) increased. Running in a minimalist shoe appears to, at least in the short term, increase loading of the lower extremity over standard shoe running. The accommodation period resulted in less favorable landing mechanics in both shoes. These findings bring into question whether minimal shoes will provide enough feedback to induce an alteration that is similar to barefoot running.
Transmission of microbial pathogens by cedar shoe trees.
Woeste, S
1998-01-01
Cedar shoe trees are used to keep shoes from shrinking and losing their shape. When the same cedar shoe trees are used by different shoe wearers, there is a chance of transmission of disease-causing microorganisms between people. This study was conducted to determine whether or not transmission of disease-causing microorganisms via cedar shoe trees occurs, what kinds of microorganisms can be transmitted, and how many organisms can be transmitted. In this study, both bacteria and bacterial spores were transmitted, while fungi were not; however, only several hundred to several thousand pathogenic bacteria were transmitted between any two shoes.
Effect of revised high-heeled shoes on foot pressure and static balance during standing.
Bae, Young-Hyeon; Ko, Mansoo; Park, Young-Soul; Lee, Suk-Min
2015-04-01
[Purpose] The purpose of this study was to investigate the effects of revised high-heeled shoes on the foot pressure ratio and static balance during standing. [Subjects and Methods] A single-subject design was used, 15 healthy women wearing revised high-heeled shoes and general high-heeled shoes in a random order. The foot pressure ratio and static balance scores during standing were measured using a SpaceBalance 3D system. [Results] Forefoot and rearfoot pressures were significantly different between the 2 types of high-heeled shoes. Under the 3 conditions tested, the static balance score was higher for the revised high-heeled shoes than for the general high-heeled shoes, but this difference was not statistically significant. [Conclusion] Revised high-heeled shoes are preferable to general high-heeled shoes, as they result in normalization of normalized foot pressure and a positive effect on static balance.
Effect of revised high-heeled shoes on foot pressure and static balance during standing
Bae, Young-Hyeon; Ko, Mansoo; Park, Young-Soul; Lee, Suk-Min
2015-01-01
[Purpose] The purpose of this study was to investigate the effects of revised high-heeled shoes on the foot pressure ratio and static balance during standing. [Subjects and Methods] A single-subject design was used, 15 healthy women wearing revised high-heeled shoes and general high-heeled shoes in a random order. The foot pressure ratio and static balance scores during standing were measured using a SpaceBalance 3D system. [Results] Forefoot and rearfoot pressures were significantly different between the 2 types of high-heeled shoes. Under the 3 conditions tested, the static balance score was higher for the revised high-heeled shoes than for the general high-heeled shoes, but this difference was not statistically significant. [Conclusion] Revised high-heeled shoes are preferable to general high-heeled shoes, as they result in normalization of normalized foot pressure and a positive effect on static balance. PMID:25995572
Injuries And Footwear (Part 2): Minimalist Running Shoes.
Knapik, Joseph J; Orr, Robin; Pope, Rodney; Grier, Tyson
2016-01-01
This article defines minimalist running shoes and examines physiological, biomechanical, and injury rate differences when running in conventional versus minimalist running shoes. A minimalist shoe is one that provides "minimal interference with the natural movement of the foot, because of its high flexibility, low heel to toe drop, weight and stack height, and the absence of motion control and stability devices." Most studies indicate that running in minimalist shoes results in a lower physiological energy cost than running in conventional shoes, likely because of the lower weight of the minimalist shoe. Most individuals running in conventional shoes impact the ground heel first (rearfoot strike pattern), whereas most people running in minimalist shoes tend to strike with the front of the foot (forefoot strike pattern). The rate at which force is developed on ground impact (i.e., the loading rate) is generally higher when running in conventional versus minimalist shoes. Findings from studies that have looked at associations between injuries and foot strike patterns or injuries and loading rates are conflicting, so it is not clear if these factors influence injury rates; more research is needed. Better-designed prospective studies indicate that bone stress injuries and the overall injury incidence are higher in minimalist shoes during the early weeks (10-12 weeks) of transition to this type of footwear. Longer-term studies are needed to define injury rates once runners are fully transitioned to minimalist shoes. At least one longer-term minimalist-shoe investigation is ongoing and, hopefully, will be published soon. 2016.
Stiffness Effects in Rocker-Soled Shoes: Biomechanical Implications
Su, Pei-Fang; Chung, Chia-Hua; Hsia, Chi-Chun; Chang, Chih-Han
2017-01-01
Rocker-soled shoes provide a way to reduce the possible concentration of stress, as well as change movement patterns, during gait. This study attempts to examine how plantar force and spatio-temporal variables are affected by two rocker designs, one with softer and one with denser sole materials, by comparing them with the barefoot condition and with flat-soled shoes. Eleven subjects’ gait parameters during walking and jogging were recorded. Our results showed that compared with barefoot walking, plantar forces were higher for flat shoes while lower for both types of rocker shoes, the softer-material rocker being the lowest. The plantar force of flat shoes is greater than the vertical ground reaction force, while that of both rocker shoes is much less, 13.87–30.55% body weight. However, as locomotion speed increased to jogging, for all shoe types, except at the second peak plantar force of the denser sole material rocker shoes, plantar forces were greater than for bare feet. More interestingly, because the transmission of force was faster while jogging, greater plantar force was seen in the rocker-soled shoes with softer material than with denser material; results for higher-speed shock absorption in rocker-soled shoes with softer material were thus not as good. In general, the rolling phenomena along the bottom surface of the rocker shoes, as well as an increase in the duration of simultaneous curve rolling and ankle rotation, could contribute to the reduction of plantar force for both rocker designs. The possible mechanism is the conversion of vertical kinetic energy into rotational kinetic energy. To conclude, since plantar force is related to foot-ground interface and deceleration methods, rocker-design shoes could achieve desired plantar force reduction through certain rolling phenomena, shoe-sole stiffness levels, and locomotion speeds. PMID:28046009
Stiffness Effects in Rocker-Soled Shoes: Biomechanical Implications.
Lin, Shih-Yun; Su, Pei-Fang; Chung, Chia-Hua; Hsia, Chi-Chun; Chang, Chih-Han
2017-01-01
Rocker-soled shoes provide a way to reduce the possible concentration of stress, as well as change movement patterns, during gait. This study attempts to examine how plantar force and spatio-temporal variables are affected by two rocker designs, one with softer and one with denser sole materials, by comparing them with the barefoot condition and with flat-soled shoes. Eleven subjects' gait parameters during walking and jogging were recorded. Our results showed that compared with barefoot walking, plantar forces were higher for flat shoes while lower for both types of rocker shoes, the softer-material rocker being the lowest. The plantar force of flat shoes is greater than the vertical ground reaction force, while that of both rocker shoes is much less, 13.87-30.55% body weight. However, as locomotion speed increased to jogging, for all shoe types, except at the second peak plantar force of the denser sole material rocker shoes, plantar forces were greater than for bare feet. More interestingly, because the transmission of force was faster while jogging, greater plantar force was seen in the rocker-soled shoes with softer material than with denser material; results for higher-speed shock absorption in rocker-soled shoes with softer material were thus not as good. In general, the rolling phenomena along the bottom surface of the rocker shoes, as well as an increase in the duration of simultaneous curve rolling and ankle rotation, could contribute to the reduction of plantar force for both rocker designs. The possible mechanism is the conversion of vertical kinetic energy into rotational kinetic energy. To conclude, since plantar force is related to foot-ground interface and deceleration methods, rocker-design shoes could achieve desired plantar force reduction through certain rolling phenomena, shoe-sole stiffness levels, and locomotion speeds.
Effect of rocker-soled shoes on parameters of knee joint load in knee osteoarthritis.
Madden, Elizabeth G; Kean, Crystal O; Wrigley, Tim V; Bennell, Kim L; Hinman, Rana S
2015-01-01
This study evaluated the immediate effects of rocker-soled shoes on parameters of the knee adduction moment (KAM) and pain in individuals with knee osteoarthritis (OA). Three-dimensional gait analysis was performed on 30 individuals (mean (SD): age, 61 (7) yr; 15 (50%) male) with radiographic and symptomatic knee OA under three walking conditions in a randomized order: i) wearing rocker-soled shoes (Skechers Shape-ups), ii) wearing non-rocker-soled shoes (ASICS walking shoes), and iii) barefoot. Peak KAM and KAM angular impulse were measured as primary indicators of knee load distribution. Secondary measures included the knee flexion moment (KFM) and knee pain during walking. Peak KAM was significantly lower when wearing the rocker-soled shoes compared with that when wearing the non-rocker-soled shoes (mean difference (95% confidence interval), -0.27 (-0.42 to -0.12) N·m/BW × Ht%; P < 0.001). Post hoc tests revealed no significant difference in KAM impulse between rocker-soled and non-rocker-soled shoe conditions (P = 0.13). Both peak KAM and KAM impulse were significantly higher during both shoe conditions compared with those during the barefoot condition (P < 0.001). There were no significant differences in KFM (P = 0.36) or knee pain (P = 0.89) between conditions. Rocker-soled shoes significantly reduced peak KAM when compared with non-rocker-soled shoes, without a concomitant change in KFM, and thus may potentially reduce medial knee joint loading. However, KAM parameters in the rocker-soled shoes remained significantly higher than those during barefoot walking. Wearing rocker-soled shoes did not have a significant immediate effect on walking pain. Further research is required to evaluate whether rocker-soled shoes can influence symptoms and progression of knee OA with prolonged wear.
Lam, Wing-Kai; Ryue, Jaejin; Lee, Ki-Kwang; Park, Sang-Kyoon; Cheung, Jason Tak-Man; Ryu, Jiseon
2017-01-01
Lunge is one frequently executed movement in badminton and involves a unique sagittal footstrike angle of more than 40 degrees at initial ground contact compared with other manoeuvres. This study examined if the shoe heel curvature design of a badminton shoe would influence shoe-ground kinematics, ground reaction forces, and knee moments during lunge. Eleven elite and fifteen intermediate players performed five left-forward maximum lunge trials with Rounded Heel Shoe (RHS), Flattened Heel Shoe (FHS), and Standard Heel Shoes (SHS). Shoe-ground kinematics, ground reaction forces, and knee moments were measured by using synchronized force platform and motion analysis system. A 2 (Group) x 3 (Shoe) ANOVA with repeated measures was performed to determine the effects of different shoes and different playing levels, as well as the interaction of two factors on all variables. Shoe effect indicated that players demonstrated lower maximum vertical loading rate in RHS than the other two shoes (P < 0.05). Group effect revealed that elite players exhibited larger footstrike angle, faster approaching speed, lower peak horizontal force and horizontal loading rates but higher vertical loading rates and larger peak knee flexion and extension moments (P < 0.05). Analysis of Interactions of Group x Shoe for maximum and mean vertical loading rates (P < 0.05) indicated that elite players exhibited lower left maximum and mean vertical loading rates in RHS compared to FHS (P < 0.01), while the intermediate group did not show any Shoe effect on vertical loading rates. These findings indicate that shoe heel curvature would play some role in altering ground reaction force impact during badminton lunge. The differences in impact loads and knee moments between elite and intermediate players may be useful in optimizing footwear design and training strategy to minimize the potential risks for impact related injuries in badminton.
Changes in plantar loading based on shoe type and sex during a jump-landing task.
Debiasio, Justin C; Russell, Mary E; Butler, Robert J; Nunley, James A; Queen, Robin M
2013-01-01
Metatarsal stress fractures are common in cleated-sport athletes. Previous authors have shown that plantar loading varies with footwear, sex, and the athletic task. To examine the effects of shoe type and sex on plantar loading in the medial midfoot (MMF), lateral midfoot (LMF), medial forefoot (MFF), middle forefoot (MidFF), and lateral forefoot (LFF) during a jump-landing task. Crossover study. Laboratory. Twenty-seven recreational athletes (14 men, 13 women) with no history of lower extremity injury in the last 6 months and no history of foot or ankle surgery. The athletes completed 7 jumping trials while wearing bladed-cleat, turf-cleat, and running shoes. Maximum force, contact area, contact time, and the force-time integral were analyzed in each foot region. We calculated 2 × 3 analyses of variance (α = .05) to identify shoe-condition and sex differences. We found no shoe × sex interactions, but the MMF, LMF, MFF, and LFF force-time integrals were greater in men (P < .03). The MMF maximum force was less with the bladed-cleat shoes (P = .02). Total foot and MidFF maximum force was less with the running shoes (P < .01). The MFF and LFF maximum forces were different among all shoe conditions (P < .01). Total foot contact area was less in the bladed-cleat shoes (P = .01). The MMF contact area was greatest in the running shoes (P < .01). The LFF contact area was less in the running shoes (P = .03). The MFF and LFF force-time integrals were greater with the bladed-cleat shoes (P < .01). The MidFF force-time integral was less in the running shoes (P < .01). Independent of shoe, men and women loaded the foot differently during a jump landing. The bladed cleat increased forefoot loading, which may increase the risk for forefoot injury. The type of shoe should be considered when choosing footwear for athletes returning to activity after metatarsal stress fractures.
Cheung, Jason Tak-Man; Ryu, Jiseon
2017-01-01
Background Lunge is one frequently executed movement in badminton and involves a unique sagittal footstrike angle of more than 40 degrees at initial ground contact compared with other manoeuvres. This study examined if the shoe heel curvature design of a badminton shoe would influence shoe-ground kinematics, ground reaction forces, and knee moments during lunge. Methods Eleven elite and fifteen intermediate players performed five left-forward maximum lunge trials with Rounded Heel Shoe (RHS), Flattened Heel Shoe (FHS), and Standard Heel Shoes (SHS). Shoe-ground kinematics, ground reaction forces, and knee moments were measured by using synchronized force platform and motion analysis system. A 2 (Group) x 3 (Shoe) ANOVA with repeated measures was performed to determine the effects of different shoes and different playing levels, as well as the interaction of two factors on all variables. Results Shoe effect indicated that players demonstrated lower maximum vertical loading rate in RHS than the other two shoes (P < 0.05). Group effect revealed that elite players exhibited larger footstrike angle, faster approaching speed, lower peak horizontal force and horizontal loading rates but higher vertical loading rates and larger peak knee flexion and extension moments (P < 0.05). Analysis of Interactions of Group x Shoe for maximum and mean vertical loading rates (P < 0.05) indicated that elite players exhibited lower left maximum and mean vertical loading rates in RHS compared to FHS (P < 0.01), while the intermediate group did not show any Shoe effect on vertical loading rates. Conclusions These findings indicate that shoe heel curvature would play some role in altering ground reaction force impact during badminton lunge. The differences in impact loads and knee moments between elite and intermediate players may be useful in optimizing footwear design and training strategy to minimize the potential risks for impact related injuries in badminton. PMID:28334016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jukkola, Glen D.; Teigen, Bard C.
Disclosed herein is a solids flow control valve comprising a standpipe; a shoe; and a transport pipe; wherein the standpipe is in operative communication with the shoe and lies upstream of the shoe; the standpipe comprising a first end and a second end, where the first end is in contact with a source that contains disposable solids and the second end is in fluid contact with the shoe; the shoe being operative to restrict the flow of the disposable solids; the transport pipe being disposed downstream of the shoe to receive and transport the solids from the shoe.
Bergstra, S A; Kluitenberg, B; Dekker, R; Bredeweg, S W; Postema, K; Van den Heuvel, E R; Hijmans, J M; Sobhani, S
2015-07-01
Minimalist running shoes have been proposed as an alternative to barefoot running. However, several studies have reported cases of forefoot stress fractures after switching from standard to minimalist shoes. Therefore, the aim of the current study was to investigate the differences in plantar pressure in the forefoot region between running with a minimalist shoe and running with a standard shoe in healthy female runners during overground running. Randomized crossover design. In-shoe plantar pressure measurements were recorded from eighteen healthy female runners. Peak pressure, maximum mean pressure, pressure time integral and instant of peak pressure were assessed for seven foot areas. Force time integral, stride time, stance time, swing time, shoe comfort and landing type were assessed for both shoe types. A linear mixed model was used to analyze the data. Peak pressure and maximum mean pressure were higher in the medial forefoot (respectively 13.5% and 7.46%), central forefoot (respectively 37.5% and 29.2%) and lateral forefoot (respectively 37.9% and 20.4%) for the minimalist shoe condition. Stance time was reduced with 3.81%. No relevant differences in shoe comfort or landing strategy were found. Running with a minimalist shoe increased plantar pressure without a change in landing pattern. This increased pressure in the forefoot region might play a role in the occurrence of metatarsal stress fractures in runners who switched to minimalist shoes and warrants a cautious approach to transitioning to minimalist shoe use. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
The Changes of COP and Foot Pressure after One Hour's Walking Wearing High-heeled and Flat Shoes
Ko, Dong Yeol; Lee, Han Suk
2013-01-01
[Purpose] This study aimed to determine the most appropriate height for shoe heels by measuring the displacement of the COP (center of pressure) and changes in the distribution of foot pressure after walking in flat (0.5 cm), middle-heeled (4 cm), and high-heeled (9 cm) shoes for 1 hour. [Methods] A single-subject design was used, with 15 healthy women wearing shoes with heels of each height in a random order. The foot pressure and displacement of COP before and after walking in an ordinary environment for 1 hour were measured using an FDM-S (zebris Medical GmbH, Germany). [Results] The distribution of foot pressure did not change significantly after walking in middle-heeled (4 cm) shoes but did change significantly after walking in either flat (0.5 cm) or high-heeled (9 cm) shoes. Similarly, the COP was not significantly displaced after walking in middle-heeled (4 cm) shoes but was significantly displaced after walking in either flat (0.5 cm) or high-heeled (9 cm) shoes. [Conclusion] Both flat and high-heeled shoes had adverse effects on the body. Middle-heeled (4 cm) shoes are preferable to both flat (0.5 cm) and high-heeled (9 cm) shoes for the health and comfort of the feet. PMID:24259782
Pearson, Stephen J; Whitaker, Alison F
2012-01-01
This study explores the relationship between dance shoe type and foot pressure characteristics. During adolescence, while the foot is still developing, limiting focal pressure on the feet may help reduce the risk of injury. In order to "condition" the feet for advanced dance, where pointe shoes are worn, it may be advisable to first utilize demi-pointe shoes. Eight female dancers were each tested in four footwear conditions (barefoot, soft, demi-pointe, and pointe shoes), and patterns of foot pressure were compared. A questionnaire was also distributed among sixty-five adolescent females currently training at vocational dance schools to examine shoe use and injury rate before and after the onset of pointe work. During ballet-specific dynamic movement, soft shoes and pointe shoes significantly vary in the plantar pressures they impose on the foot. Demi-pointe shoes provide an intermediate pressure condition, which may help the dancer adapt more gradually to the pressure demands of pointe shoes. Dancers who wore demi-pointe shoes prior to starting pointe were found to be less likely to sustain a ballet-related injury or a lower leg, ankle, or foot injury (22% compared to 30% in those who had not worn demi-pointe shoes). The dancers in this group were also older when they first reported an injury.
2004-05-05
KENNEDY SPACE CENTER, FLA. -- STS-114 Mission Specialist Andrew Thomas (left) talks to NASA Systems Engineer Robert Rokobauer (right) about the Crawler-Transporters. At center is Pilot James Kelly. Behind them is one of the 5.5-million-pound crawlers. The 10-foot-high track, one of two, contains 278 “shoes,” weighing 2,200 pounds each. The crawlers are guided by four trucks, one on each corner. The crawlers had recent modifications to the cab and muffler system. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
Athletic shoes: finding a good match.
Martin, D R
1997-09-01
When you walk into an athletic-shoe store, chances are you'll be overwhelmed by the selection and feel the marketing magnet of sports celebrities and their namesake shoes. Superstores may carry hundreds of different joggers from a dozen major brands. And the same goes for most other types of athletic shoes, from walkers and cross-trainers to basketball shoes and football cleats.
Knapik, Joseph J; Pope, Rodney; Orr, Robin; Grier, Tyson
2015-01-01
This article traces the history of the athletic shoe, examines whether selecting running shoes based on foot arch height influences injuries, and examines historical data on injury rates when physical training (PT) is performed in boots versus running shoes. In the 1980s and into the 2000s, running shoe companies were advertising specialized shoes with "motion control," "stability," and "cushioning," designed for individuals with low, normal, and high arches, respectively. Despite marketing claims that these shoes would reduce injury rates, coordinated studies in Army, Air Force, and Marine Corps basic training showed that assigning or selecting shoes on this basis had no effect on injury rates. Consistent with this finding, biomechanical studies have shown that the relationships between arch height, foot joint mobility, and rear-foot motion are complex, variable, and frequently not as strong as often assumed. In 1982, the US Army switched from PT in boots to PT in running shoes because of the belief that boots were causing injuries and that running shoes would reduce injury rates. However, a historical comparison of injury rates before and after the switch to running shoes showed virtually no difference in injury risk between the two periods. It is not clear at this point if the type of footwear effects injury incidence. 2015.
Effects of forefoot bending elasticity of running shoes on gait and running performance.
Chen, Chia-Hsiang; Tu, Kuan-Hua; Liu, Chiang; Shiang, Tzyy-Yuang
2014-12-01
The aim of this study was to investigate the effects of forefoot bending elasticity of running shoes on kinetics and kinematics during walking and running. Twelve healthy male participants wore normal and elastic shoes while walking at 1.5m/s, jogging at 2.5m/s, and running at 3.5m/s. The elastic shoes were designed by modifying the stiffness of flexible shoes with elastic bands added to the forefoot part of the shoe sole. A Kistler force platform and Vicon system were used to collect kinetic and kinematic data during push-off. Electromyography was used to record the muscle activity of the medial gastrocnemius and medial tibialis anterior. A paired dependent t-test was used to compare the various shoes and the level of significance was set at α=.05. The range of motion of the ankle joint and the maximal anterior-posterior propulsive force differed significantly between elastic and flexible shoes in walking and jogging. The contact time and medial gastrocnemius muscle activation in the push-off phase were significantly lower for the elastic shoes compared with the flexible shoes in walking and jogging. The elastic forefoot region of shoes can alter movement characteristics in walking and jogging. However, for running, the elasticity used in this study was not strong enough to exert a similar effect. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Bishop, Chris; Bartold, Simon; Thewlis, Dominic
2013-11-01
This case study reports the kinematic effect of 2 different cricket shoes on a fast bowler who reports a history of posterior ankle joint impingement. The participant bowled 6 trials in 2 pairs of cricket shoes. The 3-dimensional kinematics of the joints of the front leg was quantified during stance phase of the delivery stride. Wearing the high-cut shoe resulted in the ankle being 7.7-degree angle more plantarflexed at initial contact compared with the low-cut shoe. Again, when wearing the high-cut shoe compared with the low-cut shoe, the ankle joint was 15.5-degree angle more adducted and the knee was 4.1-degree angle less externally rotated at initial contact. This case study identifies the bowler's preferred shoe (high-cut shoe) as a potential contributing factor to the symptoms he was experiencing.
Awareness and compliance with recommended running shoe guidelines among U.S. Army soldiers.
Teyhen, Deydre S; Thomas, Rachelle M; Roberts, Candi C; Gray, Brian E; Robbins, Travis; McPoil, Thomas; Childs, John D; Molloy, Joseph M
2010-11-01
The purpose of this study was to determine awareness and compliance with recommended running shoe selection, sizing, and replacement guidelines among U.S. Army soldiers. Soldiers (n = 524) attending training at Fort Sam Houston, Texas completed self-report questionnaires and a foot assessment, which included measurement of foot size and arch height index. Researchers examined each soldier's running shoes for type, wear pattern, and general condition. Thirty-five percent of the soldiers wore shoes that were inappropriately sized; 56.5% wore shoes that were inappropriate for their foot type. Thirty-five percent of the soldiers had excessively worn shoes and 63% did not know recommended shoe replacement guidelines. Further efforts may be necessary to ensure that soldiers are aware of and compliant with recommended running shoe selection, sizing, and replacement guidelines. Future research is needed to determine whether adherence to these guidelines has a favorable effect on reducing risk of overuse injury.
Changes in Plantar Loading Based on Shoe Type and Sex During a Jump-Landing Task
DeBiasio, Justin C.; Russell, Mary E.; Butler, Robert J.; Nunley, James A.; Queen, Robin M.
2013-01-01
Context: Metatarsal stress fractures are common in cleated-sport athletes. Previous authors have shown that plantar loading varies with footwear, sex, and the athletic task. Objective: To examine the effects of shoe type and sex on plantar loading in the medial midfoot (MMF), lateral midfoot (LMF), medial forefoot (MFF), middle forefoot (MidFF), and lateral forefoot (LFF) during a jump-landing task. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Twenty-seven recreational athletes (14 men, 13 women) with no history of lower extremity injury in the last 6 months and no history of foot or ankle surgery. Main Outcome Measure(s): The athletes completed 7 jumping trials while wearing bladed-cleat, turf-cleat, and running shoes. Maximum force, contact area, contact time, and the force-time integral were analyzed in each foot region. We calculated 2 × 3 analyses of variance (α = .05) to identify shoe-condition and sex differences. Results: We found no shoe × sex interactions, but the MMF, LMF, MFF, and LFF force-time integrals were greater in men (P < .03). The MMF maximum force was less with the bladed-cleat shoes (P = .02). Total foot and MidFF maximum force was less with the running shoes (P < .01). The MFF and LFF maximum forces were different among all shoe conditions (P < .01). Total foot contact area was less in the bladed-cleat shoes (P = .01). The MMF contact area was greatest in the running shoes (P < .01). The LFF contact area was less in the running shoes (P = .03). The MFF and LFF force-time integrals were greater with the bladed-cleat shoes (P < .01). The MidFF force-time integral was less in the running shoes (P < .01). Conclusions: Independent of shoe, men and women loaded the foot differently during a jump landing. The bladed cleat increased forefoot loading, which may increase the risk for forefoot injury. The type of shoe should be considered when choosing footwear for athletes returning to activity after metatarsal stress fractures. PMID:24067149
Effect of Minimalist Footwear on Running Efficiency: A Randomized Crossover Trial.
Gillinov, Stephen M; Laux, Sara; Kuivila, Thomas; Hass, Daniel; Joy, Susan M
2015-05-01
Although minimalist footwear is increasingly popular among runners, claims that minimalist footwear enhances running biomechanics and efficiency are controversial. Minimalist and barefoot conditions improve running efficiency when compared with traditional running shoes. Randomized crossover trial. Level 3. Fifteen experienced runners each completed three 90-second running trials on a treadmill, each trial performed in a different type of footwear: traditional running shoes with a heavily cushioned heel, minimalist running shoes with minimal heel cushioning, and barefoot (socked). High-speed photography was used to determine foot strike, ground contact time, knee angle, and stride cadence with each footwear type. Runners had more rearfoot strikes in traditional shoes (87%) compared with minimalist shoes (67%) and socked (40%) (P = 0.03). Ground contact time was longest in traditional shoes (265.9 ± 10.9 ms) when compared with minimalist shoes (253.4 ± 11.2 ms) and socked (250.6 ± 16.2 ms) (P = 0.005). There was no difference between groups with respect to knee angle (P = 0.37) or stride cadence (P = 0.20). When comparing running socked to running with minimalist running shoes, there were no differences in measures of running efficiency. When compared with running in traditional, cushioned shoes, both barefoot (socked) running and minimalist running shoes produce greater running efficiency in some experienced runners, with a greater tendency toward a midfoot or forefoot strike and a shorter ground contact time. Minimalist shoes closely approximate socked running in the 4 measurements performed. With regard to running efficiency and biomechanics, in some runners, barefoot (socked) and minimalist footwear are preferable to traditional running shoes.
The Effect of Training in Minimalist Running Shoes on Running Economy
Ridge, Sarah T.; Standifird, Tyler; Rivera, Jessica; Johnson, A. Wayne; Mitchell, Ulrike; Hunter, Iain
2015-01-01
The purpose of this study was to examine the effect of minimalist running shoes on oxygen uptake during running before and after a 10-week transition from traditional to minimalist running shoes. Twenty-five recreational runners (no previous experience in minimalist running shoes) participated in submaximal VO2 testing at a self-selected pace while wearing traditional and minimalist running shoes. Ten of the 25 runners gradually transitioned to minimalist running shoes over 10 weeks (experimental group), while the other 15 maintained their typical training regimen (control group). All participants repeated submaximal VO2 testing at the end of 10 weeks. Testing included a 3 minute warm-up, 3 minutes of running in the first pair of shoes, and 3 minutes of running in the second pair of shoes. Shoe order was randomized. Average oxygen uptake was calculated during the last minute of running in each condition. The average change from pre- to post-training for the control group during testing in traditional and minimalist shoes was an improvement of 3.1 ± 15.2% and 2.8 ± 16.2%, respectively. The average change from pre- to post-training for the experimental group during testing in traditional and minimalist shoes was an improvement of 8.4 ± 7.2% and 10.4 ± 6.9%, respectively. Data were analyzed using a 2-way repeated measures ANOVA. There were no significant interaction effects, but the overall improvement in running economy across time (6.15%) was significant (p = 0.015). Running in minimalist running shoes improves running economy in experienced, traditionally shod runners, but not significantly more than when running in traditional running shoes. Improvement in running economy in both groups, regardless of shoe type, may have been due to compliance with training over the 10-week study period and/or familiarity with testing procedures. Key points Running in minimalist footwear did not result in a change in running economy compared to running in traditional footwear prior to 10 weeks of training. Both groups (control and experimental) showed an improvement in running economy in both types of shoes after 10 weeks of training. After transitioning to minimalist running shoes, running economy was not significantly different while running in traditional or minimalist footwear. PMID:26336352
The Effect of Training in Minimalist Running Shoes on Running Economy.
Ridge, Sarah T; Standifird, Tyler; Rivera, Jessica; Johnson, A Wayne; Mitchell, Ulrike; Hunter, Iain
2015-09-01
The purpose of this study was to examine the effect of minimalist running shoes on oxygen uptake during running before and after a 10-week transition from traditional to minimalist running shoes. Twenty-five recreational runners (no previous experience in minimalist running shoes) participated in submaximal VO2 testing at a self-selected pace while wearing traditional and minimalist running shoes. Ten of the 25 runners gradually transitioned to minimalist running shoes over 10 weeks (experimental group), while the other 15 maintained their typical training regimen (control group). All participants repeated submaximal VO2 testing at the end of 10 weeks. Testing included a 3 minute warm-up, 3 minutes of running in the first pair of shoes, and 3 minutes of running in the second pair of shoes. Shoe order was randomized. Average oxygen uptake was calculated during the last minute of running in each condition. The average change from pre- to post-training for the control group during testing in traditional and minimalist shoes was an improvement of 3.1 ± 15.2% and 2.8 ± 16.2%, respectively. The average change from pre- to post-training for the experimental group during testing in traditional and minimalist shoes was an improvement of 8.4 ± 7.2% and 10.4 ± 6.9%, respectively. Data were analyzed using a 2-way repeated measures ANOVA. There were no significant interaction effects, but the overall improvement in running economy across time (6.15%) was significant (p = 0.015). Running in minimalist running shoes improves running economy in experienced, traditionally shod runners, but not significantly more than when running in traditional running shoes. Improvement in running economy in both groups, regardless of shoe type, may have been due to compliance with training over the 10-week study period and/or familiarity with testing procedures. Key pointsRunning in minimalist footwear did not result in a change in running economy compared to running in traditional footwear prior to 10 weeks of training.Both groups (control and experimental) showed an improvement in running economy in both types of shoes after 10 weeks of training.After transitioning to minimalist running shoes, running economy was not significantly different while running in traditional or minimalist footwear.
Staheli, L T
1991-08-01
1. Optimum foot development occurs in the barefoot environment. 2. The primary role of shoes is to protect the foot from injury and infection. 3. Stiff and compressive footwear may cause deformity, weakness, and loss of mobility. 4. The term "corrective shoes" is a misnomer. 5. Shock absorption, load distribution, and elevation are valid indications for shoe modifications. 6. Shoe selection for children should be based on the barefoot model. 7. Physicians should avoid and discourage the commercialization and "media"-ization of footwear. Merchandising of the "corrective shoe" is harmful to the child, expensive for the family, and a discredit to the medical profession.
Wyndow, Narelle; Crossley, Kay M; Vicenzino, Bill; Tucker, Kylie; Collins, Natalie J
2017-01-01
Patellofemoral joint osteoarthritis is a common condition, yet information regarding conservative management is lacking. Foot orthoses are an effective intervention for improving pain and function in younger individuals with patellofemoral pain and may be effective in those with patellofemoral osteoarthritis. This pilot study will seek to establish the feasibility of a phase III randomised controlled trial to investigate whether foot orthoses worn in prescribed motion controlled footwear are superior to prescribed motion control footwear alone in the management of patellofemoral osteoarthritis. This phase II pilot clinical trial is designed as a randomized, single-blind, parallel group, two arm, superiority trial. The trial will recruit 44 participants from Queensland and Tasmania, Australia. Volunteers aged 40 years and over must have clinical symptoms and radiographic evidence of patellofemoral osteoarthritis to be eligible for inclusion. Those eligible will be randomized to receive either foot orthoses and prescribed motion control shoes, or prescribed motion control shoes alone, to be worn for a period of 4 months. The feasibility of a phase III clinical trial will be evaluated by assessing factors such as recruitment rate, number of eligible participants, participant compliance with the study protocol, adverse events, and drop-out rate. A secondary aim of the study will be to determine completion rates and calculate effect sizes for patient reported outcome measures such as knee-related symptoms, function, quality of life, kinesiophobia, self-efficacy, general and mental health, and physical activity at 2 and 4 months. Primary outcomes will be reported descriptively while effect sizes and 95% confidence intervals will be calculated for the secondary outcome measures. Data will be analysed using an intention-to-treat principle. The results of this pilot trial will help determine the feasibility of a phase III clinical trial investigating whether foot orthoses plus motion control footwear are superior to motion control footwear alone in individuals with patellofemoral osteoarthritis. A Phase III clinical trial will help guide footwear and foot orthoses recommendations in the clinical management of this disorder. Retrospectively registered with the Australian New Zealand Clinical Trials Registry: ACTRN12615000002583. Date registered: 07/01/15.
Effect of constrained weight shift on the static balance and muscle activation of stroke patients
Kang, Kyung Woo; Kim, Kyoung; Lee, Na Kyung; Kwon, Jung Won; Son, Sung Min
2015-01-01
[Purpose] The purpose of this study was to evaluate the effects of constrained weight shift induced by shoe lift beneath the unaffected lower extremity, on balance functions and electromyography of the affected lower extremity of stroke patients. [Subjects and Methods] Twelve patients with unilateral stroke were recruited as volunteers for this study. The subjects were repeatedly measured in a randomized order under three conditions: no-shoe lift, and shoe lifts of 5 mm and 10 mm heights beneath the unaffected lower extremity. [Results] Standing with a 10 mm shoe lift for the unaffected lower extremity decreased the mean velocity of mediolateral sway compared to no-shoe lift. Regarding the velocity of anteroposterior sway, standing with 5 mm and 10 mm shoe lifts decreased the mean velocity of anteroposterior sway. The muscle activation of the affected lower extremity was not significantly different among the no-shoe lift, 5 mm shoe lift and 10 mm shoe lift conditions; however, the muscle activities of the rectus femoris, biceps femoris, tibialis anterior, and medial gastrocnemius of the affected lower extremity progressively improved with increasing height of the shoe lift. [Conclusion] A constrained weight shift to the affected side elicited by a shoe insole of 10 mm height on the unaffected side can improve the static standing balance of stroke patients, and it resulted in 14–24% increases in the muscle activities of the affected leg. PMID:25931729
Influence of prolonged wearing of unstable shoes on upright standing postural control.
Sousa, Andreia S P; Macedo, Rui; Santos, Rubim; Sousa, Filipa; Silva, Andreia; Tavares, João Manuel R S
2016-02-01
To study the influence of prolonged wearing of unstable shoes on standing postural control in prolonged standing workers. The participants were divided into two groups: one wore unstable shoes while the other wore conventional shoes for 8weeks. Stabilometry parameters related to centre of pressure (CoP), rambling (RM) and trembling (TR) as well as the total agonist/antagonist muscle activity, antagonist co-activation and reciprocal activation were evaluated during upright standing, before and after the 8weeks period. In both moments, the subjects were evaluated wearing the unstable shoes and in barefoot. The unstable shoe condition presented increased CoP displacement related variables and decreased co-activation command compared to barefoot before and after the intervention. The prolonged wearing of unstable shoes led to: (1) reduction of medial-lateral CoP root mean square and area; (2) decreased anteroposterior RM displacement; (3) increased anteroposterior RM mean velocity and mediolateral RM displacement; (4) decreased anteroposterior TR RMS; and (5) increased thigh antagonist co-activation in the unstable shoe condition. The unstable shoe condition is associated to a higher destabilising effect that leads to a selection of more efficient and accurate postural commands compared to barefoot. Prolonged wearing of unstable shoes provides increased effectiveness and performance of the postural control system, while wearing of unstable shoes in upright standing, that are reflected by changes in CoP related variables and by a reorganisation of postural control commands. Copyright © 2015 Elsevier B.V. All rights reserved.
Bae, Young-Hyeon; Ko, Mansoo; Lee, Suk Min
2016-04-29
Revised high-heeled shoes (HHSs) were designed to improve the shortcomings of standard HHSs. This study was conducted to compare revised and standard HHSs with regard to joint angles and electromyographic (EMG) activity of the lower extremities during standing. The participants were five healthy young women. Data regarding joint angles and EMG activity of the lower extremities were obtained under three conditions: barefoot, when wearing revised HHSs, and when wearing standard HHSs. Lower extremity joint angles in the three dimensional plane were confirmed using a VICON motion capture system. EMG activity of the lower extremities was measured using active bipolar surface EMG. Kruskal-Wallis one-way analysis of variance by rank applied to analyze differences during three standing conditions. Compared with the barefoot condition, the standard HHSs condition was more different than the revised HHSs condition with regard to lower extremity joint angles during standing. EMG activity of the lower extremities was different for the revised HHSs condition, but the differences among the three conditions were not significant. Wearing revised HHSs may positively impact joint angles and EMG activity of the lower extremities by improving body alignment while standing.
Parents: Avoid Kids Foot Problems with the Right Shoes
... pain, Achilles tendonitis and even ankle sprains and stress fractures. Children with Flat Feet Children with flat feet need shoes with a wide toe box, maximum arch support and shock absorption. The best shoes to buy are oxford, lace-up shoes ...
... the Big Toe Ailments of the Smaller Toes Diabetic Foot Treatments Injections and other Procedures Treatments of the ... Shoe IQ How to "Read" Your Shoes Custom Diabetic Shoes 10 Points of Proper Shoe Fit ... Footwear Page Content Do you experience disabling foot problems like bunions, corns, calluses or hammer toes? ...
156. Frank Deras Jr., Photographer December 1997 DETAIL VIEW OF ...
156. Frank Deras Jr., Photographer December 1997 DETAIL VIEW OF STRAND SHOE AND EYE BAR AT SAN FRANCISCO ANCHORAGE (HUMAN SCALE: TERRY COSTA, CALTRANS EMPLOYEE), FACING SOUTHEAST. - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA
Effects of footwear and strike type on running economy.
Perl, Daniel P; Daoud, Adam I; Lieberman, Daniel E
2012-07-01
This study tests if running economy differs in minimal shoes versus standard running shoes with cushioned elevated heels and arch supports and in forefoot versus rearfoot strike gaits. We measured the cost of transport (mL O(2)·kg(-1)·m(-1)) in subjects who habitually run in minimal shoes or barefoot while they were running at 3.0 m·s(-1) on a treadmill during forefoot and rearfoot striking while wearing minimal and standard shoes, controlling for shoe mass and stride frequency. Force and kinematic data were collected when subjects were shod and barefoot to quantify differences in knee flexion, arch strain, plantar flexor force production, and Achilles tendon-triceps surae strain. After controlling for stride frequency and shoe mass, runners were 2.41% more economical in the minimal-shoe condition when forefoot striking and 3.32% more economical in the minimal-shoe condition when rearfoot striking (P < 0.05). In contrast, forefoot and rearfoot striking did not differ significantly in cost for either minimal- or standard-shoe running. Arch strain was not measured in the shod condition but was significantly greater during forefoot than rearfoot striking when barefoot. Plantar flexor force output was significantly higher in forefoot than in rearfoot striking and in barefoot than in shod running. Achilles tendon-triceps surae strain and knee flexion were also lower in barefoot than in standard-shoe running. Minimally shod runners are modestly but significantly more economical than traditionally shod runners regardless of strike type, after controlling for shoe mass and stride frequency. The likely cause of this difference is more elastic energy storage and release in the lower extremity during minimal-shoe running.
Talaty, Mukul; Patel, Sona; Esquenazi, Alberto
2016-01-01
Rocker bottom shoes have recently gained considerable popularity, likely in part because of the many purported benefits, including reducing joint loading and toning muscles. Scientific inquiry about these benefits has not kept pace with the increased usage of this shoe type. A fundamental premise of rocker bottom shoes is that they transform hard, flat, level surfaces into more uneven ones. Published studies have described a variety of such shoes-all having a somewhat rounded bottom and a cut heel region or a cut forefoot region, or both (double rocker). Despite the fundamentally similar shoe geometries, the reported effects of rocker bottom shoes on gait biomechanics have varied considerably. Ten healthy subjects agreed to participate in the present study and were given appropriately sized Masai Barefoot Technology (St. Louis, MO), Skechers(™) (Manhattan Beach, CA), and New Balance (Boston, MA) conventional walking shoes. After a 12-day accommodation period, the subjects walked wearing each shoe while 3-dimensional motion and force data were collected in the gait laboratory. The key findings included (1) increased trunk flexion, decreased ankle plantarflexion range, and reduced plantarflexion moment in the early stance; (2) increased ankle dorsiflexion and knee flexor moment in the midstance; (3) decreased peak ankle plantarflexion in the late stance; and (4) decreased ankle plantarflexion and decreased hip flexor and knee extensor moments in the pre-swing and into swing phase. The walking speed was unconstrained and was maintained across all shoe types. A biomechanical explanation is suggested for the observed changes. Suggestions for cautions are provided for using rocker bottom shoes in patients with neuromuscular insufficiency. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Altered Running Economy Directly Translates to Altered Distance-Running Performance.
Hoogkamer, Wouter; Kipp, Shalaya; Spiering, Barry A; Kram, Rodger
2016-11-01
Our goal was to quantify if small (1%-3%) changes in running economy quantitatively affect distance-running performance. Based on the linear relationship between metabolic rate and running velocity and on earlier observations that added shoe mass increases metabolic rate by ~1% per 100 g per shoe, we hypothesized that adding 100 and 300 g per shoe would slow 3000-m time-trial performance by 1% and 3%, respectively. Eighteen male sub-20-min 5-km runners completed treadmill testing, and three 3000-m time trials wearing control shoes and identical shoes with 100 and 300 g of discreetly added mass. We measured rates of oxygen consumption and carbon dioxide production and calculated metabolic rates for the treadmill tests, and we recorded overall running time for the time trials. Adding mass to the shoes significantly increased metabolic rate at 3.5 m·s by 1.11% per 100 g per shoe (95% confidence interval = 0.88%-1.35%). While wearing the control shoes, participants ran the 3000-m time trial in 626.1 ± 55.6 s. Times averaged 0.65% ± 1.36% and 2.37% ± 2.09% slower for the +100-g and +300-g shoes, respectively (P < 0.001). On the basis of a linear fit of all the data, 3000-m time increased 0.78% per added 100 g per shoe (95% confidence interval = 0.52%-1.04%). Adding shoe mass predictably degrades running economy and slows 3000-m time-trial performance proportionally. Our data demonstrate that laboratory-based running economy measurements can accurately predict changes in distance-running race performance due to shoe modifications.
Effect of Minimalist Footwear on Running Efficiency
Gillinov, Stephen M.; Laux, Sara; Kuivila, Thomas; Hass, Daniel; Joy, Susan M.
2015-01-01
Background: Although minimalist footwear is increasingly popular among runners, claims that minimalist footwear enhances running biomechanics and efficiency are controversial. Hypothesis: Minimalist and barefoot conditions improve running efficiency when compared with traditional running shoes. Study Design: Randomized crossover trial. Level of Evidence: Level 3. Methods: Fifteen experienced runners each completed three 90-second running trials on a treadmill, each trial performed in a different type of footwear: traditional running shoes with a heavily cushioned heel, minimalist running shoes with minimal heel cushioning, and barefoot (socked). High-speed photography was used to determine foot strike, ground contact time, knee angle, and stride cadence with each footwear type. Results: Runners had more rearfoot strikes in traditional shoes (87%) compared with minimalist shoes (67%) and socked (40%) (P = 0.03). Ground contact time was longest in traditional shoes (265.9 ± 10.9 ms) when compared with minimalist shoes (253.4 ± 11.2 ms) and socked (250.6 ± 16.2 ms) (P = 0.005). There was no difference between groups with respect to knee angle (P = 0.37) or stride cadence (P = 0.20). When comparing running socked to running with minimalist running shoes, there were no differences in measures of running efficiency. Conclusion: When compared with running in traditional, cushioned shoes, both barefoot (socked) running and minimalist running shoes produce greater running efficiency in some experienced runners, with a greater tendency toward a midfoot or forefoot strike and a shorter ground contact time. Minimalist shoes closely approximate socked running in the 4 measurements performed. Clinical Relevance: With regard to running efficiency and biomechanics, in some runners, barefoot (socked) and minimalist footwear are preferable to traditional running shoes. PMID:26131304
Influence of sports flooring and shoes on impact forces and performance during jump tasks.
Malisoux, Laurent; Gette, Paul; Urhausen, Axel; Bomfim, Joao; Theisen, Daniel
2017-01-01
We aim to determine the influence of sports floorings and sports shoes on impact mechanics and performance during standardised jump tasks. Twenty-one male volunteers performed ankle jumps (four consecutive maximal bounds with very dynamic ankle movements) and multi-jumps (two consecutive maximal counter-movement jumps) on force plates using minimalist and cushioned shoes under 5 sports flooring (SF) conditions. The shock absorption properties of the SF, defined as the proportion of peak impact force absorbed by the tested flooring when compared with a concrete hard surface, were: SF0 = 0% (no flooring), SF1 = 19%, SF2 = 26%, SF3 = 37% and SF4 = 45%. Shoe and flooring effects were compared using 2x5 repeated-measures ANOVA with post-hoc Bonferroni-corrected comparisons. A significant interaction between SF and shoe conditions was found for VILR only (p = 0.003). In minimalist shoes, SF influenced Vertical Instantaneous Loading Rate (VILR) during ankle jumps (p = 0.006) and multi-jumps (p<0.001), in accordance with shock absorption properties. However, in cushioned shoes, SF influenced VILR during ankle jumps only (p<0.001). Contact Time was the only additional variable affected by SF, but only during multi-jumps in minimalist shoes (p = 0.037). Cushioned shoes induced lower VILR (p<0.001) and lower Contact Time (p≤0.002) during ankle jumps and multi-jumps compared to minimalist shoes. During ankle jumps, cushioned shoes induced greater Peak Vertical Ground Reaction Force (PVGRF, p = 0.002), greater Vertical Average Loading Rate (p<0.001), and lower eccentric (p = 0.008) and concentric (p = 0.004) work. During multi-jumps, PVGRF was lower (p<0.001) and jump height was higher (p<0.001) in cushioned compared to minimalist shoes. In conclusion, cushioning influenced impact forces during standardised jump tasks, whether it was provided by the shoes or the sports flooring. VILR is the variable that was the most affected.
Rotational stiffness of American football shoes affects ankle biomechanics and injury severity.
Button, Keith D; Braman, Jerrod E; Davison, Mark A; Wei, Feng; Schaeffer, Maureen C; Haut, Roger C
2015-06-01
While previous studies have investigated the effect of shoe-surface interaction on injury risk, few studies have examined the effect of rotational stiffness of the shoe. The hypothesis of the current study was that ankles externally rotated to failure in shoes with low rotational stiffness would allow more talus eversion than those in shoes with a higher rotational stiffness, resulting in less severe injury. Twelve (six pairs) cadaver lower extremities were externally rotated to gross failure while positioned in 20 deg of pre-eversion and 20 deg of predorsiflexion by fixing the distal end of the foot, axially loading the proximal tibia, and internally rotating the tibia. One ankle in each pair was constrained by an American football shoe with a stiff upper, while the other was constrained by an American football shoe with a flexible upper. Experimental bone motions were input into specimen-specific computational models to examine levels of ligament elongation to help understand mechanisms of ankle joint failure. Ankles in flexible shoes allowed 6.7±2.4 deg of talus eversion during rotation, significantly greater than the 1.7±1.0 deg for ankles in stiff shoes (p = 0.01). The significantly greater eversion in flexible shoes was potentially due to a more natural response of the ankle during rotation, possibly affecting the injuries that were produced. All ankles failed by either medial ankle injury or syndesmotic injury, or a combination of both. Complex (more than one ligament or bone) injuries were noted in 4 of 6 ankles in stiff shoes and 1 of 6 ankles in flexible shoes. Ligament elongations from the computational model validated the experimental injury data. The current study suggested flexibility (or rotational stiffness) of the shoe may play an important role in both the severity of ankle injuries for athletes.
Influence of sports flooring and shoes on impact forces and performance during jump tasks
Urhausen, Axel; Bomfim, Joao
2017-01-01
We aim to determine the influence of sports floorings and sports shoes on impact mechanics and performance during standardised jump tasks. Twenty-one male volunteers performed ankle jumps (four consecutive maximal bounds with very dynamic ankle movements) and multi-jumps (two consecutive maximal counter-movement jumps) on force plates using minimalist and cushioned shoes under 5 sports flooring (SF) conditions. The shock absorption properties of the SF, defined as the proportion of peak impact force absorbed by the tested flooring when compared with a concrete hard surface, were: SF0 = 0% (no flooring), SF1 = 19%, SF2 = 26%, SF3 = 37% and SF4 = 45%. Shoe and flooring effects were compared using 2x5 repeated-measures ANOVA with post-hoc Bonferroni-corrected comparisons. A significant interaction between SF and shoe conditions was found for VILR only (p = 0.003). In minimalist shoes, SF influenced Vertical Instantaneous Loading Rate (VILR) during ankle jumps (p = 0.006) and multi-jumps (p<0.001), in accordance with shock absorption properties. However, in cushioned shoes, SF influenced VILR during ankle jumps only (p<0.001). Contact Time was the only additional variable affected by SF, but only during multi-jumps in minimalist shoes (p = 0.037). Cushioned shoes induced lower VILR (p<0.001) and lower Contact Time (p≤0.002) during ankle jumps and multi-jumps compared to minimalist shoes. During ankle jumps, cushioned shoes induced greater Peak Vertical Ground Reaction Force (PVGRF, p = 0.002), greater Vertical Average Loading Rate (p<0.001), and lower eccentric (p = 0.008) and concentric (p = 0.004) work. During multi-jumps, PVGRF was lower (p<0.001) and jump height was higher (p<0.001) in cushioned compared to minimalist shoes. In conclusion, cushioning influenced impact forces during standardised jump tasks, whether it was provided by the shoes or the sports flooring. VILR is the variable that was the most affected. PMID:29020108
Foot-to-shoe mismatch and rates of referral in Special Olympics athletes.
Jenkins, David W; Cooper, Kimbal; O'Connor, Rachel; Watanabe, Liane
2012-01-01
Improperly fitted shoes are frequently seen in athletes participating in Special Olympics competitions. This foot-to-shoe mismatch may result in deformities as well as discomfort and reduced performance or injuries in competitions. A primary purpose for providing medical screenings is to identify conditions unknown and to promptly refer to an appropriate provider for evaluation and care. This study attempts to determine the prevalence of improperly fitted shoes and the rate of referral for Special Olympics athletes screened at Fit Feet venues. To evaluate the foot-to-shoe mismatch and rate of referral, 4,094 Fit Feet screenings of Special Olympics athletes participating in US competitions in 2005 to 2009 were analyzed. The participants were 58.5% male and 41.5% female, with a median age of 25.6 years. A power analysis and the χ(2) test were used. The athletes voluntarily underwent a foot screening that followed the standardized Special Olympics Fit Feet protocol. The Brannock Device for measuring feet was used to assess proper fit. A proper fit was found in 58.56% of the athletes, with 28.60% wearing shoes too big and 12.84% wearing shoes too small. Unrelated to shoe fit, 20% of the athletes required referrals for professional follow-up based on abnormal clinical findings. There is a significant (41.44%) mismatch of foot to shoe in Special Olympics athletes. The most common mismatch is a shoe too big, with a much smaller number of athletes having shoes too small. Awareness of this foot-to-shoe incompatibility may be useful for the development of shoes better designed for athletes with a foot structure not consistent with conventional shoes. Because 20% of the athletes required a referral for professional follow-up, Fit Feet examinations are important for identifying athletes with conditions that can be more readily evaluated and treated, thus improving the athletes' comfort and performance. Beyond knowing the rate of referral, future studies can determine the conditions or findings that necessitate a referral and the ultimate outcome of that referral.
Effect of Shoes on Stiffness and Energy Efficiency of Ankle-Foot Orthosis: Bench Testing Analysis.
Kobayashi, Toshiki; Gao, Fan; LeCursi, Nicholas; Foreman, K Bo; Orendurff, Michael S
2017-12-01
Understanding the mechanical properties of ankle-foot orthoses (AFOs) is important to maximize their benefit for those with movement disorders during gait. Though mechanical properties such as stiffness and/or energy efficiency of AFOs have been extensively studied, it remains unknown how and to what extent shoes influence their properties. The aim of this study was to investigate the effect of shoes on stiffness and energy efficiency of an AFO using a custom mechanical testing device. Stiffness and energy efficiency of the AFO were measured in the plantar flexion and dorsiflexion range, respectively, under AFO-alone and AFO-Shoe combination conditions. The results of this study demonstrated that the stiffness of the AFO-Shoe combination was significantly decreased compared to the AFO-alone condition, but no significant differences were found in energy efficiency. From the results, we recommend that shoes used with AFOs should be carefully selected not only based on their effect on alignment of the lower limb, but also their effects on overall mechanical properties of the AFO-Shoe combination. Further study is needed to clarify the effects of differences in shoe designs on AFO-Shoe combination mechanical properties.
Injury Prevention Survey: Army Awareness Assessment and Needs Analysis, 9 July - 26 August 2014
2015-04-01
thinner people are healthier. Footwear. The risks of using cotton socks, minimalist shoes, and older running shoes should be addressed in fact...blister” injuries. 6.5.2.3 Factors that do not Increase or Decrease Risk The use of minimalist shoes (shoes with limited sole and “zero drop...of injury) (Rixe et al. 2012). However, the majority of respondents (58%) indicated they believe that minimalist shoes increase the risk of
Weaver, Brian Thomas; Fitzsimons, Kathleen; Braman, Jerrod; Haut, Roger
2016-09-01
The goal of the current study was to expand on previous work to validate the use of pressure insole technology in conjunction with linear regression models to predict the free torque at the shoe-surface interface that is generated while wearing different athletic shoes. Three distinctly different shoe designs were utilised. The stiffness of each shoe was determined with a material's testing machine. Six participants wore each shoe that was fitted with an insole pressure measurement device and performed rotation trials on an embedded force plate. A pressure sensor mask was constructed from those sensors having a high linear correlation with free torque values. Linear regression models were developed to predict free torques from these pressure sensor data. The models were able to accurately predict their own free torque well (RMS error 3.72 ± 0.74 Nm), but not that of the other shoes (RMS error 10.43 ± 3.79 Nm). Models performing self-prediction were also able to measure differences in shoe stiffness. The results of the current study showed the need for participant-shoe specific linear regression models to insure high prediction accuracy of free torques from pressure sensor data during isolated internal and external rotations of the body with respect to a planted foot.
Low Handicap Golfers Generate More Torque at the Shoe-Natural Grass Interface When Using a Driver
Worsfold, Paul; Smith, Neal A.; Dyson, Rosemary J.
2008-01-01
The aim was to determine the rotational torque occurring at the shoe-natural grass interface during golf swing performance with different clubs, and to determine the influence of handicap and golf shoe design. Twenty-four golfers (8 low 0-7; 8 medium 8-14; and 8 high 15+) performed 5 shots with a driver, 3-iron and 7-iron when 3 shoes were worn: a modern 8 mm metal 7-spike shoe, an alternative 7-spike shoe and a flat soled shoe. Torque was measured at the front and back foot by grass covered force platforms in an outdoor field. Torque at the shoe- natural turf interface was similar at the front foot when using a driver, 3-iron and 7-iron with maximum mean torque (Tzmax 17-19 Nm) and torque generation in the entire backswing and downswing approximately 40 Nm. At the back foot, torque was less than at the front foot when using the driver, 3-iron and 7-iron. At the back foot Tzmax was 6-7 Nm, and torque generation was 10-16 Nm, with a trend for greater torque generation when using the driver rather than the irons. The metal spike shoe allowed significantly more back foot torque generation when using a driver than a flat- soled shoe (p < 0.05). There was no significant difference between the metal and alternative spike shoes for any torque measure (p > 0.05), although back foot mean torques generated tended to be greater for the metal spike shoe. The golf shot outcomes were similar for low, medium and high handicappers in both metal and alternative spike shoes (metal: 87%; 76%; 54%; alternative: 85%; 74%; 54% respectively). The better, low handicap golfers generated significantly more back foot torque (metal spike: 18.2 Nm; alternative: 15.8 Nm; p < 0.05) when using a driver. Further research should consider back foot shoe-grass interface demands during driver usage by low handicap and lighter body-weight golfers. Key pointsShoe to natural turf torque generation is an important component in performing a golf swing with a driver club.Torque at the shoe to natural turf interface was similar at the front foot when using a driver, 3-iron and 7-iron with Tzmax (17-19 Nm approx) and torque generation in the entire backswing and downswing of 40 Nm.Torque at the back foot was less than at the front foot when using the driver, 3-iron and 7-iron; Tzmax was 6-7 Nm, and torque generation 10-16 Nm with a trend to be greater when the driver was used.Low handicap golfers generated significantly more torque at the back foot than the medium or high handicappers (P<0.05) when using a driver.The metal spike shoe on natural turf allowed significantly more torque generation at the back foot than a flat-soled golf shoe when using a driver. Results have implications for golf shoe design. PMID:24149910
Self-Reported Minimalist Running Injury Incidence and Severity: A Pilot Study.
Ostermann, Katrina; Ridpath, Lance; Hanna, Jandy B
2016-08-01
Minimalist running entails using shoes with a flexible thin sole and is popular in the United States. Existing literature disagrees over whether minimalist running shoes (MRS) improve perceived severity of injuries associated with running in traditional running shoes (TRS). Additionally, the perceived injury patterns associated with MRS are relatively unknown. To examine whether injury incidence and severity (ie, degree of pain) by body region change after switching to MRS, and to determine if transition times affect injury incidences or severity with MRS. Runners who were either current or previous users of MRS were recruited to complete an Internet-based survey regarding self-reported injury before switching to MRS and whether self-reported pain from that injury decreased after switching. Questions regarding whether new injuries developed in respondents after switching to MRS were also included. Analyses were calculated using t tests, Wilcoxon signed rank tests, and Fischer exact tests. Forty-seven runners completed the survey, and 16 respondents reported injuries before switching to MRS. Among these respondents, pain resulting from injuries of the feet (P=.03) and knees (P=.01) decreased. Eighteen respondents (38.3%) indicated they sustained new injuries after switching to MRS, but the severity of these did not differ significantly from no injury. Neither time allowed for transition to MRS nor use or disuse of a stretching routine during this period was correlated with an increase in the incidence or severity of injuries. After switching to MRS, respondents perceived an improvement in foot and knee injuries. Additionally, respondents using MRS reported an injury rate of 38.3%, compared with the approximately 64% that the literature reports among TRS users. Future studies should be expanded to determine the full extent of the differences in injury patterns between MRS and TRS.
2004-10-15
KENNEDY SPACE CENTER, FLA. - A closeup of some of the new crawler shoes that arrived from Minnesota. The new shoes were manufactured by ME Global in Duluth. The CT transports the Mobile Launcher Platform, with the assembled Space Shuttle aboard, between the refurbishment area, the VAB and Launch Complex Pads 39A and 39B. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. The original shoes were manufactured for the Apollo Program. Cracks appeared in the shoes in recent years spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for Return to Flight and use through the balance of the Space Shuttle Program.
Johnson, Gary; Smith, Joanne; Peddie, Jim; Peddie, Linda; DeMarco, Joe; Wiedner, Ellen
2018-03-01
This report describes the use of custom-made, glue-on shoes for the front feet of two female adult Asian elephants ( Elephas maximus) with conformational abnormalities. Both elephants had unequal leg lengths. The first elephant also had bilateral fetlock varus causing recurrent nail infections of the fourth digits of the front feet. The second elephant displayed weight shifting. Over several years, multiple shoe prototypes were tested. The current version is made of two types of shoe rubber, glued together and attached to the pad of the shorter leg with a liquid adhesive. The first elephant also has bilateral wedge pads to offload pressure from the fourth nails. The shoes are removed each month for foot care, then replaced. Within several months of wearing shoes, the first elephant's nail infections healed and the second elephant stopped weight shifting. Both elephants' gaits became smoother. This is the first description of corrective shoeing in elephants.
Optimizing footwear for older people at risk of falls.
Menant, Jasmine C; Steele, Julie R; Menz, Hylton B; Munro, Bridget J; Lord, Stephen R
2008-01-01
Footwear influences balance and the subsequent risk of slips, trips, and falls by altering somatosensory feedback to the foot and ankle and modifying frictional conditions at the shoe/floor interface. Walking indoors barefoot or in socks and walking indoors or outdoors in high-heel shoes have been shown to increase the risk of falls in older people. Other footwear characteristics such as heel collar height, sole hardness, and tread and heel geometry also influence measures of balance and gait. Because many older people wear suboptimal shoes, maximizing safe shoe use may offer an effective fall prevention strategy. Based on findings of a systematic literature review, older people should wear shoes with low heels and firm slip-resistant soles both inside and outside the home. Future research should investigate the potential benefits of tread sole shoes for preventing slips and whether shoes with high collars or flared soles can enhance balance when challenging tasks are undertaken.
Preventing diabetic foot disease: lessons from the Medicare therapeutic shoe demonstration.
Wooldridge, J; Bergeron, J; Thornton, C
1996-01-01
OBJECTIVES. Every year about 38,000 elderly people with diabetes have a lower extremity amputation. Therapeutic shoes are prescribed by clinicians specializing in foot care to prevent foot ulcerations and amputations among at-risk patients with diabetes. Medicare ran a 3-year demonstration of a therapeutic-shoe benefit for beneficiaries with diabetes. Medicare added the benefit nationwide in May 1993. METHODS. This paper describes the benefit and its implementation in the demonstration based on demonstration records, a patient survey, and discussions with clinicians and shoe suppliers before and during the demonstration. RESULTS. During the demonstration, far fewer beneficiaries applied for the therapeutic shoes than were eligible for them. The paper discusses reasons for the low beneficiary application rate and the associated low participation rate among physicians treating patients with diabetes. CONCLUSIONS. The benefit is unlikely to be used any more in the national program than in the demonstration unless physicians are educated in the role therapeutic shoes can play in diabetic foot disease, they prescribe the shoes for their patients, and they increase their patients' awareness of the shoes' value. PMID:8669516
Effect of environmental temperature on shock absorption properties of running shoes.
Dib, Mansour Y; Smith, Jay; Bernhardt, Kathie A; Kaufman, Kenton R; Miles, Kevin A
2005-05-01
To determine the effect of temperature changes on the shock attenuation of 4 running shoe shock absorption systems. Prospective. Motion analysis laboratory. The shock attenuation of 4 different running shoes representing common shock absorption systems (Nike Air Triax, Asics Gel Nimbus IV, Adidas a3 cushioning, Adidas Supernova cushion) was measured at ambient temperatures of -20 degrees C, -10 degrees C, 0 degrees C, +10 degrees C, +20 degrees C, +30 degrees C, +40 degrees C, and +50 degrees C. Repeated-measures analysis of variance was used to determine differences between shoes. Shock attenuation as indicated by peak deceleration (g) measured by a mechanical impactor following ASTM Standard F1614-99. Shock attenuation decreased significantly with reduced temperature for each shoe tested. The Adidas a3 shoe exhibited significantly higher peak decelerations (lower shock attenuation) at cold temperatures compared with the other shoes. Cold ambient temperatures significantly reduce the shock attenuation of commonly used running shoes. These findings have important clinical implications for individuals training in extreme weather environments, particularly those with a history of lower limb overuse injuries.
Worobets, Jay; Wannop, John William
2015-09-01
Prior research has shown that footwear can enhance athletic performance. However, public information is not available on what basketball shoe properties should be selected to maximise movement performance. Therefore, the purpose of the study was to investigate the influence of basketball shoe mass, outsole traction, and forefoot bending stiffness on sprinting, jumping, and cutting performance. Each of these three basketball shoe properties was systematically varied by ± 20% to produce three shoe conditions of varying mass, three conditions of varying traction, and three conditions of varying bending stiffness. Each shoe was tested by 20 recreational basketball players completing maximal effort sprints, vertical jumps, and a cutting drill. Outsole traction had the largest influence on performance, as the participants performed significantly worse in all tests when traction was decreased by 20% (p < 0.001), and performed significantly better in the cutting drill when traction was increased by 20% (p = 0.005). Forefoot bending stiffness had a moderate effect on sprint and cutting performance (p = 0.013 and p = 0.016 respectively) and shoe mass was found to have no effect on performance. Therefore, choosing a shoe with relatively high outsole traction and forefoot bending stiffness should be prioritised, and less concern should be focused on selecting the lightest shoe.
Slip resistance of casual footwear: implications for falls in older adults.
Menz, H B; Lord, S T; McIntosh, A S
2001-01-01
A large proportion of falls in older people are caused by slipping. Previous occupational safety research suggests that inadequate footwear may contribute to slipping accidents; however, no studies have assessed the slip resistance of casual footwear. To evaluate the slip resistance of different types of casual footwear over a range of common household surfaces. The slip resistance of men's Oxford shoes and women's fashion shoes with different heel configurations was determined by measuring the dynamic coefficient of friction (DCoF) at heel contact (in both dry and wet conditions) on a bathroom tile, concrete, vinyl flooring and a terra cotta tile using a specially-designed piezoelectric force plate apparatus. Analysis of variance revealed significant shoe, surface, and shoe-surface interaction effects. Men's Oxford shoes exhibited higher average DCoF values than the women's fashion shoes, however, none of the shoes could be considered safe on wet surfaces. Application of a textured sole material did not improve slip resistance of any of the shoes on wet surfaces. Heel geometry influences the slip resistance of casual footwear on common household surfaces. The suboptimal performance of all of the test shoes on wet surfaces suggests that a safety standard for casual footwear is required to assist in the development of safe footwear for older people. Copyright 2001 S. Karger AG, Basel
Jastifer, James; Kent, Richard; Crandall, Jeff; Sherwood, Chris; Lessley, David; McCullough, Kirk A.; Coughlin, Michael J.; Anderson, Robert B.
2017-01-01
Background: Foot and ankle injuries are common in sports, particularly in cleated athletes. Traditionally, the athletic shoe has not been regarded as a piece of protective equipment but rather as a part of the uniform, with a primary focus on performance and subjective feedback measures of comfort. Changes in turf and shoe design have poorly understood implications on the health and safety of players. Evidence Acquisition: A literature search of the MEDLINE and PubMed databases was conducted. Keywords included athletic shoewear, cleated shoe, football shoes, and shoewear, and search parameters were between the years 2000 and 2016. Study Design: Clinical review. Level of Evidence: Level 5. Results: The athletic shoe is an important piece of protective sports equipment. There are several important structural considerations of shoe design, including biomechanical compliance, cleat and turf interaction, and shoe sizing/fit, that affect the way an athlete engages with the playing surface and carry important potential implications regarding player safety if not understood and addressed. Conclusion: Athletic footwear should be considered an integral piece of protective equipment rather than simply an extension of the uniform apparel. More research is needed to define optimal shoe sizing, the effect that design has on mechanical load, and how cleat properties, including pattern and structure, interact with the variety of playing surfaces. PMID:28151702
Giménez-Arnau, Ana; Silvestre, Juan Francisco; Mercader, Pedro; De la Cuadra, Jesus; Ballester, Isabel; Gallardo, Fernando; Pujol, Ramón M; Zimerson, Erik; Bruze, Magnus
2009-11-01
The methyl ester form of fumaric acid named dimethyl fumarate (DMF) is an effective mould-growth inhibitor. Its irritating and sensitizing properties were demonstrated in animal models. Recently, DMF has been identified as responsible for furniture contact dermatitis in Europe. To describe the clinical manifestations, patch test results, shoe chemical analysis, and source of exposure to DMF-induced shoe contact dermatitis. Patients with suspected shoe contact dermatitis were studied in compliance with the Declaration of Helsinki. Patch test results obtained with their own shoe and the European baseline series, acrylates and fumaric acid esters (FAE), were recorded according to international guidelines. The content of DMF in shoes was analysed with gas chromatography and mass spectrometry. Acute, immediate irritant contact dermatitis and non-immunological contact urticaria were observed in eight adults and two children, respectively. All the adult patients studied developed a delayed sensitization demonstrated by a positive patch testing to DMF < or = 0.1% in pet. Cross-reactivity with other FAEs and acrylates was observed. At least 12 different shoe brands were investigated. The chemical analysis from the available shoes showed the presence of DMF. DMF in shoes was responsible for severe contact dermatitis. Global preventive measures for avoiding contact with DMF are necessary.
Kinematically mediated effects of sport shoe design: a review.
Frederick, E C
1986-01-01
One prominent pattern emerging from a review of the literature on sport shoes and biomechanics is the observation that many effects are the indirect result of shoe-induced adjustments in movement, i.e. a particular shoe characteristic elicits a kinematic adaptation which in turn has secondary consequences on kinetics and on injury and performance. For example, in addition to its variable effects on peak forces, cushioning system design has been shown to alter electromyographic patterns and to affect knee flexion during foot strike and affect indirectly the economy of running. Mediolateral stability as measured by rearfoot kinematics is strongly influenced by shoe design features such as heel lift, and sole hardness and geometry. The frictional properties of the shoe and surface interface have also been shown to affect kinematics in a way that in turn affects the recorded frictional forces themselves. Such kinematically mediated responses are the most provocative result of studies of the biomechanical effects of footwear. It is becoming apparent that the shoe can be a powerful tool for manipulating human movement. The abundance of shoe design possibilities coupled with the body's tendency to adjust in predictable ways to shoe mechanical characteristics have given us a new way to manipulate human kinematics and kinetics, as well as a convenient model for studying biomechanical adaptation.
Tateuchi, Hiroshige; Taniguchi, Masashi; Takagi, Yui; Goto, Yusuke; Otsuka, Naoki; Koyama, Yumiko; Kobayashi, Masashi; Ichihashi, Noriaki
2014-01-01
Footwear modification can beneficially alter knee loading in patients with knee osteoarthritis. This study evaluated the effect of Masai Barefoot Technology shoes on reductions in external knee moments in patients with knee osteoarthritis. Three-dimensional motion analysis was used to examine the effect of Masai Barefoot Technology versus control shoes on the knee adduction and flexion moments in 17 women (mean age, 63.6 years) with radiographically confirmed knee osteoarthritis. The lateral and anterior trunk lean values, knee flexion and adduction angles, and ground reaction force were also evaluated. The influence of the original walking pattern on the changes in knee moments with Masai Barefoot Technology shoes was evaluated. The knee flexion moment in early stance was significantly reduced while walking with the Masai Barefoot Technology shoes (0.25±0.14Nm/kgm) as compared with walking with control shoes (0.30±0.19 Nm/kgm); whereas the knee adduction moment showed no changes. Masai Barefoot Technology shoes did not increase compensatory lateral and anterior trunk lean. The degree of knee flexion moment in the original walking pattern with control shoes was correlated directly with its reduction when wearing Masai Barefoot Technology shoes by multiple linear regression analysis (adjusted R2=0.44, P<0.01). Masai Barefoot Technology shoes reduced the knee flexion moment during walking without increasing the compensatory trunk lean and may therefore reduce external knee loading in women with knee osteoarthritis. Copyright © 2014 Elsevier B.V. All rights reserved.
Lam, Wing-Kai; Qu, Yi; Yang, Fan; Cheung, Roy T H
2017-01-01
Court shoe designs predominantly focus on reducing excessive vertical ground reaction force, but shear force cushioning has received little attention in the basketball population. We aimed to examine the effect of a novel shoe-cushioning design on both resultant horizontal ground reaction forces and comfort perception during two basketball-specific cutting movements. Fifteen university team basketball players performed lateral shuffling and 45-degree sidestep cutting at maximum effort in basketball shoes with and without the shear-cushioning system (SCS). Paired t -tests were used to examine the differences in kinetics and comfort perception between two shoes. SCS shoe allowed for larger rotational material deformation compared with control shoes, but no significant shoe differences were found in braking phase kinetics during both cutting movements ( P = 0.35). Interestingly, a greater horizontal propulsion impulse was found with the SCS during 45-degree cutting ( P < 0.05), when compared with the control. In addition, players wearing SCS shoes perceived better forefoot comfort ( P = 0.012). During lateral shuffling, there were no significant differences in horizontal GRF and comfort perception between shoe conditions ( P > 0.05). The application of a rotational shear-cushioning structure allowed for better forefoot comfort and enhanced propulsion performance in cutting, but did not influence the shear impact. Understanding horizontal ground reaction force information may be useful in designing footwear to prevent shear-related injuries in sport populations.
2004-05-05
KENNEDY SPACE CENTER, FLA. -- STS-114 (left) Pilot James Kelly and Mission Specialist Andrew Thomas (right) are given a tour of the Crawler-Transporter storage area by NASA Systems Engineer Robert Rokobauer. Behind them is one of the 5.5-million-pound crawlers. The 10-foot-high track, one of two, contains 278 “shoes,” weighing 2,200 pounds each. The crawlers are guided by four trucks, one on each corner. The crawlers had recent modifications to the cab and muffler system. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
Reported shoes size during GH therapy: is foot overgrowth a myth or reality?
Lago, Débora C F; Coutinho, Cláudia A; Kochi, Cristiane; Longui, Carlos A
2015-10-01
To describe population reference values for shoes size, and to identify possible disproportional foot growth during GH therapy. Construction of percentile chart based on 3,651 controls (male: 1,838; female: 1,813). The GH treated group included 13 children with idiopathic short stature (ISS) and 50 children with normal height, but with height prediction below their target height; male: 26 and female: 37 mean ± SD age 13.3 ± 1.9 and 12.9 ± 1.5 years, respectively. GH (0.05 mg/kg/day) was used for 3.2 ± 1.6 years, ranging from 1.0-10.3 years. Height expressed as SDS, target height (TH) SDS, self-reported shoes size and target shoes size (TSS) SDS were recorded. Reference values were established showed as a foot SDS calculator available online at www.clinicalcaselearning.com/v2. Definitive shoes size was attained in controls at mean age of 13y in girls and 14y in boys (average values 37 and 40, respectively). In the study group, shoes size was -0.15 ± 0.9 and -0.02 ± 1.3 SDS, with target feet of 0.08 ± 0.8 and -0.27 ± 0.7 SDS in males and females, respectively. There was a significant positive correlation between shoes size and familial TSS, between shoes size and height and between TSS and TH. There was no correlation between duration of GH treatment and shoes size. Our data suggest that during long-term treatment with GH, patients maintain proportional growth in shoes size and height, and the expected correlation with the familial target. We conclude that there is no excessive increase in the size of foot as estimated by the size of shoes in individuals under long term GH therapy.
Bonacci, Jason; Hall, Michelle; Fox, Aaron; Saunders, Natalie; Shipsides, Tristan; Vicenzino, Bill
2018-06-01
To determine the effect of a combination of a minimalist shoe and increased cadence on measures of patellofemoral joint loading during running in individuals with patellofemoral pain. Within-participant repeated measures with four conditions presented in random order: (1) control shoe at preferred cadence; (2) control shoe with +10% cadence; (3) minimalist shoe at preferred cadence; (4) minimalist shoe with +10% cadence. Fifteen recreational runners with patellofemoral pain ran on an instrumented treadmill while three-dimensional motion capture data were acquired. Peak patellofemoral joint stress, joint reaction force, knee extensor moment and knee joint angle during the stance phase of running were calculated. One-way repeated measures ANOVA was used to compare the control condition (1) to the three experimental conditions (2-4). Running in a minimalist shoe at an increased cadence reduced patellofemoral stress and joint reaction force on average by approximately 29% (p<0.001) compared to the control condition. Running in a minimalist shoe at preferred cadence reduced patellofemoral joint stress by 15% and joint reaction force by 17% (p<0.001), compared to the control condition. Running in control shoes at an increased cadence reduced patellofemoral joint stress and joint reaction force by 16% and 19% (p<0.001), respectively, compared to the control condition. In individuals with patellofemoral pain, running in a minimalist shoe at an increased cadence had the greatest reduction in patellofemoral joint loading compared to a control shoe at preferred cadence. This may be an effective intervention to modulate biomechanical factors related to patellofemoral pain. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Limits of Stability and Adaptation to Wearing Rocker Bottom Shoes.
Vieira, Edgar Ramos; Guerrero, Gerardo; Holt, Daniel; Arreaza, Monica; Veroes, Valentina; Brunt, Denis
2014-06-01
Stability and balance are fundamental during static and dynamic activities. The effects of wearing rocker bottom sole (RBS) shoes on the limits of stability (LOS) and adaptation to wearing RBS shoes need to be investigated. The objectives of this study were to evaluate the LOS when wearing RBS shoes, and to evaluate if people improve their stability while wearing RBS shoes over time. Eleven female subjects with no lower extremity impairments participated in the study. The LOS were tested at baseline and weeks 3 and 6 using a Neurocom SMART EquiTest equipment. Center of pressure (CoP) was determined using force plates, and the center of gravity (CoG) position was estimated from the CoP measures and subjects' anthropometry. Subjects performed a series of tasks that involved leaning in different directions so as to move the vertical projection of their CoG. End-point excursions of the CoG floor projection were calculated as a percentage of the distance between the starting position and the target. Considering the body as an inverted pendulum, we recorded the average angular velocity of the inverted pendulum during the movements and quantified directional control as a percentage of movement toward versus away from the target. Shoe types were compared using paired t tests, and sessions were compared using repeated measures ANOVA. The angular velocities of the inverted pendulum (ie, CoG velocity) were not significantly different between shoe conditions in the front and back directions at baseline (4 ± 3 with RBS vs 5 ± 2 deg/sec with regular shoes, and 4 ± 1 vs 6 ± 4 deg/sec). Front directional control of the CoG was significantly worse with RBS shoes at weeks 3 and 6 ( P < .015). Front end-point excursions were also lower with RBS shoes both at baseline and week 6 ( P < .014). There were no significant changes over time. The findings indicate that the LOS were negatively affected by wearing RBS shoes and that people do not improve their stability while wearing these shoes even after a 6-week period of use. This study shows that wearing RBS shoes increase instability and the instability remains even after wearing these shoes for six weeks.
Malisoux, Laurent; Chambon, Nicolas; Urhausen, Axel; Theisen, Daniel
2016-11-01
Modern running shoes are available in a wide range of heel-to-toe drops (ie, the height difference between the forward and rear parts of the inside of the shoe). While shoe drop has been shown to influence strike pattern, its effect on injury risk has never been investigated. Therefore, the reasons for such variety in this parameter are unclear. The first aim of this study was to determine whether the drop of standard cushioned running shoes influences running injury risk. The secondary aim was to investigate whether recent running regularity modifies the relationship between shoe drop and injury risk. Randomized controlled trial; Level of evidence, 1. Leisure-time runners (N = 553) were observed for 6 months after having received a pair of shoes with a heel-to-toe drop of 10 mm (D10), 6 mm (D6), or 0 mm (D0). All participants reported their running activities and injuries (time-loss definition, at least 1 day) in an electronic system. Cox regression analyses were used to compare injury risk between the 3 groups based on hazard rate ratios (HRs) and their 95% CIs. A stratified analysis was conducted to evaluate the effect of shoe drop in occasional runners (<6 months of weekly practice over the previous 12 months) versus regular runners (≥6 months). The overall injury risk was not different among the participants who had received the D6 (HR, 1.30; 95% CI, 0.86-1.98) or D0 (HR, 1.17; 95% CI, 0.76-1.80) versions compared with the D10 shoes. After stratification according to running regularity, low-drop shoes (D6 and D0) were found to be associated with a lower injury risk in occasional runners (HR, 0.48; 95% CI, 0.23-0.98), whereas these shoes were associated with a higher injury risk in regular runners (HR, 1.67; 95% CI, 1.07-2.62). Overall, injury risk was not modified by the drop of standard cushioned running shoes. However, low-drop shoes could be more hazardous for regular runners, while these shoes seem to be preferable for occasional runners to limit injury risk. © 2016 The Author(s).
Fuller, Joel T; Buckley, Jonathan D; Tsiros, Margarita D; Brown, Nicholas A T; Thewlis, Dominic
2016-10-01
Minimalist shoes have been suggested as a way to alter running biomechanics to improve running performance and reduce injuries. However, to date, researchers have only considered the effect of minimalist shoes at slow running speeds. To determine if runners change foot-strike pattern and alter the distribution of mechanical work at the knee and ankle joints when running at a fast speed in minimalist shoes compared with conventional running shoes. Crossover study. Research laboratory. Twenty-six trained runners (age = 30.0 ± 7.9 years [age range, 18-40 years], height = 1.79 ± 0.06 m, mass = 75.3 ± 8.2 kg, weekly training distance = 27 ± 15 km) who ran with a habitual rearfoot foot-strike pattern and had no experience running in minimalist shoes. Participants completed overground running trials at 18 km/h in minimalist and conventional shoes. Sagittal-plane kinematics and joint work at the knee and ankle joints were computed using 3-dimensional kinematic and ground reaction force data. Foot-strike pattern was classified as rearfoot, midfoot, or forefoot strike based on strike index and ankle angle at initial contact. We observed no difference in foot-strike classification between shoes (χ 2 1 = 2.29, P = .13). Ankle angle at initial contact was less (2.46° versus 7.43°; t 25 = 3.34, P = .003) and strike index was greater (35.97% versus 29.04%; t 25 = 2.38, P = .03) when running in minimalist shoes compared with conventional shoes. We observed greater negative (52.87 J versus 42.46 J; t 24 = 2.29, P = .03) and positive work (68.91 J versus 59.08 J; t 24 = 2.65, P = .01) at the ankle but less negative (59.01 J versus 67.02 J; t 24 = 2.25, P = .03) and positive work (40.37 J versus 47.09 J; t 24 = 2.11, P = .046) at the knee with minimalist shoes compared with conventional shoes. Running in minimalist shoes at a fast speed caused a redistribution of work from the knee to the ankle joint. This finding suggests that runners changing from conventional to minimalist shoes for short-distance races could be at an increased risk of ankle and calf injuries but a reduced risk of knee injuries.
Mueller, MJ; Strube, MJ; Allen, BT
1997-04-01
INTRODUCTION:: Patients with diabetes (DM) and transmetatarsal amputation (TMA) are at high risk for skin breakdown from excessive peak plantar pressures (PPP). The primary purpose of this study was to determine how footwear (full length shoe or short shoe), a total contact insert, a rigid-rocker bottom (RRB) sole, and an ankle-foot-orthosis (AFO) affect PPP on the distal residuum and contralateral extremity of patients with DM and TMA. A secondary purpose was to monitor various functional measures during use of the footwear. METHODS:: Thirty patients with DM and TMA participated (mean age 62+/-4 years). The mean duration of DM was 19.9+/-10.1 years, and the mean time since TMA was 27.4+/-28.1 months. The following footwear was provided after a check-out from an orthotist and physical therapist (PT); 1) Full length shoe (ie shoe length prior to surgery), with a toe filler, 2) full length shoe, total contact insert, and an AFO, 2) full length shoe, total contact insert, and an AFO, 3) full length shoe, total contact insert, and a RRB sole, 4) full length shoe, total contact insert, RRB sole, and an AFO, 5) short shoe (ie length of residuum), total contact insert, and RRB, 6) short shoe, total contact insert, AFO, and RRB sole. In-shoe PPP during walking at the distal residuum and forefoot of the contralateral extremity were measured using the F-Scan System with established reliability under similar conditions (Generilizability coefficient =.75). Each measurement occurred after a one month adjustment period. Data were analyzed using a univariate repeated measuresANOVA. Individual contrasts were used for post-hoc analysis on those variables showing a significant overall F value (p<.05). RESULTS:: Compared to a regular shoe with a toe-filler, all conditions except the short shoe (#5), resulted in lower PPP on the distal residuum (p<.05). Condition 3, the full length shoe, total contact insert, and RRB resulted in lower pressures on the distal residuum and forefoot of the contralateral extremity compared to a regular shoe and toe-filler, and had few functional complaints as identified by the patient, orthotist or PT (3/27). Footwear using an AFO (Conditions 2,4,6) showed reduced PPP on the residuum, but most patients (16/29) had functional complaints. The short shoe (condition 5) had the fewest[Table: see text] functional complaints (2/26), but did not significantly reduce PPP and had the highest cosmetic refusal rate (5/26). DISCUSSION AND CONCLUSIONS:: Although there are individual patient characteristics which warrant other prescriptions, based on the results of this study, we recommend the full length shoe, total contact insert, and RRB sole for most patients with DM and TMA to reduce PPP. A reduction in PPP should help to lower the high risk of skin breakdown in this patient population.
Janezic, Sandra; Mlakar, Sabina; Rupnik, Maja
2018-04-23
Clostridium difficile is an anaerobic, spore-forming bacterium that causes intestinal infections. Although C. difficile is still predominantly considered as a nosocomial pathogen, there has been an increase in the number of community-associated infections. Since C. difficile is ubiquitous and can be isolated from nearly any environment, one of the possibilities for community acquisition could be exposure to spores in the domestic environment. The aim of this study was to evaluate the presence of C. difficile spores on shoes, slippers and on dog paws and to explore the importance of these surfaces as vectors for the dissemination of C. difficile in a domestic environment. Overall, C. difficile was present in 14 (70%) of 20 households and in 31 of 90 (34%) collected samples. Shoes and slippers had the highest positivity rates, 19 of 44 (43%) and 6 of 21 (28%), respectively, followed by dog paws 6 of 25 (24%). Thirteen C. difficilePCR ribotypes were identified with half of the isolates belonging to ribotype 014/020, which is the predominant type circulating in human population and is also commonly found in the environment (e.g. soil and water) in Slovenia. In three households, identical PCR ribotypes were found on dog paws, shoes and slippers. To understand the fine-scale genetic relatedness of these isolates, we sequenced the genomes. Low level of single nucleotide variant (SNV) differences between isolates from the same households, consistent with a recent transmission from a common source, were seen for isolates of PCR ribotype 014/020 but not for PCR ribotype 010. Our results suggest that shoe soles and dog paws could serve for the dissemination of C. difficile spores between households and environment and could contribute to community-relevant sources for C. difficile infection in humans. © 2018 Blackwell Verlag GmbH.
2010-03-01
titanium, used in fighter jet engine mounts. Brake shoes Brake shoes were made with substandard materials, including seaweed . Source: DOD. DOD does...company. These brake shoes were made with various materials, including seaweed . U.S. customs agents had already seized the brake shoes and DOD never
2004-10-15
KENNEDY SPACE CENTER, FLA. - A tractor-trailer arrives at the Crawler Transporter (CT) area with a new shipment of crawler shoes. The new shoes were manufactured by ME Global in Duluth, Minn. The CT transports the Mobile Launcher Platform, with the assembled Space Shuttle aboard, between the refurbishment area, the VAB and Launch Complex Pads 39A and 39B. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. The original shoes were manufactured for the Apollo Program. Cracks appeared in the shoes in recent years spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for Return to Flight and use through the balance of the Space Shuttle Program.
2004-10-15
KENNEDY SPACE CENTER, FLA. - In the Crawler Transporter (CT) area, a worker places another load of new crawler shoes on the ground. The new shoes were manufactured by ME Global in Duluth, Minn. The CT transports the Mobile Launcher Platform, with the assembled Space Shuttle aboard, between the refurbishment area, the VAB and Launch Complex Pads 39A and 39B. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. The original shoes were manufactured for the Apollo Program. Cracks appeared in the shoes in recent years spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for Return to Flight and use through the balance of the Space Shuttle Program.
Manipulation of Foot Strike and Footwear Increases Achilles Tendon Loading During Running.
Rice, Hannah; Patel, Mubarak
2017-08-01
The Achilles tendon is the most common site of tendon overuse injury in humans. Running with a forefoot strike pattern and in minimal shoes is a topic of recent interest, yet evidence is currently limited regarding the combined influence of foot strike and footwear on Achilles tendon loading. To investigate the influence of both foot strike and footwear on Achilles tendon loading in habitual rearfoot strike runners. Controlled laboratory study. Synchronized kinematic and force data were collected from 22 habitual rearfoot strikers (11 male), who habitually ran in nonminimal running shoes, during overground running at 3.6 m·s -1 . Participants ran in 3 different footwear conditions (standard running shoe, minimal running shoe, and barefoot) with both a rearfoot strike (RFS) and an imposed forefoot strike (FFS) in each footwear condition. Achilles tendon loading was estimated by use of inverse dynamics, where the Achilles tendon moment arm was determined with a regression equation. A 2-way, repeated-measures analysis of variance was used to compare conditions. Achilles tendon impulse was greater when subjects ran with an FFS rather than an RFS in minimal shoes. Achilles tendon loading rates were higher when subjects ran either in minimal shoes or barefoot than in standard shoes, regardless of foot strike. In runners who habitually rearfoot strike in standard running shoes, running in minimal shoes or barefoot increased the rate of tendon loading, and running with a forefoot strike in minimal shoes increased the magnitude of tendon loading. Transitioning to these running conditions may increase the risk of tendinopathy.
Footwear Matters: Influence of Footwear and Foot Strike on Load Rates during Running.
Rice, Hannah M; Jamison, Steve T; Davis, Irene S
2016-12-01
Running with a forefoot strike (FFS) pattern has been suggested to reduce the risk of overuse running injuries, due to a reduced vertical load rate compared with rearfoot strike (RFS) running. However, resultant load rate has been reported to be similar between foot strikes when running in traditional shoes, leading to questions regarding the value of running with a FFS. The influence of minimal footwear on the resultant load rate has not been considered. This study aimed to compare component and resultant instantaneous loading rate (ILR) between runners with different foot strike patterns in their habitual footwear conditions. Twenty-nine injury-free participants (22 men, seven women) ran at 3.13 m·s along a 30-m runway, with their habitual foot strike and footwear condition. Ground reaction force data were collected. Peak ILR values were compared between three conditions; those who habitually run with an RFS in standard shoes, with an FFS in standard shoes, and with an FFS in minimal shoes. Peak resultant, vertical, lateral, and medial ILR were lower (P < 0.001) when running in minimal shoes with an FFS than in standard shoes with either foot strike. When running with an FFS, peak posterior ILR were lower (P < 0.001) in minimal than standard shoes. When running in a standard shoe, peak resultant and component ILR were similar between footstrike patterns. However, load rates were lower when running in minimal shoes with a FFS, compared with running in standard shoes with either foot strike. Therefore, it appears that footwear alters the load rates during running, even with similar foot strike patterns.
Walking variations in healthy women wearing high-heeled shoes: Shoe size and heel height effects.
Di Sipio, Enrica; Piccinini, Giulia; Pecchioli, Cristiano; Germanotta, Marco; Iacovelli, Chiara; Simbolotti, Chiara; Cruciani, Arianna; Padua, Luca
2018-05-03
The use of high heels is widespread in modern society in professional and social contests. Literature showed that wearing high heels can produce injurious effects on several structures from the toes to the pelvis. No studies considered shoe length as an impacting factor on walking with high heels. The aim of this study is to evaluate walking parameters in young healthy women wearing high heels, considering not only the heel height but also the foot/shoe size. We evaluate spatio-temporal, kinematic and kinetic data, collected using a 8-camera motion capture system, in a sample of 21 healthy women in three different walking conditions: 1) barefoot, 2) wearing 12 cm high heel shoes independently from shoe size, and 3) wearing shoes with heel height based on shoe size, keeping the ankles' plantar flexion angle constant. The main outcome measures were: spatio-temporal parameters, gait harmony measurement, range of motion, flexion and extension maximal values, power and moment of lower limb joints. Comparing the three walking conditions, the Mixed Anova test, showed significant differences between both high heeled conditions (variable and constant height) and barefoot in spatio-temporal, kinematic and kinetic parameters. Regardless of the shoe size, both heeled conditions presented a similar gait pattern and were responsible for negative effects on walking parameters. Considering our results and the relevance of the heel height, further studies are needed to identify a threshold, over which it is possible to observe that wearing high heels could cause harmful effects, independently from the foot/shoe size. Copyright © 2018 Elsevier B.V. All rights reserved.
Mueller, M J; Strube, M J; Allen, B T
1997-04-01
To compare how footwear (full-length shoe or short shoe), a total contact insert, a rigid rocker-bottom (RRB) sole, and an ankle-foot orthosis (AFO) affect peak plantar pressure (PPP) on the distal residuum and contralateral extremity of patients with diabetes and transmetatarsal amputation (TMA). Thirty patients with diabetes and TMA participated (mean age 62 +/- 4 years). In-shoe plantar pressures during walking were measured in six types of footwear. Each measurement occurred after a 1-month adjustment period. Repeated measure analysis of variance (ANOVA) was used to compare treatments. All five types of therapeutic footwear reduced plantar pressures compared with regular shoes with a toe-filler (P < 0.05). A full-length shoe, total contact insert, and RRB sole resulted in lower pressures on the distal residuum (222 vs. 284 kPa) and forefoot of the contralateral extremity (197 vs. 239 kPa), compared with a regular shoe and toe-filler. Footwear with an AFO showed reduced PPP on the residuum, but most patients complained of reduced ankle motion during walking. A short shoe reduced pressures on the residuum, but not on the contralateral extremity, and many patients had complaints regarding cosmesis of the shoe. The full-length shoe, total contact insert, and an RRB sole provided the best pressure reduction for the residuum and contralateral foot, with the optimal compromise for cosmetic acceptance and function.
Changes in movement symmetry over the stages of the shoeing process in military working horses.
Pfau, T; Daly, K; Davison, J; Bould, A; Housby, N; Weller, R
2016-08-20
Military working horses perform a high proportion of work on road surfaces and are shod frequently to deal with high attrition rates. The authors investigate the influence of shoeing on movement symmetry as an indirect indicator of mechanical differences affecting force production between contralateral limbs. In this quantitative observational study, inertial sensor gait analysis was performed in 23 Irish sport type horses (4-21 years, 1.58-1.85 m) in full ceremonial work at the King's Troop, Royal Horse Artillery. Changes in two movement symmetry measures (SI: symmetry index; MinDiff: difference between displacement minima) for head and pelvic movement were assessed at four stages of routine shoeing: 'old shoes', 'shoes removed', 'trimmed', 'reshod'. Horses were assessed applying shoes to the front limbs (N=10), to the hindlimbs (N=10) or both (N=3). Changes in head movement symmetry between conditions were small and inconsistent. Changes in pelvic movement symmetry were small and showed significant differences between shoeing stages (SI: P=0.013, MinDiff: P=0.04) with most symmetrical pelvic movement after trimming. In military working horses with high frequency shoeing small changes in movement symmetry were measured. All significant changes involved trimming, which indicates that future studies should in particular assess changes before/after trimming and investigate longer shoeing intervals. British Veterinary Association.
Schuttelaar, Marie L; Meijer, Joost M; Engfeldt, Malin; Lapeere, Hilde; Goossens, An; Bruze, Magnus; Persson, Christina; Bergendorff, Ola
2018-01-01
During rubber vulcanization, new compounds can be formed. To report a case of allergic shoe dermatitis in which the search for the allergen ultimately led to the identification of dimethylthiocarbamylbenzothiazole sulfide (DMTBS). A female presented with eczema on her feet after wearing Sperry Top Sider® canvas sneakers. Patch testing was performed with the European baseline series, additional series, shoe materials, and extracts of shoe materials. Thin-layer chromatography (TLC) was performed for additional patch testing, and high-performance liquid chromatography and gas chromatography-mass spectometry were used for chemical analysis. Positive reactions were found to thiuram mix (+), tetramethylthiuram monosulfide (TMTM) (+), shoe material (+), and shoe extracts in eth. (++) and acetone (+). The extracts did not contain TMTM or other components of thiuram mix. TLC strips yielded a positive reaction (+) to one spot, whereas chemical analysis gave a negative result. Thereafter, a similar sneaker from another patient with shoe dermatitis was analysed, and DMBTS was identified. New extracts of the shoe of our first patient were then also shown to contain DMTBS. DMTBS as culprit allergen was confirmed by positive patch testing with a dilution series with DMTBS. DMBTS was identified as the culprit allergen in shoe dermatitis, giving rise to compound allergy. The positive reaction to TMTM was considered to represent cross-reactivity. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Anderson, S E; Weber, M; Steinbach, L S; Ballmer, F T
2004-06-01
To review MR imaging of figure skaters and snowboarders presenting with painful soft-tissue swelling of the lateral supramalleolar region with a clinical provisional diagnosis of soft-tissue tumor. MR imaging was prospectively reviewed by two sub-specialized musculoskeletal radiologists. The findings were correlated with a second clinical review and examination of the shoe wear. The patients were four female athletes undergoing heavy training regimes, ranging in age between 16 and 25 years. Two patients were elite figure skaters, and two were professional snowboarders. Three patients had unilateral masses with pain, and one patient presented with bilateral clinical findings. MR imaging showed subcutaneous, focal soft-tissue masses of the supramalleolar region in five ankles at the same level above the ankle joint. MR imaging prompted a second clinical review and correlation with the shoe wear. The MR imaging findings correlated to the level of the shoe rim or shoe buckle in all patients, confirming the suspected MR imaging diagnosis of an impingement syndrome. All four sportswomen were training excessively, ignoring safety advice regarding training duration, timing of breaks, and shoe wear rotation. Ice skaters and snowboarders may present with persistent and disabling pain. On MR imaging, this corresponds to a focal soft-tissue abnormality, which may be due to subcutaneous fat impingement between the fibula and the shoe rim or shoe buckle. Copyright 2004 ISS
Footwear recommendations and patterns among orthopaedic foot and ankle surgeons: a survey.
Farber, Daniel C; Knutsen, Elisa J
2013-12-01
Foot and ankle surgeons are in a unique position to educate patients about the importance of proper footwear. Neither their recommendations regarding shoe selection nor their own footwear patterns have previously been reported. A total of 866 members of the American Orthopaedic Foot & Ankle Society (AOFAS) were asked to complete a survey via the Internet. Topics included specific shoe brands recommended to patients, how attributes of footwear are communicated, and respondents' footwear habits. In all, 276 (32%) surgeons responded, and 64% recommended New Balance athletic shoes to patients; 26% did not recommend specific brands. It was found that 50% wear New Balance athletic shoes; 25% wear Nike. Rockport (27%) and SAS (27%) were the most recommended dress shoes. In all, 76% are familiar with AOFAS guidelines for proper shoe fit, but only 56% educated their patients about the guidelines; 43% do not consider what patients might think of their shoes when selecting what to wear in the clinical setting. Despite the multitude of different brands, several were commonly recommended. Respondents seem to be aware of the impact of their own shoe selection on patients' perspectives of footwear, but many do not consider themselves role models for proper footwear.
Gellaerts, Jules; Pirard, Maxime; Muzic, Jessie; Peseux, Maxime; Ménétrier, Arnaud
2017-10-01
The aim of this study was to establish whether maximalist shoes engender fewer muscular oscillations than minimalist shoes and determine to what extent these shoes, when combined with elastic compression (EC), help reduce muscle oscillations. For that purpose, we tested the effects of various levels of compression on the muscular oscillations in maximalist and minimalist footwear. Eleven volunteers executed 16 one-minute passages on a flat treadmill in a randomized order: maximalists or minimalists, walking (6 km/h) or running (10 km/h), without EC (control condition [CON]) or with EC applying different pressures (9.6 mmHg, 14.5 mmHg and 20.4 mmHg). The muscular oscillations were measured on both thighs, on the rectus femoris and on the vastus medialis with tri-axial accelerometers. Muscular oscillations are lower in maximalist shoes than in minimalist shoes, for both walking to 6 km/h and running to 10 km/h (P<0.05). Oscillations are also reduced with EC (P<0.05). This decrease is most marked when the pressure exercised by the EC is increased. Increased compression with minimalist shoes reduces muscular oscillations as much as maximalist shoes, when combined with lower compression.
Lam, Wing-Kai; Ng, Wei Xuan; Kong, Pui Wah
2017-01-01
This study examined how shoe midsole hardness influenced plantar pressure in basketball-related movements. Twenty male university basketball players wore customized shoes with hard and soft midsoles (60 and 50 Shore C) to perform four movements: running, maximal forward sprinting, maximal 45° cutting and lay-up. Plantar loading was recorded using an in-shoe pressure measuring system, with peak pressure (PP) and pressure time integral (PTI) extracted from 10 plantar regions. Compared with hard shoes, subjects exhibited lower PP in one or more plantar regions when wearing the soft shoes across all tested movements (Ps < 0.05). Lower PTI was also observed in the hallux for 45° cutting, and the toes and forefoot regions during the first step of lay-up in the soft shoe condition (Ps < 0.05). In conclusion, using a softer midsole in the forefoot region may be a plausible remedy to reduce the high plantar loading experienced by basketball players.
Development of inexpensive prosthetic feet for high-heeled shoes using simple shoe insole model.
Meier, Margrit R; Tucker, Kerice A; Hansen, Andrew H
2014-01-01
The large majority of prosthetic feet are aimed at low-heeled shoes, with a few models allowing a heel height of up to 5 cm. However, a survey by the American Podiatric Medical Association indicates that most women wear heels over 5 cm; thus, current prosthetic feet limit most female prosthesis users in their choice. Some prosthetic foot components are heel-height adjustable; however, their plantar surface shapes do not change to match the insole shapes of the shoes with different heel heights. The aims of the study were therefore (1) to develop a model that allows prediction of insole shape for various heel height shoes in combination with different shoe sizes and (2) to develop and field-test low-cost prototypes of prosthetic feet whose insole shapes were based on the new model. An equation was developed to calculate insole shapes independent of shoe size. Field testing of prototype prosthetic feet fabricated based on the equation was successful and demonstrated the utility of the equation.
2004-10-15
KENNEDY SPACE CENTER, FLA. - In the Crawler Transporter (CT) area, a worker offloads some of the new crawler shoes that arrived. In the background is one of the two CTs. The new shoes were manufactured by ME Global in Duluth, Minn. The CT transports the Mobile Launcher Platform, with the assembled Space Shuttle aboard, between the refurbishment area, the VAB and Launch Complex Pads 39A and 39B. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. The original shoes were manufactured for the Apollo Program. Cracks appeared in the shoes in recent years spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for Return to Flight and use through the balance of the Space Shuttle Program.
Dangers of dermatologic surgery: protect your feet.
Barr, Jerome; Siegel, Daniel
2004-12-01
Dermatologists frequently utilize scalpels, which are reported to be to culprit in around seven percent of the 385,000 sharps-related injuries sustained by healthcare personnel a year. Injuries from sharp devices are associated with the occupational transmission of more than 20 pathogens. Dropped scalpels may penetrate unprotected lower extremity skin, and there is no published data regarding what a shoe's actual degree of protection is against the danger of falling sharps. The purpose of this study was to evaluate and determine which types of shoes will protect their wearers. Although every shoe decreased falling sharp's degree of penetration into the feet, shoes cannot be relied on to prevent injury. More than half of the shoes allowed the scalpel blade to pass through the shoes and penetrate into the meat.
2004-10-15
KENNEDY SPACE CENTER, FLA. - A tractor-trailer arrives at the Crawler Transporter (CT) area with a new shipment of crawler shoes. In the background is the Vehicle Assembly Building. The new shoes were manufactured by ME Global in Duluth, Minn. The CT transports the Mobile Launcher Platform, with the assembled Space Shuttle aboard, between the refurbishment area, the VAB and Launch Complex Pads 39A and 39B. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. The original shoes were manufactured for the Apollo Program. Cracks appeared in the shoes in recent years spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for Return to Flight and use through the balance of the Space Shuttle Program.
Fuller, Joel T.; Buckley, Jonathan D.; Tsiros, Margarita D.; Brown, Nicholas A. T.; Thewlis, Dominic
2016-01-01
Context: Minimalist shoes have been suggested as a way to alter running biomechanics to improve running performance and reduce injuries. However, to date, researchers have only considered the effect of minimalist shoes at slow running speeds. Objective: To determine if runners change foot-strike pattern and alter the distribution of mechanical work at the knee and ankle joints when running at a fast speed in minimalist shoes compared with conventional running shoes. Design: Crossover study. Setting: Research laboratory. Patients or Other Participants: Twenty-six trained runners (age = 30.0 ± 7.9 years [age range, 18−40 years], height = 1.79 ± 0.06 m, mass = 75.3 ± 8.2 kg, weekly training distance = 27 ± 15 km) who ran with a habitual rearfoot foot-strike pattern and had no experience running in minimalist shoes. Intervention(s): Participants completed overground running trials at 18 km/h in minimalist and conventional shoes. Main Outcome Measure(s): Sagittal-plane kinematics and joint work at the knee and ankle joints were computed using 3-dimensional kinematic and ground reaction force data. Foot-strike pattern was classified as rearfoot, midfoot, or forefoot strike based on strike index and ankle angle at initial contact. Results: We observed no difference in foot-strike classification between shoes (χ21 = 2.29, P = .13). Ankle angle at initial contact was less (2.46° versus 7.43°; t25 = 3.34, P = .003) and strike index was greater (35.97% versus 29.04%; t25 = 2.38, P = .03) when running in minimalist shoes compared with conventional shoes. We observed greater negative (52.87 J versus 42.46 J; t24 = 2.29, P = .03) and positive work (68.91 J versus 59.08 J; t24 = 2.65, P = .01) at the ankle but less negative (59.01 J versus 67.02 J; t24 = 2.25, P = .03) and positive work (40.37 J versus 47.09 J; t24 = 2.11, P = .046) at the knee with minimalist shoes compared with conventional shoes. Conclusions: Running in minimalist shoes at a fast speed caused a redistribution of work from the knee to the ankle joint. This finding suggests that runners changing from conventional to minimalist shoes for short-distance races could be at an increased risk of ankle and calf injuries but a reduced risk of knee injuries. PMID:27834504
The value of shoe size for prediction of the timing of the pubertal growth spurt
2011-01-01
Background Knowing the timing of the pubertal growth spurt of the spine, represented by sitting height, is essential for the prognosis and therapy of adolescent idiopathic scoliosis. There are several indicators that reflect growth or remaining growth of the patient. For example, distal body parts have their growth spurt earlier in adolescence, and therefore the growth of the foot can be an early indicator for the growth spurt of sitting height. Shoe size is a good alternative for foot length, since patients can remember when they bought new shoes and what size these shoes were. Therefore the clinician already has access to some longitudinal data at the first visit of the patient to the outpatient clinic. The aim of this study was to describe the increase in shoe size during adolescence and to determine whether the timing of the peak increase could be an early indicator for the timing of the peak growth velocity of sitting height. Methods Data concerning shoe sizes of girls and boys were acquired from two large shoe shops from 1991 to 2008. The longitudinal series of 242 girls and 104 boys were analysed for the age of the "peak increase" in shoe size, as well as the age of cessation of foot growth based on shoe size. Results The average peak increase in shoe size occurred at 10.4 years (SD 1.1) in girls and 11.5 years (SD 1.5) in boys. This was on average 1.3 years earlier than the average peak growth velocity of sitting height in girls, and 2.5 years earlier in boys. The increase in shoe size diminishes when the average peak growth velocity of sitting height takes place at respectively 12.0 (SD 0.8) years in girls, and 13.7 (SD 1.0) years in boys. Conclusions Present data suggest that the course of the shoe size of children visiting the outpatient clinic can be a useful first tool for predicting the timing of the pubertal growth spurt of sitting height, as a representative for spinal length. This claim needs verification by direct comparison of individual shoe size and sitting height data and than a step forward can be made in clinical decision making regarding adolescent idiopathic scoliosis. PMID:21251310
... hammertoe and mallet toe may involve changing your footwear and wearing shoe inserts. If you have a ... linked to: Certain shoes. High-heeled shoes or footwear that's too tight in the toe box can ...
42 CFR 414.228 - Prosthetic and orthotic devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... therapeutic shoes. The payment rules specified in paragraphs (a) and (b) of this section are applicable to custom molded and extra depth shoes, modifications, and inserts (therapeutic shoes) furnished after...
42 CFR 414.228 - Prosthetic and orthotic devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... therapeutic shoes. The payment rules specified in paragraphs (a) and (b) of this section are applicable to custom molded and extra depth shoes, modifications, and inserts (therapeutic shoes) furnished after...
A survey of footwear advice, beliefs and wear habits in people with knee osteoarthritis.
Paterson, Kade L; Wrigley, Tim V; Bennell, Kim L; Hinman, Rana S
2014-01-01
Expert opinion recommends cushioned and supportive footwear for people with knee osteoarthritis (OA). However, little is known about the footwear advice people receive from healthcare professionals, or the beliefs and footwear habits of people with knee OA. This study aimed to determine i) what types of shoes people are advised to wear for their knee OA and by whom; ii) establish which types of shoes people with knee OA believe are best for managing their knee OA symptoms and (iii) which shoes they wear most often. 204 people with symptomatic knee OA completed an online survey. The survey comprised 14 questions asking what footwear advice people had received for their knee OA and who they received it from, individual beliefs about optimal footwear styles for their knee OA symptoms and the types of footwear usually worn. Only one third (n = 69, 34%) of participants reported receiving footwear advice for their knee OA, and this was most frequently received from a podiatrist (n = 47, 68%). The most common advice was to wear sturdy/supportive shoes (n = 96, 47%) or shoes with arch supports (n = 84, 41%). These were also amongst the shoe styles that participants believed were best for their knee OA (n = 157 (77%) and n = 138 (68%) respectively). The type of shoes most frequently worn were athletic (n = 131, 64%) and sturdy/supportive shoes (n = 116, 57%). Most people with knee OA who completed our survey had not received advice about footwear for their knee OA symptoms. Our participants typically believed that sturdy/supportive shoes were best for their knee OA and this shoe style was most frequently worn, which is reflective of expert opinion. Future research is needed to confirm whether sturdy/supportive shoes are indeed optimal for managing symptoms of knee OA.
Six-week transition to minimalist shoes improves running economy and time-trial performance.
Fuller, Joel T; Thewlis, Dominic; Tsiros, Margarita D; Brown, Nicholas A T; Buckley, Jonathan D
2017-12-01
This study investigated if gradually introducing runners to minimalist shoes during training improved running economy and time-trial performance compared to training in conventional shoes. Changes in stride rate, stride length, footfall pattern and ankle plantar-flexor strength were also investigated. Randomised parallel intervention trial. 61 trained runners gradually increased the amount of running performed in either minimalist (n=31) or conventional (n=30) shoes during a six-week standardised training program. 5-km time-trial performance, running economy, ankle plantar-flexor strength, footfall pattern, stride rate and length were assessed in the allocated shoes at baseline and after training. Footfall pattern was determined from the time differential between rearfoot and forefoot (TD R-F ) pressure sensors. The minimalist shoe group improved time-trial performance (effect size (ES): 0.24; 95% confidence interval (CI): 0.01, 0.48; p=0.046) and running economy (ES 0.48; 95%CI: 0.22, 0.74; p<0.001) more than the conventional shoe group. There were no minimalist shoe training effects on ankle plantar-flexor concentric (ES: 0.11; 95%CI: -0.18, 0.41; p=0.45), isometric (ES: 0.23; 95%CI: -0.17, 0.64; p=0.25), or eccentric strength (ES: 0.24; 95%CI: -0.17, 0.65; p=0.24). Minimalist shoes caused large reductions in TD R-F (ES: 1.03; 95%CI: 0.65, 1.40; p<0.001) but only two runners changed to a forefoot footfall. Minimalist shoes had no effect on stride rate (ES: 0.04; 95%CI: -0.08, 0.16; p=0.53) or length (ES: 0.06; 95%CI: -0.06, 0.18; p=0.35). Gradually introducing minimalist shoes over a six-week training block is an effective method for improving running economy and performance in trained runners. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
42 CFR 414.228 - Prosthetic and orthotic devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Payment for therapeutic shoes. The payment rules specified in paragraphs (a) and (b) of this section are applicable to custom molded and extra depth shoes, modifications, and inserts (therapeutic shoes) furnished...
42 CFR 414.228 - Prosthetic and orthotic devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Payment for therapeutic shoes. The payment rules specified in paragraphs (a) and (b) of this section are applicable to custom molded and extra depth shoes, modifications, and inserts (therapeutic shoes) furnished...
A test of the metabolic cost of cushioning hypothesis during unshod and shod running.
Tung, Kryztopher David; Franz, Jason R; Kram, Rodger
2014-02-01
This study aimed to investigate the effects of surface and shoe cushioning on the metabolic cost of running. In running, the leg muscles generate force to cushion the impact with the ground. External cushioning (surfaces or shoes) may reduce the muscular effort needed for cushioning and thus reduce metabolic cost. Our primary hypothesis was that the metabolic cost of unshod running would decrease with a more cushioned running surface. We also hypothesized that because of the counteracting effects of shoe cushioning and mass, unshod running on a hard surface would have approximately the same metabolic cost as running in lightweight, cushioned shoes. To test these hypotheses, we attached 10- and 20-mm-thick slats of the same foam cushioning used in running shoe midsoles to the belt of a treadmill that had a rigid deck. Twelve subjects who preferred a midfoot strike pattern and had substantial barefoot/minimalist running experience ran without shoes on the normal treadmill belt and on each thickness of foam. They also ran with lightweight, cushioned shoes on the normal belt. We collected V˙O2 and V˙CO2 to calculate the metabolic power demand and used a repeated-measures ANOVA to compare between conditions. Compared to running unshod on the normal belt, running unshod on the 10-mm-thick foam required 1.63% ± 0.67% (mean ± SD) less metabolic power (P = 0.034) but running on the 20-mm-thick foam had no significant metabolic effect. Running with and without shoes on the normal belt had similar metabolic power demands, likely because the beneficial energetic effects of cushioning counterbalanced the detrimental effects of shoe mass. On average, surface and shoe cushioning reduce the metabolic power required for submaximal running.
Finkelstein, Murray M
2015-05-01
In North America and Europe, the use of asbestos in friction products was discontinued before the end of the 20th century. In the developing world, the use of asbestos-containing friction products continues. In 2010, Cely-Garcia and colleagues (Cely-Garcia et al., 2012) sampled three brake repair shops located in Bogota, Colombia. Both asbestos and non-asbestos containing brake linings were sold separately or attached to a shoe. When brake linings are sold separated from the shoe, they must be manipulated to attach them to the shoe before installation. The process starts with the removal of the old brake shoe from the vehicle's brake drum. If the existing brake shoe is to be reused, the old lining needs to be removed and the old shoe must be ground to prepare it for a new lining. Riveting requires drilling holes in the linings and shoes and before installing rivets, the lining must be countersunk. The borders of the lining are bevelled. On some occasions, the entire exposed surface of the lining is ground to make it thinner. Once attached to the shoe, the edges of brake linings may extend beyond the shoe. In this case, it is necessary to cut or grind the edges to match the lining to the shoe before bevelling or grinding. The authors reported that 'the sampling results indicate that the brake mechanics sampled are exposed to extremely high asbestos concentrations (i.e. based on transmission electron microscopy counts), suggesting that this occupational group could be at excess risk of asbestos-related diseases'. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Interaction of arch type and footwear on running mechanics.
Butler, Robert J; Davis, Irene S; Hamill, Joseph
2006-12-01
Running shoes are designed to accommodate various arch types to reduce the risk of lower extremity injuries sustained during running. Yet little is known about the biomechanical changes of running in the recommended footwear that may allow for a reduction in injuries. To evaluate the effects of motion control and cushion trainer shoes on running mechanics in low- and high-arched runners. Controlled laboratory study. Twenty high-arched and 20 low-arched recreational runners (>10 miles per week) were recruited for the study. Three-dimensional kinematic and kinetics were collected as subjects ran at 3.5 ms(-1) +/- 5% along a 25-m runway. The motion control shoe evaluated was the New Balance 1122, and the cushioning shoe evaluated was the New Balance 1022. Repeated-measures analyses of variance were used to determine if low- and high-arched runners responded differently to motion control and cushion trainer shoes. A significant interaction was observed in the instantaneous loading rate such that the low-arched runners had a lower instantaneous loading rate in the motion control condition, and the high-arched runners had a lower instantaneous loading rate in the cushion trainer condition. Significant main effects for shoe were observed for peak positive tibial acceleration, peak-to-peak tibial acceleration, mean loading rate, peak eversion, and eversion excursion. These results suggest that motion control shoes control rearfoot motion better than do cushion trainer shoes. In addition, cushion trainer shoes attenuate shock better than motion control shoes do. However, with the exception of instantaneous loading rate, these benefits do not differ between arch type. Running footwear recommendations should be based on an individual's running mechanics. If a mechanical analysis is not available, footwear recommendations can be based empirically on the individual's arch type.
Minimalist Running Shoes and Injury Risk Among United States Army Soldiers.
Grier, Tyson; Canham-Chervak, Michelle; Bushman, Timothy; Anderson, Morgan; North, William; Jones, Bruce H
2016-06-01
Minimalist running shoes (MRS) are lightweight, are extremely flexible, and have little to no cushioning. It has been thought that MRS will enhance running performance and decrease injury risk. To compare physical characteristics, fitness performance, and injury risks associated with soldiers wearing MRS and those wearing traditional running shoes (TRS). Case series; Level of evidence, 4. Participants were men in a United States Army brigade (N = 1332). Physical characteristics and Army Physical Fitness Test data were obtained by survey. Fitness performance testing was administered at the brigade, and the types of footwear worn were identified by visual inspection. Shoe types were categorized into 2 groups: TRS (stability, cushioning, and motion control) and MRS. Injuries from the previous 12 months were obtained from the Defense Medical Surveillance System. A t test was used to determine mean differences between personal characteristics, training, and fitness performance metrics by shoe type. Hazard ratios and 95% CIs were calculated to determine injury risk by shoe type, controlling for other risk factors. A majority of soldiers wore cushioning shoes (57%), followed by stability shoes (24%), MRS (17%), and motion control shoes (2%). Soldiers wearing MRS were slightly younger than those wearing TRS (P < .01); performed more push-ups, sit-ups, and pull-ups (P < .01); and ran faster during the 2-mile run (P = .01). When other risk factors were controlled, there was no difference in injury risk for running shoe type between soldiers wearing MRS compared with TRS. Soldiers who chose to wear MRS were younger and had higher physical performance scores compared with soldiers wearing TRS. When these differences are controlled, use of MRS does not appear to be associated with higher or lower injury risk in this population. © 2016 The Author(s).
How to Select Children's Shoes
... not properly fitted for your child's foot. Shoe Construction Shoes consist of four parts: the upper, the ... Society ® Orthopaedic Foot & Ankle Foundation 9400 W. Higgins Road, Suite 220, Rosemont, IL 60018 800-235-4855 ...
Effects of shoe cushioning upon ground reaction forces in running.
Clarke, T E; Frederick, E C; Cooper, L B
1983-11-01
To determine the effects of widely varying amounts of cushioning upon vertical force (VF) parameters, ten male subjects, (mean weight = 68.0 kg) ran at a speed of 4.5 m . s-1 (6 min/mile pace) and contacted a Kistler force platform. Two shoes were tested: a hard one and a softer shoe that had 50% more cushioning as measured by an instrumented impact tester. Five right footfalls were collected for each shoe on each subject during which the ground reaction forces were sampled at 500 HZ using a PDP 11/34 minicomputer. Eight parameters from the VF data obtained for each trial were selected for analysis and compared statistically using a paired difference t test. It was found [force magnitudes expressed in multiples of body weight (BW)] that the time to the vertical force impact peak (VFIP) was significantly longer (hard = 22.5 ms, soft = 26.6 ms) in the soft shoe; however, no differences were seen in the magnitudes (hard = 2.30 BW, soft = 2.34 BW). The minimum after the VFIP was also significantly delayed in the soft shoe (hard = 33.8 ms, soft = 37.9 ms) and was significantly greater in the soft shoe (hard = 1.46 BW, soft = 1.90 BW). The peak VF propulsive force occurred statistically at the same time in both shoes (hard = 85.7 ms, soft = 84.0 ms), but was significantly greater in the soft shoe (hard = 2.73 BW, soft = 2.83 BW).(ABSTRACT TRUNCATED AT 250 WORDS)
Development of an ultra wide band microwave radar based footwear scanning system
NASA Astrophysics Data System (ADS)
Rezgui, Nacer Ddine; Bowring, Nicholas J.; Andrews, David A.; Harmer, Stuart W.; Southgate, Matthew J.; O'Reilly, Dean
2013-10-01
At airports, security screening can cause long delays. In order to speed up screening a solution to avoid passengers removing their shoes to have them X-ray scanned is required. To detect threats or contraband items hidden within the shoe, a method of screening using frequency swept signals between 15 to 40 GHz has been developed, where the scan is carried out whilst the shoes are being worn. Most footwear is transparent to microwaves to some extent in this band. The scans, data processing and interpretation of the 2D image of the cross section of the shoe are completed in a few seconds. Using safe low power UWB radar, scattered signals from the shoe can be observed which are caused by changes in material properties such as cavities, dielectric or metal objects concealed within the shoe. By moving the transmission horn along the length of the shoe a 2D image corresponding to a cross section through the footwear is built up, which can be interpreted by the user, or automatically, to reveal the presence of concealed threat within the shoe. A prototype system with a resolution of 6 mm or less has been developed and results obtained for a wide range of commonly worn footwear, some modified by the inclusion of concealed material. Clear differences between the measured images of modified and unmodified shoes are seen. Procedures for enhancing the image through electronic image synthesis techniques and image processing methods are discussed and preliminary performance data presented.
Rocker bottom soles alter the postural response to backward translation during stance.
Albright, Bruce C; Woodhull-Smith, Whitney M
2009-07-01
Shoes with rocker bottom soles are utilized by persons with diabetic peripheral neuropathy to reduce plantar pressures during gait. This population also has a high risk for falls. This study analyzed the effects of shoes with rocker bottom soles on the postural response during perturbed stance. Participants were 20 healthy subjects (16 women, 4 men) ages 22-25 years. Canvas shoes were modified by the addition of crepe sole material to represent two forms of rocker bottom shoes and a control shoe. Subjects stood on a dynamic force plate programmed to move backward at a velocity that produced an automatic postural response without stepping. Force plate data were collected for five trials per shoe type. Sway variables for center of pressure (COP) and center of mass (COM) included: mean sway amplitude, sway variance, time to peak, anterior and posterior peak velocities, functional stability margin, and peak duration time. Compared to control, both the experimental shoes had significantly larger COP and COM values for mean sway amplitude, sway variance and peak duration. The functional stability margins were significantly smaller for the experimental shoes while their anterior and posterior peak velocities were slower and time to peaks were significantly longer. In young healthy adults, shoes with rocker bottom soles had a destabilizing effect to perturbed stance, thereby increasing the potential for imbalance. These results raise concerns that footwear with rocker bottom sole modifications to accommodate an insensate foot may increase the risk of falls.
A semi-automated process for the production of custom-made shoes
NASA Technical Reports Server (NTRS)
Farmer, Franklin H.
1991-01-01
A more efficient, cost-effective and timely way of designing and manufacturing custom footware is needed. A potential solution to this problem lies in the use of computer-aided design and manufacturing (CAD/CAM) techniques in the production of custom shoes. A prototype computer-based system was developed, and the system is primarily a software entity which directs and controls a 3-D scanner, a lathe or milling machine, and a pattern-cutting machine to produce the shoe last and the components to be assembled into a shoe. The steps in this process are: (1) scan the surface of the foot to obtain a 3-D image; (2) thin the foot surface data and create a tiled wire model of the foot; (3) interactively modify the wire model of the foot to produce a model of the shoe last; (4) machine the last; (5) scan the surface of the last and verify that it correctly represents the last model; (6) design cutting patterns for shoe uppers; (7) cut uppers; (8) machine an inverse mold for the shoe innersole/sole combination; (9) mold the innersole/sole; and (10) assemble the shoe. For all its capabilities, this system still requires the direction and assistance of skilled operators, and shoemakers to assemble the shoes. Currently, the system is running on a SUN3/260 workstation with TAAC application accelerator. The software elements of the system are written in either Fortran or C and run under a UNIX operator system.
Measurements of rearfoot motion during running.
Milani, T L; Hennig, E M
2000-09-01
Excessive rearfoot motion is an important factor that has been linked to the development of injuries in running. Therefore, extensive research has been performed that to investigate the movement of the foot and factors that influence the degree of rearfoot motion. Several methodological procedures are available that indirectly determine the degree of rearfoot movement. High-speed film, high-speed video and opto-electric techniques have been used to analyse the posterior aspect of the heel counter of the shoe in the frontal plane to determine rearfoot motion at ground contact on a treadmill or during overground running. Recent studies used invasive pin methods to determine rearfoot motion during running under different conditions. Using a non-invasive approach, electrogoniometers have been used to quantify rearfoot motion. The purpose of this study was to explore the use of an in-shoe electrogoniometric method to investigate rearfoot motion during running in different running shoes. The results showed that rearfoot motion variables were lower using the in-shoe goniometer compared to a heel counter method. This confirms previous bone pin studies where significant lower eversion and eversion velocity values were revealed by the bone pins compared to the shoe counter markers. Thus, external measurements seem to overestimate rearfoot motion significantly. On the other hand, the in-shoe measurements revealed slightly lower GRF related values. As with any other shoe insert, an in-shoe device elevates the foot slightly and thus may influence the mechanical behaviour of the shoe.
Teymouri, Meghdad; Halabchi, Farzin; Mirshahi, Maryam; Mansournia, Mohammad Ali; Mousavi Ahranjani, Ali; Sadeghi, Amir
2017-01-01
Analysis of in-shoe pressure distribution during sport-specific movements may provide a clue to improve shoe design and prevent injuries. This study compared the mean and the peak pressures over the whole foot and ten separate areas of the foot, wearing different shoes during specific movements. Nine male adult recreational futsal players performed three trials of three sport-specific movements (shuffle, sprint and penalty kick), while they were wearing three brands of futsal shoes (Adidas, Lotto and Tiger). Plantar pressures on dominant feet were collected using the F-SCAN system. Peak and mean pressures for whole foot and each separate area were extracted. For statistical analysis, the mean differences in outcome variables between different shoes and movements were estimated using random-effects regression model using STATA ver.10. In the average calculation of the three movements, the peak pressure on the whole foot in Adidas shoe was less than Lotto [8.8% (CI95%: 4.1-13.6%)] and Tiger shoes [11.8% (CI95%:7-16.7%)], (P<0.001). Also, the recorded peak pressure on the whole foot in penalty kick was 61.1% (CI95%: 56.3-65.9%) and 57.6% (CI95%: 52.8-62.3%) less than Shuffle and Sprint tests, respectively (P<0.001). Areas with the highest peak pressure during all 3 movements were not different between all shoes. This area was medial forefoot in cases of shuffle and sprint movements and medial heel in case of penalty kick.
Forensic analysis of the microbiome of phones and shoes
Lax, Simon; Hampton-Marcell, Jarrad T.; Gibbons, Sean M.; ...
2015-05-12
Background: Microbial interaction between human-associated objects and the environments we inhabit may have forensic implications, and the extent to which microbes are shared between individuals inhabiting the same space may be relevant to human health and disease transmission. In this study, two participants sampled the front and back of their cell phones, four different locations on the soles of their shoes, and the floor beneath them every waking hour over a 2-day period. A further 89 participants took individual samples of their shoes and phones at three different scientific conferences. Results: Samples taken from different surface types maintained significantly differentmore » microbial community structures. The impact of the floor microbial community on that of the shoe environments was strong and immediate, as evidenced by Procrustes analysis of shoe replicates and significant correlation between shoe and floor samples taken at the same time point. Supervised learning was highly effective at determining which participant had taken a given shoe or phone sample, and a Bayesian method was able to determine which participant had taken each shoe sample based entirely on its similarity to the floor samples. Both shoe and phone samples taken by conference participants clustered into distinct groups based on location, though much more so when an unweighted distance metric was used, suggesting sharing of low-abundance microbial taxa between individuals inhabiting the same space. In conclusion, correlations between microbial community sources and sinks allow for inference of the interactions between humans and their environment.« less
Forensic analysis of the microbiome of phones and shoes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lax, Simon; Hampton-Marcell, Jarrad T.; Gibbons, Sean M.
Background: Microbial interaction between human-associated objects and the environments we inhabit may have forensic implications, and the extent to which microbes are shared between individuals inhabiting the same space may be relevant to human health and disease transmission. In this study, two participants sampled the front and back of their cell phones, four different locations on the soles of their shoes, and the floor beneath them every waking hour over a 2-day period. A further 89 participants took individual samples of their shoes and phones at three different scientific conferences. Results: Samples taken from different surface types maintained significantly differentmore » microbial community structures. The impact of the floor microbial community on that of the shoe environments was strong and immediate, as evidenced by Procrustes analysis of shoe replicates and significant correlation between shoe and floor samples taken at the same time point. Supervised learning was highly effective at determining which participant had taken a given shoe or phone sample, and a Bayesian method was able to determine which participant had taken each shoe sample based entirely on its similarity to the floor samples. Both shoe and phone samples taken by conference participants clustered into distinct groups based on location, though much more so when an unweighted distance metric was used, suggesting sharing of low-abundance microbial taxa between individuals inhabiting the same space. In conclusion, correlations between microbial community sources and sinks allow for inference of the interactions between humans and their environment.« less
The influence of shoe aging on children running biomechanics.
Herbaut, Alexis; Chavet, Pascale; Roux, Maxime; Guéguen, Nils; Barbier, Franck; Simoneau-Buessinger, Emilie
2017-07-01
Athletic children are prone to overuse injuries, especially at the heel and knee. Since footwear is an extrinsic factor of lower limb injury risk, the aim of this study was to assess the influence of shoe aging on children running biomechanics. Fourteen children active in sports participated in a laboratory biomechanical evaluation. A new pair of shoes was provided to each participant at an inclusion visit. Four months later, the participants performed a running task and their kinematics and kinetics were assessed both with their used shoes and with a new pair of shoes identical to the first. Furthermore, mechanical cushioning properties of shoes were evaluated before and after in-vivo aging. After 4months of use, the sole stiffness increased by 16% and the energy loss capacity decreased by 18% (p<0.001). No ankle or knee kinematic adjustment was found at foot strike in used shoes but changes were observed later during stance. Running with used shoes produced a higher loading rate of the vertical ground reaction force (+23%, p=0.016), suggesting higher compressive forces under the heel and placing children at risk to experience impact-related injuries. Nevertheless, the decreased peak ankle and knee power absorption in used shoes (-11%, p=0.010 and -12%, p=0.029, respectively) suggests a lower ankle and knee joints loading during the absorption phase that may be beneficial regarding stretch-related injuries. Copyright © 2017 Elsevier B.V. All rights reserved.
Wiegerinck, Johannes I; Boyd, Jennifer; Yoder, Jordan C; Abbey, Alicia N; Nunley, James A; Queen, Robin M
2009-04-01
The purpose of this study was to examine the difference in plantar loading between two different running shoe types. We hypothesized that a higher maximum force, peak pressure, and contact area would exist beneath the entire foot while running in a racing flat when compared to a training shoe. 37 athletes (17 male and 20 female) were recruited for this study. Subjects had no history of lower extremity injuries in the past six months, no history of foot or ankle surgery within the past 3 years, and no history of metatarsal stress fractures. Subjects had to be physically active and run at least 10 miles per week. Each subject ran on a 10m runway 7 times wearing two different running shoe types, the Nike Air Pegasus (training shoe) and the Nike Air Zoom Katana IV (racing flat). A Pedar-X in-shoe pressure measurement system sampling at 50Hz was used to collect plantar pressure data. Peak pressure, maximum force, and contact area beneath eight different anatomical regions of the foot as well as beneath the total foot were obtained. The results of this study demonstrated a significant difference between training shoes and racing flats in terms of peak pressure, maximum force, and contact area. The significant differences measured between the two shoes can be of importance when examining the influence of shoe type on the occurrence of stress fractures in runners.
Development of thermal models of footwear using finite element analysis.
Covill, D; Guan, Z W; Bailey, M; Raval, H
2011-03-01
Thermal comfort is increasingly becoming a crucial factor to be considered in footwear design. The climate inside a shoe is controlled by thermal and moisture conditions and is crucial to attain comfort. Research undertaken has shown that thermal conditions play a dominant role in shoe climate. Development of thermal models that are capable of predicting in-shoe temperature distributions is an effective way forward to undertake extensive parametric studies to assist optimized design. In this paper, two-dimensional and three-dimensional thermal models of in-shoe climate were developed using finite element analysis through commercial code Abaqus. The thermal material properties of the upper shoe, sole, and air were considered. Dry heat flux from the foot was calculated on the basis of typical blood flow in the arteries on the foot. Using the thermal models developed, in-shoe temperatures were predicted to cover various locations for controlled ambient temperatures of 15, 25, and 35 degrees C respectively. The predicted temperatures were compared with multipoint measured temperatures through microsensor technology. Reasonably good correlation was obtained, with averaged errors of 6, 2, and 1.5 per cent, based on the averaged in-shoe temperature for the above three ambient temperatures. The models can be further used to help design shoes with optimized thermal comfort.
Kleindienst, F I; Krabbe, B; Walther, M; Brüggemann, G-P
2006-03-01
On nearly every running event a heterogeneous structure of participants regarding body height and body weight can be observed. This study should figure out whether the running shoe manufacturers will consider this anthropometric variability. Moreover it should be investigated the runners needs based on different anthropometrics regarding preferred cushioning and forefoot flexibility properties. In order to check whether the running shoe manufacturers will apply a grading pattern, a dynamic material study with conventional running shoes in different sizes was conducted. In a second step a field study in Middle Europe and North America with 244 female and 227 male runners was organized. Every subject had to run and evaluate 7 different shoe modifications. Based on the material study it is to state, that the running shoe manufacturers currently do not consider a systematic grading of cushioning and forefoot flexibility properties. In contrast to this, the field study reveals the necessity to grade these properties. A shoe size dependent and a geographic grading concept are suggested. It is supposed, that the application of these grading concepts do not only provide a comfort improvement, but they also contribute to a reduction of joint loads of the lower extremities and consequently to a prevention of overuse injuries.
Sinclair, J; Mcgrath, R; Brook, O; Taylor, P J; Dillon, S
2016-01-01
Running economy is a reflection of the amount of inspired oxygen required to maintain a given velocity and is considered a determining factor for running performance. Athletic footwear has been advocated as a mechanism by which running economy can be enhanced. New commercially available footwear has been developed in order to increase energy return, although their efficacy has not been investigated. This study aimed to examine the effects of energy return footwear on running economy in relation to conventional running shoes. Twelve male runners completed 6-min steady-state runs in conventional and energy return footwear. Overall, oxygen consumption (VO2), heart rate, respiratory exchange ratio, shoe comfort and rating of perceived exertion were assessed. Moreover, participants subjectively indicated which shoe condition they preferred for running. Differences in shoe comfort and physiological parameters were examined using Wilcoxon signed-rank tests, whilst shoe preferences were tested using a chi-square analysis. The results showed that VO2 and respiratory exchange ratio were significantly lower, and shoe comfort was significantly greater, in the energy return footwear. Given the relationship between running economy and running performance, these observations indicate that the energy return footwear may be associated with enhanced running performance in comparison to conventional shoes.
Farndon, Lisa; Robinson, Victoria; Nicholls, Emily; Vernon, Wesley
2016-01-01
A previous study highlighted the importance of footwear to individuals' sense of their identity, demonstrating that shoes must 'fit' someone socially, as well as functionally. However, unhealthy shoes can have a detrimental effect on both foot health and mobility. This project utilises qualitative social science methods to enable podiatrists to understand the broader contribution of footwear to patients' sense of themselves and from this an online toolkit was developed to aid footwear education. Semi-structured interviews were conducted with six podiatrists/shoe-fitters and 13 people with foot pathologies, some of whom also completed shoe diaries. These were supplemented with some follow-up interviews and photographs of participants' own shoes were taken to allow in-depth discussions. Four areas related to 'fit' were identified; practicalities, personal, purpose and pressures, all of which need to be considered when discussing changes in footwear. These were incorporated into an online toolkit which was further validated by service users and practitioners in a focus group. This toolkit can support podiatrists in partnership with patients to identify and address possible barriers to changing footwear towards a more suitable shoe. Enabling patients to make healthier shoe choices will help contribute to improvements in their foot health and mobility.
Even-Tzur, Nurit; Weisz, Ety; Hirsch-Falk, Yifat; Gefen, Amit
2006-01-01
Modern sport shoes are designed to attenuate mechanical stress waves, mainly through deformation of the viscoelastic midsole which is typically made of ethylene vinyl acetate (EVA) foam. Shock absorption is obtained by flow of air through interconnected air cells in the EVA during shoe deformation under body-weight. However, when the shoe is overused and air cells collapse or thickness of the EVA is reduced, shock absorption capacity may be affected, and this may contribute to running injuries. Using lumped system and finite element models, we studied heel pad stresses and strains during heel-strike in running, considering the viscoelastic constitutive behavior of both the heel pad and EVA midsole. In particular, we simulated wear cases of the EVA, manifested in the modeling by reduced foam thickness, increased elastic stiffness, and shorter stress relaxation with respect to new shoe conditions. Simulations showed that heel pad stresses and strains were sensitive to viscous damping of the EVA. Wear of the EVA consistently increased heel pad stresses, and reduced EVA thickness was the most influential factor, e.g., for a 50% reduction in thickness, peak heel pad stress increased by 19%. We conclude that modeling of the heel-shoe interaction should consider the viscoelastic properties of the tissue and shoe components, and the age of the studied shoe.
Xu, Y; Hou, Q; Wang, C; Simpson, T; Bennett, B; Russell, S
2017-01-01
We aim to test how well modern nonhabitual barefoot people can adapt to barefoot and Minimalist Bare Foot Technology (MBFT) shoes, in regard to gait symmetry. 28 healthy university students (22 females/6 males) were recruited to walk on a 10-meter walkway randomly on barefoot, in MBFT shoes, and in neutral running shoes at their comfortable walking speed. Kinetic and kinematic data were collected using an 8-camera motion capture system. Data of joint angles, joint forces, and joint moments were extracted to compute a consecutive symmetry index. Compared to walking in neutral running shoes, walking barefoot led to worse symmetry of the following: ankle joint force in sagittal plane, knee joint moment in transverse plane, and ankle joint moment in frontal plane, while improving the symmetry of joint angle in sagittal plane at ankle joints and global (hip-knee-ankle) level. Walking in MBFT shoes had intermediate gait symmetry performance as compared to walking barefoot/walking in neutral running shoes. We conclude that modern nonhabitual barefoot adults will lose some gait symmetry in joint force/moment if they switch to barefoot walking without fitting in; MBFT shoe might be an ideal compromise for healthy youth as regards gait symmetry in walking.
Squadrone, Roberto; Rodano, Renato; Hamill, Joseph; Preatoni, Ezio
2015-01-01
Despite the growing interest in minimalist shoes, no studies have compared the efficacy of different types of minimalist shoe models in reproducing barefoot running patterns and in eliciting biomechanical changes that make them differ from standard cushioned running shoes. The aim of this study was to investigate the acute effects of different footwear models, marketed as "minimalist" by their manufacturer, on running biomechanics. Six running shoes marketed as barefoot/minimalist models, a standard cushioned shoe and the barefoot condition were tested. Foot-/shoe-ground pressure and three-dimensional lower limb kinematics were measured in experienced rearfoot strike runners while they were running at 3.33 m · s⁻¹ on an instrumented treadmill. Physical and mechanical characteristics of shoes (mass, heel and forefoot sole thickness, shock absorption and flexibility) were measured with laboratory tests. There were significant changes in foot strike pattern (described by the strike index and foot contact angle) and spatio-temporal stride characteristics, whereas only some among the other selected kinematic parameters (i.e. knee angles and hip vertical displacement) changed accordingly. Different types of minimalist footwear models induced different changes. It appears that minimalist footwear with lower heel heights and minimal shock absorption is more effective in replicating barefoot running.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. The Crawler Transporter sits behind the Vehicle Assembly Building after its road test of the new shoes. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.
Take Care of Your Feet for a Lifetime
... footwear: You may need special shoes or shoe inserts to support your feet. Medicare Part B insurance ... some of the cost of special shoes or inserts. Ask your doctor if your insurance plan will ...
... the Big Toe Ailments of the Smaller Toes Diabetic Foot Treatments Injections and other Procedures Treatments of the ... Find a Surgeon Información en Español Foot Health Foot ... Diabetic Shoes 10 Points of Proper Shoe Fit All ...
Rocker-soled shoes and walking distance in patients with calf claudication.
Richardson, J K
1991-07-01
Calf claudication is the major clinical manifestation of peripheral vascular occlusive disease in a significant number of patients. Although claudication causes substantial patient disability, most patients are treated conservatively because of the risks of surgical therapy and the uncertain efficacy of drug therapy. It was hypothesized that rocker-soled shoes would decrease the work of the plantar flexors and therefore increase walking distance in patients with calf claudication. To test this hypothesis, walking distances in patients with calf claudication using rocker-soled shoes and a placebo shoe insert were compared. Rocker-soled shoes significantly increased both the total distance walked and the distance at which patients were initially bothered by symptoms by 77m (37%, p less than .0005) and 89m (91%, p = .003), respectively. It was concluded that rocker-soled shoes may reduce disability in patients with calf claudication by increasing walking distance.
A Comparison of Golf Shoe Designs Highlights Greater Ground Reaction Forces with Shorter Irons
Worsfold, Paul; Smith, Neal A.; Dyson, Rosemary J.
2007-01-01
In an effort to reduce golf turf damage the traditional metal spike golf shoe has been redesigned, but shoe-ground biomechanical evaluations have utilised artificial grass surfaces. Twenty-four golfers wore three different golf shoe traction designs (traditional metal spikes, alternative spikes, and a flat-soled shoe with no additional traction) when performing shots with a driver, 3 iron and 7 iron. Ground action forces were measured beneath the feet by two natural grass covered force platforms. The maximum vertical force recorded at the back foot with the 3 iron and 7 iron was 0.82 BW (body weight) and at the front foot 1.1 BW approximately in both the metal spike and alternative spike golf shoe designs. When using the driver these maximal vertical values were 0.49 BW at the back foot and 0.84 BW at the front foot. Furthermore, as performance of the backswing and then downswing necessitates a change in movement direction the range of force generated during the complete swing was calculated. In the metal spike shoe the vertical force generated at the back foot with both irons was 0.67 BW and at the front foot 0.96 BW with the 3 iron and 0.92 BW with the 7 iron. The back foot vertical force generated with the driver was 0.33 BW and at the front foot 0.83 BW wearing the metal spike shoe. Results indicated the greater force generation with the irons. When using the driver the more horizontal swing plane associated with the longer club reduced vertical forces at the back and front foot. However, the mediolateral force generated across each foot in the metal and alternative spike shoes when using the driver was greater than when the irons were used. The coefficient of friction was 0. 62 at the back and front foot whichever shoe was worn or club used. Key pointsDuring the golf swing ground reaction forces at the golf shoe to natural grass turf interface were greater with irons than with the longer driver.In the golf swing maximal vertical forces were greater at the front (left) foot in the than at the back foot for a right handed golfer.Similar maximum vertical ground reaction forces were recorded with each club when a 8 mm metal spike golf shoe or an alternative spike golf shoe were worn.Force generation and coefficients of friction were similar for the alternative spike design and traditional metal seven spike golf shoe on natural grass turf.Data collection possible due to application of technical developments to golf from work on other natural turf based sports. PMID:24149482
Thomas, Erica L; Puig Ribera, Anna; Senye-Mir, Anna; Eves, Frank F
2016-11-01
Researchers have experimented with a range of point-of-purchase (PoP) interventions in supermarkets, restaurants, and cafeterias. In general, these interventions have employed written materials. This research tested symbols to visually summarize information about the (un)healthiness of food. Study one explored health representations and valence associated with the image of a heart, a bathroom scale, and a running shoe using qualitative field interviews (N = 1200). Study two explored accessibility of a priori concept associations for two of those images, stratified by valence, in a computerized response latency task (N = 40). Study one indicted that the heart was best linked to its intended theme "heart health." Concerning valence, the heart was seen as both positive and negative whereas the scale was less likely to be viewed as positive relative to the running shoe. In study two, the heart was linked to five of the six a priori concepts and there was evidence that three of these were more accessible. Overall, the heart was better linked to positive poles than negative ones. A heart symbol may be useful to prompt heart healthy choices at the PoP. There was evidence that a scale may bias choice away from undesirable foods.
Combining Footwear with Public Health Iconography to Prevent Soil-Transmitted Helminth Infections.
Paige, Sarah B; Friant, Sagan; Clech, Lucie; Malavé, Carly; Kemigabo, Catherine; Obeti, Richard; Goldberg, Tony L
2017-01-11
Shoes are effective for blocking soil-transmitted helminths (STHs) that penetrate the skin. Unfortunately, shoe-wearing is uncommon in many areas where STHs are prevalent, in part because local populations are unaware of the health benefits of wearing shoes. This is especially true in low-literacy populations, where information dissemination through written messages is not possible. We launched a public health intervention that combines a public health image with sandals. The image is a "lenticular image" that combines two alternating pictures to depict the efficacy of shoes for preventing STH infection. This image is adhered to the shoe, such that the message is linked directly to the primary means of prevention. To create a culturally appropriate image, we conducted five focus group discussions, each with a different gender and age combination. Results of focus group discussions reinforced the importance of refining public health messages well in advance of distribution so that cultural acceptability is strong. After the image was finalized, we deployed shoes with the image in communities in western Uganda where hookworm is prevalent. We found that the frequency of shoe-wearing was 25% higher in communities receiving the shoes than in control communities. Microscopic analyses of fecal samples for parasites showed a sustained reduction in infection intensity for parasites transmitted directly through the feet when people received shoes with a public health image. Our results show that combining culturally appropriate images with public health interventions can be effective in low-literacy populations. © The American Society of Tropical Medicine and Hygiene.
Lee, Soul; Li, Jing Xian
2014-01-01
Asymmetrical load carrying and wearing high-heeled shoes are very common. Biomechanics studies on the combined effects of high-heeled shoe wearing and asymmetrical load carrying are lacking. We sought to identify changes in lower-extremity joint kinematics associated with the effect of shoes and asymmetrical load carrying during walking. Fifteen healthy young women (mean ± SD: age, 24.67 ± 3.54 years; body weight, 54.96 ± 6.67 kg; and height, 162.2 ± 3.91 cm) who habitually wore high-heeled shoes participated in the study. They were asked to walk under nine combined conditions of three heights of shoe heels (0, 3, and 9 cm) and three carried loads (0%, 5%, and 10% of body weight). Temporospatial parameters and maximal joint angles in the sagittal and frontal planes of the hip, knee, and ankle on both limbs were studied. It was found that high-heeled shoe wearing and asymmetrical load carrying altered temporospatial parameters and joint kinematics. With increased heel height and load weight, cadence decreased and stride length increased. The knee flexion angle increased with an increase in heel height, and the load served only to exacerbate the changes. Changes in the hip angle were mostly caused by asymmetrical load carrying, whereas angle changes in the ankle were mostly caused by an increase in heel height. This study demonstrated that when high-heeled shoe wearing and asymmetrical load carrying are combined, changes at each joint are much greater than with high-heeled shoe wearing or load carrying alone.
Teymouri, Meghdad; Mirshahi, Maryam; Mansournia, Mohammad Ali; Mousavi Ahranjani, Ali; Sadeghi, Amir
2017-01-01
Introduction Analysis of in-shoe pressure distribution during sport-specific movements may provide a clue to improve shoe design and prevent injuries. This study compared the mean and the peak pressures over the whole foot and ten separate areas of the foot, wearing different shoes during specific movements. Methods Nine male adult recreational futsal players performed three trials of three sport-specific movements (shuffle, sprint and penalty kick), while they were wearing three brands of futsal shoes (Adidas, Lotto and Tiger). Plantar pressures on dominant feet were collected using the F-SCAN system. Peak and mean pressures for whole foot and each separate area were extracted. For statistical analysis, the mean differences in outcome variables between different shoes and movements were estimated using random-effects regression model using STATA ver.10. Results In the average calculation of the three movements, the peak pressure on the whole foot in Adidas shoe was less than Lotto [8.8% (CI95%: 4.1–13.6%)] and Tiger shoes [11.8% (CI95%:7–16.7%)], (P<0.001). Also, the recorded peak pressure on the whole foot in penalty kick was 61.1% (CI95%: 56.3–65.9%) and 57.6% (CI95%: 52.8–62.3%) less than Shuffle and Sprint tests, respectively (P<0.001). Conclusion Areas with the highest peak pressure during all 3 movements were not different between all shoes. This area was medial forefoot in cases of shuffle and sprint movements and medial heel in case of penalty kick. PMID:29088278
Optimization of thrie beam terminal end shoe connection.
DOT National Transportation Integrated Search
2017-04-01
Terminal thrie end shoes connect nested thrie beams to parapets or other bridge rail structure to provide a robust connectivity between a transition section and a rigid railing section. When connecting terminal end shoe to thrie beam transitions, the...
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. New shoes adorn the Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight as it demonstrates its readiness for weight bearing by moving an unloaded 8,230,000-pound Mobile Launch Platform along the crawlerway. Its first road test on Jan. 21, following the replacement of all its shoes, was a success. Cracks appeared in the crawlers' shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program. Each crawler has 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds.
Effects of a minimalist shoe on running economy and 5-km running performance.
Fuller, Joel T; Thewlis, Dominic; Tsiros, Margarita D; Brown, Nicholas A T; Buckley, Jonathan D
2016-09-01
The purpose of this study was to determine if minimalist shoes improve time trial performance of trained distance runners and if changes in running economy, shoe mass, stride length, stride rate and footfall pattern were related to any difference in performance. Twenty-six trained runners performed three 6-min sub-maximal treadmill runs at 11, 13 and 15 km·h(-1) in minimalist and conventional shoes while running economy, stride length, stride rate and footfall pattern were assessed. They then performed a 5-km time trial. In the minimalist shoe, runners completed the trial in less time (effect size 0.20 ± 0.12), were more economical during sub-maximal running (effect size 0.33 ± 0.14) and decreased stride length (effect size 0.22 ± 0.10) and increased stride rate (effect size 0.22 ± 0.11). All but one runner ran with a rearfoot footfall in the minimalist shoe. Improvements in time trial performance were associated with improvements in running economy at 15 km·h(-1) (r = 0.58), with 79% of the improved economy accounted for by reduced shoe mass (P < 0.05). The results suggest that running in minimalist shoes improves running economy and 5-km running performance.
Metallurgical Design and Development of NASA Crawler/Transporter Tread Belt Shoe Castings
NASA Technical Reports Server (NTRS)
Parker, Donald S.
2006-01-01
The NASA Crawler/Transporters (CT-1 and CT-2) used to transport the Space Shuffles are one of the largest tracked vehicles in existence today. Two of these machines have been used to move space flight vehicles at Kennedy Space Center since the Apollo missions of the 1960's and relatively few modifications have been made to keep them operational. In September of 2003 during normal Crawler/Transporter operations cracks were observed along the roller pad surfaces of several tread belt shoes. Further examination showed 20 cracked shoes on CT-1 and 40 cracked shoes on CT-2 and a formal failure analysis investigation was undertaken while the cracked shoes were replaced. Six shoes were cross-sectioned with the fracture surfaces exposed and it was determined that the cracks were due to fatigue that initiated on the internal casting web channels at pre-existing casting defects and propagated through thickness both transgranularly and intergranularly between internal shrinkage cavities, porosity, and along austenitic and ferritic grain boundaries. The original shoes were cast during the 1960's using a modified 861330 steel with slightly higher levels of chromium, nickel and molybdenum followed by heat treatment to achieve a minimum tensile strength of 11 Oksi. Subsequent metallurgical analysis of the tread belt shoes after multiple failures showed excessive internal defects, alloy segregation, a nonuniform ferritic/ bainitic/martensitic microstructure, and low average tensile properties indicative of poor casting and poor heat-treatment. As a result, NASA funded an initiative to replace all of the tread belt shoes on both crawler/transporters along with a redesign of the alloy, manufacturing, and heat-treatment to create a homogeneous cast structure with uniform mechanical and metallurgical properties. ME Global, a wholly owned subsidiary of ME Elecmetal based in Minneapolis, MN was selected as manufacturing and design partner to develop the new shoes and this paper describes the research, development, and manufacturing that resulted in the successful delivery of 1044 new Crawler/Transporter tread belt shoes all meeting rigid metallurgical and mechanical design criteria derived from finite element modeling of the stress loads required for safe space shuttle transport.
Footwear and ankle stability in the basketball player.
Petrov, O; Blocher, K; Bradbury, R L; Saxena, A; Toy, M L
1988-04-01
Ankle stability in basketball players is affected by footwear. Athletic shoe manufacturers have introduced specialized lacing systems and high-top performance shoes to improve ankle stability. These performance shoes not only aid in preventing ankle injuries, but also protect injured ankles.
ERIC Educational Resources Information Center
United Nations Industrial Development Organization, Vienna (Austria).
The need to develop managerial and technical personnel in the cement, fertilizer, pulp and paper, sugar, leather and shoe, glass, and metal processing industries of various nations was studied, with emphasis on necessary steps in developing nations to relate occupational requirements to technology, processes, and scale of output. Estimates were…
Federolf, Peter; Zandiyeh, Payam; von Tscharner, Vinzenz
2015-12-01
The center of pressure (COP) movement in studies of postural control reveals a highly regular structure (low entropy) over short time periods and a highly irregular structure over large time scales (high entropy). Entropic half-life (EnHL) is a novel measure that quantifies the time over which short-term temporal correlations in a time series deteriorate to an uncorrelated, random structure. The current study suggested and tested three hypotheses about how characteristics of the neuromuscular postural control system may affect stabilometric EnHL: (H1) control system activity hypothesis: EnHL decreases with increased frequency of control system interventions adjusting COP motion; (H2) abundance of states hypothesis: EnHL decreases with increased number of mechanically equivalent states available to the postural system; and (H3) neurologic process hierarchy hypothesis: EnHL increases if postural control functions shift from the spinal level to the motor cortex. Thirty healthy participants performed quiet stance tests for 90 s in 18 different conditions: stance (bipedal, one-legged, and tandem); footwear (bare foot, regular sports shoe, and rocker sole shoes); and simultaneous cognitive task (two-back working memory task, no challenge). A four-way repeated-measures ANOVA revealed significant changes in EnHL for the different stance positions and for different movement directions (medio-lateral, anterior-posterior). These changes support H1 and H2. Significant differences were also found between rocker sole shoes and normal or barefoot standing, which supports H3. This study contributes to the understanding of how and why EnHL is a useful measure to monitor neuromuscular control of balance.
Increased vertical impact forces and altered running mechanics with softer midsole shoes.
Baltich, Jennifer; Maurer, Christian; Nigg, Benno M
2015-01-01
To date it has been thought that shoe midsole hardness does not affect vertical impact peak forces during running. This conclusion is based partially on results from experimental data using homogeneous samples of participants that found no difference in vertical impact peaks when running in shoes with different midsole properties. However, it is currently unknown how apparent joint stiffness is affected by shoe midsole hardness. An increase in apparent joint stiffness could result in a harder landing, which should result in increased vertical impact peaks during running. The purpose of this study was to quantify the effect of shoe midsole hardness on apparent ankle and knee joint stiffness and the associated vertical ground reaction force for age and sex subgroups during heel-toe running. 93 runners (male and female) aged 16-75 years ran at 3.33 ± 0.15 m/s on a 30 m-long runway with soft, medium and hard midsole shoes. The vertical impact peak increased as the shoe midsole hardness decreased (mean(SE); soft: 1.70BW(0.03), medium: 1.64BW(0.03), hard: 1.54BW(0.03)). Similar results were found for the apparent ankle joint stiffness where apparent stiffness increased as the shoe midsole hardness decreased (soft: 2.08BWm/º x 100 (0.05), medium: 1.92 BWm/º x 100 (0.05), hard: 1.85 BWm/º x 100 (0.05)). Apparent knee joint stiffness increased for soft (1.06BWm/º x 100 (0.04)) midsole compared to the medium (0.95BWm/º x 100 (0.04)) and hard (0.96BWm/º x 100 (0.04)) midsoles for female participants. The results from this study confirm that shoe midsole hardness can have an effect on vertical impact force peaks and that this may be connected to the hardness of the landing. The results from this study may provide useful information regarding the development of cushioning guidelines for running shoes.
Malisoux, Laurent; Gette, Paul; Chambon, Nicolas; Urhausen, Axel; Theisen, Daniel
2017-08-01
While several cross-sectional studies have investigated the acute effects of shoe drop on running biomechanics, the long-term consequences are currently unknown. This study aimed to investigate if the drop of standard cushioned shoes induces specific adaptations in running technique over a six-month period in leisure-time runners. Double-blinded randomised controlled trial. The participants (n=59) received a pair of shoes with a heel-to-toe drop of 10mm (D10), 6mm (D6) or 0mm (D0) and were followed-up regarding running training over 6 months or 500km, whichever came first. Spatio-temporal variables and kinematics (foot/ground, ankle and knee joint angles) were investigated while running at preferred speed on a treadmill before and after the follow-up. The participants ran 332±178km in the study shoes between pre- and post-tests. There was no shoe version by time interaction for any of the spatio-temporal variables nor for lower limb angles at initial ground contact. A small but significant shoe drop effect was found for knee abduction at mid-stance (p=0.032), as it decreased for the D0 version (-0.3±3.1 vs. -1.3±2.6°) while it increased for the D6 (0.3±2.7 vs. 1.3±3.1°) and D10 version (-0.2±3.2 vs. 0.5±3.1°). However, none of the pairwise comparisons was significant in the post-hoc analysis. Apart from knee abduction at mid-stance, no specific adaptation in spatio-temporal variables and kinematics was found between the three shoe versions during this 6-month follow-up. Thus, shoe drop of standard cushioned shoes does not seem to influence running biomechanics in the long term. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?
Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie
2017-01-01
The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane. Key points An increased shoe collar height effectively reduced ankle joint ROM in the sagittal plane in weight-bearing dorsiflexion maneuver. Shoe collar height did not affect sagittal plane ankle kinematics and had no effect on performance during realistic jumping. Shoe collar height can affect the ankle plantarflexion torque and peak power during the push-off phase in lay-up jump. PMID:29238255
Increased Vertical Impact Forces and Altered Running Mechanics with Softer Midsole Shoes
Baltich, Jennifer; Maurer, Christian; Nigg, Benno M.
2015-01-01
To date it has been thought that shoe midsole hardness does not affect vertical impact peak forces during running. This conclusion is based partially on results from experimental data using homogeneous samples of participants that found no difference in vertical impact peaks when running in shoes with different midsole properties. However, it is currently unknown how apparent joint stiffness is affected by shoe midsole hardness. An increase in apparent joint stiffness could result in a harder landing, which should result in increased vertical impact peaks during running. The purpose of this study was to quantify the effect of shoe midsole hardness on apparent ankle and knee joint stiffness and the associated vertical ground reaction force for age and sex subgroups during heel-toe running. 93 runners (male and female) aged 16-75 years ran at 3.33 ± 0.15 m/s on a 30 m-long runway with soft, medium and hard midsole shoes. The vertical impact peak increased as the shoe midsole hardness decreased (mean(SE); soft: 1.70BW(0.03), medium: 1.64BW(0.03), hard: 1.54BW(0.03)). Similar results were found for the apparent ankle joint stiffness where apparent stiffness increased as the shoe midsole hardness decreased (soft: 2.08BWm/º x 100 (0.05), medium: 1.92 BWm/º x 100 (0.05), hard: 1.85 BWm/º x 100 (0.05)). Apparent knee joint stiffness increased for soft (1.06BWm/º x 100 (0.04)) midsole compared to the medium (0.95BWm/º x 100 (0.04)) and hard (0.96BWm/º x 100 (0.04)) midsoles for female participants. The results from this study confirm that shoe midsole hardness can have an effect on vertical impact force peaks and that this may be connected to the hardness of the landing. The results from this study may provide useful information regarding the development of cushioning guidelines for running shoes. PMID:25897963
Tibial shock measured during the fencing lunge: the influence of footwear.
Sinclair, Jonathan; Bottoms, Lindsay; Taylor, Katrina; Greenhalgh, Andrew
2010-06-01
Fencing is a high-intensity sport involving dynamic movements such as the lunge exposing the musculoskeletal system to high impact forces, which emphasises the importance of the shock attenuating properties of footwear as a factor in the prevention of injury. The aim of this study was to investigate the magnitudes of the transient axial impact shock experienced at the tibia between traditional fencing shoes and standard athletic footwear during the impact phase of the fencing lunge. Peak tibial shock was measured in 19 male fencers in 4 different footwear conditions using an accelerometer placed on the distal aspect of the tibia. The standard footwear (11.08 g and 8.75 g for squash and running shoe, respectively) resulted in significant (p < 0.01) reductions in peak impact shock in comparison to the traditional fencing shoes (15.93 g and 13.97 g for the Adidas and Hi-Tec shoe, respectively). No significant differences were found between the running and squash shoes (p = 0.09) or between the fencing shoes (p = 0.48). The documented reduction in impact shock found suggests that running or squash specific footwear may reduce overuse injury occurrence, indicating that there is justification for a re-design of fencing shoes.
Proper shoe sizes for Thai elderly.
Chaiwanichsiri, Dootchai; Tantisiriwat, Natthiya; Janchai, Siriporn
2008-12-01
Problems from improper shoe fitting are common, but there are limited foot data for the older Thai population. To study foot dimensions and determine proper shoe sizes for Thai elderly. Healthy older people: 108 men, 105 women, aged 60-80 years, who were independent in walking, were recruited. Thirteen foot dimensions and current shoes used were measured. Side-to-side, gender difference, and correlations of main foot measurements were analyzed. About 50% women and 34% men wore too narrow shoes, and this was found to be associated with foot pain. At the same foot length (FL), men had larger foot width (FW) and toe depth. Foot width=2.39+(0.29 x FL), r=0.50, p=0.001 for women and=2.48+(0.31 x FL), r=0.56, p=0.002 for men. Arch length=1.0+(0.7 x FL), r=0.93, p=0.001 for both genders. Toe depth had constant values in all shoe sizes of each gender. Correlations of other foot parameters were reported. These anthropometric data is essential for proper shoe fitting in order to provide foot ergonomics and prevent foot problems for older Thai people.
Training Shoes do not Decrease the Negative Work of the Lower Extremity Joints.
Hashizume, Satoru; Murai, Akihiko; Hobara, Hiroaki; Kobayashi, Yoshiyuki; Tada, Mitsunori; Mochimaru, Masaaki
2017-11-01
Different types of running shoes may have different influence on the negative work of each lower extremity joint. Clarifying this influence can reduce the potential risk of muscle injury. The present study examined the difference in the negative work and associated kinetic and kinematic parameters of the lower extremity joints between training shoes and racing flats during the contact phase of running. Participants were asked to run on a runway at a speed of 3.0 m·s -1 for both training shoes and racing flats. The negative work and associated kinetic and kinematic parameters of each lower extremity joint were calculated. No difference was found in the negative work of the hip and ankle joints between the two types of running shoes. Meanwhile, the negative work of the knee joint was significantly greater for training shoes than for racing flats. This aspect was related to a longer duration of the negative power of the knee joint with the invariant amplitude of the negative power, moment, and angular velocity. These results suggest a higher potential risk of muscle injury around the knee joint for training shoes than for racing flats. © Georg Thieme Verlag KG Stuttgart · New York.
Lee, Joo-Young; Bakri, Ilham; Kim, Jung-Hyun; Son, Su-Young; Tochihara, Yutaka
2013-01-01
This study investigated the effects of firefighter personal protective equipment (PPE) on the determination of maximal oxygen uptake (VO(2max)) while using two different treadmill protocols: a progressive incline protocol (PIP) and a progressive speed protocol (PSP), with three clothing conditions (Light-light clothing; Boots-PPE with rubber boots; Shoes-PPE with running shoes). Bruce protocol with Light was performed for a reference test. Results showed there was no difference in VO(2max) between Bruce Light, PIP Light, and PSP Light. However, VO(2max) was reduced in Boots and Shoes with shortened maximal performance time (7 and 6 min reduced for PIP Boots and Shoes, respectively; 11 and 9 min reduced for PSP Boots and Shoes, respectively), whereas the increasing rate of VO(2) in Boots and Shoes during submaximal exercise was greater compared with Light. Wearing firefighter boots compared with wearing running shoes also significantly affected submaximal VO(2) but not VO(2max). These results suggest that firefighters' maximal performance determined from a typical VO(2max) test without wearing PPE may overestimate the actual performance capability of firefighters wearing PPE.
Lee, Joo-Young; Bakri, Ilham; Kim, Jung-Hyun; Son, Su-Young; Tochihara, Yutaka
2015-01-01
This study investigated the effects of firefighter personal protective equipment (PPE) on the determination of maximal oxygen uptake (VO2max) while using two different treadmill protocols: a progressive incline protocol (PIP) and a progressive speed protocol (PSP), with three clothing conditions (Light-light clothing; Boots-PPE with rubber boots; Shoes-PPE with running shoes). Bruce protocol with Light was performed for a reference test. Results showed there was no difference in VO2max between Bruce Light, PIP Light, and PSP Light. However, VO2max was reduced in Boots and Shoes with shortened maximal performance time (7 and 6 min reduced for PIP Boots and Shoes, respectively; 11 and 9 min reduced for PSP Boots and Shoes, respectively), whereas the increasing rate of VO2 in Boots and Shoes during submaximal exercise was greater compared with Light. Wearing firefighter boots compared with wearing running shoes also significantly affected submaximal VO2 but not VO2max. These results suggest that firefighters’ maximal performance determined from a typical VO2max test without wearing PPE may overestimate the actual performance capability of firefighters wearing PPE. PMID:23668854
Ly, Quoc Hung; Alaoui, Amina; Erlicher, Silvano; Baly, Laurent
2010-01-19
Several spring-damper-mass models of the human body have been developed in order to reproduce the measured ground vertical reaction forces during human running (McMahon and Cheng, 1990; Ferris et al., 1999; Liu and Nigg, 2000). In particular, Liu and Nigg introduced at the lower level of their model, i.e. at the interface between the human body and the ground, a nonlinear element representing simultaneously the shoe midsoles and the ground flexibility. The ground reaction force is modelled as the force supported by this nonlinear element, whose parameters are identified from several sets of experimental data. This approach proved to be robust and quite accurate. However, it does not explicitly take into account the shoe and the ground properties. It turns out to be impossible to study the influence of shoe materials on the impact force, for instance for footwear design purposes. In this paper, a modification of the Liu and Nigg's model is suggested, where the original nonlinear element is replaced with a bi-layered spring-damper-mass model: the first layer represents the shoe midsole and the second layer is associated with the ground. Ground is modelled as an infinite elastic half-space. We have assumed a viscoelastic behaviour of the shoe material, so the damping of shoe material is taken into account. A methodology for the shoe-soles characterization is proposed and used together with the proposed model. A parametric study is then conducted and the influence of the shoe properties on the impact force is quantified. Moreover, it is shown that impact forces are strongly affected by the ground stiffness, which should therefore be considered as an essential parameter in the footwear design. Copyright 2009 Elsevier Ltd. All rights reserved.
Oh, Keonyoung; Park, Sukyung
2017-02-28
A local minimum for running energetics has been reported for a specific bending stiffness, implying that shoe stiffness assists in running propulsion. However, the determinant of the metabolic optimum remains unknown. Highly stiff shoes significantly increase the moment arm of the ground reaction force (GRF) and reduce the leverage effect of joint torque at ground push-off. Inspired by previous findings, we hypothesized that the restriction of the natural metatarsophalangeal (MTP) flexion caused by stiffened shoes and the corresponding joint torque changes may reduce the benefit of shoe bending stiffness to running energetics. We proposed the critical stiffness, k cr , which is defined as the ratio of the MTP joint (MTPJ) torque to the maximal MTPJ flexion angle, as a possible threshold of the elastic benefit of shoe stiffness. 19 subjects participated in a running test while wearing insoles with five different bending stiffness levels. Joint angles, GRFs, and metabolic costs were measured and analyzed as functions of the shoe stiffness. No significant changes were found in the take-off velocity of the center of mass (CoM), but the horizontal ground push-offs were significantly reduced at different shoe stiffness levels, indicating that complementary changes in the lower-limb joint torques were introduced to maintain steady running. Slight increases in the ankle, knee, and hip joint angular impulses were observed at stiffness levels exceeding the critical stiffness, whereas the angular impulse at the MTPJ was significantly reduced. These results indicate that the shoe bending stiffness is beneficial to running energetics if it does not disturb the natural MTPJ flexion. Copyright © 2017 Elsevier Ltd. All rights reserved.
The influence of motion control shoes on the running gait of mature and young females.
Lilley, Kim; Stiles, Vicky; Dixon, Sharon
2013-03-01
This study compared the running gait of mature and young females, and investigated the effect of a motion control shoe. First, it was hypothesised that in a neutral shoe, mature females would display significantly greater rearfoot eversion, knee internal rotation and external adductor moments when compared to a younger group. Secondly, the motion control shoe would reduce rearfoot eversion and knee internal rotation in both groups. Thirdly it was hypothesised that the motion control shoe would increase knee external adductor moment, through an increase in knee varus and moment arm. 15 mature (40-60 years) and 15 young (18-25 years) females performed 10 running trials at 3.5ms(-1)±5% over a force platform. Two shoes were tested, the Adidas Supernova Glide (neutral), and the Adidas Supernova Sequence (motion control). Ankle and knee joint dynamics were analysed for the right leg, and the mean of ten trials was calculated. Joint moments were calculated using inverse dynamics. In the neutral condition, mature females presented greater peak rearfoot eversion, knee internal rotation, and external adductor moments than young females (p<0.05). A motion control shoe significantly reduced peak rearfoot eversion and knee internal rotation among both groups (p<0.05). No between shoe differences in knee external adductor moment were observed. A motion control shoe is recommended to reduce risk of injury associated with rearfoot eversion and knee internal rotation in mature females. However since the knee external adductor moment is a variable commonly associated with medial knee loading it is suggested that alternative design features are required to influence this moment. Copyright © 2012 Elsevier B.V. All rights reserved.
Malisoux, Laurent; Chambon, Nicolas; Delattre, Nicolas; Gueguen, Nils; Urhausen, Axel; Theisen, Daniel
2016-01-01
Background/aim This randomised controlled trial investigated if the usage of running shoes with a motion control system modifies injury risk in regular leisure-time runners compared to standard shoes, and if this influence depends on foot morphology. Methods Recreational runners (n=372) were given either the motion control or the standard version of a regular running shoe model and were followed up for 6 months regarding running activity and injury. Foot morphology was analysed using the Foot Posture Index method. Cox regression analyses were used to compare injury risk between the two groups, based on HRs and their 95% CIs, controlling for potential confounders. Stratified analyses were conducted to evaluate the effect of motion control system in runners with supinated, neutral and pronated feet. Results The overall injury risk was lower among the participants who had received motion control shoes (HR=0.55; 95% CI 0.36 to 0.85) compared to those receiving standard shoes. This positive effect was only observed in the stratum of runners with pronated feet (n=94; HR=0.34; 95% CI 0.13 to 0.84); there was no difference in runners with neutral (n=218; HR=0.78; 95% CI 0.44 to 1.37) or supinated feet (n=60; HR=0.59; 95% CI 0.20 to 1.73). Runners with pronated feet using standard shoes had a higher injury risk compared to those with neutral feet (HR=1.80; 95% CI 1.01 to 3.22). Conclusions The overall injury risk was lower in participants who had received motion control shoes. Based on secondary analysis, those with pronated feet may benefit most from this shoe type. PMID:26746907
Shoe heel abrasion and its possible biomechanical cause: a transversal study with infantry recruits.
Baumfeld, Daniel; Raduan, Fernando C; Macedo, Benjamim; Silva, Thiago Alexandre Alves; Baumfeld, Tiago; Favato, Danilo Fabrino; de Andrade, Marco Antonio Percope; Nery, Caio
2015-11-19
Excessive shoe heel abrasion is of concern to patients and shoe manufacturers, but little scientific information is available about this feature and its possible causes. The purpose of this study was to relate this phenomenon with biomechanical factors that could predispose to shoe heel abrasion. Ninety-seven recruits (median age 25) were enrolled in this study. Shoe abrasion was assessed manually with a metric plastic tape on the posterior part of the heel that comes in contact with the ground. The number of sprains, foot alignment, and calf muscle shortening (Silfverskiold test) was also assessed in order to relate it with shoe heel abrasion. After using our exclusion criteria, 86 recruits and 172 were considered for this study. The most common abrasion site was the lateral portion of the heel surface (50 %). Forty-four percent of the participants had neutral hind-foot alignment and 39 % had valgus alignment. Twenty-six (30 %) patients have had previous ankle or foot sprains. Neutral foot was related with less calf muscle shortening. On the other hand, valgus hind-foot alignment was more associated with Achilles shortening (p < 0.05). Patients with neutral alignment were associated with more uniform shoe heel abrasion and varus feet were associated with more central and lateral abrasion (p < 0.05). The pattern of shoe heel abrasion was not statistically related with calf muscle shortening nor with number of sprains. This study was able to correlate shoe heel abrasion with biomechanical causes (neutral alignment-uniform abrasion/varus alignment-central and lateral abrasion). More effort has to be done to continue evaluating outsole abrasion with its possible biomechanical cause in order to predict and treat possible associated injuries.
Hollander, Karsten; Argubi-Wollesen, Andreas; Reer, Rüdiger; Zech, Astrid
2015-01-01
Possible benefits of barefoot running have been widely discussed in recent years. Uncertainty exists about which footwear strategy adequately simulates barefoot running kinematics. The objective of this study was to investigate the effects of athletic footwear with different minimalist strategies on running kinematics. Thirty-five distance runners (22 males, 13 females, 27.9 ± 6.2 years, 179.2 ± 8.4 cm, 73.4 ± 12.1 kg, 24.9 ± 10.9 km.week-1) performed a treadmill protocol at three running velocities (2.22, 2.78 and 3.33 m.s-1) using four footwear conditions: barefoot, uncushioned minimalist shoes, cushioned minimalist shoes, and standard running shoes. 3D kinematic analysis was performed to determine ankle and knee angles at initial foot-ground contact, rate of rear-foot strikes, stride frequency and step length. Ankle angle at foot strike, step length and stride frequency were significantly influenced by footwear conditions (p<0.001) at all running velocities. Posthoc pairwise comparisons showed significant differences (p<0.001) between running barefoot and all shod situations as well as between the uncushioned minimalistic shoe and both cushioned shoe conditions. The rate of rear-foot strikes was lowest during barefoot running (58.6% at 3.33 m.s-1), followed by running with uncushioned minimalist shoes (62.9%), cushioned minimalist (88.6%) and standard shoes (94.3%). Aside from showing the influence of shod conditions on running kinematics, this study helps to elucidate differences between footwear marked as minimalist shoes and their ability to mimic barefoot running adequately. These findings have implications on the use of footwear applied in future research debating the topic of barefoot or minimalist shoe running. PMID:26011042
Hollander, Karsten; Argubi-Wollesen, Andreas; Reer, Rüdiger; Zech, Astrid
2015-01-01
Possible benefits of barefoot running have been widely discussed in recent years. Uncertainty exists about which footwear strategy adequately simulates barefoot running kinematics. The objective of this study was to investigate the effects of athletic footwear with different minimalist strategies on running kinematics. Thirty-five distance runners (22 males, 13 females, 27.9 ± 6.2 years, 179.2 ± 8.4 cm, 73.4 ± 12.1 kg, 24.9 ± 10.9 km x week(-1)) performed a treadmill protocol at three running velocities (2.22, 2.78 and 3.33 m x s(-1)) using four footwear conditions: barefoot, uncushioned minimalist shoes, cushioned minimalist shoes, and standard running shoes. 3D kinematic analysis was performed to determine ankle and knee angles at initial foot-ground contact, rate of rear-foot strikes, stride frequency and step length. Ankle angle at foot strike, step length and stride frequency were significantly influenced by footwear conditions (p<0.001) at all running velocities. Posthoc pairwise comparisons showed significant differences (p<0.001) between running barefoot and all shod situations as well as between the uncushioned minimalistic shoe and both cushioned shoe conditions. The rate of rear-foot strikes was lowest during barefoot running (58.6% at 3.33 m x s(-1)), followed by running with uncushioned minimalist shoes (62.9%), cushioned minimalist (88.6%) and standard shoes (94.3%). Aside from showing the influence of shod conditions on running kinematics, this study helps to elucidate differences between footwear marked as minimalist shoes and their ability to mimic barefoot running adequately. These findings have implications on the use of footwear applied in future research debating the topic of barefoot or minimalist shoe running.
Effects of training in minimalist shoes on the intrinsic and extrinsic foot muscle volume.
Chen, Tony Lin-Wei; Sze, Louis K Y; Davis, Irene S; Cheung, Roy T H
2016-07-01
Minimalist shoes have gained popularity recently because it is speculated to strengthen the foot muscles and foot arches, which may help to resist injuries. However, previous studies provided limited evidence supporting the link between changes in muscle size and footwear transition. Therefore, this study sought to examine the effects of minimalist shoes on the intrinsic and extrinsic foot muscle volume in habitual shod runners. The relationship between participants' compliance with the minimalist shoes and changes in muscle õvolume was also evaluated. Twenty habitual shod runners underwent a 6-month self-monitoring training program designed for minimalist shoe transition. Another 18 characteristics-matched shod runners were also introduced with the same program but they maintained running practice with standard shoes. Runners were monitored using an online surveillance platform during the program. We measured overall intrinsic and extrinsic foot muscle volume before and after the program using MRI scans. Runners in the experimental group exhibited significantly larger leg (P=0.01, Cohen's d=0.62) and foot (P<0.01, Cohen's d=0.54) muscle after transition. Foot muscle growth was mainly contributed by the forefoot (P<0.01, Cohen's d=0.64) but not the rearfoot muscle (P=0.10, Cohen's d=0.30). Leg and foot muscle volume of runners in the control group remained similar after the program (P=0.33-0.95). A significant positive correlation was found between participants' compliance with the minimalist shoes and changes in leg muscle volume (r=0.51; P=0.02). Habitual shod runners who transitioned to minimalist shoes demonstrated significant increase in leg and foot muscle volume. Additionally, the increase in leg muscle volume was significantly correlated associated with the compliance of minimalist shoe use. Copyright © 2016 Elsevier Ltd. All rights reserved.
Technical evaluation of a CAD system for orthopaedic shoe-upper design.
Lord, M; Foulston, J; Smith, P J
1991-01-01
Computer aided design is now employed routinely in the volume shoe trade. New styles are developed on a three-dimensional image of the last followed by automated pattern generation and engineering. It is suggested that such systems could be useful in the orthopaedic footwear industry although the different requirements for these bespoke products need careful consideration. A clinical trial has been conducted on the Shoemaster (Clarks Shoes) upper design system both to assess its technical capabilities and to consider its role in improvement of service and cosmetic appearance. This particular system works throughout on a three-dimensional representation of the shoe last, which offers particular advantages for integration with shape capture and reproduction. The report concentrates on the technical evaluation to assess (a) its ability to work with unusual last shapes dictated by medical requirements and (b) its potential for integration into a complete computer system for design of both shoe lasts and shoe uppers. The trial indicates that this particular system is promising in both respects.
Space Shuttle Crawler Transporter Truck Shoe Qualification Tests and Analyses for Return-to-Flight
NASA Technical Reports Server (NTRS)
Margasahayam, Ravi N.; Meyer, Karl A.; Burton, Roy C.; Gosselin, Armand M.
2005-01-01
A vital element to Launch Complex 39 (LC39) and NASA's Kennedy Space Center (KSC) mobile launch transfer operation is a 3 million kilogram behemoth known as the Crawler Transporter (CT). Built in the 1960's, two CT's have accumulated over 1700+ miles each and have been used for the Apollo and the Space Shuttle programs. Recent observation of fatigue cracks on the CT shoes led to a comprehensive engineering, structural and metallurgical evaluation to assess the root cause that necessitated procurement of over 1000 new shoes. This paper documents the completed dynamic and compression tests on the old and new shoes respectively, so as to certify them for Space Shuttle's return-to-flight (RTF). Measured strain data from the rollout tests was used to develop stress/loading spectra and static equivalent load for qualification testing of the new shoes. Additionally, finite element analysis (FEA) was used to conduct sensitivity analyses of various contact parameters and structural characteristics for acceptance of new shoes.
Multi technical analysis of wear mechanisms in axial piston pumps
NASA Astrophysics Data System (ADS)
Schuhler, G.; Jourani, A.; Bouvier, S.; Perrochat, J.-M.
2017-05-01
Axial piston pumps convert a motor rotation motion into hydraulic or pneumatic power. Their compactness and efficiency of approximately 0.9 make them suitable for actuation applications especially in aeronautics. However, they suffer a limited life due to the wear of their components. In the literature, studies of axial piston pumps deal with contact between its different elements under lubrication conditions. Nevertheless, they are more focused on analytic or numerical approaches. This study consists in an experimental analysis of worn pump components to highlight and understand wear mechanisms. Piston shoes are central components in the axial piston pump since they are involved in three tribological contacts. These three contacts are thereby studied: piston shoes/swashplate, piston shoes/pistons and piston shoes/shoes hold down plate (SHDP). To perform this analysis, helicopter hydraulic pumps after different operating times have been studied. The wear damage mechanisms and wear debris are analysed using SEM observations. 3D surface roughness measurements are then used to characterize worn surfaces. The observations reveal that in the contact between shoes and swashplate, the main wear mechanism is three-body abrasive wear due to coarse carbides removal. Between shoes and pistons, wear occurs in a less severe way and is mainly due to the debris generated in the first contact and conveyed by the lubricating fluid. In the third contact, the debris are also the prime cause of the abrasive wear and the generation of deep craters in the piston shoes.
Yung-Hui, Lee; Wei-Hsien, Hong
2005-05-01
Studying the impact of high-heeled shoes on kinetic changes and perceived discomfort provides a basis to advance the design and minimize the adverse effects on the human musculoskeletal system. Previous studies demonstrated the effects of inserts on kinetics and perceived comfort in flat or running shoes. No study attempted to investigate the effectiveness of inserts in high heel shoes. The purpose of this study was to determine whether increasing heel height and the use of shoe inserts change foot pressure distribution, impact force, and perceived comfort during walking. Ten healthy females volunteered for the study. The heel heights were 1.0cm (flat), 5.1cm (low), and 7.6cm (high). The heel height effects were examined across five shoe-insert conditions of shoe only; heel cup, arch support, metatarsal pad, and total contact insert (TCI). The results indicated that increasing heel height increases impact force (p<0.01), medial forefoot pressure (p<0.01), and perceived discomfort (p<0.01) during walking. A heel cup insert for high-heeled shoes effectively reduced the heel pressure and impact force (p<0.01), an arch support insert reduced the medial forefoot pressure, and both improved footwear comfort (p<0.01). In particular, a TCI reduced heel pressure by 25% and medial forefoot pressure by 24%, attenuate the impact force by 33.2%, and offered higher perceived comfort when compared to the non-insert condition.
Erhart, Jennifer C.; Dyrby, Chris O.; D'Lima, Darryl D.; Colwell, Clifford W.; Andriacchi, Thomas P.
2010-01-01
External knee adduction moment can be reduced using footwear interventions, but the exact changes in in vivo medial joint loading remain unknown. An instrumented knee replacement was used to assess changes in in vivo medial joint loading in a single patient walking with a variable-stiffness intervention shoe. We hypothesized that during walking with a load modifying variable-stiffness shoe intervention: (1) the first peak knee adduction moment will be reduced compared to a subject's personal shoes; (2) the first peak in vivo medial contact force will be reduced compared to personal shoes; and (3) the reduction in knee adduction moment will be correlated with the reduction in medial contact force. The instrumentation included a motion capture system, force plate, and the instrumented knee prosthesis. The intervention shoe reduced the first peak knee adduction moment (13.3%, p=0.011) and medial compartment joint contact force (22%; p=0.008) compared to the personal shoe. The change in first peak knee adduction moment was significantly correlated with the change in first peak medial contact force (R2=0.67, p=0.007). Thus, for a single subject with a total knee prosthesis the variable-stiffness shoe reduces loading on the affected compartment of the joint. The reductions in the external knee adduction moment are indicative of reductions in in vivo medial compressive force with this intervention. PMID:20973058
Karimi, Zanyar; Allahyari, Teimour; Azghani, Mahmood Reza; Khalkhali, Hamidreza
2016-03-01
The present study was an attempt to investigate the effect of unstable footwear on lower leg muscle activity, volume change and subjective discomfort during prolonged standing. Ten healthy subjects were recruited to stand for 2 h in three footwear conditions: barefoot, flat-bottomed shoe and unstable shoe. During standing, lower leg discomfort and EMG activity of medial gastrocnemius (MG) and tibialis anterior (TA) muscles were continuously monitored. Changes in lower leg volume over standing time also were measured. Lower leg discomfort rating reduced significantly while subjects standing on unstable shoe compared to the flat-bottomed shoe and barefoot condition. For lower leg volume, less changes also were observed with unstable shoe. The activity level and variation of right MG muscle was greater with unstable shoe compared to the other footwear conditions; however regarding the left MG muscle, significant difference was found between unstable shoe and flat-bottomed shoe only for activity level. Furthermore no significant differences were observed for the activity level and variation of TA muscles (right/left) among all footwear conditions. The findings suggested that prolonged standing with unstable footwear produces changes in lower leg muscles activity and leads to less volume changes. Perceived discomfort also was lower for this type of footwear and this might mean that unstable footwear can be used as ergonomic solution for employees whose work requires prolonged standing. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Bagherzadeh Cham, Masumeh; Ghasemi, Mohammad Sadegh; Forogh, Bijan; Sanjari, Mohammad Ali; Zabihi Yeganeh, Mozdeh; Eshraghi, Arezoo
2014-08-01
Rheumatoid arthritis is a chronic inflammatory joint disease which affects the joints and soft tissues of the foot and ankle. Rocker shoes may be prescribed for the symptomatic foot in rheumatoid arthritis; however, there is a limited evidence base to support the use of rocker shoes in these patients. The aim of this study was to evaluate the effectiveness of heel-to-toe rocker shoes on pain, disability, and activity limitation in patients with rheumatoid arthritis. Clinical trial. Seventeen female patients with rheumatoid arthritis of 1 year or more duration, disease activity score of less than 2.6, and foot and ankle pain were recruited. Heel-to-toe rocker shoe was made according to each patient's foot size. All the patients were evaluated immediately, 7 and 30 days after their first visit. Foot Function Index values were recorded at each appointment. With the use of rocker shoes, Foot Function Index values decreased in all subscales. This reduction was noted in the first visit and was maintained throughout the trials. Rocker shoe can improve pain, disability, and activity limitation in patients with rheumatoid foot pain. All the subjects reported improved comfort levels. The results of this study showed that high-top, heel-to-toe rocker shoe with wide toe box was effective at reducing foot and ankle pain. It was also regarded as comfortable and acceptable footwear by the patients with rheumatoid foot problems. © The International Society for Prosthetics and Orthotics 2013.
Investigation of a Training Shoe as a Supplemental Conditioning Device
ERIC Educational Resources Information Center
McKinney, Donald; And Others
1975-01-01
This study investigated the use of the "LEGG" Shoe as a supplemental conditioner for leg strength, flexibility, and sprint speed of college varisity football players. The investigation concluded that a program using the "LEGG" Shoe was significantly superior to the regular conditioning program. (RC)
Fluid-flow of a row of jets in crossflow - A numerical study
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Benson, T. J.
1992-01-01
A detailed computer-visualized flow field of a row of jets in a confined crossflow is presented. The Reynolds averaged Navier-Stokes equations are solved using a finite volume method that incorporates a partial differential equation for incremental pressure to obtain a divergence-free flow field. The turbulence is described by a multiple-time-scale turbulence model. The computational domain includes the upstream region of the circular jet so that the interaction between the jet and the crossflow is simulated accurately. It is shown that the row of jets in the crossflow is characterized by a highly complex flow field that includes a horse-shoe vortex and two helical vortices whose secondary velocity components are co-rotating in space. It is also shown that the horse-shoe vortex is a ring of reversed flows located along the circumference of the jet exit.
A Simulation of an Energy-Efficient Home.
ERIC Educational Resources Information Center
McLeod, Richard J.; And Others
1981-01-01
A shoe box is converted into a model home to demonstrate the energy efficiency of various insulation measures. Included are instructions for constructing the model home from a shoe box, insulating the shoe box, several activities involving different insulation measures, extensions of the experiment, and post-lab discussion topics. (DS)
42 CFR 414.228 - Prosthetic and orthotic devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) of this section. (c) Payment for therapeutic shoes. The payment rules specified in paragraphs (a) and (b) of this section are applicable to custom molded and extra depth shoes, modifications, and inserts (therapeutic shoes) furnished after December 31, 2004. [57 FR 57691, Dec. 7, 1992, as amended at 60 FR 35498...
[Facts and fiction about running shoes].
Schelde, Jacob
2012-11-26
Running as a means of exercise is becoming increasingly popular, but the rate of injury is very high among runners. To prevent running-related injuries much attention has been given the running shoe and its construction, particular its shock-absorbing capabilities and motion control features. It is recommended that running shoes should be purchased based on the runner's medial arch height and degree of pronation, and that the shoes should be changed frequently as their shock-absorbing capabilities decrease with usage. Randomized controlled trials and other studies in the scientific literature do not support these recommendations.
Aerodynamic seals for rotary machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir
2016-02-09
An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include amore » secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.« less
Antropometric parameters problem solving of shoe lasts by deforming membranes with medium weight
NASA Astrophysics Data System (ADS)
Albu, A. V.; Anghel Drugarin, C. V.; Barla, E. M.; Porav, V.
2018-01-01
The paper presents research results into getting a virtual model of shoe last and anthropometric parameters change. The most important change occurs in the fingers region. Alternatives CAD-CAM technology for next generation is based on DELCAM software for the CAM procedure and simulation of MATLAB software. This research has led to the virtual changes of the last, anthropometric parameter - the width of the fingers (ld) and shoe last length - (Lp) and images have been achieved with the representation in section of the shoe last changed from the original shoe lasts by FEM method (Finite element method) in MATLAB environment. The results are applied in the textile industry and in the elaboration of linings consumption or in the development of leather substitutes on fabric, knitted or woven material type.
The shod foot and its implications for American women.
Rudicel, S A
1994-01-01
Throughout history, members of human societies have gone barefoot, and those societies seemingly had a low incidence of foot deformities and pain. Only one study has addressed the problem of infection through injury to the bare foot; otherwise, the unshod foot seems to have had minimal problems. Initially shoes were made in the shape of the foot and were sandals. Over time, shoes became decorative items and symbols of status and vanity. As the shape of shoes changed, they became deforming forces on the foot and the source of pain. Recent studies by the Council on Women's Footwear of the American Orthopaedic Foot and Ankle Society have tried to document the problems caused by shoes on the feet of American women. Attempts should continue to educate women on appropriate shoes and proper fit.
Shoes alter the spring-like function of the human foot during running
Kelly, Luke A.; Lichtwark, Glen A.; Farris, Dominic J.; Cresswell, Andrew
2016-01-01
The capacity to store and return energy in legs and feet that behave like springs is crucial to human running economy. Recent comparisons of shod and barefoot running have led to suggestions that modern running shoes may actually impede leg and foot-spring function by reducing the contributions from the leg and foot musculature. Here we examined the effect of running shoes on foot longitudinal arch (LA) motion and activation of the intrinsic foot muscles. Participants ran on a force-instrumented treadmill with and without running shoes. We recorded foot kinematics and muscle activation of the intrinsic foot muscles using intramuscular electromyography. In contrast to previous assertions, we observed an increase in both the peak (flexor digitorum brevis +60%) and total stance muscle activation (flexor digitorum brevis +70% and abductor hallucis +53%) of the intrinsic foot muscles when running with shoes. Increased intrinsic muscle activation corresponded with a reduction in LA compression (−25%). We confirm that running shoes do indeed influence the mechanical function of the foot. However, our findings suggest that these mechanical adjustments are likely to have occurred as a result of increased neuromuscular output, rather than impaired control as previously speculated. We propose a theoretical model for foot–shoe interaction to explain these novel findings. PMID:27307512
Park, Sang-Kyoon; Lam, Wing-Kai; Yoon, Sukhoon; Lee, Ki-Kwang; Ryu, Jiseon
2017-09-01
This study investigated whether an increase in the forefoot bending stiffness of a badminton shoe would positively affect agility, comfort and biomechanical variables during badminton-specific movements. Three shoe conditions with identical shoe upper and sole designs with different bending stiffness (Flexible, Regular and Stiff) were used. Elite male badminton players completed an agility test on a standard badminton court involving consecutive lunges in six directions, a comfort test performed by a pair of participants conducting a game-like practice trial and a biomechanics test involving a random assignment of consecutive right forward lunges. No significant differences were found in agility time and biomechanical variables among the three shoes. The players wearing the shoe with a flexible forefoot outsole demonstrated a decreased perception of comfort in the forefoot cushion compared to regular and stiffer conditions during the comfort test (p < 0.05). The results suggested that the modification of forefoot bending stiffness would influence individual perception of comfort but would not influence performance and lower extremity kinematics during the tested badminton-specific tasks. It was concluded that an optimisation of forefoot structure and materials in badminton shoes should consider the individual's perception to maximise footwear comfort in performance.
Shoes alter the spring-like function of the human foot during running.
Kelly, Luke A; Lichtwark, Glen A; Farris, Dominic J; Cresswell, Andrew
2016-06-01
The capacity to store and return energy in legs and feet that behave like springs is crucial to human running economy. Recent comparisons of shod and barefoot running have led to suggestions that modern running shoes may actually impede leg and foot-spring function by reducing the contributions from the leg and foot musculature. Here we examined the effect of running shoes on foot longitudinal arch (LA) motion and activation of the intrinsic foot muscles. Participants ran on a force-instrumented treadmill with and without running shoes. We recorded foot kinematics and muscle activation of the intrinsic foot muscles using intramuscular electromyography. In contrast to previous assertions, we observed an increase in both the peak (flexor digitorum brevis +60%) and total stance muscle activation (flexor digitorum brevis +70% and abductor hallucis +53%) of the intrinsic foot muscles when running with shoes. Increased intrinsic muscle activation corresponded with a reduction in LA compression (-25%). We confirm that running shoes do indeed influence the mechanical function of the foot. However, our findings suggest that these mechanical adjustments are likely to have occurred as a result of increased neuromuscular output, rather than impaired control as previously speculated. We propose a theoretical model for foot-shoe interaction to explain these novel findings. © 2016 The Author(s).
Contact dermatitis caused by a new rubber compound detected in canvas shoes.
Hulstaert, Eva; Bergendorff, Ola; Persson, Christina; Goossens, An; Gilissen, Liesbeth; Engfeldt, Malin; Bruze, Magnus; Schuttelaar, Marie L; Meijer, Joost M; Lapeere, Hilde
2018-01-01
In 2015 and 2016, female patients in Flanders consulted a dermatologist because they developed skin lesions after wearing a specific brand of canvas shoes. To identify the culprit allergen in the shoes. Eighteen young females aged 14-22 years presented with itching and erythematous to purple-coloured eczematous lesions on both feet. They were patch tested by 10 dermatologists with the European baseline series. Some patients underwent testing with additional series. Pieces of the shoe fabrics were tested in 11 of 18 patients. Chemical analysis of the shoe materials was performed. Finally, patients were tested with a thin-layer chromatogram of the shoe extracts and dilutions of the suspected rubber compound. All 18 patients showed positive reactions to thiuram mix. Ten of 11 patients reacted to a piece of shoe fabric. Chemical analysis showed the presence of dimethylthiocarbamylbenzothiazole sulfide (DMTBS). No thiurams were detected. Four patients tested with the chromatogram developed positive reactions to DMTBS. Positive reactions to low concentrations were observed in the 4 patients tested with a DMTBS dilution series; one patient reacted to 0.00001% in acetone. DMTBS, the culprit allergen, is a component formed during rubber vulcanization that probably cross-reacts with the thiuram mix. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bourgit, David; Millet, Guillaume Y; Fuchslocher, Jörg
2008-05-01
The aim of the present study was to compare electromyographic activity during fitness exercises, walking, and running among 3 different dorsiflexion shoes (+2 degrees , +4 degrees , and +10 degrees ) and standard shoes (-4 degrees ). The 3 different dorsiflexion shoes tested in this study have a curvature placed in the middle of the sole. This design was specially projected to decrease the metatarsus flexion. Electromyographic activity of 9 lower limb muscles was measured on 12 healthy female subjects during 5 fitness exercises (unload squat, side and front step, submaximal ballistic plantar flexion, and lunge exercise), and during running (10 km x h(-1)) and walking (4.5 km x h(-1)) on a treadmill. EMG signal was analyzed with the root mean square (RMS) and integrated EMG. All RMS data measured during these exercises were expressed as percentages of maximum voluntary isometric contraction. The results show that dorsiflexion affects muscle recruitment and reorganizes the motor pattern. The general tendency was that the tibialis anterior activity increased with dorsiflexion. However, an optimal dorsiflexion existed for various exercises. It is concluded that shoes with moderate dorsiflexion can activate lower limb muscles differently compared with both standard shoes and shoes with large dorsiflexion during submaximal exercises and locomotion.
Shoe-Insole Technology for Injury Prevention in Walking
Nagano, Hanatsu
2018-01-01
Impaired walking increases injury risk during locomotion, including falls-related acute injuries and overuse damage to lower limb joints. Gait impairments seriously restrict voluntary, habitual engagement in injury prevention activities, such as recreational walking and exercise. There is, therefore, an urgent need for technology-based interventions for gait disorders that are cost effective, willingly taken-up, and provide immediate positive effects on walking. Gait control using shoe-insoles has potential as an effective population-based intervention, and new sensor technologies will enhance the effectiveness of these devices. Shoe-insole modifications include: (i) ankle joint support for falls prevention; (ii) shock absorption by utilising lower-resilience materials at the heel; (iii) improving reaction speed by stimulating cutaneous receptors; and (iv) preserving dynamic balance via foot centre of pressure control. Using sensor technology, such as in-shoe pressure measurement and motion capture systems, gait can be precisely monitored, allowing us to visualise how shoe-insoles change walking patterns. In addition, in-shoe systems, such as pressure monitoring and inertial sensors, can be incorporated into the insole to monitor gait in real-time. Inertial sensors coupled with in-shoe foot pressure sensors and global positioning systems (GPS) could be used to monitor spatiotemporal parameters in real-time. Real-time, online data management will enable ‘big-data’ applications to everyday gait control characteristics. PMID:29738486
Rotational and peak torque stiffness of rugby shoes.
Ballal, Moez S; Usuelli, Federico Giuseppe; Montrasio, Umberto Alfieri; Molloy, Andy; La Barbera, Luigi; Villa, Tomaso; Banfi, Giuseppe
2014-09-01
Sports people always strive to avoid injury. Sports shoe designs in many sports have been shown to affect traction and injury rates. The aim of this study is to demonstrate the differing stiffness and torque in rugby boots that are designed for the same effect. Five different types of rugby shoes commonly worn by scrum forwards were laboratory tested for rotational stiffness and peak torque on a natural playing surface generating force patterns that would be consistent with a rugby scrum. The overall internal rotation peak torque was 57.75±6.26 Nm while that of external rotation was 56.55±4.36 Nm. The Peak internal and external rotational stiffness were 0.696±0.1 and 0.708±0.06 Nm/deg respectively. Our results, when compared to rotational stiffness and peak torques of football shoes published in the literature, show that shoes worn by rugby players exert higher rotational and peak torque stiffness compared to football shoes when tested on the same natural surfaces. There was significant difference between the tested rugby shoes brands. In our opinion, to maximize potential performance and lower the potential of non-contact injury, care should be taken in choosing boots with stiffness appropriate to the players main playing role. Copyright © 2014 Elsevier Ltd. All rights reserved.
Eerdekens, Maarten; Staes, Filip; Pilkington, Thomas; Deschamps, Kevin
2017-01-01
Application of in-shoe multi-segment foot kinematic analyses currently faces a number of challenges, including: (i) the difficulty to apply regular markers onto the skin, (ii) the necessity for an adequate shoe which fits various foot morphologies and (iii) the need for adequate repeatability throughout a repeated measure condition. The aim of this study therefore was to design novel magnet based 3D printed markers for repeated in-shoe measurements while using accordingly adapted modified shoes for a specific multi-segment foot model. Multi-segment foot kinematics of ten participants were recorded and kinematics of hindfoot, midfoot and forefoot were calculated. Dynamic trials were conducted to check for intra and inter-session repeatability when combining novel markers and modified shoes in a repeated measures design. Intraclass correlation coefficients were calculated to determine reliability. Both repeatability and reliability were proven to be good to excellent with maximum joint angle deviations of 1.11° for intra-session variability and 1.29° for same-day inter-session variability respectively and ICC values of >0.91. The novel markers can be reliably used in future research settings using in-shoe multi-segment foot kinematic analyses with multiple shod conditions.
The effect of footwear on running performance and running economy in distance runners.
Fuller, Joel T; Bellenger, Clint R; Thewlis, Dominic; Tsiros, Margarita D; Buckley, Jonathan D
2015-03-01
The effect of footwear on running economy has been investigated in numerous studies. However, no systematic review and meta-analysis has synthesised the available literature and the effect of footwear on running performance is not known. The aim of this systematic review and meta-analysis was to investigate the effect of footwear on running performance and running economy in distance runners, by reviewing controlled trials that compare different footwear conditions or compare footwear with barefoot. The Web of Science, Scopus, MEDLINE, CENTRAL (Cochrane Central Register of Controlled Trials), EMBASE, AMED (Allied and Complementary Medicine), CINAHL and SPORTDiscus databases were searched from inception up until April 2014. Included articles reported on controlled trials that examined the effects of footwear or footwear characteristics (including shoe mass, cushioning, motion control, longitudinal bending stiffness, midsole viscoelasticity, drop height and comfort) on running performance or running economy and were published in a peer-reviewed journal. Of the 1,044 records retrieved, 19 studies were included in the systematic review and 14 studies were included in the meta-analysis. No studies were identified that reported effects on running performance. Individual studies reported significant, but trivial, beneficial effects on running economy for comfortable and stiff-soled shoes [standardised mean difference (SMD) <0.12; P < 0.05), a significant small beneficial effect on running economy for cushioned shoes (SMD = 0.37; P < 0.05) and a significant moderate beneficial effect on running economy for training in minimalist shoes (SMD = 0.79; P < 0.05). Meta-analysis found significant small beneficial effects on running economy for light shoes and barefoot compared with heavy shoes (SMD < 0.34; P < 0.01) and for minimalist shoes compared with conventional shoes (SMD = 0.29; P < 0.01). A significant positive association between shoe mass and metabolic cost of running was identified (P < 0.01). Footwear with a combined shoe mass less than 440 g per pair had no detrimental effect on running economy. Certain models of footwear and footwear characteristics can improve running economy. Future research in footwear performance should include measures of running performance.
2014-01-01
Background Several footwear design characteristics are known to have detrimental effects on the foot. However, one characteristic that has received relatively little attention is the point where the sole flexes in the sagittal plane. Several footwear assessment forms assume that this should ideally be located directly under the metarsophalangeal joints (MTPJs), but this has not been directly evaluated. The aim of this study was therefore to assess the influence on plantar loading of different locations of the shoe sole flexion point. Method Twenty-one asymptomatic females with normal foot posture participated. Standardised shoes were incised directly underneath the metatarsophalangeal joints, proximal to the MTPJs or underneath the midfoot. The participants walked in a randomised sequence of the three shoes whilst plantar loading patterns were obtained using the Pedar® in-shoe pressure measurement system. The foot was divided into nine anatomically important masks, and peak pressure (PP), contact time (CT) and pressure time integral (PTI) were determined. A ratio of PP and PTI between MTPJ2-3/MTPJ1 was also calculated. Results Wearing the shoe with the sole flexion point located proximal to the MTPJs resulted in increased PP under MTPJ 4–5 (6.2%) and decreased PP under the medial midfoot compared to the sub-MTPJ flexion point (−8.4%). Wearing the shoe with the sole flexion point located under the midfoot resulted in decreased PP, CT and PTI in the medial and lateral hindfoot (PP: −4.2% and −5.1%, CT: −3.4% and −6.6%, PTI: −6.9% and −5.7%) and medial midfoot (PP: −5.9% CT: −2.9% PTI: −12.2%) compared to the other two shoes. Conclusion The findings of this study indicate that the location of the sole flexion point of the shoe influences plantar loading patterns during gait. Specifically, shoes with a sole flexion point located under the midfoot significantly decrease the magnitude and duration of loading under the midfoot and hindfoot, which may be indicative of an earlier heel lift. PMID:24642291
Knapik, Joseph J; Trone, Daniel W; Tchandja, Juste; Jones, Bruce H
2014-10-01
Secondary analysis of 3 randomized controlled trials. Objective Analysis of studies that examined whether prescribing running shoes on the basis of foot arch height influenced injury risk during military basic training. Prior to 2007, running magazines and running-shoe companies suggested that imprints of the bottom of the feet (plantar shape) could be used as an indication of foot arch height and that this could be used to select individually appropriate types of running shoes. Similar studies were conducted in US Army (2168 men, 951 women), Air Force (1955 men, 718 women), and Marine Corps (840 men, 571 women) basic training. After foot examinations, recruits were randomized to either an experimental or a control group. Recruits in the experimental group selected or were assigned motion-control, stability, or cushioned shoes to match their plantar shape, which represented a low, medium, or high foot arch, respectively. The control group received a stability shoe regardless of plantar shape. Injuries during basic training were assessed from outpatient medical records. Meta-analyses that pooled results of the 3 investigations showed little difference between the experimental and control groups in the injury rate (injuries per 1000 person-days) for either men (summary rate ratio = 0.97; 95% confidence interval [CI]: 0.88, 1.06) or women (summary rate ratio = 0.97; 95% CI: 0.85, 1.08). When injury rates for specific types of running shoes were compared, there were no differences. Selecting running shoes based on arch height had little influence on injury risk in military basic training. Prevention, level 1b.
Effects of modified short-leg walkers on ground reaction force characteristics.
Keefer, Maria; King, Jon; Powell, Douglas; Krusenklaus, John H; Zhang, Songning
2008-11-01
Although short-leg walkers are often used in the treatment of lower extremity injuries (ankle and foot fractures and severe ankle sprains), little is known about the effect the short-leg walker on gait characteristics. The purpose was to examine how heel height modifications in different short-leg walkers and shoe side may affect ground reaction forces in walking. Force platforms were used to collect ground reaction force data on 10 healthy participants. Five trials were performed in each of six conditions: lab shoes, gait walker, gait walker with heel insert on shoe side, gait walker modified with insert on walker side, equalizer walker, and equalizer walker with heel insert on shoe side. Conditions were randomized and walking speed was standardized between conditions. A 2x6 (sidexcondition) repeated analysis of variance was used on selected ground reaction force variables (P<0.05). The application of a walker created peak vertical and anteroposterior ground reaction forces prior to the normal peaks associated with the loading response. Wearing a walker introduced an elevated minimum vertical ground reaction force in all conditions except the equalizer walker when compared to shoe on the shoe side. Peak propulsive anteroposterior ground reaction forces were smaller in all walker conditions compared to shoe on walker side. The application of heel insert in gait walker with heel insert (on shoe side) and gait walker modified (on walker side) does not diminish the minimum vertical ground reaction force as hypothesized. Wearing a walker decreases the peak propulsive anteroposterior ground reaction force on the walker side and induces asymmetrical loading.
Significance of heel pad confinement for the shock absorption at heel strike.
Jørgensen, U; Ekstrand, J
1988-12-01
Shock absorption (SA) is a simple way to reduce the body load and can be used in the prevention and treatment of injuries. The heel pad is the most important shock absorber in the shoe heel complex. The purpose of this study was to investigate whether the SA at heel strike can be increased by heel support in people and shoes with high or low SA. The impact forces at heel strike were measured on an AMTI (R) force platform. Fourteen legs were tested in seven persons (nine with normal and five with low heel pad SA) in gait analysis and in human drop tests. The tests were performed barefooted, and in a soccer and a running shoe (selected by shoe drop test), with and without the distal 2 cm of the heel counter. The heel pad confinement produced by the heel counter (the heel counter effect) increased the SA in both shoe types significantly in both impact situations. The mean increase in SA was 8.8% (range 5.8%-15.5%). The heel counter effect was in all situations significantly higher in persons with low heel pad shock absorbency (LHPSA) than in those with normal heel pads. The barefoot impact peak force per kg body weight was significantly higher (6% mean) on the side with LHPSA. The running shoe provided the significantly greatest SA compared with the soccer shoe. It is concluded that the shock absorbency at heel strike can be increased significantly by heel support, with highest effect in persons with LHPSA, both in shoes with high and low SA.(ABSTRACT TRUNCATED AT 250 WORDS)
ERIC Educational Resources Information Center
Meyer, Mary C.
2006-01-01
From a very young age, shoes for boys tend to be wider than shoes for girls. Is this because boys have wider feet, or because it is assumed that girls are willing to sacrifice comfort for fashion, even in elementary school? To assess the former, a statistician measures kids' feet. (Contains 2 tables and 3 figures.)
Shoes on the Highway: Discarded Footwear Inspires a Playwriting Project.
ERIC Educational Resources Information Center
Johnson, Maureen Brady
2003-01-01
Explains a drama assignment based on pictures of discarded shoes. Notes that through character creation, imaginative storytelling, and strong conflicting objectives, students write a 10-minute play about how the shoe got where it was. Outlines the final project, in which these plays would then be presented in a dramatic reading session. (PM)
49 CFR 571.5 - Matter incorporated by reference.
Code of Federal Regulations, 2013 CFR
2013-10-01
.../. (1) MIL-S-13192, “Military Specification, Shoes, Men's, Dress, Oxford,” October 30, 1976, into § 571.214. (2) MIL-S-13192P, “Military Specification, Shoes, Men's, Dress, Oxford,” 1988, including Amendment 1, October 14, 1994, into § 571.208. (3) MIL-S-21711E, “Military Specification, Shoes, Women's,” 3...
49 CFR 571.5 - Matter incorporated by reference.
Code of Federal Regulations, 2014 CFR
2014-10-01
.../. (1) MIL-S-13192, “Military Specification, Shoes, Men's, Dress, Oxford,” October 30, 1976, into § 571.214. (2) MIL-S-13192P, “Military Specification, Shoes, Men's, Dress, Oxford,” 1988, including Amendment 1, October 14, 1994, into § 571.208. (3) MIL-S-21711E, “Military Specification, Shoes, Women's,” 3...
49 CFR 571.5 - Matter incorporated by reference.
Code of Federal Regulations, 2012 CFR
2012-10-01
.../. (1) MIL-S-13192, “Military Specification, Shoes, Men's, Dress, Oxford,” October 30, 1976, into § 571.214. (2) MIL-S-13192P, “Military Specification, Shoes, Men's, Dress, Oxford,” 1988, including Amendment 1, October 14, 1994, into § 571.208. (3) MIL-S-21711E, “Military Specification, Shoes, Women's,” 3...
Effects of footwear on plantar foot sensitivity: a study with Formula 1 shoes.
Schlee, Günther; Sterzing, Thorsten; Milani, Thomas L
2009-05-01
The aim of this study was to investigate the influence of Formula 1 footwear on the ability of the plantar foot to detect vibration stimuli. Twenty-five male subjects participated in the study. Five foot/shoe conditions were analysed (barefoot and four shoe conditions). Vibration thresholds were measured at three anatomical locations of the plantar foot (heel, first metatarsal head and hallux) at two frequencies (30 and 200 Hz). The results show a frequency-dependent influence of footwear on foot sensitivity. The comparison between barefoot and shod conditions showed lower thresholds (P < 0.01) for the barefoot condition at 30 Hz, whereas lower thresholds (P < 0.01) were found for all shoe conditions at 200 Hz compared to barefoot. Lower thresholds (P < 0.01) were measured at 200 Hz in comparison to 30 Hz in all experimental conditions. The shoe outsole material seems to facilitate the transmission of high-frequent vibration stimuli to the skin, resulting in better vibration sensitivity at 200 Hz when wearing Formula 1 shoes compared to barefoot.
Linzell, S.M.; Dorcy, D.J.
1958-08-26
A quick opening type of stuffing box employing two banks of rotatable shoes, each of which has a caraming action that forces a neoprene sealing surface against a pipe or rod where it passes through a wall is presented. A ring having a handle or wrench attached is placed eccentric to and between the two banks of shoes. Head bolts from the shoes fit into slots in this ring, which are so arranged that when the ring is rotated a quarter turn in one direction the shoes are thrust inwardly to cramp the neopnrene about the pipe, malting a tight seal. Moving the ring in the reverse direction moves the shoes outwardly and frees the pipe which then may be readily removed from the stuffing box. This device has particular application as a closure for the end of a coolant tube of a neutronic reactor.
Film riding seals for rotary machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bidkar, Rahul Anil; Sarawate, Neelesh Nandkumar; Wolfe, Christopher Edward
A seal assembly for a rotary machine is provided. The seal assembly includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having one or more labyrinth teeth therebetween facing the rotor. The sealing device includes a stator interface element having a groove or slot for allowing disposal of a spline seal for preventing segment leakages. The sealing device segment also includes multiple bellow springs or flexures connected to the shoe plate and to the stator interface element. Further,more » the sealing device segments include a secondary seal integrated with the stator interface element at one end and positioned about the multiple bellow springs or flexures and the shoe plate at the other end.« less
Pressure actuated film riding seals for turbo machinery
Bidkar, Rahul Anil; Thatte, Azam Mihir; Gibson, Nathan Evan McCurdy; Giametta, Andrew Paul
2015-08-25
A seal assembly for a rotary machine is provided. The seal assembly includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the sealing device segments includes a stator interface element, a shoe plate having an extended portion having one or more labyrinth teeth facing the rotor and a load bearing portion, wherein the shoe plate is configured to generate an aerodynamic force between the shoe plate and the rotor. The sealing device segment further includes a secondary seal configured to be in contact with the stator interface element at a radially outer end and configured to be in contact with an elevated nose section of the extended portion of the shoe plate on a radially inner end; and multiple flexible elements attached to the shoe plate and to the stator interface element.
Foot Comfort for the Fashionable
NASA Technical Reports Server (NTRS)
2002-01-01
Modellista Footwear's new shoe line uses Tempur(TM) material, which conforms to each wearer's unique foot shape to absorb shock and cushion the foot. The foam's properties allow the shoe to change with the wearer's foot as it shrinks and swells throughout the day. Scientists at NASA's Ames Research Center originally developed temper foam in the early 1970s to relieve the intense pressure of G-forces experienced by astronauts during rocket launches. Tempur-Pedic, Inc., further developed the foam and granted Modellista a license to use it in footwear. The Modellista collection is the first shoe design and construction to be certified by the Space Awareness Alliance. The shoes, with designs ranging from traditional clog shapes to sling backs and open-toe sandals, are currently available nationwide at select specialty shoe stores and through catalogs. Tempur(TM) is a registered trademark of Tempur-Pedic, Inc.
Schoder, D; Schmalwieser, A; Szakmary-Brändle, K; Stessl, B; Wagner, M
2015-05-01
The aim of this study was to determine the prevalence of Listeria spp. and Listeria monocytogenes (L. monocytogenes) in urban public lavatories and on shoe soles of facility patrons in a European capital city. More than 91% of all municipal public lavatories in Vienna close to public hubs were included in this study. Overall, 373 swab samples of public lavatories and shoes of facility patrons were enriched, according to ISO 11290-1. Listeria monocytogenes isolates were subtyped using pulsed-field gel electrophoresis. A total of 24 samples were positive for Listeria spp., yielding an overall prevalence of 6.4% (24/373). Listeria monocytogenes was found in 2.1% (8/373) of all samples. Swabs from lavatories in parks, container lavatories and lavatories at markets had the highest prevalences of 20.7% (6/29), 20% (2/10) and 12.5% (1/8) Listeria spp., respectively. These detection rates were statistically significantly higher than those associated with lavatories in shopping centres (P = 0.003, P = 0.002, P = 0.02) and at public transport locations (P = 0.0004, P = 0.005, P = 0.02). Shoes sampled at Christmas markets showed the highest Listeria spp. and L. monocytogenes prevalences of 80% (4/5) and 40% (2/5), respectively. With regard to shoe type, Listeria spp. detection rates were 14.3% (3/21; winter boots), 13.3% (2/15; hiking boots), sport shoes (5.9%; 2/34) and brogues (5.1%; 4/79). No Listeria spp. were found on shoe soles that had smooth treads (0/76), while Listeria spp. were detected on 19.5% (8/41) of medium depth tread shoe types and on 9.4% (3/32) of deep tread shoes. These data suggest that soil environment is still one of the most important reservoirs for the foodborne pathogen L. monocytogenes. © 2014 Blackwell Verlag GmbH.
Malisoux, Laurent; Chambon, Nicolas; Delattre, Nicolas; Gueguen, Nils; Urhausen, Axel; Theisen, Daniel
2016-04-01
This randomised controlled trial investigated if the usage of running shoes with a motion control system modifies injury risk in regular leisure-time runners compared to standard shoes, and if this influence depends on foot morphology. Recreational runners (n=372) were given either the motion control or the standard version of a regular running shoe model and were followed up for 6 months regarding running activity and injury. Foot morphology was analysed using the Foot Posture Index method. Cox regression analyses were used to compare injury risk between the two groups, based on HRs and their 95% CIs, controlling for potential confounders. Stratified analyses were conducted to evaluate the effect of motion control system in runners with supinated, neutral and pronated feet. The overall injury risk was lower among the participants who had received motion control shoes (HR=0.55; 95% CI 0.36 to 0.85) compared to those receiving standard shoes. This positive effect was only observed in the stratum of runners with pronated feet (n=94; HR=0.34; 95% CI 0.13 to 0.84); there was no difference in runners with neutral (n=218; HR=0.78; 95% CI 0.44 to 1.37) or supinated feet (n=60; HR=0.59; 95% CI 0.20 to 1.73). Runners with pronated feet using standard shoes had a higher injury risk compared to those with neutral feet (HR=1.80; 95% CI 1.01 to 3.22). The overall injury risk was lower in participants who had received motion control shoes. Based on secondary analysis, those with pronated feet may benefit most from this shoe type. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Goss, Donald L; Lewek, Michael; Yu, Bing; Ware, William B; Teyhen, Deydre S; Gross, Michael T
2015-06-01
The injury incidence rate among runners is approximately 50%. Some individuals have advocated using an anterior-foot-strike pattern to reduce ground reaction forces and injury rates that they attribute to a rear-foot-strike pattern. The proportion of minimalist shoe wearers who adopt an anterior-foot-strike pattern remains unclear. To evaluate the accuracy of self-reported foot-strike patterns, compare negative ankle- and knee-joint angular work among runners using different foot-strike patterns and wearing traditional or minimalist shoes, and describe average vertical-loading rates. Descriptive laboratory study. Research laboratory. A total of 60 healthy volunteers (37 men, 23 women; age = 34.9 ± 8.9 years, height = 1.74 ± 0.08 m, mass = 70.9 ± 13.4 kg) with more than 6 months of experience wearing traditional or minimalist shoes were instructed to classify their foot-strike patterns. Participants ran in their preferred shoes on an instrumented treadmill with 3-dimensional motion capture. Self-reported foot-strike patterns were compared with 2-dimensional video assessments. Runners were classified into 3 groups based on video assessment: traditional-shoe rear-foot strikers (TSR; n = 22), minimalist-shoe anterior-foot strikers (MSA; n = 21), and minimalist-shoe rear-foot strikers (MSR; n = 17). Ankle and knee negative angular work and average vertical-loading rates during stance phase were compared among groups. Only 41 (68.3%) runners reported foot-strike patterns that agreed with the video assessment (κ = 0.42, P < .001). The TSR runners demonstrated greater ankle-dorsiflexion and knee-extension negative work than MSA and MSR runners (P < .05). The MSA (P < .001) and MSR (P = .01) runners demonstrated greater ankle plantar-flexion negative work than TSR runners. The MSR runners demonstrated a greater average vertical-loading rate than MSA and TSR runners (P < .001). Runners often cannot report their foot-strike patterns accurately and may not automatically adopt an anterior-foot-strike pattern after transitioning to minimalist running shoes.
Kellogg, Harvey J.; Holm, Robert O.
1983-01-01
A groove refinishing tool which utilizes a finishing wheel which is controlled by an air grinder motor. The air grinder motor is mounted on a main body section which is pivotally attached to a shoe element. The shoe element contains guide pins which guide the shoe element on the groove to be refinished. Application of pressure on the main body element compresses a weight counterbalance spring to extend the finishing wheel through the shoe element to refinish the groove surface. A window is provided for viewing the refinishing operation. Milling operations can also be performed by replacing the finishing wheel with a milling wheel.
Shoe inserts for small deformed feet.
Platts, R G; Knight, S; Jakins, I
1982-08-01
Modern materials and a better understanding of the biomechanical requirements enable adaptations to shoes to be make quickly and easily in cases where the deformed foot is small enough to fit satisfactorily into standard shop-bought or standard deep footwear. A flexible self-generating polyurethane foam is used inside the shoe. It expands to the internal shape of the shoe and the external shape of the foot. It can be used either against the patient's own foot or against a positive cast of the foot. The technique has been used for 75 patients and has proved successful. The insert so made is durable and economical.
Analysis Of Rearfoot Motion In Running Shoes
NASA Astrophysics Data System (ADS)
Cooper, Les
1986-12-01
In order to produce better shoes that cushion athletes from the high impact forces of running and still provide stability to the foot it is essential to have a method of quickly and reliably evaluating the performance of prototype shoes. The analysis of rear-foot motion requires the use of film or video recordings of test subjects running on a treadmill. Specific points on the subject are tracked to give a measure of inversion or eversion of the heel. This paper describes the testing procedure and its application to running shoe design. A comparison of film and video systems is also discussed.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. The newly shod Crawler Transporter is checked out before beginning a road test. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. The newly shod Crawler Transporter moves forward slowly as it begins its road test. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. The newly shod Crawler Transporter is checked out before beginning its road test. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Observers walk alongside the newly shod Crawler Transporter as it moves slowly forward. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. The newly shod Crawler Transporter is ready for its road test. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. The newly shod Crawler Transporter is ready for a road test. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.
Autonomous pedestrian localization technique using CMOS camera sensors
NASA Astrophysics Data System (ADS)
Chun, Chanwoo
2014-09-01
We present a pedestrian localization technique that does not need infrastructure. The proposed angle-only measurement method needs specially manufactured shoes. Each shoe has two CMOS cameras and two markers such as LEDs attached on the inward side. The line of sight (LOS) angles towards the two markers on the forward shoe are measured using the two cameras on the other rear shoe. Our simulation results shows that a pedestrian walking down in a shopping mall wearing this device can be accurately guided to the front of a destination store located 100m away, if the floor plan of the mall is available.
Composite prepreg application device
NASA Technical Reports Server (NTRS)
Sandusky, Donald A. (Inventor); Marchello, Joseph M. (Inventor)
1995-01-01
A heated shoe and cooled pressure roller assembly for composite prepreg application is provided. The shoe assembly includes a heated forward contact surface having a curved pressure surface. The following cooled roller provides a continuous pressure to the thermoplastic while reducing the temperature to approximately 5 C below glass transition temperature. Electric heating coils inside the forward portion of the shoe heat a thermoplastic workpiece to approximately 100 C above the glass transition. Immediately following the heated contact surface, a cooled roller cools the work. The end sharpened shape of the heated shoe trailing edge tends to prevent slag buildup and maintain a uniform, relaxed stress fabrication.
Therapeutic footwear: enhanced function in people with diabetes and transmetatarsal amputation.
Mueller, M J; Strube, M J
1997-09-01
Patients with diabetes mellitus (DM) and a transmetatarsal amputation (TMA) have considerable deficits in function compared with age-matched controls. The purpose of this study was to determine if therapeutic footwear could improve the functional mobility of patients with DM and TMA. Repeated-measures design. Academic medical center. Thirty subjects (10 women, 20 men) with DM and a TMA, with a mean age of 61.7 +/- 4.0 yrs. Six types of footwear evaluating the following components: length of shoe (full-length or short shoe), a rigid rocker-bottom sole, and an ankle-foot-orthosis. Physical Performance Test (PPT), functional reach, and walking speed. Measurements in each footwear condition occurred after a 1-month adjustment period. Patients wearing full-length custom-made shoes with a total-contact insert, a rigid rocker-bottom sole or a short shoe with a rigid rocker-bottom sole (with or without an ankle-foot-orthosis) had similar and significantly higher scores in the PPT and faster walking speed than when wearing regular shoes with a toe filler (p < .05). The short shoe and the ankle-foot-orthosis, however, generated many patient complaints about cosmesis and restriction at the ankle, respectively. There were no differences in any of the measures of functional reach. Although there are individual exceptions, we recommend the full-length shoe, total-contact insert, and a rigid rocker-bottom sole for most patients with DM and a TMA.
Herbaut, Alexis; Simoneau-Buessinger, Emilie; Barbier, Franck; Gillet, Christophe; Roux, Maxime; Guéguen, Nils; Chavet, Pascale
2017-11-01
Compared to traditional tennis shoes, using 0-drop shoes was shown to induce an immediate switch from rear- to forefoot strike pattern to perform an open stance tennis forehand for 30% of children tennis players. The purpose of the study was to examine the long-term effects of a gradual reduction in the shoe drop on the biomechanics of children tennis players performing open stance forehands. Thirty children tennis players participated in 2 laboratory biomechanical test sessions (intermediate: +4 months and final: +8 months) after an inclusion visit where they were randomly assigned to control (CON) or experimental (EXP) group. CON received 12-mm-drop shoes twice, whereas EXP received 8 mm then 4-mm-drop shoes. Strike index indicated that all CON were rearfoot strikers in intermediate and final test sessions. All EXP were rearfoot strikers in intermediate test session, but half the group switched towards a forefoot strike pattern in final test session. This switch resulted in a decreased loading rate of the ground reaction force (-73%, p = .005) but increased peak ankle plantarflexors moment (+47%, p = .050) and peak ankle power absorption (+107%, p = .005) for these participants compared with CON. Biomechanical changes associated with the long-term use of partial minimalist shoes suggest a reduction in heel compressive forces but an increase in Achilles tendon tensile forces.
Litzelman, D K; Marriott, D J; Vinicor, F
1997-02-01
To conduct a prospective evaluation of footwear characteristics as predictors of diabetic foot wounds. A total of 352 patients with NIDDM enrolled in a randomized controlled trial aimed at preventing diabetic foot lesions in an academic general medicine practice were studied. Foot wounds (n = 63) were modeled univariately and multivariably using generalized estimating equations. The dependent variable was a wound classified as a 1.2 or greater according to the Seattle Wound Classification System, indicating at least a superficial or healing minor lesion with no functional interruption of the protective cutaneous barrier. Independent variables included detailed measures of style and material of patients' indoor and outdoor shoes, appropriate length and width, sock fibers, whether the patient had bought new shoes in the past 6 months, and if the patient had been recommended for special shoes. Modeling controlled for intervention status and physiological measures (baseline wound, monofilament abnormalities, and serum HDL level). Initial screening (P < 0.20) suggested that a recommendation for special shoes, shoe length, and shoe width were indicative of wounds at follow-up (odds ratios [ORs] 2.19, 1.84, 1.86, respectively), while having bought shoes in the past 6 months was associated with no wound at follow-up (OR 0.60). The final multivariable model included only the recommendation for special shoes (OR 2.19; 95% CI 1.07-4.49). Many variables commonly cited as protective measures in footwear for diabetic patients were not prospectively predictive when controlling for physiological risk factors. Rigorous analyses are needed to examine the many assumptions regarding footwear recommendations for diabetic patients.
Pressure-relieving properties of various shoe inserts in older people with plantar heel pain.
Bonanno, Daniel R; Landorf, Karl B; Menz, Hylton B
2011-03-01
Plantar heel pain is one of the most common musculoskeletal conditions affecting the foot and it is commonly experienced by older adults. Contoured foot orthoses and some heel inserts have been found to be effective for plantar heel pain, however the mechanism by which they achieve their effects is largely unknown. The aim of this study was to investigate the effects of foot orthoses and heel inserts on plantar pressures in older adults with plantar heel pain. Thirty-six adults aged over 65 years with plantar heel pain participated in the study. Using the in-shoe Pedar(®) system, plantar pressure data were recorded while participants walked along an 8 m walkway wearing a standardised shoe and 4 different shoe inserts. The shoe inserts consisted of a silicon heel cup, a soft foam heel pad, a heel lift and a prefabricated foot orthosis. Data were collected for the heel, midfoot and forefoot. Statistically significant attenuation of heel peak plantar pressure was provided by 3 of the 4 shoe inserts. The greatest reduction was achieved by the prefabricated foot orthosis, which provided a fivefold reduction compared to the next most effective insert. The contoured nature of the prefabricated foot orthosis allowed for an increase in midfoot contact area, resulting in a greater redistribution of force. The prefabricated foot orthosis was also the only shoe insert that did not increase forefoot pressure. The findings from this study indicate that of the shoe inserts tested, the contoured prefabricated foot orthosis is the most effective at reducing pressure under the heel in older people with heel pain. Copyright © 2010 Elsevier B.V. All rights reserved.
Forefoot plantar pressure reduction of off-the-shelf rocker bottom provisional footwear.
Kavros, Steven J; Van Straaten, Meegan G; Coleman Wood, Krista A; Kaufman, Kenton R
2011-08-01
Increased plantar pressures have been shown to be a risk factor in ulceration of the neuropathic foot. Prescriptive footwear is a common medical treatment, yet evidence regarding the efficacy of these prescriptions is underdeveloped. The purpose of this study is to determine the off-loading properties of four provisional shoes; a rocker sole compared to a flat sole shoe with and without the addition of a 1.25 cm plastizote insert. Fifteen subjects with peripheral neuropathy and a normal longitudinal arch were recruited to compare four types of provisional (post-operative) footwear. Plantar surface foot pressures were measured while wearing a rocker sole shoe or a flat stiff sole shoe. Both shoes were worn with and without a 1.25 cm plastizote insert. Peak plantar pressures were recorded for the hallux, metatarsal heads (1-5), midfoot, and heel. The rocker sole shoe with plastizote had the best off-loading properties. While wearing this footwear, mean peak plantar pressure was 2.8 kg/cm(2) (range: 1.7 to 4.5 kg/cm(2), 50% mean reduction from flat sole shoe without plastizote) and 1.9 kg/cm(2) (range: 0.7 to 3.6 kg/cm(2), 35% mean reduction) at the five metatarsal heads and hallux, respectively. For patients with a normal longitudinal arch and forefeet, either at risk of developing an ulcer or are healing a forefoot ulcer, a provisional shoe with a rocker sole and plastizote insole provides plantar pressure reduction of the forefoot. However, when results were analyzed for the subjects individually the amount of off-loading varied. Copyright © 2011 Elsevier Ltd. All rights reserved.
[The functional sport shoe parameter "torsion" within running shoe research--a literature review].
Michel, F I; Kälin, X; Metzger, A; Westphal, K; Schweizer, F; Campe, S; Segesser, B
2009-12-01
Within the sport shoe area torsion is described as the twisting and decoupling of the rear-, mid- and forefoot along the longitudinal axis of the foot. Studies have shown that running shoes restrict the torsion of the foot and thus they increase the pronation of the foot. Based on the findings, it is recommended to design running shoes, which allow the natural freedom of movement of the foot. The market introduction of the first torsion concept through adidas(R) took place in 1989. Independently of the first market introduction, only one epidemiological study was conducted in the running shoe area. The study should investigate the occurrence of Achilles tendon problems of the athletes running in the new "adidas Torsion(R) shoes". However, further studies quantifying the optimal region of torsionability concerning the reduction of injury incidence are still missing. Newer studies reveal that the criterion torsion only plays a secondary roll regarding the buying decision. Moreover, athletes are not able to perceive torsionability as a discrete functional parameter. It is to register, that several workgroups are dealing intensively with the detailed analysis of the foot movement based on kinematic multi-segment-models. However, scientific as well as popular scientific contributions display that the original idea of the torsion concept is still not completely understood. Hence, the "inverse" characteristic is postulated. The present literature review leads to the deduction that the functional characteristics of the torsion concept are not fully implemented within the running shoe area. This implies the necessity of scientific studies, which investigate the relevance of a functional torsion concept regarding injury prevention based on basic and applied research. Besides, biomechanical studies should analyse systematically the mechanism and the effects of torsion relevant technologies and systems.
Taylor, Jeffrey B; Nguyen, Anh-Dung; Griffin, Janet R; Ford, Kevin R
2018-06-01
Metatarsal and midfoot injuries are common in American football. Footwear design may influence injury rates by altering plantar foot loading patterns in these regions. The purpose of this study was to determine the effect of cleat design on in-shoe plantar foot loading during a football-specific, resisted pushing task. Twenty competitive football players (age 14.7 ± 1.8 years, height 1.72 ± 0.10 m, and mass 71.8 ± 26.9 kg) completed three trials of pushing a weighted sled at maximal effort in a standard shoe (CLEAT) and artificial turf-specific shoe (TURF), with flexible in-shoe force measuring insoles. Repeated measures ANOVAs identified mean differences in maximum force and relative load under all regions of the foot. Results showed higher forces in the CLEAT under the medial (p < 0.001) and lateral (p = 0.004) midfoot, central (p = 0.007) and lateral (p < 0.001) forefoot, and lesser toes (p = 0.01), but lower forces in the hallux (p = 0.02) compared to the TURF shoe. Additionally, relative loading was higher in the CLEAT under the medial (p < 0.001) and lateral (p = 0.002) midfoot and lateral (p < 0.001) forefoot, but lower in the medial forefoot (p = 0.006) and hallux (p < 0.001) compared to the TURF shoe. The two shoes elicited distinct plantar loading profiles and may influence shoe selection decisions during injury prevention or rehabilitation practices.
Restriction of foot supination by ankle braces in sudden fall situations.
Podzielny, S; Hennig, E M
1997-06-01
OBJECTIVE: To investigate the restriction of foot supination in different shoe orthotic combinations for unexpected ankle turns. DESIGN: A supination platform was used to experimentally induce sudden ankle turns. BACKGROUND: This study expanded on previous investigations of the effectiveness of different ankle braces and the influence of shoe material on foot supination. METHODS: For 21 male subjects pressure distribution data, achilles tendon angle, and supination velocity were collected. A comparison between a shoe with cut upper material and an intact shoe was done to show the influence of upper material on supination. The effectiveness of four different orthotics inside of an intact shoe were tested in comparison to the same shoe without ankle brace. Additionally, subjects rated their perceived supination movement of the foot. RESULTS: Between experimental conditions no large differences for the pressure distribution patterns were found. Three of the ankle braces reduced foot supination as well as supination velocities. More than two times lower supination values were measured for a footwear condition in which the upper material was cut away. Already during the free-fall most ankle braces caused a substantial reduction of foot inversion. CONCLUSION: The experiments demonstrated the influence of the upper material of a shoe and different orthotics on foot supination. Biomechanical measurements are necessary because of limited capabilities of subjects in detecting subtalar angular motions. RELEVANCE: This study investigated the effectiveness of different shoe conditions and ankle braces under experimental conditions that simulated unexpected ankle turns, the most frequent causes of sport injuries. The results of the study provide insights into which factors influence the amount of foot supination during unexpected ankle turns.
The Effects of Common Footwear on Joint Loading in Osteoarthritis of the Knee
Shakoor, Najia; Sengupta, Mondira; Foucher, Kharma C.; Wimmer, Markus A.; Fogg, Louis F.; Block, Joel A.
2010-01-01
Objective Elevated joint loads during walking have been associated with the severity and progression of osteoarthritis (OA) of the knee. Footwear may have the potential to alter these loads. This study compared the effects of several common shoe types on knee loading in subjects with OA of the knee. Methods 31 subjects (10 men, 21 women) with radiographic and symptomatic knee OA underwent gait analyses using an optoelectronic camera system and multi-component force plate. In each case, gait was evaluated barefoot and while wearing 4 different shoes: 1) clogs (Dansko®), 2) stability shoes (Brooks Addiction®), 3) flat walking shoes (Puma H Street®), and 4) flip-flops. Peak knee loads were compared between the different footwear conditions. Results Overall, the clogs and stability shoes, resulted in a significantly higher peak knee adduction moment (3.1±0.7 and 3.0±0.7 %BW*ht, respectively, ~15% higher, p<0.05)) compared with that of flat walking shoes (2.8±0.7%BW*ht), flip-flops (2.7±0.8%BW*ht) and barefoot walking (2.7±0.7%BW*ht). There were no statistically significant differences in knee loads with the flat walking shoes and flip-flops compared to barefoot walking. Conclusions These data confirm that footwear may have significant effects on knee loads during walking in subjects with OA of the knee. Flexibility and heel height may be important differentiating characteristics of shoes which affect knee loads. In light of the strong relationship between knee loading and OA, the design and biomechanical effects of modern footwear should be more closely evaluated in terms of their effects on the disease. PMID:20191571
Effects of common footwear on joint loading in osteoarthritis of the knee.
Shakoor, Najia; Sengupta, Mondira; Foucher, Kharma C; Wimmer, Markus A; Fogg, Louis F; Block, Joel A
2010-07-01
Elevated joint loads during walking have been associated with the severity and progression of osteoarthritis (OA) of the knee. Footwear may have the potential to alter these loads. This study compares the effects of several common shoe types on knee loading in subjects with OA of the knee. Thirty-one subjects (10 men, 21 women) with radiographic and symptomatic knee OA underwent gait analyses using an optoelectronic camera system and multicomponent force plate. In each case, gait was evaluated during barefoot walking and while wearing 4 different shoe types: 1) clogs, 2) stability shoes, 3) flat walking shoes, and 4) flip-flops. Peak knee loads were compared between the different footwear conditions. Overall, the clogs and stability shoes resulted in a significantly higher (approximately 15% higher) peak knee adduction moment (mean +/- SD 3.1 +/- 0.7 and 3.0 +/- 0.7 divided by body weight [BW] x height [H] multiplied by 100, respectively; P < 0.05) compared with that of flat walking shoes (mean +/- SD 2.8 +/- 0.7 %BW x H), flip-flops (mean +/- SD 2.7 +/- 0.8 %BW x H), and barefoot walking (mean +/- SD 2.7 +/- 0.7 %BW x H). There were no statistically significant differences in knee loads with the flat walking shoes and flip-flops compared with barefoot walking. These data confirm that footwear may have significant effects on knee loads during walking in subjects with OA of the knee. Flexibility and heel height may be important differentiating characteristics of shoes that affect knee loads. In light of the strong relationship between knee loading and OA, the design and biomechanical effects of modern footwear should be more closely evaluated in terms of their effects on the disease.
Regional foot pressure during running, cutting, jumping, and landing.
Orendurff, Michael S; Rohr, Eric S; Segal, Ava D; Medley, Jonathan W; Green, John R; Kadel, Nancy J
2008-03-01
Evaluating shoes during sport-related movements may provide a better assessment of plantar loads associated with repetitive injury and provide more specific data for comparing shoe cushioning characteristics. Accelerating, cutting, and jumping pressures will be higher than in straight running, differentiating regional shoe cushioning performance in sport-specific movements. Controlled laboratory study. Peak pressures on seven anatomic regions of the foot were assessed in 10 male college athletes during running straight ahead, accelerating, cutting left, cutting right, jump take-off, and jump landing wearing Speed TD and Air Pro Turf Low shoes (Nike, Beaverton, Ore). Pedar insoles (Novel, Munich, Germany) were sampled at 99 Hz during the 6 movements. Cutting and jumping movements demonstrated more than double the pressure at the heel compared with running straight, regardless of shoe type. The Air Pro Turf showed overall lower pressure for all movement types (P<.0377). Cutting to the left, the Air Pro Turf shoe had lower heel pressures (36.6 +/- 12.5 N/cm(2)) than the Speed TD (50.3 +/- 11.2 N/cm(2)) (P<.0001), and the Air Pro Turf had lower great toe pressures than the Speed TD (44.8 +/- 8.1 N/cm(2) vs 54.4 +/- 8.4 N/cm(2); P= .0002). The Air Pro Turf also had significantly lower pressures than the Speed TD at the central forefoot during acceleration (38.2 +/- 8.3 N/cm(2) vs 50.8 +/- 7.4 N/cm(2); P<.0001). Sport-related movements load the plantar surface of the foot more than running straight. Shoe cushioning characteristics were more robustly assessed during sport-related movements (4 significant results detected) compared with running straight (1 significant result detected). There is an interaction between shoe cushioning characteristics and sport-related movements that may influence plantar pressure and repetitive stress injuries.
Firminger, Colin R; Edwards, W Brent
2016-12-01
To examine the effects of shoe type and stride length reduction on lower-extremity running mechanics and cumulative loading. Within-subject with four conditions: (1) control shoe at preferred stride length; (2) control shoe at 90% preferred stride length; (3) minimalist shoe at preferred stride length; (4) minimalist shoe at 90% preferred stride length. Fourteen young healthy males ran overground at their preferred speed while motion capture, force platform, and plantar pressure data were collected. Peak moments, impulse, mechanical work, and cumulative impulse were calculated at the metatarsophalangeal, ankle, and knee joint, and compared between conditions using a 2×2 factor repeated measures ANOVA. In general, running in minimalist footwear increased measures of loading at the metatarsophalangeal joint and ankle joint (mean increases of 7.3% and 5.9%, respectively), but decreased measures of loading at the knee (mean decrease of 7.3%). Conversely, running with reduced stride length decreased single-stance measures of loading at the ankle and knee joint (ranging from -0.9% to -20.5%), though cumulative impulse was higher at the ankle and lower at the knee. Running in minimalist shoes increased loads at the metatarsophalangeal and ankle joint, which may explain some of the incidence of overuse injuries observed in minimalist shoe users. Decreased ankle loads at 90% preferred stride length were not necessarily sufficient to reduce cumulative loads when impulse and loading cycles were weighted equally. Knee loads decreased more when running at 90% preferred stride length (16.2% mean reduction) versus running in a minimalist shoe (7.3% mean reduction), but both load reduction mechanisms appeared to have an additive effect (22.2% mean reduction). Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Fuller, Joel T; Thewlis, Dominic; Tsiros, Margarita D; Brown, Nicholas A T; Buckley, Jonathan D
2015-01-01
Introduction The outcome of the effects of transitioning to minimalist running shoes is a topic of interest for runners and scientists. However, few studies have investigated the longer term effects of running in minimalist shoes. The purpose of this randomised controlled trial (RCT) is to investigate the effects of a 26 week transition to minimalist shoes on running performance and injury risk in trained runners unaccustomed to minimalist footwear. Methods and analysis A randomised parallel intervention design will be used. Seventy-six trained male runners will be recruited. To be eligible, runners must be aged 18–40 years, run with a habitual rearfoot footfall pattern, train with conventional shoes and have no prior experience with minimalist shoes. Runners will complete a standardised transition to either minimalist or control shoes and undergo assessments at baseline, 6 and 26 weeks. 5 km time-trial performance (5TT), running economy, running biomechanics, triceps surae muscle strength and lower limb bone mineral density will be assessed at each time point. Pain and injury will be recorded weekly. Training will be standardised during the first 6 weeks. Primary statistical analysis will compare 5TT between shoe groups at the 6-week time point and injury incidence across the entire 26-week study period. Ethics and dissemination This RCT has been approved by the Human Research Ethics Committee of the University of South Australia. Participants will be required to provide their written informed consent prior to participation in the study. Study findings will be disseminated in the form of journal publications and conference presentations after completion of planned data analysis. Trial registration number This RCT has been registered with the Australian New Zealand Clinical Trials Registry (ACTRN12613000642785). PMID:26297368
Shoe allergic contact dermatitis.
Matthys, Erin; Zahir, Amir; Ehrlich, Alison
2014-01-01
Foot dermatitis is a widespread condition, affecting men and women of all ages. Because of the location, this condition may present as a debilitating problem to those who have it. Allergic contact dermatitis involving the feet is frequently due to shoes or socks. The allergens that cause shoe dermatitis can be found in any constituent of footwear, including rubber, adhesives, leather, dyes, metals, and medicaments. The goal of treatment is to identify and minimize contact with the offending allergen(s). The lack of product information released from shoe manufacturers and the continually changing trends in footwear present a challenge in treating this condition. The aim of this study is to review the current literature on allergic contact shoe dermatitis; clinical presentation, allergens, patch testing, and management will be discussed. PubMed and MEDLINE databases were used for the search, with a focus on literature updates from the last 15 years.
Midsole material-related force control during heel-toe running.
Kersting, Uwe G; Brüggemann, Gert-Peter
2006-01-01
The impact maximum and rearfoot eversion have been used as indicators of load on internal structures in running. The midsole hardness of a typical running shoe was varied systematically to determine the relationship between external ground reaction force (GRF), in-shoe force, and kinematic variables. Eight subjects were tested during overground running at 4 m/s. Rearfoot movement as well as in-shoe forces and external GRF varied nonsystematically with midsole hardness. Kinematic parameters such as knee flexion and foot velocity at touchdown (TD), also varied nonsystematically with altered midsole hardness. Results demonstrate that considerable variations of in-shoe loading occur that were not depicted by external GRF measurements alone. Individuals apparently use different strategies of mechanical and neuromuscular adaptation in response to footwear modifications. In conclusion, shoe design effects on impact forces or other factors relating to injuries depend on the individual and therefore cannot be generalized.
The relationship between foot pain, anthropometric variables and footwear among older people.
Paiva de Castro, Alessandra; Rebelatto, José Rubens; Aurichio, Thaís Rabiatti
2010-01-01
To verify the prevalence of pain among older people when wearing shoes, and the relationships between foot pain, high-heeled shoes and anthropometric variables. Both feet of 227 older women and 172 older men were evaluated with respect to anthropometric variables, arch index and foot posture index. The participants were also asked about the presence of foot pain while wearing high-heeled shoes. The data were analyzed using the Chi-square test, Pearson's correlation, MANOVA, multiple regression analysis, t test, and analysis of probability. The prevalence of foot pain when wearing shoes was high and was associated with the female gender, however wearing high-heeled shoes was not associated with pain. The women with foot pain presented larger values for the circumferences of the metatarsal heads and the instep (after normalization with the foot length) than those without pain. The men with pain did not present different measurements from those without pain.
STS-44 OV-104's airlock hatch with tennis shoes and Presidential Sports Award
NASA Technical Reports Server (NTRS)
1991-01-01
STS-44 airlock hatch is decorated with two pairs of tennis shoes and a Presidential Sports Award Jogging patch (insignia) on the middeck of Atlantis, Orbiter Vehicle (OV) 104. With the crew having a treadmill-like device onboard for exercise and biomedical testing, tennis shoes were in plentiful stock on the eight-day mission.
1984-09-01
leather is thus designated ŗ-ounce leather." -ll specimens, except the UL, had high-gloss polyurethane finishes. The UL ’eLi wr contained a...ITT Research Institute, October 1965, p. 18. 4.4 %d :i.bie 2. Comparativ ~e heat transfer values of shoe uppe materials vs. shoe upper materials with
Experimental investigation of the dynamics of a brake shoe
NASA Astrophysics Data System (ADS)
Ivanova, T. B.; Erdakova, N. N.; Karavaev, Yu. L.
2016-12-01
The experimental stand is described and the results of investigation of the motion of a brake shoe are presented. In the noncritical region, the friction coefficient is determined experimentally. It is shown that its value corresponds to the condition of uniqueness of the solution for construction of this brake shoe. The dynamics observed in the paradoxical-motion region is described.
Red Shoe-Blue Shoe: An Acid-Base Demonstration with a Fashionable Twist.
ERIC Educational Resources Information Center
Breyer, Arthur C.; Uzelmeier, Calvin E.
1998-01-01
Illustrates that acid-base indicators come in many forms and the reversible effects that acids and bases have on the colors of such indicators. An object is dyed in an indicator, which causes the object to turn dark blue at pH less than 3.0 to 5.0. Suggests using dyeable fabric shoes and other cotton articles. (PVD)
Composite prepreg application device
NASA Technical Reports Server (NTRS)
Sandusky, Donald A. (Inventor); Marchello, Joseph M. (Inventor)
1996-01-01
A heated shoe and cooled pressure roller assembly for composite prepreg application is provided. The shoe assembly includes a heated forward contact surface having a curved pressure surface. The following cooled roller provides a continuous pressure to the thermoplastic while reducing the temperature to approximately 5.degree. C. below glass transition temperature. Electric heating coils inside the forward portion of the shoe heat a thermoplastic workpiece to approximately 100.degree. C. above the glass transition. Immediately following the heated contact surface, a cooled roller cools the work. The end sharpened shape of the heated shoe trailing edge tends to prevent slag buildup and maintain a uniform, relaxed stress fabrication.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. The newly shod Crawler Transporter leaves tracks in the dirt as it moves forward on its road test. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. The newly shod Crawler Transporter leaves tracks in the dirt as it moves forward on its road test. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.
[Foot growth and foot types in children and adolescents: a narrative review].
Xu, Miaomiao; Wang, Lin
2017-08-01
Foot shape and size are important for footwear design and production. Information about important foot characteristics helps not only to improve shoe comfort but to maintain the proper physiological development of the feet. What's more, plenty of studies have suggested that the shape of the shoe must closely resemble the shape of the foot to create a properly fitted shoe. This means that the differences between various populations should be considered and that footwear should be designed according to the measurements of users. Childhood and adolescent are important periods of human growth. During these periods, foot shape changes with human growth and can be influenced by extrinsic factors. Therefore, the foot shape characteristics of children and adolescents should be investigated. The results from these investigations can contribute to developing appropriate shoe for children and adolescents, improving perceived comfort of children shoes and preventing pedopathy among children and adolescents. This review aims to discuss measuring methods of foot shape, types of foot shape, and factors influencing foot shape. The results of the review can provide recommendations for investigating growth development of foot shape and useful information for consumers and shoe manufacturers.
A new approach to children's footwear based on foot type classification.
Mauch, M; Grau, S; Krauss, I; Maiwald, C; Horstmann, T
2009-08-01
Current shoe designs do not allow for the comprehensive 3-D foot shape, which means they are unable to reproduce the wide variability in foot morphology. Therefore, the purpose of this study was to capture these variations of children's feet by classifying them into groups (types) and thereby provide a basis for their implementation in the design of children's shoes. The feet of 2867 German children were measured using a 3-D foot scanner. Cluster analysis was then applied to classify the feet into three different foot types. The characteristics of these foot types differ regarding their volume and forefoot shape both within and between shoe sizes. This new approach is in clear contrast to previous systems, since it captures the variability of foot morphology in a more comprehensive way by using a foot typing system and therefore paves the way for the unimpaired development of children's feet. Previous shoe systems do not allow for the wide variations in foot morphology. A new approach was developed regarding different morphological foot types based on 3-D measurements relevant in shoe construction. This can be directly applied to create specific designs for children's shoes.
Effect of soccer shoe upper on ball behaviour in curve kicks
Ishii, Hideyuki; Sakurai, Yoshihisa; Maruyama, Takeo
2014-01-01
New soccer shoes have been developed by considering various concepts related to kicking, such as curving a soccer ball. However, the effects of shoes on ball behaviour remain unclear. In this study, by using a finite element simulation, we investigated the factors that affect ball behaviour immediately after impact in a curve kick. Five experienced male university soccer players performed one curve kick. We developed a finite element model of the foot and ball and evaluated the validity of the model by comparing the finite element results for the ball behaviour immediately after impact with the experimental results. The launch angle, ball velocity, and ball rotation in the finite element analysis were all in general agreement with the experimental results. Using the validated finite element model, we simulated the ball behaviour. The simulation results indicated that the larger the foot velocity immediately before impact, the larger the ball velocity and ball rotation. Furthermore, the Young's modulus of the shoe upper and the coefficient of friction between the shoe upper and the ball had little effect on the launch angle, ball velocity, and ball rotation. The results of this study suggest that the shoe upper does not significantly influence ball behaviour. PMID:25266788
Computerized analysis of plantar pressure variation in flip-flops, athletic shoes, and bare feet.
Carl, Tanya J; Barrett, Stephen L
2008-01-01
High peak plantar pressures predispose to foot problems and may exacerbate existing conditions. For podiatric physicians to make educated recommendations to their patients, it is important and necessary to begin to look at different shoes and how they affect peak plantar pressure. To determine how flip-flops change peak plantar pressure while walking, we compared peak plantar pressures in the same test subjects wearing flip-flops, wearing athletic shoes, and in bare feet. Ten women with size 7 feet and a body mass index less than 25 kg/m2 were tested with an in-shoe pressure-measurement system. These data were collected and analyzed by one-way analysis of variance and computer software. Statistically significant results were obtained for nine of the 18 comparisons. In each of these comparisons, flip-flops always demonstrated higher peak plantar pressures than athletic shoes but lower pressures than bare feet. Although these data demonstrate that flip-flops have a minor protective role as a shock absorber during the gait cycle compared with pressures measured while barefoot, compared with athletic shoes, they increase peak plantar pressures, placing the foot at greater risk for pathologic abnormalities.
Zech, Astrid; Argubi-Wollesen, Andreas; Rahlf, Anna-Lina
2015-01-01
In recreational sports, uncushioned, light-weight and minimalist shoes are increasingly used to imitate barefoot situations. Uncertainty exists whether these shoes provide sufficient stability during challenging movements. In this randomised crossover study, 35 healthy distance runners performed jump landing stabilisation and single-leg stance tests on a force plate, using four conditions in random order: barefoot, uncushioned minimalist shoes, cushioned ultraflexible shoes and standard running shoes. Ground reaction force (GRF) and centre of pressure (COP) data were used to determine unilateral jump landing stabilisation time and COP sway velocity during single-leg stance. Repeated measures analysis of variance revealed significant footwear interactions for medial-lateral (p < 0.001) and anterior-posterior COP sway velocity during standing (p < 0.001). The barefoot condition produced significantly greater postural sway velocities (p < 0.001) compared to all footwear conditions. No significant effects were found for jump landing stabilisation time. In conclusion, the results of this study indicate that increased shoe flexibility and reduced sole support have no, or only minor influence on static and dynamic postural control, and therefore, may not increase the risk of traumatic events during sports activities. However, barefoot conditions should be considered carefully when adequate postural control is needed.
Effect of soccer shoe upper on ball behaviour in curve kicks
NASA Astrophysics Data System (ADS)
Ishii, Hideyuki; Sakurai, Yoshihisa; Maruyama, Takeo
2014-08-01
New soccer shoes have been developed by considering various concepts related to kicking, such as curving a soccer ball. However, the effects of shoes on ball behaviour remain unclear. In this study, by using a finite element simulation, we investigated the factors that affect ball behaviour immediately after impact in a curve kick. Five experienced male university soccer players performed one curve kick. We developed a finite element model of the foot and ball and evaluated the validity of the model by comparing the finite element results for the ball behaviour immediately after impact with the experimental results. The launch angle, ball velocity, and ball rotation in the finite element analysis were all in general agreement with the experimental results. Using the validated finite element model, we simulated the ball behaviour. The simulation results indicated that the larger the foot velocity immediately before impact, the larger the ball velocity and ball rotation. Furthermore, the Young's modulus of the shoe upper and the coefficient of friction between the shoe upper and the ball had little effect on the launch angle, ball velocity, and ball rotation. The results of this study suggest that the shoe upper does not significantly influence ball behaviour.
Footwear effects on walking balance at elevation.
Simeonov, Peter; Hsiao, Hongwei; Powers, John; Ammons, Douglas; Amendola, Alfred; Kau, Tsui-Ying; Cantis, Douglas
2008-12-01
The study evaluated the effects of shoe style on workers' instability during walking at elevation. Twenty-four construction workers performed walking tasks on roof planks in a surround-screen virtual reality system, which simulated a residential roof environment. Three common athletic and three work shoe styles were tested on wide, narrow and tilted planks on a simulated roof and on an unrestricted surface at simulated ground. Dependent variables included lateral angular velocities of the trunk and the rear foot, as well as the workers' rated perceptions of instability. The results demonstrated that shoe style significantly affected workers walking instability at elevated work environments. The results highlighted two major shoe-design pathways for improving walking balance at elevation: enhancing rear foot motion control; and improving ankle proprioception. This study also outlined some of the challenges in optimal shoe selection and specific shoe-design needs for improved walking stability during roof work. The study adds to the knowledge in the area of balance control, by emphasising the role of footwear as a critical human-support surface interface during work on narrow surfaces at height. The results can be used for footwear selection and improvements to reduce risk of falls from elevation.
Evaluating the injury incidence from skate shoes in the United States.
Ruth, Erin; Shah, Binisa; Fales, Willliam
2009-05-01
The goals of this study were to evaluate whether the increased use of skate shoes may lead to an increase in injuries for children and adolescents aged 5 to 14 years in the United States and to describe the types of injuries reported by emergency departments as a result of skate shoe use. Retrospective analysis of the National Electronic Injury Surveillance System database from January 1, 2002 to December 31, 2006 for injuries resulting from footwear in children and adolescents aged 5 to 14 years. Injuries resulting from skate shoe use were identified by manual review of the data. For the 5-year period, an estimated 3525 patients between 5 and 14 years of age were treated in United States emergency departments for injuries resulting from skate shoe use. The percentage of injuries resulting from skate shoes of total footwear-related injuries varied by year, however, with 1.0%, 1.0%, 0.8%, and 1.9% occurring in 2002 to 2005, respectively, and 11.8% occurring in 2006. This substantial increase in 2006 accounts for 73.6% of skate shoe-related injuries and is statistically significant (chi, P = <0.0001). This rising trend in 2006 paralleled national skate shoe sales, with a correlation coefficient of 0.9982.Most of the injured children and adolescents were white, and there was a slight, nonsignificant predominance of boys. Most injuries in all 5-year-olds were fractures (46.7%), followed by contusions (17.9%) and sprains (17.2%). The most frequent site of fracture was the forearm (38.4%), followed by the wrist (35.1%) and the leg (14.9%). Other injuries included lacerations (7.3%), concussions (6.6%), internal organ injuries (0.9%), hematomas (0.2%), dislocations (0.2%), and injuries not otherwise specified (3.1%). Based on national estimates, 104 (0.01%) patients required admission to the hospital. No injuries recorded in the National Electronic Injury Surveillance System database resulted in death. As the first study analyzing injury rates as a result of skate shoe use in the United States, this study demonstrated a recent increase in injuries to children and adolescents using skate shoes, which paralleled the products' sales increase. The types of injuries are primarily a wide range of non-life threatening bone and soft tissue injuries.
Dinato, Roberto C; Ribeiro, Ana P; Butugan, Marco K; Pereira, Ivye L R; Onodera, Andrea N; Sacco, Isabel C N
2015-01-01
To investigate the relationships between the perception of comfort and biomechanical parameters (plantar pressure and ground reaction force) during running with four different types of cushioning technology in running shoes. Randomized repeated measures. Twenty-two men, recreational runners (18-45 years) ran 12km/h with running shoes with four different cushioning systems. Outcome measures included nine items related to perception of comfort and 12 biomechanical measures related to the ground reaction forces and plantar pressures. Repeated measure ANOVAs, Pearson correlation coefficients, and step-wise multiple regression analyses were employed (p≤0.05). No significant correlations were found between the perception of comfort and the biomechanical parameters for the four types of investigated shoes. Regression analysis revealed that 56% of the perceived general comfort can be explained by the variables push-off rate and pressure integral over the forefoot (p=0.015) and that 33% of the perception of comfort over the forefoot can be explained by second peak force and push-off rate (p=0.016). The results did not demonstrate significant relationships between the perception of comfort and the biomechanical parameters for the three types of shoes investigated (Gel, Air, and ethylene-vinyl acetate). Only the shoe with Adiprene+ technology had its general comfort and cushioning perception predicted by the loads over the forefoot. Thus, in general, one cannot predict the perception of comfort of a running shoe through impact and plantar pressure received. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Trombini-Souza, Francis; Fuller, Ricardo; Matias, Alessandra; Yokota, Mariane; Butugan, Marco; Goldenstein-Schainberg, Claudia; Sacco, Isabel C N
2012-07-12
Recent studies have shown an important reduction of joint overload during locomotion in elderly women with knee osteoarthritis (OA) after short-term use of minimalist shoes. Our aim is to investigate the chronic effect of inexpensive and minimalist footwear on the clinical and functional aspects of OA and gait biomechanics of elderly women with knee OA. Fifty-six elderly women with knee OA grade 2 or 3 (Kellgren and Lawrence) are randomized into blocks and allocated to either the intervention group, which will use flexible, non-heeled shoes- Moleca®-for six months for at least six hours daily, or the control group, which could not use these shoes. Neither group is undergoing physical therapy treatment throughout the intervention period. Moleca® is a women's double canvas, flexible, flat walking shoe without heels, with a 5-mm anti-slip rubber sole and a 3-mm internal wedge of ethylene vinyl acetate. Both groups will be followed for six months and will be assessed at baseline condition, after three months, and after six months (end of intervention). All the assessments will be performed by a physiotherapist that is blind to the group allocation. The primary outcome is the pain Western Ontario and McMaster Universities Osteoarthritis (WOMAC) score. The secondary outcomes are global WOMAC score; joint stiffness and disability WOMAC scores; knee pain with a visual analogue scale; walking distance in the six-minute walk test; Lequesne score; amount and frequency (number of days) of paracetamol (500 mg) intake over six months; knee adduction moment during gait; global medical assessment score; and global patient auto-assessment score. At baseline, all patients receive a diary to record the hours of daily use of the footwear intervention; every two weeks, the same physiotherapist makes phone calls to all patients in order to verify adherence to treatment. The statistical analysis will be based on intention-to-treat analysis, as well as general linear models of analysis of variance for repeated measure to detect treatment-time interactions (α = 5%). This is the first randomized, clinical trial protocol to assess the chronic effect of minimalist footwear on the clinical and functional aspects and gait biomechanics of elderly women with knee osteoarthritis. We expect that the use of Moleca® shoes for six months will provide pain relief, reduction of the knee adduction moment when walking, and improve joint function in elderly women with knee OA, and that the treatment, thus, can be considered another inexpensive and easy-to-use option for conservative OA treatment. NCT01342458.
Quick Reads: The Unit Makes All the Difference
ERIC Educational Resources Information Center
Rollick, Mary Beth
2014-01-01
"What's the unit?" The answer to this question makes all the difference. A young child who is asked to count shoes needs to know if the unit to be counted is "pairs" of shoes or individual shoes. A middle school student who is asked for the length of a table will want to know if the number should be in inches, feet, or…
2013-01-01
Background Ill-fitting footwear can be detrimental to foot health with the forefoot being an area for most discomfort. Studies on footwear have primarily examined sports or orthopaedic prescription shoes and little is known about the effects that everyday flat shoes have on the forefoot. The aim of this study was to investigate the effect of toe box shape in a popular slip-on pump on dorsal and plantar pressures with particular interest around the forefoot in a healthy female population. Method A convenience sample of 27 female participants with no known foot pathologies was recruited. After assessment of foot size, plantar foot pressure and interdigital pressures were recorded for each of the 3 different toe box styles; round, square and pointed. Participants walked at a self-selected speed over a 10 m walkway whilst wearing each of the 3 styles of shoe and also whilst barefoot. Processed and analysed data extracted included peak pressure, time to peak pressure, contact time and pressure time integral. ANOVA and Freidman analysis was used to test for statistical significance. Results Shoes with a round toe showed least pressure around the medial aspect of the toes whilst the pointed shoe had least pressure on the lateral toes. Contact times for the plantar regions were not altered in any shoe condition yet contact around the medial aspect of the toes was highest in the pointed shoe. Conclusion This study highlights that the shape of the toe box in footwear can significantly influence the amount of pressure applied to the forefoot. Furthermore, the contours of the shoe also have an impact on the contact time and pressure time integral around the forefoot and also the peak plantar pressure in the toe region. The changes observed could be significant in the development of pathology in certain footwear toe box shapes. Consideration should be given to footwear design around the toe box to improve fit and reduce pressure. Further work is required to investigate the effect of toe box shape and volume on a pathological population with pressure related lesions. PMID:23886242
Klein, Christian; Groll-Knapp, Elisabeth; Kundi, Michael; Kinz, Wieland
2009-12-17
Wearing shoes of insufficient length during childhood has often been cited as leading to deformities of the foot, particularly to the development of hallux valgus disorders. Until now, these assumptions have not been confirmed through scientific research. This study aims to investigate whether this association can be statistically proven, and if children who wear shoes of insufficient length actually do have a higher risk of a more pronounced lateral deviation of the hallux. 858 pre-school children were included in the study. The study sample was stratified by sex, urban/rural areas and Austrian province. The hallux angle and the length of the feet were recorded. The inside length of the children's footwear (indoor shoes worn in pre-school and outdoor shoes) were assessed. Personal data and different anthropometric measurements were taken. The risk of hallux valgus deviation was statistically tested by a stepwise logistic regression analysis and the relative risk (odds ratio) for a hallux angle > or = 4 degrees was calculated. Exact examinations of the hallux angle could be conducted on a total of 1,579 individual feet. Only 23.9% out of 1,579 feet presented a straight position of the great toe. The others were characterized by lateral deviations (valgus position) at different degrees, equalling 10 degrees or greater in 14.2% of the children's feet.88.8% of 808 children examined wore indoor footwear that was of insufficient length, and 69.4% of 812 children wore outdoor shoes that were too short. A significant relationship was observed between the lengthwise fit of the shoes and the hallux angle: the shorter the shoe, the higher the value of the hallux angle. The relative risk (odds ratio) of a lateral hallux deviation of > or = 4 degrees in children wearing shoes of insufficient length was significantly increased. There is a significant relationship between the hallux angle in children and footwear that is too short in length. The fact that the majority of the children examined were wearing shoes of insufficient length makes the issue particularly significant. Our results emphasize the importance of ensuring that children's footwear fits properly.
Goss, Donald L.; Lewek, Michael; Yu, Bing; Ware, William B.; Teyhen, Deydre S.; Gross, Michael T.
2015-01-01
Context The injury incidence rate among runners is approximately 50%. Some individuals have advocated using an anterior–foot-strike pattern to reduce ground reaction forces and injury rates that they attribute to a rear–foot-strike pattern. The proportion of minimalist shoe wearers who adopt an anterior–foot-strike pattern remains unclear. Objective To evaluate the accuracy of self-reported foot-strike patterns, compare negative ankle- and knee-joint angular work among runners using different foot-strike patterns and wearing traditional or minimalist shoes, and describe average vertical-loading rates. Design Descriptive laboratory study. Setting Research laboratory. Patients or Other Participants A total of 60 healthy volunteers (37 men, 23 women; age = 34.9 ± 8.9 years, height = 1.74 ± 0.08 m, mass = 70.9 ± 13.4 kg) with more than 6 months of experience wearing traditional or minimalist shoes were instructed to classify their foot-strike patterns. Intervention(s) Participants ran in their preferred shoes on an instrumented treadmill with 3-dimensional motion capture. Main Outcome Measure(s) Self-reported foot-strike patterns were compared with 2-dimensional video assessments. Runners were classified into 3 groups based on video assessment: traditional-shoe rear-foot strikers (TSR; n = 22), minimalist-shoe anterior-foot strikers (MSA; n = 21), and minimalist-shoe rear-foot strikers (MSR; n = 17). Ankle and knee negative angular work and average vertical-loading rates during stance phase were compared among groups. Results Only 41 (68.3%) runners reported foot-strike patterns that agreed with the video assessment (κ = 0.42, P < .001). The TSR runners demonstrated greater ankle-dorsiflexion and knee-extension negative work than MSA and MSR runners (P < .05). The MSA (P < .001) and MSR (P = .01) runners demonstrated greater ankle plantar-flexion negative work than TSR runners. The MSR runners demonstrated a greater average vertical-loading rate than MSA and TSR runners (P < .001). Conclusions Runners often cannot report their foot-strike patterns accurately and may not automatically adopt an anterior–foot-strike pattern after transitioning to minimalist running shoes. PMID:26098391
Goss, Donald L; Lewek, Michael; Yu, Bing; Ware, William B; Teyhen, Deydre S; Gross, Michael T
2015-02-19
Context : The injury incidence rate among runners is approximately 50%. Some individuals have advocated using an anterior-foot-strike pattern to reduce ground reaction forces and injury rates that they attribute to a rear-foot-strike pattern. The proportion of minimalist shoe wearers who adopt an anterior-foot-strike pattern remains unclear. Objective : To evaluate the accuracy of self-reported foot-strike patterns, compare negative ankle- and knee-joint angular work among runners using different foot-strike patterns and wearing traditional or minimalist shoes, and describe average vertical-loading rates. Design : Descriptive laboratory study. Setting : Research laboratory. Patients or Other Participants : A total of 60 healthy volunteers (37 men, 23 women; age = 34.9 ± 8.9 years, height = 1.74 ± 0.08 m, mass = 70.9 ± 13.4 kg) with more than 6 months of experience wearing traditional or minimalist shoes were instructed to classify their foot-strike patterns. Intervention(s) : Participants ran in their preferred shoes on an instrumented treadmill with 3-dimensional motion capture. Main Outcome Measure(s) : Self-reported foot-strike patterns were compared with 2-dimensional video assessments. Runners were classified into 3 groups based on video assessment: traditional-shoe rear-foot strikers (TSR; n = 22), minimalist-shoe anterior-foot strikers (MSA; n = 21), and minimalist-shoe rear-foot strikers (MSR; n = 17). Ankle and knee negative angular work and average vertical-loading rates during stance phase were compared among groups. Results : Only 41 (68.3%) runners reported foot-strike patterns that agreed with the video assessment (κ = 0.42, P < .001). The TSR runners demonstrated greater ankle-dorsiflexion and knee-extension negative work than MSA and MSR runners (P < .05). The MSA (P < .001) and MSR (P = .01) runners demonstrated greater ankle plantar-flexion negative work than TSR runners. The MSR runners demonstrated a greater average vertical-loading rate than MSA and TSR runners (P < .001). Conclusions : Runners often cannot report their foot-strike patterns accurately and may not automatically adopt an anterior-foot-strike pattern after transitioning to minimalist running shoes.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Workers accompany the Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight as it demonstrates its readiness for weight bearing by carrying an unloaded 8,230,000-pound Mobile Launch Platform along the crawlerway. Its first road test on Jan. 21, following the replacement of all its shoes, was a success. Cracks appeared in the crawlers' shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program. Each crawler has 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight demonstrates its readiness for weight bearing by carrying an unloaded 8,230,000-pound Mobile Launch Platform along the crawlerway. Its first road test on Jan. 21, following the replacement of all its shoes, was a success. Cracks appeared in the crawlers' shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program. Each crawler has 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Before a road test of the Crawler Transporter, United Space Alliance Vice President, Associate Program Manager of Florida Operations, Bill Pickavance (in front), look at the controls of the cab. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.
Medical student empathy: interpersonal distinctions and correlates.
Jordan, Kevin D; Foster, Penni Smith
2016-12-01
Attention to interpersonal behaviors, communication, and relational factors is taking on increasing importance in medical education. Medical student empathy is one aspect of the physician-patient relationship that is often involved in beneficial interactions leading to improved clinical outcomes and patient satisfaction. As an interpersonal quality, empathy is a social behavior well-suited to be examined from an interpersonal perspective. The present study used the interpersonal theory of clinical, personality, and social psychology to examine the construct of empathy and theorize about likely interpersonal correlates. One hundred and sixty-three students from an academic health center in the southeastern United States participated in this study. The medical student version of the Jefferson Scale of Empathy was used to assess empathy and its factors: Perspective taking, compassionate care, and walking in the patient's shoes. Interpersonal assessments included the International Personality Item Pool-Interpersonal Circumplex, the Interpersonal Support Evaluation List, and the UCLA Loneliness Scale. Distinct interpersonal styles and correlates emerged among empathy and its factors. While all factors of empathy were related to interpersonal warmth, perspective taking and compassionate care were also associated with submissiveness. Of note, only walking in the patient's shoes was correlated with both social support and less loneliness. These findings are discussed in light of interpersonal theory with particular attention paid to the implications for medical education and professional development.
A preliminary objective evaluation of leprosy footwear using in-shoe pressure measurement.
Linge, K
1996-01-01
The primary function of leprosy shoes, insoles and podiatric orthoses is to provide an underfoot environment capable of distributing the inevitable vertical forces, so reducing areas of peak pressure and ideally the period through which they are applied. Many patients with Hansen's disease have both skeletal deformity and anesthetised feet and the presence of high plantar pressures is the key reason for foot ulceration. This objective investigation using in-shoe dynamic pressure measurements showed that the addition of a shank to control insole rigidity reduced the overall peak pressures under the foot. When a deep canvas shoe was used to test single- and double-thickness insoles of two different types of material it was found in each case that the double-thickness mode was advantageous overall. Microcellular rubber insoles in two types of leprosy shoe were replaced by the polymer Poron. The Poron proved to be superior to both microcellular rubbers. The peak pressure and pressure-time integral should be considered as complimentary variables when determining the efficacy of footwear.
Tsai, Yi-Ju; Powers, Christopher M
2013-01-01
Theoretically, a shoe that provides less friction could result in a greater slip distance and foot slipping velocity, thereby increasing the likelihood of falling. The purpose of this study was to investigate the effects of sole hardness on the probability of slip-induced falls. Forty young adults were randomized into a hard or a soft sole shoe group, and tested under both nonslippery and slippery floor conditions using a motion analysis system. The proportions of fall events in the hard- and soft-soled shoe groups were not statistically different. No differences were observed between shoe groups for average slip distance, peak and average heel velocity, and center of mass slipping velocity. A strong association was found between slip distance and the fall probability. Our results demonstrate that the probability of a slip-induced fall was not influenced by shoe hardness. Once a slip is induced, slip distance was the primary predictor of a slip-induced fall. © 2012 American Academy of Forensic Sciences.
The re-emergence of the minimal running shoe.
Davis, Irene S
2014-10-01
The running shoe has gone through significant changes since its inception. The purpose of this paper is to review these changes, the majority of which have occurred over the past 50 years. Running footwear began as very minimal, then evolved to become highly cushioned and supportive. However, over the past 5 years, there has been a reversal of this trend, with runners seeking more minimal shoes that allow their feet more natural motion. This abrupt shift toward footwear without cushioning and support has led to reports of injuries associated with minimal footwear. In response to this, the running footwear industry shifted again toward the development of lightweight, partial minimal shoes that offer some support and cushioning. In this paper, studies comparing the mechanics between running in minimal, partial minimal, and traditional shoes are reviewed. The implications for injuries in all 3 conditions are examined. The use of minimal footwear in other populations besides runners is discussed. Finally, areas for future research into minimal footwear are suggested.
Decker, Leslie; Houser, Jeremy J.; Noble, John M.; Karst, Gregory M.; Stergiou, Nicholas
2009-01-01
This study aims to investigate the effects of shoe traction and obstacle height on lower extremity relative phase dynamics (analysis of intralimb coordination) during walking to better understand the mechanisms employed to avoid slippage following obstacle clearance. Ten participants walked at a self-selected pace during eight conditions: four obstacle heights (0%, 10%, 20%, and 40% of limb length) while wearing two pairs of shoes (low and high traction). A coordination analysis was used and phasing relationships between lower extremity segments were examined. The results demonstrated that significant behavioral changes were elicited under varied obstacle heights and frictional conditions. Both decreasing shoe traction and increasing obstacle height resulted in a more in-phase relationship between the interacting lower limb segments. The higher the obstacle and the lower the shoe traction, the more unstable the system became. These changes in phasing relationship and variability are indicators of alterations in coordinative behavior, which if pushed further may have lead to falling. PMID:19187929
Visual/motion cue mismatch in a coordinated roll maneuver
NASA Technical Reports Server (NTRS)
Shirachi, D. K.; Shirley, R. S.
1981-01-01
The effects of bandwidth differences between visual and motion cueing systems on pilot performance for a coordinated roll task were investigated. Visual and motion cue configurations which were acceptable and the effects of reduced motion cue scaling on pilot performance were studied to determine the scale reduction threshold for which pilot performance was significantly different from full scale pilot performance. It is concluded that: (1) the presence or absence of high frequency error information in the visual and/or motion display systems significantly affects pilot performance; and (2) the attenuation of motion scaling while maintaining other display dynamic characteristics constant, affects pilot performance.
Veisi, H; Choobineh, A R; Ghaem, H
2016-04-01
Musculoskeletal disorders (MSDs) are among important health problems in working population. Because of performing difficult physical activities, hand-woven shoe-sole makers are at risk of developing various types of MSDs. To determine the prevalence of musculoskeletal symptoms in different body areas of hand-woven shoe-sole makers, assess workers' postures and workstations, evaluate ergonomic and individual factors associated with MSDs, and develop guidelines for designing hand-woven shoe-sole making workstation. In this cross-sectional study, the prevalence of MSDs symptoms and their risk factors were studied among 240 hand-woven shoe-sole makers. Working posture and workstations were ergonomically assessed as well. The data were collected through interviewing and using Nordic musculoskeletal questionnaire and by direct observation of posture using RULA method. Logistic regression analysis was used to determine risk factors associated with MSDs symptoms. The prevalence and severity of MSDs symptoms were high among the study population. Ergonomic factors including daily working time, working posture, and force exertion, as well as individual factors, such as age, job tenure, and education were significantly associated with MSDs symptoms. It seems that the majority of ergonomics shortcomings originate from poorly designed workstation. Some general guidelines for designing shoe-sole making workstation are presented.
Lam, Gilbert Wing Kai; Park, Eun Jung; Lee, Ki-Kwang; Cheung, Jason Tak-Man
2015-01-01
Side-step cutting manoeuvres comprise the coordination between planting and non-planting legs. Increased shoe collar height is expected to influence ankle biomechanics of both legs and possibly respective cutting performance. This study examined the shoe collar height effect on kinematics and kinetics of planting and non-planting legs during an unanticipated side-step cutting. Fifteen university basketball players performed maximum-effort side-step cutting to the left 45° direction or a straight ahead run in response to a random light signal. Seven successful cutting trials were collected for each condition. Athletic performance, ground reaction force, ankle kinematics and kinetics of both legs were analysed using paired t-tests. Results indicated that high-collar shoes resulted in less ankle inversion and external rotation during initial contact for the planting leg. The high-collar shoes also exhibited a smaller ankle range of motion in the sagittal and transverse planes for both legs, respectively. However, no collar effect was found for ankle moments and performance indicators including cutting performance time, ground contact time, propulsion ground reaction forces and impulses. These findings indicated that high-collar shoes altered ankle positioning and restricted ankle joint freedom movements in both legs, while no negative effect was found for athletic cutting performance.
Correlation Of An E-Nose System For Odor Assessment Of Shoe/Sock Systems With A Human Sensory Panel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horras, Stephan; Reimann, Peter; Schuetze, Andreas
Evaluation of strength and quality of smell is today still primarily done with human sensory panels. For a range of applications, technical systems for an objective smell assessment would provide a great benefit in R and D and also day-to-day application. The project presented here specifically addresses the problem of assessing the strength and unpleasantness of smell caused by sweat in shoes and socks by an E-nose system. The ultimate goal is to provide a tool for developing improved shoe/sock systems with optimized materials.The main approach to achieve this goal is to find a correlation between the assessment of amore » human sensory panel and the complex sensor response patterns of an E-Nose system to appraise the smell of sweat in shoes and socks. Therefore a range of test persons wear shoes and socks under defined ambient conditions in a controlled test environment as well as during everyday use. Afterwards the smell of the shoes and socks is both measured with the E-Nose system and assessed by a human sensory panel. We report here the results of the first larger test series and the identified correlation between the E-Nose system and the human assessment of the smell of sweat.« less
In-shoe loading in rearfoot and non-rearfoot strikers during running using minimalist footwear.
Kernozek, T W; Meardon, S; Vannatta, C N
2014-12-01
Recent trends promote a "barefoot" running style to reduce injury. "Minimalist" shoes are designed to mimic the barefoot running with some foot protection. However, it is unknown how "minimalist" shoes alter plantar loading. Our purpose was to compare plantar loads between rearfoot strikers and non-rearfoot strikers after 4 weeks of running in minimalist footwear. 30 females were provided Vibram(®) Bikila shoes and instructed to gradually transition to running in these shoes. Plantar loading was measured using an in-shoe pressure sensor after the 4 weeks. Multivariate analysis was performed to detect differences in loading between rearfoot and non-rearfoot strikers in different plantar regions. Differences in plantar loading occurred between foot strike patterns running in minimalist footwear. Pressure and force variables were greater in the metatarsals and lower in the heel region in non-rearfoot strikers. Peak pressure for the whole foot was greater in non-rearfoot strikers while no difference was observed in maximum force or contact time for the whole foot between strike types. Allowing time for accommodation and adaptation to different stresses on the foot may be warranted when using minimalist footwear depending on foot strike pattern of the -runner. © Georg Thieme Verlag KG Stuttgart · New York.
Au, Ivan P H; Lau, Fannie O Y; An, Winko W; Zhang, Janet H; Chen, Tony L; Cheung, Roy T H
2018-02-01
This study investigated the immediate and short-term effects of minimalist shoes (MS) and traditional running shoes (TRS) on vertical loading rates, foot strike pattern and lower limb kinematics in a group of habitual barefoot runners. Twelve habitual barefoot runners were randomly given a pair of MS or TRS and were asked to run with the prescribed shoes for 1 month. Outcome variables were obtained before, immediate after and 1 month after shoe prescription. Average and instantaneous vertical loading rates at the 1-month follow-up were significantly higher than that at the pre-shod session (P < 0.034, η 2 p > 0.474). Foot strike angle in the TRS group was significantly lower than that in the MS group (P = 0.045, η 2 p = 0.585). However, there was no significant time nor shoe effect on overstride, knee and ankle excursion (P > 0.061). Habitual barefoot runners appeared to land with a greater impact during shod running and they tended to have a more rearfoot strike pattern while wearing TRS. Lower limb kinematics were comparable before and after shoe prescription. Longer period of follow-up is suggested to further investigate the footwear effect on the running biomechanics in habitual barefoot runners.
Dimensional differences for evaluating the quality of footwear fit.
Witana, Channa P; Feng, Jiejian; Goonetilleke, Ravindra S
2004-10-10
Very few standards exist for fitting products to people. Footwear is a noteworthy example. This study is an attempt to evaluate the quality of footwear fit using two-dimensional foot outlines. Twenty Hong Kong Chinese students participated in an experiment that involved three pairs of dress shoes and one pair of athletic shoes. The participants' feet were scanned using a commercial laser scanner, and each participant wore and rated the fit of each region of each shoe. The shoe lasts were also scanned and were used to match the foot scans with the last scans. The ANOVA showed significant (p < 0.05) differences among the four pairs of shoes for the overall, fore-foot and rear-foot fit ratings. There were no significant differences among shoes for mid-foot fit rating. These perceived differences were further analysed after matching the 2D outlines of both last and feet. The point-wise dimensional difference between foot and shoe outlines were computed and analysed after normalizing with foot perimeter. The dimensional difference (DD) plots along the foot perimeter showed that fore-foot fit was strongly correlated (R(2) > 0.8) with two of the minimums in the DD-plot while mid-foot fit was strongly correlated (R(2) > 0.9) with the dimensional difference around the arch region and a point on the lateral side of the foot. The DD-plots allow the designer to determine the critical locations that may affect footwear fit in addition to quantifying the nature of misfit so that design changes to shape and material may be possible.
Hurd, Wendy J; Kavros, Steven J; Kaufman, Kenton R
2010-11-01
Evaluate effects of a new off-the-shelf insert on frontal plane foot biomechanics and compare effectiveness of the new and an existing off-the-shelf insert and a motion-control shoe in neutralizing frontal plane foot biomechanics. Descriptive. Biomechanics laboratory. Fifteen uninjured subjects with a flexible flatfoot secondary to forefoot varus. Three-dimensional kinematic and kinetic data were collected as subjects walked and jogged at their self-selected speed while wearing a motion-control running shoe, the shoe with a new off-the-shelf insert, and the shoe with an existing off-the-shelf insert. Frontal plane kinematics and rearfoot kinetics were evaluated during stance. Statistical analysis was performed using a repeated measures analysis of variance and Student-Newman-Keuls post hoc tests (α ≤ 0.05). The new insert and motion-control shoe placed the forefoot in a less-everted position than the existing off-the-shelf insert during walking. There were no differences in forefoot kinematics during jogging, nor were there differences in rearfoot motion during walking or jogging. The rearfoot eversion moment was significantly lower with the new off-the-shelf insert compared with the motion-control shoe and the existing insert during walking and jogging. A new off-the-shelf device is available that promotes more neutral frontal plane biomechanics, thus providing a theoretical rationale for using this device for injury prevention and treatment. The comparative biomechanical effectiveness of a motion-control shoe and the orthotic inserts may assist health care professionals in selecting a device to correct the flatfoot structure.
Foot care and footwear practices among patients attending a specialist diabetes clinic in Jamaica
Gayle, Krystal A.T.; Tulloch Reid, Marshall K.; Younger, Novie O.; Francis, Damian K.; McFarlane, Shelly R.; Wright-Pascoe, Rosemarie A.; Boyne, Michael S.; Wilks, Rainford J.; Ferguson, Trevor S.
2012-01-01
This study aimed to estimate the proportion of patients at the University Hospital of the West Indies (UHWI) Diabetes Clinic who engage in recommended foot care and footwear practices. Seventy-two participants from the UHWI Diabetes Clinic completed an interviewer-administered questionnaire on foot care practices and types of footwear worn. Participants were a subset of a sex-stratified random sample of clinic attendees and were interviewed in 2010. Data analysis included frequency estimates of the various foot care practices and types of footwear worn. Participants had a mean age of 57.0±14.3 years and mean duration of diabetes of 17.0±10.3 years. Fifty-three percent of participants reported being taught how to care for their feet, while daily foot inspection was performed by approximately 60% of participants. Most participants (90%) reported daily use of moisturizing lotion on the feet but almost 50% used lotion between the toes. Approximately 85% of participants reported wearing shoes or slippers both indoors and outdoors but over 40% reported walking barefoot at some time. Thirteen percent wore special shoes for diabetes while over 80% wore shoes without socks at some time. Although much larger proportions reported wearing broad round toe shoes (82%) or leather shoes (64%), fairly high proportions reported wearing pointed toe shoes (39%), and 43% of women wore high heel shoes. In conclusion, approximately 60% of patients at the UHWI diabetic clinic engage in daily foot inspection and other recommended practices, but fairly high proportions reported foot care or footwear choices that should be avoided. PMID:24765484
Beschorner, Kurt E.; Albert, Devon L.; Chambers, April J.; Redfern, Mark S.
2018-01-01
Previous research on slip and fall accidents has suggested that pressurized fluid between the shoe and floor is responsible for initiating slips yet this effect has not been verified experimentally. This study aimed to 1) measure hydrodynamic pressures during slipping for treaded and untreaded conditions; 2) determine the effects of fluid pressure on slip severity; and 3) quantify how fluid pressures vary with instantaneous resultant slipping speed, position on the shoe surface, and throughout the progression of the slip. Eighteen subjects walked on known dry and unexpected slippery floors, while wearing treaded and untreaded shoes. Fluid pressure sensors, embedded in the floor, recorded hydrodynamic pressures during slipping. The maximum fluid pressures (mean+/−standard deviation) were significantly higher for the untreaded conditions (124 +/−75 kPa) than the treaded conditions (1.1 +/−0.29 kPa). Maximum fluid pressures were positively correlated with peak slipping speed (r = 0.87), suggesting that higher fluid pressures, which are associated with untreaded conditions, resulted in more severe slips. Instantaneous resultant slipping speed and position of sensor relative to the shoe sole and walking direction explained 41% of the fluid pressure variability. Fluid pressures were primarily observed for untreaded conditions. This study confirms that fluid pressures are relevant to slipping events, consistent with fluid dynamics theory (i.e. the Reynolds equation), and can be modified with shoe tread design. The results suggest that the occurrence and severity of unexpected slips can be reduced by designing shoes/floors that reduce underfoot fluid pressures. PMID:24267270
Foot bone marrow edema after a 10-wk transition to minimalist running shoes.
Ridge, Sarah T; Johnson, A Wayne; Mitchell, Ulrike H; Hunter, Iain; Robinson, Eric; Rich, Brent S E; Brown, Stephen Douglas
2013-07-01
Minimalist running shoes are becoming a more popular choice for runners in the past few years. However, there is little conclusive evidence about the advantages or disadvantages of running in these shoes. Although performance benefits may exist, injury may also occur from the added stress of running without the benefit of cushioning under the foot. Bone marrow edema can be a manifestation of added stress on the foot. This study measured bone marrow edema in runners' feet before and after a 10-wk period of transitioning from traditional to minimalist running shoes. Thirty-six experienced recreational runners underwent magnetic resonance imaging (MRI) before and after a 10-wk period. Seventeen subjects were in the control group (ran in their traditional shoes only for 10 wk), whereas the other 19 were in the experimental group (gradually transitioned to Vibram FiveFinger running shoes for 10 wk). The severity of the bone marrow edema was scored on a range of 0-4 (0 = no bone marrow edema, 4 = edema in more than 50% of the length of the bone). A score of 4 represented a stress fracture. Pretraining MRI scores were not statistically different between the groups. The posttraining MRI scores showed that more subjects in the Vibram group (10 of 19) showed increases in bone marrow edema in at least one bone after 10 wk of running than that in the control group (P = 0.009). Runners interested in transitioning to minimalist running shoes, such as Vibram FiveFingers, should transition very slowly and gradually to avoid potential stress injury in the foot.
Tang, Simon Fuk-Tan; Chen, Carl P C; Lin, Shih-Cherng; Wu, Chih-Kuan; Chen, Chih-Kuang; Cheng, Shun-Ping
2015-02-01
The purpose of this study was to observe whether our custom made shoes and total contact insoles can effectively increase the plantar contact areas and reduce peak pressures in patients with leprosy. In the rehabilitation laboratory of a tertiary medical center. Six male and two female leprosy patients were recruited in this study. In this study, parameters related to foot pressures were compared between these patients wearing commercial available soft-lining kung-fu shoes and our custom made shoes with total contact insoles. The custom made shoes were made with larger toe box and were able to accommodate both the foot and the insoles. Custom made total contact insoles were made with the subtalar joints under neutral and non-weight-bearing positions. The insole force measurement system of Novel Pedar-X (Novel, Munich, Germany) was used to measure the plantar forces. The parameters of contact area (cm(2)), peak plantar pressures (kPa), contact time (s), and pressure time integral (kPa s) were measured. There were significant contact area increases in the right and left foot heel areas, left medial arch, and second to fifth toes after wearing the custom made shoes and insoles. There were significant decreases in peak plantar pressures in bilateral heels, left lateral midfoot, bilateral second to fourth metatarsal areas, and left fifth metatarsal head after wearing the custom made shoes and insoles (p<0.05). Plantar ulceration is a common serious disability in leprosy patients. As a result, footwear and measures able to reduce plantar pressures may be beneficial in preventing plantar ulcers from occurring in these patients. Our custom made shoes and total contact insoles were proven to be effective in increasing contact areas and decreasing peak pressures in plantar surfaces, and may therefore be a feasible treatment option in preventing leprosy patients from developing plantar ulcers. © 2015 Elsevier B.V. All rights reserved.
Fuller, Joel T; Thewlis, Dominic; Tsiros, Margarita D; Brown, Nicholas A T; Buckley, Jonathan D
2015-08-21
The outcome of the effects of transitioning to minimalist running shoes is a topic of interest for runners and scientists. However, few studies have investigated the longer term effects of running in minimalist shoes. The purpose of this randomised controlled trial (RCT) is to investigate the effects of a 26 week transition to minimalist shoes on running performance and injury risk in trained runners unaccustomed to minimalist footwear. A randomised parallel intervention design will be used. Seventy-six trained male runners will be recruited. To be eligible, runners must be aged 18-40 years, run with a habitual rearfoot footfall pattern, train with conventional shoes and have no prior experience with minimalist shoes. Runners will complete a standardised transition to either minimalist or control shoes and undergo assessments at baseline, 6 and 26 weeks. 5 km time-trial performance (5TT), running economy, running biomechanics, triceps surae muscle strength and lower limb bone mineral density will be assessed at each time point. Pain and injury will be recorded weekly. Training will be standardised during the first 6 weeks. Primary statistical analysis will compare 5TT between shoe groups at the 6-week time point and injury incidence across the entire 26-week study period. This RCT has been approved by the Human Research Ethics Committee of the University of South Australia. Participants will be required to provide their written informed consent prior to participation in the study. Study findings will be disseminated in the form of journal publications and conference presentations after completion of planned data analysis. This RCT has been registered with the Australian New Zealand Clinical Trials Registry (ACTRN12613000642785). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Reiber, Gayle E; Smith, Douglas G; Wallace, Carolyn; Sullivan, Katrina; Hayes, Shane; Vath, Christy; Maciejewski, Matthew L; Yu, Onchee; Heagerty, Patrick J; LeMaster, Joseph
2002-05-15
Many people with diabetes experience lower-limb ulcers. Footwear has been implicated as a primary cause of foot ulcers, yet research is limited on the efficacy of shoe and insert combinations to prevent reulceration. To determine whether extra-depth and -width therapeutic shoes used with 2 types of inserts reduce reulceration in diabetic individuals with a history of foot ulcer. Randomized clinical trial of 400 diabetes patients with history of foot ulcer in 2 Washington State health care organizations who did not require custom shoes for foot deformity and were enrolled between August 1997 and December 1998 and followed up for 2 years. Data collected at regular intervals documented physical, foot, and diabetes characteristics; footwear use; foot lesions; and ulcers. Participants were randomly assigned to receive 3 pairs of therapeutic shoes and 3 pairs of customized medium-density cork inserts with a neoprene closed-cell cover (n = 121); to receive 3 pairs of therapeutic shoes and 3 pairs of prefabricated, tapered polyurethane inserts with a brushed nylon cover (n = 119); or to wear their usual footwear (controls; n = 160). Foot reulceration, compared among the 3 groups. Two-year cumulative reulceration incidence across the 3 groups was low: 15% in the cork-insert group, 14% in the prefabricated-insert group, and 17% in controls. In the intent-to-treat analysis, patients assigned to therapeutic shoes did not have a significantly lower risk of reulceration compared with controls (risk ratio [RR] for the cork-insert group, 0.88; 95% confidence interval [CI], 0.51-1.52 and RR the for prefabricated-insert group, 0.85; 95% CI, 0.48-1.48). All ulcer episodes in patients assigned to therapeutic shoes and 88% wearing nonstudy shoes occurred in patients with foot insensitivity. This study of persons without severe foot deformity does not provide evidence to support widespread dispensing of therapeutic shoes and inserts to diabetic patients with a history of foot ulcer. Study shoes and custom cork or preformed polyurethane inserts conferred no significant ulcer reduction compared with control footwear. This study suggests that careful attention to foot care by health care professionals may be more important than therapeutic footwear but does not negate the possibility that special footwear is beneficial in persons with diabetes who do not receive such close attention to foot care by their health care providers or in individuals with severe foot deformities.
Amano, M; Umeda, G; Nakajima, H; Yatsuki, K
1988-01-01
The characteristic work actions of female shoe manufacturing assembly line workers were analyzed by the records of 8-mm cine-films. The relationship between cervicobrachial disorders and work actions was investigated as a cross-sectional factor control study by using sex-age matched pairs for non-assembly line workers (102 pairs). The following conclusions were obtained: 1) The assembly line workers handled about 3,400 sneaker shoes per day on the assembly line. A completed shoe weighed 200-500 g. The metal last weighted 400-1,200 g. As the lines were not completely mechanized, the workers passed shoes to the next worker by hand. 2) In the line selected for the study of work actions, 28 female workers and one male worker were engaged. The work direction of the line was one-way (from left to right or vice versa). The actions of the workers were classified into four fundamental actions: i) grasping the shoe or tool, ii) extending or iii) bending of the arms, and iv) keeping the arms in a certain position. These fundamental actions were repeated more than 3,400 times per day by each worker. The time spent in holding a shoe in the left hand was longer than that of the right hand in holding a shoe or tool. 3) Results of medical examinations showed a higher prevalence in assembly line workers than that in non-assembly line workers. Especially the prevalence rate of tapping test, pain sensibility test, vibratory sensibility test, Morley's test, tenosynovitis in the fingers, tenderness at spinal muscle around the thoracic vertebrae, levator muscle of scapula, trapezius muscle, rhomboid muscle, infraspinatus muscle, greater pectoral muscle, anterior scalene muscle, thenar eminence, biceps muscle of arm, brachioradial muscle, and antebrachial flexor muscle were found to be different significantly by McNemar's test between the two groups. These disorders were appeared in the left shoulder, arm and hand. 4) As the non-assembly line workers were not engaged in compulsory work or in one-way work direction, they injured the right side (skillful side). On the contrary, it is considered that compulsory transfer of shoes and one-way work direction imposes a heavier load on the left side of the body in assembly line workers, and consequently they injured the left side more severely. 5) It is concluded that the sustained task of handing over shoes to the next worker or one-way work direction caused cervicobrachial disorders of assembly line workers, especially on the left side of the body.
LETTER TO THE EDITOR: James Bond escapes from slippery ice - how?
NASA Astrophysics Data System (ADS)
2000-07-01
Students respond well to the situation where you tell them that James Bond is lowered onto ice with his girlfriend and left there to freeze to death, slowly. I asked, `What do you do if you are he? Quickly, think, you are freezing. Do something.' They quickly say that they should push off of each other and coast to the bank in opposite directions. Then I ask, `What does James do if he is placed there alone?' Silence follows. I plead with them to think of something, he is dying. But they cannot usually think of anything. Someone finally says he can throw his coat along the surface and coast in the other direction. `Good - so, what is a better thing to throw?' I ask. His shoes, they finally realize. Alright then, is it better to throw one then the other or both at the same time? Now the arguments get excited. Some say throw both, some say one at a time, and some say it does not make any difference. Who is right? I struggled with the problem some years ago when a student asked if it made any difference. The answer is complicated. I published my best effort then in Physics Education (Edmonds 1990). Since then, I have used this problem repeatedly and come to understand it better. The best answer is to throw both at once. You cannot beat that, and it is easiest to do. Besides, it prevents your going into a spin if you throw one carelessly. If you insist on throwing one at a time, then you can produce the same recoil speed if you throw the first shoe with less effort output than would have been given to that shoe if both were thrown together. You make up for this by giving the second shoe more `effort' than it would have gotten when both were thrown. If you do it just right, the two shoes will be moving, one behind the other, with the same speed as they would have had if thrown together, when measured by an outside inertial frame. Since the momentum of the shoes is the same in this frame, then the recoil speed of Bond must be the same as in the first case, in this ice frame, where both were thrown together. Why do you have to throw the second shoe with extra effort? It is going the wrong way when you start to throw it, because the other shoe left Bond going in the opposite direction already. Thus, you throw the first shoe with less than maximum effort and use the leftover energy (somehow?)Â to throw the second shoe extra hard, so they both come out going at the same speed after both have been thrown. If you cannot transfer power from one shoe-throwing arm muscle group to the other arm, then you will use only equal exertion on both shoes, and the second shoe will come out going slower than the first. It was going the wrong way, remember, when you started to throw it, after a delay - any delay. This difference could have been substantial if Bond were throwing bowling balls. A heavy (second) ball will be going the wrong direction with more momentum before you try to start throwing it in the other direction, the direction that the first (heavy) ball was thrown in. It is a cute problem. Suppose that you have hundreds of shoes in a rocket, or in Santa's sleigh, and can only throw one at a time, for some reason, using a machine that you charge with energy to fire it. Best rocket recoil speed will occur when you throw the first shoe out with low speed and increase the charge of the gun with each subsequent shoe shot, such that all the shoes come out moving at the same speed when you are done, as seen in an inertial frame outside the ship. If the shoes have different final energies in this frame, I think the recoil speed of the ship will not be as large. These subtle differences must come from momentum being linearly related to the speed and energy being related to speed squared. Can you prove me wrong? Can you see a simple reason why this must be correct, if it is? This would also apply to ion beam rockets. They can control the acceleration voltage for the beam of ions that they throw out the back. These engines run for a long time, perhaps years. Getting maximum efficiency would be a good idea here. Reference Edmonds J D Jr 1990 Phys. Educ. 25 304-5 James D Edmonds Jr Department of Physics, McNeese State University, Lake Charles, LAÂ 70609, USA
2008-06-01
on urban warfare techniques, dismounting and assaulting from vehicles, and dealing with improvised explosive devices. The field training exercise in...body mechanics induced by running shoes can influence injury rates. However, the data linking shoes to actual cases of injuries are sparse. There... exercise when PT was conducted only once or twice. PT sessions generally alternated between “cardiorespiratory days” and “muscle strength days
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. U.S. Training and Employment Service.
The United States Training and Employment Service General Aptitude Test Battery (GATB), first published in 1947, has been included in a continuing program of research to validate the tests against success in many different occupations. The GATB consists of 12 tests which measure nine aptitudes: General Learning Ability; Verbal Aptitude; Numerical…
The Relationship of Foot Shape and Sensitivity to Comfort of Shoe-Inserts
1998-07-30
tension of the plantar fascia have been implicated by several authors as a cause of plan tar fasciitis which results in symptomatic heel pain and...Pressure distribution Relationship Between Foot Sensitivity and Plantar Pressure RESULTS AND DISCUSSION The shoe and insert factors Factor Sl...sensitivity of the plantar surface of the foot). For activities which are typical for army personal the choice of an appropriate shoe is essential
2016-10-30
created educational materials to provide more information about specific topics of interest, such as minimalist running shoes and extreme conditioning...to communicate risks, dispel myths, and provide more information about specific topics of interest. A Minimalist Running Shoe (MRS) brochure and...M, North W, Jones BH. 2016. Minimalist Running Shoes and Injury Risk among U.S. Army Soldiers. American Journal of Sports Medicine, 44(6): 1439
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Bill Pickavance (in front), vice president, associate program manager of Florida Operations, United Space Alliance, joins workers Sam Dove, left, and Dan Drake in the cab of the Crawler Transporter before a road test. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.
Validity and reliability of a pilot scale for assessment of multiple system atrophy symptoms.
Matsushima, Masaaki; Yabe, Ichiro; Takahashi, Ikuko; Hirotani, Makoto; Kano, Takahiro; Horiuchi, Kazuhiro; Houzen, Hideki; Sasaki, Hidenao
2017-01-01
Multiple system atrophy (MSA) is a rare progressive neurodegenerative disorder for which brief yet sensitive scale is required in order for use in clinical trials and general screening. We previously compared several scales for the assessment of MSA symptoms and devised an eight-item pilot scale with large standardized response mean [handwriting, finger taps, transfers, standing with feet together, turning trunk, turning 360°, gait, body sway]. The aim of the present study is to investigate the validity and reliability of a simple pilot scale for assessment of multiple system atrophy symptoms. Thirty-two patients with MSA (15 male/17 female; 20 cerebellar subtype [MSA-C]/12 parkinsonian subtype [MSA-P]) were prospectively registered between January 1, 2014 and February 28, 2015. Patients were evaluated by two independent raters using the Unified MSA Rating Scale (UMSARS), Scale for Assessment and Rating of Ataxia (SARA), and the pilot scale. Correlations between UMSARS, SARA, pilot scale scores, intraclass correlation coefficients (ICCs), and Cronbach's alpha coefficients were calculated. Pilot scale scores significantly correlated with scores for UMSARS Parts I, II, and IV as well as with SARA scores. Intra-rater and inter-rater ICCs and Cronbach's alpha coefficients remained high (> 0.94) for all measures. The results of the present study indicate the validity and reliability of the eight-item pilot scale, particularly for the assessment of symptoms in patients with early state multiple system atrophy.
Arthur, Antony; Maben, Jill; Wharrad, Heather; Aldus, Clare; Sarre, Sophie; Schneider, Justine; Nicholson, Caroline; Barton, Garry; Cox, Karen; Clark, Allan
2015-12-09
People aged 75 years and over account for 1 in 4 of all hospital admissions. There has been increasing recognition of problems in the care of older people, particularly in hospitals. Evidence suggests that older people judge the care they receive in terms of kindness, empathy, compassion, respectful communication and being seen as a person not just a patient. These are aspects of care to which we refer when we use the term 'relational care'. Healthcare assistants deliver an increasing proportion of direct care to older people, yet their training needs are often overlooked. This study will determine the acceptability and feasibility of a cluster randomised controlled trial of 'Older People's Shoes' a 2-day training intervention for healthcare assistants caring for older people in hospital. Within this pilot, 2-arm, parallel, cluster randomised controlled trial, healthcare assistants within acute hospital wards are randomised to either the 2-day training intervention or training as usual. Registered nurses deliver 'Older People's Shoes' over 2 days, approximately 1 week apart. It contains three components: experiential learning about ageing, exploration of older people's stories, and customer care. Outcomes will be measured at the level of patient (experience of emotional care and quality of life during their hospital stay), healthcare assistant (empathy and attitudes towards older people), and ward (quality of staff/patient interaction). Semi-structured interviews of a purposive sample of healthcare assistants receiving the intervention, and all trainers delivering the intervention, will be undertaken to gain insights into the experiences of both the intervention and the trial, and its perceived impact on practice. Few training interventions for care staff have been rigorously tested using randomised designs. This study will establish the viability of a definitive cluster randomised controlled trial of a new training intervention to improve the relational care proided by healthcare assistants working with older people in hospital. The study was registered as an International Standard Randomised Controlled Trial ( ISRCTN10385799 ) on 29 December 2014.
Effects of Unstable Shoes on Energy Cost During Treadmill Walking at Various Speeds
Koyama, Keiji; Naito, Hisashi; Ozaki, Hayao; Yanagiya, Toshio
2012-01-01
In recent years, shoes having rounded soles in the anterior-posterior direction have been commercially introduced, which are commonly known as unstable shoes (US). However, physiological responses during walking in US, particularly at various speeds, have not been extensively studied to date. The purpose of this study was to investigate the effect of wearing unstable shoes while walking at low to high speeds on the rate of perceived exertion (RPE), muscle activation, oxygen consumption (VO2), and optimum speed. Healthy male adults wore US or normal walking shoes (WS), and walked at various speeds on a treadmill with no inclination. In experiment 1, subjects walked at 3, 4, 5, 6, and 7 km·h-1 (duration, 3 min for all speeds) and were recorded on video from the right sagittal plane to calculate the step length and cadence. Simultaneously, electromyogram (EMG) was recorded from six different thigh and calf muscles, and the integrated EMG (iEMG) was calculated. In experiment 2, RPE, heart rate and VO2 were measured with the walking speed being increased from 3.6 to 7.2 km·h-1 incrementally by 0.9 km·h-1 every 6 min. The optimum speed, defined by the least oxygen cost, was calculated from the fitted quadratic relationship between walking speed and oxygen cost. Wearing US resulted in significantly longer step length and lower cadence compared with WS condition at any given speed. For all speeds, iEMG in the medial gastrocnemius and soleus muscles, heart rate, and VO2 were significantly higher in US than WS. However, RPE and optimum speed (US, 4.75 ± 0.32 km·h-1; WS, 4. 79 ± 0.18 km·h-1) did not differ significantly between the two conditions. These results suggest that unstable shoes can increase muscle activity of lower legs and energy cost without influencing RPE and optimum speed during walking at various speeds. Key points During walking at various speeds, wearing unstable shoes results in longer step length and lower cadence compared with wearing WS. Wearing unstable shoes increases muscle activities of lower leg. Wearing unstable shoes shifts the quadratic relationship between walking speed and oxygen cost upward and increases energy cost about 4% without changes in RPE and optimum speed. PMID:24150072
Fu, Weijie; Fang, Ying; Liu, Yu; Hou, Jianfu
2014-02-18
There is still uncertainty concerning the beneficial effects of shoe collar height for ankle sprain prevention and very few data are available in the literature regarding the effect of high-top and low-top shoes on muscle responses during landing. The purpose of this study was to quantify the effect of high-top and low-top shoes on ankle inversion kinematics and pre-landing EMG activation of ankle evertor muscles during landing on a tilted surface. Thirteen physical education students landed on four types of surfaces wearing either high-top shoes (HS) or low-top shoes (LS). The four conditions were 15° inversion, 30° inversion, combined 25° inversion + 10° plantar flexion, and combined 25° inversion + 20° plantar flexion. Ankle inversion kinematics and EMG data of the tibialis anterior (TA), peroneus longus (PL), and peroneus brevis (PB) muscles were measured simultaneously. A 2 × 4 (shoe × surface) repeated measures ANOVA was performed to examine the effect of shoe and landing surfaces on ankle inversion and EMG responses. No significant differences were observed between the various types of shoes in the maximum ankle inversion angle, the ankle inversion range of motion, and the maximum ankle inversion angular velocity after foot contact for all conditions. However, the onset time of TA and PB muscles was significantly later wearing HS compared to LS for the 15° inversion condition. Meanwhile, the mean amplitude of the integrated EMG from the 50 ms prior to contact (aEMGpre) of TA was significantly lower with HS compared to LS for the 15° inversion condition and the combined 25° inversion + 20° plantarflexion condition. Similarly, the aEMGpre when wearing HS compared to LS also showed a 37.2% decrease in PL and a 31.0% decrease in PB for the combined 25° inversion + 20° plantarflexion condition and the 15° inversion condition, respectively. These findings provide preliminary evidence suggesting that wearing high-top shoes can, in certain conditions, induce a delayed pre-activation timing and decreased amplitude of evertor muscle activity, and may therefore have a detrimental effect on establishing and maintaining functional ankle joint stability.
Bishop, Chris; Arnold, John B; Fraysse, Francois; Thewlis, Dominic
2015-01-01
To investigate in-shoe foot kinematics, holes are often cut in the shoe upper to allow markers to be placed on the skin surface. However, there is currently a lack of understanding as to what is an appropriate size. This study aimed to demonstrate a method to assess whether different diameter holes were large enough to allow free motion of marker wands mounted on the skin surface during walking using a multi-segment foot model. Eighteen participants underwent an analysis of foot kinematics whilst walking barefoot and wearing shoes with different size holes (15 mm, 20mm and 25 mm). The analysis was conducted in two parts; firstly the trajectory of the individual skin-mounted markers were analysed in a 2D ellipse to investigate total displacement of each marker during stance. Secondly, a geometrical analysis was conducted to assess cluster deformation of the hindfoot and midfoot-forefoot segments. Where movement of the markers in the 15 and 20mm conditions were restricted, the marker movement in the 25 mm condition did not exceed the radius at any anatomical location. Despite significant differences in the isotropy index of the medial and lateral calcaneus markers between the 25 mm and barefoot conditions, the differences were due to the effect of footwear on the foot and not a result of the marker wands hitting the shoe upper. In conclusion, the method proposed and results can be used to increase confidence in the representativeness of joint kinematics with respect to in-shoe multi-segment foot motion during walking. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Plom, W; Strike, S C; Taylor, M J D
2014-06-01
The aim of this study was to test the effect different unstable footwear constructions have on centre of pressure motion when standing. Sixteen young female volunteers were tested in five conditions, three unstable footwear (Reebok Easy-Tone, FitFlop and Skechers Shape-Ups), a standard shoe and barefoot in a randomised order. Double and single leg balance on a force plate was assessed via centre of pressure excursions and displacements in each condition. For double leg and single leg standing centre of pressure excursions in the anterior-posterior direction were significantly increased wearing Skechers Shape-Ups compared to barefoot and the standard shoe. For the Reebok Easy Tone during single leg standing excursions in the anterior-posterior direction were significantly greater compared to the barefoot condition. Cumulative displacement of the centre of pressure in medial-lateral direction increased significantly during single leg standing when wearing Skechers Shape-Ups compared to barefoot and standard shoe as well as for Reebok Easy Tone vs. barefoot. It would appear from these quiet standing results that the manner of the construction of instability shoes effects the CoP movement which is associated with induced instability. Greater CoP excursion occurred in the A-P direction while the cumulative displacements were greater in the M-L direction for those shoes with the rounded sole and soft foam and those with airpods. The shoe construction with altered density foam did not induce any change in the CoP movement, during quite standing, which tends to suggest that it is not effective at inducing balance. Not all instability shoes are effective in altering the overall instability of the wearer. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of hoof boots and toe-extension shoes on the forelimb kinetics of horses during walking.
Amitrano, Fernando N; Gutierrez-Nibeyro, Santiago D; Schaeffer, David J
2016-05-01
OBJECTIVE To determine and compare the effect of hoof boots (HBs) and shoes with a toe extension on stance duration, ground reaction force, and sole length in contact with the ground in nonlame horses during walking. ANIMALS 6 nonlame Standardbreds. PROCEDURES Force plate gait analyses of the forelimbs were performed while the horses were walking barefoot before manipulation of feet (baseline), while the horses were walking fitted with HBs, while the horses were walking shod with toe-extension shoes, and while the horses were walking barefoot after shoe removal. Horses underwent radiography of both forelimb feet to determine the sole length in contact with the ground when barefoot, wearing HBs, and shod with toe-extension shoes. Stance duration, ground reaction force, and sole length were compared among the various walking sessions. RESULTS Compared with baseline findings, stance duration increased significantly when horses were fitted with HBs (7%) or toe-extension shoes (5%). Peak forelimb ground reaction force was similar among walking sessions; however, time of braking force peak was significantly greater during the stance phase only when horses wore HBs. Also, the sole length in contact with the ground was significantly longer in horses fitted with HBs (14.3 cm) or shod with the toe-extension shoes (17.6 cm), compared with that for one of the barefoot hooves (12.7 cm). CONCLUSIONS AND CLINICAL RELEVANCE In nonlame horses, use of HBs prolonged the stance time and time of braking force peak, which is indicative of a slower deceleration phase during limb impact with the ground. Also, the use of HBs prolonged the deceleration phase of the stride and increased the sole length in contact with the ground.
Awonuga, Awoniyi O; Merhi, Zaher; Awonuga, Modupe T; Samuels, Terri-Ann; Waller, Jennifer; Pring, David
2007-11-01
To determine whether measurements of maternal height and shoe size are predictors of pelvic size, using erect lateral computerized tomography (CT) pelvimetry as gold standard. Three hundred and fifty three obstetric patients out of a sequential population of 6112 (5.8%) had CT pelvimetry performed between January 1990 and December 1991 at the Department of Obstetrics and Gynecology, York District Hospital, United Kingdom. Multivariable logistic regression models were built using maternal height (n = 322), shoe size (314) and weight at last clinic visit (n = 318). The reference standard for pelvic size was CT Pelvimetry. Pelvic adequacy was defined as an anterior-posterior diameter of the inlet of > or =11 cm and an anterior-posterior diameter of the outlet > or =10 cm on erect lateral CT pelvimetry. Women with values lower than these were regarded as having an inadequate pelvis. The diagnostic accuracy of the models was determined by the area under the receiver operating characteristic curve (AUC). The area under the curve (AUC) for maternal height (0.768) was not significantly greater than that for shoe size (0.686, p = 0.163 for the difference in AUC's) and weight at the last clinic visit (0.655, p = 0.057 for the difference in the AUCs). The change in the AUC for each of the models (the full model with height, shoe size and weight [0.769]; model for height and shoe size [0.767] model for just height [0.768]) was also not significantly different. Measurements of maternal height, shoe size and weight at the last clinic visit are not useful for the identification of women with inadequate pelvis.
The Role of Shoe Design in Ankle Sprain Rates Among Collegiate Basketball Players
Curtis, Claudia K; Laudner, Kevin G; McLoda, Todd A; McCaw, Steven T
2008-01-01
Context: Much of the recent focus in shoe design and engineering has been on improving athletic performance. Currently, this improvement has been in the form of “cushioned column systems,” which are spring-like in design and located under the heel of the shoe in place of a conventional heel counter. Concerns have been raised about whether this design alteration has increased the incidence of ankle sprains. Objective: To examine the incidence of lateral ankle sprains in collegiate basketball players with regard to shoe design. Design: Prospective cohort study. Setting: Certified athletic trainers at 1014 National Collegiate Athletic Association (NCAA)-affiliated schools sponsoring basketball during the 2005–2006 regular season were notified of an online questionnaire. Athletic trainers at 22 of the 1014 schools participated. Patients or Other Participants: A total of 230 basketball players (141 males, 89 females; age = 20.2 ± 1.5 years) from NCAA Division I–III basketball programs sustained lateral ankle sprains. Main Outcome Measure(s): Ankle sprain information and type of shoe worn (cushioned column or noncushioned column) were collected via online survey. The incidence of lateral ankle sprains and type of shoes worn were compared using a chi-square analysis. Results: No difference was noted in ankle sprain incidence between groups (χ2 = 2.44, P = .20, relative risk = 1.47, 95% confidence interval [CI] = 0.32, 6.86). The incidence of ankle sprains was 1.33 per 1000 exposures in the cushioned column group (95% CI = 0.62, 3.51) and 1.96 per 1000 exposures in the noncushioned column group (95% CI = 0.51, 4.22). Conclusions: No increased incidence of ankle sprains was associated with shoe design. PMID:18523571
The Risks and Benefits of Running Barefoot or in Minimalist Shoes
Perkins, Kyle P.; Hanney, William J.; Rothschild, Carey E.
2014-01-01
Context: The popularity of running barefoot or in minimalist shoes has recently increased because of claims of injury prevention, enhanced running efficiency, and improved performance compared with running in shoes. Potential risks and benefits of running barefoot or in minimalist shoes have yet to be clearly defined. Objective: To determine the methodological quality and level of evidence pertaining to the risks and benefits of running barefoot or in minimalist shoes. Data Sources: In September 2013, a comprehensive search of the Ovid MEDLINE, SPORTDiscus, and CINAHL databases was performed by 2 independent reviewers. Study Selection: Included articles were obtained from peer-reviewed journals in the English language with no limit for year of publication. Final inclusion criteria required at least 1 of the following outcome variables: pain, injury rate, running economy, joint forces, running velocity, electromyography, muscle performance, or edema. Study Design: Systematic review. Level of Evidence: Level 3. Data Extraction: Two reviewers appraised each article using the Downs and Black checklist and appraised each for level of evidence. Results: Twenty-three articles met the criteria for this review. Of 27 possible points on the Downs and Black checklist, articles scored between 13 and 19 points, indicating a range of evidence from very limited to moderate. Moderate evidence supports the following biomechanical differences when running barefoot versus in shoes: overall less maximum vertical ground reaction forces, less extension moment and power absorption at the knee, less foot and ankle dorsiflexion at ground contact, less ground contact time, shorter stride length, increased stride frequency, and increased knee flexion at ground contact. Conclusion: Because of lack of high-quality evidence, no definitive conclusions can be drawn regarding specific risks or benefits to running barefoot, shod, or in minimalist shoes. PMID:25364479
The risks and benefits of running barefoot or in minimalist shoes: a systematic review.
Perkins, Kyle P; Hanney, William J; Rothschild, Carey E
2014-11-01
The popularity of running barefoot or in minimalist shoes has recently increased because of claims of injury prevention, enhanced running efficiency, and improved performance compared with running in shoes. Potential risks and benefits of running barefoot or in minimalist shoes have yet to be clearly defined. To determine the methodological quality and level of evidence pertaining to the risks and benefits of running barefoot or in minimalist shoes. In September 2013, a comprehensive search of the Ovid MEDLINE, SPORTDiscus, and CINAHL databases was performed by 2 independent reviewers. Included articles were obtained from peer-reviewed journals in the English language with no limit for year of publication. Final inclusion criteria required at least 1 of the following outcome variables: pain, injury rate, running economy, joint forces, running velocity, electromyography, muscle performance, or edema. Systematic review. Level 3. Two reviewers appraised each article using the Downs and Black checklist and appraised each for level of evidence. Twenty-three articles met the criteria for this review. Of 27 possible points on the Downs and Black checklist, articles scored between 13 and 19 points, indicating a range of evidence from very limited to moderate. Moderate evidence supports the following biomechanical differences when running barefoot versus in shoes: overall less maximum vertical ground reaction forces, less extension moment and power absorption at the knee, less foot and ankle dorsiflexion at ground contact, less ground contact time, shorter stride length, increased stride frequency, and increased knee flexion at ground contact. Because of lack of high-quality evidence, no definitive conclusions can be drawn regarding specific risks or benefits to running barefoot, shod, or in minimalist shoes.
Kimel-Scott, Dorothy R; Gulledge, Elisha N; Bolena, Ryan E; Albright, Bruce C
2014-01-01
Shoes with rocker bottom soles are utilized by persons with diabetic peripheral neuropathy to reduce plantar pressures during gait. The risk of falls increases with age and is compounded by diabetic neuropathy. The purpose of this study was to analyze how rocker bottom shoes affect posture control of older adults (50-75 years old) and younger adults (20-35 years old) in response to posterior slide perturbations. The postural response to a posterior platform translation was normalized among subjects by applying the below threshold stepping velocity (BTSV) for each subject. The BTSV was the fastest velocity of platform translation that did not cause a stepping response while wearing the rocker bottom shoes. Joint excursion, time to first response, response time, and variability of mean peak joint angles were analyzed at the ankle, knee, hip, trunk, and head in the sagittal plane. The statistical analysis was a 2-factor mixed repeated measures design to determine interactions between and within shoe types and age groups. While wearing rocker bottom shoes, both age groups exhibited increased joint excursion, differences in time to initial response, and longer response time. The older group demonstrated decreased joint excursion and increased time to initial response compared to the younger group, as well as a significantly slower mean BTSV. These findings support the conclusion that in healthy older adults and in populations at risk for falls, the use of rocker bottom or other unstable shoes may increase the potential of falls when confronted with a standing perturbation such as a forceful slip or trip. Copyright © 2013 Elsevier B.V. All rights reserved.
The reliability of the Adelaide in-shoe foot model.
Bishop, Chris; Hillier, Susan; Thewlis, Dominic
2017-07-01
Understanding the biomechanics of the foot is essential for many areas of research and clinical practice such as orthotic interventions and footwear development. Despite the widespread attention paid to the biomechanics of the foot during gait, what largely remains unknown is how the foot moves inside the shoe. This study investigated the reliability of the Adelaide In-Shoe Foot Model, which was designed to quantify in-shoe foot kinematics and kinetics during walking. Intra-rater reliability was assessed in 30 participants over five walking trials whilst wearing shoes during two data collection sessions, separated by one week. Sufficient reliability for use was interpreted as a coefficient of multiple correlation and intra-class correlation coefficient of >0.61. Inter-rater reliability was investigated separately in a second sample of 10 adults by two researchers with experience in applying markers for the purpose of motion analysis. The results indicated good consistency in waveform estimation for most kinematic and kinetic data, as well as good inter-and intra-rater reliability. The exception is the peak medial ground reaction force, the minimum abduction angle and the peak abduction/adduction external hindfoot joint moments which resulted in less than acceptable repeatability. Based on our results, the Adelaide in-shoe foot model can be used with confidence for 24 commonly measured biomechanical variables during shod walking. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of footwear on the external knee adduction moment - A systematic review.
Radzimski, Andy Oliver; Mündermann, Annegret; Sole, Gisela
2012-06-01
Footwear modifications have been investigated as conservative interventions to decrease peak external knee adduction moment (EKAM) and pain associated with knee osteoarthritis (OA). To evaluate the literature on the effect of different footwear and orthotics on the peak EKAM during walking and/or running. A systematic search of databases resulted in 348 articles of which 33 studies were included. Seventeen studies included healthy individuals and 19 studies included subjects with medial knee OA. Quality assessment (modified Downs and Black quality index) showed an (average±SD) of 73.1±10.1%. The most commonly used orthotic was the lateral wedge, with three studies on the medial wedge. Lateral wedging was associated with decreased peak EKAM in healthy participants and participants with medial knee OA while there is evidence for increased peak EKAM with the use of medial wedges. Modern footwear (subjects' own shoe, "stability" and "mobility" shoes, clogs) were likely to increase the EKAM compared to barefoot walking in individuals with medial knee OA. Walking in innovative shoes ("variable stiffness") decreased the EKAM compared to control shoes. Similarly, shoes with higher heels, sneakers and dress shoes increased EKAM in healthy individuals compared to barefoot walking. Further development may be needed toward optimal footwear for patients with medial knee OA with the aim of obtaining similar knee moments to barefoot walking. Copyright © 2011 Elsevier B.V. All rights reserved.
The Preferred Movement Path Paradigm: Influence of Running Shoes on Joint Movement.
Nigg, Benno M; Vienneau, Jordyn; Smith, Aimée C; Trudeau, Matthieu B; Mohr, Maurice; Nigg, Sandro R
2017-08-01
(A) To quantify differences in lower extremity joint kinematics for groups of runners subjected to different running footwear conditions, and (B) to quantify differences in lower extremity joint kinematics on an individual basis for runners subjected to different running footwear conditions. Three-dimensional ankle and knee joint kinematics were collected for 35 heel-toe runners when wearing three different running shoes and when running barefoot. Absolute mean differences in ankle and knee joint kinematics were computed between running shoe conditions. The percentage of individual runners who displayed differences below a 2°, 3°, and 5° threshold were also calculated. The results indicate that the mean kinematics of the ankle and knee joints were similar between running shoe conditions. Aside from ankle dorsiflexion and knee flexion, the percentage of runners maintaining their movement path between running shoes (i.e., less than 3°) was in the order of magnitude of about 80% to 100%. Many runners showed ankle and knee joint kinematics that differed between a conventional running shoe and barefoot by more than 3°, especially for ankle dorsiflexion and knee flexion. Many runners stay in the same movement path (the preferred movement path) when running in various different footwear conditions. The percentage of runners maintaining their preferred movement path depends on the magnitude of the change introduced by the footwear condition.
Mechanical and physiological analysis of minimalist versus traditionally-shod running.
Kahle, Adam; Brown, Gregory A; Shaw, Ina; Shaw, Brandon S
2016-09-01
It has been purported that minimalist running shoes allow runners to be more biomechanically and metabolically economical, but evidence supporting these claims remains equivocal. This study's aim was to measure oxygen consumption (VO2), heart rate (HR), pulmonary ventilation (VE) and electromyography (EMG) of gastrocnemius and tibialis anterior in 12 recreationally-trained, college-aged males during minimalist and shod running. Participants ran at 70% VO2max on a treadmill in both minimalist and traditional shoes for six minutes each while VO2, HR, VE, EMG and steps taken were recorded. Results indicated no significant differences in VO2 (2.39±0.17 vs. 2.43±0.15 L/min), HR (156.59±2.99 vs. 157.13±3.86 bpm), VE (46.97±3.19 vs. 47.00±2.83 L/min), EMG in the tibialis anterior (2.02±0.28 vs. 1.79±0.20 mV), EMG in the gastrocnemius (1.97±0.36 vs. 2.03±0.37 mV) or steps taken (946.08±13.50 vs. 962.42±19.68 steps) between running in traditional and minimalist shoes, respectively. This study shows that there is no mechanical and physiological benefit when running wearing minimalist shoes as opposed to traditional shoes and warrants a cautious approach to transitioning to minimalist shoe use.
The Effects of a Transition to Minimalist Shoe Running on Intrinsic Foot Muscle Size.
Johnson, A W; Myrer, J W; Mitchell, U H; Hunter, I; Ridge, S T
2016-02-01
A proposed benefit of minimalist shoe running is an increase in intrinsic foot muscle strength. This study examined change in intrinsic foot muscle size in runners transitioning to Vibram FiveFingers™ minimalist shoes compared to a control group running in traditional running shoes. We compare pre-transition size between runners who developed bone marrow edema to those who did not. 37 runners were randomly assigned to the Vibram FiveFingers™ group (n=18) or control group (n=19). Runners' bone marrow edema and intrinsic foot muscle size were measured at baseline and after 10 weeks. Total running volume was maintained by all runners. A significant increase in abductor hallucis cross-sectional area of 10.6% occurred in the Vibram FiveFingers™ group compared to the control group (p=0.01). There was no significant change in any of the other muscles examined (p>0.05). 8 of the Vibram FiveFingers™ runners, and 1 control runner developed bone marrow edema. Those who developed bone marrow edema, primarily women, had significantly smaller size in all assessed muscles (p≤0.05). Size of intrinsic foot muscles appears to be important in safely transitioning to minimalist shoe running. Perhaps intrinsic foot muscle strengthening may benefit runners wanting to transition to minimalist shoes. © Georg Thieme Verlag KG Stuttgart · New York.
Xu, Yi; Hou, Qinghua; Wang, Chuhuai; Sellers, Andrew J; Simpson, Travis; Bennett, Bradford C; Russell, Shawn D
2017-01-01
Barefoot technology shoes are becoming increasingly popular, yet modifications are still needed. The present study aims to gain valuable insights by comparing barefoot walking to neutral shoe walking in a healthy youth population. 28 healthy university students (22 females and 6 males) were recruited to walk on a 10-meter walkway both barefoot and in neutral running shoes at their comfortable walking speed. Full step cycle kinematic and kinetic data were collected using an 8-camera motion capture system. In the early stance phase, the knee extension moment (MK1), the first peak absorbed joint power at the knee joint (PK1), and the flexion angle of knee/dorsiflexion angle of the ankle were significantly reduced when walking in neutral running shoes. However, in the late stance, barefoot walking resulted in decreased hip joint flexion moment (MH2), second peak extension knee moment (MK3), hip flexors absorbed power (PH2), hip flexors generated power (PH3), second peak absorbed power by knee flexors (PK2), and second peak anterior-posterior component of joint force at the hip (APFH2), knee (APFK2), and ankle (APFA2). These results indicate that it should be cautious to discard conventional elements from future running shoe designs and rush to embrace the barefoot technology fashion.
Footwear in rock climbing: Current practice.
McHenry, R D; Arnold, G P; Wang, W; Abboud, R J
2015-09-01
Many rock climbers wear ill-fitting and excessively tight footwear during activity. However, there is insufficient evidence of the extent or harms of this practice. To investigate footwear use in rock climbers with a focus on issues surrounding fit. A cross-sectional study with active rock climbers of over one year of experience completing a survey on their activity and footwear. Additionally, the authors quantified foot and shoe lengths and sizes alongside demographic data. Ill-fitting and excessively tight footwear was found in 55 out of 56 rock climbers. Foot pain during activity was also commonplace in 91% of the climbers. A mean size reduction of almost 4 UK shoe sizes was found between the climbers' street shoe size and that of their climbing footwear using a calibrated foot/shoe ruler. There is an unfortunate association of climbers of higher abilities seeking a tighter shoe fit (p<0.001). With the elucidation of footwear use amongst rock climbers, further investigation may aim to quantify its impact and seek a solution balancing climbing performance while mitigating foot injury. Copyright © 2015 Elsevier Ltd. All rights reserved.
Feuilhade de Chauvin, M
2012-07-01
Shoes worn with bare feet function as a fungal reservoir and lead to persistent dermatophytosis. This study was designed to evaluate two formulations of terbinafine (1% spray powder or solution) to treat the insoles of shoes colonized by skin scales infected with Trichophyton rubrum and to determine the contact time necessary to achieve decontamination. Infected skin scales weighing 0.5 g, taken from the feet of patients with confirmed T. rubrum infection, was dispersed onto insoles pre-moistened with sterile saline solution (to mimic perspiration). Three types of insole were tested (felt, latex, leather). After inoculation, insoles were placed separately in new cardboard boxes at ambient temperature, and re-humidified with sterile normal saline solution for 48 h before being treated; untreated insoles served as controls. Scales were scraped off at 48 h or 96 h, and dropped into tubes of Sabouraud agar, incubated at 27°C and examined at 3 and 6 weeks. Cultures from all control insoles showed numerous T. rubrum colonies. In contrast, cultures from all insoles treated with a single application of terbinafine 1% spray solution or powder, and taken after 48 h or 96 h contact with the product, remained sterile at 3 weeks and 6 weeks. This study demonstrated the successful treatment of insoles colonized by T. rubrum-infected skin scales. Terbinafine 1% spray solution and powder showed good efficacy; the dermatophyte could no longer be cultured 48 h after a single application of terbinafine. © 2011 The Author. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.
... you: Wear closed shoes, especially if they are plastic-lined Keep your feet wet for long periods ... can completely dry between wearings. Do not wear plastic-lined shoes. If athlete's foot does not get ...
Designing for Scale: Reflections on Rolling Out Reading Improvement in Kenya and Liberia.
Gove, Amber; Korda Poole, Medina; Piper, Benjamin
2017-03-01
Since 2008, the Ministries of Education in Liberia and Kenya have undertaken transitions from small-scale pilot programs to improve reading outcomes among primary learners to the large-scale implementation of reading interventions. The effects of the pilots on learning outcomes were significant, but questions remained regarding whether such large gains could be sustained at scale. In this article, the authors dissect the Liberian and Kenyan experiences with implementing large-scale reading programs, documenting the critical components and conditions of the program designs that affected the likelihood of successfully transitioning from pilot to scale. They also review the design, deployment, and effectiveness of each pilot program and the scale, design, duration, enabling conditions, and initial effectiveness results of the scaled programs in each country. The implications of these results for the design of both pilot and large-scale reading programs are discussed in light of the experiences of both the Liberian and Kenyan programs. © 2017 Wiley Periodicals, Inc.
The influence of a small insert, in the footbed of a shoe, upon plantar pressure distribution.
Burgess, S; Jordan, C; Bartlett, RM
1997-04-01
INTRODUCTION:: A recent development in plantar pressure distribution research, has been the study of the effects of sensory input on pressure distribution. It has been suggested that proprioceptive and exteroceptive information received from the plantar surface of the foot plays an important role in adapting to high pressures in shoes. Robbins and Gouw (1991) suggested that surface irregularities should be added to the insoles of running shoes to gain correct sensory input. Hayda et al. (1994) found that placing a pad proximal to the metatarsal heads produced significant reductions in forefoot plantar pressures around the first and second metatarsal heads. A development by Villeneuve (1993), 'La Posteropodle', utilized a small insert to maintain postural equilibrium, by stimulating the mechanoreceptors in the plantar surface of the foot. The aim of this study was to measure changes in plantar pressure distribution using a small circular insert. METHODS:: Ten non-pathological male subjects were tested whilst walking, after one day of wearing a pair of oxfords (hard) and running shoes (soft), containing an insert of 4 mm in height placed on a 0.8 mm EVA insole. The foot was split into five sections: (1) midfoot, (2) first metatarsal head, (3) 2nd and 3rd metatarsal heads, (4) 4th and 5th metatarsal heads, (5) the phalanges. A PEDAR system (Novel GmbH) was used to collect in-shoe plantar pressure data, with data collections at the beginning and end of a working day. Subjects were tested under two conditions: (1) the insert 5 mm proximal to the metatarsal heads, between the 2nd and 3rd heads, (2) a control, with no insert. RESULTS:: Preliminary results indicate that whilst wearing a hard shoe the insert had the effect of shifting peak pressures from the first metatarsal head, to the area of the second and third metatarsal heads. Peak pressures were found to be lower with the insert present. This has not yet been tested for significance. With the running shoe there appeared to be no significant differences between conditions with and without the insert. There were also no differences between the beginning and end of the day, for both shoe types. DISCUSSION:: From the results it appears that the insert is successful in both shifting peak pressures from the medial to the lateral forefoot, whilst reducing peak pressures simultaneously. This was only evident in the hard shoe condition however, suggesting that the footbed of the running shoe was perhaps too soft to allow the insert to influence sensory input sufficiently. These findings indicate that there may be implications for the use of small orthotics. Further study is required, however, to fully substantiate this hypothesis.
Abrasion resistant track shoe grouser
Fischer, Keith D; Diekevers, Mark S; Afdahl, Curt D; Steiner, Kevin L; Barnes, Christopher A
2013-04-23
A track shoe for a track-type vehicle. The track shoe includes a base plate and a grouser projecting away from the base plate. A capping surface structure of substantially horseshoe shaped cross-section is disposed across a distal portion of the grouser. The capping surface structure covers portions of a distal edge surface and adjacent lateral surfaces. The capping surface structure is formed from an material characterized by enhanced wear resistance relative to portions of the grouser underlying the capping surface structure.
Self-aligning lathe chuck jaws
Peterson, William R.
1982-01-01
A lathe chuck jaw for a lathe chuck having a radially moving actuator which radially moves the jaw in to and out from the workpiece. A jaw base part is rigidly connected to the actuator. A jaw shoe part is rotatably attached to the base part. The shoe part has a workpiece-comforming surface which can hold the workpiece. The rotatable attachment of the shoe part allows it to match the general orientation of the workpiece, including a nonlongitudinal orientation due to a workpiece's imperfect shape.
Self-aligning lathe chuck jaws
Not Available
1980-08-26
A lathe chuck jaw for a lathe chuck having a radially moving actuator which radially moves the jaw into and out from the workpiece is described. A jaw base part is rigidly connected to the actuator. A jaw shoe part is rotatably attached to the base part. The shoe part has a workpiece-conforming surface which can hold the workpiece. The rotatable attachment of the shoe part allows it to match the general orientation of the workpiece, including a nonlongitudinal orientation due to a workpiece's imperfect shape.
Gavião Neto, Wilson P.; Roveri, Maria Isabel; Oliveira, Wagner R.
2017-01-01
Background Resilience of midsole material and the upper structure of the shoe are conceptual characteristics that can interfere in running biomechanics patterns. Artificial intelligence techniques can capture features from the entire waveform, adding new perspective for biomechanical analysis. This study tested the influence of shoe midsole resilience and upper structure on running kinematics and kinetics of non-professional runners by using feature selection, information gain, and artificial neural network analysis. Methods Twenty-seven experienced male runners (63 ± 44 km/week run) ran in four-shoe design that combined two resilience-cushioning materials (low and high) and two uppers (minimalist and structured). Kinematic data was acquired by six infrared cameras at 300 Hz, and ground reaction forces were acquired by two force plates at 1,200 Hz. We conducted a Machine Learning analysis to identify features from the complete kinematic and kinetic time series and from 42 discrete variables that had better discriminate the four shoes studied. For that analysis, we built an input data matrix of dimensions 1,080 (10 trials × 4 shoes × 27 subjects) × 1,254 (3 joints × 3 planes of movement × 101 data points + 3 vectors forces × 101 data points + 42 discrete calculated kinetic and kinematic features). Results The applied feature selection by information gain and artificial neural networks successfully differentiated the two resilience materials using 200(16%) biomechanical variables with an accuracy of 84.8% by detecting alterations of running biomechanics, and the two upper structures with an accuracy of 93.9%. Discussion The discrimination of midsole resilience resulted in lower accuracy levels than did the discrimination of the shoe uppers. In both cases, the ground reaction forces were among the 25 most relevant features. The resilience of the cushioning material caused significant effects on initial heel impact, while the effects of different uppers were distributed along the stance phase of running. Biomechanical changes due to shoe midsole resilience seemed to be subject-dependent, while those due to upper structure seemed to be subject-independent. PMID:28265506
Onodera, Andrea N; Gavião Neto, Wilson P; Roveri, Maria Isabel; Oliveira, Wagner R; Sacco, Isabel Cn
2017-01-01
Resilience of midsole material and the upper structure of the shoe are conceptual characteristics that can interfere in running biomechanics patterns. Artificial intelligence techniques can capture features from the entire waveform, adding new perspective for biomechanical analysis. This study tested the influence of shoe midsole resilience and upper structure on running kinematics and kinetics of non-professional runners by using feature selection, information gain, and artificial neural network analysis. Twenty-seven experienced male runners (63 ± 44 km/week run) ran in four-shoe design that combined two resilience-cushioning materials (low and high) and two uppers (minimalist and structured). Kinematic data was acquired by six infrared cameras at 300 Hz, and ground reaction forces were acquired by two force plates at 1,200 Hz. We conducted a Machine Learning analysis to identify features from the complete kinematic and kinetic time series and from 42 discrete variables that had better discriminate the four shoes studied. For that analysis, we built an input data matrix of dimensions 1,080 (10 trials × 4 shoes × 27 subjects) × 1,254 (3 joints × 3 planes of movement × 101 data points + 3 vectors forces × 101 data points + 42 discrete calculated kinetic and kinematic features). The applied feature selection by information gain and artificial neural networks successfully differentiated the two resilience materials using 200(16%) biomechanical variables with an accuracy of 84.8% by detecting alterations of running biomechanics, and the two upper structures with an accuracy of 93.9%. The discrimination of midsole resilience resulted in lower accuracy levels than did the discrimination of the shoe uppers. In both cases, the ground reaction forces were among the 25 most relevant features. The resilience of the cushioning material caused significant effects on initial heel impact, while the effects of different uppers were distributed along the stance phase of running. Biomechanical changes due to shoe midsole resilience seemed to be subject-dependent, while those due to upper structure seemed to be subject-independent.
... causing: Pain Irritation Sores Problems finding shoes that fit Skin infections Surgery may not be advised if: Treatment with paddings and strapping works You can still straighten your toe Changing to different shoe types can alleviate symptoms
78. VIEW SHOWING PLACEMENT OF LIFE SPAN SHOE ON PIER ...
78. VIEW SHOWING PLACEMENT OF LIFE SPAN SHOE ON PIER 6, LOOKING NORTH, March 5, 1935 - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA
30. BEARING SHOE / VERTICAL / DIAGONAL / UPPER AND ...
30. BEARING SHOE / VERTICAL / DIAGONAL / UPPER AND LOWER CHORD DETAIL OF DECK TRUSS. VIEW TO NORTHEAST. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE
The effects of squatting footwear on three-dimensional lower limb and spine kinetics.
Southwell, Daniel J; Petersen, Shane A; Beach, Tyson A C; Graham, Ryan B
2016-12-01
Altering footwear worn during performance of the barbell back squat has been shown to change motion patterns, but it is not completely understood how this affects biomechanical loading demands. The primary objective was to compare lower back and extremity net joint moments in 24 experienced weightlifters (12M, 12F) who performed 80% one-repetition maximum back squats under three different footwear conditions (barefoot, running shoes, weightlifting shoes). Results showed that there was a significant main effect of footwear condition on the knee extension moment (p=0.001), where the running and weightlifting shoes produced significantly larger moments than the barefoot condition. There was also a main effect of footwear condition on knee external rotation moments (p=0.002), where the weightlifting shoe produced significantly larger moments than both other conditions. At the hip, there was also a main effect of footwear condition on the extension moment (p=0.004), where the barefoot condition produced significantly larger moments than either the running shoe or weightlifting shoe condition. Lastly, there was also a significant main effect of footwear condition on both hip external (p=0.005) and internal (p=0.003) rotation moments, where the barefoot condition produced greater internal rotation and less external rotation moments than either shod condition. This study indicates that altering footwear conditions while performing the barbell back squat may redistribute the internal biomechanical loading patterns amongst the lower extremity joints and perhaps alter the musculoskeletal adaptations elicited. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bennett, Hunter J; Brock, Elizabeth; Brosnan, James T; Sorochan, John C; Zhang, Songning
2015-10-01
Higher ACL injury rates have been recorded in cleats with higher torsional resistance in American football, which warrants better understanding of shoe/stud-dependent joint kinetics. The purpose of this study was to determine differences in knee and ankle kinetics during single-leg land cuts and 180° cuts on synthetic infilled turf while wearing 3 types of shoes. Fourteen recreational football players performed single-leg land cuts and 180° cuts in nonstudded running shoes (RS) and in football shoes with natural (NTS) and synthetic turf studs (STS). Knee and ankle kinetic variables were analyzed with a 3 × 2 (shoe × movement) repeated-measures ANOVA (P < .05). A significant shoe-by-movement interaction was found in loading response peak knee adduction moments, with NTS producing smaller moments compared with both STS and RS only in 180° cuts. Reduced peak negative plantar flexor powers were also found in NTS compared with STS. The single-leg land cut produced greater loading response and push-off peak knee extensor moments, as well as peak negative and positive extensor and plantar flexor powers, but smaller loading peak knee adduction moments and push-off peak ankle eversion moments than 180° cuts. Overall, the STS and 180° cuts resulted in greater frontal plane knee loading and should be monitored for possible increased ACL injury risks.
Nigg, B M; Baltich, J; Hoerzer, S; Enders, H
2015-10-01
In the past 100 years, running shoes experienced dramatic changes. The question then arises whether or not running shoes (or sport shoes in general) influence the frequency of running injuries at all. This paper addresses five aspects related to running injuries and shoe selection, including (1) the changes in running injuries over the past 40 years, (2) the relationship between sport shoes, sport inserts and running injuries, (3) previously researched mechanisms of injury related to footwear and two new paradigms for injury prevention including (4) the 'preferred movement path' and (5) the 'comfort filter'. Specifically, the data regarding the relationship between impact characteristics and ankle pronation to the risk of developing a running-related injury is reviewed. Based on the lack of conclusive evidence for these two variables, which were once thought to be the prime predictors of running injuries, two new paradigms are suggested to elucidate the association between footwear and injury. These two paradigms, 'the preferred movement path' and 'the comfort filter', suggest that a runner intuitively selects a comfortable product using their own comfort filter that allows them to remain in the preferred movement path. This may automatically reduce the injury risk and may explain why there does not seem to be a secular trend in running injury rates. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
The effects of preferred and non-preferred running strike patterns on tissue vibration properties.
Enders, Hendrik; von Tscharner, Vinzenz; Nigg, Benno M
2014-03-01
To characterize soft tissue vibrations during running with a preferred and a non-preferred strike pattern in shoes and barefoot. Cross-sectional study. Participants ran at 3.5 m s(-1) on a treadmill in shoes and barefoot using a rearfoot and a forefoot strike for each footwear condition. The preferred strike patterns for the subjects were a rearfoot strike and a forefoot strike for shod and barefoot running, respectively. Vibrations were recorded with an accelerometer overlying the belly of the medial gastrocnemius. Thirteen non-linearly scaled wavelets were used for the analysis. Damping was calculated as the overall decay of power in the acceleration signal post ground contact. A higher damping coefficient indicates higher damping capacities of the soft tissue. The shod rearfoot strike showed a 93% lower damping coefficient than the shod forefoot strike (p<0.001). A lower damping coefficient indicates less damping of the vibrations. The barefoot forefoot strike showed a trend toward a lower damping coefficient compared to a barefoot rearfoot strike. Running barefoot with a forefoot strike resulted in a significantly lower damping coefficient than a forefoot strike when wearing shoes (p<0.001). The shod rearfoot strike showed lower damping compared to a barefoot rearfoot strike (p<0.001). While rearfoot striking showed lower vibration frequencies in shod and barefoot running, it did not consistently result in lower damping coefficients. This study showed that the use of a preferred movement resulted in lower damping coefficients of running related soft tissue vibrations. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Neel, Carr B., Jr.
1952-01-01
A study has been made of the heat requirement for the cyclic de-icing of hollow steel propellers fitted with external blade heating shoes. Solutions to the equations for the heat flow in cyclic heating of propellers were obtained, using an electrical analogy. The study showed how the energy requirement for propeller de-icing with existing blade shoes could be decreased, and illustrated the effect of blade-shoe design on the energy requirement. It was demonstrated, for example, that by increasing the heating intensity and decreasing the heating period from those currently used the energy requirement could be decreased in the order of 60 percent. ' In addition, ft was shown that heating requirements could be decreased further, by as much as 60 percent, through proper design of the shoes. The' investigation also showed the energy requirement to increase with decreasing liquid-water content and air temperature. Uncertainties as to the exact values of convective heat-transfer coefficient prevailing over the surface of the blade and ice layer resulted in uncertainties of approximately proportional magnitude in the values of required heating intensity.
Clinical Aspects of Foot Health in Individuals with Alzheimer's Disease.
López-López, Daniel; Grela-Fariña, Marta; Losa-Iglesias, Marta Elena; Calvo-Lobo, César; Rodríguez-Sanz, David; Palomo-López, Patricia; Becerro-de-Bengoa-Vallejo, Ricardo
2018-02-07
Alzheimer's disease (AD) shows a marked presence of physiologic changes and the start or aggravation of underlying diseases such as physical frailty in diverse anatomical regions. It is believed to have a particularly harmful effect on the health of the foot. We examined the foot health status in older persons with AD, with a specific focus on the extent to which people with AD may be using inadequate footwear in old age. Seventy-three community-dwelling people with probable, mild to moderate AD aged 65-95 years were recruited from a center of excellence for AD. A single trained physician evaluated health status and foot conditions. Current shoe and foot length and width measurements were taken using a calibrated Brannock device. The results indicate that sixty-five participants (89.04%) suffered from feet problems. Also, only twenty-two subjects (30.14%) used the correct shoes in width and size related with the morphology of their feet. Fifty-one participants (69.86%) were using incorrect shoes in length or width. The present study revealed that peoples with AD had a high presence of foot health problems. Also, the use of inappropriate shoes revealed measurable differences of association between shoe size and the morphology of the foot.
Laminar Horse Shoe Vortex for a Triangular Cylinder Flat Plate Juncture
NASA Astrophysics Data System (ADS)
Younis, Muhammad Yamin; Zhang, H.; Hu, B.; Sohail, Muhammad Amjad; Muhammad, Zaka
2011-09-01
Juncture Flows are 3-D flows which occur when fluid, flowing on a flat surface encounters an obstacle on its way. The flow separates from the surface due to the adverse pressure gradient produced by the obstacle and rolls up to form a vortical structure known as "Horse Shoe Vortex". Studies and research is underway to completely identify and understand different hidden features of the horse shoe vortex. In the present study the structure of horse shoe vortex for a Triangular cylinder flat plate juncture is visualized using particle image velocimetry (PIV). The diameter Reynolds number experimented is within the range of 2 000 ≤ ReA ≤ 8 000. The flow characteristics are studied for the horse shoe vortex and the flow is categorized into different flow regimes. (1) Steady or static vortex system, (2) periodic amalgamating vortex system, and (3) periodic break away vortex system. The range for different vortex systems is also calculated with shedding frequency for the periodic unsteady vortex system. Most importantly the range of Reynolds number for which the above mentioned vortex systems exist is much higher for Sharp leading edge cylinder than for blunt (circular and Elliptical) and flat (Square) leading edge cylinders studied earlier.
Amputation and Diabetes: How to Protect Your Feet
... size. Your doctor may recommend specially designed shoes (orthopedic shoes) that fit the exact shape of your ... of a tertiary diabetes foot care service. Diabetes Research and Clinical Practice. 2016;114:69. Diabetes and ...
... and direct flame PROTECTION: overshoes or boots of fire-resistant materials with wooden soles HAZARD: high voltage PROTECTION: shoes with rubber or cork heels and soles, and no exposed metal parts HAZARD: hot surfaces PROTECTION: safety shoes with ...
Three-dimensional quantitative analysis of healthy foot shape: a proof of concept study.
Stanković, Kristina; Booth, Brian G; Danckaers, Femke; Burg, Fien; Vermaelen, Philippe; Duerinck, Saartje; Sijbers, Jan; Huysmans, Toon
2018-01-01
Foot morphology has received increasing attention from both biomechanics researches and footwear manufacturers. Usually, the morphology of the foot is quantified by 2D footprints. However, footprint quantification ignores the foot's vertical dimension and hence, does not allow accurate quantification of complex 3D foot shape. The shape variation of healthy 3D feet in a population of 31 adult women and 31 adult men who live in Belgium was studied using geometric morphometric methods. The effect of different factors such as sex, age, shoe size, frequency of sport activity, Body Mass Index (BMI), foot asymmetry, and foot loading on foot shape was investigated. Correlation between these factors and foot shape was examined using multivariate linear regression. The complex nature of a foot's 3D shape leads to high variability in healthy populations. After normalizing for scale, the major axes of variation in foot morphology are (in order of decreasing variance): arch height, combined ball width and inter-toe distance, global foot width, hallux bone orientation (valgus-varus), foot type (e.g. Egyptian, Greek), and midfoot width. These first six modes of variation capture 92.59% of the total shape variation. Higher BMI results in increased ankle width, Achilles tendon width, heel width and a thicker forefoot along the dorsoplantar axis. Age was found to be associated with heel width, Achilles tendon width, toe height and hallux orientation. A bigger shoe size was found to be associated with a narrow Achilles tendon, a hallux varus, a narrow heel, heel expansion along the posterior direction, and a lower arch compared to smaller shoe size. Sex was found to be associated with differences in ankle width, Achilles tendon width, and heel width. Frequency of sport activity was associated with Achilles tendon width and toe height. A detailed analysis of the 3D foot shape, allowed by geometric morphometrics, provides insights in foot variations in three dimensions that can not be obtained from 2D footprints. These insights could be applied in various scientific disciplines, including orthotics and shoe design.
The paper reports on a study to evaluate organic combustion by-product emissions while feeding varying amounts of bromine (Br) and chlorine (Cl) into a pilot-scale incinerator burning surrogate waste materials. (NOTE: Adding brominated organic compounds to a pilot-scale incinerat...
The performance of pilot-scale bioslurry treatment on creosote-contaminated soil was evaluated. Five reactors containing 66 L of slurry (30% soil by weight), were operated in parallel. The soil was a sandy soil with minor gravel content. The pilot-scale phase utilized an inoculum...
Mansikka, Heikki; Virtanen, Kai; Harris, Don
2018-04-30
The sensitivity of NASA-TLX scale, modified Cooper-Harper (MCH) scale and the mean inter-beat interval (IBI) of successive heart beats, as measures of pilot mental workload (MWL), were evaluated in a flight training device (FTD). Operational F/A-18C pilots flew instrument approaches with varying task loads. Pilots' performance, subjective MWL ratings and IBI were measured. Based on the pilots' performance, three performance categories were formed; high-, medium- and low-performance. Values of the subjective rating scales and IBI were compared between categories. It was found that all measures were able to differentiate most task conditions and there was a strong, positive correlation between NASA-TLX and MCH scale. An explicit link between IBI, NASA-TLX, MCH and performance was demonstrated. While NASA-TLX, MCH and IBI have all been previously used to measure MWL, this study is the first one to investigate their association in a modern FTD, using a realistic flying mission and operational pilots.
NASA Astrophysics Data System (ADS)
Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.
2017-05-01
The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for maximal response. For the calculation of the regression coefficients, dispersion and correlation coefficients, the software Matlab was used.
Petraco, Nicholas D K; Gambino, Carol; Kubic, Thomas A; Olivio, Dayhana; Petraco, Nicholas
2010-01-01
In the field of forensic footwear examination, it is a widely held belief that patterns of accidental marks found on footwear and footwear impressions possess a high degree of "uniqueness." This belief, however, has not been thoroughly studied in a numerical way using controlled experiments. As a result, this form of valuable physical evidence has been the subject of admissibility challenges. In this study, we apply statistical techniques used in facial pattern recognition, to a minimal set of information gleaned from accidental patterns. That is, in order to maximize the amount of potential similarity between patterns, we only use the coordinate locations of accidental marks (on the top portion of a footwear impression) to characterize the entire pattern. This allows us to numerically gauge how similar two patterns are to one another in a worst-case scenario, i.e., in the absence of a tremendous amount of information normally available to the footwear examiner such as accidental mark size and shape. The patterns were recorded from the top portion of the shoe soles (i.e., not the heel) of five shoe pairs. All shoes were the same make and model and all were worn by the same person for a period of 30 days. We found that in 20-30 dimensional principal component (PC) space (99.5% variance retained), patterns from the same shoe, even at different points in time, tended to cluster closer to each other than patterns from different shoes. Correct shoe identification rates using maximum likelihood linear classification analysis and the hold-one-out procedure ranged from 81% to 100%. Although low in variance, three-dimensional PC plots were made and generally corroborated the findings in the much higher dimensional PC-space. This study is intended to be a starting point for future research to build statistical models on the formation and evolution of accidental patterns.
High-heeled shoes and musculoskeletal injuries: a narrative systematic review
Barnish, Maxwell S; Barnish, Jean
2016-01-01
Objectives To conduct the first systematic review from an epidemiological perspective regarding the association between high-heeled shoe wear and hallux valgus, musculoskeletal pain, osteoarthritis (OA) and both first-party and second-party injury in human participants without prior musculoskeletal conditions. Setting A systematic review of international peer-reviewed scientific literature across seven major languages. Data sources Searches were conducted on seven major bibliographic databases in July 2015 to initially identify all scholarly articles on high-heeled shoes. Supplementary manual searches were conducted. Titles, abstracts and full-text articles were sequentially screened to identify all articles assessing epidemiological evidence regarding the association between high-heeled shoe wear and hallux valgus, musculoskeletal pain, OA and both first-party and second-party injury in human participants without prior musculoskeletal conditions. Standardised data extraction and quality assessment (Threats to Validity tool) were conducted. Primary and secondary outcome measures Musculoskeletal pain or OA as assessed by clinical diagnosis or clinical assessment tool. First-party or second-party injury. Results 644 unique records were identified, 56 full-text articles were screened and 18 studies included in the review. Four studies assessed the relationship with hallux valgus and three found a significant association. Two studies assessed the association with OA and neither found a significant association. Five studies assessed the association with musculoskeletal pain and three found a significant association. Eight studies assessed first-party injury and seven found evidence of a significant injury toll associated with high-heeled shoes. One study provided data on second-party injury and the injury toll was low. Conclusions High-heeled shoes were shown to be associated with hallux valgus, musculoskeletal pain and first-party injury. No conclusive evidence regarding OA and second-party injury was found. Societal and clinical relevance of these findings is discussed. Concern is expressed about the expectation to wear high-heeled shoes in some work and social situations and access by children. PMID:26769789
Mahaffey, C A; Peterson, M L; Thomason, J J; McIlwraith, C W
2016-01-01
Different horseshoe designs have been developed in an attempt to optimise footing for equine athletes. Horseshoe performance is assumed to be dependent on the surface and gait, but there are limited data on horseshoe performance on different surfaces, independent of gait variation. To quantify the dynamic loading for 3 aluminium racing shoe designs on Thoroughbred racetrack surface materials, using a biomechanical surface tester. A flat racing plate, a serrated V-Grip and a shoe with a 6 mm toe grab and 10 mm heel calks were tested on synthetic and dirt surfaces under typical operating conditions of temperature and moisture content for the respective material samples. Samples were tested under laboratory conditions, replicating a track surface by compacting material into a latex-lined mould surrounded by silica sand for representative boundary conditions. Peak loading and loading rates were measured vertically and horizontally (craniocaudal), simulating aspects of primary and secondary impacts of the hoof in a galloping horse. Maximum vertical and shear loads and loading rates were not significantly different between shoe types, with the exception of a reduced craniocaudal loading rate for the V-Grip shoe on the synthetic surface. All other statistical significance was related to the surface material. These 3 different Thoroughbred racing shoes do not have a significant impact on loading and loading rate, with the exception of the V-Grip shoe on a synthetic surface. Although the V-Grip may reduce craniocaudal peak load rates in a synthetic material with relatively high wax and/or low oil content, the reduction in load rate is less than the difference found between materials. This study indicates that shoeing has little effect, and that a track's surface material and its preparation have a significant effect on the dynamic loading during the impact phase of the stance. © 2015 EVJ Ltd.
Influence of midsole hardness of standard cushioned shoes on running-related injury risk.
Theisen, Daniel; Malisoux, Laurent; Genin, Joakim; Delattre, Nicolas; Seil, Romain; Urhausen, Axel
2014-03-01
In this double-blind randomised controlled trial, we tested if leisure-time runners using shoes with less compliant midsoles have a higher running-related injury (RRI) risk. We provided 247 runners with standard running shoes having either a soft study shoes (soft-SS) or a hard study shoes (hard-SS) midsole and followed them prospectively for 5 months regarding RRI. All information about sports practice and injuries was uploaded on a dedicated internet platform and checked for consistency and completeness. RRI was defined as any first-time pain sustained during or as a result of running practice and impeding normal running activity for at least 1 day. Cox proportional hazards regressions were used to identify RRI risk factors. The type of study shoes used for running was not associated with RRIs (HR=0.92; 95% CI 0.57 to 1.48). The hard-SS had a 15% greater overall stiffness in the heel region. The two study groups were similar regarding personal and sports participation characteristics, except for years of running experience, which was higher (p<0.05) in the hard-SS group. Global RRI incidence was 12.1 RRI/1000 h of running. No between-group differences were found regarding injury location, type, severity or category. Nevertheless, the adjusted regression model revealed positive associations with RRI risk for body mass index (HR=1.126; 95% CI 1.033 to 1.227), previous injury (HR=1.735; 95% CI 1.037 to 2.902) and mean session intensity (HR=1.396; 95% CI 1.040 to 1.874). Protective factors were previous regular running activity (HR=0.422; 95% CI 0.228 to 0.779) and weekly volume of other sports activities (HR=0.702; 95% CI 0.561 to 0.879). Midsole hardness of modern cushioned running shoes does not seem to influence RRI risk.
Film riding seal assembly for turbomachinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bidkar, Rahul Anil; Giametta, Andrew Paul; Gibson, Nathan Evan McCurdy
2016-06-07
An aerodynamic seal assembly for a rotary machine includes multiple sealing segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward load-bearing section and an aft load-bearing section configured to generate an aerodynamic force between the shoe plate and the rotor. The shoe plate includes at least one labyrinth teeth facing the rotor and positioned between the forward load-bearing section and the aft load-bearing section. The sealing segment also includes at least one spring connected to a pedestal located about midway of an axial length of the shoemore » plate and to a stator interface element. Further, the sealing segment includes a rigid segmented secondary seal attached to the stator interface element at one first end and in contact with the pedestal of the shoe plate at one second end.« less
Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations.
Kundiyana, Dimple K; Huhnke, Raymond L; Wilkins, Mark R
2010-05-01
Fermentation of syngas offers several advantages compared to chemical catalysts such as higher specificity of biocatalysts, lower energy costs, and higher carbon efficiency. Scale-up of syngas fermentation from a bench scale to a pilot scale fermentor is a critical step leading to commercialization. The primary objective of this research was to install and commission a pilot scale fermentor, and subsequently scale-up the Clostridium strain P11 fermentation from a 7.5-L fermentor to a pilot scale 100-L fermentor. Initial preparation and fermentations were conducted in strictly anaerobic conditions. The fermentation system was maintained in a batch mode with continuous syngas supply. The effect of anaerobic fermentation in a pilot scale fermentor was evaluated. In addition, the impact of improving the syngas mass transfer coefficient on the utilization and product formation was studied. Results indicate a six fold improvement in ethanol concentration compared to serum bottle fermentation, and formation of other compounds such as isopropyl alcohol, acetic acid and butanol, which are of commercial importance. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Sinclair, Jonathan; Taylor, P J; Atkins, S
2015-06-01
Military recruits are known to be susceptible to Achilles tendon pathology. The British Army have introduced footwear models, the PT-03 (cross-trainer) and PT1000 (running shoes), in an attempt to reduce the incidence of injuries. The aim of the current investigation was to examine the Achilles tendon forces of the cross-trainer and running shoe in relation to conventional army boots. Ten male participants ran at 4.0 m/s in each footwear condition. Achilles tendon forces were obtained throughout the stance phase of running and compared using repeated-measures ANOVAs. The results showed that the time to peak Achilles tendon force was significantly shorter when running in conventional army boots (0.12 s) in comparison with the cross-trainer (0.13 s) and running shoe (0.13 s). Achilles tendon loading rate was shown to be significantly greater in conventional army boots (38.73 BW/s) in comparison with the cross-trainer (35.14 BW/s) and running shoe (33.57 BW/s). The results of this study suggest that the running shoes and cross-trainer footwear are associated with reductions in Achilles tendon parameters that have been linked to the aetiology of injury, and thus it can be hypothesised that these footwear could be beneficial for military recruits undertaking running exercises. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Assessing Footwear Effects from Principal Features of Plantar Loading during Running.
Trudeau, Matthieu B; von Tscharner, Vinzenz; Vienneau, Jordyn; Hoerzer, Stefan; Nigg, Benno M
2015-09-01
The effects of footwear on the musculoskeletal system are commonly assessed by interpreting the resultant force at the foot during the stance phase of running. However, this approach overlooks loading patterns across the entire foot. An alternative technique for assessing foot loading across different footwear conditions is possible using comprehensive analysis tools that extract different foot loading features, thus enhancing the functional interpretation of the differences across different interventions. The purpose of this article was to use pattern recognition techniques to develop and use a novel comprehensive method for assessing the effects of different footwear interventions on plantar loading. A principal component analysis was used to extract different loading features from the stance phase of running, and a support vector machine (SVM) was used to determine whether and how these loading features were different across three shoe conditions. The results revealed distinct loading features at the foot during the stance phase of running. The loading features determined from the principal component analysis allowed successful classification of all three shoe conditions using the SVM. Several differences were found in the location and timing of the loading across each pairwise shoe comparison using the output from the SVM. The analysis approach proposed can successfully be used to compare different loading patterns with a much greater resolution than has been reported previously. This study has several important applications. One such application is that it would not be relevant for a user to select a shoe or for a manufacturer to alter a shoe's construction if the classification across shoe conditions would not have been significant.
The feasibility of a modified shoe for multi-segment foot motion analysis: a preliminary study.
Halstead, J; Keenan, A M; Chapman, G J; Redmond, A C
2016-01-01
The majority of multi-segment kinematic foot studies have been limited to barefoot conditions, because shod conditions have the potential for confounding surface-mounted markers. The aim of this study was to investigate whether a shoe modified with a webbed upper can accommodate multi-segment foot marker sets without compromising kinematic measurements under barefoot and shod conditions. Thirty participants (15 controls and 15 participants with midfoot pain) underwent gait analysis in two conditions; barefoot and wearing a shoe (shod) in a random order. The shod condition employed a modified shoe (rubber plimsoll) with a webbed upper, allowing skin mounted reflective markers to be visualised through slits in the webbed material. Three dimensional foot kinematics were captured using the Oxford multi-segment foot model whilst participants walked at a self-selected speed. The foot pain group showed greater hindfoot eversion and less hindfoot dorsiflexion than controls in the barefoot condition and these differences were maintained when measured in the shod condition. Differences between the foot pain and control participants were also observed for walking speed in the barefoot and in the shod conditions. No significant differences between foot pain and control groups were demonstrated at the forefoot in either condition. Subtle differences between pain and control groups, which were found during barefoot walking are retained when wearing the modified shoe. The novel properties of the modified shoe offers a potential solution for the use of passive infrared based motion analysis for shod applications, for instance to investigate the kinematic effect of foot orthoses.
Is it possible to sanitize athletes' shoes?
Messina, Gabriele; Burgassi, Sandra; Russo, Carmela; Ceriale, Emma; Quercioli, Cecilia; Meniconi, Cosetta
2015-02-01
Footwear should be designed to avoid trauma and injury to the skin of the feet that can favor bacterial and fungal infections. Procedures and substances for sanitizing the interior of shoes are uncommon but are important aspects of primary prevention against foot infections and unpleasant odor. To evaluate the efficacy of a sanitizing technique for reducing bacterial and fungal contamination of footwear. Crossover study. Mens Sana basketball team. Twenty-seven male athletes and 4 coaches (62 shoes). The experimental protocol required a first sample (swab), 1/shoe, at time 0 from inside the shoes of all athletes before the sanitizing technique began and a second sample at time 1, after about 4 weeks, April 2012 to May 2012, of daily use of the sanitizing technique. The differences before and after use of the sanitizing technique for total bacterial count at 36 °C and 22 °C for Staphylococcus spp, yeasts, molds, Enterococcus spp, Pseudomonas spp, Escherichia coli , and total coliform bacteria were evaluated. Before use of the sanitizing technique, the total bacterial counts at 36 °C and 22 °C and for Staphylococcus spp were greater by a factor of 5.8 (95% confidence interval [CI] = 3.42, 9.84), 5.84 (95% CI = 3.45, 9.78), and 4.78 (95% CI = 2.84, 8.03), respectively. All the other comparisons showed a reduction in microbial loads, whereas E coli and coliforms were no longer detected. No statistically significant decrease in yeasts (P = .0841) or molds (P = .6913) was recorded probably because of low contamination. The sanitizing technique significantly reduced the bacterial presence in athletes' shoes.
Steinberg, Nili; Waddington, Gordon; Adams, Roger; Karin, Janet; Tirosh, Oren
2015-12-01
Ballet dancers require a high level of postural balance (PB) and proprioception ability during performance. As textured insoles inserted into ballet shoes were found to improve proprioception ability, and better proprioceptive acuity was associated with better PB, the aim of the present study was to investigate whether the association between ankle inversion movement discrimination (AIMD) and PB changed following wearing textured insoles in young male and female dancers. Forty-four dancers from the Australian Ballet School, ages 14-19 yrs, were tested for static and dynamic PB and AIMD under two conditions: in ballet shoes, and in ballet shoes with textured insoles inserted. Female dancers demonstrated a significant inverse relationship between AIMD and static PB in the medio-lateral direction when wearing ballet shoes, but not when wearing textured insoles. Male dancers showed a non-monotonic relationship when tested with ballet shoes only, but a significant inverse relationship between AIMD and dynamic PB in the vertical direction and with the waist/head cross-correlation acceleration in the three movement directions when they were tested with textured insoles. Male dancers demonstrated an improved association between dynamic PB and proprioception ability when using textured insoles, suggesting that the increased afferent information from the plantar surface had a beneficial effect on proprioception feedback about their PB. Conversely, for female dancers, that association was present when wearing ballet shoes, but not when using textured insoles, suggesting that the increased afferent information for female dancers who already had high proprioception ability was "overloaded" by wearing the textured insoles.
Aerodynamic seal assemblies for turbo-machinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bidkar, Rahul Anil; Wolfe, Christopher; Fang, Biao
2015-09-29
The present application provides an aerodynamic seal assembly for use with a turbo-machine. The aerodynamic seal assembly may include a number of springs, a shoe connected to the springs, and a secondary seal positioned about the springs and the shoe.
How to Select the Right Athletic Shoes
... shock absorption, smooth tread, and a rocker sole design that encourages the natural roll of the foot during the walking motion. The features of a good jogging shoe include cushioning, flexibility, control, and stability in the heel counter area, as ...
... toe turned toward the other toes and may cross over the second toe. Corns and calluses develop as a result where the first and second toes overlap. Difficulty wearing regular shoes. You may have problems finding shoes that fit or that do not cause pain.
49 CFR 229.81 - Emergency pole; shoe insulation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Emergency pole; shoe insulation. 229.81 Section 229.81 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical...
6. OBLIQUE VIEW OF HOIST, SHOWING WOODEN BRAKE SHOES, REDUCTION ...
6. OBLIQUE VIEW OF HOIST, SHOWING WOODEN BRAKE SHOES, REDUCTION GEARS AND BED FOR (MISSING) CLUTCH/DRIVE GEAR UNIT, LOOKING NORTHWEST - Buffalo Coal Mine, Vulcan Cable Hoist, Wishbone Hill, Southeast end, near Moose Creek, Sutton, Matanuska-Susitna Borough, AK
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Shoe, latch. 236.801 Section 236.801 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.801...
49 CFR 229.79 - Third rail shoes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Third rail shoes. 229.79 Section 229.79 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical System § 229...
Clinical uses of in-shoe pressure analysis in podiatric sports medicine.
Williams, Bruce E; Yakel, James D
2007-01-01
Athletic injuries of the foot and lower extremity are commonly treated with custom foot orthoses. These devices usually provide immediate relief of the athlete's pain and dysfunction. Occasionally, however, they do not help, or even increase the patient's discomfort. We discuss a method of using in-shoe pressure-measurement systems to analyze the athletic patient's foot and lower-extremity function before and after treatment with custom foot orthoses, with a focus on sagittal plane biomechanics. Case histories are presented of athletes whose gait pathologies were identified and treated successfully using an in-shoe pressure-measurement system.
Composition of M1 Shoe Impregnite
1946-12-25
SPRMD 470.72, Rq, ASF, B April 1944, on letter, O-QMG, 2 March 194·4, sub- ject: Study of . Dubbing and Shoe Tmpregnite, to CG, ASF. c. 1st Ind, SPROG...Hq, ASF, 6 September 1945, on letter, SPQRD 438, O-QMG, 7 August 1915, subject: Dubbing protective, to CG, ASF. 2. D.iscussion: B~ Ruferenc,e a...serve both as B. shoe dubbing and as ash De imp reg n it e • B n sed 0 n are p or t 0 f t h (~ res tl 1 t s of this pr~lininary work, Hoadquarters
Comparison of methods to control floor contamination in an animal research facility.
Allen, Kenneth P; Csida, Tarrant; Leming, Jeaninne; Murray, Kathleen; Gauld, Stephen B; Thulin, Joseph
2012-10-01
The authors evaluated the effectiveness of adhesive mats, contamination control flooring, and shoe covers in decreasing the presence of microbial agents on animal holding room floors and footwear. Swab samples taken from animal holding room floors after the use of each product were compared with samples taken from rooms after no products were used. Swab samples were also taken from the heels and soles of the footwear of animal care staff before and after use of each product. The use of contamination control flooring or shoe covers significantly reduced the amount of organic material (as indicated by ATP levels measured by a luminometer) present on floors. Bacterial and ATP contamination of footwear was significantly lower after the use of shoe covers than after the use of adhesive mats or contamination control flooring, and the use of shoe covers led to a greater decrease in contamination before and after use than did use of either of the other two products. Although shoe covers were superior to both adhesive mats and contamination control flooring for decreasing contamination of animal room floors and footwear, facilities must take into account the contamination control standards required, the cost of the product, and the labor and time associated with product use when deciding which contamination control practices to implement.
Clinical Aspects of Foot Health in Individuals with Alzheimer’s Disease
Grela-Fariña, Marta; Losa-Iglesias, Marta Elena; Rodríguez-Sanz, David
2018-01-01
Alzheimer’s disease (AD) shows a marked presence of physiologic changes and the start or aggravation of underlying diseases such as physical frailty in diverse anatomical regions. It is believed to have a particularly harmful effect on the health of the foot. We examined the foot health status in older persons with AD, with a specific focus on the extent to which people with AD may be using inadequate footwear in old age. Seventy-three community-dwelling people with probable, mild to moderate AD aged 65–95 years were recruited from a center of excellence for AD. A single trained physician evaluated health status and foot conditions. Current shoe and foot length and width measurements were taken using a calibrated Brannock device. The results indicate that sixty-five participants (89.04%) suffered from feet problems. Also, only twenty-two subjects (30.14%) used the correct shoes in width and size related with the morphology of their feet. Fifty-one participants (69.86%) were using incorrect shoes in length or width. The present study revealed that peoples with AD had a high presence of foot health problems. Also, the use of inappropriate shoes revealed measurable differences of association between shoe size and the morphology of the foot. PMID:29414905
Changes in Impact Signals and Muscle Activity in Response to Different Shoe and Landing Conditions.
Wang, Xi; Zhang, Shen; Fu, Weijie
2017-02-01
Few rigorous scientific studies have investigated how the corresponding neuromuscular activity in the lower extremity occurs during different landing control movements in response to different impact signals. This study aimed to determine the potential shoe effects on impact signals, neuromuscular responses and their possible interactions in different human landing movements. Twelve male basketball players were required to wear high-cushioned basketball shoes (BS) and minimally cushioned control shoes (CC) to perform active drop jump landings (DJL) and passive landings (PL). Ground reaction forces and EMG amplitude (root mean square, EMGRMS) of the leg muscles within 50 ms before and after the landing movements were collected simultaneously. No shoe effect was found on the characteristics of impact signals and neuromuscular activity during the contact phase of DJL. By contrast, for PL, the values of maximal ground reaction force and the peak loading rate were evidently lower in the BS condition than in the CC condition (p < 0.05). Meanwhile, the EMGRMS of all muscles demonstrated a significant decrease in the BS condition compared with the CC condition within 50 ms after contact (p < 0.05). These findings suggest that under the condition in which related muscles are activated improperly, a neuromuscular adaptation occurs in response to different impact signals.
Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R
2012-02-01
Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.
2014-01-01
Background Podoconiosis is non-filarial elephantiasis of the lower legs. It is more commonly found in tropical Africa, Central and South America, and northwest India. In Ethiopia, a few non-governmental organizations provide free treatment to podoconiosis patients, but sustainability of free treatment and scale-up of services to reach the huge unmet need is challenged by resource limitations. We aimed to determine podoconiosis patient’s willingness to pay (WTP) for a treatment package (composed of deep cleaning of limbs with diluted antiseptic solution, soap, and water, bandaging, application of emollient on the skin, and provision of shoes), and factors associated with WTP in northwestern Ethiopia. Methods A cross-sectional study was conducted among randomly selected untreated podoconiosis patients (n = 393) in Baso Liben woreda, northwestern Ethiopia. The contingent valuation method was used with a pre-tested interviewer-administered questionnaire. Results The majority of podoconiosis patients (72.8%) were willing to pay for treatment services. The median WTP amount was 64 Birr (US$ 3.28) per person per year. More than one-third of patients (36.7%) were willing to pay at least half of the full treatment cost and 76.2% were willing to pay at least half of the cost of shoes. A multivariate analysis showed that having a higher monthly income, being a woman, older age, being aware of the role of shoes to prevent podoconiosis, and possession of a functional radio were significantly associated with higher odds of WTP. Conclusions The considerable WTP estimates showed that podoconiosis treatment could improve sustainability and service utilization. A subsidized cost recovery scheme could reduce treatment costs and more feasibility integrate podoconiosis treatment service with other NTDs and the government’s primary health care system. PMID:24642085
Toda, Yoshitaka; Tsukimura, Noriko
2004-10-01
To assess the effect of a lateral-wedge insole with elastic strapping of the subtalar joint on the femorotibial angle in patients with varus deformity of the knee. The efficacy of a wedged insole with subtalar straps and that of a traditional wedged insole shoe insert were compared. Sixty-six female outpatients with knee osteoarthritis (OA) were randomized (according to birth date) to be treated with either the strapped or the traditional inserted insole. Standing radiographs with unilateral insole use were used to analyze the femorotibial angles for each patient. In both groups, the baseline and 6-month visual analog scale (VAS) scores for subjective knee pain and the Lequesne index scores for knee OA were compared. The 61 patients who completed the 6-month study were evaluated. At baseline, there was no significant difference in the femorotibial angle (P = 0.66) and the VAS score (P = 0.75) between the 2 groups. At the 6-month assessment, the 29 subjects wearing the subtalar-strapped insole demonstrated a significantly decreased femorotibial angle (P < 0.0001) and significantly improved VAS scores (P = 0.001) and Lequesne index scores (P = 0.033) compared with their baseline assessments. These significant differences were not observed in the 32 subjects assigned to the traditional shoe-inserted wedged insole. These results suggest that an insole with a subtalar strap maintained the valgus correction of the femorotibial angle in patients with varus knee OA for 6 months, indicating longer-term clinical improvement with the strapped insert compared with the traditional insert. Copyright 2004 American College of Rheumatology
Tamiru, Abreham; Tsegay, Girmay; Wubie, Moges; Gedefaw, Molla; Tomczyk, Sara; Tekola-Ayele, Fasil
2014-03-19
Podoconiosis is non-filarial elephantiasis of the lower legs. It is more commonly found in tropical Africa, Central and South America, and northwest India. In Ethiopia, a few non-governmental organizations provide free treatment to podoconiosis patients, but sustainability of free treatment and scale-up of services to reach the huge unmet need is challenged by resource limitations. We aimed to determine podoconiosis patient's willingness to pay (WTP) for a treatment package (composed of deep cleaning of limbs with diluted antiseptic solution, soap, and water, bandaging, application of emollient on the skin, and provision of shoes), and factors associated with WTP in northwestern Ethiopia. A cross-sectional study was conducted among randomly selected untreated podoconiosis patients (n=393) in Baso Liben woreda, northwestern Ethiopia. The contingent valuation method was used with a pre-tested interviewer-administered questionnaire. The majority of podoconiosis patients (72.8%) were willing to pay for treatment services. The median WTP amount was 64 Birr (US$ 3.28) per person per year. More than one-third of patients (36.7%) were willing to pay at least half of the full treatment cost and 76.2% were willing to pay at least half of the cost of shoes. A multivariate analysis showed that having a higher monthly income, being a woman, older age, being aware of the role of shoes to prevent podoconiosis, and possession of a functional radio were significantly associated with higher odds of WTP. The considerable WTP estimates showed that podoconiosis treatment could improve sustainability and service utilization. A subsidized cost recovery scheme could reduce treatment costs and more feasibility integrate podoconiosis treatment service with other NTDs and the government's primary health care system.
Miklos, David B; Hartl, Rebecca; Michel, Philipp; Linden, Karl G; Drewes, Jörg E; Hübner, Uwe
2018-06-01
This study investigated the removal of 15 trace organic chemicals (TOrCs) occurring at ambient concentrations from municipal wastewater treatment plant effluent by advanced oxidation using UV/H 2 O 2 at pilot-scale. Pseudo first-order rate constants (k obs ) for photolytic as well as combined oxidative and photolytic degradation observed at pilot-scale were validated with results from a bench-scale collimated beam device. No significant difference was determined between pilot- and lab-scale performance. During continuous pilot-scale operation at constant UV fluence of 800 mJ/cm 2 and H 2 O 2 dosage of 10 mg/L, the removal of various TOrCs was investigated. The average observed removal for photo-susceptible (k UV >10 -3 cm 2 /mJ; like diclofenac, iopromide and sulfamethoxazole), moderately photo-susceptible (10 -4
Use of Beach Shoes for Foot Protection during the Bangkok Flood of 2011.
Waikakul, Saranatra
2013-03-01
Foot injury was common as a result of the Bangkok flood of 2011. In the future, this type of injury should be prevented to lessen the burden during a disaster. The study was performed to ascertain what type of footwear is appropriate for volunteer rescue workers during a flood. The study was carried out during the flood in November 2011 at Siriraj Hospital. There were 15 volunteers enrolled in the study. None of the volunteers had any foot deformity or injury before the study. Participants were divided into 3 groups of 5 volunteers: group A, the barefoot group; group B, the high top shoe group; and group C, the beach shoe group. All volunteers worked in the areas close to Siriraj Hospital and were followed up after 5 days of rescue work. Prevalence of foot and ankle injuries, satisfaction regarding work conditions and willingness to use the shoes were subjectively evaluated. Wearing of beach shoes during rescue was satisfactory during the early phase of the flood. The age range of volunteers was 20-28. In the group A, most volunteers were barely satisfied with conducting rescue work in water with bare feet, that bare feet were good for working on a wet surface and were 'just satisfied' to not satisfied that bare feet were good for work on dry surfaces. In group B, most of the volunteers had opinions similar to group A with the exception that they felt better while they were working on dry surfaces. In group C, most volunteers were significantly more satisfied under all three conditions. Foot injury occurred in 2 volunteers from group A. Beach shoes offer adequate foot protection during flood rescue.
Footwear characteristics are related to running mechanics in runners with patellofemoral pain.
Esculier, Jean-Francois; Dubois, Blaise; Bouyer, Laurent J; McFadyen, Bradford J; Roy, Jean-Sébastien
2017-05-01
Running footwear is known to influence step rate, foot inclination at foot strike, average vertical loading rate (VLR) and peak patellofemoral joint (PFJ) force. However, the association between the level of minimalism of running shoes and running mechanics, especially with regards to these relevant variables for runners with patellofemoral pain (PFP), has yet to be investigated. The objective of this study was to explore the relationship between the level of minimalism of running shoes and habitual running kinematics and kinetics in runners with PFP. Running shoes of 69 runners with PFP (46 females, 23 males, 30.7±6.4years) were evaluated using the Minimalist Index (MI). Kinematic and kinetic data were collected during running on an instrumented treadmill. Principal component and correlation analyses were performed between the MI and its subscales and step rate, foot inclination at foot strike, average VLR, peak PFJ force and peak Achilles tendon force. Higher MI scores were moderately correlated with lower foot inclination (r=-0.410, P<0.001) and lower peak PFJ force (r=-0.412, P<0.001). Moderate correlations also showed that lower shoe mass is indicative of greater step rate (ρ=0.531, P<0.001) and lower peak PFJ force (ρ=-0.481, P<0.001). Greater shoe flexibility was moderately associated with lower foot inclination (ρ=-0.447, P<0.001). Results suggest that greater levels of minimalism are associated with lower inclination angle and lower peak PFJ force in runners with PFP. Thus, this population may potentially benefit from changes in running mechanics associated with the use of shoes with a higher level of minimalism. Copyright © 2017 Elsevier B.V. All rights reserved.
Bishop, Chris; Paul, Gunther; Thewlis, Dominic
2013-04-01
Kinematic models are commonly used to quantify foot and ankle kinematics, yet no marker sets or models have been proven reliable or accurate when wearing shoes. Further, the minimal detectable difference of a developed model is often not reported. We present a kinematic model that is reliable, accurate and sensitive to describe the kinematics of the foot-shoe complex and lower leg during walking gait. In order to achieve this, a new marker set was established, consisting of 25 markers applied on the shoe and skin surface, which informed a four segment kinematic model of the foot-shoe complex and lower leg. Three independent experiments were conducted to determine the reliability, accuracy and minimal detectable difference of the marker set and model. Inter-rater reliability of marker placement on the shoe was proven to be good to excellent (ICC=0.75-0.98) indicating that markers could be applied reliably between raters. Intra-rater reliability was better for the experienced rater (ICC=0.68-0.99) than the inexperienced rater (ICC=0.38-0.97). The accuracy of marker placement along each axis was <6.7 mm for all markers studied. Minimal detectable difference (MDD90) thresholds were defined for each joint; tibiocalcaneal joint--MDD90=2.17-9.36°, tarsometatarsal joint--MDD90=1.03-9.29° and the metatarsophalangeal joint--MDD90=1.75-9.12°. These thresholds proposed are specific for the description of shod motion, and can be used in future research designed at comparing between different footwear. Copyright © 2012 Elsevier B.V. All rights reserved.
Lott, Donovan J; Hastings, Mary K; Commean, Paul K; Smith, Kirk E; Mueller, Michael J
2007-03-01
Ground reaction forces from walking result in stress (pressure) and soft tissue strain at the plantar aspect of the foot. Excessive plantar pressure and tissue strain on the insensate foot may lead to ulceration. Our study investigated the effect of therapeutic footwear and custom-made orthotic inserts on pressure and tissue strain along the second ray of the plantar foot, and how these two variables are associated. Twenty subjects (mean age 57.3 [SD 9.3] years, 12 male, 8 female, body mass index 32.5 [SD 7.4] kg/m2) with diabetes mellitus, peripheral neuropathy, and a history of a plantar ulcer participated. Plantar pressure data were recorded during computed tomography scans for four conditions (barefoot, shoe, shoe+total contact insert, and shoe+total contact insert+metatarsal pad). For each condition tested, tissue strain and plantar pressure were determined at the second metatarsal head and at 15 other points along the second ray. Differences were noted between the 4 conditions for pressure (P<0.004) and soft tissue strain (P<0.042) at the second metatarsal head. Correlation coefficients demonstrated an association between pressure and strain (Barefoot r=0.81, Shoe r=0.75, Shoe+total contact insert r=0.73, and Shoe+total contact insert+metatarsal pad r=0.44). Footwear and orthotic devices tested in this study decreased pressure and soft tissue strain at the second ray of the foot, and these two variables were strongly related. A better understanding of the role tissue strain plays in distributing plantar forces may lead to improvements in the design of orthotic devices.
Is it Possible to Sanitize Athletes' Shoes?
Messina, Gabriele; Burgassi, Sandra; Russo, Carmela; Ceriale, Emma; Quercioli, Cecilia; Meniconi, Cosetta
2015-01-01
Context: Footwear should be designed to avoid trauma and injury to the skin of the feet that can favor bacterial and fungal infections. Procedures and substances for sanitizing the interior of shoes are uncommon but are important aspects of primary prevention against foot infections and unpleasant odor. Objective: To evaluate the efficacy of a sanitizing technique for reducing bacterial and fungal contamination of footwear. Design: Crossover study. Setting: Mens Sana basketball team. Patients or Other Participants: Twenty-seven male athletes and 4 coaches (62 shoes). Intervention(s): The experimental protocol required a first sample (swab), 1/shoe, at time 0 from inside the shoes of all athletes before the sanitizing technique began and a second sample at time 1, after about 4 weeks, April 2012 to May 2012, of daily use of the sanitizing technique. Main Outcome Measure(s): The differences before and after use of the sanitizing technique for total bacterial count at 36°C and 22°C for Staphylococcus spp, yeasts, molds, Enterococcus spp, Pseudomonas spp, Escherichia coli, and total coliform bacteria were evaluated. Results: Before use of the sanitizing technique, the total bacterial counts at 36°C and 22°C and for Staphylococcus spp were greater by a factor of 5.8 (95% confidence interval [CI] = 3.42, 9.84), 5.84 (95% CI = 3.45, 9.78), and 4.78 (95% CI = 2.84, 8.03), respectively. All the other comparisons showed a reduction in microbial loads, whereas E coli and coliforms were no longer detected. No statistically significant decrease in yeasts (P = .0841) or molds (P = .6913) was recorded probably because of low contamination. Conclusions: The sanitizing technique significantly reduced the bacterial presence in athletes' shoes. PMID:25415415
Lott, Donovan J.; Hastings, Mary K.; Commean, Paul K.; Smith, Kirk E.; Mueller, Michael J.
2007-01-01
Background Ground reaction forces from walking result in stress (pressure) and soft tissue strain at the plantar aspect of the foot. Excessive plantar pressure and tissue strain on the insensate foot may lead to ulceration. Our study investigated the effect of therapeutic footwear and custom-made orthotic inserts on pressure and tissue strain along the second ray of the plantar foot, and how these two variables are associated. Methods Twenty subjects (mean age 57.3 [SD 9.3], 12 male, 8 female, body mass index 32.5 [SD 7.4]) with diabetes mellitus, peripheral neuropathy, and a history of a plantar ulcer participated. Plantar pressure data were recorded during computed tomography scans for four conditions (barefoot, shoe, shoe+total contact insert, and shoe+total contact insert+metatarsal pad). For each condition tested, tissue strain and plantar pressure were determined at the second metatarsal head and at 15 other points along the second ray. Findings Differences were noted between the 4 conditions for pressure (p < 0.004) and soft tissue strain (p < 0.042) at the second metatarsal head. Correlation coefficients demonstrated an association between pressure and strain (Barefoot r = 0.81, Shoe r = 0.75, Shoe+total contact insert r = 0.73, and Shoe+total contact insert+metatarsal pad r = 0.44). Intepretation Footwear and orthotic devices tested in this study decreased pressure and soft tissue strain at the second ray of the foot, and these two variables were strongly related. A better understanding of the role tissue strain plays in distributing plantar forces may lead to improvements in the design of orthotic devices. PMID:17182156
van Schie, Carine H M; Slim, Frederik J; Keukenkamp, Renske; Faber, William R; Nollet, Frans
2013-03-01
Not only plantar pressure but also weight-bearing activity affects accumulated mechanical stress to the foot and may be related to foot ulceration. To date, activity has not been accounted for in leprosy. The purpose was to compare barefoot pressure, in-shoe pressure and daily cumulative stress between persons affected by leprosy with and without previous or current foot ulceration. Nine persons with current plantar ulceration were compared to 15 with previous and 15 without previous ulceration. Barefoot peak pressure (EMED-X), in-shoe peak pressure (Pedar-X) and daily cumulative stress (in-shoe forefoot pressure time integral×mean daily strides (Stepwatch™ Activity Monitor)) were measured. Barefoot peak pressure was increased in persons with current and previous compared to no previous foot ulceration (mean±SD=888±222 and 763±335 vs 465±262kPa, p<0.05). In-shoe peak pressure was only increased in persons with current compared to without previous ulceration (mean±SD=412±145 vs 269±70kPa, p<0.05). Daily cumulative stress was not different between groups, although persons with current and previous foot ulceration were less active. Although barefoot peak pressure was increased in people with current and previous plantar ulceration, it did not discriminate between these groups. While in-shoe peak pressure was increased in persons with current ulceration, they were less active, resulting in no difference in daily cumulative stress. Increased in-shoe peak pressure suggests insufficient pressure reducing footwear in persons with current ulceration, highlighting the importance of pressure reducing qualities of footwear. Copyright © 2012 Elsevier B.V. All rights reserved.
Sanderson, D J; Hennig, E M; Black, A H
2000-03-01
The aim of this study was to determine the response of cyclists to manipulations of cadence and power output in terms of force application and plantar pressure distribution. Two groups of cyclists, 17 recreational and 12 competitive, rode at three nominal cadences (60, 80, 100 rev x min(-1)) and four power outputs (100, 200, 300, 400 W) while simultaneous force and in-shoe pressure data were collected. Two piezoelectric triaxial force transducers mounted in the right pedal measured components of the pedal force and orientation, and a discrete transducer system with 12 transducers recorded the in-shoe pressures. Force application was characterized by calculating peak resultant and peak effective pedal forces and positive and negative impulses. In-shoe pressures were analysed as peak pressures and as the percent relative load. The force data showed no significant group effect but there was a cadence and power main effect. The impulse data showed a significant three-way interaction. Increased cadence resulted in a decreased positive impulse, while increased power output resulted in an increased impulse. The competitive group produced less positive impulse but the difference became less at higher cadences. Few between-group differences were found in pressure, notable only in the pressure under the first metatarsal region. This showed a consistent pattern of in-shoe pressure distribution, where the primary loading structures were the first metatarsal and hallux. There was no indication that pressure at specific sites influenced the pedal force application. The absence of group differences indicated that pressure distribution was not the result of training, but reflected the intrinsic relationship between the foot, the shoe and the pedal.
Running shoes increase achilles tendon load in walking: an acoustic propagation study.
Wearing, Scott C; Reed, Lloyd; Hooper, Sue L; Bartold, Simon; Smeathers, James E; Brauner, Torsten
2014-08-01
Footwear remains a prime candidate for the prevention and rehabilitation of Achilles tendinopathy because it is thought to decrease tension in the tendon through elevation of the heel. However, evidence for this effect is equivocal. This study used an acoustic transmission technique to investigate the effect of running shoes on Achilles tendon loading during barefoot and shod walking. Acoustic velocity was measured in the Achilles tendon of 12 recreationally active males (age, 31 ± 9 yr; height, 1.78 ± 0.06 m; weight, 81.0 ± 16.9 kg) during barefoot and shod walking at matched self-selected speed (3.4 ± 0.7 km·h). Standard running shoes incorporating a 10-mm heel offset were used. Vertical ground reaction force and spatiotemporal parameters were determined with an instrumented treadmill. Axial acoustic velocity in the Achilles tendon was measured using a custom-built ultrasonic device. All data were acquired at a rate of 100 Hz during 10 s of steady-state walking. Statistical comparisons between barefoot and shod conditions were made using paired t-tests and repeated-measure ANOVA. Acoustic velocity in the Achilles tendon was highly reproducible and was typified by two maxima (P1, P2) and minima (M1, M2) during walking. Footwear resulted in a significant increase in step length, stance duration, and peak vertical ground reaction force compared with barefoot walking. Peak acoustic velocity in the Achilles tendon (P1, P2) was significantly higher with running shoes. Peak acoustic velocity in the Achilles tendon was higher with footwear, suggesting that standard running shoes with a 10-mm heel offset increase tensile load in the Achilles tendon. Although further research is required, these findings question the therapeutic role of standard running shoes in Achilles tendinopathy.
The influence of heel height on utilized coefficient of friction during walking.
Blanchette, Mark G; Brault, John R; Powers, Christopher M
2011-05-01
Wearing high heel shoes has been associated with an increased potential for slips and falls. The association between wearing high heels and the increased potential for slipping suggests that the friction demand while wearing high heels may be greater when compared to wearing low heel shoes. The purpose of this study was to determine if heel height affects utilized friction (uCOF) during walking. A secondary purpose of this study was to compare kinematics at the ankle, knee, and hip that may explain uCOF differences among shoes with varied heel heights. Fifteen healthy women (mean age 24.5±2.5yrs) participated. Subjects walked at self-selected velocity under 3 different shoe conditions that varied in heel height (low: 1.27cm, medium: 6.35cm, and high: 9.53cm). Ground reaction forces (GRFs) were recorded using a force platform (1560Hz). Kinematic data were obtained using an 8 camera motion analysis system (120Hz). Utilized friction was calculated as the ratio of resultant shear force to vertical force. One-way repeated measures ANOVAs were performed to test for differences in peak uCOF, GRFs at peak uCOF and lower extremity joint angles at peak uCOF. On average, peak uCOF was found to increase with heel height. The increased uCOF observed in high heel shoes was related to an increase in the resultant shear force and decrease in the vertical force. Our results signify the need for proper public education and increased footwear industry awareness of how high heel shoes affect slip risk. Copyright © 2011 Elsevier B.V. All rights reserved.
Bus, Sicco A.; Haspels, Rob; Busch-Westbroek, Tessa E.
2011-01-01
OBJECTIVE Therapeutic footwear for diabetic foot patients aims to reduce the risk of ulceration by relieving mechanical pressure on the foot. However, footwear efficacy is generally not assessed in clinical practice. The purpose of this study was to assess the value of in-shoe plantar pressure analysis to evaluate and optimize the pressure-reducing effects of diabetic therapeutic footwear. RESEARCH DESIGN AND METHODS Dynamic in-shoe plantar pressure distribution was measured in 23 neuropathic diabetic foot patients wearing fully customized footwear. Regions of interest (with peak pressure >200 kPa) were selected and targeted for pressure optimization by modifying the shoe or insole. After each of a maximum of three rounds of modifications, the effect on in-shoe plantar pressure was measured. Successful optimization was achieved with a peak pressure reduction of >25% (criterion A) or below an absolute level of 200 kPa (criterion B). RESULTS In 35 defined regions, mean peak pressure was significantly reduced from 303 (SD 77) to 208 (46) kPa after an average 1.6 rounds of footwear modifications (P < 0.001). This result constitutes a 30.2% pressure relief (range 18–50% across regions). All regions were successfully optimized: 16 according to criterion A, 7 to criterion B, and 12 to criterion A and B. Footwear optimization lasted on average 53 min. CONCLUSIONS These findings suggest that in-shoe plantar pressure analysis is an effective and efficient tool to evaluate and guide footwear modifications that significantly reduce pressure in the neuropathic diabetic foot. This result provides an objective approach to instantly improve footwear quality, which should reduce the risk for pressure-related plantar foot ulcers. PMID:21610125
2012-01-01
Background Recent studies have shown an important reduction of joint overload during locomotion in elderly women with knee osteoarthritis (OA) after short-term use of minimalist shoes. Our aim is to investigate the chronic effect of inexpensive and minimalist footwear on the clinical and functional aspects of OA and gait biomechanics of elderly women with knee OA. Methods/Design Fifty-six elderly women with knee OA grade 2 or 3 (Kellgren and Lawrence) are randomized into blocks and allocated to either the intervention group, which will use flexible, non-heeled shoes— Moleca®—for six months for at least six hours daily, or the control group, which could not use these shoes. Neither group is undergoing physical therapy treatment throughout the intervention period. Moleca® is a women’s double canvas, flexible, flat walking shoe without heels, with a 5-mm anti-slip rubber sole and a 3-mm internal wedge of ethylene vinyl acetate. Both groups will be followed for six months and will be assessed at baseline condition, after three months, and after six months (end of intervention). All the assessments will be performed by a physiotherapist that is blind to the group allocation. The primary outcome is the pain Western Ontario and McMaster Universities Osteoarthritis (WOMAC) score. The secondary outcomes are global WOMAC score; joint stiffness and disability WOMAC scores; knee pain with a visual analogue scale; walking distance in the six-minute walk test; Lequesne score; amount and frequency (number of days) of paracetamol (500 mg) intake over six months; knee adduction moment during gait; global medical assessment score; and global patient auto-assessment score. At baseline, all patients receive a diary to record the hours of daily use of the footwear intervention; every two weeks, the same physiotherapist makes phone calls to all patients in order to verify adherence to treatment. The statistical analysis will be based on intention-to-treat analysis, as well as general linear models of analysis of variance for repeated measure to detect treatment–time interactions (α = 5%). Discussion This is the first randomized, clinical trial protocol to assess the chronic effect of minimalist footwear on the clinical and functional aspects and gait biomechanics of elderly women with knee osteoarthritis. We expect that the use of Moleca® shoes for six months will provide pain relief, reduction of the knee adduction moment when walking, and improve joint function in elderly women with knee OA, and that the treatment, thus, can be considered another inexpensive and easy-to-use option for conservative OA treatment. Trial registration NCT01342458 PMID:22788574
Collar height and heel counter-stiffness for ankle stability and athletic performance in basketball.
Liu, Hui; Wu, Zitian; Lam, Wing-Kai
2017-01-01
This study examined the effects of collar height and heel counter-stiffness of basketball shoes on ankle stability during sidestep cutting and athletic performance. 15 university basketball players wore customized shoes with different collar heights (high and low) and heel counter-stiffness (regular, stiffer and stiffest) for this study. Ankle stability was evaluated in sidestep cutting while athletic performance evaluated in jumping and agility tasks. All variables were analysed using two-way repeated ANOVA. Results showed shorter time to peak ankle inversion for both high collar and stiff heel counter conditions (P < 0.05), while smaller initial ankle inversion angle, peak inversion velocity and total range of inversion for wearing high collar shoes (P < 0.05). No shoe differences were found for performance variables. These findings imply that the collar height might play a larger role in lateral stability than heel counter-stiffness, while both collar height and counter-stiffness have no effect on athletic performance.
Impact of soft and hard insole density on postural stability in older adults.
Losa Iglesias, Marta Elena; Becerro de Bengoa Vallejo, Ricardo; Palacios Peña, Domingo
2012-01-01
A significant predictor of falls in the elderly population is attributed to postural instability. Thus, it is important to identify and implement practical clinical interventions to enhance postural stability in older adults. Shoe insoles have been identified as a mechanism to enhance postural control, and our study aimed to evaluate the impact of 2 shoe insoles on static standing balance in healthy, older adults compared with standing posture while barefoot. We hypothesized that both hard and soft shoe insoles would decrease postural sway compared with the barefoot condition. Indeed, excursion distances and sway areas were reduced, and sway velocity was decreased when wearing insoles. The hard insole was also effective when visual feedback was removed, suggesting that the more rigid an insole, the greater potential reduction in fall risk. Thus, shoe insoles may be a cost-effective, clinical intervention that is easy to implement to reduce the risk of falling in the elderly population. Copyright © 2012 Mosby, Inc. All rights reserved.
Effect of shoe type on descending a curb.
George, Juff; Heller, Michelle; Kuzel, Michael
2012-01-01
The aim of this study was to evaluate the effect of shoe type on the performance of women during curb descent. Performance during curb stepping may be explained by biomechanical research that has evaluated the kinematics of overground walking and stair ascent and descent. Studies have reported that women exhibit performance differences when wearing high heels, flip flops and sneakers during overground walking and stair ascent and descent. Thus, in addition to features of the curb, the type of shoe being worn may also affect performance. Although several studies have investigated curb stepping, no known studies have investigated the effects of different types of footwear on curb descent performance. This research was conducted in a real-world environment where participants wore three different types of shoes and performed a series of activities that involved curb stepping. The subjects were videotaped while descending a curb, allowing for observation of changes in gait parameters. Results of this study indicate that wearing high heels leads to performance differences as compared to wearing flip flops or sneakers.
Dimethyl fumarate contact dermatitis of the foot: an increasingly widespread disease.
D'Erme, Angelo Massimiliano; Bassi, Andrea; Lotti, Torello; Gola, Massimo
2012-01-01
Dimethyl fumarate (DMF) has been recognized as an extremely potent irritant and sensitizer found in sachets inside furniture. The first skin manifestations were correlated to contact with sofas, chairs, and other furniture. In these last years, some papers have reported a development of allergic contact dermatitis on the foot caused by DMF present in high concentration in shoes made in China. We report the case of a 37-year-old woman who presented with severe eczema on the foot shortly after having bought a new pair of shoes. The diagnosis was performed by patch tests with DMF in several dilutions, with pieces of internal and external parts of the shoes, and by chemical analysis of the shoes. In the last three years, goods containing DMF increased diffusely despite the augmentation on global preventive measures by Europe. Therefore, new cases of contact dermatitis could be dependent on DMF, and it is of note that this allergen is not included in most series for patch testing. © 2011 The International Society of Dermatology.
Individual Correlates of Podoconiosis in Areas of Varying Endemicity: A Case-Control Study
Molla, Yordanos B.; Le Blond, Jennifer S.; Wardrop, Nicola; Baxter, Peter; Atkinson, Peter M.; Newport, Melanie J.; Davey, Gail
2013-01-01
Background Podoconiosis is a non-filarial form of elephantiasis resulting in lymphedema of the lower legs. Previous studies have suggested that podoconiosis arises from the interplay of individual and environmental factors. Here, our aim was to understand the individual-level correlates of podoconiosis by comparing 460 podoconiosis-affected individuals and 707 unaffected controls. Methods/principal findings This was a case-control study carried out in six kebeles (the lowest governmental administrative unit) in northern Ethiopia. Each kebele was classified into one of three endemicity levels: ‘low’ (prevalence <1%), ‘medium’ (1–5%) and ‘high’ (>5%). A total of 142 (30.7%) households had two or more cases of podoconiosis. Compared to controls, the majority of the cases, especially women, were less educated (OR = 1.7, 95% CI = 1.3 to 2.2), were unmarried (OR = 3.4, 95% CI = 2.6–4.6) and had lower income (t = −4.4, p<0.0001). On average, cases started wearing shoes ten years later than controls. Among cases, age of first wearing shoes was positively correlated with age of onset of podoconiosis (r = 0.6, t = 12.5, p<0.0001). Among all study participants average duration of shoe wearing was less than 30 years. Between both cases and controls, people in ‘high’ and ‘medium’ endemicity kebeles were less likely than people in ‘low’ endemicity areas to ‘ever’ have owned shoes (OR = 0.5, 95% CI = 0.4–0.7). Conclusions Late use of shoes, usually after the onset of podoconiosis, and inequalities in education, income and marriage were found among cases, particularly among females. There were clustering of cases within households, thus interventions against podoconiosis will benefit from household-targeted case tracing. Most importantly, we identified a secular increase in shoe-wearing over recent years, which may give opportunities to promote shoe-wearing without increasing stigma among those at high risk of podoconiosis. PMID:24340109
The effect of foot orthoses and in-shoe wedges during cycling: a systematic review
2014-01-01
Background The use of foot orthoses and in-shoe wedges in cycling are largely based on theoretical benefits and anecdotal evidence. This review aimed to systematically collect all published research on this topic, critically evaluate the methods and summarise the findings. Methods Study inclusion criteria were: all empirical studies that evaluated the effects of foot orthoses or in-shoe wedges on cycling; outcome measures that investigated physiological parameters, kinematics and kinetics of the lower limb, and power; and, published in English. Studies were located by data-base searching (Medline, CINAHL, Embase and SPORTDiscus) and hand-searching in February 2014. Selected studies were assessed for methodological quality using a modified Quality Index. Data were synthesised descriptively. Meta-analysis was not performed as the included studies were not sufficiently homogeneous to provide a meaningful summary. Results Six studies were identified as meeting the eligibility criteria. All studies were laboratory-based and used a repeated measures design. The quality of the studies varied, with Quality Index scores ranging from 7 to 10 out of 14. Five studies investigated foot orthoses and one studied in-shoe wedges. Foot orthoses were found to increase contact area in the midfoot, peak pressures under the hallux and were perceived to provide better arch support, compared to a control. With respect to physiological parameters, contrasting findings have been reported regarding the effect foot orthoses have on oxygen consumption. Further, foot orthoses have been shown to not provide effects on lower limb kinematics and perceived comfort. Both foot orthoses and in-shoe wedges have been shown to provide no effect on power. Conclusion In general, there is limited high-quality research on the effects foot orthoses and in-shoe wedges provide during cycling. At present, there is some evidence that during cycling foot orthoses: increase contact area under the foot and increase plantar pressures under the hallux, but provide no gains in power. Based on available evidence, no definitive conclusions can be made about the effects foot orthoses have on lower limb kinematics and oxygen consumption, and the effect in-shoe wedges have on power during cycling. Future well-designed studies on this topic are warranted. PMID:24955129
Dausman, Alyssa M.; Doherty, John; Langevin, Christian D.
2010-01-01
Pilot points for parameter estimation were creatively used to address heterogeneity at both the well field and regional scales in a variable-density groundwater flow and solute transport model designed to test multiple hypotheses for upward migration of fresh effluent injected into a highly transmissive saline carbonate aquifer. Two sets of pilot points were used within in multiple model layers, with one set of inner pilot points (totaling 158) having high spatial density to represent hydraulic conductivity at the site, while a second set of outer points (totaling 36) of lower spatial density was used to represent hydraulic conductivity further from the site. Use of a lower spatial density outside the site allowed (1) the total number of pilot points to be reduced while maintaining flexibility to accommodate heterogeneity at different scales, and (2) development of a model with greater areal extent in order to simulate proper boundary conditions that have a limited effect on the area of interest. The parameters associated with the inner pilot points were log transformed hydraulic conductivity multipliers of the conductivity field obtained by interpolation from outer pilot points. The use of this dual inner-outer scale parameterization (with inner parameters constituting multipliers for outer parameters) allowed smooth transition of hydraulic conductivity from the site scale, where greater spatial variability of hydraulic properties exists, to the regional scale where less spatial variability was necessary for model calibration. While the model is highly parameterized to accommodate potential aquifer heterogeneity, the total number of pilot points is kept at a minimum to enable reasonable calibration run times.
NASA Technical Reports Server (NTRS)
1991-01-01
Al Gross transferred expertise obtained as an ILC engineer for NASA's Apollo program to the manufacture of athletic shoes. Gross substituted DuPont's Hytrel plastic for foam materials in the shoe's midsole, eliminating cushioning loss caused by body weight. An external pressurized shell applied from space suit technology was incorporated into the shoe. Stiffness and cushioning properties of the midsole were "tuned" by varying material thickness and styling lines. A stress free "blow molding" process adapted from NASA space suit design was also utilized. The resulting compression chamber midsole performed well in tests. It allows AVIA to re-configure for specific sports and is a "first step" toward a durable, foamless, non-fatiguing midsole.
Conservative management of pes valgus with plantar flexed talus, flexible.
Bleck, E E; Berzins, U J
1977-01-01
The type of flat foot that we have called pes valgus with plantar flexed talus, flexible, was treated in children with the Helfet heel seat or the UCBL shoe insert. In follow-up examination of 71 cases for periods longer than one year, 79 per cent of the patients showed that the UCBL shoe insert and the Helfet heel seat improved the clinical and roentgenographic appearance of the foot. The Helfet heel seat is recommended in cases where the plantar flexion angle of the talus is 35 to 45 degrees and the UCBL shoe insert in those cases of plantar flexion of the talus greater than 45 degrees.
Evaluation of the XSENS Force Shoe on ISS
NASA Technical Reports Server (NTRS)
Hanson, A. M.; Peters, B. T.; Newby, N.; Ploutz-Snyder, L
2014-01-01
The Advanced Resistive Exercise Device (ARED) offers crewmembers a wide range of resistance exercises but does not provide any type of load monitoring; any load data received are based on crew self-report of dialed in load. This lack of real-time ARED load monitoring severely limits research analysis. To address this issue, portable load monitoring technologies are being evaluated to act as a surrogate to ARED's failed instrumentation. The XSENS ForceShoe"TM" is a commercial portable load monitoring tool, and performed well in ground tests. The ForceShoe "TM" was recently deployed on the International Space Station (ISS), and is being evaluated as a tool to monitor ARED loads.
Pilot-scale verification of maximum tolerable hydrodynamic stress for mammalian cell culture.
Neunstoecklin, Benjamin; Villiger, Thomas K; Lucas, Eric; Stettler, Matthieu; Broly, Hervé; Morbidelli, Massimo; Soos, Miroslav
2016-04-01
Although several scaling bioreactor models of mammalian cell cultures are suggested and described in the literature, they mostly lack a significant validation at pilot or manufacturing scale. The aim of this study is to validate an oscillating hydrodynamic stress loop system developed earlier by our group for the evaluation of the maximum operating range for stirring, based on a maximum tolerable hydrodynamic stress. A 300-L pilot-scale bioreactor for cultivation of a Sp2/0 cell line was used for this purpose. Prior to cultivations, a stress-sensitive particulate system was applied to determine the stress values generated by stirring and sparging. Pilot-scale data, collected from 7- to 28-Pa maximum stress conditions, were compared with data from classical 3-L cultivations and cultivations from the oscillating stress loop system. Results for the growth behavior, analyzed metabolites, productivity, and product quality showed a dependency on the different environmental stress conditions but not on reactor size. Pilot-scale conditions were very similar to those generated in the oscillating stress loop model confirming its predictive capability, including conditions at the edge of failure.
Jia, Qianqian; Xiong, Huilei; Wang, Hui; Shi, Hanchang; Sheng, Xinying; Sun, Run; Chen, Guoqiang
2014-11-01
The generation of polyhydroxyalkanoates (PHA) from excess sludge fermentation liquid (SFL) was studied at lab and pilot scale. A PHA-accumulated bacterial consortium (S-150) was isolated from activated sludge using simulated SFL (S-SFL) contained high concentration volatile fatty acids (VFA) and nitrogen. The maximal PHA content accounted for 59.18% in S-SFL and dropped to 23.47% in actual SFL (L-SFL) of the dry cell weight (DCW) at lab scale. The pilot-scale integrated system comprised an anaerobic fermentation reactor (AFR), a ceramic membrane system (CMS) and a PHA production bio-reactor (PHAR). The PHA content from pilot-scale SFL (P-SFL) finally reached to 59.47% DCW with the maximal PHA yield coefficient (YP/S) of 0.17 g PHA/g COD. The results indicated that VFA-containing SFL was suitable for PHA production. The adverse impact of excess nitrogen and non-VFAs in SFL might be eliminated by pilot-scale domestication, which might resulted in community structure optimization and substrate selective ability improvement of S-150. Copyright © 2014 Elsevier Ltd. All rights reserved.
Comparison of corrosion scales in full and partially replaced ...
Preliminary results from scales formed 38 weeks following the LSL replacement simulations revealed differences in scale formations amongst varying water qualities and pipe sequence. Rigs fed with dechlorinated tap water show distinct pH gradients between the galvanic and the background zones. Hydrocerussite and litharge are found both in field and pilot rigs. However, plumbonacrite, massicot, scrutinyite and plattnerite are only present in pipes harvested directly from the field. Laurionite, leadhillite, cerussite and calcite are found in rigs from the pilot. Cerussite is mostly present in the galvanic zones, close to the connection to the Cu pipe. Different types of scales are present in the rigs from the pilot and from the field, suggesting that differences in the formation in the scales and therefore differences in lead release from the pipes. The particulate Pb fraction in water samples is more important in samples from the pilot than from the field, median concentrations are 85X higher in partial LSL and 10X higher in full LSL in the pilot. Lead phosphates are present in the scales from the rigs treated with orthophosphate. Complete results will be obtained by the end of July 2016. The main objective is to compare scales from full and partial LSLs harvested from the field and from a pilot setup fed with water from the same distribution system and subjected to water quality changes.
Pilot Scale Production and Testing of a Recombinant Staphylococcal Enterotoxin (SEB) Triple Mutant
2017-09-01
1 PILOT-SCALE PRODUCTION AND TESTING OF A RECOMBINANT STAPHYLOCOCCAL ENTEROTOXIN (SEB) TRIPLE MUTANT ECBC...Disclaimer The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorizing...TYPE Final 3. DATES COVERED (From - To) Mar 2010 – Dec 2011 4. TITLE AND SUBTITLE Pilot-Scale Production and Testing of a Recombinant
Foot strike patterns and collision forces in habitually barefoot versus shod runners.
Lieberman, Daniel E; Venkadesan, Madhusudhan; Werbel, William A; Daoud, Adam I; D'Andrea, Susan; Davis, Irene S; Mang'eni, Robert Ojiambo; Pitsiladis, Yannis
2010-01-28
Humans have engaged in endurance running for millions of years, but the modern running shoe was not invented until the 1970s. For most of human evolutionary history, runners were either barefoot or wore minimal footwear such as sandals or moccasins with smaller heels and little cushioning relative to modern running shoes. We wondered how runners coped with the impact caused by the foot colliding with the ground before the invention of the modern shoe. Here we show that habitually barefoot endurance runners often land on the fore-foot (fore-foot strike) before bringing down the heel, but they sometimes land with a flat foot (mid-foot strike) or, less often, on the heel (rear-foot strike). In contrast, habitually shod runners mostly rear-foot strike, facilitated by the elevated and cushioned heel of the modern running shoe. Kinematic and kinetic analyses show that even on hard surfaces, barefoot runners who fore-foot strike generate smaller collision forces than shod rear-foot strikers. This difference results primarily from a more plantarflexed foot at landing and more ankle compliance during impact, decreasing the effective mass of the body that collides with the ground. Fore-foot- and mid-foot-strike gaits were probably more common when humans ran barefoot or in minimal shoes, and may protect the feet and lower limbs from some of the impact-related injuries now experienced by a high percentage of runners.
The effect of textured ballet shoe insoles on ankle proprioception in dancers.
Steinberg, Nili; Waddington, Gordon; Adams, Roger; Karin, Janet; Tirosh, Oren
2016-01-01
Impaired ankle inversion movement discrimination (AIMD) can lead to ankle sprain injuries. The aim of this study was to explore whether wearing textured insoles improved AIMD compared with barefoot, ballet shoes and smooth insoles, among dancers. Forty-four adolescent male and female dancers, aged 13-19, from The Australian Ballet School were tested for AIMD while barefoot, wearing ballet shoes, smooth insoles, and textured insoles. No interaction was found between the four different footwear conditions, the two genders, or the two levels of dancers in AIMD (p > .05). An interaction was found between the four different footwear conditions and the three tertiles when tested in ballet shoes (p = .006). Although significant differences were found between the upper tertiles and the lower tertiles when tested with ballet shoes, barefoot and with smooth insoles (p < .001; p < .001; p = .047, respectively), when testing with textured insoles dancers in the lower tertile obtained similar scores to those obtained by dancers in the upper tertile (p = .911). Textured insoles improved the discrimination scores of dancers with low AIMD, suggesting that textured insoles may trigger the cutaneous receptors in the plantar surface, increasing the awareness of ankle positioning, which in turn might decrease the chance of ankle injury. Copyright © 2015 Elsevier Ltd. All rights reserved.
An investigation into the presence of petrol on the clothing and shoes of members of the public.
Coulson, Sally; Morgan-Smith, Rian; Mitchell, Susan; McBriar, Todd
2008-02-25
First, the clothing and shoes from 29 participants who had recently filled their vehicles with petrol were analysed for any traces of petrol. No traces of petrol were found on any of these items. Secondly, the clothing and shoes from 17 participants who had recently used a petrol-powered lawn mower were also analysed for petrol. Petrol was detected on two pairs of shoes from different participants. Components of petrol were detected on a set of clothing from a third participant, however, there were insufficient components present in this sample to confirm the presence of petrol. No traces of petrol were found on the items from the remaining 14 participants. Thirdly, the clothing from a forecourt attendant, a mechanic and a professional lawn mower were analysed at the end of a number of shifts. Petrol was detected on the upper and lower clothing from the forecourt attendant at the end of one shift. No petrol residues were found on the forecourt attendant after a second shift, or on the mechanic's clothing after two separate shifts or on the professional lawn mower's clothing after three separate shifts. These results can be used to assist the forensic analyst in assessing the chance of finding traces of petrol on clothing and shoes after the wearer has performed common activities that involve petrol.
Habitual Minimalist Shod Running Biomechanics and the Acute Response to Running Barefoot.
Tam, Nicholas; Darragh, Ian A J; Divekar, Nikhil V; Lamberts, Robert P
2017-09-01
The aim of the study was to determine whether habitual minimalist shoe runners present with purported favorable running biomechanithat reduce running injury risk such as initial loading rate. Eighteen minimalist and 16 traditionally cushioned shod runners were assessed when running both in their preferred training shoe and barefoot. Ankle and knee joint kinetics and kinematics, initial rate of loading, and footstrike angle were measured. Sagittal ankle and knee joint stiffness were also calculated. Results of a two-factor ANOVA presented no group difference in initial rate of loading when participants were running either shod or barefoot; however, initial loading rate increased for both groups when running barefoot (p=0.008). Differences in footstrike angle were observed between groups when running shod, but not when barefoot (minimalist:8.71±8.99 vs. traditional: 17.32±11.48 degrees, p=0.002). Lower ankle joint stiffness was found in both groups when running barefoot (p=0.025). These findings illustrate that risk factors for injury potentially differ between the two groups. Shoe construction differences do change mechanical demands, however, once habituated to the demands of a given shoe condition, certain acute favorable or unfavorable responses may be moderated. The purported benefits of minimalist running shoes in mimicking habitual barefoot running is questioned, and risk of injury may not be attenuated. © Georg Thieme Verlag KG Stuttgart · New York.
Code of Federal Regulations, 2010 CFR
2010-01-01
... error. (b) Shoes labeled and marketed for long-distance running are so designed that they might cause or contribute to the causing of muscle or tendon injury if used for long-distance running. The shoes are... example, a knife has a sharp blade and is capable of seriously injuring someone. This very sharpness, how...
Code of Federal Regulations, 2014 CFR
2014-01-01
... error. (b) Shoes labeled and marketed for long-distance running are so designed that they might cause or contribute to the causing of muscle or tendon injury if used for long-distance running. The shoes are... example, a knife has a sharp blade and is capable of seriously injuring someone. This very sharpness, how...
Code of Federal Regulations, 2012 CFR
2012-01-01
... error. (b) Shoes labeled and marketed for long-distance running are so designed that they might cause or contribute to the causing of muscle or tendon injury if used for long-distance running. The shoes are... example, a knife has a sharp blade and is capable of seriously injuring someone. This very sharpness, how...
Code of Federal Regulations, 2011 CFR
2011-01-01
... error. (b) Shoes labeled and marketed for long-distance running are so designed that they might cause or contribute to the causing of muscle or tendon injury if used for long-distance running. The shoes are... example, a knife has a sharp blade and is capable of seriously injuring someone. This very sharpness, how...
ERIC Educational Resources Information Center
Henderson, Nancy
2008-01-01
This article describes the struggles of two tough moms who team up to start their own company. Fed up with a lack of stylish, properly-fitting shoes for their children with cerebral palsy, they established "Keeping Pace" which currently offers a selection of stylish girls' and boys' athletic sneakers and casual dress shoes for boys, all sold…
Humbert, H; Machinal, C; Labaye, Ivan; Schrotter, J C
2011-01-01
The determination of the virus retention capabilities of UF units during operation is essential for the operators of drinking water treatment facilities in order to guarantee an efficient and stable removal of viruses through time. In previous studies, an effective method (MS2-phage challenge tests) was developed by the Water Research Center of Veolia Environnement for the measurement of the virus retention rates (Log Removal Rate, LRV) of commercially available hollow fiber membranes at lab scale. In the present work, the protocol for monitoring membrane performance was transferred from lab scale to pilot scale. Membrane performances were evaluated during pilot trial and compared to the results obtained at lab scale with fibers taken from the pilot plant modules. PFU culture method was compared to RT-PCR method for the calculation of LRV in both cases. Preliminary tests at lab scale showed that both methods can be used interchangeably. For tests conducted on virgin membrane, a good consistency was observed between lab and pilot scale results with the two analytical methods used. This work intends to show that a reliable determination of the membranes performances based on RT-PCR analytical method can be achieved during the operation of the UF units.
The prevalence of foot problems in older women: a cause for concern.
Dawson, Jill; Thorogood, Margaret; Marks, Sally-Anne; Juszczak, Ed; Dodd, Chris; Lavis, Grahame; Fitzpatrick, Ray
2002-06-01
Painful feet are an extremely common problem amongst older women. Such problems increase the risk of falls and hamper mobility. The aetiology of painful and deformed feet is poorly understood. Data were obtained during a pilot case-control study about past high heel usage in women, in relation to osteoarthritis of the knee. A total of 127 women aged 50-70 were interviewed (31 cases, 96 controls); case-control sets were matched for age. The following information was obtained about footwear: (1) age when first wore shoes with heels 1, 2 and 3 inches high; (2) height of heels worn for work; (3) maximum height of heels worn regularly for work, going out socially and for dancing, in 10-year age bands. Information about work-related activities and lifetime occupational history was gathered using a Life-Grid. The interview included a foot inspection. Foot problems, particularly foot arthritis, affected considerably more cases than controls (45 per cent versus 16 per cent, p = 0.001) and was considered a confounder. Cases were therefore excluded from subsequent analyses. Amongst controls, the prevalence of any foot problems was very high (83 per cent). All women had regularly worn one inch heels and few (8 per cent) had never worn 2 inch heels. Foot problems were significantly associated with a history of wearing relatively lower heels. Few work activities were related to foot problems; regular lifting was associated with foot pain (p = 0.03). Most women in this age-group have been exposed to high-heeled shoes over many years, making aetiological research difficult in this area. Foot pain and deformities are widespread. The relationship between footwear, occupational activities and foot problems is a complex one that deserves considerably more research.
Gender differences in adult foot shape: implications for shoe design.
Wunderlich, R E; Cavanagh, P R
2001-04-01
To analyze gender differences in foot shape in a large sample of young individuals. Univariate t-tests and multivariate discriminant analyses were used to assess 1) significant differences between men and women for each foot and leg dimension, standardized to foot length, 2) the reliability of classification into gender classes using the absolute and standardized variable sets, and 3) the relative importance of each variable to the discrimination between men and women. Men have longer and broader feet than women for a given stature. After normalization of the measurements by foot length, men and women were found to differ significantly in two calf, five ankle, and four foot shape variables. Classification by gender using absolute values was correct at least 93% of the time. Using the variables standardized to foot length, gender was correctly classified 85% of the time. This study demonstrates that female feet and legs are not simply scaled-down versions of male feet but rather differ in a number of shape characteristics, particularly at the arch, the lateral side of the foot, the first toe, and the ball of the foot. These differences should be taken into account in the design and manufacture of women's sport shoes.
This document presents summary data on the results of various treatability studies (bench and pilot scale), conducted at three different sites where soils were contaminated with dioxins or PCBs. The synopsis is meant to show rough performance levels under a variety of differen...
RELATIONSHIPS BETWEEN LABORATORY AND PILOT-SCALE COMBUSTION OF SOME CHLORINATED HYDROCARBONS
Factors governing the occurence of trace amounts of residual organic substance emmissions (ROSEs) in full-scale incierators are not fully understood. Pilot-scale spray combustion expereiments involving some liquid chlorinated hydrocarbons (CHCs) and their dilute mixtures with hy...
The Development, Test, and Evaluation of Three Pilot Performance Reference Scales.
ERIC Educational Resources Information Center
Horner, Walter R.; And Others
A set of pilot performance reference scales was developed based upon airborne Audio-Video Recording (AVR) of student performance in T-37 undergraduate Pilot Training. After selection of the training maneuvers to be studied, video tape recordings of the maneuvers were selected from video tape recordings already available from a previous research…
Experiments with airplane brakes
NASA Technical Reports Server (NTRS)
Michael, Franz
1931-01-01
This report begins by examining the forces on the brake shoes. For the determination of the load distribution over the shoes it was assumed that the brake linings follow Hooke's law, are neatly fitted and bedded in by wear. The assumption of Hooke's law, that is, the proportionality between compression of the lining and the absorption of force, is fulfilled to a certain extent for the loading, as becomes apparent from the load tests described further on. But there is a material discrepancy at unloading. From the load distribution we merely defined the position of the normal force resultant, while for the rest, the effect of the distribution was disregarded in the comparison of the different shoe dispositions.
Effects of aluminum hinged shoes on the structure of contracted feet in Thoroughbred yearlings.
Tanaka, Kousuke; Hiraga, Atsushi; Takahashi, Toshiyuki; Kuwano, Atsutoshi; Morrison, Scott Edward
2015-01-01
We applied aluminum hinged shoes (AHSs) to the club foot-associated contracted feet of 11 Thoroughbred yearlings to examine the effects of the shoes on the shape of the hoof and third phalanx (P III). After 3 months of AHS use, the size of the affected hooves increased significantly, reaching the approximate size of the healthy contralateral hooves with respect to the maximum lateral width of the foot, the mean ratio of the bearing border width to the coronary band width, and the mean ratio of the solar surface width to the articular surface width. These results suggest that the AHSs corrected the contracted feet in these yearling horses.
TASK 2: QUENCH ZONE SIMULATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fusselman, Steve
Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. A key feature of the AR gasifier design is the transition from the gasifier outlet into the quench zone, where the raw syngas is cooled to ~ 400°C by injection and vaporization of atomized water. Earlier pilot plant testing revealed a propensity for the original gasifier outlet design to accumulate slag in the outlet, leading to erratic syngas flow from themore » outlet. Subsequent design modifications successfully resolved this issue in the pilot plant gasifier. In order to gain greater insight into the physical phenomena occurring within this zone, AR developed a cold flow simulation apparatus with Coanda Research & Development with a high degree of similitude to hot fire conditions with the pilot scale gasifier design, and capable of accommodating a scaled-down quench zone for a demonstration-scale gasifier. The objective of this task was to validate similitude of the cold flow simulation model by comparison of pilot-scale outlet design performance, and to assess demonstration scale gasifier design feasibility from testing of a scaled-down outlet design. Test results did exhibit a strong correspondence with the two pilot scale outlet designs, indicating credible similitude for the cold flow simulation device. Testing of the scaled-down outlet revealed important considerations in the design and operation of the demonstration scale gasifier, in particular pertaining to the relative momentum between the downcoming raw syngas and the sprayed quench water and associated impacts on flow patterns within the quench zone. This report describes key findings from the test program, including assessment of pilot plant configuration simulations relative to actual results on the pilot plant gasifier and demonstration plant design recommendations, based on cold flow simulation results.« less
Spinoff from a Moon Boot (Dynacoil)
NASA Technical Reports Server (NTRS)
1986-01-01
Three dimensional "space" material used in the Apollo lunar suit has been encapsulated in a polyurethane foam carrier and forms the base of the Dynacoil Athletic shoe cushioning system. Kangaroos USA, Inc. developed the system after a search by ARAC. The shoes lose almost none of their shock absorbing capabilities and have superior stability and motion control.
ERIC Educational Resources Information Center
Sandifer, Cody
2009-01-01
Students' eyes grow wide with wonder as they get a motor to work or make a bulb light for the first time. As these daunting feats of electrical engineering remind us, teaching electricity is invariably rewarding and worthwhile. In this inquiry-based science project, elementary students work in pairs to design and wire a shoe box "room" that meets…
Code of Federal Regulations, 2013 CFR
2013-01-01
... error. (b) Shoes labeled and marketed for long-distance running are so designed that they might cause or contribute to the causing of muscle or tendon injury if used for long-distance running. The shoes are... example, a knife has a sharp blade and is capable of seriously injuring someone. This very sharpness, how...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... Determinations: ``The Holocaust--Uniforms, Canisters, and Shoes'' SUMMARY: Notice is hereby given of the... that the objects to be included in the exhibition ``The Holocaust--Uniforms, Canisters, and Shoes.... Holocaust Memorial Museum, Washington, DC, from on or about September 2010 until on or about September 2015...
[Work and health status of workers of shoe manufacturing industries].
Mironov, A I; Kirillov, V F; Bul'bulian, M A; Golubeva, A P; Kraeva, G K; Kuznetsova, A I; Nikolaeva, G M
2001-01-01
According to work conditions, severity and intensity, the main shoe-making occupations are assigned to III class of I-II jeopardy grade. If new technology applied, the work is assigned to I-II jeopardy class, being optimal--allowable. Increased mortality with liver cancer and lympholeucosis was revealed among workers contacting chloroprene.
Shoe-Floor Interactions in Human Walking With Slips: Modeling and Experiments.
Trkov, Mitja; Yi, Jingang; Liu, Tao; Li, Kang
2018-03-01
Shoe-floor interactions play a crucial role in determining the possibility of potential slip and fall during human walking. Biomechanical and tribological parameters influence the friction characteristics between the shoe sole and the floor and the existing work mainly focus on experimental studies. In this paper, we present modeling, analysis, and experiments to understand slip and force distributions between the shoe sole and floor surface during human walking. We present results for both soft and hard sole material. The computational approaches for slip and friction force distributions are presented using a spring-beam networks model. The model predictions match the experimentally observed sole deformations with large soft sole deformation at the beginning and the end stages of the stance, which indicates the increased risk for slip. The experiments confirm that both the previously reported required coefficient of friction (RCOF) and the deformation measurements in this study can be used to predict slip occurrence. Moreover, the deformation and force distribution results reported in this study provide further understanding and knowledge of slip initiation and termination under various biomechanical conditions.
Yang, Y Tony; Kels, Charles G
2016-08-01
As the overall incidence of Alzheimer's disease rises, the burden on caregivers and law enforcement institutions will increase to find individuals who wander. As such, technological innovations that could reduce this burden will become increasingly important. One such innovation is the GPS Shoe. As with any innovation involving the transfer of personal data to third parties, potential pitfalls with respect to loss of privacy and inadequate consent counterbalance the substantial promise of GPS shoes. To some extent, advance planning can mitigate these concerns, wherein individuals willingly elect to be monitored before their impairments progress to a stage that makes such authorization impractical. Nonetheless, tension may arise between the peace of mind of caregivers and family members and other important considerations at the intersection of autonomy, privacy, dignity, and consent. Ultimately, confronting ethical, legal, and policy considerations at the front end of product development and deployment will help ensure that new technologies are used wisely and that their lifesaving potential is realized. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.
NASA Astrophysics Data System (ADS)
Kiss, I.; Cioată, V. G.; Ratiu, S. A.; Rackov, M.; Penčić, M.
2018-01-01
Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. This article focuses on expressing the multiple linear regression model related to the hardness assurance by the chemical composition of the phosphorous cast irons destined to the brake shoes, having in view that the regression coefficients will illustrate the unrelated contributions of each independent variable towards predicting the dependent variable. In order to settle the multiple correlations between the hardness of the cast-iron brake shoes, and their chemical compositions several regression equations has been proposed. Is searched a mathematical solution which can determine the optimum chemical composition for the hardness desirable values. Starting from the above-mentioned affirmations two new statistical experiments are effectuated related to the values of Phosphorus [P], Manganese [Mn] and Silicon [Si]. Therefore, the regression equations, which describe the mathematical dependency between the above-mentioned elements and the hardness, are determined. As result, several correlation charts will be revealed.
Using sensors to measure activity in people with stroke.
Fulk, George D; Sazonov, Edward
2011-01-01
The purpose of this study was to determine the ability of a novel shoe-based sensor that uses accelerometers, pressure sensors, and pattern recognition with a support vector machine (SVM) to accurately identify sitting, standing, and walking postures in people with stroke. Subjects with stroke wore the shoe-based sensor while randomly assuming 3 main postures: sitting, standing, and walking. A SVM classifier was used to train and validate the data to develop individual and group models, which were tested for accuracy, recall, and precision. Eight subjects participated. Both individual and group models were able to accurately identify the different postures (99.1% to 100% individual models and 76.9% to 100% group models). Recall and precision were also high for both individual (0.99 to 1.00) and group (0.82 to 0.99) models. The unique combination of accelerometer and pressure sensors built into the shoe was able to accurately identify postures. This shoe sensor could be used to provide accurate information on community performance of activities in people with stroke as well as provide behavioral enhancing feedback as part of a telerehabilitation intervention.
2003-08-29
KENNEDY SPACE CENTER, FLA. - A KSC employee uses a clean-air shower before entering a clean room. Streams of pressurized air directed at the occupant from nozzles in the chamber's ceiling and walls are designed to dislodge particulate matter from hair, clothing and shoes. The adhesive mat on the floor captures soil from shoe soles, as well as particles that fall on its surface. Particulate matter has the potential to contaminate the space flight hardware being stored or processed in the clean room. The shower is part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.
Medial compressible forefoot sole elements reduce ankle inversion in lateral SSC jumps.
Fleischmann, Jana; Mornieux, Guillaume; Gehring, Dominic; Gollhofer, Albert
2013-06-01
Sideward movements are associated with high incidences of lateral ankle sprains. Special shoe constructions might be able to reduce these injuries during lateral movements. The purpose of this study was to investigate whether medial compressible forefoot sole elements can reduce ankle inversion in a reactive lateral movement, and to evaluate those elements' influence on neuromuscular and mechanical adjustments in lower extremities. Foot placement and frontal plane ankle joint kinematics and kinetics were analyzed by 3-dimensional motion analysis. Electromyographic data of triceps surae, peroneus longus, and tibialis anterior were collected. This modified shoe reduced ankle inversion in comparison with a shoe with a standard sole construction. No differences in ankle inversion moments were found. With the modified shoe, foot placement occurred more internally rotated, and muscle activity of the lateral shank muscles was reduced. Hence, lateral ankle joint stability during reactive sideward movements can be improved by these compressible elements, and therefore lower lateral shank muscle activity is required. As those elements limit inversion, the strategy to control inversion angles via a high external foot rotation does not need to be used.
Foot overuse diseases in rock climbing: an epidemiologic study.
Buda, Roberto; Di Caprio, Francesco; Bedetti, Letizia; Mosca, Massimiliano; Giannini, Sandro
2013-01-01
Literature examining the incidence of foot diseases in rock climbing is limited to traumatic injuries. We examined a large sample of climbers, assessed the chronic diseases of the foot, and correlated them with foot morphology, shoe type, and type of climbing practiced. Between May 1 and September 30, 2009, 144 climbers (mean age, 31.7 years) were examined to analyze the effect of rock climbing on the various foot diseases found at the time of the evaluation. Eighty-six percent of the climbers were affected by a pathologic condition. Nail disease was found in 65.3% of patients, followed by recurrent ankle sprains (27.8%), retrocalcaneal bursitis (19.4%), Achilles tendinitis (12.5%), metatarsalgia (12.5%), and plantar fasciitis (5.6%). Male sex, the use of high-type shoes, the high degree of climbing difficulty, and the competitive level were often related to the onset of foot diseases. Climbing shoes are usually smaller than common footwear. This "shoe-size reduction" averaged 2.3 sizes, forcing the foot into a supinated and cavus posture that favors lateral instability. The posterior edge of the shoe aperture produces increased pressure on the heel, with retrocalcaneal bursitis. Overuse foot diseases related to rock climbing are particularly frequent and debilitating. Detailed knowledge of these diseases and their predisposing factors may help us implement effective preventive or therapeutic measures, including changes in the type of climbing, correction of body weight, degree of difficulty, footwear, orthoses, and measures that maximize the support of the foot to the ground.
Haptic Foot Pedal: Influence of Shoe Type, Age, and Gender on Subjective Pulse Perception.
Geitner, Claudia; Birrell, Stewart; Krehl, Claudia; Jennings, Paul
2018-06-01
This study investigates the influence of shoe type (sneakers and safety boots), age, and gender on the perception of haptic pulse feedback provided by a prototype accelerator pedal in a running stationary vehicle. Haptic feedback can be a less distracting alternative to traditionally visual and auditory in-vehicle feedback. However, to be effective, the device delivering the haptic feedback needs to be in contact with the person. Factors such as shoe type vary naturally over the season and could render feedback that is perceived well in one situation, unnoticeable in another. In this study, we evaluate factors that can influence the subjective perception of haptic feedback in a stationary but running car: shoe type, age, and gender. Thirty-six drivers within three age groups (≤39, 40-59, and ≥60) took part. For each haptic feedback, participants rated intensity, urgency, and comfort via a questionnaire. The perception of the haptic feedback is significantly influenced by the interaction between the pulse's duration and force amplitude and the participant's age and gender but not shoe type. The results indicate that it is important to consider different age groups and gender in the evaluation of haptic feedback. Future research might also look into approaches to adapt haptic feedback to the individual driver's preferences. Findings from this study can be applied to the design of an accelerator pedal in a car, for example, for a nonvisual in-vehicle warning, but also to plan user studies with a haptic pedal in general.
Barefoot versus shoe running: from the past to the present.
Kaplan, Yonatan
2014-02-01
Barefoot running is not a new concept, but relatively few people choose to engage in barefoot running on a regular basis. Despite the technological developments in modern running footwear, as many as 79% of runners are injured every year. Although benefits of barefoot running have been proposed, there are also potential risks associated with it. To review the evidence-based literature concerning barefoot/minimal footwear running and the implications for the practicing physician. Multiple publications were reviewed using an electronic search of databases such as Medline, Cinahl, Embase, PubMed, and Cochrane Database from inception until August 30, 2013 using the search terms barefoot running, barefoot running biomechanics, and shoe vs. barefoot running. Ninety-six relevant articles were found. Most were reviews of biomechanical and kinematic studies. There are notable differences in gait and other parameters between barefoot running and shoe running. Based on these findings and much anecdotal evidence, one could conclude that barefoot runners should have fewer injuries, better performance, or both. Several athletic shoe companies have designed running shoes that attempt to mimic the barefoot condition, and thus garner the purported benefits of barefoot running. Although there is no evidence that confirms or refutes improved performance and reduced injuries in barefoot runners, many of the claimed disadvantages to barefoot running are not supported by the literature. Nonetheless, it seems that barefoot running may be an acceptable training method for athletes and coaches, as it may minimize the risks of injury.
Unstable rocker shoes promote recovery from marathon-induced muscle damage in novice runners.
Nakagawa, K; Inami, T; Yonezu, T; Kenmotsu, Y; Narita, T; Kawakami, Y; Kanosue, K
2018-02-01
We recently reported that wearing unstable rocker shoes (Masai Barefoot Technology: MBT) may enhance recovery from marathon race-induced fatigue. However, this earlier study only utilized a questionnaire. In this study, we evaluated MBT utilizing objective physiological measures of recovery from marathon-induced muscle damages. Twenty-five university student novice runners were divided into two groups. After running a full marathon, one group wore MBT shoes (MBT group), and the control group (CON) wore ordinary shoes daily for 1 week following the race. We measured maximal isometric joint torque, muscle hardness (real time tissue elastography of the strain ratio) in the lower limb muscles before, immediately after, and 1, 3, and 8 days following the marathon. We calculated the magnitude of recovery by observing the difference in each value between the first measurement and the latter measurements. Results showed that isometric torques in knee flexion recovered at the first day after the race in the MBT group while it did not recover even at the eighth day in the CON group. Muscle hardness in the gastrocnemius and vastus lateralis showed enhanced recovery in the MBT group in comparison with the CON group. Also for muscle hardness in the tibialis anterior and biceps femoris, the timing of recovery was delayed in the CON group. In conclusion, wearing MBT shoes enhanced recovery in lower leg and thigh muscles from muscle damage induced by marathon running. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Effect on injuries of assigning shoes based on foot shape in air force basic training.
Knapik, Joseph J; Brosch, Lorie C; Venuto, Margaret; Swedler, David I; Bullock, Steven H; Gaines, Lorraine S; Murphy, Ryan J; Tchandja, Juste; Jones, Bruce H
2010-01-01
This study examined whether assigning running shoes based on the shape of the bottom of the foot (plantar surface) influenced injury risk in Air Force Basic Military Training (BMT) and examined risk factors for injury in BMT. Data were collected from BMT recruits during 2007; analysis took place during 2008. After foot examinations, recruits were randomly consigned to either an experimental group (E, n=1042 men, 375 women) or a control group (C, n=913 men, 346 women). Experimental group recruits were assigned motion control, stability, or cushioned shoes for plantar shapes indicative of low, medium, or high arches, respectively. Control group recruits received a stability shoe regardless of plantar shape. Injuries during BMT were determined from outpatient visits provided from the Defense Medical Surveillance System. Other injury risk factors (fitness, smoking, physical activity, prior injury, menstrual history, and demographics) were obtained from a questionnaire, existing databases, or BMT units. Multivariate Cox regression controlling for other risk factors showed little difference in injury risk between the groups among men (hazard ratio [E/C]=1.11, 95% CI=0.89-1.38) or women (hazard ratio [E/C]=1.20, 95% CI= 0.90-1.60). Independent injury risk factors among both men and women included low aerobic fitness and cigarette smoking. This prospective study demonstrated that assigning running shoes based on the shape of the plantar surface had little influence on injury risk in BMT even after controlling for other injury risk factors. Published by Elsevier Inc.
Bonacci, Jason; Saunders, Philo U; Hicks, Amy; Rantalainen, Timo; Vicenzino, Bill Guglielmo T; Spratford, Wayne
2013-04-01
The purpose of this study was to determine the changes in running mechanics that occur when highly trained runners run barefoot and in a minimalist shoe, and specifically if running in a minimalist shoe replicates barefoot running. Ground reaction force data and kinematics were collected from 22 highly trained runners during overground running while barefoot and in three shod conditions (minimalist shoe, racing flat and the athlete's regular shoe). Three-dimensional net joint moments and subsequent net powers and work were computed using Newton-Euler inverse dynamics. Joint kinematic and kinetic variables were statistically compared between barefoot and shod conditions using a multivariate analysis of variance for repeated measures and standardised mean differences calculated. There were significant differences between barefoot and shod conditions for kinematic and kinetic variables at the knee and ankle, with no differences between shod conditions. Barefoot running demonstrated less knee flexion during midstance, an 11% decrease in the peak internal knee extension and abduction moments and a 24% decrease in negative work done at the knee compared with shod conditions. The ankle demonstrated less dorsiflexion at initial contact, a 14% increase in peak power generation and a 19% increase in the positive work done during barefoot running compared with shod conditions. Barefoot running was different to all shod conditions. Barefoot running changes the amount of work done at the knee and ankle joints and this may have therapeutic and performance implications for runners.
Verma, Santosh K; Chang, Wen Ruey; Courtney, Theodore K; Lombardi, David A; Huang, Yueng-Hsiang; Brennan, Melanye J; Mittleman, Murray A; Ware, James H; Perry, Melissa J
2011-04-01
Slips and falls are a leading cause of injury at work. Few studies, however, have systematically examined risk factors of slipping outside the laboratory environment. This study examined the association between floor surface characteristics, slip-resistant shoes, floor cleaning frequency and the risk of slipping in limited-service restaurant workers. 475 workers from 36 limited-service restaurants from three major chains in six states in the USA were recruited to participate in a prospective cohort study of workplace slipping. Kitchen floor surface roughness and coefficient of friction (COF) were measured in eight working areas and then averaged within each restaurant. The use of slip-resistant shoes was determined by examining the participant's shoes and noting the presence of a 'slip-resistant' marking on the sole. Restaurant managers reported the frequency of daily kitchen floor cleaning. Participants reported their slip experience and work hours weekly for up to 12 weeks. The survey materials were made available in three languages: English, Spanish and Portuguese. The associations between rate of slipping and risk factors were assessed using a multivariable negative binomial generalised estimating equation model. The mean of individual slipping rate varied among the restaurants from 0.02 to 2.49 slips per 40 work hours. After adjusting for age, gender, BMI, education, primary language, job tenure and restaurant chain, the use of slip-resistant shoes was associated with a 54% reduction in the reported rate of slipping (95% CI 37% to 64%), and the rate of slipping decreased by 21% (95% CI 5% to 34%) for each 0.1 increase in the mean kitchen COF. Increasing floor cleaning frequency was significantly associated with a decreasing rate of slipping when considered in isolation but not after statistical adjustment for other factors. These results provide support for the use of slip-resistant shoes and measures to increase COF as preventive interventions to reduce slips, falls and injuries.
Shultz, R; Birmingham, T B; Jenkyn, T R
2011-12-01
This study examined the absolute differences in neutral positions of the joints of the foot with different footwear. This addresses the question of whether separate static trials should be collected for each footwear condition to establish neutral positions. A multi-segment kinematic foot model and optical motion analysis system measured four inter-segmental joints of the foot: (1) hindfoot-to-midfoot in the frontal plane, (2) forefoot-to-midfoot in the frontal plane, (3) hallux-to-forefoot in the sagittal plane, and (4) the height-to-length ratio of the medial longitudinal arch. Barefoot was compared to three shoe condition using Nike Free trainers of varying longitudinal torsional stiffness in ten male volunteers. There was high variability both within subjects and shoe conditions. Shoes in general tended to raise the medial longitudinal arch and dorsiflex the hallux compared to barefoot condition. For the hallux, a minimum important difference of 5° or more was found between shoe conditions and the barefoot condition for majority of the subjects in all three shoe conditions (90% for control, 60% for least stiff, 50% for most stiff). This was less for the frontal plane inter-segmental joints of the foot where 50% of the subjects experience a change above 5° for at least one of the conditions. The choice of using condition-specific neutral trials versus a single common neutral trials should be considered carefully. A single common trial allows for differences in absolute joint angles to be compared between footwear conditions. This can be important clinically to determine whether a joint is approaching its end-of-range and therefore at risk of injury. Several condition-specific neutral trials allows for subtleties in kinematic waveforms to be better compared between conditions, since absolute shifts in joint angles due to changing neutral position are removed and the waveforms are better aligned. Copyright © 2011. Published by Elsevier Ltd.
Paterson, Kade L; Hinman, Rana S; Metcalf, Ben R; Bennell, Kim L; Wrigley, Tim V
2017-01-01
Understanding how kinematic multi-segment foot modelling influences the utility of Plug-in-Gait calculations of the knee adduction moment (KAM) during shod walking is relevant to knee osteoarthritis (OA). Multi-segment foot markers placed on the skin through windows cut in to the shoe provide a more accurate representation of foot mechanics than the traditional marker set used by Plug-in-Gait, which uses fewer markers, placed on the shoe itself. We aimed to investigate whether Plug-in-Gait calculation of the KAM differed when using a kinematic multi-segment foot model compared to the traditional Plug-in-Gait marker set. Twenty people with medial knee OA underwent gait analysis in two test conditions: i) Plug-in-Gait model with its two standard foot markers placed on the shoes and; ii) Plug-in-Gait with the heel marker virtualised from a modified-Oxford Foot Model where 8 ft markers were placed on the skin through windows cut in shoe uppers. Outcomes were the peak KAM, KAM impulse and other knee kinetic and kinematic variables. There were no differences ( P > 0.05) in any gait variables between conditions. Excellent agreement was found for all outcome variables, with high correlations ( r > 0.88-0.99, P < 0.001), narrow limits of agreement and no proportional bias ( R 2 = 0.03-0.14, P > 0.05). The mean difference and 95% confidence intervals for peak KAM were also within the minimal detectable change range demonstrating equivalence. Plug-in-Gait calculations of the KAM are not altered when using a kinematic multi-segment foot marker model with skin markers placed through windows cut in to the shoe, instead of the traditional marker set placed on top of shoes. Researchers may be confident that applying either foot model does not change the calculation of the KAM using Plug-in-Gait.
Findings from the School-Based Theatrical Performance "Walk in Our Shoes." Research Report
ERIC Educational Resources Information Center
Wong, Eunice C.; Cerully, Jennifer L.; Collings, Rebecca L.; Roth, Elizabeth
2014-01-01
The study presented in this report evaluates the effects of a school-based theatrical performance "Walk In Our Shoes" on a group of predominantly Latino youth in Santa Barbara County, California. The performance follows the lives of four (fictional) high school students and introduces their various experiences with both mental health…
46 CFR 160.171-17 - Approval testing for adult size immersion suit.
Code of Federal Regulations, 2013 CFR
2013-10-01
... equivalent synthetic socks; (v) Work shoes, if the suit is designed for shoes to be worn inside. (2) Test... Approval testing for adult size immersion suit. Caution: During each of the in-water tests prescribed in... if the oversize adult suit is of the same design as the adult suit except for extra material to...
20 CFR 404.2040 - Use of benefit payments.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., if a beneficiary is a member of an Aid to Families With Dependent Children (AFDC) assistance unit, we... beneficiary's brother, who is the payee, learns the beneficiary needs new shoes and does not have any funds to... a pair of shoes for $29. He also takes the beneficiary to see a movie which costs $3. When they...
Recreational trampling experiments: Effects of trampler weight and shoe type
David N. Cole
1995-01-01
A standard protocol for conducting experimental trampling studies was developed by Cole and Bayfield (1993). Two variables that were not standardized in that protocol are the type of shoe worn by tramplers and the weight of tramplers. In a study conducted in four different vegetation types, tramplers wearing lug-soled boots caused significantly more immediate...
Characterization of the performance of shoe insert materials.
Lewis, G; Tan, T; Shiue, Y S
1991-08-01
It has been widely reported that shoe inserts are an effective interventional modality either for the relief of discomfort to the feet associated with a variety of orthopedic disorders or conditions or simply for comfort. Results from many types of experimental tests have been used to obtain the shock absorption capacity of shoe insert materials. The authors contend in this study that, while shock absorption is a highly desirable property, it is by no means the only that should be used to characterize these materials. Thus, a new index of performance of these materials is proposed. This index is computed from data, obtained in a simple experimental test, on both the shock absorption and energy return performances of the insert material.
A Portable Ultrasonic Nondestructive Inspection System for Metal Matrix Composite Track Shoes
NASA Astrophysics Data System (ADS)
Mi, Bao; Zhao, Xiaoliang; Qian, Tao; Stevenson, Mark; Kwan, Chiman; Owens, Steven E.; Royer, Roger L.; Tittmann, Bernhard R.; Raju, Basavaraju B.
2007-03-01
Cast aluminum track shoes reinforced with metal matrix composite (MMC) inserts at heavy loading areas such as center splines and sprocket windows are light in weight, and can resist high temperature and wear. Various defects such as disbonds at the insert-substrate interface, cracks and porosity in the MMC layer, etc. can be introduced during the manufacturing process and/or in service. This paper presents a portable ultrasonic system to automatically inspect tank track shoes for disbond. Ultrasonic pulse/echo inspection has shown good reliability for disbond detection. A prototype sensor array fixture has been designed and fabricated to prove the feasibility. Good agreements between the sensor fixture results and ultrasonic C-scan images were obtained.
The barefoot debate: can minimalist shoes reduce running-related injuries?
Rixe, Jeffrey A; Gallo, Robert A; Silvis, Matthew L
2012-01-01
Running has evolved throughout history from a necessary form of locomotion to an athletic and recreational pursuit. During this transition, our barefoot ancestors developed footwear. By the late 1970s, running popularity surged, and footwear manufacturers developed the running shoe. Despite new shoe technology and expert advice, runners still face high injury rates, which have yet to decline. Recently, "minimalist" running, marked by a soft forefoot strike and shorter, quicker strides, has become increasingly popular within the running community. Biomechanical studies have suggested that these features of barefoot-style running may lead to a reduction in injury rates. After conducting more outcomes-based research, minimalist footwear and gait retraining may serve as new methods to reduce injuries within the running population.
Engineering specification and system design for CAD/CAM of custom shoes: UMC project effort
NASA Technical Reports Server (NTRS)
Bao, Han P.
1991-01-01
The goal of this project is to supplement the footwear design system of North Carolina State University (NCSU) with a software module to design and manufacture a combination sole. The four areas of concentration were: customization of NASCAD (NASA Computer Aided Design) to the footwear project; use of CENCIT data; computer aided manufacturing activities; and beginning work for the bottom elements of shoes. The task of generating a software module for producing a sole was completed with a demonstrated product realization. The software written in C was delivered to NCSU for inclusion in their design system for custom footwear known as LASTMOD. The machining process of the shoe last was improved using a spiral tool path approach.
`Whose Shoes?` Can an educational board game engage Ugandan men in pregnancy and childbirth?
Ladur, Alice Norah; van Teijlingen, Edwin; Hundley, Vanora
2018-03-27
Men can play a significant role in reducing maternal morbidity and mortality in low-income countries. Maternal health programmes are increasingly looking for innovative interventions to engage men to help improve health outcomes for pregnant women. Educational board games offer a unique approach to present health information where learning is reinforced through group discussions supporting peer-to-peer interactions. A qualitative study with men from Uganda currently living in the UK on their views of an educational board game. Men were purposively sampled to play a board game and participate in a focus group discussion. The pilot study explored perceptions on whether a board game was relevant as a health promotional tool in maternal health prior to implementation in Uganda. The results of the pilot study were promising; participants reported the use of visual aids and messages were easy to understand and enhanced change in perspective. Men in this study were receptive on the use of board games as a health promotional tool and recommended its use in rural Uganda. This study provides preliminary data on the relevancy and efficacy of using board games in maternal health. Key messages from the focus group appeared to be that the board game is more than acceptable to fathers and that it needs to be adapted to the local context to make it suitable for men in rural Uganda.
ERIC Educational Resources Information Center
Ackerman, Debra J.
2008-01-01
Several nonprofit agencies in a large Midwestern city provide assistance to early care and education programs participating in a pilot Quality Rating Scale (QRS) initiative by pairing them with itinerant consultants, who are known as coaches. Despite this assistance, not all programs improve their QRS score. Furthermore, while pilot stakeholders…
PILOT SCALE PROCESS EVALUATION OF REBURNING FOR IN-FURNACE NOX REDUCTION
The report gives results of coal and natural gas reburning application tests to a pilot scale 3.0 MWt furnace to provide the scaling information required for commercial application of reburning to pulverized-coal-fired boilers. Initial parametric studies had been conducted in a 2...
The ability of pervaporation to remove methyl t-butyl ether (MTBE) from water was evaluated at bench- and pilot-scales. Process parameters studied included flow rate, temperature, MTBE concentration, membrane module type, and permeate pressure. Pervaporation performance was ass...
Desloovere, Kaat; Molenaers, Guy; Van Gestel, Leen; Huenaerts, Catherine; Van Campenhout, Anja; Callewaert, Barbara; Van de Walle, Patricia; Seyler, J
2006-10-01
Several studies indicated that walking with an ankle foot orthosis (AFO) impaired third rocker. The purpose of this study was to evaluate the effects of two types of orthoses, with similar goal settings, on gait, in a homogeneous group of children, using both barefoot and shoe walking as control conditions. Fifteen children with hemiplegia, aged between 4 and 10 years, received two types of individually tuned AFOs: common posterior leaf-spring (PLS) and Dual Carbon Fiber Spring AFO (CFO) (with carbon fibre at the dorsal part of the orthosis). Both orthoses were expected to prevent plantar flexion, thus improving first rocker, allowing dorsiflexion to improve second rocker, absorbing energy during second rocker, and returning it during the third rocker. The effect of the AFOs was studied using objective gait analysis, including 3D kinematics, and kinetics in four conditions: barefoot, shoes without AFO, and PLS and CFO combined with shoes. Several gait parameters significantly changed in shoe walking compared to barefoot walking (cadence, ankle ROM and velocity, knee shock absorption, and knee angle in swing). The CFO produced a significantly larger ankle ROM and ankle velocity during push-off, and an increased plantar flexion moment and power generation at pre-swing compared to the PLS (<0.01). The results of this study further support the findings of previous studies indicating that orthoses improve specific gait parameters compared to barefoot walking (velocity, step length, first and second ankle rocker, sagittal knee and hip ROM). However, compared to shoes, not all improvements were statistically significant.
Effects of footwear and stride length on metatarsal strains and failure in running.
Firminger, Colin R; Fung, Anita; Loundagin, Lindsay L; Edwards, W Brent
2017-11-01
The metatarsal bones of the foot are particularly susceptible to stress fracture owing to the high strains they experience during the stance phase of running. Shoe cushioning and stride length reduction represent two potential interventions to decrease metatarsal strain and thus stress fracture risk. Fourteen male recreational runners ran overground at a 5-km pace while motion capture and plantar pressure data were collected during four experimental conditions: traditional shoe at preferred and 90% preferred stride length, and minimalist shoe at preferred and 90% preferred stride length. Combined musculoskeletal - finite element modeling based on motion analysis and computed tomography data were used to quantify metatarsal strains and the probability of failure was determined using stress-life predictions. No significant interactions between footwear and stride length were observed. Running in minimalist shoes increased strains for all metatarsals by 28.7% (SD 6.4%; p<0.001) and probability of failure for metatarsals 2-4 by 17.3% (SD 14.3%; p≤0.005). Running at 90% preferred stride length decreased strains for metatarsal 4 by 4.2% (SD 2.0%; p≤0.007), and no differences in probability of failure were observed. Significant increases in metatarsal strains and the probability of failure were observed for recreational runners acutely transitioning to minimalist shoes. Running with a 10% reduction in stride length did not appear to be a beneficial technique for reducing the risk of metatarsal stress fracture, however the increased number of loading cycles for a given distance was not detrimental either. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of Taping and Orthoses on Foot Biomechanics in Adults with Flat-Arched Feet.
Bishop, Christopher; Arnold, John B; May, Thomas
2016-04-01
There is a paucity of evidence on the biomechanical effects of foot taping and foot orthoses in realistic conditions. This study aimed to determine the immediate effect and relationships between changes in multisegment foot biomechanics with foot taping and customized foot orthoses in adults with flat-arched feet. Multisegment foot biomechanics were measured in 18 adults with flat-arched feet (age 25.1 ± 2.8 yr; height 1.73 ± .13 m, body mass 70.3 ± 15.7 kg) during walking in four conditions in random order: neutral athletic shoe, neutral shoe with tape (low-Dye method and modified method) and neutral shoe with customized foot orthoses. In-shoe foot biomechanics were compared between conditions using a purpose developed foot model with three-dimensional kinematic analysis and inverse dynamics. Foot orthoses significantly delayed peak eversion compared to the neutral shoe (44% stance vs 39%, P = 0.002). Deformation across the midfoot and medial longitudinal arch was reduced with both the low-Dye taping (2.4°, P < 0.001) and modified taping technique (5.5°, P < 0.001). All interventions increased peak dorsiflexion of the first metatarsophalangeal joint (1.4°-3.2°, P < 0.001-0.023). Biomechanical responses to taping significantly predicted corresponding changes to foot orthoses (R2 = 0.08-0.52, P = 0.006 to <0.001). Foot orthoses more effectively altered timing of hindfoot motion whereas taping was superior in supporting the midfoot and medial longitudinal arch. The biomechanical response to taping was significantly related to the subsequent change observed with the use of foot orthoses.
Squadrone, R; Gallozzi, C
2009-03-01
The first aim of this study was to assess how changes in the mechanical characteristics of the foot/shoe-ground interface affect spatio-temporal variables, ground pressure distribution, sagittal plane kinematics, and running economy in 8 experienced barefoot runners. The second aim was to assess if a special lightweight shoe (Vibram Fivefingers) was effective in mimic the experience of barefoot running. By using an instrumented treadmill, barefoot running, running with the Fivefingers, and running with standard running shoe were compared, analyzing a large numbers of consecutive steps. Foot/shoe-ground interface pressure distribution, lower limb kinematics, V.O(2) and heart rate data were simultaneously collected. Compared to the standard shod condition when running barefoot the athletes landed in more plantarflexion at the ankle. This caused reduced impact forces and changes in stride kinematics. In particular, significantly shorter stride length and contact times and higher stride frequency were observed (P<0.05). Compared to standard shod condition, V.O(2) and peak impact forces were significantly lower with Fivefingers (P<0.05) and much closer to barefoot running. Lower limb kinematics with Fivefingers was similar to barefoot running with a foot position which was significantly more plantarflexed than in control shoe (P<0.05). The data of this study support the assumption that changes in the foot-ground interface led to changes in running pattern in a group of experienced barefoot runners. The Fivefingers model seems to be effective in imitating the barefoot conditions while providing a small amount of protection.
The influence of shoe drop on the kinematics and kinetics of children tennis players.
Herbaut, Alexis; Chavet, Pascale; Roux, Maxime; Guéguen, Nils; Gillet, Christophe; Barbier, Franck; Simoneau-Buessinger, Emilie
2016-11-01
This study investigated the immediate effects of reducing the shoe drop (i.e. the difference between the heel and the forefoot height) on the kinematics and kinetics of the lower extremities of children tennis players performing a tennis-specific movement. Thirteen children tennis players performed a series of simulated open stance forehands wearing 3 pairs of shoes differing only in the drop: 0 (D0), 6 (D6) and the control condition of 12 mm (D12). Two embedded forceplates and a motion capture system were used to analyse the ground reaction forces and ankle and knee joint angles and moments of the leading lower limb. In D6 compared with D12, the peak impact force was reduced by 24% (p = .004) and the ankle was less dorsiflexed at foot strike (p = .037). In D0 compared with D12, the peak impact force was reduced by 17% (p = .049), the ankle was less dorsiflexed at foot strike (p = .045) and the knee was more flexed at foot strike (p = .007). In addition, 4 out of 13 participants (31%) presented a forefoot strike pattern for some of the trials in D0. No difference was observed across shoe conditions for the peak knee extensor moment (p = .658) or the peak ankle plantarflexor moment (p = .071). The results provide preliminary data supporting the hypothesis that for children tennis players, using a 6-mm lower shoe drop might reduce heel impact forces and thus limit potentially impact-related injuries.
Febriana, Sri Awalia; Soebono, Hardyanto; Coenraads, Pieter-Jan
2014-02-01
Shoe manufacturing workers are exposed daily to an extensive range of potential physical and chemical occupational hazards. Shoe manufacturing in Indonesia is one of the industrial sectors that has shown sustained growth amongst the newly industrialized countries (NICs). In this study, we investigated the possible potential exposure of the workers to physical and occupational hazards and determined the prevalence of occupational skin diseases at a shoe manufacturing factory in Indonesia. A cross-sectional study on the observation of the working process and an inventory and risk assessment of exposure to the chemicals used. Classification of chemicals as potential sensitizers/irritants and qualitative assessments of these chemicals were done. Workers were examined and interviewed using the Nordic Occupational Skin Questionnaire-2002/LONG. The risk of Occupational skin diseases (OSD) at the shoe factory was mainly related to the exposure of the workers' skin to potential physical and chemical hazards in hot and humid environmental conditions. From a total of 514 workers, 8.5 % reported current OSD and 4.8 % reported a history of OSD. Occupational skin diseases were diagnosed in 29 % of the workers by dermatologists and 7.6 % had an occupational contact dermatitis (OCD). Of the 39 workers with contact dermatitis, 33 consented to being patch tested, 14 (3 %) workers showed a positive results and considered as having an occupational allergic contact dermatitis (OACD) and 25 (4.9 %) had an occupational irritant contact dermatitis (OICD). We observed a repeated and prolonged exposure of the workers to numerous physical and chemical skin hazards at this factory.
Khodaei, Banafsheh; Saeedi, Hassan; Jalali, Maryam; Farzadi, Maede; Norouzi, Ehsan
2017-12-01
The effect of foot orthoses on plantar pressure distribution has been proven by researchers but there are some controversies about advantages of custom-made foot orthoses to less expensive prefabricated foot orthoses. Nineteen flatfeet adults between 18 and 45 participated in this study. CAD-CAM foot orthoses were made for these patients according to their foot scan. Prefabricated foot orthoses were prepared according to their foot size. Plantar pressure, force and contact area were measured using pedar ® -x in-shoe system wearing shoe alone, wearing CAD-CAM foot orthoses and wearing prefabricated foot orthoses. Repeated measures ANOVA model with post-hoc, Bonferroni comparison were used to test differences. CAD-CAM and prefabricated foot orthoses both decreased pressure and force under 2nd, 3-5 metatarsal and heel regions comparing to shoe alone condition. CAD-CAM foot orthosis increased pressure under lateral toe region in comparison to shoe alone and prefabricated foot orthosis. Both foot orthoses increased pressure and contact area in medial midfoot region comparing to shoe alone condition. Increased forces were seen at hallux and lateral toes by prefabricated foot orthoses in comparison with CAD-CAM foot orthoses and control condition, respectively. According to the results, both foot orthoses could decrease the pressure under heel and metatarsal area. It seems that the special design of CAD-CAM foot orthoses could not make great differences in plantar pressure distribution in this sample. Further research is required to determine whether these results are associated with different scan systems or design software. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chien, Hui-Lien; Lu, Tung-Wu; Liu, Ming-Wei
2014-04-01
High-heeled shoes are associated with instability and falling, leading to injuries such as fracture and ankle sprain. This study investigated the effects of habitual wearing of high-heeled shoes on the body's center of mass (COM) motion relative to the center of pressure (COP) during gait. Fifteen female experienced wearers and 15 matched controls walked with high-heeled shoes (7.3cm) while kinematic and ground reaction force data were measured and used to calculate temporal-distance parameters, joint moments, COM-COP inclination angles (IA) and the rate of IA changes (RCIA). Compared with inexperienced wearers, experienced subjects showed significantly reduced frontal IA with increased ankle pronator moments during single-limb support (p<0.05). During double-limb support (DLS), they showed significantly increased magnitudes of the frontal RCIA at toe-off and contralateral heel-strike, and reduced DLS time (p<0.05) but unaltered mean RCIA over DLS. In the sagittal plane experienced wearers showed significantly increased mean RCIA (p<0.05) and significant differences in the RCIA at toe-off and contralateral heel-strike (p<0.05). Significantly increased hip flexor moments and knee extensor moments at toe-off (p<0.05) were needed for forward motion of the trailing limb. The current results identified the change in the balance control in females after long-term use of high-heeled shoes, providing a basis for future design of strategies to minimize the risk of falling during high-heeled gait. Copyright © 2014 Elsevier B.V. All rights reserved.
Demonstrating Functional Equivalence of Pilot and Production Scale Freeze-Drying of BCG
ten Have, R.; Reubsaet, K.; van Herpen, P.; Kersten, G.; Amorij, J.-P.
2016-01-01
Process analytical technology (PAT)-tools were used to monitor freeze-drying of Bacille Calmette-Guérin (BCG) at pilot and production scale. Among the evaluated PAT-tools, there is the novel use of the vacuum valve open/close frequency for determining the endpoint of primary drying at production scale. The duration of primary drying, the BCG survival rate, and the residual moisture content (RMC) were evaluated using two different freeze-drying protocols and were found to be independent of the freeze-dryer scale evidencing functional equivalence. The absence of an effect of the freeze-dryer scale on the process underlines the feasibility of the pilot scale freeze-dryer for further BCG freeze-drying process optimization which may be carried out using a medium without BCG. PMID:26981867
Demonstrating Functional Equivalence of Pilot and Production Scale Freeze-Drying of BCG.
Ten Have, R; Reubsaet, K; van Herpen, P; Kersten, G; Amorij, J-P
2016-01-01
Process analytical technology (PAT)-tools were used to monitor freeze-drying of Bacille Calmette-Guérin (BCG) at pilot and production scale. Among the evaluated PAT-tools, there is the novel use of the vacuum valve open/close frequency for determining the endpoint of primary drying at production scale. The duration of primary drying, the BCG survival rate, and the residual moisture content (RMC) were evaluated using two different freeze-drying protocols and were found to be independent of the freeze-dryer scale evidencing functional equivalence. The absence of an effect of the freeze-dryer scale on the process underlines the feasibility of the pilot scale freeze-dryer for further BCG freeze-drying process optimization which may be carried out using a medium without BCG.
18. View to southwest. Detail, bearing shoe, upstream side of ...
18. View to southwest. Detail, bearing shoe, upstream side of east pier. Copy negative made from 35mm color transparency made with with 135mm lens by John Snyder, due to lack of sufficiently long lens for 4x5 camera. - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
30 CFR 250.1715 - How must I permanently plug a well?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Zones in open hole, Cement plug(s) set from at least 100 feet below the bottom to 100 feet above the top... cement plug, set by the displacement method, at least 100 feet above and below deepest casing shoe; (ii) A cement retainer with effective back-pressure control set 50 to 100 feet above the casing shoe, and...
30 CFR 250.1715 - How must I permanently plug a well?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Zones in open hole, Cement plug(s) set from at least 100 feet below the bottom to 100 feet above the top... cement plug, set by the displacement method, at least 100 feet above and below deepest casing shoe; (ii) A cement retainer with effective back-pressure control set 50 to 100 feet above the casing shoe, and...
30 CFR 250.1715 - How must I permanently plug a well?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Zones in open hole, Cement plug(s) set from at least 100 feet below the bottom to 100 feet above the top... cement plug, set by the displacement method, at least 100 feet above and below deepest casing shoe; (ii) A cement retainer with effective back-pressure control set 50 to 100 feet above the casing shoe, and...
30 CFR 250.1715 - How must I permanently plug a well?
Code of Federal Regulations, 2011 CFR
2011-07-01
... in open hole Cement plug(s) set from at least 100 feet below the bottom to 100 feet above the top of... cement plug, set by the displacement method, at least 100 feet above and below deepest casing shoe;(ii) A cement retainer with effective back-pressure control set 50 to 100 feet above the casing shoe, and a...
ERIC Educational Resources Information Center
Landis, Deborah Lee
A Winter Weekend experiential learning seminar was organized in 1980 by 13 graduate assistants at the Northern Illinois University Taft Campus, for college outdoor education students to learn winter activities (sleigh rides, cross-country skiing, snow shoeing and snow shoe making, winter animal track and habitat identification, igloo building,…
NAC Off-Vehicle Brake Testing Project
2007-05-01
disc pads/rotors and drum shoe assemblies/ drums - Must use vehicle “OEM” brake /hub-end hardware, or ESA... brake component comparison analysis (primary)* - brake system design analysis - brake system component failure analysis - (*) limited to disc pads...e.g. disc pads/rotors, drum shoe assemblies/ drums . - Not limited to “OEM” brake /hub-end hardware as there is none ! - Weight transfer, plumbing,